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Abstract We construct Quillen equivalences between the model categories
of monoids (rings), modules and algebras over two Quillen equivalent model
categories under certain conditions. This is a continuation of our earlier
work where we established model categories of monoids, modules and al-
gebras [SS00]. As an application we extend the Dold-Kan equivalence to
show that the model categories of simplicial rings, modules and algebras are
Quillen equivalent to the associated model categories of connected differen-
tial graded rings, modules and algebras. We also show that our classification
results from [SS03] concerning stable model categories translate to any one
of the known symmetric monoidal model categories of spectra.
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1 Introduction

This paper is a sequel to [SS00] where we studied sufficient conditions for extend-
ing Quillen model category structures to the associated categories of monoids
(rings), modules and algebras over a monoidal model category. Here we consider
functors between such categories. We give sufficient conditions for extending
Quillen equivalences of two monoidal model categories to Quillen equivalences
on the associated categories of monoids, modules and algebras. This is relatively
easy when the initial Quillen equivalence is via an adjoint pair of functors which
induce adjoint functors on the categories of monoids; see for example [MMSS,
§13, 16] and [Sch01, 5.1]. We refer to this situation as a strong monoidal Quillen
equivalence, see Definition 3.6.

However, in the important motivating example of chain complexes and sim-
plicial abelian groups, only something weaker holds: the right adjoint has a
monoidal structure, but the left adjoint only has a lax comonoidal (also referred
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to as op-lax monoidal) structure which is a weak equivalence on cofibrant ob-
jects. We refer to this situation as a weak monoidal Quillen equivalence. Our
general result about monoidal equivalences, Theorem 3.12, works under this
weaker assumption. Also, in Proposition 3.16 we give a sufficient criterion for
showing that an adjoint pair is a weak monoidal Quillen equivalence.

Our motivating example is the Dold-Kan equivalence of chain complexes and
simplicial abelian groups. The normalization functor N : sAb −→ ch+ is
monoidal with respect to the graded tensor product of chains, the levelwise
tensor product of simplicial abelian groups and the transformation known as
the shuffle map; the inverse equivalence Γ: ch+ −→ sAb also has a monoidal
structure (coming from the Alexander-Whitney map).

The natural isomorphism NΓ ∼= Idch+ is monoidal with respect to the shuffle
and Alexander-Whitney maps. This implies that the algebra valued functor Γ
embeds connective differential graded rings as a full, reflexive subcategory of
the category of simplicial rings, see Proposition 2.13. However, the other nat-
ural isomorphism ΓN ∼= IdsAb cannot be chosen in a monoidal fashion. Hence
these functors do not induce inverse, or even adjoint functors on the categories
of algebras. One of the main points of this paper is to show that nevertheless,
the homotopy categories of simplicial rings and connective differential graded
rings are equivalent, via a Quillen equivalence on the level of model categories.
This Quillen equivalence should be well known but does not seem to be in the
literature. A similar equivalence, between reduced rational simplicial Lie alge-
bras and reduced rational differential graded Lie algebras, was part of Quillen’s
work on rational homotopy theory [Qui69, I.4] which originally motivated the
definition of model categories.

In the following theorem we use the word connective for non-negatively graded
or more precisely N-graded objects such as chain complexes or algebras.

Theorem 1.1 (1) For a connective differential graded ring R, there is a
Quillen equivalence between the categories of connective R-modules and
simplicial modules over the simplicial ring ΓR,

Mod-R 'Q Mod-ΓR .

(2) For a simplicial ring A there is a Quillen equivalence between the cate-
gories of connective differential graded NA-modules and simplicial mod-
ules over A,

Mod-NA 'Q Mod-A .
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(3) For a commutative ring k , there is a Quillen equivalence between the
categories of connective differential graded k -algebras and simplicial k -
algebras,

DGAk 'Q k-Alg .

(4) For A a simplicial commutative ring, there is a Quillen equivalence be-
tween the categories of connective differential graded NA-algebras and
simplicial A-algebras,

NA-Alg 'Q A-Alg .

The special case for k = Z in part (3) of the previous theorem in particular
says that the model categories of connective differential graded rings and sim-
plicial rings are Quillen equivalent. Part (3) is a special case of part (4) for A
a constant commutative simplicial ring. The proof of Theorem 1.1 is an ap-
plication of the more general Theorem 3.12. Parts (2) and (3) of Theorem 1.1
are established in Section 4.2, part (1) is shown in Section 4.3, and part (4) is
completed in 4.4.

In part (1) of Theorem 1.1, the right adjoint of the Quillen equivalence is
induced by the functor Γ from connective chain complexes to simplicial abelian
groups which is inverse to normalized chain complex functor N . However,
the left adjoint is in general not given by the normalized chain complex on
underlying simplicial abelian groups. In parts (2) to (4), the right adjoint of
the Quillen equivalence is always induced by the normalized chain complex
functor. However, the left adjoint is in general not given by the functor Γ on
underlying chain complexes. We discuss the various left adjoints in Section 3.3.

Notice that we do not compare the categories of commutative simplicial rings
and commutative differential graded rings. The normalization functor is sym-
metric monoidal with respect to the shuffle map. Hence it takes commutative
simplicial rings to commutative (in the graded sense) differential graded rings.
But the Alexander-Whitney map is not symmetric, and so Γ does not induce a
functor backwards. In characteristic zero, i.e., for algebras k over the rational
numbers, there is a model structure on commutative differential graded rings
with underlying fibrations and trivial fibrations [BG76, St]. Moreover, the nor-
malized chain complex functor is then the right adjoint of a Quillen equivalence
between commutative simplicial k -algebras and connective differential graded
k -algebras; indeed, as Quillen indicates on p. 223 of [Qui69], a similar method
as for rational Lie algebras works for rational commutative algebras.
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Without a characteristic zero assumption, not every commutative differential
graded ring is quasi-isomorphic to the normalization of a commutative simpli-
cial ring: if A is a commutative simplicial ring, then every element x of odd
degree in the homology algebra H∗(NA) satisfies x2 = 0; but in a general com-
mutative differential graded algebra we can only expect the relation 2 · x2 = 0.
More generally, the homology algebra H∗(NA), for A a commutative simpli-
cial ring, has divided power [Ca54] and other operations [Dw80] which need
not be supported by a general commutative differential graded algebra. More-
over, in general the forgetful functor from differential graded algebras to chain
complexes does not create a model structure and there is no homotopically
meaningful way to go from differential graded to simplicial algebras in a way
that preserves commutativity. While the normalization functor on commutative
algebras still has a left adjoint, it is not clear if that adjoint preserves enough
weak equivalences and whether it admits a derived functor.

In arbitrary characteristic, one should consider the categories of E∞ -algebras
instead of the commutative algebras. Mandell [Man, 1.2] establishes a Quillen
equivalence, in any characteristic, between E∞ -simplicial algebras and connec-
tive E∞ -differential graded algebras. The symmetry properties of the Dold-Kan
equivalence were also studied by Richter [Ri03]; she has shown that for every
differential graded algebra R which is commutative (in the graded sense), the
simplicial ring ΓA admits a natural E∞ -multiplication.

One of the reasons we became interested in generalizing the Dold-Kan equiv-
alence is because it is the basis for one out of the four steps of a zig-zag of
weak monoidal Quillen equivalences between HZ-modules, and Z-graded chain
complexes; see [S]. Theorem 3.12 then applies to each of these four steps to
produce Quillen equivalences between HZ-algebras and Z-graded differential
graded algebras and between the associated module categories [S, 1.1]. These
equivalences then provide an algebraic model for any rational stable model cat-
egory with a set of small generators. These rational algebraic models, [S, 1.2],
are really unfinished business from [SS03] and even appeared in various preprint
versions. These models are used as stepping stones in [Sh02] and [GS] to form
explicit, small algebraic models for the categories of rational T n -equivariant
spectra for T n the n-dimensional torus.

Another motivation for this general approach to monoidal Quillen equivalences
is the extension of our work in [SS03] where we characterize stable model cat-
egories with a set of generators as those model categories which are Quillen
equivalent to modules over a symmetric ring spectrum with many objects (SpΣ -
category). Here we show this characterization can be translated to any of
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the other symmetric monoidal categories of spectra. Quillen equivalences of
monoids, modules and algebras for these categories of spectra were consid-
ered in [MMSS] and [Sch01], but ring spectra with many objects (or enriched
categories) were not considered. Using the Quillen equivalences between mod-
ules over ring spectra with many objects (or enriched categories) over the other
known highly structured categories of spectra established in Section 7, the char-
acterization of [SS03, Thm 3.3.3] can be translated to any other setting:

Corollary 1.2 Let C be any of the monoidal model categories of symmet-
ric spectra [HSS, MMSS] (over simplicial sets or topological spaces), orthog-
onal spectra [MMSS], W -spaces [MMSS], simplicial functors [Lyd98] or S -
modules [EKMM]. Then any cofibrantly generated, proper, simplicial, stable
model category with a set of small generators is Quillen equivalent to modules
over a C -category with one object for each generator.

Organization In Section 2 we motivate our general results by considering
the special case of chain complexes and simplicial abelian groups. We then
turn to the general case and state sufficient conditions for extending Quillen
equivalences to monoids, modules and algebras in Theorem 3.12. Section 3.4
gives a criterion for a Quillen functor pair to be weakly monoidal: a sufficient
condition is that one of the unit objects detects weak equivalences. In Sec-
tion 4 we return to chain complexes and simplicial abelian groups and deduce
Theorem 1.1 from the general result. Section 5 contains the proof of the main
theorem and the proof of the criterion for a Quillen functor pair to be weakly
monoidal. In Section 6 we consider rings with many objects (enriched cate-
gories) and their modules. In Theorem 6.5 we extend the Quillen equivalences
to modules over these enriched categories. In Section 7 we show that these gen-
eral statements apply to the various symmetric monoidal categories of spectra
and deduce Corollary 1.2. Throughout this paper, modules over a ring, algebra,
category, etc, are always right modules.

Acknowledgments We would like to thank Mike Mandell for several helpful
conversations. The second author was partially supported by an NSF Grant.

2 Chain complexes and simplicial abelian groups

As motivation for our general result, in this section we begin the comparison
of the categories of differential graded rings and simplicial rings. We recall
the normalized chain complex functor N , its inverse Γ and the shuffle and
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Alexander-Whitney maps. We then consider the monoidal properties of the
adjunction unit η : Id −→ ΓN and counit ε : NΓ −→ Id. As mentioned in the
introduction, ε is monoidally better behaved than η . This motivates developing
our general result in Section 3 which does not require monoidal adjunctions. In
Section 4 we then revisit this specific example and prove Theorem 1.1.

2.1 Normalized chain complexes

The (ordinary) chain complex CA of a simplicial abelian group A is defined by
(CA)n = An with differential the alternating sum of the face maps,

d =
n∑
i=0

(−1)idi : (CA)n −→ (CA)n−1 .

The chain complex CA has a natural subcomplex DA, the complex of de-
generate simplices; by definition, (DA)n is the subgroup of An generated by
all degenerate simplices. The normalized chain complex NA is the quotient
complex of CA by the degenerate simplices,

NA = CA/DA . (2.1)

The degenerate complex DA is acyclic, so the projection CA −→ NA is a
quasi-isomorphism.

The complex of degenerate simplices has a natural complement, sometimes
called the Moore complex. The n-th chain group of this subcomplex is the
intersection of the kernels of all face maps, except the 0th one, and the differen-
tial in the subcomplex is thus given by the remaining face map d0 . The chain
complex CA is the internal direct sum of the degeneracy complex DA and the
Moore complex. In particular, the Moore subcomplex is naturally isomorphic
to the normalized chain complex NA; in this paper, we do not use the Moore
complex.

The normalization functor

N : sAb −→ ch+

from simplicial abelian groups to non-negatively graded chain complexes is an
equivalence of categories [Do58, Thm. 1.9]. The value of the inverse Γ: ch+ −→
sAb on a complex C can be defined by

(ΓC)n = ch+(N∆n, C) , (2.2)

where N∆n is short for the normalized chain complex of the simplicial abelian
group freely generated by the standard n-simplex. The simplicial structure
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maps in ΓC are induced from the cosimplicial structure of ∆n as n varies
through the simplicial category ∆. A natural isomorphism

ηA : A −→ ΓNA

is defined in simplicial dimension n by

An 3 a 7−→ (Nā : N∆n −→ NA) ∈ (ΓNA)n

where ā : ∆n −→ A is the unique morphism of simplicial sets which sends
the generating n-simplex of ∆n to a ∈ An . The other natural isomorphism
εC : NΓC −→ C is uniquely determined by the property

Γ(εC) = η−1
ΓC : ΓNΓC −→ ΓC .

2.2 Tensor products

The tensor product of two connective chain complexes C and D is defined by

(C ⊗D)n =
⊕
p+q=n

Cp ⊗Dq (2.3)

with differential given on homogeneous elements by

d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy .

The tensor product of simplicial abelian groups is defined dimensionwise.

Both tensor products are symmetric monoidal. The respective unit object is
the free abelian group of rank one, viewed either as a complex concentrated in
dimension zero or a constant simplicial abelian group. The associativity and
unit isomorphisms are obvious enough that we do not specify them, similarly the
commutativity isomorphism for simplicial abelian groups. The commutativity
isomorphism for complexes involves a sign, i.e.,

τC,D : C ⊗D −→ D ⊗ C

is given on homogeneous elements by τ(x⊗ y) = (−1)|x||y|y ⊗ x.

The unit objects are preserved under the normalization functor and its inverse.
However, the two tensor products for chain complexes and simplicial abelian
groups are different in an essential way, i.e., the equivalence of categories given
by normalization does not take one tensor product to the other. Another way of
saying this is that if we use the normalization functor and its inverse to transport
the tensor product of simplicial abelian groups to the category of connective
chain complexes, we obtain a second monoidal product (sometimes called the
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shuffle product of complexes) which is non-isomorphic, and significantly bigger
than, the tensor product (2.3). Another difference is that the tensor product
(2.3) makes perfect sense for Z-graded chain complexes, whereas the shuffle
product cannot be extended to a monoidal structure on Z-graded chain com-
plexes in any natural way. The difference between these two tensor products is
responsible for the fact that the categories of simplicial rings and of connective
differential graded rings are not equivalent.

2.3 The shuffle and Alexander-Whitney maps

Even though the tensor products of chain complexes and simplicial modules
do not coincide under normalization, they can be related in various ways. The
shuffle map

∇ : CA⊗ CB −→ C(A⊗B) , (2.4)

was introduced by Eilenberg and Mac Lane [EM53, (5.3)], see also [ML63, VIII
8.8] or [May67, 29.7]. For simplicial abelian groups A and B and simplices
a ∈ Ap and b ∈ Bq , the image ∇(a⊗ b) ∈ Cp+q(A⊗B) = Ap+q ⊗Bp+q is given
by

∇(a⊗ b) =
∑
(µ,ν)

sign(µ, ν) · sνa⊗ sµb ;

here the sum is taken over all (p, q)-shuffles, i.e., permutations of the set
{0, . . . , p+q−1} which leave the first p elements and the last q elements in their
natural order. Such a (p, q)-shuffle is of the form (µ, ν) = (µ1, . . . , µp, ν1, . . . , νq)
with µ1 < µ2 < · · · < µp and ν1 < · · · < νq , and the associated degeneracy
operators are given by

sµb = sµp · · · sµ1b respectively sνa = sνq · · · sν1a .

The shuffle map is a lax monoidal transformation, i.e., it is appropriately unital
and associative, see [EM53, Thm. 5.2] or [May67, 29.9]. The unit map is the
unique chain map η : Z[0] −→ C(Z) which is the identity in dimension 0.

The Alexander-Whitney map [ML63, VIII 8.5], [May67, 29.7]

AW : C(A⊗B) −→ CA⊗ CB (2.5)

goes in the direction opposite to the shuffle map; it is defined for a tensor
product of n-simplices a ∈ An and b ∈ Bn by

AW (a⊗ b) =
⊕
p+q=n

d̃pa⊗ dq0b .
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Here the ‘front face’ d̃p : Ap+q −→ Ap and the ‘back face’ dq0 : Bp+q −→ Bq
are induced by the injective monotone maps δ̃p : [p] −→ [p+ q] and δq0 : [q] −→
[p + q] defined by δ̃p(i) = i and δq0(i) = p + i. The Alexander-Whitney map
is a lax comonoidal transformation, (also referred to as an op-lax monoidal
transformation) i.e., it is appropriately unital and associative.

Both the shuffle and the Alexander-Whitney map preserve the subcomplexes
of degenerate simplices, compare [EM53, Lemma 5.3] or [May67, 29.8, 29.9].
Hence both maps factor over normalized chain complexes and induce maps

∇ : NA⊗NB −→ N(A⊗B) and AW : N(A⊗B) −→ NA⊗NB (2.6)

for which we use the same names. These restricted maps are again lax monoidal,
respectively lax comonoidal, and the restricted unit maps are now isomorphisms
Z[0] ∼= N(Z).

Moreover, the composite map AW ◦ ∇ : CA⊗ CB −→ CA⊗ CB differs from
the identity only by degenerate simplices. Hence on the level of normalized
complexes, the composite

NA⊗NB ∇−→ N(A⊗B) AW−−→ NA⊗NB (2.7)

is the identity transformation. The composite of shuffle and Alexander-Whitney
maps in the other order are naturally chain homotopic to the identity trans-
formation. In particular, the shuffle map (2.4), the Alexander Whitney map
(2.5) and their normalized versions (2.6) are all quasi-isomorphisms of chain
complexes.

The shuffle map is also symmetric in the sense that for all simplicial abelian
groups A and B , the following square commutes

CA⊗ CB
∇

��

τ // CB ⊗CA
∇

��
C(A⊗B)

C(τ)
// C(B ⊗A)

where τ denotes the symmetry isomorphism of the tensor products of either
simplicial abelian groups or chain complexes. The normalized version (2.6) of
the shuffle map is symmetric as well. However, the Alexander-Whitney map is
not symmetric, nor is its normalized version.

We can turn the comonoidal structure on the normalization functor given by the
Alexander-Whitney map (2.5) into a monoidal structure on the adjoint-inverse
functor Γ: we define

ϕC,D : ΓC ⊗ ΓD −→ Γ(C ⊗D) (2.8)
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as the composite

ΓC ⊗ ΓD
ηΓC⊗ΓD−−−−−→ ΓN (ΓC ⊗ ΓD)

Γ(AWΓC,ΓD)−−−−−−−−−→

Γ(N(ΓC)⊗N(ΓD))
Γ(εC⊗εD)−−−−−−→ Γ(C ⊗D) .

The normalized Alexander-Whitney map (2.6) is surjective (it is split by the
normalized shuffle map); since the unit and counit of the (N,Γ)-adjunction are
isomorphisms, the monoidal map (2.8) is also a split surjection. The functor
Γ is not lax symmetric monoidal because the Alexander-Whitney map is not
symmetric.

So Γ induces a functor Γ: DGR −→ sR on the associated categories of
monoids: given a differential graded ring R with product µR then ΓR is a
simplicial ring with product

ΓR⊗ ΓR
ϕR,R−−−→ Γ(R⊗R)

Γ(µR)−−−−→ ΓR . (2.9)

If we expand all the definitions, then the multiplication in ΓR comes out as
follows: the product of two n-simplices x, y : N∆n −→ R of ΓR is the compo-
sition

N∆n N(diag)−−−−−→ N(∆n×∆n)
AW∆n,∆n−−−−−−→

N∆n ⊗N∆n x⊗y−−→ R⊗R µR−−→ R .

Example 2.10 To give an idea of what the multiplication in ΓR looks like, we
calculate an explicit formula in the lowest dimension where something happens.
The normalized chain complex of the simplicial 1-simplex ∆1 has as basis the
cosets of the non-degenerate 1-simplex ι ∈ ∆1

1 and the two vertices 0 = d1ι and
1 = d0ι; the differential in N∆1 is determined by d[ι] = [1]− [0].

So for every 1-chain r ∈ R1 of a differential graded ring R we can define a
chain map κr : N∆1 −→ R by setting

(κr)[ι] = r , (κr)[0] = 0 and (κr)[1] = dr .

This defines a monomorphism κ : R1 −→ ch+(N∆1, R) = (ΓR)1 .

The composite map

N∆1 N(diag)−−−−−→ N(∆1 ×∆1)
AW∆1,∆1

−−−−−−→ N∆1 ⊗N∆1

is given by

[ι] 7−→ [0]⊗ ι ⊕ ι⊗ [1]
[0] 7−→ [0]⊗ [0] and [1] 7−→ [1]⊗ [1] .
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Hence we have

(κr · κs)[ι] = (κr)[0] · (κs)[ι] + (κr)[ι] · (κs)[1] = r · ds ,

and similarly (κr ·κs)[0] = 0 and (κr ·κs)[1] = dr ·ds. In other words, we have
shown the formula

κr · κs = κ(r · ds)

as 1-simplices of ΓR, for every pair of 1-chains r, s ∈ R1 . This formula already
indicates that a simplicial ring of the form ΓR is usually not commutative, even
if R is commutative in the graded sense.

2.4 Monoidal properties of ε : NΓ −→ Id and η : Id −→ NΓ

The normalization functor is lax symmetric monoidal with structure map in-
duced by the shuffle map (2.6). Thus, it also induces a functor on the categories
of monoids N : sR −→ DGR. We shall see in the next proposition that N is
left inverse to Γ on the level of rings; however, N is not right inverse to Γ on
the point-set level, but only on the level of homotopy categories, see Remark
2.14.

Lemma 2.11 The adjunction counit ε : NΓ −→ Idch+ is a monoidal trans-
formation with respect to the composite monoidal structure on NΓ. More
precisely, for every pair of connective chain complexes C and D , the following
diagram commutes

NΓC ⊗NΓD
∇ΓC,ΓD //

εC⊗εD
,,ZZZZZZ

ZZZ
ZZZ

ZZZ
ZZZ

ZZZ
ZZZ

ZZZ
ZZZ

ZZZ
ZZZ

ZZZ
Z

N(ΓC ⊗ ΓD)
N(ϕC,D)

// NΓ(C ⊗D)

εC⊗D
��

C ⊗D

(2.12)

Proof The proof is a diagram chase, the main ingredient of which is the fact
that the composite (2.7) of the normalized shuffle and Alexander-Whitney maps
is the identity. We start with the identity

∇ΓC,ΓD ◦ εNΓC⊗NΓD = εN(ΓC⊗ΓD) ◦ NΓ(∇ΓC,ΓD)

as morphisms from NΓ(NΓC ⊗ NΓD) to N(ΓC ⊗ ΓD), which just says that
ε is natural. The map εN(ΓC⊗ΓD) is inverse to the map N(ηΓC⊗ΓD) : N(ΓC ⊗
ΓD) −→ NΓN(ΓC ⊗ ΓD), so we can rewrite the previous identity as

N(ηΓC⊗ΓD) ◦ ∇ΓC,ΓD ◦ εNΓC⊗NΓD = NΓ(∇ΓC,ΓD)
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as morphisms from NΓ(NΓC ⊗NΓD) to NΓN(ΓC ⊗ ΓD). Now we compose
with the map NΓ(AWΓC,ΓD) : NΓN(ΓC ⊗ ΓD) −→ NΓ(NΓC ⊗ NΓD) and
exploit that the Alexander-Whitney map is left inverse to the shuffle map (see
(2.7)); this yields

NΓ(AWΓC,ΓD) ◦ N(ηΓC⊗ΓD) ◦ ∇ΓC,ΓD ◦ εNΓC⊗NΓD

= NΓ(AWΓC,ΓD) ◦ NΓ(∇ΓC,ΓD) = IdNΓ(NΓC⊗NΓD) .

Composing with NΓ(εC ⊗ εD) : NΓ(NΓC ⊗ NΓD) −→ NΓ(C ⊗D) and sub-
stituting the definition (2.8) of the monoidal transformation ϕ, we get

NΓ(εC ⊗ εD) =
NΓ(εC ⊗ εD) ◦ NΓ(AWΓC,ΓD) ◦ N(ηΓC⊗ΓD) ◦ ∇ΓC,ΓD ◦ εNΓC⊗NΓD

= N(ϕC,D) ◦ ∇ΓC,ΓD ◦ εNΓC⊗NΓD .

Since the counit ε is invertible, we can rewrite this as

εC⊗D ◦N(ϕC,D) ◦ ∇ΓC,ΓD = εC⊗D ◦NΓ(εC ⊗ εD) ◦ ε−1
NΓC⊗NΓD = εC ⊗ εD

(the second equation is the naturality of ε). This final identity is saying that
the transformation ε : NΓ −→ Id is monoidal.

Proposition 2.13 The functor

Γ : DGR −→ sR

which sends a connective differential graded ring R to the simplicial abelian
group ΓR with multiplication (2.9) is full and faithful. The composite endo-
functor NΓ of the category of differential graded rings is naturally isomorphic
to the identity functor.

Proof The algebra valued functor Γ is induced from an equivalence between
the underlying categories of simplicial abelian groups and chain complexes. So
in order to show that Γ is fully faithful we have to prove that for every morphism
f : ΓR −→ ΓS of simplicial rings, the unique morphism g : R −→ S of chain
complexes which satisfies f = Γ(g) is multiplicative and preserves the units.

The non-trivial part is to show that if f : ΓR −→ ΓS is multiplicative, then the
unique preimage g : R −→ S is also multiplicative. Since Γ is an equivalence
on underlying categories, in order to show the relation µS ◦ (g ⊗ g) = g ◦ µR as
chain maps from R⊗R to S , we may as well show the relation Γ(µS ◦(g⊗g)) =
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Γ(g ◦ µR) as maps of simplicial abelian groups from Γ(R ⊗ R) to ΓS . In the
diagram

ΓR⊗ ΓR
ϕR,R //

Γ(g)⊗Γ(g)

��

Γ(R⊗R)
Γ(µR) //

Γ(g⊗g)
��

ΓR

Γ(g)

��
ΓS ⊗ ΓS ϕS,S

// Γ(S ⊗ S)
Γ(µS )

// ΓS

the left square commutes since ϕ is natural, and the composite square com-
mutes since Γ(g) = f is multiplicative. Since the upper left morphism ϕR,R is
surjective, the right square commutes as well.

The natural isomorphism NΓ ∼= Id is given by the counit ε : NΓ −→ Id of the
adjunction-equivalence between N and Γ. This counit is an isomorphism, and
it is monoidal by Lemma 2.11; this implies that on ring objects, the map ε is
multiplicative; that ε is unital is even easier, so ε is a natural isomorphism of
connective differential graded rings when evaluated on such objects.

Remark 2.14 The unit η : Id −→ ΓN of the adjunction-equivalence between
N and Γ is not monoidal. More precisely, the composite

A⊗B ηA⊗ηB−−−−→ Γ(NA)⊗ Γ(NB)
ϕNA,NB−−−−−→ (2.15)

Γ(NA⊗NB)
Γ(∇A,B)−−−−−→ ΓN(A⊗B)

need not in general be equal to the map ηA⊗B : A⊗B −→ ΓN(A⊗B). (Con-
sider for example A = B = Z̃(∆[1]/∂∆[1]) = Γ(Z[1]). In dimension one the
composite (2.15) is zero since it factors through Γ(Z[2]). But in dimension
one, ηA⊗B is an isomorphism between free abelian groups of rank two.) The
situation is worse than for the counit ε (compare Lemma 2.11) because the com-
posite of normalized shuffle and Alexander-Whitney map in the other order is
only homotopic, but not equal to, the identity. Correspondingly, the composite
(2.15) is homotopic, but not necessarily equal to, the map ηA⊗B .

Nevertheless, the composite ΓN is connected by a chain of two natural weak
equivalences to the identity functor on the category of simplicial rings. In
order to see this though, we have to refer to the Quillen equivalence of Theo-
rem 1.1 (3). When considered as a ring valued functor, N : sR −→ DGR has
a left adjoint Lmon : DGR −→ sR, see Section 3.3, which is not given by Γ on
underlying chain complexes. Moreover, the adjoint pair N and Lmon form a
Quillen equivalence (Theorem 1.1 (3) for k = Z).

Given a simplicial ring A, we choose a cofibrant replacement

q : (NA)c ∼−→ NA

Algebraic & Geometric Topology, Volume 3 (2003)



300 Stefan Schwede and Brooke Shipley

of NA in the model category of connective differential graded rings (see Section
4.1). The model structure of differential graded rings is cofibrantly generated,
so the small object argument provides a functorial choice of such a cofibrant
replacement.

Since N and Lmon are a Quillen equivalence, the adjoint morphism

q̃ : Lmon((NA)c) −→ A

is a weak equivalence of simplicial rings. By Lemma 2.11, the adjunction counit
εNA : NΓNA −→ NA is an isomorphism of differential graded rings. So we
can form the composite multiplicative quasi-isomorphism ε−1

NA ◦ q : (NA)c −→
NΓNA and take its monoid-valued adjoint

Lmon((NA)c) −→ ΓNA . (2.16)

Since we have a Quillen equivalence, (2.16) is also a weak equivalence of sim-
plicial rings. Altogether we obtain a chain of natural weak equivalences of
simplicial rings

ΓNA ∼←−− Lmon((NA)c) ∼−−→ A .

It is tempting to add the adjunction unit ηA : ΓNA −→ A to directly connect
the two simplicial rings; but ηA is not in general a multiplicative map, and the
resulting triangle involving ΓNA,Lmon((NA)c) and A need not commute !

3 Weak monoidal equivalences

In this section we first discuss the definitions of monoidal structures and their
interactions with model category structures. Section 3.1 recalls the notion of a
monoidal model category which is a model category with a compatible monoidal
product. In Section 3.2 we define the notions of weak and strong monoidal
Quillen equivalences between two monoidal model categories. A weak monoidal
Quillen equivalence provides the basic properties necessary for lifting the Quillen
equivalence to categories of monoids and modules. In a weak monoidal Quillen
equivalence the right adjoint is assumed to be lax monoidal and hence induces
functors on the associated categories of monoids and modules. This is not
assumed for the left adjoint, though. Section 3.3 discusses the induced right
adjoints and the relationship between the various context-dependent left ad-
joints. With this background we can then state our main result, Theorem 3.12,
about Quillen equivalences on categories of monoids and modules. In Sec-
tion 3.4 we discuss a criterion for establishing when a Quillen adjoint pair is a
weak monoidal Quillen pair. The general criterion is given in Proposition 3.16;
a variant for stable model categories appears in Proposition 3.17.
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3.1 Monoidal model categories

We consider a closed symmetric monoidal category [Bor94, 6.1] C and we denote
the monoidal product by ⊗ (sometimes by ∧), the unit object by IC and the
internal function objects by HomC(−,−). The internal function objects are
almost never used explicitly (but see the proof of Proposition 3.16). But having
a right adjoint makes sure that the monoidal product preserves colimits in both
variables.

Definition 3.1 A model category C is a monoidal model category if it has a
closed symmetric monoidal structure with product ⊗ and unit object I and
satisfies the following two axioms.

Pushout product axiom Let A −→ B and K −→ L be cofibrations in C .
Then the map

A⊗ L qA⊗K B ⊗K −→ B ⊗ L
is also a cofibration. If in addition one of the former maps is a weak equivalence,
so is the latter map.

Unit axiom Let q : Ic ∼−→ I be a cofibrant replacement of the unit object.
Then for every cofibrant object A, the morphism q⊗ Id: Ic⊗A −→ I⊗A ∼= A
is a weak equivalence.

The previous definition is essentially the same as that of a symmetric monoidal
model category in [Hov99, 4.2.6]; the only difference is that a model category
in Hovey’s sense is also equipped with a choice of cofibrant replacement func-
tor, and Hovey requires the unit axiom for the particular functorial cofibrant
replacement of the unit object. But given the pushout product axiom, then the
unit axiom holds for one choice of cofibrant replacement if and only if it holds
for any other choice. Of course the unit axiom is redundant if the unit object
is cofibrant, as we often assume in this paper. The unit axiom did not occur
in the definition of a monoidal model category in [SS00], since it did not play a
role in the arguments of that paper.

In this paper we are interested in model categories of monoids [ML71, VII 3]
and modules (i.e., objects with an action by a monoid, see [ML71, VII 4]) in
some underlying monoidal model category. In the cases we study the model
structure is always transferred or lifted from the underlying category to the
category of more structured objects as in the following definition.

Definition 3.2 Consider a functor R : T −→ C to a model category C with
a left adjoint L : C −→ T . We call an object of T a cell object if it can be
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obtained from the initial object as a (possibly transfinite) composition [Hov99,
2.1.1] of pushouts along morphisms of the form Lf , for f a cofibration in C .
We say that the functor R creates a model structure if

• the category T supports a model structure (necessarily unique) in which
a morphism f : X −→ Y is a weak equivalence, respectively fibration, if
and only the morphism Rf is a weak equivalence, respectively fibration,
in C , and

• every cofibrant object in T is a retract of a cell object.

The typical example of Definition 3.2 occurs when the model structure on C is
cofibrantly generated ([SS00, 2.2] or [Hov99, 2.1.17]) and then a lifting theorem
is used to lift the model structure to T along the adjoint functor pair. In [SS00,
4.1] we give sufficient conditions for ensuring that the forgetful functors to an
underlying monoidal model category C create model structures for monoids or
modules and algebras: it suffices that the model structure on C is cofibrantly
generated, that the objects of C are small relative to the whole category ([SS00,
§2] or [Hov99, 2.1.3]) and that the monoid axiom [SS00, 3.3] holds.

Another situation where the forgetful functor creates a model structure for the
category of monoids is when all objects in C are fibrant and when there exists
an ‘interval with coassociative, comultiplication’; for more details compare the
example involving chain complexes [SS00, 2.3 (2), Sec. 5] or more generally [BM,
Prop. 4.1].

3.2 Monoidal Quillen pairs

The main goal for this paper is to give conditions which show that a Quillen
equivalence between two monoidal model categories induces a Quillen equiva-
lence on the categories of monoids, modules and algebras. For this we have to
assume that the functors involved preserve the monoidal structure in some way.
We assume that the right adjoint is lax monoidal in the sense of the following
definition.

Definition 3.3 A lax monoidal functor between monoidal categories is a func-
tor R : C −→ D equipped with a morphism ν : ID −→ R(IC) and natural
morphisms

ϕX,Y : RX ∧RY −→ R(X ⊗ Y )

which are coherently associative and unital (see diagrams 6.27 and 6.28 of
[Bor94]). A lax monoidal functor is strong monoidal if the morphisms ν and
ϕX,Y are isomorphisms.

Algebraic & Geometric Topology, Volume 3 (2003)



Equivalences of monoidal model categories 303

Consider a lax monoidal functor R : C −→ D between monoidal categories,
with monoidal structure maps ν and ϕX,Y . If R has a left adjoint λ : D −→ C ,
we can consider the adjoint ν̃ : λ(ID) −→ IC of ν and the natural map

ϕ̃ : λ(A ∧B) −→ λA⊗ λB (3.4)

adjoint to the composite

A ∧B ηA∧ηB−−−−→ RλA ∧RλB ϕλA,λB−−−−→ R(λA⊗ λB) .

The map ϕ̃ can equivalently be defined as the composition

λ(A ∧B)
λ(ηA∧ηB)−−−−−−→ λ(RλA ∧RλB)

λ(ϕλA,λB )
−−−−−−−→ (3.5)

λR(λA⊗ λB)
ελA⊗λB−−−−−→ λA⊗ λB ;

here η and ε denote the unit respectively counit of the adjunction. With
respect to these maps, λ is a lax comonoidal functor (also referred to as an
op-lax monoidal functor). The map ϕ̃ need not be an isomorphism; in that
case λ does not have a monoidal structure, and so it does not pass to a functor
on the monoid and module categories.

Definition 3.6 A pair of adjoint functors

D
λ

// C
Roo

between model categories is a Quillen adjoint pair if the right adjoint R pre-
serves fibrations and trivial fibrations. A Quillen adjoint pair induces adjoint
total derived functors between the homotopy categories by [Qui67, I.4.5]. A
Quillen functor pair is a Quillen equivalence if the total derived functors are
adjoint equivalences of the homotopy categories.

A weak monoidal Quillen pair between monoidal model categories C and D
consists of a Quillen adjoint functor pair (λ : D // C : Roo ) with a lax monoidal
structure on the right adjoint

ϕX,Y : RX ∧RY −→ R(X ⊗ Y ) , ν : ID −→ R(IC)

such that the following two conditions hold:

(i) for all cofibrant objects A and B in D the comonoidal map (3.4)

ϕ̃ : λ(A ∧B) −→ λA⊗ λB

is a weak equivalence in C and
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(ii) for some (hence any) cofibrant replacement q : IcD
∼−→ ID of the unit object

in D , the composite map

λ(IcD)
λ(q)−−−→ λ(ID) ν̃−−→ IC

is a weak equivalence in C .

A strong monoidal Quillen pair is a weak monoidal Quillen pair for which the
comonoidal maps ϕ̃ and ν̃ are isomorphisms. Note that if ID is cofibrant and
λ is strong monoidal, then R is lax monoidal and the Quillen pair is a strong
monoidal Quillen pair.

A weak (respectively strong) monoidal Quillen pair is a weak monoidal Quillen
equivalence (respectively strong monoidal Quillen equivalence) if the underlying
Quillen pair is a Quillen equivalence.

Strong monoidal Quillen pairs are the same as monoidal Quillen adjunctions in
the sense of Hovey [Hov99, 4.2.16]. The weak monoidal Quillen pairs do not
occur in Hovey’s book.

3.3 Various left adjoints

As any lax monoidal functor, the right adjoint R : C −→ D of a weak monoidal
Quillen pair induces various functors on the categories of monoids and modules.
More precisely, for a monoid A in C with multiplication µ : A⊗A −→ A and
unit η : IC −→ A, the monoid structure on RA is given by the composite maps

RA ∧RA ϕA,A−−−−→ R(A⊗A)
R(µ)−−−→ RA and ID

ν−−→ R(IC)
R(η)−−−→ RA .

Similarly, for an A-module M with action morphism α : M ⊗ A −→ M , the
D-object RM becomes an RA-module via the composite morphism

RM ∧RA ϕM,A−−−−→ R(M ⊗A)
R(α)−−−→ RM .

In our context, R has a left adjoint λ : D −→ C . The left adjoint inherits an
‘adjoint’ comonoidal structure ϕ̃ : λ(A∧B) −→ λA⊗λB and ν̃ : λ(ID) −→ IC ,
see (3.4), and the pair is strong monoidal if ϕ̃ and ν̃ are isomorphisms. In that
case, the left adjoint becomes a strong monoidal functor via the inverses

ϕ̃−1 : λA⊗ λB −→ λ(A ∧B) and ν̃−1 : IC −→ λ(ID) .

Via these maps, λ then lifts to a functor on monoids and modules, and the lift
is again adjoint to the module- or algebra-valued version of R.
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However, we want to treat the more general situation of weak monoidal Quillen
pairs. In that case, the functors induced by R on modules and algebras still
have left adjoints. However, on underlying D-objects, these left adjoints are
not usually given by the original left adjoint λ. As far as R is concerned, we
allow ourselves the abuse of notation to use the same symbol for the original lax
monoidal functor R from C to D as well as for its structured versions. However,
for the left adjoints it seems more appropriate to use different symbols, which
we now introduce.

In our applications we always assume that the forgetful functor from C -monoids
to C creates a model structure. In particular, the category of C -algebras has
colimits and the forgetful functor has a left adjoint ‘free monoid’ (or ‘tensor
algebra’) functor [ML71, VII 3, Thm. 2]

TCX =
∐
n≥0

X⊗n = IC q X q (X ⊗X) q . . . ,

with multiplication given by juxtaposition, and similarly for TD . This implies
that the monoid-valued lift R : C-Monoid −→ D-Monoid again has a left
adjoint

Lmon : D-Monoid −→ C-Monoid .

Indeed, for a D-monoid B , the value of the left adjoint can be defined as the
coequalizer of the two C -monoid morphisms

TC (λ(TDB)) //// TC(λB) // LmonB

(where the forgetful functors are not displayed). One of the two maps is ob-
tained from the adjunction unit TDB −→ B by applying the the composite
functor TCλ; the other map is the unique C -monoid morphism which restricts
to the C -morphism

λ(TDB) ∼=
∐
n≥0

λ
(
B∧n

) qϕ̃−−−→
∐
n≥0

(λB)⊗n ∼= TC(λB) .

Since R preserves the underlying objects, the monoid left adjoint and the orig-
inal left adjoint are related via a natural isomorphism of functors from D to
monoids in C

Lmon ◦ TD ∼= TC ◦ λ . (3.7)

As in the above case of monoids, the module valued functor R : Mod-A −→
Mod-RA has a left adjoint

LA : Mod-RA −→ Mod-A
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as soon as free R-modules and coequalizers of R-modules exist. Since R pre-
serves the underlying objects, this module left adjoint and the original left
adjoint are related via a natural isomorphism of functors from D to A-modules

LA ◦ (− ∧RA) ∼= (−⊗A) ◦ λ ; (3.8)

here X ⊗ A is the free A-module generated by a C -object X , and similarly
Y ∧RA for a D-object Y .

Finally, for a monoid B in D , the lax monoidal functor R induces a functor
from the category of LmonB -modules to the category of B -modules; this is
really the composite functor

Mod-(LmonB) R−−→ Mod-R(LmonB)
η∗−−→Mod-B

where the second functor is restriction of scalars along the monoid homomor-
phism (the adjunction unit) η : B −→ R(LmonB). We denote by

LB : Mod-B −→ Mod-(LmonB) (3.9)

the left adjoint to the functor R : Mod-(LmonB) −→Mod-B . This left adjoint
factors as a composition

Mod-B
−⊗BR(LmonB)−−−−−−−−−−→ Mod-R(LmonB) LL

monB

−−−−−−→ Mod-(LmonB)

(the first functor is extension of scalars along B −→ R(LmonB)); the left adjoint
is related to the free module functors by a natural isomorphism

LB ◦ (− ∧B) ∼= (−⊗ LmonB) ◦ λ . (3.10)

We repeat that if the monoidal pair is strong monoidal, then left adjoints Lmon

and LB are given by the original left adjoint λ, which is then monoidal via
the inverse of ϕ̃. Moreover, the left adjoint LA : Mod-RA −→Mod-A is then
given by the formula

LA(M) = λ(M) ∧λ(RA) A ,

where A is a λ(RA)-module via the adjunction counit ε : λ(RA) −→ A. In
general however, λ does not pass to monoids and modules, and the difference
between λ and the structured adjoints Lmon , LA and LB is investigated in
Proposition 5.1 below.

We need just one more definition before stating our main theorem.

Definition 3.11 Let (C,⊗, IC) be a monoidal model category such that the
forgetful functors create model structures for modules over any monoid. We say

Algebraic & Geometric Topology, Volume 3 (2003)



Equivalences of monoidal model categories 307

that Quillen invariance holds for C if for every weak equivalence of C -monoids
f : R −→ S , restriction and extension of scalars along f induce a Quillen
equivalence between the respective module categories.

− ∧R S : Mod-(R) // Mod-S : f∗oo

A sufficient condition for Quillen invariance in C is that for every cofibrant right
R-module M the functor M ⊗R − takes weak equivalences of left R-modules
to weak equivalences in C (see for example [SS00, 4.3] or Theorem 6.1 (2)).

Theorem 3.12 Let R : C −→ D be the right adjoint of a weak monoidal
Quillen equivalence. Suppose that the unit objects in C and D are cofibrant.

(1) Consider a cofibrant monoid B in D such that the forgetful functors
create model structures for modules over B and modules over LmonB .
Then the adjoint functor pair

LB : Mod-B // Mod-(LmonB) : Roo

is a Quillen equivalence.

(2) Suppose that Quillen invariance holds in C and D . Then for any fibrant
monoid A in C such that the forgetful functors create model structures
for modules over A and modules over RA, the adjoint functor pair

LA : Mod-RA // Mod-A : R
oo

is a Quillen equivalence. If the right adjoint R preserves weak equiva-
lences between monoids and the forgetful functors create model structures
for modules over any monoid, then this holds for any monoid A in C .

(3) If the forgetful functors create model structures for monoids in C and D ,
then the adjoint functor pair

Lmon : D-Monoid // C-Monoid : R
oo

is a Quillen equivalence between the model categories of monoids.

The statements (1) and (2) for modules in the previous Theorem 3.12 generalize
to ‘rings with many objects’ or enriched categories, see Theorem 6.5. The proof
of Theorem 3.12 appears in Section 5.
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3.4 A Criterion for weak monoidal pairs

In this section we assume that λ and R form a Quillen adjoint functor pair
between two monoidal model categories (C,⊗, IC) and (D,∧, ID). We establish
a sufficient condition for when the Quillen pair is a weak monoidal Quillen pair:
if the unit object ID detects weak equivalences (see Definition 3.14), then the
lax comonoidal transformation (3.4)

ϕ̃ : λ(A ∧B) −→ λA⊗ λB .

is a weak equivalence on cofibrant objects.

To define what it means to detect weak equivalences, we use the notion of a
cosimplicial resolution which was introduced by Dwyer and Kan [DK80, 4.3]
as a device to provide homotopy meaningful mapping spaces. More recently,
(co-)simplicial resolutions have been called (co-)simplicial frames [Hov99, 5.2.7].
Cosimplicial objects in any model category admit the Reedy model structure in
which the weak equivalences are the cosimplicial maps which are levelwise weak
equivalences and the cofibrations are the Reedy cofibrations; the latter are a spe-
cial class of levelwise cofibrations defined with the use of ‘latching objects’. The
Reedy fibrations are defined by the right lifting property for Reedy trivial cofi-
brations or equivalently with the use of matching objects; see [Hov99, 5.2.5] for
details on the Reedy model structure. A cosimplicial resolution of an object A
of C is a cofibrant replacement A∗ −→ cA in the Reedy model structure of the
constant cosimplicial object cA with value A. In other words, a cosimplicial
resolution is a Reedy cofibrant cosimplicial object which is homotopically con-
stant in the sense that each cosimplicial structure map is a weak equivalence in
C . Cosimplicial resolutions always exist [DK80, 4.5] and are unique up to level
equivalence under A.

If A∗ is a cosimplicial object and Y is an object of C , then there is a simplicial
set map(A∗, Y ) of C -morphisms defined by

map(A∗, Y )n = C(An, Y ) .

If f : A∗ −→ B∗ is a level equivalence between Reedy cofibrant cosimplicial
objects and Y is a fibrant object, then the induced map of mapping spaces
map(f, Y ) : map(B∗, Y ) −→ map(A∗, Y ) is a weak equivalence [Hov99, 5.4.8].
Hence the homotopy type of the simplicial set map(A∗, Y ), for A∗ a cosim-
plicial resolution, depends only on the underlying object A0 of C . The path
components of the simplicial set map(A∗, Y ) are in natural bijection with the
set of homotopy classes of maps from A0 to Y [Hov99, 5.4.9],

π0 map(A∗, Y ) ∼= [A0, Y ]Ho(C) .
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Remark 3.13 The notion of a cosimplicial resolution is modeled on the ‘prod-
uct with simplices’. More precisely, in a simplicial model category C , we have
a pairing between objects of C and simplicial sets. So if we let n vary in the
simplicial category ∆, we get a cosimplicial object ∆n × A associated to ev-
ery object A of C . If A is cofibrant, then this cosimplicial object is Reedy
cofibrant and homotopically constant, i.e., a functorial cosimplicial resolution
of A. Moreover, the n-simplices of the simplicial set map(A,Y ) — which is
also part of the simplicial structure — are in natural bijection with the set of
morphisms from ∆n ×A to Y ,

map(A,Y )n = C(∆n ×A,Y ) .

So the mapping spaces with respect to the preferred resolution ∆∗×A coincide
with the usual simplicial function spaces [Qui67, II.1.3].

Definition 3.14 An object A of a model category C detects weak equivalences
if for some (hence any) cosimplicial frame A∗ of A the following condition holds:
a morphism f : Y −→ Z between fibrant objects is a weak equivalence if and
only if the map

map(A∗, f) : map(A∗, Y ) −→ map(A∗, Z)

is a weak equivalence of simplicial sets.

Example 3.15 Every one point space detects weak equivalences in the model
category of topological spaces with respect to weak homotopy equivalences. The
one point simplicial set detects weak equivalences of simplicial sets with respect
to weak homotopy equivalences. For a simplicial ring R, the free R-module of
rank one detects weak equivalences of simplicial R-modules.

Let A be a connective differential graded algebra. Then the free differen-
tial graded A-module of rank one detects weak equivalences of connective A-
modules. Indeed, a cosimplicial resolution of the free A-module of rank one is
given by N∆∗ ⊗ A, i.e., by tensoring A with the normalized chain complexes
of the standard simplices. With respect to this resolution the mapping space
into another connective A-module Y has the form

mapMod-A(N∆∗ ⊗A,Y ) ∼= mapch+(N∆∗, Y ) = ΓY .

A homomorphism of connective A-modules is a quasi-isomorphism if and only
if it becomes a weak equivalences of simplicial sets after applying the functor
Γ. Hence the free A-module of rank one detects weak equivalences, as claimed.

Now we formulate the precise criterion for a Quillen functor pair to be weakly
monoidal. The proof of this proposition is in Section 5.
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Proposition 3.16 Consider a Quillen functor pair (λ : D // C : Roo ) be-
tween monoidal model categories together with a lax monoidal structure on
the right adjoint R. Suppose further that

(1) for some (hence any) cofibrant replacement q : IcD −→ ID of the unit
object in D , the composite map

λ(IcD)
λ(q)−−−→ λ(ID) ν̃−−→ IC

is a weak equivalence in C , where the second map is adjoint to the
monoidal structure map ν : ID −→ R(IC);

(2) the unit object ID detects weak equivalences in D .

Then R and λ are a weak monoidal Quillen pair.

This criterion works well in unstable situations such as (non-negatively graded)
chain complexes and simplicial abelian groups. For the stable case, though,
this notion of detecting weak equivalences is often too strong. Thus, we say
an object A of a stable model category C stably detects weak equivalences if
f : Y −→ Z is a weak equivalence if and only if [A,Y ]Ho C

∗ −→ [A,Z]Ho C
∗ is an

isomorphism of the Z-graded abelian groups of morphisms in the triangulated
homotopy category Ho C . For example, a (weak) generator stably detects weak
equivalences by [SS03, 2.2.1]. The unstable notion above would correspond to
just considering ∗ ≥ 0.

Modifying the proof of Proposition 3.16 by using the graded morphisms in the
homotopy category instead of the mapping spaces introduced above proves the
following stable criterion.

Proposition 3.17 Consider a Quillen functor pair (λ : D // C : Roo ) be-
tween monoidal stable model categories together with a lax monoidal structure
on the right adjoint R. Suppose further that

(1) for some (hence any) cofibrant replacement q : IcD −→ ID of the unit
object in D , the composite map

λ(IcD)
λ(q)−−−→ λ(ID) ν̃−−→ IC

is a weak equivalence in C , where the second map is adjoint to the
monoidal structure map ν : ID −→ R(IC);

(2) the unit object ID stably detects weak equivalences in D .

Then R and λ are a weak monoidal Quillen pair.
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4 Chain complexes and simplicial abelian groups, re-
visited

Dold and Kan showed that the category of non-negatively graded chain com-
plexes is equivalent to the category of simplicial abelian groups, see for exam-
ple [Do58, Thm. 1.9]. The equivalence is given by the normalization functor
N : sAb −→ ch+ and its inverse Γ: ch+ −→ sAb. Because the two functors
are inverses to each other, they are also adjoint to each other on both sides.
Hence the normalized chain complex N and its inverse functor Γ give rise to
two different weak monoidal Quillen equivalences. Each choice of right adjoint
comes with a particular monoidal transformation, namely the shuffle map (for
N as the right adjoint, see Section 4.2) or the Alexander-Whitney map (for Γ
as the right adjoint, see Section 4.3).

In Section 4.1 we recall the supporting model category structures on chain
complexes, simplicial abelian groups and the associated categories of monoids
and modules. In Section 4.2, we show that Theorem 3.12 parts (2) and (3)
imply Theorem 1.1 parts (2) and (3) respectively. In Section 4.3, we show that
Theorem 3.12 part (2) implies Theorem 1.1 part (1). In Section 4.4 we then
use the fact that the shuffle map for N is lax symmetric monoidal to deduce
Theorem 1.1 part (4) from Theorem 3.12 part (3).

4.1 Model structures

Let k be a commutative ring. The category ch+
k of non-negatively graded

chain complexes of k -modules supports the projective model structure: weak
equivalences are the quasi-isomorphisms, fibrations are the chain maps which
are surjective in positive dimensions, and cofibrations are the monomorphisms
with dimensionwise projective cokernel. More details can be found in [DS95,
Sec. 7] or [Hov99, 2.3.11, 4.2.13] (the references in [Hov99] actually treat Z-
graded chain complexes, but the arguments for ch+ are similar; there is also
an injective model structure for Z-graded chain complexes with the same weak
equivalences, but we do not use this model structure).

The model category structure on simplicial k -modules has as weak equivalences
and fibrations the weak homotopy equivalences and Kan fibrations on under-
lying simplicial sets; the cofibrations are the retracts of free maps in the sense
of [Qui67, II.4.11 Rem. 4]. For more details see [Qui67, II.4, II.6].

The functor N is an inverse equivalence of categories, and it exactly matches
the notions of cofibrations, fibrations and weak equivalences in the two above
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model structures. So N and its inverse Γ can be viewed as Quillen equivalences
in two ways, with either functor playing the role of the left or the right adjoint.

Both model structures are compatible with the tensor products of Section 2.2
in the sense that they satisfy the pushout product axiom (compare [Hov99,
4.2.13]). A model category on simplicial rings with fibrations and weak equiv-
alences determined on the underlying simplicial abelian groups (which in turn
are determined by the underlying simplicial sets) was established by Quillen
in [Qui67, II.4, Theorem 4]. Similarly, there is a model structure on differential
graded rings with weak equivalences the quasi-isomorphisms and fibrations the
maps which are surjective in positive degrees; see [Jar97]. These model cat-
egory structures also follow from verifying the monoid axiom [SS00, Def. 3.3]
and using Theorem 4.1 of [SS00]; see also [SS00, Section 5].

4.2 A first weak monoidal Quillen equivalence

Let k be a commutative ring. We view the normalization functor

N : sMod-k −→ ch+
k

from simplicial k -modules to non-negatively graded chain complexes of k -
modules as the right adjoint and its inverse Γ (2.2) as the left adjoint.

We consider N as a lax monoidal functor via the shuffle map (2.6). The shuffle
map ∇ : NA ⊗ NB −→ N(A ⊗ B) is a chain homotopy equivalence for ev-
ery pair of simplicial k -modules, cofibrant or not, with homotopy inverse the
Alexander-Whitney map [May67, 29.10]. Since Γ takes quasi-isomorphisms to
weak equivalences of simplicial k -modules, and since the unit and counit of the
adjunction between N and Γ are isomorphisms, the description (3.4) of the
comonoidal transformation for the left adjoint shows that the map

∇̃C,D : Γ(C ⊗D) −→ ΓC ⊗ ΓD

is a weak equivalence of simplicial k -modules for all connective complexes of
k -modules.

In other words, with respect to the shuffle map, N is the right adjoint of a
weak monoidal Quillen equivalence between simplicial k -modules and connec-
tive chain complexes of k -modules. Since the unit objects are cofibrant, we
can apply Theorem 3.12. Part (3) shows that normalization is the right adjoint
of a Quillen equivalence from simplicial k -algebras to connective differential
graded k -algebras; this proves part (3) of Theorem 1.1. Quillen invariance
holds for simplicial rings, and normalization preserves all weak equivalences;
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so for k = Z, part (2) of Theorem 3.12 shows that for every simplicial ring
A, normalization is the right adjoint of a Quillen equivalence from simplicial
A-modules to connective differential graded NA-modules; this proves part (2)
of Theorem 1.1.

All the above does not use the fact that the shuffle map for N is symmetric
monoidal. We explore the consequences of this in 4.4.

4.3 Another weak monoidal Quillen equivalence

Again, let k be a commutative ring. This time we treat the normalization func-
tor N : sMod-k −→ ch+

k as the left adjoint and its inverse functor Γ: ch+
k −→

sMod-k as right adjoint to N . The monoidal structure on Γ defined in (2.8)
is made so that the comonoidal transformation (3.4) for the left adjoint N is
precisely the Alexander-Whitney map

AW : N(A⊗B) −→ NA⊗NB .

The Alexander-Whitney map is a chain homotopy equivalence for arbitrary
simplicial k -modules A and B , with homotopy inverse the shuffle map [May67,
29.10]; hence Γ becomes the right adjoint of a weak monoidal Quillen equiva-
lence.

Since the unit objects are cofibrant, we can again apply Theorem 3.12. Part
(2) shows that for every connective differential graded ring R, the functor Γ
is the right adjoint of a Quillen equivalence from connective differential graded
R-modules to simplicial ΓR-modules; this proves part (1) of Theorem 1.1.

4.4 Modules and algebras over a commutative simplicial ring

The shuffle map (2.4) is lax symmetric monoidal, and so is its extension

∇ : NA⊗NB −→ N(A⊗B)

to normalized chain complexes. In sharp contrast to this, the Alexander-
Whitney map is not symmetric. This has the following consequences:

• If A is a commutative simplicial ring, then the normalized chains NA form
a differential graded algebra which is commutative in the graded sense, i.e., we
have

xy = (−1)|x| |y|yx

for homogeneous elements x and y in NA.
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• The functor N inherits a lax monoidal structure when considered as a func-
tor from simplicial A-modules (with tensor product over A) to connective dif-
ferential graded NA-modules (with tensor product over NA). More precisely,
there is a unique natural chain map

∇A : NM ⊗NA N(M ′) −→ N(M ⊗AM ′) .
for A-modules M and M ′ , such that the square

NM ⊗NM ′ ∇ //

��

N(M ⊗M ′)

��
NM ⊗NA ⊗NM ′ ∇A

// N(M ⊗AM ′)

commutes (where the vertical morphisms are the natural quotient maps). This
much does not depend on commutativity of the product of A. However, if A is
commutative, then ∇A constitutes a lax symmetric monoidal functor from A-
modules to NA-modules; this uses implicitly that the monoidal transformation
∇ is symmetric, hence compatible with the isomorphism of categories between
left and right modules over A and NA.

Now let LA : Mod-NA −→Mod-A denote the left adjoint of N when viewed
as a functor from left A-modules to left modules over NA (compare Section
3.3). Then the lax comonoidal map for LA has the form

LA(W ⊗NAW ′) −→ LA(W )⊗A LA(W ′)

for a pair of left NA-modules W and W ′ . We claim that this map is a weak
equivalence for cofibrant modules W and W ′ by appealing to Theorem 3.16.
Indeed, the unit objects of the two tensor products are the respective free
modules of rank one, which are cofibrant. The unit map η : LA(NA) −→ A
is even an isomorphism, and the free NA-module of rank one detects weak
equivalences by Example 3.15. So Theorem 3.16 applies to show that the adjoint
functor pair

Mod-NA
LA

// Mod-A
Noo

is a weak monoidal Quillen pair. These two adjoint functors form a Quillen
equivalence by part (2) of Theorem 3.12.

Now we can apply part (3) of Theorem 3.12. The conclusion is that the nor-
malized chain complex functor is the right adjoint of a Quillen equivalence from
the model category of simplicial A-algebras to the model category of connective
differential graded algebras over the commutative differential graded ring NA.
In other words, this proves part (4) of Theorem 1.1
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5 Proofs

This section contains the proofs of the main results of the paper, namely The-
orem 3.12 and the criterion for being weakly monoidal, Proposition 3.16.

5.1 Proof of Theorem 3.12

This proof depends on a comparison of different kinds of left adjoints in Proposi-
tion 5.1. For this part we assume that λ and R form a weak monoidal Quillen
pair, in the sense of Definition 3.6, between two monoidal model categories
(C,⊗, IC) and (D,∧, ID). As before, the lax monoidal transformation of R is
denoted ϕX,Y : RX ∧ RY −→ R(X ⊗ Y ); it is ‘adjoint’ to the comonoidal
transformation (3.4)

ϕ̃ : λ(A ∧B) −→ λA⊗ λB .

This comonoidal map need not be an isomorphism; in that case λ does not have
a monoidal structure, and so it does not pass to a functor between monoid and
module categories. However, part of the definition of a weak monoidal Quillen
pair is that ϕ̃ is a weak equivalence whenever A and B are cofibrant.

In our applications, the monoidal functor R has left adjoints on the level of
monoids and modules (see Section 3.3), and the following proposition compares
these ‘structured’ left adjoints to the underlying left adjoint λ. If the monoidal
transformation ϕ̃ of (3.4) happens to be an isomorphism, then so are the com-
parison morphisms χB and χW which occur in the following proposition; so for
strong monoidal Quillen pairs the following proposition has no content.

In Definition 3.2 we defined the notion of a ‘cell object’ relative to a functor to
a model category. In the following proposition, the notions of cell object are
taken relative to the forgetful functors from algebras, respectively modules, to
the underlying monoidal model category.

Proposition 5.1 Let (λ : D // C : Roo ) be a weak monoidal Quillen pair
between monoidal model categories with cofibrant unit objects.

(1) Suppose that the functor R : C-Monoid −→ D-Monoid has a left adjoint
Lmon . Then for every cell monoid B in D , the C -morphism

χB : λB −→ LmonB

which is adjoint to the underlying D-morphism of the adjunction unit
B −→ R(LmonB) is a weak equivalence.
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(2) Let B be a cell monoid in D for which the functor R : Mod-(LmonB) −→
Mod-B has a left adjoint LB . Then for every cell B -module M , the C -
morphism

χM : λM −→ LBM

which is adjoint to the underlying D-morphism of the adjunction unit
M −→ R(LBM) is a weak equivalence.

Proof Part (1): The left adjoint Lmon takes the initial D-monoid ID to the
initial C -monoid IC and the map χID : λ(ID) −→ LmonID ∼= IC is the adjoint
ν̃ of the unit map ν : ID −→ R(IC). By definition of a weak monoidal Quillen
pair, ν̃ is a weak equivalence. Hence χ is a weak equivalence for the initial
D-monoid ID .

Now we proceed by a cell induction argument, along free extensions of cofibra-
tions in D . We assume that χB is a weak equivalence for some cell D-monoid
B . Since the unit ID is cofibrant, B is also cofibrant in the underlying category
D by an inductive application of [SS00, Lemma 6.2].

We consider another monoid P obtained from B by a single ‘cell attachment’,
i.e., a pushout in the category of D-monoids of the form

TDK //

��

TDK ′

��
B // P

where K −→ K ′ is a cofibration in D . We may assume without loss of gener-
ality that K and K ′ are in fact cofibrant. Indeed, P is also a pushout of the
diagram

B TDB //εoo TD(B qK K ′)

where ε : TDB −→ B is the counit of the free monoid adjunction and BqK K ′
denotes the pushout in the underlying category D . Since B is cofibrant in D ,
the morphism B −→ B qK K ′ is a cofibration between cofibrant objects in D ,
and it can be used instead of the original cofibration K −→ K ′ .

Free extensions of monoids are analyzed in the proof of [SS00, 6.2] and we
make use of that description. The underlying object of P can be written as
a colimit of a sequence of cofibrations Pn−1 −→ Pn in D , with P0 = B such
that each morphism Pn−1 −→ Pn is a pushout in D of a particular cofibration
Qn(K,K ′, B) −→ (B ∧K ′)∧n ∧B . Since λ is a left adjoint on these underlying
categories, λ applied to each corner of these pushouts is still a pushout square.
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Since Lmon is a left adjoint on the categories of monoids, it preserves pushouts
of monoids. So we have the following pushout of C -monoids

Lmon(TDK) //

��

Lmon(TDK ′)

��
LmonB // LmonP

Because of the natural isomorphism (3.7) between Lmon(TDK) and TC(λK),
the pushout LmonP is thus the free extension of LmonB along the cofibration
λK −→ λK ′ between cofibrant objects in C . In particular, LmonP is the colimit
in C of a sequence of cofibrations Rn−1 −→ Rn each of which is a pushout in
C of a cofibration Qn(λK,λK ′, LmonB) −→ (LmonB ∧ λK ′)∧n ∧ LmonB .

The map χP : λP −→ LmonP preserves these filtrations: it takes λPn to Rn .
We now show by induction that for each n the map λPn −→ Rn is a weak
equivalence in C . We show that the map on each of the other three corners
of the pushout squares defining λPn and Rn is a weak equivalence between
cofibrant objects; then we apply [Hov99, 5.2.6] to conclude that the map of
pushouts is also a weak equivalence. By induction we assume λPn−1 −→ Rn−1

is a weak equivalence. A second corner factors as

λ((B ∧K ′)∧n ∧B)
ϕ̃−−−−−−−−−→ (λB ∧ λK ′)∧n ∧ λB

(χB∧Id)∧n∧χB−−−−−−−−−−→ (LmonB ∧ λK ′)∧n ∧ LmonB .

Since the first map is an (iterated) instance of the comonoidal transformation
ϕ̃, and since B is cofibrant in the underlying category D , the first map is a
weak equivalence by hypothesis. Since LmonB is a cell monoid in C and the
unit object IC is cofibrant, LmonB is cofibrant in the underlying category C
by [SS00, Lemma 6.2]. By induction we know that χB : λB −→ LmonB is a
weak equivalence; since all objects in sight are cofibrant and smashing with
a cofibrant object preserves weak equivalences between cofibrant objects, the
second map is also a weak equivalence.

The third corner works similarly: the map factors as

λQn(K,K ′, B) −→ Qn(λK,λK ′, λB) −→ Qn(λK,λK ′, LmonB) .

Here Qn itself is constructed as a pushout of an n-cube where each map is a
cofibration between cofibrant objects. Using a variant of [Hov99, 5.2.6] for n-
cubes, the hypothesis on the comonoidal transformation ϕ̃ and induction shows
that this third corner is also a weak equivalence.

Since each filtration map is a cofibration between cofibrant objects and λPn −→
Rn is a weak equivalence for each n, we can apply [Hov99, 1.1.12, 5.1.5] to
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conclude that the map of colimits λP −→ LmonP is a weak equivalence since
it is the colimit of a weak equivalence between cofibrant objects in the Reedy
model category of directed diagrams. Similarly, for the transfinite compositions
allowed in building up a cell object, [Hov99, 1.1.12, 5.1.5] shows that the map
of colimits is a weak equivalence.

(2) We use a similar induction for cell B -modules. Again at transfinite compo-
sition steps, [Hov99, 1.1.12, 5.1.5] gives the necessary conclusion; so we are left
with considering the single cell attachments. Suppose the statement has been
verified for some cell B -module M . Since B is a cell monoid, it is cofibrant in
the underlying category D , and so is M , by induction on the ‘number of cells’.
Suppose M ′ is obtained from M as a free extension of B -modules, i.e, it is a
pushout of a diagram

M K ∧Boo // K ′ ∧B
Where K −→ K ′ is a cofibration in D . By the same trick as in the first part,
we can assume without loss of generality that K and K ′ are cofibrant in D ;
this exploits the fact that B is also cofibrant in D .

Since LB is a left adjoint, it preserves pushouts. On the other hand, the
forgetful functor from B -modules to D and λ : C −→ D also preserve pushouts,
so we get a commutative diagram in C

λ(K ∧B)

��

χK∧B //

%%K
K
K
K
K
K
K
K
K

LB(K ∧B)

��

&&MM
M
M
M
M
M
M
M
M

λ(K ′ ∧B)
χK′∧B //

��

LB(K ′ ∧B)

��

λM
χM //

%%KK
K
K
K
K
K
K
K
K

LBM

&&NN
N
N
N
N
N
N
N
N
N

λM ′ χM′
// LBM

′

in which the left and right faces are pushout squares. Because of the natural
isomorphisms LB(K ∧ B) ∼= (λA) ⊗ LmonB and LB(K ′ ∧ B) ∼= λK ′ ⊗ LmonB
of (3.10), the pushout LBM

′ is thus the free extension of LBM along the
cofibration λK −→ λK ′ between cofibrant objects in C .

By assumption, the map χM is a weak equivalence. The map χK∧B factors as
the composite

λ(K ∧B)
ϕ̃−−→ λK ⊗ λB Id⊗χB−−−−→ λK ⊗ LmonB . (5.2)
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Since B is cofibrant in the underlying category D and the first map is an
instance of the comonoidal transformation ϕ̃, it is a weak equivalence. Since
the map λB −→ LmonB is a weak equivalence by Part (1) and all objects in
sight are cofibrant, the second map of (5.2) is also a weak equivalence. Hence
χK∧B is a weak equivalence, and similarly for χK ′∧B . Since the maps on each
of the three initial corners of the pushout squares defining λM ′ and LBM

′ are
weak equivalence between cofibrant objects, the map of pushouts is also a weak
equivalence (see for example [Hov99, 5.2.6]). So χM ′ : λM ′ −→ LBM

′ is a
weak equivalence.

Proof of Theorem 3.12 Since the fibrations and trivial fibrations of monoids
and modules are defined on the underlying category, the right adjoint R is a
right Quillen functor in all cases.

(3) Consider a cofibrant D-monoid B and a fibrant C -monoid Y . We have
to show that a monoid homomorphism B −→ RY is a weak equivalence if
and only if its adjoint LmonB −→ Y is a weak equivalence. In the underlying
category C , we can consider the composite

λB
χB−−→ LmonB −→ Y (5.3)

which is adjoint to the underlying D-morphism of B −→ RY .

Since the forgetful functor creates (in the sense of Definition 3.2) the model
structure in the category of D-monoids, every cofibrant D-monoid B is a retract
of a cell monoid by definition. So the morphism χB : λB −→ LmonB is a weak
equivalence by Proposition 5.1 (1). Since ID is cofibrant, a cofibrant D-monoid
is also cofibrant as an object of D by [SS00, 6.2]. Thus, since λ and R form a
Quillen equivalence on the underlying categories, the composite map (5.3) is a
weak equivalence if and only if B −→ RY is a weak equivalence. So Lmon and
R form a Quillen equivalence between the categories of monoids in C and D .

(1) This is very similar to part (3), but using the second part of Proposition 5.1
instead of the first part.

(2) Let ψ : A −→ Af be a fibrant replacement in the category of C -monoids.
If A is already fibrant, take Af = A, otherwise assume R preserves all weak
equivalences, so either way Rψ : RA −→ R(Af) is a weak equivalence of D-
monoids. Let κ : R(Af)c −→ R(Af) be a cofibrant replacement in the category
of D-monoids. Let κ̃ : Lmon(R(Af)c) −→ Af be its adjoint; by part (3), this
adjoint κ̃ is a weak equivalence of monoids in C . We have a commutative
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diagram of right Quillen functors

Mod-A

R

��

Mod-Af

R

��

ψ∗oo κ̃∗ // Mod-Lmon(R(Af)c)

R
��

Mod-RA Mod-R(Af)
(Rψ)∗

oo
κ∗

// Mod-R(Af)c

in which the horizontal functors are restrictions of scalars along the various
weak equivalences of monoids; these are right Quillen equivalences by Quillen
invariance. By part (1) the right vertical functor is a right Quillen equivalence.
Hence, the middle and left vertical functors are also right Quillen equivalences.

5.2 Proof of Proposition 3.16

We are given a Quillen functor pair (R : C // D : λoo ) between monoidal model
categories together with a lax monoidal structure on the right adjoint R. More-
over, the unit object ID detects weak equivalences in D (in the sense of Defini-
tion 3.14) and for some (hence any) cofibrant replacement IcD −→ ID of the unit

object in D , the composite map λ(IcD) −→ λ(ID) ν̃−→ IC is a weak equivalence
in C . We have to show that R and λ are a weak monoidal Quillen pair.

Our first step is to show that for every cofibrant object B of D and every
fibrant object Y of C , a certain map

RHomC(λB, Y ) −→ HomD(B,RY ) (5.4)

is a weak equivalence in D . Here HomC(−,−) and HomD(−,−) denote the
internal function objects in C respectively D , which are part of the closed
symmetric monoidal structures. The map (5.4) is adjoint to the composition

RHomC(λB, Y ) ∧B Id∧η−−−→ RHomC(λB, Y ) ∧R(λB)
ϕ−−−→ R(HomC(λB, Y )⊗ λB)

R(eval)−−−−→ RY .

Choose a cosimplicial resolution I∗D of the unit object; in particular, in cosimpli-
cial dimension zero we get a cofibrant replacement I0D

∼−→ ID of the unit object.
Since ID detects weak equivalences in D and the objects RHomC(λB, Y ) and
HomD(B,RY ) are fibrant, we can prove that (5.4) is a weak equivalence by
showing that we get a weak equivalence of mapping spaces

mapD(I∗D, RHomC(λB, Y )) −→ mapD(I∗D,HomD(B,RY )) .

Algebraic & Geometric Topology, Volume 3 (2003)



Equivalences of monoidal model categories 321

The adjunction isomorphisms between R and λ and between the monoidal
products and internal function objects allow us to rewrite this map as

mapC(ϕ̃, Y ) : mapC(λ(I∗D)⊗ λB, Y ) −→ mapC(λ(I∗D ∧B), Y ) ,

where the cosimplicial map

ϕ̃ : λ(I∗D ∧B) −→ λ(I∗D)⊗ λB (5.5)

is an instance of the comonoidal map ϕ̃ in each cosimplicial dimension. We
consider the commutative diagram in C

λ(I0D ∧B)

∼
��

ϕ̃ // λ(I0D)⊗ λB
∼

��
λ(ID ∧B) ∼=

// λB IC ⊗ λB∼=
oo

whose top horizontal map is the component of (5.5) in cosimplicial dimension
zero. Since I0D is a cofibrant replacement of the unit in D , the map I0D ∧B −→
ID ∧ B ∼= B is a weak equivalence between cofibrant objects, and so the left
vertical map is a weak equivalence. By hypothesis (1), the composite map
λ(I0D) −→ λ(ID) −→ IC is a cofibrant replacement of the unit in C , so smashing
it with the cofibrant object λB gives the right vertical weak equivalence.

We conclude that (5.5) is a weak equivalence in dimension zero; every left
Quillen functor such as λ, −∧B or −⊗ λB preserves cosimplicial resolutions,
so (5.5) is a level equivalence between Reedy cofibrant objects. So the induced
map on mapping spaces map(−, Y ) is a weak equivalence by [Hov99, 5.4.8],
and so the map (5.4) is a weak equivalence in D .

Now we play the game backwards. If A is another cofibrant object of D , then
I∗D∧A is a cosimplicial resolution whose dimension zero object I0D∧A is weakly
equivalent to A. Since the map (5.4) is a weak equivalence between fibrant
objects and the functor mapD(I∗D ∧ A,−) is a right Quillen functor [Hov99,
5.4.8], we get an induced weak equivalence on mapping spaces

mapD(I∗D ∧A,RHomC(λB, Y )) −→ mapD(I∗D ∧A,HomD(B,RY )) .

Using adjunction isomorphisms again, this map can be rewritten as

mapC(ϕ̃, Y ) : mapC(λ(I∗D ∧A)⊗ λB, Y ) −→ mapC(λ(I∗D ∧A ∧B), Y ) .

where
ϕ̃ : λ(I∗D ∧A ∧B) −→ λ(I∗D ∧A)⊗ λB

is another instance of the comonoidal map ϕ̃ in each cosimplicial dimension.
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Since λ(I∗D ∧A)⊗ λB is a cosimplicial frame of the cofibrant object λA⊗ λB ,
the components of the mapping space mapC(λ(I∗D ∧A)⊗ λB, Y ) are in natural
bijection with the morphisms from λA ⊗ λB in the homotopy category of C ;
similarly the components of mapC(λ(I∗D ∧A ∧B), Y ) are isomorphic to [λ(A ∧
B), Y ]Ho(C) . So we conclude that the comonoidal map ϕ̃ : λ(A∧B) −→ λA⊗λB
induces a bijection of homotopy classes of maps into every fibrant object Y .
Thus the map ϕ̃ is a weak equivalence in C , and so we indeed have a weak
monoidal Quillen pair.

6 Some enriched model category theory

In this section we develop some general theory of modules over ‘rings with
several objects’ based on a monoidal model category. Most of this is a relatively
straightforward generalization from the case of ‘ring objects’ or monoids to
‘rings with several objects’. Throughout this section, C is a monoidal model
category (Definition 3.1) with product ⊗ and unit object I. For the special case
where C is the category of symmetric spectra, this material can also be found in
[SS03, Sec. A.1]. Additional material on the homotopy theory of C -categories
can be found in [Du01].

6.1 Modules over C -categories

Let I be any set and let O be a CI -category [Bor94, 6.2], i.e., a category
enriched over C whose set of objects is I . This means that for all i, j ∈ I there
is a morphism object O(i, j) ∈ C , unit morphisms I −→ O(i, i) and coherently
associative and unital composition morphisms

O(j, k) ⊗O(i, j) −→ O(i, k) .

One may think of O as a ‘ring/monoid with many objects’, indexed by I ,
enriched in C . Indeed if I = {∗} has only one element, then O is completely
determined by the endomorphism C -monoid O(∗, ∗). Moreover the O-modules
as defined below coincide with the O(∗, ∗)-modules in the ordinary sense.

A (right) O-module is a contravariant C -functor [Bor94, 6.2.3] from O to the
category C ; explicitly, an O-module M consists of C -objects M(i) for i ∈ I
and C -morphisms

M(j)⊗O(i, j) −→ M(i)

which are appropriately associative and unital. A map of O-modules is a C -
natural transformation [Bor94, 6.2.4]. A map of O-modules f : X −→ Y is
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an objectwise equivalence (or objectwise fibration) if f(i) : X(i) −→ Y (i) is
a weak equivalence (fibration) in C for each all i ∈ I . A cofibration is a
map with the left lifting property with respect to any trivial fibration. For
every element j ∈ I , there is a free or representable O-module FOj defined
by FOj (i) = O(i, j). As the name suggests, homomorphisms from FOj into a
module M are in bijective correspondence with morphisms from I to M(j)
by the enriched Yoneda Lemma [Bor94, 6.3.5]. The evaluation functor at j ,
Evj : Mod-O −→ C has a left adjoint ‘free’ functor which sends an object X
of C to the module FOj X = X ⊗ FOj , where X ⊗ − is defined by tensoring
objectwise with X .

A morphism Ψ: O −→ R of CI -categories is simply a C -functor which is the
identity on objects. We denote by CI-Cat the category of all CI -categories.
The restriction of scalars

Ψ∗ : Mod-R −→ Mod-O ; M 7−→ M ◦Ψ

has a left adjoint functor Ψ∗ , also denoted − ⊗O R, which we refer to as
extension of scalars. As usual it is given by an enriched coend, i.e., for an
O-module M the R-module Ψ∗M = M ⊗O R is given by the coequalizer of
the two R-module homomorphisms∨

i,j∈IM(j) ⊗ O(i, j) ⊗ FRi
////
∨
i∈IM(i) ⊗ FRi .

We call Ψ: O −→ R a (pointwise) weak equivalence of CI -categories if the C -
morphism Ψi,j : O(i, j) −→ R(i, j) is a weak equivalence for all i, j ∈ I , . Next
we establish the model category structure for O-modules and discuss Quillen
invariance for weak equivalences of C -categories.

Theorem 6.1 Let C be a cofibrantly generated monoidal model category
which satisfies the monoid axiom [SS00, 3.3] and such that every object of
C is small relative to the whole category.

(1) Let O be a CI -category. Then the category of O-modules with the object-
wise equivalences, objectwise fibrations, and cofibrations is a cofibrantly
generated model category.

(2) Let Ψ: O −→ R be a weak equivalence of CI -categories. Suppose that
for every cofibrant right O-module N , the induced map N ⊗O O −→
N⊗OR is an objectwise weak equivalence. Then restriction and extension
of scalars along Ψ form a C -Quillen equivalence of the module categories.

Proof We use [SS00, 2.3] to establish the model category for O-modules.
Let II denote the initial CI -category with II(i, i) = IC and II(i, j) = ∅, the
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initial object, for i 6= j . The category of II -modules is the I -indexed product
category of copies of C . Hence it has a cofibrantly generated model category
inherited from C in which the cofibrations, fibrations and weak equivalences are
objectwise. Here the generating trivial cofibrations are the generating trivial
cofibrations of C between objects concentrated at one object, i.e. of the form
Aj with Aj(j) = A and Aj(i) = ∅ if i 6= j .

The unit morphism II −→ O induces adjoint functors of restriction and exten-
sion of scalars between the module categories. This produces a triple − ⊗II O
on II -modules with the algebras over this triple the O-modules. Then the
generating trivial cofibrations for O-modules are maps between modules of the
form Aj⊗IIO = A⊗O(−, j). Hence the monoid axiom applies to show that the
new generating trivial cofibrations and their relative cell morphisms are weak
equivalences. Thus, since all objects in C are assumed to be small, the model
category structure follows by criterion (1) of [SS00, 2.3].

The proof of Part (2) follows as in [SS00, 4.3]. The restriction functor Ψ∗

preserves objectwise fibrations and objectwise equivalences, so restriction and
extension of scalars form a Quillen adjoint pair. By assumption, for N a cofi-
brant right O-module

N ∼= N ⊗O O −→ N ⊗O R

is a weak equivalence. Thus if M is a fibrant right R-module, an O-module
map N −→ Ψ∗M is a weak equivalence if and only if the adjoint R-module
map Ψ∗N = N ⊗O R −→M is a weak equivalence.

6.2 Categories as monoids of graphs

In [ML71, II.7] Mac Lane explains how a small category with object set I can be
viewed as a monoid in the category of I -indexed graphs. We need an enriched
version of this giving C -categories as the monoids with respect to a monoidal
product on the category of C -graphs, so that we can apply the general theory
of [SS00]. Note that here the product on C -graphs is not symmetric monoidal,
so we must take care in applying [SS00].

Let (C,⊗, IC) be a closed symmetric monoidal closed category with an initial
object ∅. Let I be any set. The category of (directed) I -graphs in C , denoted
CI-Graph is simply the product category of copies of C indexed by the set I×I .
If G is an I -graph in C , then one can think of G(i, j) as the C -object of arrows
pointing from the vertex i to the vertex j .
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If G and H are two I -graphs, then their tensor product is defined by the
formula

(G⊗H)(i, j) =
∨
k∈I

G(k, j) ⊗H(i, k) . (6.2)

The I -graph II is defined by

II(i, j) =
{
I if i = j
∅ if i 6= j

The smash product makes the category of I -graphs in C into a monoidal cate-
gory with unit object II (but not a symmetric monoidal category). Moreover,
the category CI-Cat of CI -categories is precisely the category of monoids in
CI-Graph with respect to the smash product. Note that when I is a singleton
set CI-Graph is C and CI-Cat is C-Monoid.

Warning There is a slight risk of confusion in the notion of a module over a
CI -category when I has more than one element. As we just explained, such a
CI -category O is a monoid with respect to the monoidal product (6.2) of I -
graphs. So there is a notion of O-module which is an I -graph M together with
a morphism of I -graphs M ⊗ O −→ M which satisfies associativity and unit
constraints. However, this is not the same as the O-modules defined above as
the enriched functors from O to C . These enriched functors have an underlying
I -indexed family of objects in C , whereas the other kind of modules have an
underlying I -graph, so they have underlying C -objects indexed by ordered pairs
of elements from I . However, if M is an I -graph with an associative, unital
I -graph morphism M⊗O −→M , then we can fix an element j ∈ I , and obtain
an enriched functor M(−, j). So the modules which have underlying I -graphs
give rise to an I -indexed family of modules in the earlier sense.

Since CI-Graph is not a symmetric monoidal category, the results of [SS00] do
not apply directly to produce a model category on the monoids, CI-Cat. It
turns out though that the proof Theorem 4.1 of [SS00] carries over since the
homotopy type of a graph is determined pointwise and C is assumed to be
symmetric monoidal. First, if C is a cofibrantly generated model category, then
CI-Graph is also a cofibrantly generated model category with the cofibrations,
fibrations and weak equivalences defined pointwise, i.e., for each (i, j). The
generating (trivial) cofibrations are of the form Ai,j −→ Bi,j where A −→ B is
a generating (trivial) cofibration in C and Ai,j is the CI-Graph with value A
concentrated at (i, j). Based on this model category we use [SS00, 4.1 (3)] to
construct a model category on the associated category of monoids, CI-Cat.

Algebraic & Geometric Topology, Volume 3 (2003)



326 Stefan Schwede and Brooke Shipley

Dundas [Du01, Thm. 3.3] obtains the model structure on the category CI-Cat of
CI -categories under slightly different assumptions, namely when the underlying
monoidal model category C is simplicial and has a monoidal fibrant replacement
functor. Part (2) of the following Proposition is essentially the same as Lemma
3.6 of [Du01].

Proposition 6.3 Let I be a fixed set and C be a cofibrantly generated
monoidal model category which satisfies the monoid axiom. Assume as well
that every object in C is small.

(1) CI-Cat is a cofibrantly generated model category with weak equivalences
and fibrations defined pointwise.

(2) Every cofibration of CI -categories whose source is pointwise cofibrant is
a pointwise cofibration. In particular, if the unit object IC is cofibrant in
C , then every cofibrant CI category is pointwise cofibrant.

Proof The generating (trivial) cofibrations are the image of the free monoid
functor TCI : CI-Graph −→ CI-Cat applied to the sets of generating (trivial)
cofibrations in CI-Graph. The proof of the first statement follows from [SS00,
4.1(3), 6.2]. The third to last paragraph in the proof of [SS00, 6.2] is the only
place which uses the symmetry of the monoidal product. At that point one
is working in the underlying category, which is CI-Graph in our case. Since
both weak equivalences and pushouts in CI-Graph are determined pointwise,
one can just work pointwise in C . Then the symmetry of the monoidal product
and the monoid axiom do hold by assumption.

The proof of the second statement is essentially the same as in the last para-
graph of [SS00, 6.2], which treats the case of algebras, i.e., when I is a singleton.
Note, this analysis does not require a symmetric monoidal product.

As with Theorem 3.12 we use the following comparison of λ with the structured
left adjoints LCI and LO for categories, respectively modules. In this paper
we only apply Theorem 6.5 to strong monoidal Quillen pairs, namely in the
next and final section. In that case, the maps χO and χM are isomorphisms,
and so the proposition is redundant. Elsewhere this statement is used for weak
monoidal Quillen pairs, though; see [S]. Refer to Definition 3.2 for the notion
of a ‘cell’ object.

Proposition 6.4 Let (λ : D // C : Roo ) be a weak monoidal Quillen pair
between monoidal model categories with cofibrant unit objects.
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(1) Suppose that the functor R : CI-Cat −→ DI-Cat has a left adjoint LCI .
Then for every DI -cell category O , the morphism of CI -graphs

χO : λO −→ LCIO
which is adjoint to the underlying DI -graph morphism of the adjunction
unit O −→ R(LCIO) is a pointwise weak equivalence.

(2) Suppose O is a DI -cell category for which the functor R : Mod-LCIO −→
Mod-O has a left adjoint LO . Then for every cell O-module M , the map

χM : λM −→ LOM

which is adjoint to the underlying D-morphism of the adjunction unit
M −→ R(LOM) is an objectwise weak equivalence in C .

We omit the proof of Proposition 6.4, since it is essentially identical to the proof
of Proposition 5.1; the free monoid functor is replaced by the free I -category
functor TCI : CI-Graph −→ CI-Cat and the underlying objects are in CI-Graph
and DI-Graph instead of C and D . For modules there is another difference:
instead of one kind of free module, for every element j ∈ I and every object K
of C , there is an O-module FjK = K ⊗O(−, j) freely generated by K at j .

Finally, we extend the results of Section 3 to these enriched categories.

Theorem 6.5 Let R : C −→ D be the right adjoint of a weak monoidal Quillen
equivalence. Suppose that the unit objects in C and D are cofibrant.

(1) Consider a cofibrant DI category O such that the forgetful functors cre-
ate model structures for modules over O and modules over LCIO . Then
the adjoint functor pair

LO : Mod-O // Mod-(LCIO) : Roo

is a Quillen equivalence.

(2) Suppose that Quillen invariance holds for I -categories in C and D . Then
for any pointwise fibrant CI -category A such that the forgetful functors
create model structures for modules over A and modules over RA, the
adjoint functor pair

LA : Mod-RA // Mod-A : Roo

is a Quillen equivalence. If the right adjoint R preserves all weak equiva-
lences in C and the forgetful functors create model structures for modules
over any monoid, then this holds for any CI -category A.

The proof of Theorem 6.5 is now almost literally the same as the proof of parts
(1) and (2) of Theorem 3.12. Whenever Proposition 5.1 is used in the proof of
the latter we now appeal to Proposition 6.4 instead.
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7 Symmetric monoidal categories of spectra

In this section we show that the Quillen equivalences between the categories of
rings, modules and algebras established in [MMSS] and [Sch01] can be extended
to Quillen equivalences between modules over ‘ring spectra with many objects’
or ‘spectral categories’. This then shows that the classification results in [SS03]
can be translated to any one of the symmetric monoidal categories of spectra.

Comparison theorems between rings, modules and algebras based on symmetric
spectra over simplicial sets (SpΣ

sS ) and topological spaces (SpΣ
Top), orthogonal

spectra (IS ), W -spaces (WT ) and simplicial functors (SF ) can be found
in [MMSS], Theorems 0.4 through 0.9 and 19.11. Rings, modules and alge-
bras based on S -modules MS are compared to their counterparts based on
symmetric and orthogonal spectra in [Sch01, Thm. 5.1] respectively [MM02,
Ch. I], Theorems 1.1 through 1.7. See [Sh01] for an approach that unifies all of
these comparison theorems. These Quillen equivalences could also be deduced
via our general result in Theorem 3.12. Moreover, in several of the categories
which participate in the diagram (7.1) below, there are also Quillen equiva-
lences for categories of commutative algebras (with the exception of simplicial
functors SF and W -spaces WT ); such results are out of the scope of the gen-
eral methods in this present paper. However, modules over ‘ring spectra with
many objects’ were not considered in the above papers, and the point of this
final section is to fill that gap.

The categories of spectra which we consider are all displayed in a commutative
diagram of monoidal model categories and strong monoidal Quillen equivalences

SpΣ
sS

T //

P

��

SpΣ
TopS

oo

P

��

Id
// (SpΣ

Top)+

Λ

##G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

Idoo

P

��
IS

U

OO

Id
//

P
��

(IS)+

U

OO

Idoo N // MS

Φ

ccG
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

N]
oo

SF

U

OO

PT // WT

U

OO

SU
oo

based on simplicial sets

� �
cofibrant unit object _?

� �
diagram spectra _?

� �
based on topological spaces _?

� �
unit not cofibrant _?

(7.1)
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(where the left adjoints are on top and on the left). There are five categories of
diagram spectra: symmetric spectra over simplicial sets SpΣ

sS [HSS], symmetric
spectra over topological spaces SpΣ

Top [MMSS], simplicial functors SF [Lyd98],
orthogonal spectra IS [MMSS], and W -spaces WT [MMSS]. The categories
of topological symmetric spectra and orthogonal spectra appear twice, with dif-
ferent model structures: the stable model structure [HSS, 3.4], [MMSS, Sec. 9]
(without decoration) and the positive stable model structure [MMSS, Sec. 14]
(decorated with a subscript ‘+’). However, the stable and positive model struc-
tures share the same class of weak equivalences. The remaining category MS of
S -modules [EKMM] is of a somewhat different flavor. By U we denote various
‘forgetful’ or ‘underlying object’ functors, with the left adjoint ‘prolongation’
functors P, which are all described in the paper [MMSS]. Moreover, S is the
singular complex functor and T is geometric realization. The functors Λ and
Φ which relate symmetric spectra to S -modules and their lifts N and N] to or-
thogonal spectra are defined and studied in [Sch01] respectively [MM02, Ch. I].
See [Sh01, 4.7] for a unified approach to defining all of these functors.

The following theorem is an application of Theorem 6.1 to these categories of
spectra.

Theorem 7.2 Let C be any of the model categories SpΣ
sS , SpΣ

Top , (SpΣ
Top)+ ,

IS , (IS)+ , SF , WT or MS .

(1) The modules over any C -category inherit a model category structure in
which the fibrations and weak equivalences are defined pointwise in the
underlying category C .

(2) If Ψ: O −→ R is a pointwise weak equivalence of CI -categories, then
restriction and extension of scalars along Ψ form a C -Quillen equivalence
of the module categories.

Proof (1) All specified choices of monoidal model category C are cofibrantly
generated, see [MMSS, 12.1], [HSS, 3.4], [Lyd98, 9.2] and [EKMM, VII.4]. For
MS the argument for (1) follows just as for modules over a ring spectrum;
see [EKMM, VII.4.7]. One could also verify the pushout product, unit and
monoid axioms directly. The unit axiom is automatic for the categories SpΣ

sS ,
SpΣ

Top , IS , SF and WT where the unit object is cofibrant. In the positive
model structures (SpΣ

Top)+ and (IS)+ the unit axiom holds since every posi-
tively cofibrant object is also stably cofibrant, and the respective unit objects
are stably (but not positively) cofibrant. Moreover, the pushout product and
monoid axioms for the diagram spectra other than SF hold by [MMSS, 12.5,
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12.6], [HSS, 5.3.8, 5.4.1]. For the category of simplicial functors, these two ax-
ioms do not appear explicitly in Lydakis’ paper [Lyd98], but we can argue as
follows.

By [Lyd98, 12.3] the pushout product of two cofibrations is a cofibration. To see
that the pushout product i� j of a cofibration i with a trivial cofibration j is
again a trivial cofibration, we argue indirectly and use the Quillen equivalence
PT : SF −→ WT of [MMSS, 19.11]. By [SS00, 3.5 (1)] or [Hov99, 4.2.5] it
suffices to check the pushout product of a generating cofibration with a gener-
ating trivial cofibration. For the stable model structure of simplicial functors,
Lydakis [Lyd98, 9.1] uses generating cofibrations and trivial cofibrations which
all have cofibrant sources and targets. Since the left Quillen functor PT is also
strong monoidal, we have PT(i�j) ∼= (PTi)�(PTj) as morphisms of W -spaces.
Since PTi is a cofibration, PTj is a trivial cofibration and the pushout product
axiom holds in WT , the pushout product PT(i � j) is in particular a stable
equivalence of W -spaces. As a left Quillen equivalence, PT detects weak equiv-
alences between cofibrant objects, so i� j is a stable equivalence of simplicial
functors.

For the monoid axiom we consider a generating stable trivial cofibration j from
the set SFg

sac defined in [Lyd98, 9.1], and we let X be an arbitrary simplicial
functor. By [Lyd98, 12.3], X∧j is an injective morphism of simplicial functors;
we claim that X ∧ j is also a stable equivalence. To see this, we choose a
cofibrant replacement Xc −→ X ; then Xc ∧ j is a weak equivalence by the
pushout product axiom. By [Lyd98, 12.6], smashing with a cofibrant simplicial
functor preserves stable equivalences. Since the source and target of j are
cofibrant, X ∧ j is thus also a stable equivalence. The class of injective stable
equivalences of simplicial functors is closed under cobase change and transfinite
composition. So every morphism in (SFg

sac∧SF)-cofreg is a stable equivalence,
which implies the monoid axiom by [SS00, 3.5 (2)].

In the categories SpΣ
sS and SF which are based on simplicial sets, every object

is small with respect to the whole category; so the proof concludes by an appli-
cation of Theorem 6.1 (1). In the other cases, which are based on topological
spaces, the cofibration hypothesis [MMSS, 5.3], [EKMM, VII.4] makes sure that
the small object argument still applies and the conclusion of Theorem 6.1 is
still valid.

Part (2) is proved by verifying the criterion of Theorem 6.1 (2): for every cofi-
brant right O-module N , the induced map N⊗OO −→ N⊗OR is an objectwise
weak equivalence. The special case of modules over a monoid, i.e., when the
set I has one element, is treated in [MMSS, 12.7], [HSS, 5.4.4] and [EKMM,
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III 3.8]. Again for simplicial functors, this argument is not quite contained in
[Lyd98], but one can also verify the criterion for Quillen invariance as in [MMSS,
12.7] using the fact that smashing with a cofibrant object preserves stable weak
equivalences by [Lyd98, 12.6]. The general case of modules over a category with
more than one object uses the same kind of cell induction as for modules over
a monoid; we omit the details.

All the Quillen adjoint pairs appearing in the master diagram (7.1) are strong
monoidal Quillen equivalences in the sense of Definition 3.6; so we can apply
Theorem 6.5 to get Quillen equivalences for modules over ‘ring spectra with
many objects’; this leads to the following proof of Corollary 1.2. Special care
has to be taken for the positive model structures on the categories of symmetric
and orthogonal spectra, and for the category of S -modules since there the units
of the smash product are not cofibrant.

Proof of Corollary 1.2 One of the main results of [SS03], Theorem 3.3.3,
shows that any cofibrantly generated, proper, simplicial stable model category
with a set of generators is Quillen equivalent to modules over a SpΣ

sS -category
O with one object for each generator. By Proposition 6.3 we can choose a
cofibrant replacement SpΣ

sS -cell category Oc with a pointwise stable equivalence
q : Oc ∼−→ O . Then Mod-O and Mod-Oc are Quillen equivalent.

For comparisons which do not involve the category MS of S -modules, but only
the left part of diagram (7.1), we consider the stable model structures. In the
five categories of diagram spectra, the unit of the smash product is cofibrant
with respect to this stable model structure. So various applications of part (1)
of Theorem 6.5 show that Mod-Oc is Quillen equivalent to modules over the
SpΣ

Top -category T(Oc) (where T is the geometric realization functor, applied
levelwise), to modules over the IS -category PT(Oc), to modules over the WT -
category PPT(Oc) (this composite PP is just denoted by P in [MMSS]), and
to modules over the SF -category P(Oc).

To connect to the world MS of S -modules we have to argue slightly differently,
since the unit S in MS is not cofibrant. First we change model structures on
the category of T(Oc)-modules by viewing the identity functors as a Quillen
equivalence between the stable and positive model structures (which share the
same class of weak equivalences); see the right-hand part of the diagram below.

The last Quillen pair we consider compares modules over T(Oc) and modules
over the MS -category ΛT(Oc). The right adjoint is given by Φ, together with
restriction of scalars along the adjunction unit η : T(Oc) −→ ΦΛT(Oc); the left
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adjoint is induced by pointwise application of Λ. The right adjoint Φ preserves
all weak equivalences; so to see that we have a Quillen equivalence we may show
that for every cofibrant T(Oc)-module M the adjunction unit M −→ ΦΛ(M)
is a pointwise stable equivalence. Since Oc is a SpΣ

sS -cell category, T(Oc) is
a SpΣ

Top -cell category, both times with respect to the stable model structure
on symmetric spectra. The unit is cofibrant in the stable model structure
of symmetric spectra; hence T(Oc) is pointwise cofibrant in the stable model
structure of symmetric spectra as well.

The positive cofibrations of symmetric spectra are precisely those stable cofi-
bration which are isomorphisms in level 0. So every positively cofibrant T(Oc)-
module M is also stably cofibrant. Since T(Oc) itself is is pointwise stably
cofibrant, so is M ; thus the adjunction unit M −→ ΦΛ(M) is a stable equiva-
lence by [Sch01, Thm. 3.1].

To sum up, we display all these Quillen equivalences in the following diagram,
where we also indicate the underlying monoidal model categories:

Mod-O/SpΣ
sS

q∗

��
Mod-Oc/SpΣ

sS

q∗

OO

T //

P

��

Mod-T(Oc)/SpΣ
TopS

oo

P
��

Id
// Mod-T(Oc)/(SpΣ

Top)+

Λ

��

Idoo

Mod-PT(Oc)/IS

U

OO

P
��

Mod-ΛT(Oc)/MS

Φ

OO

Mod-P(Oc)/SF

U

OO

PT // Mod-PTP(Oc)/WT

U

OO

SU
oo
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