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1. Introduction

Roughly speaking, the stable homotopy category of algebraic topology is
obtained from the homotopy category of topological spaces by inverting
the suspension functor, yielding a ‘linear’ approximation to the homotopy
category of spaces. The isomorphism classes of objects in the stable ho-
motopy category represent the generalized cohomology theories, defined
by the Eilenberg-Steenrod axioms [ES45] without the dimension axiom
(which distinguishes ‘ordinary’ from ‘generalized’ cohomology theories).

The first construction of the full stable homotopy category was given by
Boardman [B69]. Nowadays, many models for the stable homotopy category
are known, most of which have the additional structure of aclosed model
categoryin the sense of Quillen [Q67]. In [M83], H. R. Margolis introduced
a short list of axioms and conjectured that they characterize the stable ho-
motopy category up to an equivalence of categories. In Theorem 3.2 we
prove that these axioms do uniquely specify the stable homotopy category
whenever there is some underlying Quillen model category.

We also prove a more structured version, the Uniqueness Theorem below,
which states that the model category of spectra itself is uniquely determined
by certain equivalent conditions, up to so calledQuillen equivalenceof

Research supported by a BASF-Forschungsstipendium der Studienstiftung des deutschen
Volkes.
Research partially supported by NSF grants. The second author would also like to thank Bill
Dwyer for conversations which initiated this project.



804 S. Schwede, B. Shipley

model categories (a particular adjoint pair of functors which induces equiv-
alences of homotopy categories, see Definition 2.5). This is of interest due
to the recent plethora of new model categories of spectra [HSS,MMSS,
EKMM,L99,Lyd]. The Uniqueness Theorem provides criteria on the ho-
motopy category level for deciding whether a model category captures the
stable homotopy theory of spectra; the search for such intrinsic characteri-
zations was another main motivation for this project.

A model category isstableif the suspension functor is invertible up to
homotopy. For stable model categories the homotopy category is naturally
triangulated and comes with an action by the graded ringπs∗ of stable ho-
motopy groups of spheres, see 2.4. The Uniqueness Theorem shows that
this πs∗-triangulation determines the stable homotopy theory up to Quillen
equivalence.

Uniqueness Theorem.LetC be a stable model category. Then the following
four conditions are equivalent:

(1) There is a chain of Quillen equivalences betweenC and the model cat-
egory of spectra.

(2) There exists aπs∗-linear equivalence between the homotopy category of
C and the homotopy category of spectra.

(3) The homotopy category ofC has a small weak generatorX for which
[X,X]Ho(C)

∗ is freely generated as aπs∗-module by the identity map of
X.

(4) The model categoryC has a cofibrant-fibrant small weak generatorX
for which the unit mapS −→ Hom(X,X) is a π∗-isomorphism of
spectra.

Moreover, if the conditions of the uniqueness theorem hold, then there
is in fact a single Quillen equivalence, rather than a chain, fromC to the
model category of spectra.

The results of the main theorem have recently been improved by the first
author. In [Sch3] it is shown that 2-locally the triangulated stable homotopy
category alone determines the Quillen equivalence type of the model cate-
gory of spectra. In other words, even theπs∗-action is 2-locally determined
by the triangulated structure. The odd primary situation is subject to work
in progress.

The Uniqueness Theorem is proved in a slightly more general form as
Theorem 5.3. Our reference model for the category of spectra is that of
Bousfield and Friedlander [BF78, Def. 2.1]; this is probably the simplest
model category of spectra and we review it in Sect. 4. The key technical
property of this category of spectra is that it is thefree stable model category
on one generator(the sphere spectrum), see Theorem 5.1 for the precise
statement. In Sect. 4 we also discuss theR-local model structure for spectra
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for a subringR of the ring of rational numbers, see Lemma 4.1. The notions
of ‘smallness’ and ‘weak generator’ are recalled in 3.1. The unit map is
defined in 5.2.

Our work here grows out of recent developments in axiomatic stable
homotopy theory. Margolis’ axiomatic approach was generalized in [HPS]
to study categories which share the main formal properties of the stable
homotopy category, namely triangulated symmetric monoidal categories
with a weak generator or a set of weak generators. Hovey [Ho99, Ch. 7]
then studied properties of model categories whose homotopy categories
satisfied these axioms. Heller has given an axiomatization of the concept of
a “homotopy theory” [He88], and then characterized the passage to spectra
by a universal property in his context, see [He97, Sec. 8-10]. The reader
may want to compare this with the universal property of themodel category
of spectra, Theorem 5.1 below.

Another source of motivation for this paper came from ‘Morita theory
for derived categories’, also known as ‘tilting theory’. In [Ri89], Rickard
answered the question of when two rings are derived equivalent, i.e., when
various derived module categories are equivalent as triangulated categories.
Basically, a derived equivalence exists if and only if a so-called tilting com-
plex exists, which is a special small weak generator for the derived cate-
gory. Later Keller [K94] gave an elegant reformulation and generalization of
Rickard’s results on derived equivalences for rings using differential graded
categories. These are the first results where certain triangulated categories
are characterized by the existence of a weak generator with specific proper-
ties.

In [SS] we classify stable model categories with a small weak genera-
tor as modules over a ring spectrum, see Remark 5.4. Part of our Unique-
ness Theorem here can be seen as a special case of this classification. Note
that here, as in [SS], we ignore the smash product in the stable homotopy
category; several comparisons and classification results respecting smash
products can be found in [Sch2,MMSS,Sh].

2. Stable model categories

Recall from [Q67, I.2] or [Ho99, 6.1.1] that the homotopy category of a
pointed model category supports a suspension functorΣ with a right adjoint
loop functorΩ.

Definition 2.1. A stable model categoryis a pointed, complete and cocom-
plete category with a model category structure for which the functorsΩ and
Σ on the homotopy category are inverse equivalences.

The homotopy category of a stable model category has a large amount
of extra structure, some of which will play a role in this paper. First of
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all, it is naturally a triangulated category (cf. [V97]). A complete reference
for this fact can be found in [Ho99, 7.1.6]; we sketch the constructions:
by definition the suspension functor is a self-equivalence of the homotopy
category and it defines the shift functor. Since every object is a two-fold
suspension, hence an abelian co-group object, the homotopy category of a
stable model category is additive. Furthermore, by [Ho99, 7.1.11] the cofiber
sequences and fiber sequences of [Q67, I.3] coincide up to sign in the stable
case, and they define the distinguished triangles. Since we required a stable
model category to have all limits and colimits, its homotopy category will
have infinite sums and products.

Apart from being triangulated, the homotopy category of a stable model
category has a natural action of the ringπs∗ of stable homotopy groups of
spheres. Since this action is central to this paper, we formalize and discuss
it in some detail. We define anR∗-triangulated category for a graded com-
mutative ringR∗, the main case of interest beingR∗ = πs∗, the ring of stable
homotopy groups of spheres.

Definition 2.2. LetR∗ be a non-negatively graded ring, which is commuta-
tive in the graded sense, i.e.,αβ = (−1)nmβα for α ∈ Rn andβ ∈ Rm. An
R∗-triangulated categoryis a triangulated categoryT with bilinear pairings

Rn ⊗ T (X,Y ) −−−→ T (X[n], Y ) , α⊗ f �−→ α · f
for all X andY in T and alln ≥ 0, whereX[n] is then-fold shift ofX.
Furthermore the pairing must satisfy the following conditions.

(i) The pairing is unital and associative, i.e. forf : X −→ Y andα, β ∈
R∗ we have

1 · f = f and (αβ) · f = α · (β · f) .
(ii) The pairing is central in the sense that

(α · g) ◦ f [n] = α · (g ◦ f) = g ◦ (α · f)
for α ∈ Rn, f : X −→ Y andg : Y −→ Z.

(iii) For α ∈ Rn andf : X −→ Y we have

(α · f)[1] = (−1)n α · f [1] .

An R∗-exact functorbetweenR∗-triangulated categories is a functorL :
T −→ T together with a natural isomorphismτ : L(X)[1] ∼= L(X[1])
such that

– (L, τ) forms an exact functor of triangulated categories, i.e., for every
distinguished triangleX −→ Y −→ Z −→ X[1] in T the sequence
L(X) −→ L(Y ) −→ L(Z) −→ L(X)[1] is a distinguished triangle

in T , where the third map is the compositeL(Z) −→ L(X[1]) τ−1−→
L(X)[1];
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– (L, τ) isR∗-linear, i.e., for allX andY in T andn ≥ 0 the following
diagram commutes

Rn ⊗ T (X, Y ) T (X[n], Y )

Rn ⊗ T (L(X), L(Y )) T (L(X)[n], L(Y )) T (L(X[n]), L(Y ))

✲µ

❄

Id ⊗ L

❄

L

✲
µ

✛
◦τ ∼=

whereτ : L(X)[n] −→ L(X[n]) is then-fold iterate of instances of the
isomorphismτ andµ denotes the action ofR∗, i.e.,µ(α⊗ f) = α · f .

An R∗-linear equivalencebetweenR∗-triangulated categories is anR∗-
exact functor which is an equivalence of categories and whose inverse is
also exact (i.e., also preserves distinguished triangles).

Remark 2.3.A few comments about gradings, sign conventions and about
R∗-module structures in anR∗-triangulated category are in order. The com-
patibility condition (iii) of Definition 2.2 can be motivated by the following
observation: the map(α · f)[1] has source objectX[n][1], whereasα · f [1]
has source objectX[1][n]. These are both equal toX[n + 1], but behind
the scenes one suspension coordinate is permuted pastn other coordinates,
which introduces the sign(−1)n. This coordinate permutation shows up
explicitely when we prove property (iii) for theπs∗-action on the homotopy
category of a stable model category in 2.4.

For objectsX andY of a triangulated categoryT we denote byT (X,Y )∗
the graded abelian homomorphism group defined byT (X,Y )m
= T (X[m], Y ) for m ∈ Z, whereX[m] is them-fold shift of X. For
three objectsX,Y andZ we extend composition to a pairing of graded
abelian groups

◦ : T (Y,Z)m ⊗ T (X,Y )n−−−→T (X,Z)n+m , f ⊗ g �−→ f ◦ g[m] .

Then the graded abelian groupT (X,X)∗ becomes a graded ring, and
T (X,Y )∗ becomes a gradedT (Y, Y )∗-T (X,X)∗-bimodule.

In anR∗-triangulated categoryT , conditions (i) and (ii) yield the relation

(α · IdX) ◦ (β · IdX) = α · (β · IdX) = (αβ) · IdX ,

so that the action ofR∗ on the identity of an objectX yields a homomor-
phism of graded ringsR∗ −→ T (X,X)∗. Hence for every pair of objects,
theT (Y, Y )∗-T (X,X)∗-bimoduleT (X,Y )∗ becomes anR∗-bimodule by
restriction of scalars. The original pairing ofR∗ with T (X,Y )∗ specified by
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theR∗-triangulation gives yet anotherR∗-module structure. The centrality
condition guarantees that these three actions coincide in the sense that

(α · IdY ) ◦ f = α · f = f ◦ (α · IdX[m]) = (−1)nm f ◦ (α · IdX)

for every morphismf : X[m] −→ Y and everyα ∈ Rn (the last equality
uses condition (iii) of Definition 2.2). Specializing toX = Y also shows
that the image ofR∗ is indeed central (in the graded sense) in the graded
endomorphism ringT (X,X)∗.

Now we explain how the homotopy category of a stable model cate-
gory is naturally aπs∗-triangulated category. For definiteness we setπsn =
colimk [Sn+k, Sk], where the colimit is formed along right suspension

− ∧ 1S1 : [Sn+k, Sk] −→ [Sn+k+1, Sk+1] .

The ring structure is given by composition of representatives.

Construction 2.4. Using the technique offramings, Hovey[Ho99, 5.7.3]
constructs a pairing

∧L : Ho(C) × Ho(S∗) −−−→ Ho(C)

which makes the homotopy category of a pointed model categoryC into a
module (in the sense of [Ho99, 4.1.6]) over the symmetric monoidal homo-
topy category of pointed simplicial sets under smash product. In particular,
the pairing is associative and unital up to coherent natural isomorphism, and
smashing with the simplicial circleS1 is naturally isomorphic to suspension
as defined by Quillen [Q67, I.2]. IfC is stable, we may takeX[1] := X∧LS1

as the shift functor of the triangulated structure. We define the action

πsn ⊗ [X,Y ]Ho(C) −−−−−−→ [X[n], Y ]Ho(C)

as follows. Supposeα : Sn+k −→ Sk is a morphism in the homotopy
category of pointed simplicial sets which represents an element ofπsn =
colimk [Sn+k, Sk] andf : X −→ Y is a morphism in the homotopy cate-
gory of C. SinceC is stable, smashing withSk is a bijection of morphism
groups in the homotopy category. So we can defineα · f to be the unique
morphism in[X ∧L Sn, Y ]Ho(C) such that(α · f) ∧L 1Sk = f ∧L α in the
group[X∧LSn+k, Y ∧LSk]Ho(C). Here and in the following we identify the
n-fold shiftX[n] = (· · · ((X∧LS1)∧LS1) · · · )∧LS1 withX∧LSn under
the associativity isomorphism which is constructed in the proof of [Ho99,
5.5.3] (or rather its pointed analog [Ho99, 5.7.3]); this way we regardα ·f as
an element of the group[X[n], Y ]Ho(C). Observe that even though simplicial
sets act from theright on the homotopy category ofC, πs∗ acts from theleft.

By constructionα ·f = (α∧1S1) ·f , so the morphismα ·f only depends
on the class ofα in the stable homotopy groupπsn. Theπs∗-action is unital;
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associativity can be seen as follows: ifβ ∈ [Sm+n+k, Sn+k] represents
another stable homotopy element, then we have

(β · f) ∧L α = (1Y ∧L α) ◦ ((β · f) ∧L 1Sn+k) = (1Y ∧L α) ◦ (f ∧L β)
= f ∧L (α ◦ β) = ((α ◦ β) · f) ∧L 1Sk

in the group[X ∧L Sm+n+k, Y ∧L Sk]Ho(C). According to the definition of
α · (β · f) this means thatα · (β · f) = (α ◦ β) · f . Centrality of the action
is proved in a similar way.

For the verification of condition (iii) of Definition 2.2 we note that

f [1] ∧L α = f ∧L (1S1 ∧ α) = (−1)n f ∧L (α ∧ 1S1)
= (−1)n (f ∧L α) ∧L 1S1 = (−1)n (α · f) ∧L 1Sk+1

= ( (−1)n (α · f)[1] ) ∧L 1Sk .

The second equality uses that the left and right suspensions of an element of
πn+kS

k differ by the sign(−1)n. The equation shows that(−1)n (α · f)[1]
has the property which definesα · f [1], hence condition (iii) holds.

Definition 2.5. A pair of adjoint functors between model categories is a
Quillen adjoint pairif the right adjoint preserves fibrations and trivial fibra-
tions. An equivalent condition is that the left adjoint preserves cofibrations
and trivial cofibrations. A Quillen adjoint pair induces an adjoint pair of
functors between the homotopy categories [Q67, I.4 Thm. 3], thetotal de-
rived functors. A Quillen functor pair is aQuillen equivalenceif the total
derived functors are adjoint equivalences of the homotopy categories.

The definition of Quillen equivalences just given is not the most common
one; however it is equivalent to the usual definition by [Ho99, 1.3.13]. Sup-
poseF : C −→ D is the left adjoint of a Quillen adjoint pair between pointed
model categories. Then the total left derived functorLF : Ho(C) −→
Ho(D) of F comes with a natural isomorphismτ : LF (X) ∧L S1 −→
LF (X ∧L S1) with respect to which it preserves cofibration sequences, see
[Q67, I.4 Prop. 2] or [Ho99, 6.4.1]. IfC andD are stable, this makesLF into
an exact functor with respect toτ . It should not be surprising that(LF, τ)
is alsoπs∗-linear in the sense of Definition 2.2, but showing this requires a
careful review of the definitions which we carry out in Lemma 6.1.

Remark 2.6.In Theorem 5.3 below we show that theπs∗-triangulated homo-
topy category determines the Quillen equivalence type of the model category
of spectra. This is not true for general stable model categories. As an example
we consider then-th MoravaK-theory spectrumK(n) for n > 0 and some
fixed primep. This spectrum admits the structure of anA∞-ring spectrum
[Ro89], and so its module spectra form a stable model category. The coeffi-
cient ringK(n)∗ = Fp[vn, v−1

n ], with vn of degree2pn−2, is a graded field,
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and so the homotopy category ofK(n)-modules is equivalent, via the homo-
topy group functor, to the category of gradedK(n)∗-modules. Similarly the
derived category of differential gradedK(n)∗-modules is equivalent, via the
homology functor, to the category of gradedK(n)∗-modules. This derived
category comes from a stable model category structure on differential graded
K(n)∗-modules with weak equivalences the quasi-isomorphisms. The pos-
itive dimensional elements ofπs∗ act trivially on the homotopy categories in
both cases. So the homotopy categories of the model categories ofK(n)-
modules and differential gradedK(n)∗-modules areπs∗-linearly equivalent.
However, the two model categories are not Quillen equivalent; if they were
Quillen equivalent, then the homotopy types of the function spaces would
agree [DK80, Prop. 5.4]. But all function spaces of DG-modules are products
of Eilenberg-Mac Lane spaces, and this is not true forK(n)-modules.

3. Margolis’ uniqueness conjecture

H. R. Margolis in ‘Spectra and the Steenrod algebra’ introduced a set of
axioms for a stable homotopy category [M83, Ch. 2 Sect. 1]. The stable
homotopy category of spectra satisfies the axioms, and Margolis conjectures
[M83, Ch. 2, Sect. 1] that this is the only model, i.e., that any category which
satisfies the axioms is equivalent to the stable homotopy category. As part of
the structure Margolis requires the subcategory of small objects of a stable
homotopy category to be equivalent to the Spanier-Whitehead category of
finite CW-complexes. So his uniqueness question really concerns possible
‘completions’ of the category of finite spectra to a triangulated category
with infinite coproducts. Margolis shows [M83, Ch. 5 Thm. 19] that modulo
phantom maps each model of his axioms is equivalent to the standard model.
Moreover, in [CS98], Christensen and Strickland show that in any model
the ideal of phantoms is equivalent to the phantoms in the standard model.

Definition 3.1. An objectG of a triangulated categoryT is called aweak
generatorif it detects isomorphisms, i.e., a mapf : X −→ Y is an isomor-
phism if and only if it induces an isomorphism between the graded abelian
homomorphism groupsT (G,X)∗ andT (G,Y )∗. An objectG of T issmall
if for any family of objects{Ai}i∈I whose coproduct exists the canonical
map ⊕

i∈I
T (G,Ai) −−−→ T (G,

∐
i∈I
Ai)

is an isomorphism.
A stable homotopy categoryin the sense of [M83, Ch. 2 Sect. 1] is

a triangulated categoryS endowed with a symmetric monoidal, bi-exact
smash product∧ such that:
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– S has infinite coproducts,
– the unit of the smash product is a small weak generator, and
– there exists an exact and strong symmetric monoidal equivalenceR :

SW f −→ Ssmall between the Spanier-Whitehead category of finite CW-
complexes and the full subcategory of small objects inS.

The condition thatR is strong monoidal means that there are coherently
unital, associative, and commutative isomorphisms betweenR(A∧B) and
R(A) ∧ R(B) and betweenR(S0) and the unit of the smash product inS.
Hence a stable homotopy categoryS becomes aπs∗-triangulated category
as follows. The elements ofπsn are precisely the maps fromSn to S0 in
the Spanier-Whitehead category. So givenα ∈ πsn = SW (Sn, S0) and
f : X −→ Y in S we can formf ∧R(α) : X ∧R(Sn) −→ Y ∧R(S0). Via
the isomorphismsX∧R(Sn) ∼= X[n]∧R(S0) ∼= X[n] andY ∧R(S0) ∼= Y
we obtain an element inS(X[n], Y ) which we define to beα · f . Thisπs∗-
action is unital, associative and bilinear because of the coherence conditions
on the functorR.

As a consequence of our main theorem we can prove a special case
of Margolis’ conjecture, namely we can show that a category satisfying
his axioms is equivalent to the homotopy category of spectra if it hassome
underlying model category structure. Note that we donotask for any kind of
internal smash product on the model category which occurs in the following
theorem.

Theorem 3.2. Suppose thatS is a stable homotopy category in the sense
of [M83, Ch. 2 Sect. 1] which supports aπs∗-linear equivalence with the
homotopy category of some stable model category. ThenS is equivalent to
the stable homotopy category of spectra.

Proof. Let C be a stable model category which admits aπs∗-linear equiva-
lenceΦ : S −→ Ho(C). The imageX ∈ Ho(C) underΦ of the unit object
of the smash product is a small weak generator for the homotopy category
of C. Because the equivalenceΦ is πs∗-linear,X satisfies condition (3) of
our main theorem, and soC is Quillen equivalent to the model category of
spectra. Thus the homotopy category ofC and the categoryS areπs∗-linearly
equivalent to the ordinary stable homotopy category of spectra. ��

The stability assumption on the model category in Theorem 3.2 is some-
what redundant. Indeed ifC is a model category whose homotopy category
is equivalent to a stable homotopy category in the sense of Margolis, via a
functor which preserves the suspension, thenC is automatically stable. The
added stability assumption makes the statement simpler, since this avoids
any discussion of ‘π∗-linearity’ in an unstable context.
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4. TheR-local model structure for spectra

In this section we review the stable model category structure for spectra
defined by Bousfield and Friedlander [BF78, Sect. 2] and establish theR-
local model structure (Lemma 4.1).

A spectrumconsists of a sequence{Xn}n≥0 of pointed simplicial sets
together with mapsσn : S1 ∧Xn −→ Xn+1. A morphismf : X −→ Y of
spectra consists of maps of pointed simplicial setsfn : Xn −→ Yn for all
n ≥ 0 such thatfn+1 ◦ σn = σn ◦ (1S1 ∧ fn). We denote the category of
spectra bySp. A spectrumX is anΩ-spectrumif for all n the simplicial set
Xn is a Kan complex and the adjointXn −→ ΩXn+1 of the structure map
σn is a weak homotopy equivalence. Thesphere spectrumS is defined by
Sn = Sn = (S1)∧n, with structure maps the identity maps. The homotopy
groups of a spectrum are defined by

π∗X = colimiπi+∗|Xi|
A morphism of spectra is astable equivalenceif it induces an isomorphism
of homotopy groups. A mapX −→ Y of spectra is acofibrationif the map
X0 −→ Y0 and the maps

Xn ∪S1∧Xn−1 S
1 ∧ Yn−1 −−−→ Yn

for n ≥ 1 are cofibrations (i.e., injections) of simplicial sets. A map of
spectra is astable fibrationif it has the right lifting property (see [Q67, I p.
5.1], [DS95, 3.12] or [Ho99, 1.1.2]) for the maps which are both cofibrations
and stable equivalences.

Bousfield and Friedlander show in [BF78, Thm. 2.3] that the stable equiv-
alences, cofibrations and stable fibrations form a model category structure
for spectra. A variation of their model category structure is theR-localmodel
structure forR a subring of the ring of rational numbers. TheR-local model
category structure is well known, but we were unable to find a reference in
the literature. A map of spectra is anR-equivalenceif it induces an isomor-
phism of homotopy groups after tensoring withR and is anR-fibration if
it has the right lifting property with respect to all maps that are cofibrations
andR-equivalences.

Lemma 4.1. LetR be a subring of the ring of rational numbers. Then the
cofibrations,R-fibrations andR-equivalences make the category of spectra
into a model category, referred to as theR-local model category structure.
A spectrum is fibrant in theR-local model structure if and only if it is an
Ω-spectrum withR-local homotopy groups.

We use ‘RLP’ to abbreviate ‘right lifting property’. For one of the fac-
torization axioms we need the small object argument (see [Q67, II 3.4 Re-
mark] or [DS95, 7.12]) relative to a setJ = J lv ∪ Jst ∪ JR of maps of
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spectra which we now define. We denote by∆[i], ∂∆[i] andΛk[i] respec-
tively the simpliciali-simplex, its boundary and itsk-th horn (the union of
all (i− 1)-dimensional faces except thek-th one). A subscript ‘+’ denotes
a disjoint basepoint. We denote byFnK the spectrum freely generated by a
simplicial setK in dimensionn, i.e.,(FnK)j = Sj−n ∧K (whereSm = ∗
form < 0). HenceFnK is a shift desuspension of the suspension spectrum
ofK.

First,J lv is the set of maps of the form

Fn Λ
k[i]+ −−−→ Fn∆[i]+

for i, n ≥ 0 and0 ≤ k ≤ i. To define the set of mapsJst we start with
the mapλn,j : Fn+jS

j −→ FnS
0 which is the identity in spectrum levels

aboven+ j. The mapλn,j is a stable equivalence, but not a cofibration, so
we use the reduced mapping cylinder to replace it by a cofibration. More
precisely, we let

cn,j : Fn+jS
j −→ Cyl(λn,j) = (Fn+jS

j ∧ ∆[1]+) ∪Fn+jSj×1 FnS
0

be the ‘front’ inclusion into the mapping cylinder, a cofibration of spectra.
The setJst then consists of the smash products (also called ‘pushout product
maps’)

Cyl(λn,j) ∧ ∂∆[i]+ ∪Fn+jSj∧∂∆[i]+ Fn+jS
j ∧∆[i]+

−−−→ Cyl(λn,j) ∧∆[i]+

of the mapping cylinder inclusioncn,j with the boundary inclusions∂∆[i]+
−→ ∆[i]+ for all i, j, n ≥ 0. It is shown in [Sch1, Lemma A.3] that the
stable fibrations of spectra are precisely the maps with the RLP with respect
to the setJ lv ∪ Jst.

For every natural numberk we choose a finite pointed simplicial setMk

which has the weak homotopy type of the mod-kMoore space of dimension
two. We letJR be the set of maps

FnΣ
mMk −−−→ FnΣ

mC(Mk)

for allm,n ≥ 0 and all natural numbersk which are invertible inR, where
C(Mk) denotes the cone of the Moore space.

Now we prove a sequence of claims:

(a) A mapX −→ ∗ has the RLP for the setJ = J lv ∪ Jst ∪ JR if and only
if X is anΩ-spectrum withR-local homotopy groups.

(b) A map which is anR-equivalence and has the RLP forJ is also an
acyclic fibration in the stable model structure.

(c) Every map can be factored as a compositep ◦ iwherep has the RLP for
J andi is a cofibration and anR-equivalence and is built from maps in
J by coproducts, pushouts and composition.
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(d) A map is anR-fibration if and only if it has the RLP forJ .

(a) The RLP for(J lv ∪ Jst) means thatX is stably fibrant, i.e., an
Ω-spectrum. ForΩ-spectra the lifting property with respect to the map
FnΣ

mMk −→ FnΣ
mC(Mk) means precisely that every element in the

mod-k homotopy group

[FnΣmMk, X]Ho(Sp) ∼= π0Ω
mmap(Mk, Xn) ∼= πm+2−n(X; Z/k)

is trivial. Since this holds for allm,n ≥ 0 and allk which are invertible in
R, the mapX −→ ∗ has the RLP forJ if and only ifX is anΩ-spectrum
with R-local homotopy groups.

(b) Supposef : X −→ Y is anR-equivalence and has the RLP forJ .
Thenf is in particular a stable fibration and we denote its fiber byF . There
exists a long exact sequence connecting the homotopy groups ofF ,X and
Y . Sincef is anR-equivalence, the localized homotopy groupsR ⊗ π∗F
of the fiber are trivial. As the base change of the mapf , the mapF −→ ∗
also has the RLP forJ . By (a),F is anΩ-spectrum whose homotopy groups
areR-local. Hence the homotopy groups of the fiberF are trivial, so the
original mapf is also a stable equivalence.

(c) Every object occurring as the source of a map inJ is a suspension
spectrum of a finite simplicial set, hence sequentially small in the sense of
[Q67, II 3.4 Remark] or [DS95, Def. 7.14]. Thus Quillen’ssmall object argu-
ment(see [Q67, II 3.4 Remark] or [DS95, 7.12]) provides a factorization of a
given map as a compositep◦iwherei is built from maps inJ by coproducts,
pushouts and composition, and wherep has the RLP forJ . Since every map
in J is a cofibration, so isi. Cofibrations of spectra give rise to long exact
sequences of homotopy groups, and homotopy groups of spectra commute
with filtered colimits of cofibrations. So to see thati is anR-equivalence it
suffices to check that the maps inJ areR-equivalences. The maps inJ lv are
levelwise equivalences, the maps inJst are stable equivalences, hence both
areR-equivalences. Since the stable homotopy groups of the Moore space
Mk arek-power torsion, the maps inJR are alsoR-equivalences.

(d) We need to show that a map has the RLP forJ if and only if it has
the RLP for the (strictly bigger) class of mapsj which are cofibrations and
R-equivalences. This follows if any suchj is a retract of a map built from
maps inJ by coproducts, pushouts and composition. We factorj = p ◦ i as
in (c). Sincej andi areR-equivalences, so isp. Sincep also has the RLP for
J , it is a stable acyclic fibration by (b). Sop has the RLP for the cofibration
j, hencej is indeed a retract ofi.

Proof of Lemma 4.1.We verify the model category axioms as given in
[DS95, Def. 3.3]. The category of spectra has all limits and colimits (MC1),
theR-equivalences satisfy the 2-out-of-3 property (MC2) and the classes
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of cofibrations,R-fibrations andR-equivalences are each closed under re-
tracts (MC3). By definition theR-fibrations have the RLP for maps which
are both cofibrations andR-equivalences. Furthermore a map which is an
R-equivalence and anR-fibration is an acyclic fibration in the stable model
structure by claim (b) above, so it has the RLP for cofibrations. This proves
the lifting properties (MC4). The stable model structure provides factoriza-
tions of maps as cofibrations followed by stable acyclic fibrations. Stable
acyclic fibrations are in particularR-equivalences andR-fibrations, so this is
also a factorization as a cofibration followed by an acyclic fibration in theR-
local model structure. The claims (c) and (d) provide the other factorization
axiom (MC5).

Lemma 4.2. LetC be a stable model category,G : C −→ Sp a functor with
a left adjoint andR a subring of the rational numbers. ThenGand its adjoint
form a Quillen adjoint pair with respect to theR-local model structure if
and only if the following three conditions hold:

(i) G takes acyclic fibrations to level acyclic fibrations of spectra,
(ii) G takes fibrant objects toΩ-spectra withR-local homotopy groups

and
(iii) G takes fibrations between fibrant objects to level fibrations.

Proof. The ‘only if’ part holds since the level acyclic fibrations areR-
local acyclic fibrations, theR-fibrant objects are theΩ-spectra withR-local
homotopy groups (claim (a) above), andR-fibrations are in particular level
fibrations. For the converse suppose thatG satisfies conditions (i) to (iii).
We use a criterion of Dugger [Du, A.2]: in order to show thatG and its
adjoint form a Quillen adjoint pair it suffices to show thatG preserves
acyclic fibrations and it preserves fibrations between fibrant objects. The
R-local acyclic fibrations are precisely the level acyclic fibrations, soG
preserves acyclic fibrations by assumption (i). We claim that every level
fibrationf : X −→ Y betweenΩ-spectra withR-local homotopy groups
is anR-fibration. Given this,G preserves fibrations between fibrant objects
by assumptions (ii) and (iii).

To prove the claim we choose a factorizationf = p◦ iwith i : X −→ Z
a cofibration andR-equivalence and withp : Z −→ Y anR-fibration. Since
Y isR-fibrant, so isZ. Hencei is anR-equivalence betweenΩ-spectra with
R-local homotopy groups, thus a level equivalence. Hencei is an acyclic
cofibration in the strict model (or level) model structure for spectra of [BF78,
2.2], so that the level fibrationf has the RLP fori. Hencef is a retract of
theR-fibrationp, and so it is itself anR-fibration.
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5. A universal property of the model category of spectra

In this section we formulate a universal property which roughly says that
the category of spectra is the ‘free stable model category on one object’. The
following theorem associates to each cofibrant and fibrant objectX of a sta-
ble model categoryC a Quillen adjoint functor pair such that the left adjoint
takes the sphere spectrum toX. Moreover, this Quillen pair is essentially
uniquely determined by the objectX. Theorem 5.3 gives conditions under
which the adjoint pair forms a Quillen equivalence. We prove Theorem 5.1
in the final section 6.

Theorem 5.1. (Universal property of spectra)Let C be a stable model
category andX a cofibrant and fibrant object ofC.

(1) There exists a Quillen adjoint functor pairX ∧ − : Sp −→ C and
Hom(X,−) : C −→ Sp such that the left adjointX ∧ − takes the
sphere spectrum,S, toX.

(2) If R is a subring of the rational numbers and the endomorphism group
[X,X]Ho(C) is anR-module, then any adjoint functor pair satisfying(1)
is also a Quillen pair with respect to theR-local stable model structure
for spectra.

(3) If C is a simplicial model category, then the adjoint functorsX ∧ −
andHom(X,−) of (1) can be chosen as asimplicial Quillen adjoint
functor pair.

(4) Any two Quillen functor pairs satisfying(1) are related by a chain of
natural transformations which are weak equivalences on cofibrant or
fibrant objects respectively.

Now we define the unit map and deduce theR-local form of our main
uniqueness theorem.

Definition 5.2. LetX be a cofibrant and fibrant object of a stable model cat-
egoryC. Choose a Quillen adjoint pairX∧− : Sp −→ C andHom(X,−) :
C −→ Sp as in part (1) of Theorem 5.1. Theunit mapof X is the map of
spectra

S −−−→ Hom(X,X)

which is adjoint to the isomorphismX ∧ S ∼= X. By the uniqueness part
(4) of Theorem 5.1, the spectrumHom(X,X) is independent of the choice
of Quillen pair up to stable equivalence of spectra underS.

Theorem 5.3. LetRbe a subring of the ring of rational numbers and letC be
a stable model category. Then the following four conditions are equivalent:

(1) There is a chain of Quillen equivalences betweenC and theR-local
stable model category of spectra.
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(2) There exists aπs∗-linear equivalence between the homotopy category of
C and the homotopy category ofR-local spectra.

(3) The homotopy category ofC has a small weak generatorX for which
[X,X]Ho(C)

∗ is freely generated as anR⊗πs∗-module by the identity map
ofX.

(4) The model categoryC has a cofibrant-fibrant small weak generator
X for which the groups[X,X]Ho(C)

∗ areR-modules and the unit map
S −→ Hom(X,X) induces an isomorphism of homotopy groups after
tensoring withR.

Furthermore, ifX is a cofibrant and fibrant object ofC which satisfies
conditions(3) or (4), then the functorsHom(X,−) andX ∧ − of Theorem
5.1(1) form a Quillen equivalence betweenC and theR-local model category
of spectra.

Remark 5.4.In [SS] we associate to every object of a stable model cat-
egory anendomorphism ring spectrum. The spectrumHom(X,X) given
by Theorem 5.1 (1) is stably equivalent to the underlying spectrum of the
endomorphism ring spectrum. Moreover, the unit map as defined in 5.2
corresponds to the unit map of ring spectra. So condition (4) of the above
theorem means that the endomorphism ring spectrum ofX is stably equiva-
lent, as a ring spectrum, to theR-local sphere ring spectrum. This expresses
the equivalence of conditions (1) and (4) as a corollary of the more general
classification result of [SS] for stable model categories with a small weak
generator. The special case in this paper, however, has a more direct proof.

Proof of Theorem 5.3.Every Quillen equivalence between stable model cat-
egories induces an exact equivalence of triangulated homotopy categories.
The derived functor of a left Quillen functor is alsoπs∗-linear by Lemma 6.1,
so condition (1) implies (2). Now assume (2) and letX be a cofibrant and
fibrant object ofHo(C) which in the homotopy category is isomorphic to the
image of the localized sphere spectrum under someπs∗-linear equivalence.
With this choice, condition (3) holds.

Given condition (3), we may assume thatX is cofibrant and fibrant and
we choose a Quillen adjoint pairX ∧ − andHom(X,−) as in part (1) of
Theorem 5.1. Since the group[X,X]Ho(C) is anR-module, the functors
form a Quillen pair with respect to theR-local model structure for spectra
by Theorem 5.1 (2). By Lemma 6.1 the map

X ∧L − : [S,S]Ho(SpR)
∗ −−−→ [X,X]Ho(C)

∗

induced by the left derived functorX ∧L− and the identificationX ∧L S ∼=
X is π∗-linear (note that the groups on the left hand side are taken in
theR-local homotopy category, so that[S[n],S]Ho(SpR) is isomorphic to
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R ⊗ πsn). Source and target of this map are freeR ⊗ πs∗-modules, and
the generator IdS is taken to the generator IdX . Hence the mapX ∧L
− is an isomorphism. For a fixed integern, the derived adjunction and
the identificationX[n] ∼= X ∧L S[n] provide an isomorphism between
[X[n], X]Ho(C) and[S[n],RHom(X,X)]Ho(SpR) under whichX ∧L− cor-
responds to[S[n],S]Ho(SpR) −→ [S[n],RHom(X,X)]Ho(SpR) given by
composition with the unit map. For every spectrumA the group
[S[n], A]Ho(SpR) is naturally isomorphic toR ⊗ πnA, so this shows that
the unit map induces an isomorphism of homotopy groups after tensoring
with R, and condition (4) holds.

To conclude the proof we assume condition (4) and show that the Quillen
functor pairHom(X,−) andX ∧ − of Theorem 5.1 (1) is a Quillen equiv-
alence. Since the group[X,X]Ho(C) is anR-module, the functors form a
Quillen pair with respect to theR-local model structure for spectra by Theo-
rem 5.1 (2). So we show that the adjoint total derived functorsRHom(X,−) :
Ho(C) −→ Ho(SpR) andX ∧L − : Ho(SpR) −→ Ho(C) are inverse
equivalences of homotopy categories. Note that the right derived functor
RHom(X,−) is taken with respect to theR-local model structure on spec-
tra.

For a fixed integern, the derived adjunction and the identificationX ∧L
S[n] ∼= X[n] provide a natural isomorphism

(∗) πnRHom(X,Y ) ∼= [S[n],RHom(X,Y )]Ho(SpR) ∼= [X[n], Y ]Ho(C) .

So the functorRHom(X,−) reflects isomorphisms becauseX is a weak
generator. Hence it suffices to show that for every spectrumA the unit
of the adjunction of derived functorsA −→ RHom(X,X ∧L A) is an
isomorphism in the stable homotopy category. Basically, the target of this
natural transformation is an exact functor which commutes with infinite
coproducts, i.e., a homology functor. Since the natural transformation is an
isomorphism for the localized sphere, it is an isomorphism everywhere.

In more detail, consider the full subcategoryT of theR-local stable ho-
motopy category with objects those spectraA for which A −→
RHom(X,X∧LA) is an isomorphism. Condition (4) says that the unit map
S −→ Hom(X,X) is anR-local equivalence, soT contains the (localized)
sphere spectrum. Since the composite functorRHom(X,X ∧L −) com-
mutes with (de-)suspension and preserves distinguished triangles,T is a tri-
angulated subcategory of the homotopy category of spectra. As a left adjoint
the functorX ∧L − preserves coproducts. By formula(∗) above and since
X is small, the natural map

∐
I RHom(X,Ai) −→ RHom(X,

∐
I Ai) is

aπ∗-isomorphism of spectra for any family of objectsAi in Ho(C). Hence
the functorRHom(X,−) also preserves coproducts. SoT is a triangulated
subcategory of the homotopy category of spectra which is also closed under
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coproducts and contains the localized sphere spectrum. Thus,T is the whole
R-local stable homotopy category, and this finishes the proof. ��

6. Construction of homomorphism spectra

In this last section we show that the derived functor of a left Quillen functor
is πs∗-linear, and we prove Theorem 5.1.

Lemma 6.1. Let F : C −→ D be the left adjoint of a Quillen adjoint
pair between stable model categories. Then the total left derived functor
LF : Ho(C) −→ Ho(D) isπs∗-exact with respect to the natural isomorphism
τ : LF (X) ∧L S1 −→ LF (X ∧L S1) of [Ho99, 5.6.2].

Proof. To simplify notation we abbreviate the derived functorLF toL and
drop the superscriptL over the smash product on the homotopy category
level. By [Ho99, 5.7.3], the left derived functorL is compatible with the
action of the homotopy category of pointed simplicial sets – Hoveysumma-
rizes this compatibility under the name of ‘Ho(S∗)-module functor’ [Ho99,
4.1.7]. The isomorphismτ : L(X) ∧S1 −→ L(X ∧S1) is the special case
K = S1 of a natural isomorphism

τX,K : L(X) ∧K −−−→ L(X ∧K)

for a pointed simplicial setK which is constructed in the proof of [Ho99,
5.6.2] (or rather its pointed analog in [Ho99, 5.7.3]). It is important for us
that the isomorphismτ is associative (this is part of being a ‘Ho(S∗)-module
functor’), i.e., that the composite

L(A) ∧K ∧M τA,K∧1M−−−−−−−→ L(A ∧K) ∧M τA∧K,M−−−−−−−→ L(A ∧K ∧M)

is equal toτA,K∧M (as before we suppress the implicit use of associativity
isomorphisms such as(A ∧ K) ∧M ∼= A ∧ (K ∧M)). In particular the
mapτX,Sn : L(X) ∧ Sn −→ L(X ∧ Sn) is equal to then-fold iterate of
instances ofτ−,S1 .

Now letf : X −→ Y be a morphism in the homotopy category ofC and
letα : Sn+k −→ Sk represent a stable homotopy element. We have to show
thatα ·L(f) = L(α · f) ◦ τX,Sn in the group[L(X) ∧Sn, L(Y )]Ho(D). By
the definition ofα · L(f) this means proving

L(f) ∧ α = (L(α · f) ◦ τX,Sn) ∧ 1Sk(1)

in the group[L(X)∧Sn+k, L(Y )∧Sk]Ho(D). SinceτY,Sk : L(Y )∧Sk −→
L(Y ∧Sk) is an isomorphism we may equivalently show equation (1) after
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composition withτY,Sk . We note that

τY,Sk ◦ (L(f) ∧ α) = L(f ∧ α) ◦ τX,Sn+k(2)

= L((α · f) ∧ 1Sk) ◦ τX∧Sn,Sk ◦ (τX,Sn ∧ 1Sk)(3)

= τY,Sk ◦ (L(α · f) ∧ 1Sk) ◦ (τX,Sn ∧ 1Sk)(4)

= τY,Sk ◦ ((L(α · f) ◦ τX,Sn) ∧ 1Sk) ,

which is what we had to show. Equations (2) and (4) use the naturality of
τ . Equation (3) uses the defining property of the morphismα · f and the
associativity ofτ . ��

Now we prove Theorem 5.1. We start with

Proof of Theorem 5.1 (2).By assumption the group[X,X]Ho(C) is a module
over a subringR of the ring of rational numbers. SinceHom(X,−) is a right
Quillen functor, it satisfies the conditions of Lemma 4.2 forZ. For fibrantY ,
then-th homotopy group of theΩ-spectrumHom(X,Y ) is isomorphic to
the group[S[n],RHom(X,Y )]Ho(Sp). By the derived adjunction this group
is isomorphic to the group[X∧LS[n], Y ]Ho(C) ∼= [X[n], Y ]Ho(C), which is a
module over theR-local endomorphism ring[X,X]Ho(C). Hence the homo-
topy groups of theΩ-spectrumHom(X,Y ) areR-local. ThusHom(X,−)
satisfies the conditions of Lemma 4.2 forR and it is a right Quillen functor
for theR-local model structure. ��

Now we construct the adjoint functor pairHom(X,−) andX ∧− in the
case of asimplicialstable model category. This proves part (3) of Theorem
5.1 and also serves as a warm-up for the general construction which is very
similar in spirit, but involves more technicalities.

Construction 6.2. LetC be asimplicialstable model category andX a cofi-
brant and fibrant object ofC. We choose cofibrant and fibrant modelsωnX
of the desuspensions ofX as follows. We setω0X = X and inductively
choose acyclic fibrationsϕn : ωnX −→ Ω (ωn−1X) with ωnX cofibrant.
We then define the functorHom(X,−) : C −→ Sp by setting

Hom(X,Y )n = mapC(ωnX,Y )

where ‘mapC ’ denotes the simplicial mapping space. The spectrum structure
maps are adjoint to the map

mapC(ωn−1X,Y )
mapC(ϕ̃n,Y )−−−−−−−−→ mapC(ωnX ∧ S1, Y )

∼= ΩmapC(ωnX,Y )

whereϕ̃n is the adjoint ofϕn.
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The functorHom(X,−) has a left adjointX ∧− : Sp −→ C defined as
the coequalizer

(∗)
∨
n

ωnX ∧ S1 ∧An−1 −−−→−−−→
∨
n

ωnX ∧An −−−→ X ∧A .

The two maps in the coequalizer are induced by the structure maps of the
spectrumA and the maps̃ϕn : ωnX ∧ S1 −→ ωn−1X respectively. The
various adjunctions provide bijections of morphism sets

C(X ∧ S,W )∼= Sp(S,Hom(X,W ))∼= S∗(S0,Hom(X,W )0)∼= C(X,W )

natural in theC-objectW . Hence the mapX ∧ S −→ X corresponding to
the identity ofX in the caseW = X is an isomorphism; this shows that the
left adjoint takes the sphere spectrum toX.

SinceωnX is cofibrant the functormapC(ωnX,−) takes fibrations (resp.
acyclic fibrations) inC to fibrations (resp. acyclic fibrations) of simplicial
sets. So the functorHom(X,−) takes fibrations (resp. acyclic fibrations)
in C to level fibrations (resp. level acyclic fibrations) of spectra. SinceC is
stable,ϕ̃n is a weak equivalence between cofibrant objects, so for fibrant
Y the spectrumHom(X,Y ) is anΩ-spectrum. HenceHom(X,−) satisfies
the conditions of Lemma 4.2 forR = Z, and soHom(X,−) andX ∧ −
form a Quillen adjoint pair. Since the functorHom(X,−) is defined with the
use of the simplicial mapping space ofC, it comes with a natural, coherent
isomorphismHom(X,Y K) ∼= Hom(X,Y )K for a simplicial setK. So
Hom(X,−) and its adjointX ∧ − form a simplicial Quillen functor pair
which proves part (3) of Theorem 5.1.

It remains to construct homomorphism spectra as in part (1) of Theorem
5.1 for a general stable model category, and prove the uniqueness part (4)
of Theorem 5.1. Readers who only work with simplicial model categories
and have no need for the uniqueness statement may safely ignore the rest of
this paper.

To compensate for the lack of simplicial mapping spaces, we work with
cosimplicial frames. The theory of ‘framings’ of model categories goes back
to Dwyer and Kan, who used the terminology(co-)simplicial resolutions
[DK80, 4.3]; we mainly refer to Chapter 5 of Hovey’sbook [Ho99] for the
material about cosimplicial objects that we need. IfK is a pointed simplicial
set andA a cosimplicial object ofC, then we denote byA ∧K the coend
[ML71, IX.6]

A ∧K =
∫ n∈∆

An ∧Kn ,

which is an object ofC. HereAn ∧Kn denotes the coproduct of copies of
An indexed by the setKn, modulo the copy ofAn indexed by the basepoint
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of Kn. Note thatA ∧ ∆[m]+ is naturally isomorphic to the object ofm-
cosimplices ofA; the objectA ∧ ∂∆[m]+ is also called them-th latching
objectof A. A cosimplicial mapA −→ B is aReedy cofibrationif for all
m ≥ 0 the map

A ∧∆[m]+ ∪A∧∂∆[m]+ B ∧ ∂∆[m]+ −−−→ B ∧∆[m]+

is a cofibration inC. Cosimplicial objects in any pointed model category
admit theReedy model structurein which the weak equivalences are the
cosimplicial maps which are levelwise weak equivalences and the cofibra-
tions are the Reedy cofibrations. The Reedy fibrations are defined by the right
lifting property for Reedy acyclic cofibrations or equivalently with the use of
matching objects; see [Ho99, 5.2.5] for details on the Reedy model structure.
If A is a cosimplicial object andY is an object ofC, then there is a simplicial
setC(A, Y ) of C-morphisms defined byC(A, Y )n = C(An, Y ). There is an
adjunction bijection of pointed setsC(A ∧K,Y ) ∼= S∗(K, C(A, Y )). If A
is a cosimplicial object, then thesuspensionof A is the cosimplicial object
ΣA defined by

(ΣA)m = A ∧ (S1 ∧∆[m]+) .

Note thatΣA andA ∧ S1 have different meanings:A ∧ S1 is (naturally
isomorphic to) the object of 0-cosimplices ofΣA. There is aloop functor
Ω for cosimplicial objects which is right adjoint toΣ; we do not use the
precise form ofΩY here. For a cosimplicial objectA and an objectY of C
there is an adjunction isomorphism

C(ΣA, Y ) ∼= Ω C(A, Y ) .

A cosimplicial object inC is homotopically constantif each cosimplicial
structure map is a weak equivalence inC. A cosimplicial frame(compare
[Ho99, 5.2.7]) is a Reedy cofibrant and homotopically constant cosimplicial
object. The following lemma collects from [Ho99, Ch. 5] those properties
of cosimplicial frames which are relevant to our discussion.

Lemma 6.3. LetC be a pointed model category.

(a) The suspension functor for cosimplicial objects preserves Reedy cofi-
brations, Reedy acyclic cofibrations and level equivalences between
Reedy cofibrant objects.

(b) If A is a cosimplicial frame, then so isΣA.
(c) If A is a cosimplicial frame, then the functorC(A,−) takes fibrations

(resp. acyclic fibrations) inC to fibrations (resp. acyclic fibrations) of
simplicial sets.

(d) If Y is a fibrant object ofC, then the functorC(−, Y ) takes level equiv-
alences between Reedy cofibrant cosimplicial objects to weak equiva-
lences of simplicial sets.
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Proof. (a) For a cosimplicial mapf :A −→ B the map inC
(ΣA) ∧∆[m]+ ∪(ΣA)∧∂∆[m]+ (ΣB) ∧ ∂∆[m]+ −−−→ (ΣB) ∧∆[m]+

is isomorphic to the pushout productf � i [Ho99, 4.2.1] off with the
inclusioni of S1 ∧∂∆[m]+ intoS1 ∧∆[m]+. So iff is a Reedy cofibration,
thenf � i is a cofibration inC by [Ho99, 5.7.1]; henceΣA −→ ΣB is a
Reedy cofibration. In cosimplicial levelm, the mapΣf is given by the map
f∧(S1∧∆[m]+). If f is a Reedy acyclic cofibration, thenf∧(S1∧∆[m]+)
is an acyclic cofibration inC by [Ho99, 5.7.1]; henceΣf is also a level
equivalence. Suspension then preserves level equivalences between Reedy
cofibrant objects by Ken Brown’s lemma [Ho99, 1.1.12].

(b) If A is a cosimplicial frame, thenΣA is again Reedy cofibrant by
part (a). A simplicial face mapdi : ∆[m− 1] −→ ∆[m] induces an acyclic
cofibration

d∗
i : (ΣA)m−1 = A ∧ (S1 ∧∆[m− 1]+)−−−→A ∧ (S1 ∧∆[m]+)

= (ΣA)m

by [Ho99, 5.7.2], soΣA is also homotopically constant.
(c) This is the pointed variant of [Ho99, 5.4.4 (1)].
(d) If A −→ B is a Reedy acyclic cofibration, then for every cofibration

of pointed simplicial setsK −→ L the mapA ∧ LA∧KB ∧K −→ B ∧ L
is an acyclic cofibration inC by [Ho99, 5.7.1]. By adjointness the induced
mapC(B, Y ) −→ C(A, Y ) is an acyclic fibration of simplicial sets. By Ken
Brown’s Lemma [Ho99, 1.1.12], the functorC(−, Y ) thus takes level equiv-
alences between Reedy cofibrant objects to weak equivalences of simplicial
sets. ��

The following lemma provides cosimplicial analogues of the desuspen-
sionsωnX of Construction 6.2.

Lemma 6.4. Let Y be a cosimplicial object in a stable model category
C which is Reedy fibrant and homotopically constant. Then there exists a
cosimplicial frameX and a level equivalenceΣX −→ Y whose adjoint
X −→ ΩY is a Reedy fibration which has the right lifting property for the
map∗ −→ A for any cosimplicial frameA.

Proof. SinceC is stable there exists a cofibrant objectX0 of C such that
the suspension ofX0 in the homotopy category ofC is isomorphic to the
objectY 0 of 0-cosimplices. By [DK80, 4.5] or [Ho99, 5.2.8] there exists
a cosimplicial frameX̄ with X̄0 = X0. SinceX̄ is Reedy cofibrant, the
mapd0 � d1 : X̄0 � X̄0 −→ X̄1 is a cofibration between cofibrant objects
in C; sinceX̄ is also homotopically constant, these maps expressX̄1 as a
cylinder object [Q67, I 1.5 Def. 4] forX0. The 0-cosimplices ofΣX̄ are
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given by the quotient of the mapd0 � d1, hence(ΣX̄)0 is a model for the
suspension ofX0 in the homotopy category ofC. Since(ΣX̄)0 is cofibrant
andY 0 is fibrant, the isomorphism between them in the homotopy category
can be realized by a weak equivalencej0 : (ΣX̄)0 ∼−→ Y 0 in C. SinceY is
Reedy fibrant and homotopically constant, the mapY −→ cY 0 is a Reedy
acyclic fibration, wherecY 0 denotes the constant cosimplicial object. Since
ΣX̄ is Reedy cofibrant, the composite map

ΣX̄ −−−→ c(ΣX̄)0
cj0−−−→ cY 0

can be lifted to a mapj : ΣX̄ −→ Y . The lift j is a level equivalence since
j0 is an equivalence inC and bothΣX̄ (by 6.3 (b)) andY are homotopically
constant. The adjoint̄X −→ ΩY of jmight not be a Reedy fibration, but we
can arrange for this by factoring it as a Reedy acyclic cofibrationX̄ −→ X
followed by a Reedy fibrationψ : X −→ ΩY , and replacingj by the adjoint
ψ̂ : ΣX −→ Y of the mapψ; by Lemma 6.3 (a) the mapΣX̄ −→ ΣX is
a level equivalence, hence so isψ̂.

Now supposeA is a cosimplicial frame andg : A −→ ΩY is a cosim-
plicial map with adjoint̂g : ΣA −→ Y . We want to construct a lifting, i.e.,
a mapA −→ X whose composite withψ : X −→ ΩY is g. We choose
a cylinder object forA, i.e., a factorizationA∨A −→ A × I −→ A of
the fold map as a Reedy cofibration followed by a level equivalence. The
suspension functor preserves Reedy cofibrations and level equivalences be-
tween Reedy cofibrant objects by Lemma 6.3 (a), so the suspended sequence
ΣA∨ΣA −→ Σ(A× I) −→ ΣA yields a cylinder object forΣA. In par-
ticular the 0-th level ofΣ(A× I) is a cylinder object for(ΣA)0 = A ∧ S1

in C.
By [Ho99,6.1.1] thesuspensionmapΣ : [A0, X0] −→ [A0∧LS1, X0∧L

S1] in the homotopy category ofC can be constructed as follows. Given a
C-morphismf0 : A0 −→ X0, one chooses an extensionf : A −→ X to a
cosimplicial map between cosimplicial frames. The mapf∧S1 : A∧S1 −→
X ∧ S1 then represents the classΣ[f0] ∈ [A0 ∧L S1, X0 ∧L S1]. Com-
position with the 0-th level̂ψ0 : X ∧ S1 −→ Y 0 of the level equivalence
ψ̂ : ΣX −→ Y is a bijection from[A0 ∧LS1, X0 ∧LS1] to [A0 ∧LS1, Y 0].
SinceC is stable, the suspension map is bijective, which means that there
exists a cosimplicial mapf : A −→ X such that the mapŝψ0 ◦ (f ∧ S1)
andĝ0 represent the same element in[A ∧ S1, Y 0].

The mapf need not be a lift of the original mapg, but we can find a lift in
the homotopy class off as follows. SinceA∧S1 is cofibrant andY 0 is fibrant,
there exists a homotopyH1 : (Σ(A×I))0 −→ Y 0 from ψ̂0◦(f ∧S1) to ĝ0.
Evaluation at cosimplicial level zero is left adjoint to the constant functor,
so the homotopyH1 is adjoint to a homotopŷH1 : Σ(A × I) −→ cY 0 of
cosimplicial objects. SinceY is Reedy fibrant and homotopically constant,
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the mapY −→ cY 0 is a Reedy acyclic fibration. So there exists a lifting
H2 : Σ(A× I) −→ Y in the commutative square

ΣA∨ΣA Y

Σ(A× I) cY 0
❄

✲ψ̂◦(Σf)∨ĝ

❄
∼

✲
Ĥ1

which is a homotopy fromψ̂ ◦ (Σf) to ĝ. Taking adjoints gives a map
Ĥ2 : A×I −→ ΩY which is a homotopy fromψ◦f tog. SinceX −→ ΩY
is a Reedy fibration and the front inclusioni0 : A −→ A × I is a Reedy
acyclic cofibration, we can choose a liftingH3 : A × I −→ X in the
commutative square

A X

A× I ΩY
❄

i0

✲f

❄

ψ

✲
Ĥ2

The end of the homotopyH3, i.e., the composite mapH3 ◦ i1 : A −→ X,
is then a lift of the original mapg : A −→ ΩY sinceĤ2 ◦ i1 = g. ��
Construction 6.5. Let C be a stable model category andX a cofibrant and
fibrant object ofC. We define Reedy fibrant cosimplicial framesωnX as
follows. As in [Ho99, 5.2.8] we can choose a cosimplicial frameω0X with
(ω0X)0 = X and a Reedy acyclic fibrationϕ0 : ω0X −→ cX which is the
identity in dimension zero. Thenω0X is Reedy fibrant sinceX is fibrant
in C. By Lemma 6.4 we can inductively choose cosimplicial framesωnX
and level equivalenceŝϕn : Σ(ωnX) −→ ωn−1X whose adjointsϕn :
ωnX −→ Ω (ωn−1X) are Reedy fibrations with the right lifting property
for cosimplicial frames. By Lemma 6.3 (a),Σ preserves Reedy acyclic
cofibrations, soΩ preserves Reedy fibrations. HenceΩ (ωn−1X) and thus
ωnX are Reedy fibrant. We then define the functorHom(X,−) : C −→ Sp
by setting

Hom(X,Y )n = C(ωnX,Y ) .

The spectrum structure maps are adjoint to the map

C(ωn−1X,Y )
C(ϕ̂n,Y )−−−−−−−−→ C(Σ (ωnX), Y ) ∼= Ω C(ωnX,Y ) .

The left adjointX ∧ − : Sp −→ C of Hom(X,−) is defined by the same
coequalizer diagram(∗) as in Construction 6.2, except that an expression
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like ωnX ∧ An now refers to the coend of a cosimplicial object with a
simplicial set. Also the isomorphism betweenX ∧ S andX is obtained by
the same representability argument as in 6.2.

SinceωnX is a cosimplicial frame, the functorC(ωnX,−) takes fibra-
tions (resp. acyclic fibrations) inC to fibrations (resp. acyclic fibrations) of
simplicial sets by Lemma 6.3 (c). So the functorHom(X,−) takes fibra-
tions (resp. acyclic fibrations) inC to level fibrations (resp. level acyclic
fibrations) of spectra. Sincêϕn is a level equivalence between cosimplicial
frames, Lemma 6.3 (d) shows that the mapC(ϕ̂n, Y ) is a weak equivalence
for fibrantY ; thus the spectrumHom(X,Y ) is anΩ-spectrum for fibrant
Y . SoHom(X,−) and its adjoint form a Quillen pair by Lemma 4.2 for
R = Z. This proves part (1) of Theorem 5.1.

Proof of Theorem 5.1 (4).LetH : Sp −→ C be any left Quillen functor with
an isomorphismH(S) ∼= X, and letG : C −→ Sp be a right adjoint. We
construct natural transformationsΨ : Hom(X,−) −→ G andΦ : H −→
(X ∧ −) whereHom(X,−) andX ∧ − are the Quillen pair which were
constructed in 6.5. Furthermore,Ψ will be a stable equivalence of spectra
for fibrant objects ofC andΦ will be a weak equivalence inC for every
cofibrant spectrum. So any two Quillen pairs as in Theorem 5.1 (1) can be
related in this way through the pairHom(X,−) andX ∧ −.

We denote byFn∆ the cosimplicial spectrum given by(Fn∆)m =
Fn∆[m]+ and we denote byH• the functor between cosimplicial objects
obtained by applying the left Quillen functorH levelwise. The functorH•
is then a left Quillen functor with respect to the Reedy model structures on
cosimplicial spectra and cosimplicial objects ofC. We inductively choose
compatible mapsψn : H•(Fn∆) −→ ωnX of cosimplicial objects as fol-
lows. SinceFn∆ is a cosimplicial frame,H•(Fn∆) is a cosimplicial frame
in C. The mapϕ0 : ω0X −→ cX is a Reedy acyclic fibration, so the
composite map

H•(F0∆) −−−→ cH(F0S
0)

∼=−−−→ cX

admits a liftψ0 : H•(F0∆) −→ ω0X which is a level equivalence between
cosimplicial frames. The mapϕn : ωnX −→ Ω (ωn−1X) has the right
lifting property for cosimplicial frames, so we can inductively choose a lift
ψn : H•(Fn∆) −→ ωnX of the composite map

H•(Fn∆) −−−→ ΩH•(Fn−1∆)
Ω(ψn−1)−−−−−−→ Ω (ωn−1X) .

We show by induction thatψn is a level equivalence. The mapψn ∧ S1 is a
weak equivalence inC since the other three maps in the commutative square
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H(FnS1) ∼= H•(Fn∆) ∧ S1
ωnX ∧ S1

H(Fn−1S
0) ∼= H•(Fn−1∆)0 (ωn−1X)0

❄

✲ψn∧S1

❄

ϕ̂0
n

✲
ψ0

n−1

are. The mapψn ∧ S1 is a model for the suspension of(ψn)0. SinceC
is stable and(ψn)0 is a map between cofibrant objects,(ψn)0 is a weak
equivalence inC. SinceH•(Fn∆) andωnX are homotopically constant,
the mapψn : H•(Fn∆) −→ ωnX is a level equivalence.

The adjunction provides a natural isomorphism of simplicial setsG(Y )n∼= C(H•(Fn∆), Y ) for everyn ≥ 0, and we get a natural transformation

Ψn :Hom(X,Y )n =C(ωnX,Y )
C(ψn,Y )−−−−−−−−→C(H•(Fn∆), Y ) ∼=G(Y )n .

By the way the mapsψn were chosen, the mapsΨn together constitute a
map of spectraΨY : Hom(X,Y ) −→ G(Y ), natural in theC-objectY . For
fibrant objectsY , ΨY is a level equivalence, hence a stable equivalence, of
spectra by Lemma 6.3 (d) sinceψn is a level equivalence between cosim-
plicial frames.

Now letA be a spectrum. If we compose the adjointH(Hom(X,X ∧
A)) −→ X ∧ A of the mapΨX∧A : Hom(X,X ∧ A) −→ G(X ∧ A)
withH(A) −→ H(Hom(X,X ∧A)) coming from the adjunction unit, we
obtain a natural transformationΦA : H(A) −→ X ∧ A between the left
Quillen functors. The transformationΦ induces a natural transformation
LΦ : LH −→ X ∧L− between the total left derived functors. For anyY in
Ho(C) the map(LΦA)∗ : [X ∧L A, Y ]Ho(C) −→ [LH(A), Y ]Ho(C) is iso-
morphic to the bijection(RΨY )∗ : [A,RHom(X,Y )]Ho(D) −→
[A,RG(Y )]Ho(D). HenceLΦA is an isomorphism in the homotopy cate-
gory ofC and so the mapΦA is a weak equivalence inC for every cofibrant
spectrumA. ��
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