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1 Introduction
What exactly is the impact of the computer on mathematics? If one were to
believe some of the advocates of computer-assisted mathematics “computers
[are] changing the way we do mathematics” (Borwein, 2008). This alleged
change concerns a shift in perspective on mathematical knowledge and the
way it is attained, a change brought about and made explicit through the
computer. Mathematicians like Borwein and Bailey (2003, 2004), Seiden
(1998) and Zeilberger (1993) have emphasized on several occasions that
the increasing significance of computer-assisted mathematics makes it more
and more clear that quasi-empirical or experimental methods must be in-
cluded and be taken more seriously within the mathematical discourse, that
mathematics has more in common with the empirical sciences than is usu-
ally believed. They question the traditional ideas on mathematical cer-
tainty, proofs, rigor and understanding. Also, within the philosophy of
mathematics, (examples of) computer-assisted mathematics (are) is mainly
discussed in the context of work that can be placed in the tradition of
Pólya and Lakatos,1 work that emphasizes the significance of the practice
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of the mathematician,2 the fallibility of mathematics and the significance of
(quasi-)heuristics opposing the more traditional idea that mathematics is
without history, without change, that mathematics is no more than a body
of absolute and certain knowledge.3

The idea that computer-assisted mathematics has this kind of impact on
mathematics and its philosophy has of course also been opposed. Indeed,
several philosophers and mathematicians have argued for several different
reasons that the computer does not have this kind of epistemological impact
on mathematical methods. In the end, theoretically, it is not capable of
anything we were not already capable of before.4

The aim of this paper is to contribute to the question concerning the
impact of the computer on mathematics, a question which, in our opinion,
will only gain in importance in the future. Here, I will focus on computer-
assisted proofs. This work is to be situated in a larger research project
that aims to develop a more systematic and complete approach towards
computer-assisted or, as we shall identify it in the remainder of this paper,
mechanized mathematics.5 Such approach is still lacking in the literature.

One important part of such a systematic approach towards mechanized
mathematics is the micro-analysis of (well-known and less well-known) ex-
amples throughout the history of mechanized mathematics, starting from
(but not necessarily ending with) the accounts of the mathematicians them-
selves. There are already some examples in the literature of relatively de-
tailed case studies like MacKenzie’s socio-history of the four-color theo-
rem (MacKenzie, 1999), probably the most famous example of a computer-
assisted proof, and Van Bendegem’s account of the Collatz problem
(Van Bendegem, 2005), which is a typical example of a problem studied
with the help of the computer. In this paper we shall look at a relatively
unknown example of a computer-assisted proof, i.e., the solution of the Busy
Beaver problem for the class of Turing machines with 2 symbols and 3 and
4 states. The Busy Beaver game (or competition) for a certain class of Tur-
ing machines (with m states and n symbols) is to find the Turing machine
which prints out the maximum number of 1s before halting when started
from a blank tape (cf. §2.1 for the technical details).

As is stated in the title of this paper, the case analysis should be regarded
as a socio-philosophical analysis. This means here that I will start from
a relatively detailed (micro)-analysis of a specific example of a computer-

2Cf., e.g., Van Kerkhove and Van Bendegem (2008).
3Cf., e.g., Tymoczko (1979).
4Cf., e.g., Baker (2008); Burge (1998); Detlefsen and Luker (1980); Levin (1981); Swart

(1980); Teller (1980). Note that this does not necessarily mean that they oppose the idea
of mathematics being not that absolute body of truths.

5I follow Derrick Henry Lehmer (1966) here, a computer pioneer and number theorist,
who is one of the main inspirators of the present work.
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assisted proof, tracing the immediate consequences and problems as they
are interpreted by the mathematician(s) her/himself during the process of
proving and in the communication of the proof. I will then discuss the most
important philosophical problems related to computer-assisted proofs in the
context of the case analysis.

1.1 What are computer-assisted proofs?

Within the literature one can easily determine different kinds of computer
‘proofs’. There is, for example, an important difference between a (1) mech-
anized probabilistic proof that shows that a certain very large number x is
prime, using the Miller-Rabin primality test, (2) visual proofs as they for
example occur in fractal geometry (cf., e.g., De Mol, 2005), (3) McCune’s
proof of the Robbins algebra conjecture which relies on an automated the-
orem prover (McCune, 1997) and (4) Hales’ proof of the sphere packing
problem (Hales, 2005).

In this paper, unless indicated otherwise, we shall use the term computer-
assisted proof in the sense of Lehmer (cf., e.g., Lehmer, 1963), who was
involved with one of the first true computer-assisted proofs (Lehmer et al.,
1962). A computer-assisted proof is a proof that proves a theorem that
practically could not have been (or, thus far, has not been) proven, re-
proven or verified by human mathematical reasoning alone. I.e., (certain
parts of) both the process that results in the proof as well as the proof
itself must be humanly impractical. As a consequence, these proofs are,
practically speaking, not surveyable by humans. Furthermore, the proof is
also machine impractical in that, besides the programming, certain parts of
the proof could not have been done by the computer. In this sense, we use
the term computer-assisted proof rather than computer proof. These proofs
typically involve the verification of a large number of cases by the computer,
although the work of the computer is not restricted to this verification. A
well-known (and probably the most famous) example is the proof of the
four-color theorem (4CT for short) by Appel and Haken (Appel and Haken,
1977; Appel et al., 1977).6

This definition is not intended as a once-and-for-all-given definition. It
should be understood as an instrument to evaluate and demarcate certain
computer applications which, when analyzed, can in their turn change the
semantic content of computer-assisted proofs.

6Note that several examples from the literature that are quite frequently considered as
examples of computer proofs are excluded by this definition. For example, if a computer
finds a counter-example to a certain conjecture, this does not count as an example of
what is here understood under computer-assisted proof as, once the counterexample has
been found, the human can easily check that it is a counterexample, and thus disprove
the conjecture.
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1.2 Why busy beavers?

There are two main reasons that motivate my choice for this specific case
analysis.

The first and least important one is that in the present case study the
proofs and the problem itself can be relatively easily explained. Unlike, for
example, the computer-assisted proof of the sphere packing problem, the
‘proofs’ are simple enough to be explained up to a relatively high level of
detail. The case-study is thus ideal for the intended micro-analysis.

The main reason for selecting this case is that it is not well known. In
the context of computer-assisted proofs, and, more generally, mechanized
mathematics one focuses mainly on the more famous examples and neglects
the more ‘normal’ ones. Within the literature on computer-assisted proofs,
discussions are usually restricted to one of the following three examples, in
order of increasing popularity:

(a) The non-existence of a finite projective plane of order 10 by Lam et al.
(1989).

(b) The sphere packing problem by Thomas Hales (2005).

(c) The 4CT by Appel and Haken (Appel and Haken, 1977; Appel et al.,
1977) and its alternative proofs by Robertson et al. (1997) and
Gonthier (2004).

(a) is mostly only mentioned without any real discussion, it is yet another
example of a computer-assisted proof, while (b) and especially (c) have given
rise to several different heated debates, going from the question whether such
proofs are really proofs to the problem of the refereeing of such proofs.

Of course, one cannot deny that, e.g., the 4CT is more interesting than
the Busy Beaver example to be studied here since, on the one hand, the
result is a proof of an old mathematical problem with a long history, and, on
the other hand, it is not situated within the context of theoretical computer
science (as is the case for the present case study). The same goes for the
other two. However, even if (a), (b) and (c) have already been studied in the
literature and are more interesting, this is no reason not to be interested
in less well-known and interesting examples of computer-assisted proofs.
First of all and generally speaking, if one restricts the attention to only
the ‘famous’ examples, this might lead to an all too restrictive view on
computer-assisted proofs. Secondly, by drawing the attention to the fact
that there are more than three computer-assisted proofs, one shows that
computer-assisted proofs are not as abnormal as one might believe and one
thus counters the argument that, as there are only a few computer-assisted
proofs, they cannot be that important. And abnormal they are not. A very
simple search on the following terms: “Computer proof”, “Machine proof”,
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“Mechanical proof”, “Computer-assisted proof”, and “Automated proof” in
MathSciNet and DBLP, two on-line databases,7 resulted in Table 1:

DBLP MathSciNet
“Computer proof” 196 73
“Machine proof” 42 16
“Mechanical proof” 24 53
“Computer-assisted proof” 22 161
“Automated Proof” 72 79
Total 356 382

Table 1. Overview of the number of papers in MathSciNet and DBLP that
mention computer proofs.

Although these numbers are not overwhelming, and it is furthermore
not the case that all of these proofs are computer-assisted proofs in the
sense used here, they show that one cannot simply discard the significance
of computer-assisted proofs on the basis of numbers. Although they have
not yet become a ‘normal’ method of mathematics, they are more important
than is usually believed.

Thirdly, by focusing on the less well-known examples, it becomes possible
to study the impact of the computer not only on the level of the great
innovations of mathematics—the famous examples—but also on the level
of the ‘everyday’ practice of the mathematician, which is not redundant
if one accepts the view that mathematics cannot be reduced to its great
achievements.

Finally, it is not the case that if one has seen one very important
computer-assisted proof, one has seen them all. By studying more exam-
ples of computer-assisted proofs it becomes possible to tackle certain more
general questions more exactly. What kind of problems can be solved with
computer-assisted proofs? What kind of methods are used and in what way
are they different from other methods? How are computer-assisted proofs
communicated and perceived? What kind of techniques are used to con-
vince the fellow mathematicians of the proof? Is there an evolution in the
way computer-assisted proofs are made and formalized? Etc. These kinds
of questions allow to get a more concrete view on what computer-assisted
proofs are and in what sense they really differ from other proofs. Gen-
eral questions like these cannot be answered properly if one restricts ones
attention to only three computer-assisted proofs.

7MathSciNet is a database for mathematics in general, whereas DBLP is a computer
science database.
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2 Looking for busy beavers
In a paper titled On non-computable functions, Tibor Radó (1962) proposed
an example of “the phenomenon of non-computability in its simplest form”,
an example which is now known as the Busy Beaver function Σ(m) (for
m ∈ N). He provided the following motivation for formulating and studying
the problem (Radó, 1963):

Let us note that our main objective is to observe the phenomenon
of non-computability in its simplest form, so that we can use the
insight we achieve to see better what tasks we can delegate to com-
puters. Actually, the comments to be presented here originated with
the writer’s studies relating to the optimal design of automatic sys-
tems, and specifically with efforts to use computers to the limit of
their capabilities for this purpose.

In other words, the computer not only plays a fundamental role in the
solution of specific cases of the problem, but also led to the formulation of
the problem. Furthermore, as an example of an uncomputable problem, it
is situated in the context of the theory of computing and is thus, on the
theoretical level, closely related to the computer.

Recall that, given Turing’s thesis or any other logically equivalent thesis,
a problem is considered non-computable (or recursively unsolvable) iff. there
is no Turing machine that is able to compute it. One of the more famous
examples is the halting problem, i.e., the problem to decide (compute) for
any Turing machine whether or not that machine will halt.

The fact that a problem is non-computable in general, does not mean
that every instance of the problem is also non-computable. I.e., it is not
because there is a Turing machine with a non-computable halting problem
that every Turing machine has a non-computable halting problem. One can
thus search for strategies that allow to decide a certain generally undecidable
problem for specific classes of ‘decidable’ Turing machines. This is the
goal Radó, and, after him, several other researchers, set themselves: to
compute the Busy Beaver function Σ(m) for specific numbers m. It was
soon understood that the computer would be an indispensable helper.

After a preliminary section (§2.1), defining some of the basic notions
used here, we shall give a (relatively) detailed account of computer-assisted
proofs that Σ(3) = 6 and Σ(4) = 13 (§2.2). This will be followed by a
discussion of three of the typical features of these proofs (§2.3). In the next
section (§3), we shall confront these proofs with some of the fundamental
epistemological problems related to computer-assisted proofs.

2.1 Some preliminaries

A (standard) Turing machine T consists of a read-write head and a two-way
infinite tape. A blank is denoted by the symbol 0. To start with, the tape
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contains a finite initial configuration, possibly empty, on an otherwise blank
tape. In its initial state (state 1), the head reads the leftmost symbol of
the initial configuration.8 The machine is said to halt when it reaches the
halting state H. T is formally defined by the finite set of states Q plus the
halting state H, a finite set of symbols Σ = 0, 1, ... and a transition function
f : Q x Σ → (Σ x {L,R} x Q). The transition function f determines for
any state qi ∈ Q and any symbol sj ∈ Σ what the machine should do when
in state qi, reading the symbol sj . I.e., if f(qi, sj) = (si,j , Di,j , qi,j) then, if
T is in state qi, reading symbol sj , T replaces sj by si,j , moves in direction
Di,j ∈ {L,R} (L stands for left, R stands for right) and goes to state qi,j . In
what follows, an instruction of a Turing machine will be represented by the
quintuple (qi, si, si,j , D, qi,j).

m S(m) Σ(m) Source
1 1 1 Trivial
2 4 2 Mentioned by Radó (1962)
3 21 6 Lin and Radó (1965),

Brady (1983), Kopp (1981)
4 107 13 Brady (1983), Kopp (1981)
5 ≥ 47 176 870 ≥ 4098 Marxen and Buntrock (1990)
6 > 3.8× 1021132 > 3.1× 1010566 unpublished (May 2010)

Table 2. Overview of the current result in the Busy Beaver competition.
The 2010 bound is attributed on Pascal Michel’s webpage on Busy Beavers
to Kropitz.

Let HT(m, 2) be the class of Turing machines with m states and 2 sym-
bols that halt when started from a blank tape. Then, for T ∈ HT(m, 2) let
σ(T ) and s(T ) denote the number of symbols different from 0 left on the tape
and the number of computation steps before T halts, respectively. Let Σ(m)
be the maximum σ(T ) and S(m) the maximum s(T ) with T ∈ HT(m, 2).

Definition 1. The Busy Beaver problem is the problem to determine Σ(m)
for any m ∈ N

Definition 2. The maximum shift number problem is the problem to de-
termine S(m) for any m ∈ N

Both problems were proven to be uncomputable by Radó (1962).9 Note
that computing specific values Σ(m) and S(m) for specific n comes down to

8Of course, if the initial configuration is empty, the head starts at some arbitrary
square, reading 0.

9Radó only considered 2-symbolic Turing machines. The reason for this is that any
n-symbolic Turing machine can be simulated or reduced to a 2-symbolic Turing machine.
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solving a special case of the halting problem for the class of machines with
n states as one needs to be able to determine the subclass HT(m, 2). Table
2 gives an overview of the known values in the Busy Beaver competition.

2.2 Determining Σ(m)

[. . .] when the writer wanted to find a certain highway on an auto-
mobile trip, he received the following directions [. . .]: “Drive straight
ahead on this road; you will cross some steel bridges; and after you
cross the last steel bridge, make a left turn at the next intersection.”
Luckily, the unsolvable problem implied by this advice was resolved
by a member of the construction crew who volunteered the informa-
tion that“after you cross the last steel bridge, there isn’t another steel
bridge until you reach Richmond, 130 miles away.” (Radó, 1962)

In his paper (Radó, 1962), Radó pointed out that the case with m = 1
is trivial and that the case m = 2 was computed during a seminar. For
any Σ(m), S(m) with m > 2, laborious and lengthy proofs, including long
computations, seemed unavoidable. The reason for this is that the number
of Turing machines with 2 symbols and m states grows exponentially fast
for increasing m. Indeed, the size of the class of 2-symbol Turing machines
with m states is equal to (4m+ 1)2m.

Lin and Radó (1965) proved with the help of the computer that Σ(3) =
6, S(3) = 21. Brady (1983) and Kopp (1981) (reported in Machlin and
Stout, 1990)10 proved that Σ(4) = 13, S(4) = 107 and also confirmed the
results by Radó and Lin. In what follows, we shall give a relatively detailed
account of the proofs of these results.

Before doing so, I must point at a difference between the Turing machine
representation used by, on the one hand, Brady and, on the other, Kopp,
Radó and Lin. Contrary to Brady, the latter treat a halt as a separate
branch to a state 0 within a normal entry of a Turing machine. This has
an effect on the total number of 2-symolic Turing machines with m states.
Instead of (4m+1)2m, there are now [4(m+1)]2m distinct 2-symbol, m-state
machines. Table 3 gives an overview of the total number of machines with
2, 3 and 4 states for both approaches.

As is clear from Table 3 the approach by Brady results in a smaller
number of cases to start from.

The three proofs all make use of a series of computer-assisted reductions
of the total number of cases for each of the classes of 2-symbolic Turing
machines with 3 and 4 states, until finally no so-called holdouts remain.

This was proven by Shannon. In current research on the Busy Beaver problem, one
also considers Busy Beaver functions for classes of Turing machines with the number of
symbols m > 2; cf., e.g., Michel (2004). We shall not consider these generalized Busy
Beaver problems here.

10“Kopp” is the maiden name of Machlin.
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m (4m+ 1)2m [4(m+ 1)]2m

2 6561 20736
3 4 826809 16 777 216
4 6 975 757 441 25 600 000 000

Table 3. Number of 2-symbol Turing machines with m states.

I.e., it was determined for each of the machines individually, whether or
not they halt when started from a blank tape, and, if they halt, which
values s(T ) and σ(T ) they have. For each of the proofs found, there was
a conjectured value for Σ(m) and S(m). These were proven lower bounds,
found by making use of certain heuristic and explorative methods.11 In all
cases, the conjectured values turned out to be the correct values.

The proofs consist of two main stages of reduction, a more theoretical
and a more heuristic stage. In the first stage, certain theoretical considera-
tions are used that result in the immediate (computer-assisted) elimination
of a large number of machines. Radó and Lin came to the conclusion that
all machines the first instruction of which is not (1, 0, 1,R, 2) could be elimi-
nated.12 These methods were also used by Brady and Kopp. They extended
the argument by Radó and Lin by what they call a tree generation, gen-
erating instructions as they are needed.13 This method could be easily
automated and was used to eliminate a large number of machines. Table 4
gives an overview of the number of remaining machines, called the holdouts,
after the application of the several elimination methods used in stage one for
each of the proofs.14 The differences between the number of remaining ma-
chines after application of the tree normalization between Brady and Kopp
can be explained by slight differences in their respective approaches. As is
clear from Table 4 certain theoretical considerations allowed for a serious
reduction in the number of cases to be considered. However, the number of
remaining cases is still too large to be humanly manageable.

The next step in all the proofs is to turn to, what Brady calls, more
heuristic proof techniques. In the next stage, Radó and Lin first used the
conjectured value S(3) = 21 in order to eliminate some further machines.

11E.g., Brady (1966) mentions that he used certain heuristic methods to conjecture
that Σ(4) = 13, S(4) = 107. Note that in the ongoing research on the Busy Beaver
competition, one still makes use of several heuristic methods to determine lower bounds,
methods which are also used in proofs of Busy Beaver winners.

12For an explanation why this can be done the reader is referred to (Lin and Radó,
1965).

13For more details the reader is referred to (Machlin and Stout, 1990).
14The method of (tree) normalization was not the only method used. However, it is

the most important one.
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n Radó and Lin Brady Kopp
3 82,944 ± 4,000 3,936
4 ! ± 550,000 603,712

Table 4. Number of Turing machines remaining after the first series of
reductions.

Clearly, all those machines that halted before this respective number of steps
was reached, could be eliminated. Kopp used the same technique, although
she did not use the conjectured value for S(4) but decided to run each of
the remaining machines for some hundred steps n > 107. In case of Kopp,
this technique led to the elimination of 1364 and 182,604 machines for the
3-state and the 4-state case, respectively. Brady first reduced the ± 4,000
and ± 550,000 remaining machines to 27 and 5,820 holdouts, respectively, by
coupling the tree generation program to “a heuristic solution to the halting
problem”. No exact numbers are known in the case of Radó and Lin.

So how to proceed from here? In the next steps, Kopp, Brady, Lin and
Radó made use of more explorative and heuristic methods. These were used
in order to:

• identify or ‘discover’ different types of ‘pattern”, called infinite loops
by Kopp, in the behavior of the holdouts, and

• automate the detection of these patterns in the holdouts.

Kopp, Brady, Lin and Radó were able to identify different types of infinite
loops with the help of the computer. For each of these types of loops it can
be proven that, if they occur in a given Turing machine, then that machine
will never halt and thus its halting problem is decided. Now, if it could be
proven for each of the holdouts that its ultimate behavior is an infinite loop,
then it is proven that these holdouts will never halt and one can thus prove
the result (since the values s(T ) and σ(T ) are known for each of the halting
machines).

What Kopp, Brado, Radó and Lin basically did was first to print-out the
behavior of some of the holdouts, study it and try to detect certain patterns
that could then be generalized and be proven to be cases of infinite loops.
Programs were then written that allowed for the automated detection of
infinite loops which could then result in the elimination of machines whose
ultimate behavior was one of the infinite loops found and formalized in a
program. In the end, several types of infinite loops were detected. The most
important ones are simple loops, Christmas trees, shadow Christmas trees
and counters.15

15Note that not all of these types were found by Radó and Lin.
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Identifying and then detecting different types of infinite loops was the
hardest part of the Busy Beaver proofs. Machlin (Kopp) and Stout describe
it as follows (Machlin and Stout, 1990, pp. 91–92):

The major effort in calculating busy beaver numbers [. . .] lies in prov-
ing that large numbers of machines are in infinite loops [i.e., never
halt]. The approach taken [by Brady, Radó and Lin and Kopp] is to
examine some of these machines by hand, elicit a common behavior
which insures that a machine is in an infinite loop, and then write a
program which examines candidate machines and proves that some
of them do indeed have that behavior. This process tends to iter-
ate, with the researcher constantly trying to reduce the number of
unclassified machines by either generalizing types of behavior earlier
searched for, or by discovering new types of behavior.

Brady (1983, p. 661f.) gives the following description of the structure of the
automated detection of infinite loops:

BBFILT was used to separate heuristically the 5,820 holdouts into
“Xmas Trees”, “Counters”, and “Unknown”, while BBFXX, a modifi-
cation of BBFILT separated the “Alternating Xmas trees” from the
“Unknown” set.

BBX2 was the Xmas Tree prover [. . .]. BBSHAD was a modifica-
tion to handle “Trees with Shadow”, BBALTX was an extension of
BBX2 to handle “Alternating Xmas Trees”, while BBALTX1 was a
minor modification of BBALTX to handle double sweeps in which the
extremum was reached on alternate sweeps only.

BBC was the counter prover, while BBCM was a modification of BBC
to handle “two-shot” carries and some cases of cell interdependence.

More than 18 other programs were written for various housekeep-
ing purposes, simulating and displaying machine behavior, exploring
other reduction and filtering possibilities, etc. In all, at least 53 files
were created and maintained for the project. Keeping track of what
resembled a large scientific experiment became a major task in itself.

After the infinite loop detection program was applied, the small number of
remaining hold-outs were then examined “by hand” and all eliminated as
other cases of infinite loops. Hence, the results that Σ(4) = 13, S(4) = 107
(in case of Brady and Kopp) and that Σ(3) = 6,Σ(4) = 13 (in case of Lin
and Radó, Brady and Kopp). Even this last stage was partly computer-
assisted. As Brady explains:

All of the remaining holdouts were examined by means of volumi-
nous printouts of their histories along with some program extracted
features.
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2.3 Some features of the proofs

In what follows I will discuss three important features of the Busy Beaver
proofs in more depth.

2.3.1 Experimental and heuristic methods

As was shown in §2.2, the second stage of each of the proofs is more involved.
It is also this stage which can be called the more explorative and heuristic
stage of (the process of finding) the proof. As Brady (1983, p. 647) describes
it:

In this final stage of the k = 4 case, one appears to move into a heuris-
tic level of higher order where it is necessary to treat each machine as
representing a distinct theorem. [. . .] The proof techniques, embodied
in programs, are entirely heuristic, while the inductive proofs, once
established by the computer, are completely rigorous and become
the key to the proof of the new and original mathematical results:
Σ(4) = 13 and S(4) = 107.

The ‘heuristic’ character of the second stage of the proof needs to be situated
on two different levels: on the one hand, the identification of different kinds
of infinite loops (simple loops, christmas trees, shadowy christmas trees,
counters) and their variants, on the other, the actual detection of these
loops in the class of holdouts, ultimately reducing the number of holdouts
to 0.

The identification of new types of infinite loops can be considered as an
experimental process in the following sense: the behavior of some (randomly
selected) holdouts was printed out, then examined by hand and a new type of
loop or some variant of an already known type was possibly identified. Brady
also mentions that the computer was not only used to merely print out the
behavior to assist in the identification of infinite loops, but also to extract
certain features that might indicate an infinite loop. It was not known in
advance whether the holdout studied would show some new pattern of an
infinite loop. Maybe more steps would be needed in order for such a pattern
to show itself or maybe it was a halting machine. It was also unknown in
advance how many different types and which types one could expect. To
paraphrase Lehmer, this process of identification of infinite loops is a process
of exploring the universe of mathematics, assisted by the computer.

The heuristic character of the actual detection of infinite loops in the
number of holdouts, concerns the use of what Brady has called heuristic
programs. These are identified as such, because there is no guarantee that
the decision made by the program is the correct one. Given, for example,
one of the christmas tree detection programs, then the uncomputability of
the halting problem combined with the practical fact of finite time implies
that it is not guaranteed that this christmas tree detection program will
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detect every case (or a variant) of a christmas tree. I.e., there are cases of
holdouts which might actually be cases of christmas trees, but which will
not be detected as such by the detection program. It might for example be
the case that the holdout is a yet undiscovered variant of a christmas tree,
or that the typical behavior of a (variant of a) christmas tree, as described in
the christmas tree detection program only ‘shows’ itself after say billions and
billions of computation steps. Since one does not know in advance whether
a given holdout is a case of a christmas tree, nor, if it is, when the typical
behavior of a christmas tree will be observed, one needs to make certain
choices, in order to assure that the christmas tree detection program will
halt for every case. Machlin and Stout explain that if their christmas tree
detection program ran too many steps without finding the desired behavior
then the machine remained a holdout, even if it might in fact be a case of a
christmas tree. This problem is described as follows in the case of a program
called the backtracking program (Machlin and Stout, 1990):

While backtracking can be useful, it cannot be guaranteed to always
stop since otherwise it would supply a solution to the halting problem.
As with all the heuristics we discuss, one must make some decision
as to how long to run this technique before abandoning it.

Another example of a kind of heuristic program (used by Brady and Kopp)
is the ‘tentative’ classification of the holdouts as cases of christmas trees
or counters. This classification was made on the basis of the rate at which
new tape squares were visited. On the basis of the decision ‘made’ by this
program, either a counter or christmas tree detection program was run.
Brady calls this program (BBFILT) a heuristic filter, “a heuristic technique
based upon experimental observation.”

It has been argued that computer-assisted proofs like the 4CT show that
there are certain parts of mathematics that are (quasi-)heuristic in nature.
(Tymoczko, 1979) is the most well-known paper in this respect. His main
reason however for considering the 4CT heuristic in nature, is the fact of its
human unsurveyability. This argument has been countered in the literature
on many occasions.16 Now, the authors of the Busy Beaver proofs very
clearly do not shy away from identifying certain aspects of their proofs as
experimental, explorative or heuristic in nature. However, their reasons
for doing so has nothing to do with the unsurveyability of their proofs,
but rather with the inherent and practical unpredictability of the different
Turing machines to be considered. It is this unpredictability that forces
them to explore the behavior of the different machines and to use so-called
heuristic programs.

16Cf. §3 for more details.
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2.3.2 The process of the proof

Normally, when a proof is published in a paper, no (conscious) mention is
made of the process of finding that proof.17 The actual proof and the process
of finding that proof are considered to be strictly separated. What counts
is that there is a proof of some theorem. The proof is that which needs to
be communicated, what needs to be published, what remains. The dirty
details of the process that resulted in the proof are considered irrelevant.

In the published accounts of the Busy Beaver proofs, on the other hand,
one finds that a lot of information is given about the process of finding the
proof. In a certain way, this should not come as a surprise: as is clear
from the respective papers, as far as Busy Beaver proofs are concerned, the
process of finding the proof and the proof itself are very much intertwined.
It is during the process of reducing the number of holdouts (the process of
the proof itself) that new (variants of) types of infinite loops are discovered,
that computer programs need to be refined or that new programs need to
be written, etc.

Even though the initial intertwinement between the process of finding
the proof and the proof itself is in a certain way trivial,18 the fact that the
Busy Beaver proofs are represented and communicated in terms of their
discovery processes is an important (but of course not exclusive) feature of
these proofs. So why choose this strategy? Brady (1983) gives the answer:

While not all the exploratory activities are reproducible, the runs
shown [. . .] can be reproduced, so that by utilizing the techniques
described in this paper the proof can be corroborated.

In other words, information on the process of finding the proof is provided
in order for the reader-mahematician to be able to verify the proof and see
whether it does not contain errors. This is a very important feature as it
is not only a local strategy against the problem of hardware and software
errors in computer-assisted proofs (cf. §3), but also a way to ‘convince’ other
mathematicians of the result: even though they do not have all the details
they have enough information to convince themselves of the correctness of
the proof.

17Of course, to say that no traces at all can be found in published mathematical papers
of the process of finding and the practice underlying a proof, is caricatural.

18From a certain point of view, it is indeed almost trivial to say that if one is ‘in’
the process of searching for a proof, and this process ultimately results in a proof, then
searching for that proof is also always ‘making’ that proof, hence the intertwinement.
However, once the proof is ‘found’ the proof is all that needs to be represented, the proof
which might be very different from the proof ‘as it was found’. In the end, it is the proof
that counts not the process that resulted in the proof.



Looking for Busy Beavers 75

2.3.3 Man-computer interaction and the machine’s
responsibility

A last feature that needs to be mentioned here is the fact that the respective
proofs result from a complex process of man-computer-interactions.

In the first stages of the Busy Beaver proofs the process of man-computer
interaction is relatively simple. The human work is strictly separated from
the computer work. First, there is the theoretical and human idea of tree
generation which is translated into executable computer code. The com-
puter then generates the reduced class of Turing machines. There is only
one moment of interaction: when the human translates the theoretical ideas
to the computer and asks the computer to execute them. Here, one could
say that the machine’s role is a very passive one. It is a mere calculation,
following an order. It is not very involved, it is hardly responsible for the
actual result. This is probably also one of the main reasons why the com-
puter is hardly mentioned by Radó, Lin, Brady and Machlin and Stout in
describing this first stage!

In the second stage however, which is the more heuristic stage, the inter-
active process is far more complicated. It is through a constant process of
back-and-forth interaction, using a programming language, the display and
print-outs as the means of communication, the ‘common languages’ (inter-
faces) through which man and computer communicate with each other, that
the proof is finally found. During this process, new types of infinite loops
are discovered, new programs are written or old ones are extended, etc. In
this second stage, the computer is more actively involved in the process of
(finding) the proof. Here, its contribution is also more explicitly mentioned
by Radó, Lin, Brady and Machlin and Stout. Although, during this process
of interaction, it is relatively clear which kind of things are done by the
computer and which are done by the human, one cannot say that both sides
are strictly separated from each other, they are involved with each other
and it is this involvement that results in a proof.

This aspect of mechanized mathematics, the way man and computer
interact with each other and the machine’s involvement in this process, is
mostly neglected in the literature on this topic. One of the exceptions is
Derrick H. Lehmer. He used the idea of the amount of machine involvement
in, and responsibility for, a result to order the different reasons why a math-
ematician would want to add pulse circuitry to the more usual pencil-and-
paper method.19 For Lehmer, the computer’s responsibility or involvement
is at its highest in case of computer-assisted proofs.20 In fact, for Lehmer,

19Cf. Lehmer (1966, pp. 745–749) and Lehmer (1969, pp. 118–119).
20Another similar parameter Lehmer uses to order different usages of the computer in

mathematics is the question whether the mathematician, who publishes the result that
was established in some or the other way with the help of the computer, will mention the
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computer-assisted proofs result from a true man-computer collaboration.
He described this process as follows (Lehmer, 1966):

We are dealing here with a man-machine cooperative. The man fur-
nishes to the machine the best information that he has about the
proposed theorem and the sort of proof that he thinks is likely to
succeed. From this you will infer correctly that the actual proof is
unknown to the man. In fact he doesn’t know whether the theorem
is false, or, if true, whether the machine can prove it. The machine
is asked to carry out the logical steps of the proof, if indeed it can,
in the allotted time. You will infer from this that there are a great
many steps and that they cannot be carried out by hand. Usually the
steps are not only numerous but are connected in some complicated
combinatorial way. Here we are exploiting not only the speed of the
computer but also its logical circuitry that allows it to keep track of
and to modify its own complicated program to a degree well beyond
human capability. Theorems of this kind are not easy to find in those
drab branches of mathematics where elaborate proofs are not the rule.
However, there are infinitely many such theorems in number theory
alone.

As is reflected by this quote, the idea of a man-computer collaboration does
not mean that the computer is assigned some kind of ‘artificial intelligence’,
or the idea that the computer is capable to simulate or really be as intelligent
as a human mathematician. On the contrary, it is made explicit by Lehmer
that the computer’s contribution lies in doing those things we are really bad
at, while the human mathematician takes care of those things the computer
is bad at. The computer is involved here because it ‘thinks’ differently than
we humans do. It is an active partner in the process of finding a proof,
however, a partner that is not human and should not be or behave like a
human. In fact, it is because the computer is thinking not like a human
mathematician that it is so good at what it does! In a way, this is the
perfect collaboration: getting new results by combining different talents.21

computer or not and if yes, how much responsibility he will assign to the computer. A
rather extreme example in this respect are some of the papers (co-)authored by Shalosh
B. Ekhad. Cf., e.g., Ekhad (1990).

21This point was also made by Appel in an interview on the four-color theorem: “The
computer [. . .] was not thinking like a mathematician [. . .] The computer was using [. . .]
these bits of knowledge it had in every conceivable way, and any mathematician would
say, ‘No, no, no, you have got to organize yourself, you have got to do it that way’, but
the computer wasn’t doing that. And it was more successful, because it was not like a
mathematician” (quoted in MacKenzie, 1999).
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3 Managing unsurveyability, mathematical
understanding and errors

Since the 4CT there has been a growing number of philosophical papers on
computer-assisted proofs, both by philosophers and mathematicians. The
main question is whether or not computer-assisted proofs like that of the
4CT change our understanding of what a proof is. I.e., do computer-assisted
proofs have any fundamental impact on the epistemology of mathematical
proofs and thus, ultimately, mathematical knowledge? There are three main
problems in this context.

A. The problem of unsurveyability. One of the most frequently dis-
cussed problems with respect to computer-assisted proofs (basically, the
4CT) is the problem of unsurveyability. The problem comes down to what
was once called the falling-tree conundrum (Calude, 2001): Has a tree fallen
if no one can hear it? Has a theorem been proved if no one can read its
proof, surveying every one of its details? Besides the possibility of a lengthy
theoretical part (as is the case for the 4CT and the sphere packing prob-
lem) and thousands of lines of code that need to be surveyed and reviewed
in order to convince oneself of the proof, computer-assisted proofs involve
millions of computations that, practically, cannot be surveyed by a human.
This problem has several consequences. First of all, as we do not know all
the details of the proof, as we have not ‘followed’ the proof in all its details,
one must ask how one can still understand the proof (cf. problem B). Sec-
ondly, as computer-assisted proofs are unsurveyable one must ask how one
can be sure that they are error-free, how one can rely on a proof for which
one does not have all the details (cf. problem C)?

On the basis of the inherent unsurveyability of the 4CT, Tymoczko ar-
gued that this is a new kind of proof. Because of its unsurveyability, the
proof of the 4CT shows that there are a posteriori mathematical truths,
truths which rely on empirical evidence. For Tymoczko, the proof of the
4CT shows that mathematics is fallible and empirical. The epistemolog-
ical role Tymoczko assigns to the 4CT because of its unsurveyability has
been opposed in the literature. Some have argued that the unsurveyability
of computer-assisted proofs does not show that mathematics is fallible and
empirical (cf., e.g., Levin, 1981; Swart, 1980; Teller, 1980). One of the main
arguments here is that Tymoczko places too much weight on the human
factor of proof. It is not because a proof is humanly unsurveyable that it
is for the computer (cf., e.g., Arkoudas and Bringsjord, 2007; Levin, 1981;
Krakowski, 1980). Another argument is that surveyability is actually not
an essential property of proofs (cf., e.g., Detlefsen and Luker, 1980; Teller,
1980). Others have argued that although they agree with Tymoczko that
empirical evidence is used in mathematics, this is not something novel in-
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troduced by the 4CT (cf., e.g., Detlefsen and Luker, 1980). A different
perspective on the unsurveyability of proof is offered by Shanker (1986): he
claims that a proof is only a proof when it is humanly surveyable, hence,
computer-assisted proofs like the 4CT cannot be considered as proofs.

B. The problem of mathematical understanding. This problem is
very closely related to problem A. It basically comes down to the following
question: how can we achieve mathematical understanding if part of the
argument is hidden in a box? According to Bonsall (1981), the fact that
we do not have all the details of the proof implies that computer-assisted
proofs like the 4CT are not ‘real’ mathematics. He says:

It is no better to accept without verification the word of a computer
than the word of another mathematician.[. . .] We cannot possible
achieve what I regard as the essential element of a proof—our own
understanding—if part of the argument is hidden away in a box.

Halmos (1990) shares this opinion. For him, computer-assisted proofs like
the 4CT are like oracles. All you know is that the 4CT is true but you do
not know why it is true. He goes on

I feel that we, humanity, learned mighty little from the proof; I am
almost tempted to say that as mathematicians we learned nothing at
all. Oracles are not helpful mathematical tools.

Related to this is the idea that theorems like the 4CT seem to have a certain
arbitrariness, it is not clear why they are true exactly.22

C. The problem of (hardware and software) errors. Because of
the unsurveyability of computer-assisted proofs like the 4CT (the length
of the programs and computations), these computer-assisted proofs also
suffer from the further defect that one cannot be sure that no errors have
occurred (cf., e.g., Bonsall, 1981; Tymoczko, 1979). It is well-known that
checking the correctness of a program is a very hard problem. Besides, it is
known that hardware errors do occur. When very long computer programs
and computations are involved, there is thus a real chance of machine and
human errors (cf., e.g., Lam, 1991).

These three problems are very real and the debates arising from them
are still open. As is clear from this summary, there are reasons to accept
and reasons to reject the idea that computer-assisted proofs lead to a fun-
damental change of the notion of proof in mathematics, and thus have a
fundamental impact on the foundations of mathematics.

22The idea that there are mathematical truths that are true for no clear reason, that
are in a certain way random, has been advocated by Gregory Chaitin, one of the founders
of algorithmic information theory. He uses the definition of randomness from algorithmic
information theory in order to make his point.
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Also in case of the Busy Beaver proofs these problems are real. In fact,
one can say that, by definition, computer-assisted proofs will always suffer
from these problems. In the end, they are humanly impractical, so some part
of them must be unsurveyable by humans, and we thus also automatically
get the problem of mathematical understanding. The problem of (software
and hardware) errors also seems unavoidable, although there are some recent
examples that avoid this problem to some extent.

Although a detailed philosophical analysis of these three problems on
a macro level is necessary in order to come to terms with the impact of
computer-assisted proofs on the notion of proof, it is also interesting to see
how these problems pop-up in different computer-assisted proofs,23 and,
more importantly, how they are or can be dealt with locally. In the end,
as these three problems are real, they need to be managed in some way or
other at the more local level of finding, representing and communicating
a proof. Tracing these ‘smaller’ changes can at least help to clarify the
changes computer-assisted proofs bring about at the level of the practice
itself.

So how how do these three problems occur in the context of the Busy
Beaver proofs and how are they managed?24 In a certain sense, these proofs
are maybe not as unsurveyable as the original 4CT since the theoretical
parts of the proofs are relatively short.25 However, the proofs remain un-
surveyable. First of all, they involve a lot of human work hardly any of
the details of which are published. For example, the 210 holdouts in the
Kopp proof are all proven to be cases of infinite loops by hand. Clearly, if
the proofs of these 210 holdouts would have been included in the published
accounts of these proofs, tens of pages would need to be added, including
the print-outs of the behavior of these 210 holdouts. Secondly, the proofs
involve very long (unpublished computer) code. Finally, and this is an essen-
tial feature of computer-assisted proofs, the proofs involve thousands if not
millions of computations that result in thousands of different small proofs
determining for each of the Turing machines whether or not they will halt.
Taking these three aspects together, it is clear that Busy Beaver proofs are
unsurveyable.26 Since the problem of mathematical understanding and in-

23And not just in the one case one usually considers.
24I will mainly focus on the papers by Brady (1983) and Machlin (Kopp) and Stout

(1990).
25The original proof of the 4CT involved not only millions of computations and com-

puter code that initiated them but also a considerable amount of other ‘text’. As is
explained by Appel and Haken: “This leaves the reader to face 50 pages containing text
and diagrams, 85 pages filled with almost 2500 additional diagrams, and 400 microfiche
pages that contain further diagrams and thousands of individual verifications of claims
made in the 24 lemmas in the main sections of text” (Appel and Haken, 1986).

26Of course, the first two features are not exclusive for nor essential to computer-
assisted proofs.
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sight is very closely related to the problem of unsurveyability, it also occurs
in case of the Busy Beaver proofs. The same goes for the problem of human
and computer errors (problem C). So, how are these problems managed in
the context of the Busy Beaver proofs discussed in the previous section?

I. Managing the problem of error. In the paper by Machlin (Kopp)
and Stout it is noted that:

The work in Kopp (1981) is an independent confirmation of Brady’s
results, which is important since the sheer volume of human and com-
puter work involved raises the possibility of error.

Brady makes a similar comment, pointing at the necessity of independent
verification:

Proofs of ‘correctness’ of the programs used are not practical. In-
dependent verification is the only means we currently have at our
disposal.

As is clear, Brady, Machlin (Kopp) and Stout are very much aware of the
problem of (hardware, software and human) errors. Indeed, because of the
length of the actual proof (the programming, the execution of the code in
several stages (!) and the human work to prove the final holdouts) the
chances that an error has occurred increase, and the result might thus be
false. Furthermore, the unsurveyability of the proof also makes it impossible
to check every detail of the proof and conclude that the proof is 100%
watertight. There are several ways to deal with these problems. The best
solution I know of to avoid errors is the use of interactive theorem provers
like HOL to attain formal proofs that have been checked completely by
the computer.27 The ‘method’ mentioned by Brady, Machlin and Stout to
reduce the chance that (human or machine) errors have occurred is that of
independent verification. As was explained in §2.3, the description of the
process of the proof can also be understood as a strategy to allow other
mathematicians to check the correctness of the proof.

Although the method of independent verification can never lead to com-
plete certainty, it is often one of the more efficient methods available. Even
if one cannot exclude the possibility of errors in the Busy Beaver proofs, the
fact that the cases Σ(m) and S(m) for m < 5 were verified, not only reduces
the chances of errors but, maybe even more so, says something about the

27For example, the last version of the 4CT by Gonthier is such a proof. Also Thomas
Hales has started the FlySpeck project in order to produce a completely formalized and
computer-checked proof of the sphere packing problem, in a reaction to the fact that
after a team of referees had worked on the proof for 15 years, they concluded that they
were only 99% sure that it contains no errors. For a philosophical discussion of formal
computer-checked proofs related to the problem of unsurveyability and error, cf. Arkoudas
and Bringsjord (2007).
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way mathematicians think they should deal with one of the typical problems
of computer-assisted proofs.28

II. Managing unsurveyability. As is explained by Brady in the next-
to-last quote of §2.2, “keeping track of what resembled a large scientific
experiment became a major task in itself”. For this reason, Brady wrote
more than 18 programs for, among other things, “various housekeeping pur-
poses”. In other words, it is clear that the length of the whole proof was
really a problem which made it necessary to implement certain strategies to
deal with the complexity of the proof.

The problem of unsurveyability is also a problem if one needs to write
down and communicate the results one has found. One needs to find a good
format to present the proof in, despite its unsurveyability. Contrary to the
famous papers by Appel and Haken, or that by Hales, the published papers
on Busy Beaver proofs considered here are relatively short despite their al-
leged unsurveyability. One of the reasons for this is that not that many
details are provided in the respective published versions of the proofs.29

This not only concerns the computer programs and the actual computa-
tions. For example, only the main types of infinite loops are described in
detail, despite the different kinds of variants discovered for each of the types.
Also, the details of the proofs of the holdouts that were proven by hand are
not provided. To the sceptical reader, this can only add to the mistrust one
must have in this kind of proofs, making them even less suitable for review
than for example Thomas Hales’ proof of the sphere packing problem. How-
ever, from another point of view, one could say that providing an explicitly
short ‘summary’ of a computer-assisted proof, skipping a lot of the details,
is just another way to deal with the unsurveyability and thus the impossi-
bility of communicating every single details of the proof. By dealing with
this problem in this way, the ‘persuasiveness’, the argumentative power of
these proofs, as they are communicated to the reader, functions differently.
Even though not all the details are provided, the reader is given enough
information to understand how the proof works. The papers describing the
proofs provide a general descriptions of the programs, how they are used
for the tree reduction, for the detection of infinite loops or the exploration
of the behavior of the Turing machines studied, the order in which these
programs were executed, etc. This way of communicating and writing down
computer-assisted proofs, a method which is in a certain way not new to

28It should be pointed out that they are not the only ones to emphasize the signifi-
cance of independent verification. E.g., Lam (1991) points out that “[the proof of the
non-existence of the projective plane of order 10] is only an experimental result and it
desperately needs an independent verification, or, better still, a theoretical explanation”.

29The technical note describing Brady’s proof in more details and Kopp’s PhD con-
taining the proof are of course lengthier.
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mathematics,30 is an important possibility for dealing with the inherent un-
surveyability of these proofs. The unsurveyability of course remains, and
the proof will not be represented in all its details. However, the problem is
dealt with by developing a style, a method of representing these proofs that
still allows them to be published in a reasonable amount of pages and be
reviewed in a reasonable amount of time, still allowing the reader to under-
stand the main techniques of the proof. Of course, the reviewer will need a
certain amount of trust if he/she does not want to go through the trouble
of reconstructing every detail of the proof.31 He/she has to trust not only
the machine, but also, and maybe even more, the mathematician.

The question of what to include and what not to include in a paper
describing a computer-assisted proof is a very intricate one and needs further
consideration. However, if computer-assisted proofs are ever to become part
of the common discourse of mathematics, published papers of proofs that
need over 100 pages will have to be the exception rather than the rule,
else, the communication of mathematical knowledge will become practically
impossible.

III. Managing the problem of understanding. A problem that is very
closely related to the unsurveyability of computer-assisted proofs is the prob-
lem of mathematical insight and understanding, the question of the explana-
tory power of computer-assisted proofs. The same question must be posed
in the context of the Busy Beaver proofs. Indeed, in how far does, e.g.,
Kopp’s computer-assisted proof provide an understanding of the fact that
of Σ(4) = 13? From a certain point of view, the answer to this question is
that the Busy Beaver proofs do not really provide an understanding of the
facts proven. Since large portions of the proof are ‘generated’ by the com-
puter without any human mathematician having surveyed this part of the
proof we can never fully understand why Σ(4) = 13. This problem seems
to become even worse if one has not ‘found’ the proof but has merely read
the descriptions of the proofs by Radó, Lin, Brady and Kopp. However, to
conclude on this basis that these Busy Beaver proofs do not provide any
insight or understanding whatsoever, that, to put it in Halmos’ words, we
learned nothing at all, seems a case of throwing the baby out with the bath
water.

30How often does one not read something like “The details of the proof are left to the
reader”, because it is considered that the techniques needed for the proof are known?

31The reviewing of computer-assisted proofs is indeed a difficult problem that has
become very apparent in the context of Hales’ proof of the sphere packing problem. In this
respect it is interesting to read the account of the discussion between Robert MacPherson
(editor of the Annals of Mathematics) and John H. Conway about adding a disclaimer
or endorsement to the published proof in (Krantz, 2011, pp. 168–9). Eventually, neither
an editorial disclaimer nor an editorial endorsement were added.
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Clearly, because of the problem of unsurveyablity, it is indeed impossible
to understand every detail of the proof. However, this does not exclude
understanding on a more general level, on the level of the structure of the
proof and the feasibility of the methods used. In order to understand this,
we need to return to the actual proofs.

As was explained in §2.2 the Busy Beaver proofs discussed proceed in two
main stages. The first stage concerns the reduction of the number of Turing
machines to be considered by implementing certain theoretical considera-
tions, normalization being the main technique. Clearly, these theoretical
methods are explained and one can understand why they work. Although
this first set of reductions is achieved by the computer, one cannot say that,
given a specific machine that has been eliminated, one cannot understand
why it has been eliminated. Furthermore, although one does not have ev-
ery one of the details in order to understand why only 603,712 and not
603,711 holdouts remain in case of Kopp’s tree normalization program, one
can understand how the program works and why so many machines are
eliminated.

In the second stage of the proof the idea is to differentiate between halt-
ing and non-halting machines by using several different heuristic programs.
First, a program is used that runs each of the holdouts for some hundred of
steps and eliminates those that have halted. Then the proof goes on with
the remaining machines, trying to prove that each one of them is a non-
halting machine through the detection of infinite loops. Now, in each of
the proofs discussed, the remaining machines ‘happened to be’ cases of non-
halting machines. Why? Because, through a complex interaction between
man and the computer, it was found that all of these holdouts are cases of
one of the different types of infinite loops. Clearly, this does not provide a
good understanding. However, one can easily understand the general idea
of the second stage of the proof. One can understand why all the remain-
ing holdouts must be non-halting machines: during a process of exploration
several different types of patterns were found. It can be proven that if a
given Turing machine shows this patterns in its behavior then it will never
halt. Now, for each of the holdouts it was proven—some by hand, most
through the use of heuristic infinite-loop detection programs—that they are
each cases of one of these types of patterns. Hence it follows that they
cannot halt.

Of course, we do not have the details to understand why exactly 417
(and not say 320) of the 4-state machines, and only those, were identified as
counters by Kopp’s counter-detection program, nor do we have a complete
understanding of why some machine x results in, say, a Christmas tree.
However, we do know what a counter is, we do know why a counter must
be a non-halting machine, we do know why the counter-detection program
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eliminates some machines and others not (even though these might still be
counters), etc. In other words, although we do not have all the details and
we do not have a kind of complete and detailed explanation or understanding
of the Busy Beaver results, one cannot neglect that the papers on the Busy
Beaver proofs do convey an understanding of how the proofs work and
why they work on the global level. Furthermore, the proofs also give an
insight on another level: they say something about the possible behavior
one can expect from very simple programs, which are on the borderline of
undecidability. This observation can be used in other settings. In fact, this
is done in the paper by Machlin and Stout: the techniques and observations
of the Busy Beaver proof are also used in the context of determining halting
probabilities.

It is true that the Busy Beaver proofs do not give the kind of insight one
gets from the several proofs of for instance the Pythagorean theorem. How-
ever, to call them oracles which do not provide any insight or understanding
whatsoever is equally wrong.

4 Discussion
What exactly is the impact of the computer on mathematics? Has the
computer really changed mathematical knowledge and the way we attain
it, and, if yes, how? As was explained throughout the paper, this is an
intricate question which has had no definite answer yet. A lot depends on
one’s own epistemological and ontological position. Questions like: “Are
computer-assisted proofs fundamentally different from the usual proofs of
mathematics?” or “Do computer-assisted proofs show that mathematical
knowledge can be a posteriori?” are fundamental issues, issues that, in my
opinion, cannot be answered satisfactorily on the basis of one micro-analysis.
However, whatever one’s answer might be to these fundamental issues, there
is one thing which cannot be denied on the basis of this and other case
studies. Computers are changing the way we are doing mathematics. They
are changing ‘mathematical practice’.

As is clear from the case-analysis provided here, computer-assisted proofs
share some very typical features, problems and techniques. First of all, the
aspect of man-computer interaction should not be underestimated. This is
something completely new in mathematics: the fact that a proof is the result
from a collaboration between a human and a non-human. It is the first time
in history that a non-human is actively involved in the process of the proof.
Although this non-human is mostly regarded as a mere quantitative help, it
has led to fundamental qualitative changes, witness the fact that the mere
increase in speed and memory due to the computer has made it possible to
prove theorems that could not be or have not yet been proven without it.
Besides this, the use of the computer almost naturally introduces the use
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of experimental methods in the process of finding a proof. These methods
involve both the computer and the human, and arise from the complex
interaction between man and machine.

A consequence of the involvement of the computer is that the repre-
sentation of computer-assisted proofs, the way they are communicated, is
different from that of usual proofs. A proof-as-communicated is no longer
a sequence of lines of symbols that represent the proof found by the math-
ematician. It also includes a description of what the non-human has done
(the computational process), what kind of results it communicates back
(the output) and how the human has communicated his/her questions to
the non-human (the code). Furthermore, unlike more traditional proofs,
there is a strong emphasis on the process of finding a proof in the published
papers of the computer-assisted proofs discussed in this paper, making ex-
plicit mention of the several experimental methods used, the complexity of
this process, etc. As was explained in §2.3, one of the reasons for doing so is
to deal on a local level with the problem of error and to allow for the reader-
mathematician, even if he/she has not all the details, to follow the proof and
verify it. Indeed, it is a typical property of computer-assisted proofs that
they all suffer from the same fundamentally philosophical problems of un-
surveyability, understanding and error. These problems seem unavoidable,
but are dealt with on the local level. I.e., specific strategies are implemented
both in the process of finding the proof as well as in the process of finding
a good form for the the proof in order to ‘manage’ these problems.

The least one can thus conclude is that the process of finding a computer-
assisted proof, the method of writing it down as well as the communication
of a computer-assisted proof is different from those of usual proofs, at least,
from a practical point of view. If one furthermore accepts that the way a
proof is attained, its written-down form and the way it is communicated, is
a determining feature of what a proof ‘really’ is, or better, means, then this
alone changes (the meaning of) proof.

It is thus clear that, practically speaking, computer-assisted proofs do
have an impact on mathematical practice. However, as long as computer-
assisted proofs, and, more generally, computer-assisted mathematics, are
the exception rather than the rule, the impact of the computer on mathe-
matical practice remains rather limited. They only have a local impact, not
a global one. The fact that proofs-made-flesh are different from the usual
proofs of mathematics, the fact that one needs to deal with the fundamental
problems of unsurveyability, understanding and error, the fact that exper-
imental methods are needed and all the consequences these features and
problems have—all these facts and effects can be discarded on the basis of
the marginal role computer-assisted proofs play. The impact remains lim-
ited to a few cases and one can simply classify these cases as some of those
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exceptional ‘behemoths’ mathematics sometimes gives rise to. However, the
question is whether this will indeed remain the case. It is only since the
last 20 to 30 years that the computer and thus computer-time has become
widely available to every mathematician, not only physically, in the sense
that every mathematician now has his/her personal computer, but also in-
tellectually, since more and more mathematicians are getting used to using
computers. Furthermore, memory and computation speed are now expo-
nentially larger than those of the early computers.32 This wide availability
of the computer and the increase in speed and memory, mere quantita-
tive facts, could result and are in fact already resulting in more and more
computer-aided mathematical results.

If the use of computers in mathematics is becoming more general, one
cannot but conclude that they have an important impact on mathematics-
as-practiced on the global level. A consequence of this is that, as the present
case-analysis shows, the mathematicians will have to develop new methods
and they will have to deal with the problems computer-assisted mathematics
gives rise to. New results will be found as a consequence.

Is this where the impact of the computer stops? It is my view that
as changes on the micro-level of the practice become more and more wide-
spread, fundamental changes on the macro level and thus also changes in the
foundations and philosophy of mathematics, become unavoidable. The way
mathematics is perceived and understood changes. Questions concerning
the certainty of mathematical knowledge, the fallible character of mathemat-
ics, etc. will only gain in importance, as more and more mathematicians are
confronted with the consequences of computer-assisted mathematics. The
fact that one is no longer able to check a proof completely, the fact that
part of the proof is done by a non-human, the necessity of using experimen-
tal methods, the fact that one is confronted with very long proofs, etc. are
real problems that not only change mathematics-as-practice but also the
standard of what a proof is/should be and thus, ultimately, the standard of
what mathematical knowledge is/should be.
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