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Abstract 

Consider a commutative simplicial ring B which is an algebra over the rational numbers. 
We show that the homotopy theory of simplicial B-modules and the stable homotopy theory of 
augmented commutative B-algebras are equivalent. In terms of this equivalence, we can identify 
Andr&-Quillen homology as a stabilization process (suspension spectrum). @ 1997 Elsevier 
Science B.V. 

I991 Math. Subj. Class.: Primary 55U35; secondary 18G55 

0. Introduction 

This paper is concerned with aspects of the stable homotopy theory of commutative 

simplicial rings. We will use the framework of Quillen’s closed simplicial model cate- 
gories [4]. So in the first sections, we review parts of homotopical algebra. To be able 
to talk about the stable homotopy theory of a model category, we introduce spectra 
in pointed closed simplicial model categories and use the small object argument to 
show that the category of spectra inherits a closed model category structure. We make 
precise the idea that for a linear model category, the passage to spectra gives the same 
homotopy theory. 

This applies in particular to the linear model category of simplicial modules over a 
fixed simplicial ring B. Furthermore, in the case of a commutative simplicial Q-algebra 
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the stable homotopy theory of simplicial B-modules will be shown to be equivalent 

to the stable homotopy theory of augmented commutative B-algebras. Hence up to 

weak equivalence, a spectrum of augmented commutative B-algebras is the same as a 

simplicial B-module. 

In [6], the cotangent complex of a morphism A -+ B of commutative rings is in- 

troduced, which gives rise to Andre-Quillen homology. It is a simplicial B-module 

well defined up to weak equivalence. Hence in the rational case we can ask what 

spectrum of algebras the cotangent complex corresponds to and we will see that the 

corresponding spectrum is the suspension spectrum of the unreduced suspension of A 

over B. We have thus reinterpreted the cotangent complex in terms of a stabilization 

process. 

1. Review of homotopical algebra 

1.1. Closed model categories 

If i : A + B and p :X ---t Y are morphisms in a category, we will say that i has 

the left lifting property with respect to p and p has the right lifting property with 

respect to i, if given any commutative diagram 

A-X 
, , 

i ,fl’ I I 

P 
I , , 

B-Y 

with unbroken arrows, there exists the dotted morphism B -+ X such that the resulting 

diagram is commutative. 

Definition 1.1.1 (Quillen [5,11-l]). A closed model category is a category +Z equipped 

with three classes of morphisms called cojibrations, jibrations and weak equivalences 
respectively. A morphism is called an acyclic cojibration if it is both a cofibration 

and a weak equivalence and an acyclic jibration if it is both a fibration and a weak 

equivalence. There are five axioms to be satisfied: 

(CM1 ) The category %? is closed under finite limits and colimits; in particular it has 

an initial and a terminal object. 

(CM2) Let f and g be composable morphisms in %?. Then if two of f ,g and gf 
are weak equivalences, so is the third. 

(CM3) If f is a retract of g and g is a fibration, cofibration or weak equivalence, 

so is f. 
(CM4) Cofibrations have the left lifting property with respect to acyclic fibra- 

tions and fibrations have the right lifting property with respect to acyclic cofibra- 

tions. 
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(CM5) Any morphism in 97 can be factored as an acyclic cofibration followed by a 

fibration and it can also be factored as a cofibration followed by an acyclic fibration. 

Acyclic (co-)fibrations are called trivial (co-)fibrations in [l, 4, 51. However, Quillen 

changes to ‘acyclic’ in [6], so we also use this terminology. Consequences of the 

axioms are 

Proposition 1.1.2 (Quillen [5.11-l]). The cojibrutions (resp. acyclic cofbrations) are 
precisely those maps having the left lifting property with respect to all acyclic fibru- 
tions (resp. jibrations). The jibrutions (resp. acyclic Jibrations) are precisely those 
maps having the right lifting property with respect to all acyclic cojibrutions (resp. 
cojibrutions). 

The following statements are all proved using these characterizations by lifting prop- 

erties and they will be used frequently in the sequel. 

Corollary 1.1.3. The class of fibrations (resp. acyclic jibrations) is closed under com- 
position and base change and contains all isomorphisms. The class of cofbrutions 
(resp. acyclic cojibrutions) is closed under composition and cobuse change and con- 
tains all isomorphisms. 

Corollary 1.1.4. Suppose that A0 + Al + . . . + Ai + . . . is a sequence of cojibru- 
tions (resp. acyclic cojibrutions) and that the colimit of the Ai exists. Then the 
canonical map A0 + colimi&i is also a cojibrution (resp. acyclic cojibrution). 

Corollary 1.1.5. Suppose F : %’ + 9 and G : 9 -+ 9? are functors between closed 
model categories such that F is left udjoint to G. Then F preserves cofbrutions (resp. 
acyclic cojibrutions) if and only if G preserves acyclic Jibrations (resp. jibrations). 

In a closed model category we will usually speak of maps instead of morphisms. 

An object is cojibrunt if the map from the initial object to it is a cofibration and it is 

jibrunt if the map to the terminal object is a fibration. We will use a feathered arrow 

H to indicate that a morphism is a cofibration, double headed arrows -B for fibrations 

and we will put a tilde 5 above an arrow to denote a weak equivalence. 

For any closed model category V, the homotopy category Ho%? is the category ob- 

tained by formally inverting the weak equivalences. Quillen shows that it is equivalent 

to the concrete category with objects those objects of $? which are both fibrant and 

cofibrant and where morphisms are morphisms in $9 modulo the homotopy equivalence 

relation (cf. [4, I.11 for the details). Furthermore, Ho % is not just a category but has 

some extra structure such as fibration sequences, cofibration sequences, and loop and 

suspension functors if %? has a zero object. The localization functor ‘3 + Ho W has the 

particular property that a map in %Z is a weak equivalence if and only if it becomes 

an isomorphism in Ho V [4,1.5]. 
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Definition 1.1.6 (Bousfield and Friedlander [ 1,1.2]). A model category is called 

proper if the following conditions hold: let 

A-B 

I I 
C-D 

be a pushout diagram such that A H B is a cofibration and A 2 C is a weak equiva- 

lence. Then B 3 D is a weak equivalence. Furthermore, if the diagram is a pullback 

square, B + D is a fibration and C s D is a weak equivalence, then A % B is also 

a weak equivalence. 

Though it is seemingly weaker, properness is actually equivalent to the gluing lemma 

(Lemma 1.1.9) and its dual. Most examples of model categories, such as, e.g., topo- 

logical spaces, simplicial sets or simplicial groups, are proper. We will see in Section 

3.1 that simplicial modules and commutative simplicial rings also form proper model 

categories. For an example of a model category which is not proper, see [5,11, Re- 

mark 2.91. 

We introduce homotopy cocartesian and homotopy Cartesian squares. These notions 

only behave well in proper closed model categories. 

Definition 1.1.7 (Bowfield and Friedlander [l,A.2]). 

A-B 

A commutative square 

I I 
C-D 

in a proper closed model category will be called homotopy cocartesian if for some 

factorization A H Z *B of A -+ B as a cofibration followed by a weak equivalence, 

the induced morphism from the pushout C UA Z -5 D is a weak equivalence. 

Now suppose A H W 1 C is a factorization of A + C as a cofibration followed 

by a weak equivalence. Then since A H Z is a cofibration, so is W H W UA Z. If we 

apply the properness assumption to the pushout diagram 
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we see that W UA Z s C UA Z is a weak equivalence. After another such step we 

obtain a commutative diagram 

WU,B + wu*z A cu*z 

that tells us that there are several equivalent ways of defining homotopy cocartesian 

squares. We could have used a factorization of A --t C instead of A + B, we could 

have used factorizations of both maps or we could have required C UA Z SD to be 

a weak equivalence for any factorization of A 4 B instead of just for one. 

With this knowledge, the proof of the following lemma is straightforward. 

Lemma 1.1.8. Consider a commutative diagram in a proper closed model category 

A-B-C 

I I I 
A’-B’- C’ 

Then tf the two inner squares are homotopy cocartesian, so is the outer square. Also 

tf the left square and the outer square are homotopy cocartesian, so is the right 

square. 

We have promised to show the gluing lemma: 

Lemma 1.1.9. In a proper closed model category consider a commutative diagram 

Y-A-X 

Y-A’-_%? 

such that the vertical maps are weak equivalences and two of the horizontal maps 

are cojbrations as indicated. Then the induced map on pushouts 

is a weak equivalence. 
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Proof. Properness implies that A’ ++ A’UAX 1X’ is a factorization of A’ ---f X’ as a 

cofibration followed by a weak equivalence. Since the square 

A’_X’ 

y’ - Y’ u,,x, 

is homotopy cocartesian, the map Y’ UA~ (A’ UA X) E Y’ UA X s Y’ UA/ X’ is thus a 

weak equivalence. But the map Y UA X 1 Y’ uA X is also a weak equivalence because 

it is the pushout of Y -% Y’ along the cofibration Y H Y UA X. 0 

The gluing lemma can be rephrased: A map between homotopy cocartesian squares 

which is a weak equivalence on all corners except possibly the terminal ones is also 

a weak equivalence on the terminal comers. 

We also need the dual concept. A commutative square as in Definition 1.1.7 will be 

called homotopy Cartesian if for some factorization B 1 Y -H D of B + D as a weak 

equivalence followed by a fibration, the induced map into the pullback A -% C xg Y 

is a weak equivalence. All we have said about homotopy cocartesian squares can be 

dualized. 

1.2. Simplicial model categories 

One fundamental example of a model category is the category of simplicial sets. 

A map of simplicial sets is a weak equivalence if it induces a homotopy equivalence 

on geometric realizations, it is a cofibration if it is dimensionwise injective, and the 

fibrations are the fibrations in the sense of Kan; this defines a structure of a closed 

model category (cf. [4,11.3]). 

In many cases we have an additional structure on closed model categories, such 

that we have ‘tunction complexes’ and we can ‘take products with simplicial sets’. 

This idea is made precise in the following definition. Here Y denotes the 

simplicial sets and 9~ the category of finite simplicial sets. 

Definition 1.2.1 (Quillen [4,11.2]). A closed model category V becomes a 

plicial model category if it is endowed with the following structure: 

l Functors 

$9 X %? + 9, (X, Y) H m,(X, Y) (function complex) 

% x Yf --) %?, (X,K)H X@K 
Gf x 9f”p + v, (X,K) t-3 XK 

l A natural composition map 

Ho%(X Y) x Ho&Y,Z) --+ Horn&Z) * 

category of 

closed sim- 
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l A natural isomorphism 

m&X, Y)a E Horn&X, Y) 

l Natural isomorphisms 

(1) 

Hom,(K, m&Y)) 2 &l(X@K,Y) = &r(X,YK) (2) 

This data is subject to some compatibility conditions (among them associativity of 

composition) which can be found in [4, II.21 and to one more axion which relates the 

simplicial structure to the model category structure: 

(SM7) If i : A H B is a cofibration and p :X -H Y a fibration in %‘, then 

I&zEw(B,X) --+ BzB&,X) x~om,(a,y) I&E-@> Y) 

is a fibration of simplicial sets which is a weak equivalence if i or p is. 

A hmctor F : %? -+ 9 between closed simplicial model categories is a simplicial 
functor if it is equipped with natural maps 

Ho%(X Y) -+ Hom,(F(X),F(Y)) 

compatible with composition and the isomorphism (1). 

Quillen only requires the existence of the objects X@K and XK, whereas we assume 

for simplicity that they are given by tknctors and that the appropriate isomorphisms are 

natural. The isomorphisms (1) and (2) show in particular that the fkctors X H X ~8 K 

and X H XK are adjoint. Furthermore, one can deduce natural isomorphisms 

X@A” E X and X@(KxL) TZ (X@K)@L 

and similarly for XK as in Proposition 1 of [4, II.11 Via the isomorphisms of (2) 

lifting diagrams can be translated to show (cf. Proposition 3 of [4,11.2]) that (SM7) 

is equivalent to either 

(SM7a’) If p :X + Y is a fibration in +Z and j : K H L is a cofibration of finite 

simplicial sets, then 

XL +XK xy.K YL 

is a fibration which is a weak equivalence if p or j is. 

or 

(SM7b’) If i : A H B is a cofibration in % and j:K H L is a cofibration of finite 

simplicial sets, then 

A@LUUA~KB@K-+BBL 

is a cofibration which is a weak equivalence if i or j is. 

A simplicial timctor F gives rise to a natural transformation 

F(X)@K+F(X@K) 



84 S. Schwedel Journal of Pure and Applied Algebra 120 (1997) 77-104 

in the following way. We obtain a natural map 

F(X) C3 AR + F(X @ A”) 

as the image of the identity of X @ An under the map 

Homa(X @ n”,X 6~ An) 2 &,&X,X @ An),, 

+ m&F(X),F(X C3 A”)), E Homg(F(X) ~3 n”,F(X 63 A”)). 

Since X @ - commutes with colimits, this transformation extends to a natural map 

F(X) ~3 K -+ F(X @I K). This argument can be reversed to show that a transforma- 

tion F(X) @ K -+ F(X ~3 K) with suitable compatibility assumptions makes F into a 

simplicial fimctor. 

Here is the standard example of how the functor @ can arise. In any category GF? 

with finite coproducts, we can define the product of objects with finite sets by taking 

the coproduct of copies of that object indexed by the sets in question. This extends to 

a fimctor % x Y + s%?, where s%? denotes the category of simplicial objects in %‘. More 

precisely, if X is an object of ‘3 and K is a finite simplicial set, we define X x K, a 

simplicial object in %, to be uoEK, X0 in dimension n, where X0 = X for all CJ E K,,. If 

a : [m] -+ [n] is a morphism in the category A, the structural morphism a* : (X x K),, -+ 
(X x K)m maps X0 to X,.,,, by the identity of X. If the category ‘3 is already a cate- 

gory of simplicial objects, we thus obtain bisimplicial objects which we can diagonalize 

to obtain objects of %Z again, i.e., X ~3 K = diag(X x K). This procedure applies for 

example in the case of simplicial sets, simplicial rings and simplicial modules. 

If %? is pointed by a zero object *, we define CX, the suspension of an object X, as 

the pushout of the diagram 

X8 aA’ - X@A’ 

* 

and we define Swr, the loop object of X as the pullback of the diagram 

XA’ 

* -xa*’ 

Suspension and loop define adjoint endofunctors of %?, suspension being the left adjoint. 

Using axiom (SM7b’) one shows that suspension preserves cofibrations and acyclic 

cofibrations. So C preserves weak equivalences between cofibrant objects by Lemma 9.9 

of [2]. Dually, the loop functor preserves fibrations, acyclic fibrations and weak equiv- 

alences between fibrant objects. Note also that C(X) @K S Z(X 63 K) and Q(XK) 2 

(CQK for any finite simplicial set K. 
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Recall that on the homotopy category of a pointed closed model category, not nec- 

essarily simplicial, there is a pair of adjoint functors, also called loop and suspension 

[4,1.2]. If %’ is closed simplicial, the relation between these functors on the homotopy 

category and the functors with the same names on %’ is as follows. If an object A 

is cofibrant, E4 is a model for the suspension of A in the homotopy category. This 

amounts to saying that the suspension functor on Ho%? is the total left derived fimctor 

[4, I.41 of the suspension on V. Similarly, the loop functor on Ho%? is the total right 

derived limctor of a: %? + 59, which means that for a fibrant object X, QX is isomor- 

phic to the loop object of X in the homotopy category. However, if objects are not 

cofibrant (resp. fibrant), the suspension or loop formed in % will in general have the 

‘wrong’ homotopy type. So one important feature of a closed simplicial model category 

is that the loop and suspension functors can be lifted from the homotopy category to 

%‘; this makes it possible to define spectra and to study the stable homotopy theory 

of 59. 

If V is any category and B an object of %?, we can form the category %9/B of objects 

containing B as retract. The objects of this category are triples (X, r :X -+ B,s : B + 

X), where X is an object of %7 and r and s satisfy rs = lg. Morphisms are the maps 

in V that respect the retractions and the sections. 

The category g//B inherits a structure of a closed simplicial model category from 9? 

in the following way. We define cofibrations, fibrations and weak equivalences via the 

forgetful fimctor, i.e., a morphism (X,r,s) + (X’, r’, s’) is a cofibration (resp. fibration 

or weak equivalence) in W/B if and only if X + X’ is a cofibration (resp. fibration 

or weak equivalence) in ‘3. 

If K is a finite simplicial set, we define (X, r,s) @ K to be the pushout in GZ of the 

diagram 

B@K-X@K 

with the induced structural maps. (X,~,S)~ is defined as the pullback in V? of the 

diagram 

XK 

I 
Bz BAo -BK 

with the induced structural map. Hom,,&(X, r,s), (X’, r’,s’)) is the subcomplex of 

m&X,X’) of ‘maps which respect the retraction and the section’ (cf. Proposition 6 

of [4,11.2]). 
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Proposition 1.2.2. With these dejinitions, g//B becomes a closed simplicial model cat- 
egory which is proper if V is. 

Proof. In [4,11.2, Proposition 61, the analogous statement for the category of objects 

over B is proved, and a similar proof works in our case. To see that properness is 

inherited, we note that the forgetml fimctor %?/JB + %? commutes with pushouts and 

pullbacks (though not with limits or colimits in general). 0 

1.3. The small object argument 

The small object argument is used in [4,11.3] to construct factorizations of maps 

of spaces. We will use it systematically to insure good behaviour of colimits over 

sequences of cofibrations. 

Definition 1.3.1. Let V be a closed simplicial model category which has sequential 

colimits. An object M of %? is small if for every sequence X0 )--, ... H xk H . .. of 

cofibrations in %? and for all finite simplicial sets K the map colim Hom,&M@K,Xi) + 

Hom&V@K, colimXi) is a bijection. We say that %’ admits the small object argument 
if there is a set {Li H Mi}ieJ of cofibrations, called test maps, with small sources and 

targets, such that a map in %? is an acyclic fibration (resp. fibration) if and only if it 

has the right lifting property with respect to the test maps (resp. with respect to all 

acyclic cofibrations among the test maps). 

Examples of model categories that admit the small object argument are categories 

where the objects have underlying simplicial sets such as simplicial (abelian) groups, 

simplicial modules, simplicial rings. In these cases the objects freely generated by 

finite simplicial sets are small and the test maps are the ones induced by the inclusions 

ann + An of the boundaries and A;f- + An of the horns into the n-simplicies. (Ai is 

the union of those faces of A” which contain the kth vertex.) Similarly, the category 

of topological spaces with its usual model category structure admits the small object 

argument (cf. [4,11.3]). 

Let %?” denote the category of infinite sequences A : A0 --f . . . + Ak -+ . . ’ of com- 

posable maps in %‘, with morphisms the natural transformations. If % is a closed model 

category, V” also becomes one as follows. Fibrations and weak equivalences are the 

maps of sequences which are termwise fibrations or weak equivalences respectively. A 

map of sequences A -+ B is a cofibration if the maps A0 + Bo and A,, UA,_ I B,_ 1 --+ B, 
are cofibrations in V. Checking the axioms is straightforward. Note that every cofibrant 

sequence is a sequence of cofibrations, but not vice versa, unless the first object in the 

sequence is cofibrant. Using the characterization by lifting properties one sees that the 

colimit, as a functor %? --) %?, preserves cofibrations and acyclic cofibrations. 

Lemma 1.3.2. Let %? be a closed simplicial model category which admits the small 
object argument. Let X and Y be sequences oj’cojibrations in Gf?. 
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(a) A fibration (resp. acyclic Jibration) of sequences X + Y induces a jibration 
(resp. acyclic Jibration) on the colimits of the sequences. In particular, the colimit 
preserves weak equivalences between sequences of cofibrations. 

(b) Suppose W is pointed and denote by BY the sequence obtainedfrom Y by taking 
the loop termwise. Then a Jibration (resp. acyclic jibration) of sequences X + QY 
induces a jibration (resp. acyclic fibration) colimX + 52 colim Y. 

(c) (Homotopy colimits commute with jinite inverse limits) Let D: I + %” be a 
jinite diagram of sequences in W (i.e., a functor from a jinite category) such that 
for all objects i of I, the sequence D(i) consists of cofbrations, and let X be another 
sequence of cofibrations. Then any weak equivalence X -5 liml D of sequences gives 
a weak equivalence colimX 1 limI(colim o D). 

Proof. (a) We prove the statement for acyclic fibrations; in the case of fibrations, the 

argument is similar. We check that the induced map on colimits has the right lifting 

property with respect to every test map Lj H A4j. Since source and target are small 

we know that a lifting diagram factors 

if- Yk - colim Y; 

for suitable k such that the left square commutes if k is chosen big enough. Hence a 

lifting exists. 

(b) If an object M is small, so is its suspension CM. Since Z and s2 are adjoint, 

we know that for such an M the map colimHomw(M,SZY;) + Home(M,SZcolim yi) is 

a bijection. The rest of the argument is the same as in part (a). 

(c) Since colim preserves acyclic cofibrations, we can assume that XG IimID is an 

acyclic fibration; we claim that in this case the map colimX-% limI(colim o D) is also 

an acyclic fibration. Since filtered colimits and finite limits of functors to the category of 

sets commute, for small L the map colimHomu(L, 1imID) --f Homq(L, liml(colim oD)) 
is a bijection. The rest is again as in part (a) or (b). 0 

Lemma 1.3.3. Suppose GF? is a closed simplicial model category with arbitrary 
coproducts which admits the small object argument. Then morphisms can functo- 
rially be factored as cojibrations followed by acyclic Jibrations. Also morphisms can 
functorially be factored as acyclic cojibrations followed by jibrations. 

Proof. The argument is completely analogous to [4,11.3, Lemma 31 and we will not 

repeat it. We just use the test maps where Quillen uses the inclusions of the boundaries 

of simplices. Since the construction is using all appropriate diagrams in the gluing 

process, the factorization produced is in fact functorial. 0 
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Lemma 1.3.4. If V admits the small object argument, then so does V//B for any 
object B of %?. 

Proof. Let {zj : Li H Mj}jEJ be a set of test maps for 5%. From a map f :X + B in 

% we can construct an object (BUX, ~BI.I f : BIIX + B, B + B LIX) of g//B which we 

denote by B IIf X. Using that (B I.If X) @ K E B UT (X ~3 K) with respect to the map 

f :X @ K + X L B and the fact that the forgetful fimctor W//B -t V commutes with 

sequential colimits, one sees that if X is small in ‘%‘, then B IIf X is small in W//B. 
We obtain a set of test maps for q//B if we take all the maps B I.IfT, Lj H B LIf Mj 

for j E J and f E Homq(Mj, B). c3 

2. Spectra 

2.1. How spectra form a model category 

In this section we introduce spectra in pointed closed simplicial model categories 

and show how the category of spectra forms a model category. We will use ideas of 

[l] where spectra of simplicial sets are treated. The fact that our definitions work relies 

on a theorem of [l]. 

Definition 2.1.1. A spectrum X in a pointed closed simplicial model category V is a 

collection of objects X, of 97 and maps CX, ---f Xn+i (n = 0, 1,2,. . .). A morphism of 

spectra f :X -+ Y is a collection of maps f ,, :X, + Y, such that all the diagrams 

commute. 

We denote by qw the category of spectra in V. 

A spectrum in our sense is sometimes called a prespectrum by other authors. With 

the familiar example of spaces in mind one might think that our definition does not 

give enough maps and homotopies between spectra. But we have to keep in mind 

that when passing to the homotopy category in homotopical algebra, we have to re- 

place the sources of maps by cofibrant objects and the targets by fibrant objects. We 

will see that cofibrant spectra are the ones where all objects are cofibrant and the 

structural maps are cofibrations; furthermore, the fibrant spectra turn out to be the de- 

greewise fibrant G-spectra. As in the case of spaces, there are enough maps of the 

kind we allow between such spectra, so we do get the stable homotopy category we 

want. 
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In VO” there exist all the types of limits and colimits that exist in 59 and the (co-) 

limits are formed degreewise. 

An important example is the suspension spectrum of an object X which we denote 

by P’X. It is defined as (Z-X), = Z”X, the structure maps being identity maps. This 

extends to a functor .P : V --+ GP which is left adjoint to the functor which maps a 

spectrum to its degree zero term. 

If X is a spectrum and K a finite simplicial set, define the spectrum X @ K by 

(X @ K)n = X, @K with structure maps Z(X, 18 K) E CX, @K + &+I ~3 K. Similarly, 

define XK by (XK)n =X,” with structure maps adjoint to X,” + (~LX,+I)~ E+ CCC:+,. 

The definition of X @K is a special case of the fact that simplicial functors induce 

fimctors of spectra via degreewise application. More precisely, suppose F : Sf? + 9 

is a simplicial functor between pointed closed simplicial model categories preserving 

the zero object. The maps F(X) ~3 K + F(X ~59 K) induce a natural transformation 

ZF(X) -+ F(CX). Hence we get a functor Fw:Va + 9’” which is given on objects 

by Fm(X), = F(&) with structural maps CF(X,,) --+ F(Z&) + F(&+I). The diagram 

of functors 
Z” 

%------+W” 

F 

I I 

F” 

g-am 
z‘” 

does not in general commute, but we obtain a natural transformation C”F -+ F”O.P 

which is an isomorphism if CF + FZ is one. 

Next consider adjoint functors F : %? + 53 and G : 53 + Gf? between pointed closed 

simplicial model categories, F being the left adjoint. If F is simplicial and the maps 

CF(X) 3 F(ZX) are all isomorphisms, we can define a transformation CG + GZ by 

CG(Y) + GFZG(Y) = GZFG(Y) + GC(Y) 

using the adjunction morphisms. Hence G also induces a functor Gm : GP + GP and 

Fm and Ga are again adjoint. 

Using the model category structure on ‘3 we want to define a closed simplicial 

model category structure on VP such that the weak equivalences are the maps inducing 

weak equivalences on the homotopy colimits of the sequences X, -+ mX,+r + . . . + 
Qk&,k + . ’ ‘. 

Definition 2.1.2. A spectrum X is an Q-spectrum if there are weak equivalences 

X, IXnf from the X, to fibrant objects such that the maps X, s szx,f,, are weak 

equivalences in %. 

Since we want this to be an honest definition, it should not depend on choices. In 

fact, if Xn+r -2X:+, is a different choice of weakly equivalent fibrant object, then 

Xl3 + s2x,+, is a weak equivalence if and only if X, --f C2%f+, is one; one proves this 
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by considering first an acyclic cofibration to a fibrant object. The definition takes into 

account that szX,+t may have the wrong homotopy type if Xn+t is not fibrant. 

We will say that a map of spectra is a strict weak equivalence if it is degreewise 

a weak equivalence. If X -+ Y is a strict weak equivalence of spectra, then X is an 

&spectrum if and only if Y is one. A map X + Y of spectra is a strict cojibration 
if the maps 

are cofibrations in %. The strict jibrations are the maps which are degreewise fibrations 

in V. It is straightforward to check that the strict notions make GP into a closed 

simplicial model category which is proper if % is. 

We assume for the rest of this section that %? admits the small object argument. 

Lemma 1.3.3 shows that in this case, the factorizations of axiom (CM5) can be cho- 

sen functorially. For a spectrum X we can then functorially construct a new spectrum 

QX and a natural map vx : X - - + QX. QX is the candidate for a weakly equivalent 

SZ-spectrum associated to X. We define objects Zik, i, k 2 0 and a lot of maps connect- 

ing these. Set ZOO = Xk. For i > 0 let Z& be the object in the functorial factorization 

and define Zi,k + QZi,k+t aS the COmpOSitiOll Zi,k + G?Zi_t,k+t “(-,. aZi,k+t. 

We end up with commutative diagrams 

xk=z,k - z,k - ‘- Z,k_“. 

I I I 
Qxk+l = QZO.k+, - QZ,,,+, - Qzi,k+l 

. 

and we define (QX)k = colimi>oZik with structure maps adjoint to _ 

(Qx)k = COhli$ik + ~COhl&i,k+~ = fi(ex)k+l. 

Then the canonical maps Xk --f colimj>cZj,k = (QX)k assemble to a map of spectra 

qx:X + QX. We collect some properties of this construction: 

Lemma 2.1.3. Let % be a proper pointed closed simplicial model category which 
admits the small object argument. 

(a) If X is degreewise jibrant, then QX is an Q-spectrum. 
(b) If X is a degreewise jibrant Q-spectrum, then qx :X -+ QX is a strict weak 

equivalence. 
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(c) Zf X + Y is a strict weak equivalence between degreewise jibrant spectra, then 
QX + OY is a strict weak equivalence. 

(d) The two maps Qrx,nox : QX --+ QQX are degreewise left homotopic [4, I. l] 
relative to X. This means that there are commutative diagrams 

_ 

(QX), UXk (OX), * 
-- 

(QQX), 

where the left map is the codiagonal. 
(e) 0 preserves strictly homotopy Cartesian squares of degreewise fibrant spectra. 

Proof. (a) The acyclic fibrations Zik N\\ QZj_i,k+i fit into the big diagram above 

keeping it commutative. On colimits they induce the map (QX)k + a(QX)k+i which 

is thus an acyclic fibration by Lemma 1.3.2 (b). If all Xk are fibrant, so are all Z&k 

and thus also the (QX)k by Lemma 1.3.2 (a). Hence QX is an 8-spectrum. 

(b) If X is a degreewise fibrant !hpeCtrUm, the maps Xk 3 . . . q Q’&+i L . + . 

are all weak equivalence, hence the maps Zik LZi+i,k are all acyclic cofibrations. By 

lemma 1.1.4, Xk G COh~>&k = (&)k is also an acyclic cofibration. - 
(c) If X + Y is a strict weak equivalence between degreewise fibrant spectra, 

the maps on the loops Q’Xk+i s @Yk+i are weak equivalences and so are the 

maps between the Zik’s belonging to X and Y. By Lemma 1.3.2 (a) the induced 

map (QX)k ZI-, (QY)k is weak equivalence. 

(d) Fix a degree k. We denote by Zk the objects arising in the construction of QQX 

from QX. Consider the diagram 

z; : (@i,, = z;, - z:, - . . . - (&X), %% 
The two maps in question (QX)k + (QQX)k agree on Xk and if we restrict both to 

Zik, they factor through Zk. Furthermore, one checks that both restrictions Zik --+ Z[k 

agree after composition with the acyclic fibration Z,k G Q’(QX)k+i. 

We use the model category structure for sequences in % introduced in Section 1.3. 

As indicated in the above diagram, we denote by Zk the sequence whose colimit is 

(QX)k, by Zi the one whose colimit is (QQX)k and we denote by X, the constant 

sequence made up of Xk. Factor the codiagonal map 
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in the model category %? and lift in the square 

The left homotopy is obtained by taking the colimit of this diagram. 

(e) By part (c), 0 preserves strict weak equivalences between degreewise fibrant 

spectra. So it remains to show that a pullback square 

B-Y 

with the right map being a strict fibration is mapped to a strictly homotopy Cartesian 

square. We fix k and check that the degree k part is homotopy Cartesian in %?. For this 

we need more notation. Denote by Zi the objects arising in the construction of OX 

from X, and similarly for the other spectra involved. As in part (d), Zf denotes the 

sequence whose colimit is (oX)k. 

Choose a factorization 

in the category of sequences. Lemma 1.3.2 (a) shows that applying the colimit gives 

a facorization 

(QX)k GcolimW ++ (QY)k 

in V which we will use to check homotopy cartesianness. Consider the diagram 

FAZZX rk \ \ \ \ \ \ \ - \ \ \ \ 
‘4 l- 

Q’Bk+, - Qi 'k+, .. nix k+i 

where the diagonal map on the right is a chosen lifting. By the dual of the glu- 

ing Lemma (Lemma 1.1.9), the induced map Z,: xz; Wi 5 O’Bk+i x~~Y~+~ QXj+i is a 
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weak equivalence. The commutative triangle 

shows that ZkBxyx LZf xz; W is a weak equivalence of sequences and Lemma 

1.3.2(c) applied to pullbacks shows that the map 

(Q(B X y X)), = COlimiZxiX rX ZI-, COlimiZi X,,rim.zY COlimi Wi 1 d 

= (QB)k X (QYjk COlimi Wi 

is a weak equivalence. This shows that the square 

(Q@ XI’X)), - <@>k 

I _I 

@B>k (ey>k 

is homotopy Cartesian and thus finishes the proof. 0 

The previous lemma indicates that before applying Q we should replace a spectrum 

X by a degreewise fibrant spectrum Xf: we define X,f by the (functorial) factorization 

X,,X,f++ * 

For k > 0, XL is similarly defined by the factorization 

By induction, Xk LX, is an acyclic cofibration, hence X + Xf is a strict weak equiv- 

alence of spectra. Set QX = &(Xf); there is again a natural map X + Xf + 0(X’) = 

QX. We set s20°X = (QX)a and call this the injinite loop object of X. 

Definition 2.1.4. A map of spectra X + Y is a weak equivalence if the map QX + 

QY is a strict weak equivalence. The cojibrations are the strict cofibrations and a 

map is a jibration if it has the right lifting property with respect to all acyclic 

cofibrations. 

Part (c) of Lemma 2.1.3 shows that strict weak equivalences are weak equivalences. 

By part (a), QX is an S2-spectrum. By part (b), for an !&spectrum X, the map X + QX 

is a strict weak equivalence, hence a map between !&spectra is a weak equivalence if 

and only if it is a strict weak equivalence. To see that X -+ QX is a weak equivalence 
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of spectra, it is enough to show that for a degreewise fibrant spectrum X, the map 

: X -+ QX is a weak equivalence of spectra. According to our definition of weak 

guivalences, we have to check that the map &vi) : &(Xf) + @(oX)f) is a strict 

weak equivalence. Part (d) of Lemma 2.1.3 implies that the diagram 

commutes up to degreewise left homotopy. But the three other maps in the square are 

strict weak equivalences by the various parts of Lemma 2.1.3, hence Q(&) also is a 

strict weak equivalence. By part (e) of Lemma 2.1.3, Q preserves strictly homotopy 

Cartesian squares. Now we can prove: 

Proposition 2.1.5. Let %? be a pointed proper closed simplicial model category which 
admits the small object argument. Then V” is a closed simplicial model category. 
Moreover, a map f :X + Y is a jibration if and only if it is a strict fibration and 
the square 

x- QX 

I I 
Y- QY 

is strictly homotopy Cartesian. 

Proof. We can apply Theorem A.7 of [l] to the strict model category structure. The as- 

sumptions (A.4) and (A.5) of that theorem are satisfied. The pullback part of condition 

(A.6) is proved as follows: if 

Bx,X-X 

B _ -I’ 

is a pullback square of spectra such that the lower map is a weak equivalence and the 

right map is a fibration, we know that the square is strictly homotopy Cartesian since 

fibrations are strict fibrations. So if we apply Q we obtain another strictly homotopy 

Cartesian square. But the lower map becomes a strict weak equivalence after application 

of Q, so the upper map also does, hence it is a weak equivalence. 

The proof in [l] of the fact that the category in question is a closed model category 

does not use the pushout part of (A.6). This is only needed to show properness of 
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%?‘, which we have not claimed in the proposition. Thus Theorem A.7 of [l] proves 

that %a is a closed model category and it also provides the characterization of the 

fibrations as we have stated it above. 

It remains to check that %? . IS simplicial. The definition of X EI K and XK for 

spectra was given at the beginning of this section. The function complexes can be 

defined by 

Hom,,(X, Y), = Homv-(X @ A”, Y) 

and the other structure of Definition 1.2.1 is obtained from the corresponding data in 

V. Most of (SM7b’) is straightforward; the only nontrivial thing is to verify that for 

an acyclic cofibration A GB of spectra and a cofibration K H L of finite simplicial 

sets, the cofibration 

is again a weak equivalence. 

Fix a vertex of An. Then the acyclic cofibration no s An induces a strict acyclic 

cofibration A 18 a” UA B G B 18 A”. The map A ~3 A” Ci A c3 a” UA B is an acyclic 

cofibration because it is a pushout of AE B. Hence A @ An z B @ A” is an acyclic 

cofibration. Now we induct on the dimension and number of the nondegenerate sim- 

plices in L which do not lie in K. Suppose 

is an acyclic cofibration whenever all additional simplices of L have dimension strictly 

less than n. Then A ~3 aAn-’ 2 B @ &In-’ is an acyclic cofibration, hence 

is seen to be one by looking at the pushout square 

AcMA”-’ ’ - * B@aA”-’ 

Now if all simplices in L-K have dimension less than or equal to II, the result follows 

by induction on the number of these additional simplices. 0 

Corollary 2.1.6. Under the hypothesis of the previous proposition, the Jibrant spectra 

in 59” are precisely the degreewise jibrant Q-spectra. 
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We conclude this section with a remark how weak equivalences of spectra can also 

be characterized as the maps inducing isomorphisms on homotopy groups if the objects 

of %? have underlying simplicial sets. Suppose there is a ‘forgetful’ functor V from 59 

to the category of pointed simplicial sets, commuting with inverse limits, with the 

following properties: a map in %? is a fibration or weak equivalence if and only if its 

image is a fibration or weak equivalence of simplicial sets respectively; there is a natural 

isomorphism V(s;IX) 2 QV(X). We can define the homotopy groups of an object of 

97 as the homotopy groups of the geometric realization of its underlying simplicial set. 

Suppose further that for a sequence Xc + . . . + & + . . . of cofibrations we have 

n,colimXi Z colimr&. For pointed simplicial sets Y there is a natural transformation 

]OY ( + fit YI which is a weak homotopy equivalence if Y is fibrant (where 1 - ( 

denotes geometric realization). 

Given a spectrum X, the maps X, -+ s2x,+i induce maps 

lV(x,)I + lV(Qxn+1)l ” lQ~GG+1)l -+ ~lw-n+1)l 3 

hence they induce maps XjXn -+ xj+iXn+i. X is an SZ-spectrum if and only if these 

maps are all isomorphisms. We define the homotopy groups of the spectrum X as 

rCjX = colimi>anj+iXi for j an integer. Then we have 7Cj(QX)k g colimi>exj& g 

colimi>anj9iXl+i Z colimi>snj+iXk+i E Zj-kX. Hence a map of spectra is a weak _ _ 
equivalence if and only if it induces isomorphisms on homotopy groups. 

2.2. Linear model categories 

Definition 2.2.1. We will call a pointed closed model category w linear if for any 

object X the adjunction map X + SZCX in the homotopy category of %? is an isomor- 

phism. 

If % is simplicial, we have functors on % which give models for loop and suspension 

on Ho%. Hence in this case linearity means that for any cofibrant object A, fibrant 

object X and weak equivalence CA LX, the adjoint map A + 0X is also a weak 

equivalence. Thus in a linear closed simplicial model category, the suspension spectrum 

of any cofibrant object is an Q-spectrum. One can show furthermore that for proper 

pointed closed model categories, linearity is equivalent to the condition that homotopy 

cocartesian squares are also homotopy Cartesian. This explains the terminology, for a 

linear model category is one for which the identity functor is linear in the sense of 

Goodwillie’s Calculus of Functors [3]. 

In a linear closed simplicial model category %‘, the suspension spectrum mnctor 

induces an equivalence of homotopy theories of %? and of a certain full subcategory of 

the spectra category. In order to characterize the spectra in this subcategory, we need 

a suitable notion of a ‘connected object’ in V. So let us assume that there is a class 

of objects of 59 which we call connected, closed under weak equivalences, containing 

all suspensions, with the following property: a map X + Y between connected fibrant 
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objects is already a weak equivalence if the map s2x + SZY is one. Then a spectrum 

X will be called connective if for all k 2 1 the objects (QX), are connected. 

If objects in SF? have underlying simplicial sets and suspension increases connectivity, 

the usual notion of connected simplicial sets does the job. However, if the category 

in question is a category of spectra, our terminology is misleading because in this 

case every object is a suspension (up to weak equivalence). Hence all objects are 

connected according to our definition and all spectra (of spectra) are connective. Thus 

the next lemma, which we will eventually apply to the category of simplicial mod- 

ules over a simplicial ring, also indicates that the homotopy theory is really stable 

under stabilization, because spectra and spectra of spectra have the same homotopy 

theory. 

Lemma 2.2.2. Suppose % is a linear pointed proper closed simplicial model category 

which admits the small object argument. Then the total left derived functor (cf: 
[4,1.4]) of the suspension spectrum functor induces an equivalence of the homotopy 
theory of V and the homotopy theory of the connective spectra in 9. The quasi-inverse’ 
is given by the functor LP. 

Proof. ‘Equivalence of homotopy theories’ is to be understood in the sense of [4,1.4]. 

It comprises an equivalence of the homotopy categories that preserves cofibration se- 

quences, fibration sequences, loop and suspension on the homotopy categories. The 

standard way to construct such an equivalence is to apply Theorem 3 of [4,1.4]. How- 

ever, we will refer to Theorem 9.7 of [2] since it shows how the same conclusion can 

be achieved with fewer assumptions on the functors involved. 

As we mentioned before, the suspension spectrum functor Z”O is left adjoint to 

the functor -0 : VW + GT? which associates to a spectrum its degree zero term. .P 

preserves cofibrations and -0 preserves fibrations since these are always strict fibrations. 

Thus Theorem 9.7 (i) of [2] shows that the total derived functors L(P’ ) : Ho V + 
Ho VP and R(-o) : Ho %?W -+ Ho V exist and are adjoint. The recipe for total right 

derived functors says that we replace an object by a weakly equivalent fibrant one and 

the apply the fimctor under consideration. Now QX is a degreewise fibrant G?-spectrum, 

hence it is such a fibrant substitute for a spectrum X, and since CPX = (QX)s, the 

total right derived functor of -0 is 52”. 

Now let M be a cofibrant object of W and X a connective fibrant spectrum. Then 

COOA4 is a connective &spectrum, so L(.P) takes values in the subcategory of con- 

nective spectra. A map between the connective spectra .PM + X is a weak equiv- 

alence if and only if its adjoint map A4 -+ X0 is one. The proof of Theorem 9.7 

(ii) shows that this implies that for all objects M of Ho%? the adjunction morphism 

1~~ w + R( -0) oL(.F ) is a isomorphism and that for all connective spectra in Ho VW 
the adjunction morphism L(Z;“) o R(-0) + CHIC+ is an isomorphism. Hence L(Ca) 

and f2O” provide an equivalence of Ho %? with the full subcategory of Ho ‘SO” consisting 

of the connective spectra. q 
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3. Commutative simplicial rings and simplicial modules 

3.1. Preliminaries 

Specializing the results obtained to the examples we primarily had in mind, we 

will see that spectra of modules and spectra of commutative simplicial rings over 

a fixed commutative simplicial ring form proper closed simplicial model categories. 

Furthermore, the category of simplicial modules over a simplicial ring is linear, hence 

its homotopy theory does not change under stabilization. 

All rings and algebras we consider will be commutative. For a fixed simplicial 

ring B we denote the category of simplicial B-modules by B-mod. The category of 

commutative simplicial rings will be denoted by s&Y:. Following Quillen, we give a 

definition of a closed simplicial model category structure for the category of simplicial 

B-modules and for the category of commutative simplicial rings. 

Call a map of simplicial B-modules (resp. commutative simplicial rings) a fibration or 

a weak equivalence if it is a fibration or weak equivalence of the underlying simplicial 

sets. Call such a map a cofibration if it has the left lifting property with respect to 

all acyclic fibrations. If M is a simplicial B-module (resp. R a commutative simplicial 

ring) and K a finite simplicial set, define the simplicial B-module M @ K (resp. the 

commutative simplicial ring R ~3 K) as the diagonal of the bisimplicial module M x K 
(resp. the bisimplicial ring R x K; cf. Section 1.2 for the definition of X x K). The 

simplicial mapping complex of maps of K into the underlying simplicial set of M (resp. 

R) is naturally endowed with the structure of a simplicial B-module (resp. commutative 

simplicial ring), which we define to be the object MK (resp. RK). Finally, the function 

complex simplicial sets for simplicial B-modules or commutative simplicial rings are 

defined as in [4, II, p. 1.71. 

We say that a map M + M’ of simplicial B-modules (resp. commutative simplicial 

rings) is a free map if there are subsets C, CM,‘, stable under the degeneracy maps, 

such that ML is isomorphic (via the given map) to the direct sum of M,, and the free 

B,-module generated by C, (resp. to the polynomial ring over M,, with C,, the set of 

indeterminates). 

Lemma 3.1.1. With these dejinitions, the categories of simplicial B-modules and the 
category of commutative simplicial rings become closed simplicial model categories 
which admit the small object argument. The cqfibrations are precisely the retracts of 
the free maps. 

Proof. For a proof, we again refer to [4]. In the case of simplicial B-modules, this 

is given in 11.6. In II.4 (Theorem 4) Quillen gives a general criterion for a category 

of simplicial objects to be a closed simplicial model category. This theorem applies 

in the case of commutative simplicial rings. For the characterization of cofibrations cf. 

Remark 4 of [4,11.4]. 

We have to mention why the small object argument works. The point is that in both 

cases there exist free objects generated by simplicial sets (i.e., the forgetful functor to 
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simplicial sets has a left adjoint). The free objects generated by the finite simplicial 

sets are small and as a set of test maps we can take the maps induced by the inclusions 

aA” -+ An of the boundaries and A; -+ An of the horns into the standard simplicies. 

q 

Lemma 3.1.2. The model category of commutative simplicial rings is proper. 

Proof. The pullback part of the properness definition is proved using the 5-lemma 

because for fibrations we have long exact sequences of homotopy groups. 

Now consider a cofibration X H M and a weak equivalence X z Y of commutative 

simplicial rings. The pushout of commutative simplicial rings is given by degreewise 

tensor product. Since A4 is also cofibrant as an X-module, the tensor product with A4 

over X is equivalent to the derived tensor product (by the corollary [4, II, p. 6.101). 

The spectral sequence Theorem 6(b) of [4, II.61 thus shows that tensoring with M over 

X preserves weak equivalences. So M AA4 @x Y is a weak equivalence. 0 

Lemma 3.1.3. The model category of simplicial B-modules is proper and linear. 

Proof. Let M H N be a cofibration of simplicial B-modules. The quotient map N -W 

N/A4 is a degreewise surjective homomorphism of simplicial groups, hence a Kan 

fibration. The cofibration, being the retract of a free map, is degreewise injective, 

hence M is the fibre of N -M N/M. So for cofibrations of simplicial B-modules we 

have long exact sequences of homotopy groups and the pushout part of the properness 

definition can be proved like the pullback part using the 5-lemma. For any B-module 

M, the adjunction map A4 -21-, QCM is a weak equivalence [4,11.6, Proposption 11; 

since furthermore all objects in B-mod are fibrant, B-mod is linear. 0 

Since &A? is a proper closed simplicial model category with small object argument, 

so is sS!//B, the category of commutative simplicial rings containing a simplicial ring 

B as a retract. Note that an object of s&?//B is nothing but an augmented commutative 

simplicial B-algebra. Denote by Z the augmentation ideal functor Z : sS?/JB + B-mod. 

Then for an augmented B-algebra X, X E B@Z(X) as a B-module and all morphisms in 

s%?//B map the B summand of this decomposition by the identity. Hence a map in &2//B 

is a weak equivalence (resp. fibration) if and only if it is one on the augmentation 

ideals. If we take Z(X), rather than the whole X, as the ‘underlying simplicial set’ of an 

object X of &2//B, the remark at the end of Section 2.1 applies and shows that weak 

equivalences of spectra in s92/lB are the maps inducing isomorphisms on homotopy 

groups. The same is true for B-modules, where ‘underlying simplicial set’ has its usual 

meaning. Proposition 2.1.5 and Lemma 2.2.2 apply and show 

Corollary 3.1.4. The spectra categories (s%?//B)O” and (B-mod)M are closed simpli- 

cial model categories such that the weak equivalences are the maps inducing isomor- 

phisms on homotopy groups of spectra. The total left derived functor of the suspen- 

sion spectrum functor induces an equivalence of the homotopy theory of simplicial 

B-modules and the homotopy theory of connective spectra of simplicial B-modules. 
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Later we will need to know that the connectivity of modules behaves under tensor 

product in the same way as the connectivity of spaces behaves under smash product; 

this follows, e.g., from the spectral sequence for the derived tensor product ([4,X6], 

Theorem 6 (b) and its corollary]): 

Lemma 3.1.5. Let M be a cojibrant, m-connected simplicial B-module 
n-connected simplicial B-module. Then N (8’~ A4 is (n + m + 1)-connected. 

3.2. Equivalence of stable homotopy theories in the rational case 

and N an 

The next task will be to prove that for commutative simplicial Q-algebras B the 

homotopy theories of spectra in s&?jB and of spectra of B-modules are equivalent. 

The augmentation ideal functor I : s&?//B -+ B-mod is right adjoint to Sym : B-mod + 

s%‘[B which maps a B-module to its symmetric algebra. The natural map Sym (M) @ 

K + Sym (M@K) is an isomorphism for any B-module A4 and any finite simplicial set 

K since Sym commutes with colimits. It makes Sym into a simplicial functor such that 

the natural map CSym (M) -+ Sym (CM) is again an isomorphism. So we get induced 

adjoint functors Symoo : (B-mod)“” + (sCA!//B)~ and IO” : (s&?//B)“O + (B-mod)oo via 

degreewise application (cf. Section 2.1). These are the functors that will be shown to 

induce an equivalences of homotopy theories. 

I preserves underlying simplicial sets (remember that in the case of augmented alge- 

bras over B we are disregarding the B summand). Hence I preserves homotopy groups, 

I” preserves homotopy groups of spectra and so it preserves all weak equivalences of 

spectra. 

We also need to know 

Lemma 3.2.1. I”O preserves jibrations of spectra. 

Proof. We use the characterization of fibrations given by Proposition 2.1.5: a map 

f :X + Y is a fibration of spectra if and only if it is a strict fibration and the diagram 

x-QX 

I I 
Y-QY 

is strictly homotopy Cartesian (i.e., degreewise homotopy Cartesian in U). Since I 
preserves fibrations, weak equivalences and pullback, IO0 preserves strict fibrations and 

strictly homotopy Cartesian squares, i.e., 

~“W) - r”(QX) 

I I 
P(Y) - f"(QY) 
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is strictly homotopy Cartesian. If we can replace Z-(QX) by QZ”(X) and Z-(QY) 

by QZ”(Y) and still obtain a strictly homotopy Cartesian square we are done because 

then the above criterion shows that Z”(X) --)) Zoo(Y) is a fibration. 

In the commutative square 

Z”(X) e I-<QX> 

I I 
QWO - Qz -<QX> 

all maps are weak equivalences. Since I” preserves 12-spectra, the lower and right map 

are weak equivalences between C&spectra, hence they are strict weak equivalences. The 

same is true for Y instead of X, and so two applications of the dual of Lemma 1 .I .8 

to the strict model category structure give the replacement we want. 0 

The following lemma is the key step in the proof of the equivalences of stable 

homotopy theories. 

Lemma 3.2.2. If B is a commutative simplicial Q-algebra and M a coJibrant spectrum 
of B-modules, the adjunction morphism M + ZooSymoo(M) is a weak equivalence of 

spectra. 

Proof. We first show the lemma in the case where A4 is the suspension spectrum of a 

cofibrant B-module W and then use a direct limit argument. Since CW = (Z[S’]/Z[*]) 

8~ IV and Z[S’]/Z[*] is a connected simplicial Z-module, suspension increases con- 

nectivity by Lemma 3.1.5. Hence JCk W is (k - 1 )-connected. 

Next comes the part where we need the assumption that B is a Q-algebra. We show 

that for a cofibrant m-connected B-module A, the map A -+ Z(Sym (A)) is (2m + l)- 

connected. Since A is m-connected, A@” is (nm + n - 1)-connected (Lemma 3.1.5). 

Let S:(A) denote the quotient of A@” by the ac tion of the symmetric group. Since B 
contains CD, this quotient is actually a direct summand and hence it is also (nmfn - l)- 

connected. So the map 

is (2m + 1)-connected. 

Putting the first two parts together, we see that the degree k part of the map Coo W -+ 
ZooSym-(E-W) is (2k - 1)-connected, hence the map is an equivalence of spectra. 

The same argument with possibly different connectivity estimates works if M is only 

ultimately a suspension spectrtmr. By this we mean that there is a number n such that 

Mk = zkk-“M,, for all k _> n, the structure maps in these degrees being identity maps. 

The general case follows because every spectrum of B-modules can be written as the 

colimit of a sequence of spectra which are ultimately suspension spectra and because 

homotopy groups commute with sequential colimits of spectra of B-modules. q 
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Now we can prove 

Theorem 3.2.3. If B is a commututive simplicial Q-algebra, the total left derived 
functor of SymM is an equivalence of homotopy theories L(SymOO): Ho(B-mod)” --+ 

Ho (s~J/B)~ with quasi-inverse R(I”). 

Proof. We apply Theorem 9.7 of [2] again. The functors Symm and P are adjoint. 

P preserves fibrations by Lemma 3.2.1 and SymW preserves cofibrations. It remains 

to check that for cofibrant B-module spectra A4 and fibrant sg//B spectra X a map 

M + Zm(X) is a weak equivalence if and only if the adjoint map SymOO(M) 4 
X is a weak equivalence. But the latter is true if and only if ZWSymOO(M) + 
F’(X) is a weak equivalence, hence the result follows since Lemma 3.2.2 states that 

A4 ~ZmSym~(M) is a weak equivalence. 0 

3.3. Relation with AndrCQuillen homology 

Suppose %? is a proper closed simplicial model category admitting the small object 

argument, so that for every object B of %?, the category of spectra in ‘3//B becomes 

a closed simplicial model category by the procedure of Section 2.1. Let us think of 

a spectrum in %7//B as a B-module in a generalized sense. We have seen that for 

commutative simplicial Q-algebras, this notion of a module coincides with the classical 

one (at least if one is interested in the homotopy theory). Given a map A + B in %‘, 

we can associate to it a generalized B-module, which is the suspension spectrum of 

the unreduced suspension of A over B, in the following way. We consider the category 

A/W/B of objects under A and over B with respect to A -+ B. This is a closed simplicial 

model category in the obvious way, analogous to the recipe for %T[B. The fimctor 

%iB 4 Af%?/B induced by A + B has a left adjoint 

-+ : A/%/B+%[B, (A-+P-+B) H P+=BUAP. 

The composition with the suspension spectrum fimctor Erg” : A/%/B + (@?//B)“O pre- 

serves weak equivalences between cofibrant objects. To obtain a construction invariant 

under weak equivalences, we apply the left derived functor of Cy, to (A + B -5 B) 
to get the suspension spectrum of the unreduced suspension of A over B. 

For a commutative simplicial ring B we have constructed 

functors 

Ho (B-mod) ‘2 Ho(B-mod)OO ?~~ Ho(sR//B)~ 

such that the first pair is an equivalence of the homotopy theories of B-modules and 

of connective spectra of B-modules. If B is a Q-algebra, the second pair is also 

an equivalence of homotopy theories. The last thing we show is that for commu- 

tative simplicial Q-algebras B, the suspension spectrum of a map A + B as dis- 

cussed above coincides with the cotangent complex as defined in [6] under these 

equivalences. 

pairs of adjoint 
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Let us recall the definition of the cotangent complex (cf. [6, 2.2, 41). Given a 

morphism of commutative simplicial rings A -+ B, consider B as an A-algebra. Abelian 

group objects in the category of commutative A-algebras over B can be identified with 

B-modules. The forgetful functor from the category of abelian group objects has a left 

adjoint 

AbA_+,B : A-alg/B + B-mod 

The cotangent complex LB/A of A + B is defined as the value of the left derived 

functor of this abelianization on the object B. LB/A is thus an object well defined up 

to canonical isomorphism in the homotopy category of simplicial B-modules. (There 

also is an explicit formula for AbA_+lB, hence for LB/A, in terms of modules of Kahler 

differentials.) 

Under the identification of B-modules with abelian group objects in A-alg/B, the 

forgetful hmctor corresponds to the composite 

B-mod % sS?//B + A-alg/B = A/s&‘/B, 

where B CE A4 is considered as a ring over B with trivial multiplication on the A4 

summand. B @ - also has a left adjoint 

Abs : d&?//B + B-mod , AbB(X) = Z (X)/Z2(X) . 

Hence abelianization for A-algebras over B factors through s&?//B. 
The diagram 

A-alglB 
L 

+ sSi?//B - (s9flB)” 

commutes up to isomorphism of functors because Abs(CX) S CAbB(X). Since LB/A = 
L(AbA_al,,,B)(B), it follows that the cotangent complex coincides with L(Cy)(B) if 

we can show that R(Z-) is isomorphic to the left derived functor of Abr. This is 

the content of the last lemma (remember that Zoo preserves all weak equivalences of 

spectra, so that R(ZOO)(X) is isomorphic to Z”(X) in the homotopy category for all 

spectra X, not just for the fibrant ones). Projection defines a natural transformation 

Z -+ Z/Z2 = AbB and hence a natural transformation Zoo + Abr. 

Lemma 3.3.1. Let B be a commutative simplicial Q-algebra. Then for all cojbrant 
spectra X in (s92,fB)O”, the map ZooX + AbpX is a weak equivalence. 

Proof. Suppose first that X = SyrnOO( W) for some cofibrant spectrum W of B-modules. 

Forming the symmetric algebra and then dividing its augmentation ideal by its square 

gives back the module one has started with. Hence Abp(X) % W. Furthermore, the 
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map A@‘(X) E W + I”SynP( W) = P(X), which was shown in Lemma 3.2.2 to 

be a weak equivalence, is a right inverse to the map in question. Hence that map is 

also a weak equivalence. 

The general case follows because, up to weak equivalence, all spectra in (s%?//B)O” 

are of the form considered in the first part. More precisely, if X is any cofibrant spec- 

trum of rings over B, choose a cofibrant B-module spectrum W and a weak equivalence 

W UP in (B-mod)“. As we have noted in the proof of Lemma 3.2.2, this im- 

plies that the adjoint map Svm”( W) LX is also a weak equivalence. IO0 preserves 

all weak equivalences, hence we are reduced to the first part if we can show that Abp 

preserves weak equivalences between cofibrant objects. 

But this is the usual argument for fnnctors with right adjoints. The right adjoint 

of Ab,“, which is degreewise application of A4 H B @ M, can be shown to preserve 

fibrations in the same way we showed in Lemma 3.2.1 that IO0 has this property. 

Hence Ab,” preserves acyclic cofibrations and thus weak equivalences between cofibrant 

objects by Lemma 9.9 of [2]. 0 
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