
Continued fractions, Fermat, Euler, Lagrange

Introduction. Continued fractions are a natural way of expressing ir-
rational numbers. Unlike decimal fractions, which depend on the choice
of base ten, continued fractions are free of artificial choices. Thus pat-
terns in the continued fraction expansions have a universal and deeper
meaning. Beginning with exploratory calculations of continued frac-
tions of roots of integers, we derive a celebrated theorem of Fermat
that characterizes the prime numbers that can be written as sum of
two squares. Generally, roots of quadratic polynomials play a par-
ticular role in the theory of continued fractions, as they are the ones
that produce eventually periodic continued fractions. This is a pair of
theorems by Euler and by Lagrange that we also explore.

Continued fractions. A continued fraction is an infinitely nested
fraction

(1) x = m1 +
1

m2 + 1
m3+

1
m4+...

where

(2) m1,m2,m3,m4, . . .

is a sequence of natural numbers. By natural number in this chapter
we mean an integer greater than zero. The infinite nesting is somewhat
intimidating. Even worse, the natural starting point for calculating a
nested fraction is the deepest level of nesting, where at the displayed
continued fraction we find nothing but dots. The difficulty persists,
even if we have a very clear understanding of a particular sequence (2).

For example, consider the sequence

(3) 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . . ,

which except for the first miscellaneous terms is the sequence of even
integers interlaced with double ones. To solve the impasse of having no
place to start the calculation, one may calculate the stopped fractions

m1, m1 +
1

m2

, m1 +
1

m2 + 1
m3

, . . . .

Problem 1. Calculate the stopped fractions for the sequence (3), both
as standard fractions and as approximate decimal fractions, up to level
ten of nesting.
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If you have solved this problem, you have seen that the stopped frac-
tions quickly come close to each other and appear to produce more and
more definite decimal places of a certain presumably infinite decimal
fraction. One can indeed show for general continued fractions that one
obtains in this way an irrational number. In this particular example,
one can show that one obtains Euler’s number e.

In this chapter we will be more concerned with the inverse problem,
that is calculating the sequence (2) from a given real number x. Cu-
riously, this process is much more straight forward than the forward
calculation of the continued fraction. Assume we start with a positive
number x. We shall assume that x is an irrational number, that is it
is not the fraction of two natural numbers. We shall also assume is
is at least one, since in the continued fraction (1) the term m1 is al-
ready at least one, while the remaining nested fraction is nonneagitve
since it is built from positive numbers using only addition and division,
operations which do not leave the realm of nonnegative numbers.

The key observation is that if we write

(4) x = m1 +
1

x1

and compare with the continued fraction (1), then the number x1 that
we shall call residue is again a continued fraction

x1 = m2 +
1

m3 + 1
m4+

1
m5+...

,

with a “layer stripped” sequence where the first term of the original
sequence has been removed. Hence x1 is at least one again, and thus
1/x1 is at most one. Note that x −m cannot be an integer since x is
not a fraction of integers and therefore not an integer neither. Hence
whatever 1/x1 is, it is a well defined reciprocal since it is nonzero, and
it is strictly less than one. Then the only possible choice for m1 is the
integer part of x, the largest integer not exceeding x. This determines
m1 and also x1 as the reciprocal of the fractional part of x.

To see that we are equally safe from division by zero if we study the
continued fraction of x1, we observe that x1 is again not a fraction of
natural numbers. If was, say it was p/q, then x itself was a fraction:

x = m1 +
q

p
=
m1p+ q

q
,

but we assumed it was not.
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Now we can simply proceed to peel off the sequence (2) by taking
away integer parts and iterating with the reciprocal of the fractional
parts. An example will be discussed shortly.

Roots of integers. The number
√

2 is an example of a real number
that cannot be written as a fraction. To see that, we take any fraction,
call it p/q, and we convince ourselves that its square is not 2. For this
it suffices to convince ourselves that

(5) p2 6= 2q2,

as one sees by dividing by q2. We can assume the fraction p/q is
reduced, or else we reduce it before continuing the discussion. If p is
odd, then we conclude (5) since the left hand side is odd and the right
hand side is even. If p is even, then q is odd since the fraction p/q is
reduced. Then we conclude (5) again since the left hand side is divisible
by four, while the right hand side is not divisible by four.

Problem 2. Show that a natural number which is not a square of
a natural number is not the square of a fraction of natural numbers
neither.

This problem gives us the maybe most basic source of real numbers
which are not fractions. Ofcourse we are eager to test our continued
fraction expansion on these numbers. We start with x =

√
2. Its

integer part m1 is 1, since

12 < 2 < 22 .

Note we did not yet algebraically use that x2 = 2, we just used in-
equalities and the fact that squaring positive real numbers preserves
the relative size. Thus m1 has to be the largest natural number whose
square does not exceed 2. Hence the first fractional part is

√
2− 1 and

we obtain for its reciprocal:

x1 =
1√

2− 1
=

√
2 + 1

(
√

2− 1)(
√

2 + 1)
=

√
2 + 1

2− 1
=
√

2 + 1.

The key identity in the last display was the third one using the binomial
formula

(a+ b)(a− b) = a2 − b2 .
after suitable expansion of the fraction. Application of the bionomial
formula causes the denominator of the fraction to become an integer
again. This “turning of the table” helps to unravel the nesting of
fractions in the continued fraction. In the present calculation, the
integer in the denominator accidentally turns out to be one and thus
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disappears entirely, a luxury that may not always happen in future
similar calculations.

We already know that
√

2 lies between one and two, hence x1 lies
between two and three, and we conclude m2 = 2.

Now a great simplification occurs, in that we realize that the frac-
tional part of x2 is again

√
2−1, a fractional part we have just encoun-

tered. It is thus easy to anticipate the following calculations, they lead
all to the same integer parts two. Thus (2) becomes

1, 2, 2, 2, 2, 2, . . . .

If we compare with the difficulty of calculating the decimal expansion
of
√

2, the relative ease of calculating the continued fraction

√
2 = 1 +

1

2 + 1
2+ 1

2+...

.

is quite remarkable.

Problem 3. Calculate the continued fractions of square roots of small
integers that are not integers themselves:

√
3,
√

5,
√

6, . . . ,
√
n, . . . ,

until you see certain patterns emerge. For each such square root, record
the sequence (2) of integer parts as well as the sequence x1, x2, x3, x4 . . .
of residues, each written in the form

√
n+ a

b

with integers a and b. Watch out for repetitions in the residues.

To get you started we show another example, say for
√

19. The
calculations give for the sequence (2) of integer parts

4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . . ,

while the first few terms of the sequence of residues are

√
19 + 4

3
,

√
19 + 2

5
,

√
19 + 3

2
,

√
19 + 3

5
,

√
19 + 2

3
,

√
19 + 4

1
,

at which point the next residue happens to be the same as the first
residue shown and the sequence of residues repeats periodically.
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Seeing the pattern emerge. We assume you and your team have
done many calculations for Problem 2. What are the patterns that
emerge? The following questions help understand the patterns.

Problem 4. Why can we express all residues in the form

(6)

√
n+ a

b

with an integer b dividing the integer n− a2?

Solution: Initially we have a = 0 and b = 1, and it is clear that b
divides n− a2 in this case. Assume we have arrived at an expression

√
n+ a

b
,

either as initial term or as a calculated residue, such that b divides
n− a2. Subtracting the integer part m and using the binomial formula
gives for the fractional part

√
n+ a−mb

b
=

n− (a−mb)2

b(
√
n− (a−mb))

.

Since b divides n− a2, it also divides

n− (a−mb)2 = (n2 − a2) + 2amb− b2,
since it divides each summand on the right-hand-side. Hence we can
write the next residue, that is the reciprocal of the penultimate display,
as √

n− (a−mb)
n−(a−mb)2

b

=

√
n+ a′

b′

where we have extracted the new integers

(7) a′ = mb− a

(8) b′ =
n− (a−mb)2

b

and clearly b′ divides n− (a′)2. �
Note that not only each remainder can be written in the form (6),

but this representation is unique because if
√
n+ a

b
=

√
n+ ã

b̃
,

then trying to solve for
√
n we obtain

(b− b̃)
√
n = a− ã.

Using that
√
n is not a fraction we can conclude that b = b̃ and a = ã.
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Problem 5. Why do we always have 0 ≤ a ≤
√
n and 0 < b ?

Solution: The original x has a = 0 and b = 1 which satisfy the
inequalities. Assume we have arrived at an expression

√
n+ a

b

where 0 ≤ a <
√
n and 0 < b. The integer part m of that expression is

the largest integer such that
√
n+ a−mb > 0,

hence with the formula (7) for a′ we have

√
n > mb− a = a′.

Also, since m ≥ 1 is maximal,
√
n+ a− 2mb < 0

and since a <
√
n

2a− 2mb < 0

and hence a′ > 0 by (7). That b > 0 then follows from

bb′ = n− (a′)2.

�

Problem 6. Why are we guaranteed that eventually we obtain a residue
that we have calculated before?

Solution: There are only finitely many choices of a, namely the
integers between 0 and

√
n, and there are finitely many choices of b,

namely the natural numbers less than n. Hence there eventually needs
to be a residue that has occurred before. �

Problem 7. Why do we always have
√
n ≤ a+ b, except for the initial

points a = 1 and b = 0?

Solution: With the notation as in (7) and (8) and with a <
√
n and

m ≥ 1, we conclude

b < mb+
√
n− a =

√
n+ a′ .

Since
bb′ = n2 − (a′)2 = (

√
n− a′)(

√
n+ a′),

we conclude
b′ >
√
n− a′.

This shows the desired inequality
√
n < a′ + b′ for each calculated

residue. �



7

To assure that the property a+b <
√
n is also satisfied for the initial

x, we could slightly modify the task to calculate the continued fraction
of √

n+ [
√
n]

1

where [
√
n] denotes the largest integer smaller than

√
n. Note that

this doubles the first integer m1 but gives the same first residue x1 and
thus the same sequence of residues. In the examples calculated this
modification always lets the periodic pattern of the sequence (2) start
with the first term.

Problem 8. Given a′ and b′ as in (7) and (8), how does one calculate
the previous residue a and b (or the initial real number of the modified
problem)?

Solution: We calculate b using (8) in the form

b = (n2 − (a′)2)/b′.

Note that by Problems 5 and 7 we have

a = mb− a′ ≤
√
n,

a+ b = (m+ 1)b− a′ >
√
n,

and hence m is determined as the largest integer such that mb− a′ <√
n. With that m, we may calculate a from (7). �

Problem 9. Can you describe and prove the palindromic symmetry of
the period of the residues?

Solution: The modified problem is the continued fraction of

x =

√
n+ [

√
n]

1
.

We claim that the first residue that that is not new, call it xN , is equal
to x. Otherwise it was equal to some xM with 0 < M < N . But then,
by Problem 8, we would be able to calculate xN−1 and xM−1 (or the
initial x if M = 1) and observe they are equal, so xN would not be the
first residue repeated.

To discuss the palindromic symmetry, we look at the residues from
x1 to xN . Now we claim that if for 1 ≤ K ≤ N/2 the residue xK has
the form (6) then xN+1−K has the form

√
n+ a

(n− a2)/b
.
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This claim describes the palindromic symmetry. The claim is immedi-
ately verified for K = 1 with a = [

√
n] and b = n − a. If the claim is

true for certain xK , then xK+1 has the form
√
n+ a′

b′

with notation as in (7) and (8), and with Problem 8 the residue xN−K
has the form √

n+ a′

b
=

√
n+ a′

(n− (a′)2)/b′
.

This verifies the claim for xK+1 and proves the palindromic symmetry.
�

Problem 10. Which neat equation for a and b can you prove about
the residue in the symmetry point of this symmetry in the case when
the length of the period is odd?

Solution: If the period is odd (for example in the case of
√

2),
then among the residues xK there is a fixed point under the reflection
symmetry and the fixed point has to satisfy

√
n+ a

b
=

√
n+ a

(n− a2)/b
by the calculations in the solution to Problem 9. Simplifying, we con-
clude

n = a2 + b2.

�

Problem 11. Now assume n is an odd prime number. Can you de-
termine the last residue before the symmetry point if the period of the
residues is even?

Solution: An example for an even period is the case of
√

19. If the
last residue before the symmetry point is written as in (6), then the
next residue satisfies by the calculations in the solution to Problem 9
the equation √

n+ a′

b′
=

√
n+ a

(n− a2)/b
.

We conclude a = a′ and by (7) we see that b divides 2a. Assume first
that b is odd. Then b divides a. Since b divides n − a2 by Problem 4,
it then also divides n. Since n is prime and b < n, we see b = 1. By
Problem (7), we need a to be the largest integer less than

√
n. This

pair of a and b is attained at the last point of the period, so it cannot
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be the last residue before the symmetry point. Hence b cannot be odd,
and thus b has to be even.

If b is even, we conclude similarly to above that b/2 divides a and
thus divides n and thus b/2 = 1. By Problem 7 we conclude that a is
[
√
n] or [

√
n] − 1. But since b is even and divides n2 − a, a has to be

odd und is uniquely determined. �

Problem 12. Now assume n is a prime number of the form 4k+ 1 for
some integer k. Can you prove that n can be written as the sum of two
squares?

Solution:
Using Problem (10) we need to show the period is odd. Assume to

get a contradiction that the period is even. By Problem 11 the last
residue before the symmetry point satisfies b = 2. Let a′ and b′ be as
in (7) and (8) be the parameters of the next residue, the first one after
the symmetry point. Since every square has remainder 0 or 1 modulo
four, the difference n− (a′)2 has remainder 0 or 1 modula four. Since
n − (a′)2 has to be divisible by 2, it is divisible by four and thus b′ is
even as well by (8). We claim that then all residues after the symmetry
point written in the form (6) have even denominator. Namely, assume
that any consecutive residues in the form (6) have even denominators
and assume that the second residue is

√
n+ a

b
.

Since the previous residue has even denominator, by (8) we have that
(n−a2)/b is even. But then repeating the calculations for Problem (4)

(n− (mb− a)2)/b

turns out also even, and thus the next residue also has even denomi-
nator. On the other hand, we know that the last residue in the period
has denominator 1 by the considerations in Problem 9, a contradiction.
�

We have shown the hard part of the following Theorem, the rest of
it is left as an easy problem:

Problem 13. [Theorem of Fermat] A prime number is the sum of two
squares if and only if dividing it by 4 gives a remainder of one or two.

The theorem was stated by Pierre de Fermat, but since he had the
habit of not writing down proofs, the first known proof is by Leonhard
Euler.
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Continued fractions of roots of general quadratic polynomials.
We generalize the considerations to roots of more general quadratic
polynomials. Let x be a number that solves a quadratic equation

rx2 + sx+ t = 0

with integers r, s, t. Note that r = −1, s = 0 and t a natural number
that is not a square is the case discussed so far.

Problem 14. Show that x is not a fraction of integers, if the discrim-
inant

s2 − 4rt

is not a square integer.

Solution: We can write

x =
s±
√
s2 − 4rt

2r
with a certain choice of sign in place of±. If x was a fraction of integers,
then so was

√
s2 − 4rt, which would imply by Problem 2 that s2 − 4rt

was a square of a natural number. �
We may thus expand such roots of quadratic polynomials into con-

tinued fractions.

Problem 15. Let x be a number greater than one that solves a qua-
dratic equation

rx2 + sx+ t = 0

for some integers r, s, t and assume x is irrational. Show that all
residues xK also satisfy such quadratic equations, say

rKx
2
K + sKxK + tK = 0.

We may normalize so that

(9) tK+1 = rK ,

and all discriminants s2K − 4rKtK have the same value.

Solution: First we notice that the equation

r(x−m1)
2 + 2rm1(x−m1) + rm2

1 + s(x−m1) + sm1 + t = 0

is true since it reduces to the assumed quadratic equation for x. Hence
x−m1 satisfies the quadratic equation

t1(x−m1)
2 + s1(x−m1) + r1 = 0

with t1 = r and s1 = s + 2rm1 and r1 = rm2
1 + sm1 + t. Then the

reciprocal x1 = 1/(x−m1) satisfies the equation

r1x
2
1 + s1x1 + t1 = 0.
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The discriminant s21 − 4r1t1 is easily calculated to be the same as the
original one, s2 − 4rt. Iterating this argument solves the problem. �

Note that since xK is not a fraction, we have rK 6= 0 for all K.

Problem 16. Let x be an irrational number that solves a quadratic
equation

rx2 + sx+ t = 0

for some integers r, s, t and let rK , sK , tK be as in Problem 15. Show
that there are infinitely many indices K so that rK and rK+1 have
different signs.

Solution: Assume to obtain a contradiction that there are finitely
many sign changes. Then there is an N such that all rK have the
same sign for K ≥ N . By the normalization (9), the coefficients tK
for K > N also have this same sign. We claim that there is a sK
with large L such that sN+L also has the same sign. But we have
sK+1 = sK +2mK+1rK for all K and and since mK+1 is always positive
and at least 1, we see that since the rK all have the same sign past
N , eventually sK+1 will have the same sign as well. This however
gives a contradiction, as xN+L is positive and cannot solve a quadratic
equation with all coefficients of the same sign. �

For the next problem we ask to prove the following theorem of
Joseph-Louis Lagrange.

Problem 17. [Theorem of Lagrange] Let x be an irrational number
that solves a quadratic equation

rx2 + sx+ t = 0

Show that x has an eventually periodic continued fraction expansion.

Solution: We need to show that at some point we observe a residue
that has occured before. Each time there is a sign change between rK
and rK+1, we have that the discriminant

s2K+1 − 4rK+1tK+1

is a sum of two positive terms. Hence each of rK+1, sK+1, tK+1 is
bounded by the discriminant, here we use that rK and rk+1 are nonzero
integers. There are only finitely many choices for such coefficients, and
since there are infinitely many sign changes, eventually one has to en-
counter repetition in the coefficients. Hence the residues will eventually
have a repetition. �

The converse of this theorem is slightly simpler. We first look at a
specific continued fraction:
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Problem 18. Which number has the continued fraction expansion with
sequence (2) consisting just of

1, 1, 1, 1 . . .?

For the solution, observe x1 = x in (4) and calculate.
Each time a sequence (2) has a large entry mK , the stopped fraction

just prior to this entry is a relatively good approximation to the de-
sired number since the error at the deepest level is the small number
1/mK . For example, the continued fraction expansion of π starts has
a sequence (2) beginning with

3, 7, 15, 1, 292, 1, 1, . . . .

The relatively large 15 causes the stopped fraction 31
7

to be a good
approximation to π given the size of the denominator, and the large 292
causes the stopped fraction 3 16

113
to be an execllent approximation with

six correct digits after the decimal point. Unfortunately the sequence
(2) for π is not easy to understand.

The solution number to Problem 18 is for the discussed reason some-
times called the worst approximable irrational of all. It is also known
as the golden ratio and has a colorful history.

The converse to Lagrange’s theorem was observed by Euler, its proof
is a modification of the solution to the last problem.

Problem 19. [Theorem of Euler] Let x be a number that has an even-
tually periodic continued fraction expansion. Show that it solves a qua-
dratic equation

rx2 + sx+ t = 0

for some integers r, s, t.

We end this discussion with a note that one can also try to peel off
a sequence (2) from a fraction x = p/q of natural numbers with p > q.

Problem 20. Show that the continued fraction algorithm for a rational
x stops with some remainder rk = 0.

In case of a rational x the continued fraction algorithm is called
Euclid’s algorithm. If one refrains from reducing the fraction p/q and
all subsequent residues, then one can read off the greatest common
denominator of p and q from the last residue.


