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The aim of this semester’s seminar is to work through Wei Zhang’s proof of the Arithmetic
Fundamental Lemma (AFL), see [7].

Theorem (Arithmetic Fundamental Lemma, Zhang 2019). Let g ∈ U(V ) be regular semi-
simple, matching the element γ ∈ Sn(Qp). Then, up to an explicit sign, there is an equality

±∂O(γ, 1Sn(Zp)) = Int(g) log(p).

Here, U(V ) is the unitary group of an n-dimensional non-split hermitian space for the un-
ramified extension Qp2/Qp. It acts on a certain Rapoport-Zink space and Int(g) is the
intersection number of a certain cycle with its g-translate. The left hand side is a certain
analytic-combinatorial quantity defined as the derivative at s = 0 of an orbital integral over
a symmetric space Sn ⊂ ResQp2/Qp

GLn with respect to a standard test function 1Sn(Zp). The
elements g and γ are related by a comparison of invariants with respect to certain group
actions, which implies e.g. that they have the same characteristic polynomial.

Zhang’s proof of the AFL is of a global nature. On the analytic side, he defines certain
distributions with values in holomorphic modular forms. This is where the Weil representation
comes into play. Similarly, on the intersection theoretic side, he defines holomorphic modular
forms by intersecting the generating series from [1] with CM-cycles. The choices can be
made such that the AFL identity in question occurs as the comparison of a certain Fourier
coefficient.

Local intersection numbers (resp. derived orbital integrals) from finitely many prime numbers
p contribute to a fixed Fourier coefficient. At almost all primes, the order used to define the
CM-cycle is maximal and the two contributions can be directly compared, cf. [2]. For a bad
prime p, at least its contributions to Fourier coefficients in degree prime to p can be compared
by an inductive argument. This already implies the equality of the two modular forms in
question and hence the desired AFL identity.

Talks

Citations refer to [7] if not stated otherwise. You may assume that F0 = Q resp. F0 = Qp to
simplify the exposition in your talk.

Talk 1: Matching and orbital integrals

Introduce the group-theoretic set up from Section 2.1 and the matching of orbits from Section
2.2. A proof of the bijectivity of the matching relation (for the case of groups) can be found
in [5, Lemma 2.3]. Define the relevant orbital integrals and the transfer of test functions as
in Section 2.3. Note that by [6, Theorem 2.6], a smooth transfer always exists.

Talk 2: The Fundamental Lemma

State the Fundamental Lemma from Section 2.4. Reinterpret the occurring orbital integrals
as certain lattice counts as in [3, Section 7] (group version) or [4, Section 2] (Lie algebra
version). Adapt these results to the semi-Lie algebra version, cf. [2, Section 9]. Show the
vanishing part of the Fundamental Lemma as in [3, Corollary 7.3]. Prove the case of complex
multiplication Proposition 2.6 and, if time permits, the induction statement Proposition 2.7.
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Talk 3: The Arithmetic Fundamental Lemma

Follow Section 3.1 to define both the group and semi-Lie algebra version of the AFL. For the
semi-Lie algebra version, introduce the necessary background on K-groups from Appendix
B. In order to show that the intersection number Int(g) (resp. Int(g, u)) is well defined, prove
that the intersection ∆ ∩ g∆ (resp. N g

n ∩ Z(u)) is a projective scheme over Spf OF̆ .

Talk 4: Special cases of the AFL

Prove the AFL in the case n = 2, see [5, Section 2.3]. Use [2, Theorems 10.1 and 10.5] to
deduce the case of complex multiplication, see Proposition 3.9. Formulate both the equiva-
lence of group and semi-Lie algebra version and the induction scheme, see Proposition 4.12.
Sketch its proof.

Talk 5: Local constancy of intersection numbers

Present the results of Section 5, concerning the local constancy of the intersection numbers
Int(g) and Int(g, u). For this, you will also have to prove Lemma 3.8 on the horizontal/vertical
decomposition of the derived local CM-cycle from Talk 3. Also state Lemma 13.9.

Talk 6: Shimura varieties and fat big CM-cycles

Define the unitary Shimura varieties and the integral models that play a role for the global-
ization of the AFL setting, see Section 6. Introduce the fat big CM-cycles on these varieties
as in Section 7.3 and endow them with a derived structure by expressing them as fixed points
of a Hecke correspondence, see Sections 7.5 and 7.7.

Talk 7: Kudla-Rapoport divisors

Define the global KR-divisors as in Section 7.1. Endow these with Green’s functions to define
them as elements of the (reduced) Arakelov Chow group, see Section 8.2. Give Theorem 8.2
on the comparison of the two possible choices of Green’s functions. Define the generating
series with KR-divisors as coefficients and state the results on their modularity (Theorems
8.1 and 8.3).

Talk 8: Intersecting CM-cycles and KR-divisors

Follow Sections 9 and 10 to express the intersection of a fat big CM-cycle and the generating
series from the previous talk in terms of local intersection numbers. The main results are
Theorems 9.3 and 10.1 as well as Corollary 10.2. To prove Theorem 9.3, you also have to
introduce the p-adic uniformization of the basic locus of the Shimura variety and of the cycles
in question, see Sections 7.2 and 7.4.

Talk 9: Weil representation and RTF with Gaussian test functions

Use the Weil representation to define the global distribution J(h,Φ′, s) from Section 11, which
is the analog on the analytic side of the generating series from the previous talk. Define the
notion of (partial) Gaussian test functions and explain the regularization occurring in the
definition of J, see Section 12.6. State the decomposition at s = 0, see Section 12.7.

Talk 10: Proof of the AFL

Present the constant term computation “AFL at archimedean place” from Section 14.1. Finish
the proof of the AFL, see Sections 14 and 15.
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