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Abstract

We explain a new relationship between formal group laws and ring spectra
in stable homotopy theory. We study a ring spectrum denoted DB which
depends on a commutative ring B and is closely related to the topological
André–Quillen homology of B . We present an explicit construction which to
every 1–dimensional and commutative formal group law F over B associates
a morphism of ring spectra F∗ : HZ −→ DB from the Eilenberg–MacLane
ring spectrum of the integers. We show that formal group laws account for
all such ring spectrum maps, and we identify the space of ring spectrum maps
between HZ and DB . That description involves formal group law data and
the homotopy units of the ring spectrum DB .
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336 Stefan Schwede

1 Introduction

In this paper we explain a new relationship between formal group laws and ring
spectra in stable homotopy theory. We use formal group laws to construct maps
of ring spectra and describe spaces of ring spectrum maps in terms of formal
group data.

Our main object of study is a ring spectrum denoted DB which functorially
depends on a commutative ring B . The ring spectrum DB controls the stable
homotopy theory of augmented commutative B–algebras. Its homotopy groups
π∗DB are the Cartan–Bousfield–Dwyer algebra of stable homotopy operations
of commutative simplicial B–algebras [10, 7, 12]. The homotopy groups π∗DB
are also isomorphic to the Γ–homology [42], relative to B , of the polynomial al-
gebra B[x] on one generator, and to the topological André–Quillen homology [1]
of the associated Eilenberg–MacLane spectra. Both Γ–homology and topologi-
cal André–Quillen homology arise in obstruction theory for E∞ ring spectrum
structures [41]. We elaborate more on the precise relationship in Remark 3.3
below, and we also refer to the survey paper [3] by Basterra and Richter.

We present an explicit construction which to every 1–dimensional and commu-
tative formal group law F over B associates a homomorphism of ring spectra

F∗ : HZ −→ DB

from the Eilenberg–MacLane ring spectrum of the integers to DB . We prove
that in this way formal group laws account for all ring spectrum maps, ie, we
show:

Theorem The construction which sends a 1–dimensional, commutative formal
group law F to the ring spectrum map F∗ induces a natural bijection between
the set of strict isomorphism classes of formal group laws over B and the set
of homotopy classes of ring spectrum maps from HZ to DB .

This theorem is a corollary of the identification of the space of all ring spec-
trum maps between the Eilenberg–MacLane ring spectrum HZ and DB . That
description involves the homotopy units (DB)× of the ring spectrum DB . The
group-like simplicial monoid (DB)× of homotopy units acts by conjugation
on the space Ring(HZ,DB) of ring spectrum maps. The construction F∗ of
the first theorem extends to a natural weak map from the classifying space of
the groupoid of formal group laws and strict isomorphisms FGLstr(B) to the
homotopy orbit space Ring(HZ,DB)/conj. of the conjugation action of the
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Formal groups and stable homotopy of commutative rings 337

identity component (DB)×1 of the units on the space of ring spectrum maps.
In Theorem 5.2 we show

Theorem The weak map

FGLstr(B) −→ Ring(HZ,DB)/conj.

from the classifying space of the groupoid of formal group laws and strict iso-
morphisms to the homotopy orbit space of the conjugation action is a weak
homotopy equivalence.

Another corollary of this main theorem is that the ring spectrum DB is not
equivalent to the Eilenberg–MacLane ring spectrum of any differential graded
algebra (or, equivalently, of any simplicial ring); see Corollary 13.2 for the
precise statement. This should be compared to the fact that the spectrum un-
derlying DB (ie, ignoring the multiplication) is stably equivalent to the smash
product HZ∧HB (see Theorem 3.2 (b)), in particular it is equivalent to a prod-
uct of Eilenberg–MacLane spectra. Corollary 13.2 says that the multiplicative
structure of DB is considerably more complicated.

Prerequisites We freely use the language and standard results from the the-
ory of model categories; the original source for this material is [39], a more mod-
ern introduction can be found in [13], and the ultimate reference is currently
[23]. Our notion of ring spectrum is that of a Gamma-ring (see [29, 2.13] or [44,
Def. 2.1]). Gamma-rings are based on a symmetric monoidal smash product
for Γ–spaces with good homotopical properties [48, 8, 29]. The foundational
material about the homotopy theory of Gamma-rings and their modules can be
found in [44]; a summary is also given in Section 2. The results of this paper can
be translated into other frameworks for ring spectra by the general comparison
procedures described in [32, 45]. We also need a few basic facts from the theory
of formal group laws, which in this paper (with the exception of Section 13) are
always 1–dimensional and commutative; all we need is contained in [28] or in
Chapter III, §1 of [19].

Outline of the paper

Section 2 We review some general facts about Γ–spaces and Gamma-rings.
We recall the assembly map (2.5) from the smash product to the composition
product of Γ–spaces which is used several times in this paper.

Section 3 We review the Gamma-ring DB and summarize some of its prop-
erties in Theorem 3.2. Construction 3.5 associates a homomorphism of ring
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spectra F∗ : HZ −→ DB to every formal group law F . We state in Theorem
3.8 how this accounts for all homotopy classes of Gamma-ring maps.

Section 4 For every Gamma-ring R we construct a natural conjugation action
of the simplicial monoid of homotopy units R× (3.9) on R through Gamma-ring
homomorphisms.

Section 5 We construct a weak map

FGLstr(B) F̃GL
str

(B)
∼oo κ // Ring(HZ,DB)/conj.

from the classifying space of the groupoid of formal group laws and strict iso-
morphisms to the homotopy orbit space of the conjugation action of Section 4.
The left map is a weak equivalence by construction. Theorem 5.2, which is the
main theorem of this paper, says that the right map κ is a weak equivalence.

Section 6 We use a filtration of the Gamma-ring DB , coming from powers
of the augmentation ideal, to reduce the proof of Theorem 5.2 to showing that
a truncated version

κk : B̃ud
k
(B) −→ Ring(HZ,DkB)/conj.

of the map κ of Section 5 is a weak equivalence for all k ≥ 1 (see Theorem 6.4).

Here B̃ud
k
(B) is (weakly equivalent to) the classifying space of the groupoid of

k–buds (or k–jets) of formal group laws and DkB is the “quotient” Gamma-
ring of DB by the “ideal” coming from (k + 1)st powers of the augmentation
ideal.

Section 7 We exploit that two successive stages in the filtration of DB form
a “singular extension” of ring spectra

(B ⊗ Sk)! −→ DkB −→ Dk−1B

where (B⊗Sk)! is a “square zero ideal” coming from the k -th symmetric power
functor. This allows us to reduce the problem to showing that a certain map

κB⊗Sk : Z̃(B ⊗ Sk) −→ der(HZ, B ⊗ Sk)/conj.

to the homotopy orbit space of the derivations of HZ with coefficients in the
symmetric power functor is a weak equivalence. Here Z̃(B ⊗ Sk) is (weakly
equivalent to) the classifying space of the groupoid of symmetric 2–cocycles of
degree k over B .
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Section 8 For later use we define a map

λG : Z(G) −→ mapGR(HZc,HZ×G!
st)hGst(Z)

for every functor G from the category of finitely generated free abelian groups to
the category of all abelian groups; the important case is when G is a symmetric
power functor B ⊗ Sk . Here Z(G) is the classifying space of the groupoid
of symmetric 2–cocycles of the functor G (8.1), mapGR denotes the simplicial
mapping space of Gamma-rings, Gst is the Dold–Puppe stabilization of G (8.9)
and the Gamma-ring HZ × G!

st is the split singular extension of HZ by the
bimodule G!

st (7.4).

Section 9 We compare the map κB⊗Sk of Section 7 with the map λB⊗Sk of
Section 8 by means of a commutative square

(9.1) Z̃(B ⊗ Sk)

∼

��

κ
B⊗Sk

// der(HZ, B ⊗ Sk)/conj.

∼

��

Z(B ⊗ Sk)
λ

B⊗Sk

// mapGR(HZc,HZ× (B ⊗ Sk)!st)h(B⊗Sk)st(Z)

in which the vertical maps are weak equivalences. Hence instead of showing
that κB⊗Sk is a weak equivalence we may show that λB⊗Sk is.

Section 10 By the results of the previous sections, the proof of the main
theorem is reduced to an identification of the space of Gamma-ring maps

mapGR(HZc,HZ× (B ⊗ Sk)!st)

(or more precisely a certain homotopy orbit space thereof) with the classifying
space of symmetric 2–cocycles. In this section we reinterpret the above mapping
space in terms of the category sF of simplicial functors from the category of
finitely generated free abelian groups to the category of abelian groups. We
note that the construction which sends G ∈ sF to the split extension HZ×G!

(7.4) has a left adjoint
L : GR/HZ −→ sF

from the category of Gamma-rings over HZ to the category of simplicial func-
tors. Moreover, the two functors form a Quillen adjoint pair between model
categories. In order to identify the above mapping space, we evaluate the left
adjoint L on the Gamma-ring HZc , the cofibrant replacement of HZ. We de-
note by J the functor which supports the universal symmetric 2–cocycle (8.3).
The main result of this section, Theorem 10.2, states that the map

L(HZc) −→ J
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which is adjoint to the “universal derivation” (8.6)

(1, du) : HZc −→ HZ× J !

is a stable equivalence of simplicial functors. This implies that for any reduced
functor G the homotopy groups of the space

mapGR(HZc,HZ×G!
st)
∼= mapsF (L(HZc), Gst)

are isomorphic to the hyper-cohomology groups Ext∗F (J,QG), for ∗ ≤ 0, in the
abelian category F of reduced functors from the category of finitely generated
abelian groups to the category of abelian groups. The chain complex QG is
MacLane’s cubical construction for the functor G (8.9).

Section 11 We prove a homological criterion, Theorem 11.1, in terms of the
functor G for when the map λG defined in Section 8 is a weak equivalence.
Loosely speaking, the criterion requires that “MacLane cohomology equals
topological Hochschild cohomology” for the functor G, compare Remark 11.2.
The precise meaning of this is that for all integers m ≤ 2 the map

ExtmF (I,G) −→ ExtmF (I,QG)

be an isomorphism. The map G −→ QG is a model for Dold–Puppe stabi-
lization and it is initial, in the derived category of F , among maps from G to
complexes whose homology functors are additive. ExtmF (I,−) denotes hyper-
Ext groups of the functor I with coefficients in a chain complex of functors. In
Example 11.3 we also give a functor for which the criterion fails.

Section 12 In Theorem 12.1 we verify the homological criterion of Theorem
11.1 for the symmetric power functors G = B⊗Sk . This finishes the proof of our
main theorem: Theorem 11.1 shows that the map λB⊗Sk is a weak equivalence,
hence by the commutative square (9.1) the map κB⊗Sk is a weak equivalence.
The commutative diagram (7.7) of fibre sequences shows inductively that the

maps κk : B̃ud
k
(B) −→ Ring(HZ,Nk)/conj. of Theorem 6.4 are weak equiv-

alences. Hence the (weak) map κ : FGLstr(B) −→ Ring(HZ,DB)/conj. of
Theorem 5.2 is a weak equivalence.

Section 13 In the last section we give an application of the main theorem
as well as an outlook towards possible generalizations and future directions.
Variations of the main construction are possible, and some of them are described
in this final section. For example, formal groups can be replaced by formal A–
modules where A is any ring (not necessarily commutative). Such formal A–
modules give rise to Gamma-ring maps from the Eilenberg–MacLane Gamma-
ring of A into DB . Furthermore when considering higher dimensional formal
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group laws, the natural target of the construction is a matrix Gamma-ring over
DB of the corresponding dimension.

Acknowledgments The author would like to thank Jeff Smith for suggesting
the method used in Section 4 to obtain the conjugation action; moreover, many
ideas that appear in Section 10 arose in a joint project with Smith on derivations
of ring spectra.

2 Review of Γ–spaces and Gamma-rings

In this section we review some general facts about Γ–spaces and Gamma-rings,
and we fix notation and terminology. None of this material is new, but we
present it in a form which is convenient for this paper. We also prove certain
properties of the assembly map (2.5) from the smash product to the composition
product of Γ–spaces which are used several times in this paper.

2.1 Γ–spaces The category of Γ–spaces was introduced by Segal [48], who
showed that it has a homotopy category equivalent to the stable homotopy cat-
egory of connective spectra. Bousfield and Friedlander [8] considered a bigger
category of Γ–spaces in which the ones introduced by Segal appeared as the
special Γ–spaces (2.3). Their category admits a closed simplicial model cate-
gory structure with a notion of stable weak equivalences giving rise again to
the homotopy category of connective spectra. Then Lydakis [29] introduced
internal function objects and a symmetric monoidal smash product with good
homotopical properties.

The category Γop has one object n+ = {0, 1, . . . , n} for every non-negative
integer n, and morphisms are the maps of sets which send 0 to 0. Γop is
equivalent to the opposite of Segal’s category Γ [48]. A Γ–space is a covariant
functor from Γop to the category of simplicial sets taking 0+ to a one point
simplicial set. A morphism of Γ–spaces is a natural transformation of functors.
We denote by S the Γ–space which takes n+ to n+ , considered as a constant
simplicial set. If X is a Γ–space and K a pointed simplicial set, a new Γ–space
X ∧ K is defined by setting (X ∧ K)(n+) = X(n+) ∧ K .

A Γ–space X can be prolonged, by direct limit, to a functor from the category
of finite pointed sets to the category of (not necessarily finite) pointed sets. By
degreewise evaluation and formation of the diagonal of the resulting bisimplicial
sets, it can furthermore be promoted to a functor from the category of pointed
simplicial sets to itself [8, §4]. The extended functor preserves weak equivalences
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of simplicial sets [8, Prop. 4.9] and is automatically simplicial, ie, it comes with
coherent natural maps K ∧ X(L) −→ X(K ∧ L). We will not distinguish
notationally between the prolonged functor and the original Γ–space.

The homotopy groups of a Γ–space X are defined as

πnX = colimi πn+i|X(Si)| ,

where the colimit is formed using the maps

S1 ∧ X(Sn) −→ X(S1 ∧ Sn) .

A map of Γ–spaces is a stable equivalence if it induces isomorphisms on ho-
motopy groups. Since the functor given by a prolonged Γ–space preserves
connectivity [8, 4.10], the homotopy groups of a Γ–space are always trivial in
negative dimensions.

2.2 Smash products In [29, Thm. 2.2], Lydakis defines a smash product for
Γ–spaces which is characterized by the universal property that Γ–space maps
X ∧ Y −→ Z are in bijective correspondence with maps

X(k+) ∧ Y (l+) −→ Z(k+ ∧ l+)

which are natural in both variables. By [29, Thm. 2.18], the smash product of
Γ–spaces is associative and commutative with unit S, up to coherent natural
isomorphism. There are also internal homomorphism Γ–spaces [29, 2.1], adjoint
to the smash-product, so that the category of Γ–spaces forms a symmetric
monoidal closed category.

2.3 Special Γ–spaces A Γ–space X is called special if the map X(k+∨ l+)
−→ X(k+)×X(l+) induced by the projections from k+ ∨ l+ to k+ and l+ is a
weak equivalence for all k and l . In this case, the weak map

X(1+)×X(1+) X(2+)
∼oo

X(∇)
// X(1+)

induces an abelian monoid structure on π0 (X(1+)). Here ∇ : 2+ −→ 1+ is the
fold map defined by ∇(1) = 1 = ∇(2). X is called very special if it is special
and the monoid π0 (X(1+)) is a group. By Segal’s theorem ([48, Prop. 1.4],
see also [8, Thm. 4.2]), the spectrum associated to a very special Γ–space X
is an Ω–spectrum in the sense that the maps |X(Sn)| −→ Ω|X(Sn+1)| adjoint
to the spectrum structure maps are homotopy equivalences. In particular, the
homotopy groups of a very special Γ–space X are naturally isomorphic to the
homotopy groups of the simplicial set X(1+).
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Formal groups and stable homotopy of commutative rings 343

2.4 Model structures Bousfield and Friedlander introduce two model cat-
egory structures for Γ–spaces called the strict and the stable model categories
[8, 3.5, 5.2]. It will be more convenient for our purposes to work with slightly
different model category structures, which we called the Quillen- or Q–model
category structures in [44] and [46]. The strict and stable Q–structures have
the same weak equivalences, hence the same homotopy categories, as the cor-
responding Bousfield–Friedlander model category structures. In this paper we
never consider the Bousfield–Friedlander model structures, so we drop the dec-
oration ‘Q’ for the other model structure.

We call a map of Γ–spaces a strict fibration (resp. a strict equivalence) if it is
a Kan fibration (resp. weak equivalence) of simplicial sets when evaluated at
every n+ ∈ Γop . Cofibrations are defined as the maps having the left lifting
property with respect to all strict acyclic fibrations. The cofibrations can be
characterized as the injective maps with projective cokernel, see [44, Lemma
A3 (b)] for the precise statement. By [39, II.4 Thm. 4], the strict equivalences,
strict fibrations and cofibrations make the category of Γ–spaces into a closed
simplicial model category.

More important is the stable model category structure. This one is obtained
by localizing the strict model structure with respect to the stable equivalences.
We call a map of Γ–spaces a stable fibration if it has the right lifting property
with respect to the cofibrations which are also stable equivalences. By [44,
Thm. 1.5], the stable equivalences, stable fibrations and cofibrations make the
category of Γ–spaces into a closed simplicial model category. A Γ–space X is
stably fibrant if and only if it is very special and X(n+) is fibrant as a simplicial
set for all n+ ∈ Γop .

A Γ–space X defines a spectrum X(S) (in the sense of [8, Def. 2.1]) whose n-th
term is the value of the prolonged Γ–space at Sn . For example, the Γ–space S
becomes isomorphic to the identity functor of the category of pointed simplicial
sets after prolongation. So the associated spectrum is the sphere spectrum.
The functor that sends a Γ–space X to the spectrum X(S) has a right adjoint
[8, Lemma 4.6], and these two functors form a Quillen pair. One of the main
theorems of [8] says that this Quillen pair induces an equivalence between the
homotopy category of Γ–spaces, taken with respect to the stable equivalences,
and the stable homotopy category of connective spectra (see [8, Thm. 5.8]).
We do not use this result here, but it is the main motivation for the study of
Γ–spaces.

2.5 The assembly map Given two Γ–spaces X and Y , there is a natural
map X ∧ Y −→ X ◦Y from the smash product to the composition product [29,
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2.12], [46, 1.8]. The formal and homotopical properties of this assembly map
are of importance to this paper. Since Γ–spaces prolong to functors defined
on the category of pointed simplicial sets, they can be composed. Explicitly,
for Γ–spaces X and Y , we set (X ◦ Y )(n+) = X(Y (n+)). This composition
◦ is a monoidal (though not symmetric monoidal) product on the category of
Γ–spaces. The unit is the same as for the smash product, it is the Γ–space S
which as a functor is the inclusion of Γop into all pointed simplicial sets.

The assembly map is obtained as follows. Prolonged Γ–spaces are naturally
simplicial functors [8, §3], which means that there are natural coherent maps
X(K) ∧ L −→ X(K ∧ L). This simplicial structure gives maps

X(n+) ∧ Y (m+) −→ X(n+ ∧ Y (m+)) −→ X(Y (n+ ∧ m+))

natural in both variables. From this the assembly map X ∧ Y −→ X ◦ Y
is obtained by the universal property of the smash product of Γ–spaces. The
assembly map is associative and unital, S being the unit for both ∧ and ◦. In
technical terms: the identity functor on the category of Γ–spaces becomes a
lax monoidal functor from (GS,∧) to (GS, ◦). The homotopical properties of
smash and composition product and of the assembly map are summarized in
the following theorem, which is due to Lydakis [29].

Theorem 2.6 (a) The composition product of Γ–spaces preserves stable
equivalences in each of its variables.

(b) The smash product with a cofibrant Γ–space preserves stable equiva-
lences.

(c) Let X and Y be Γ–spaces, one of which is cofibrant. Then the assembly
map

X ∧ Y −→ X ◦ Y

is a stable equivalence.

Proof Parts (b) and (c) are [29, Prop. 5.12] and [29, Prop. 5.23] respectively.

For any Γ–space F the structure map S1 ∧F (Sn) −→ F (S1 ∧Sn) is (2n+ 1)–
connected [29, Prop. 5.21]. So the map π∗ Ωn|F (Sn)| −→ π∗ F is an isomor-
phism for ∗ < n. Hence if F −→ F ′ is a stable equivalence of Γ–spaces,
then the map F (Sn) −→ F ′(Sn) is 2n–connected. If X is any Γ–space,
then the prolonged functor preserves connectivity [29, Prop. 5.20], so the map
X(F (Sn)) −→ X(F ′(Sn)) is also 2n–connected. Thus the map X◦F −→ X◦F ′

is a stable equivalence.
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It remains to show that the map F ◦X −→ F ′ ◦X is also a stable equivalence.
By the previous paragraph we may assume that X is cofibrant, and then the
claim follows from parts (b) and (c).

2.7 Gamma-rings and their modules Our notion of ring spectrum is that
of a Gamma-ring. Gamma-rings are the monoids in the symmetric monoidal
category of Γ–spaces with respect to the smash product and they are special
cases of ‘Functors with Smash Product’ (FSPs, cf. [5, 1.1], [37, 2.2]). One can
describe Gamma-rings as ‘FSPs defined on finite sets’. From a Gamma-ring one
obtains an FSP or symmetric ring spectrum ([24], [49, 2.1.11]) by prolongation
and, in the second case, evaluation on spheres. A more detailed discussion of
the homotopy theory of Gamma-rings can be found in [44]. Homotopy theoretic
results about the Gamma-rings can be translated into other frameworks for ring
spectra by the general comparison procedures of [32].

Explicitly, a Gamma-ring is a Γ–space R equipped with maps

S −→ R and R ∧ R −→ R ,

called the unit and multiplication map, which satisfy certain associativity and
unit conditions (see [31, VII.3]). A morphism of Gamma-rings is a map of
Γ–spaces commuting with the multiplication and unit maps. If R is a Gamma-
ring, a left R–module is a Γ–space N together with an action map R∧N −→ N
satisfying associativity and unit conditions (see again [31, VII.4]). A morphism
of left R–modules is a map of Γ–spaces commuting with the action of R. We
denote the category of left R–modules by R–mod.

One similarly defines right modules and bimodules. Because of the universal
property of the smash product of Γ–spaces (2.2), Gamma-rings are in bijec-
tive correspondence with lax monoidal functors from the category Γop to the
category of pointed simplicial sets (both under smash product).

2.8 Examples The unit S of the smash product is a Gamma-ring in a unique
way. The category of S–modules is isomorphic to the category of Γ–spaces.
Other standard examples of Gamma-rings are monoid rings over the sphere
Gamma-ring S and Eilenberg–MacLane models of classical rings. If M is a
simplicial monoid, we define a Γ–space S[M ] by

S[M ] (n+) = M+ ∧ n+

(so S[M ] is isomorphic, as a Γ–space, to S ∧ M+ , see (2.1) ). There is a
unit map S −→ S[M ] induced by the unit of M and a multiplication map
S[M ] ∧ S[M ] −→ S[M ] induced by the multiplication of M which turn S[M ]
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into a Gamma-ring. This construction of the monoid ring over S is left adjoint
to the functor which takes a Gamma-ring R to the simplicial monoid R(1+).

If A is an ordinary ring, then the Eilenberg–MacLane Γ–space HA is given by
the functor which takes a pointed set K to the reduced free A–module Ã[K]
generated by K . The unit map

η : K −→ Ã[K]

is the inclusion of generators. The multiplication map

µ : Ã[K] ∧ Ã[L] −→ Ã[K ∧ L]

takes a smash product (
∑

k∈K ak ·k) ∧ (
∑

l∈L bl ·l) to the element
∑
akbl ·(k ∧ l).

For later reference we note that the multiplication µ : HA∧HA −→ HA factors
as the composition

HA ∧HA
assembly

// HA ◦HA
eval. // HA (2.9)

of the assembly map (2.5) and the evaluation map.

More examples of Gamma-rings arise from algebraic theories and as endomor-
phism Gamma-rings, see [46, 4.5, 4.6]. The Gamma-ring DB (3.1) is such an
example.

The modules over a fixed Gamma-ring and the category of all Gamma-rings
form simplicial model categories, created by the forgetful functor to Γ–spaces
[44, Thm. 2.2 and Thm. 2.5]. In these model structures a map is a weak
equivalence (resp. fibration) if it is a stable equivalence (resp. stable fibration)
as a map of Γ–spaces. For a ring A, the Eilenberg–MacLane functor H is
the right adjoint of a Quillen equivalence between the model category of HA–
modules and the model category of simplicial A–modules [44, Thm. 4.4].

3 The Gamma-ring DB and formal group laws

In this section we recall the definition and some basic properties of our main
object of study, the Gamma-ring DB , for B a fixed commutative ring. This
Gamma-ring parameterizes the stable homotopy theory of augmented commu-
tative simplicial B–algebras. In Construction 3.5 we explain how a formal group
law F over B gives rise to a homomorphism of ring spectra F∗ : HZ −→ DB .
The rest of this paper is then devoted to studying the homotopical significance
of that construction.
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By “parameterizing the stable homotopy theory” we mean that there is a
Quillen-equivalence between the model category of DB–modules and the model
category of spectra of simplicial commutative B–algebras, see Theorem 3.2 (d).
Commutative simplicial algebras have been the object of much study [38, 12,
20, 21, 43, 51]. The homology theory arising as the derived functor of abelian-
ization in this category is known as André–Quillen homology for commutative
rings. The stable homotopy category of simplicial commutative B–algebras is
equivalent to the homotopy category of DB–modules. The homotopy groups
of DB are the coefficients of the universal homology theory for commutative
algebras.

3.1 The Gamma-ring DB The Γ–space underlying the Gamma-ring DB
takes a pointed set K to the augmentation ideal of the power series ring gen-
erated by K , considered as a constant simplicial set:

DB(K) = kernel ( B̃[[K]] −→ B̃[[∗]] = B ) .

The tilde over B̃[[K]] indicates that the power series generator corresponding to
the basepoint of K has been set equal to 0; thus B̃[[∗]] reduces to the coefficient
ring.

The product which makes DB into a Gamma-ring comes from substitution of
power series. To define the multiplication map µ : DB ∧DB −→ DB we need
to describe a natural associative map

µ : DB(K) ∧ DB(L) −→ DB(K ∧ L)

for pointed sets K and L. An element of DB(K) is represented by a power
series f in variables K without constant term. Similarly, an element of DB(L)
is represented by a power series g in variables L. The multiplication map µ
takes the smash product

f ∧ g ∈ DB(K) ∧ DB(L)

to the power series µ(f ∧ g) in the variables K ∧ L defined by

µ(f(k1, . . . , km) ∧ g(l1, . . . , ln)) =

f( g(k1 ∧ l1, . . . , k1 ∧ ln), . . . , g(km ∧ l1, . . . , km ∧ ln) ) .

The unit map η : S −→ DB , ie, natural transformation

η : K −→ DB(K) ,

sends an element of K to the generator it represents. The multiplication and
unit transformations µ and η are associative and unital because substitution
of power series is, so DB is in fact a Gamma-ring.
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Some important properties of DB are summarized in the following theorem.
Most of these results are compiled from [46]. In [46, 7.9], we use the notation
DB for a slightly different Gamma-ring, namely the Gamma-ring associated to
the algebraic theory of augmented commutative B–algebras. Let DBpol denote
the sub-Γ–space of DB whose value at a pointed set K consists of all polyno-
mials in K , ie, the power series in DB(K) with only finitely many non-zero
coefficients. The sub-Γ–space DBpol is closed under the multiplication of DB ,
and the unit map η : S −→ DB factors through DBpol . Hence DBpol is a
Gamma-ring and the inclusion DBpol −→ DB is a homomorphism. DBpol is
exactly the Gamma-ring which is denoted DB in [46, 7.9]; there is no homotopi-
cal difference between the two Gamma-rings since the inclusion DBpol −→ DB
is a stable equivalence, see Theorem 3.2 (a) below. However, in this paper it is
more convenient to work with the power series model, so we give it the simpler
name.

Theorem 3.2 (a) The inclusion DBpol −→ DB is a stable equivalence of
Gamma-rings.

(b) As a Γ–space, DB is stably equivalent to the derived smash product of
the Eilenberg–MacLane Γ–spaces HZ and HB ; in particular, the sta-
ble homotopy groups of DB are additively isomorphic to the spectrum
homology of the Eilenberg–MacLane spectrum of B .

(c) The graded ring of homotopy groups of DB is isomorphic to the ring
of stable homotopy operations of commutative augmented simplicial B–
algebras.

(d) There is a Quillen adjoint functor pair between the model category of
DB–modules and the model category Sp(B-alg) of spectra of commu-
tative augmented simplicial B–algebras. The adjoint pair passes to an
equivalence between the homotopy category of DB–modules and the ho-
motopy category of connective spectra of commutative augmented sim-
plicial B–algebras.

Proof (a) Let (B ⊗ Sk)! denote the Γ–space defined by

(B ⊗ Sk)!(K) = B ⊗ (Z̃[K]⊗k/Σk) ,

the tensor product of B with the k -th symmetric power of the reduced free
abelian group on K . An isomorphic description of (B ⊗ Sk)!(K) is as the free
reduced B–module on the k -th symmetric power of K ,

(B ⊗ Sk)!(K) ∼= B̃[K∧k/Σk] .
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The underlying Γ–space of DB is the infinite product of the symmetric power
functors (B ⊗ Sk)! for all k ≥ 1. The polynomial model DBpol is the weak
product of these symmetric power functors. Since the stable homotopy groups
of the Γ–space (B⊗Sk)! are trivial up to dimension 2k−3 [11, 12.3], the weak
product and the product are stably equivalent.

(b) We let SP denote the Γ–space which takes a pointed set K to its infinite
symmetric product, ie, the free abelian monoid generated by K with basepoint
as identity element. By the Dold–Thom theorem, the group completion map
SP −→ HZ is a stable equivalence of Γ–spaces. We choose a cofibrant re-
placement HBc of HB as a Γ–space and obtain a chain of homomorphisms of
Γ–spaces

HBc ∧HZ
∼

←−−− HBc ∧ SP
∼

−−−→ HBc ◦ SP
∼

−−−→ HB ◦ SP ∼= DBpol ∼
−−−→ DB .

The first map is a stable equivalence since smashing with a cofibrant Γ–space
preserves stable equivalences [29, 5.12]. The second map is the assembly map
(2.5), which is a stable equivalence by [29, 5.23]. The third map is a stable equiv-
alence since the composition product of Γ–spaces preserves stable equivalences
in both variables (Theorem 2.6 (a)). The reduced free B–module generated by
SP (K) is isomorphic to the polynomials without constant term generated by
K , subject to the basepoint relation. This gives as isomorphism of Γ–spaces
between HB ◦ SP and DBpol . The last map is a stable equivalence by part
(a).

Part (c) and (d) are special cases of [46, 4.11]. and [46, 4.4] respectively; see
also [46, 7.9].

The ring of stable homotopy operations of commutative augmented simplicial
B–algebras — ie, the graded ring of homotopy groups of DB — is sometimes
called the stable Cartan–Bousfield–Dwyer-algebra since these authors calcu-
lated the unstable operations for B = Fp , see [10, 7, 12]. An explicit calculation
of π∗DFp can be found as Theorems 12.3 (for p = 2) and 12.6 (for p odd) in
Bousfield’s unpublished paper [7]. The fact that the ring of stable homotopy
operations is generally not commutative shows that DB is not stably equiva-
lent to the derived smash product HB ∧LHZ as a Gamma-ring (unless B is a
Q–algebra).

3.3 Relation to topological André-Quillen homology and Γ-homology

There are isomorphisms of graded abelian groups

π∗DB ∼= HΓ∗(B[x]|B;B) ∼= TAQ∗(HB[x]|HB;HB) . (3.4)
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Here HΓ∗(B[x]|B;B) is the Γ–homology in the sense of Robinson and White-
house [42], of the polynomial algebra B[x], considered as an augmented B–
algebra; moreover, TAQ∗(HB[x]|HB;HB) denotes the topological André–
Quillen homology [1] of the Eilenberg–MacLane ring spectrum HB[x] relative
to HB . Both Γ–homology and topological André–Quillen homology groups are
studied because they carry obstructions to the existence of E∞ ring spectrum
structures [41] (it is a coincidence that the symbol Γ occurs both in Γ–homology
and as the category Γop ).

The first isomorphism in (3.4) comes about as follows. By 3.2 (a) above, the
Gamma-ring DB has a stably equivalent polynomial model DBpol ; as a Γ–
space, DBpol is isomorphic to the functor which assigns to the object n+

of Γop the B–module B[x]⊗Bn . By a theorem of Pirashvili and Richter [36,
Thm. 1], the homotopy groups π∗DB are thus isomorphic to the Γ–homology
HΓ∗(B[x]|B;B) of the polynomial algebra B[x] relative to B . The second
isomorphism in (3.4) is due to Basterra and McCarthy [2], who show that for
Eilenberg–MacLane spectra of classical rings, topological André–Quillen homol-
ogy coincides with Γ–homology. The survey article [3] by Basterra and Richter
discusses all these identifications in more detail.

The isomorphisms (3.4) do not mention the multiplicative structure of π∗DB .
In Sections 5.1 and 7.9 of [46] we associate to any augmented commutative
B–algebra A a DB–module Σ∞

B A which models the suspension spectrum of
A as an augmented commutative B–algebra. The underlying Γ–space of Σ∞

B A
sends n+ ∈ Γop to the B–module A⊗Bn . So [36, Thm. 1] yields an isomorphism
of graded abelian groups

π∗ (Σ∞
B A) ∼= HΓ∗(A|B;B)

(at least if A is flat as a B–module). The DB–action on Σ∞
B A gives more

structure to Γ–homology, since the left hand side above has a natural action
of the graded ring π∗DB ∼= HΓ∗(B[x]|B;B). We see moreover that the ho-
motopical object underlying Γ–homology is not just a chain complex, but a
DB–module spectrum.

The main objective of this paper is the study of the homotopy type of DB as
a ring spectrum and of a close relationship to formal group theory. More pre-
cisely we will describe the space of Gamma-ring maps from HZ, the Eilenberg–
MacLane Gamma-ring of the integers (2.8), to DB in terms of formal group law
data. Unless stated otherwise, formal group laws will always be 1–dimensional
and commutative. To see how non-commutative and higher-dimensional formal
group laws fit into our context see Remarks 13.4 and 13.5.
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Construction 3.5 Suppose that F is a 1–dimensional and commutative for-
mal group law over the commutative ring B . In other words, F is a power
series in two variables x and y with coefficients in B which satisfies

F (x, 0) = x = F (0, x) ,

F (x, y) = F (y, x) and

F (F (x, y), z) = F (x, F (y, z)) .

We define a map F∗ : HZ −→ DB of Gamma-rings. For every pointed set K
we have to specify a map

F∗(K) : Z̃[K] = HZ(K) −→ DB(K) ⊆ B̃[[K]]

which is natural in K and respects the multiplication and unit maps. The map
F∗(K) simply takes a sum

∑
k∈K ak · k of generators of the free abelian group

on K to the formal sum ∑

k∈K

F
[ak]F (k)

with respect to F , of the same elements viewed as generators of the power
series ring. Here [n]F denotes the n–series of the formal group law F for every
integer n ∈ Z. We omit the verification that the map F∗ indeed commutes
with the multiplication and unit map. For example, on the level of underlying
monoids this means that the map

[−]F : Z ∼= HZ(1+) −→ DB(1+) = x ·B[[x]]

is a homomorphism from the multiplicative monoid of the integers to the monoid
of power series without constant term under substitution, ie, it boils down to
the relation

[n]F ([m]F (x)) = [n ·m]F (x)

for n,m ∈ Z.

Remark 3.6 We offer two additional ways of looking at the above construction
of the Gamma-ring map F∗ ; the three definitions correspond to looking at a
commutative 1–dimensional formal group law as either

(a) a power series F (x, y) in two variables with certain properties,

(b) an abelian cogroup structure, in the category of complete, augmented
commutative B–algebras, on the power series ring B[[x]],

(c) or a morphism of algebraic theories from the theory of abelian groups to
the theory of complete, augmented, commutative B–algebras.
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The first point of view leads to the explicit formula for the Gamma-ring map
F∗ that was just given in Construction 3.5.

The interpretation (b) of a formal group law exhibits the Gamma-ring map F∗

as a special case of a more general construction associated to an abelian cogroup
object. Indeed, to every object X in a pointed category with coproducts C
one can associate an endomorphism Gamma-ring EndC(X) (see [46, 4.6] or
13.3). Then every abelian cogroup structure on the object X leads to a map
of Gamma-rings HZ −→ EndC(X); we refer to 13.3 for more details.

Perspective (c) leads to a compact description in the language of algebraic
theories [6, 3.3.1]. Specifying a 1–dimensional, commutative formal group law
over B is the same as specifying a morphism of algebraic theories [6, 3.7.1] from
the theory of abelian groups to the theory of complete, augmented, commutative
B–algebras. The construction [44, 4.5] which associates to a pointed algebraic
theory T its stable Gamma-ring T s is functorial for morphisms of algebraic
theories. Now HZ is the Gamma-ring associated to the theory of abelian groups
and DB is the Gamma-ring associated to the theory of complete, augmented,
commutative B–algebras. Hence a formal group law F defines a morphism of
algebraic theories, thus a morphisms of associated Gamma-rings.

Example 3.7 The additive formal group law is given by

F a(x, y) = x+ y .

The associated Gamma-ring map F a∗ is the composite

HZ // HB
incl. // DB

of the unique Gamma-ring map HZ −→ HB with the ‘inclusion’ of HB into
DB as the linear power series. Conversely, this is the only case in which the
Gamma-ring map F∗ factors over the inclusion HB −→ DB on the point-set
level: the power series F (x, y) can be recovered from the Gamma-ring map F∗

as the image of x+ y ∈ Z[x, y] under

F∗ : Z[x, y] ∼= HZ({x, y}+) −→ DB({x, y}+) ⊆ B[[x, y]] ;

so if F∗ factors over HB , then F (x, y) has only linear terms, so that necessarily
F (x, y) = x+ y .

Another formal group law which exists over any ring B is the multiplicative one
given by

Fm(x, y) = x+ y + xy .
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The multiplicative formal group law can be used to express the Gamma-ring
DB additively as the smash product of the Eilenberg–MacLane Gamma-rings
for B and Z; indeed the composite map

HB ∧L HZ
incl. ∧L Fm

∗ // DB ∧L DB
µ

// DB

is in the same homotopy class as the stable equivalence of Theorem 3.2 (b).

The homotopical significance of the point-set level construction of 3.5 is sum-
marized in the following

Theorem 3.8 Construction 3.5 which to a 1–dimensional, commutative formal
group law F associates the Gamma-ring map F∗ : HZ −→ DB induces a
natural bijection

FGL(B)/strict isomorphism
∼= // [HZ,DB]Gamma-rings

between the strict isomorphism classes of formal group laws over B and the set
of maps from HZ to DB in the homotopy category of Gamma-rings.

Theorem 3.8 is the π0–part of a space level statement relating formal groups
to Gamma-ring maps between HZ and DB in Theorem 5.2. In the simpli-
cial model category of Gamma-rings every pair of objects has a homomorphism
space (ie, simplicial set). As usual with model categories, in order to give the
morphism space a homotopy invariant meaning, the source object has to be
replaced by a weakly equivalent cofibrant one, and the target object has to
be replaced by a weakly equivalent fibrant one. Then the components of the
(derived) space of Gamma-ring maps are the morphisms in the homotopy cate-
gory of Gamma-rings. Theorem 5.2 below identifies the derived homomorphism
space of Gamma-ring maps from HZ to DB . The answer is given in terms of
formal group law data and the simplicial monoid of homotopy units of DB .

3.9 Homotopy units Let R be a Gamma-ring and Rf a stably fibrant re-
placement of R in the model category structure of [44, 2.5]. As for any Gamma-
ring, the underlying space Rf(1+) is a simplicial monoid with product induced
by the multiplication map Rf ∧ Rf −→ Rf . Moreover, Rf(1+) is a model for
the infinite loop space of the spectrum represented by R. We define the ho-
motopy units R× as the union of the invertible components of the simplicial
monoid Rf(1+). So R× is a group-like simplicial monoid which is independent
up to weak equivalence of the choice of fibrant replacement. Moreover there are
natural isomorphisms of homotopy groups

π0R
× ∼= units (π0R) and πiR

× ∼= πiR for i ≥ 1.
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For any classical ring A, the units of A act by conjugation on A and hence on
the set of ring homomorphisms from any other ring to A. In Section 4 we make
sense of the analogous conjugation action for Gamma-rings. For any Gamma-
ring R we construct, after change of models, a strict action of the homotopy
units R× on R by Gamma-ring homomorphisms. More precisely we introduce
a simplicial group UR× , weakly equivalent to R× , and a fibrant Gamma-ring,
stably equivalent to R, and on which UR× acts by conjugation. Below we only
use the action of the simplicial subgroup UR×

1 , the connected component of
the unit element. We can consider the homotopy orbit space of the conjugation
action of UR×

1 on the simplicial set Ring(HZ, R) = mapGR(HZc, Rf). We
denote that homotopy orbit space by Ring(HZ, R)/conj.

Construction 3.5 associates to every formal group law over B a Gamma-ring
map from the Eilenberg–MacLane Gamma-ring HZ to DB . This map gives
rise to a point in the space of Gamma-ring maps Ring(HZ,DB). In Section
5 we extend this to a natural weak map from the classifying space FGLstr(B)
of the groupoid of formal group laws and strict isomorphisms to the homotopy
orbits space of the conjugation action, ie, we construct a diagram of simplicial
sets

FGLstr(B) F̃GL
str

(B)
∼oo κ // Ring(HZ,DB)/conj.

in which the first map is a weak equivalence. The main result of this paper,

Theorem 5.2, says that the map κ : F̃GL
str

(B) −→ Ring(HZ,DB)/conj. is a
weak equivalence. Theorem 3.8 is the bijection induced on path components by
the weak equivalence κ.

4 The conjugation action

In this section we construct the conjugation action of the homotopy units of a
Gamma-ring on the Gamma-ring. In view of the application to DB we need
a construction relative to a group which maps to the multiplicative monoid of
the Gamma-ring. In the example of DB that group is the group of invertible
power series on one generator over B .

Construction 4.1 We consider a Gamma-ring R together with a simplicial
group G and a homomorphism of simplicial monoids ψ : G −→ R(1+). The
conjugation action of G on R is described by a map of simplicial monoids

c : G −→ mapGR(R,R) .
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Here for g ∈ G the conjugation map c(g) : R −→ R is defined at a pointed set
K as the composite

R(K)
g ∧ id∧ g−1

−−−−−−−→ G+ ∧ R(K) ∧ G+
ψ∧ id∧ψ
−−−−−−→ R(1+) ∧ R(K) ∧ R(1+)

mult.
−−−−−−→ R(1+ ∧K ∧ 1+) ∼= R(K) .

We omit the formal verification that the conjugation map is in fact a homo-
morphism of Gamma-rings, that the definition extends to higher dimensional
simplices of G, and that the formula c(g · g′) = c(g) ◦ c(g′) holds. The monoid
map c can now be used to let the group G act on the space of Gamma-ring
maps from any Gamma-ring S to R via

G × mapGR(S,R) −→ mapGR(S,R) , (g, f) 7→ c(g) ◦ f .

The goal of this section is to extend the conjugation action from the given
group G to the homotopy units (3.9) of R. The problem is that Construc-
tion 4.1 makes use of strict inverses, whereas the homotopy units R× are only
a group-like simplicial monoid. One way to solve this would be to find a sta-
ble equivalence of Gamma-rings from R to some stably fibrant Gamma-ring
Rf which has the property that every element in an invertible component of
Rf(1+) has a point-set inverse. But it seems unlikely that this can be done in
general, and we use a different approach.

Construction 4.2 As above we consider a Gamma-ring R together with
a simplicial group G and a homomorphism of simplicial monoids ψ : G −→
R(1+). If R −→ Rf is a stably fibrant replacement of R in the model cate-
gory of Gamma-rings then R× was defined in 3.9 as the simplicial monoid of
invertible components in Rf(1+). The image of the simplicial group G under
the map R(1+) −→ Rf(1+) is contained in the invertible components, which
provides a morphism of simplicial monoids G −→ R× . We explained in 4.1 how
the group G acts on spaces of Gamma-ring maps into R, and we now want to
extend this to a conjugation action of the homotopy units R× .

We start by factoring the homomorphism G −→ R× in the model category of
simplicial monoids (a special case of [39, II.4 Thm. 4]) as a cofibration followed
by an acyclic fibration

G // // cR× ∼ // // R×.

We denote by UR× the algebraic group completion of the simplicial monoid
cR× . So UR× is obtained from cR× by formally adjoining inverses in every
simplicial dimension. Since the map G −→ cR× is a cofibration of simplicial
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monoids, the monoid cR× is a retract of a simplicial monoid which is dimen-
sionwise a free product of a group and a free monoid [39, II p. 4.11 Rem. 4]. By
the following Lemma the group completion map cR× −→ UR× is thus a weak
equivalence.

Lemma 4.3 Let M be a simplicial monoid which in every dimension is a free
product of a group and a free monoid, and such that π0M is a group. Then
the group completion map M −→ UM is a weak equivalence.

Proof We call a simplicial monoid N good if the group completion map N −→
UN induces a weak equivalence BN −→ BUN of classifying spaces. For any
simplicial monoid N whose components form a group, BN is a delooping of
N , ie, the map |N | −→ Ω|BN | is a weak equivalence; this follows for example
by applying [8, B.4] to the sequence of bisimplicial sets N −→ E•N −→ B•N .
So it suffices to show that any monoid as in the statement of the lemma is good.

Suppose M and N are good, discrete monoids. We claim that then the free
product M ∗N is also good. By [33, Lemma 4], the canonical map of simplicial
sets BM ∨BN −→ B(M ∗ N) is a weak equivalence. Since U(M ∗ N) ∼=
UM ∗ UN (the coproduct in the category of groups coincides with the free
product of underlying monoids), the map BUM ∨BUN −→ BU(M ∗ N) is
also a weak equivalence and the claim follows.

Every group, viewed as a constant simplicial monoid, is good. The classifying
spaces of the free monoid on one generator and of the free group on one generator
are both weakly equivalent to a circle. So a free monoid on one generator is
good. By the above and by direct limit, a free product of a group with a free
monoid is good.

The classifying space BN of a simplicial monoid N is the diagonal of the
bisimplicial set given by the classifying spaces BNm of the individual monoids
Nm in the various simplicial dimensions. Hence if N is a simplicial monoid
such that the discrete monoid Nm is good for all m ≥ 0, then N itself is good.
This proves the lemma.

We take the adjoint S[cR×] −→ Rf of the monoid map cR× −→ R× −→ Rf(1+)
(where S[cR×] is the monoid Gamma-ring (2.8)) and factor it in the model
category of Gamma-rings as a cofibration followed by an acyclic fibration

S[cR×] // // R1
∼ // // Rf .
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We then define another Gamma-ring R2 as the pushout, in the category of
Gamma-rings, of the diagram

S[cR×] // //

∼

��

R1

��
S[UR×] // R2 .

For every pointed simplicial set K the Γ–space S∧K is cofibrant; in particular
the underlying Γ–spaces of S[cR×] and S[UR×] are cofibrant. By [47, 4.1 (3)]
the underlying Γ–space of R1 is also cofibrant, so by the following lemma the
map R1 −→ R2 is a stable equivalence of Gamma-rings.

Lemma 4.4 Consider a diagram of Gamma-rings

X
∼

←−−− Y −→ Z

in which the left map is a stable equivalence, the right map is a cofibration and
all three Gamma-rings are cofibrant as Γ–spaces. Then the map from Z to the
pushout of the diagram is also a stable equivalence.

Proof We denote the pushout of the diagram by P . We first consider the sit-
uation where the map Y −→ Z is obtained by cobase change from a generating
cofibration. In other words we assume that there exists a cofibration K −→ L
of Γ–spaces such that Z is the pushout of the diagram of Gamma-rings

Y ←−−− T (K) −→ T (L)

where T denotes the tensor algebra functor. This special kind of pushout in
the category of Gamma-rings is analyzed in the proof of [47, Lemma 6.2]. The
pushout Z is then the colimit of a sequence of cofibrations of Γ–spaces

Y = Z0 −→ Z1 −→ · · · −→ Zn −→ · · ·

for which the subquotient Zn/Zn−1 is isomorphic to (L/K)∧n∧ Y ∧(n+1) . In the
same way the composite pushout P is the colimit of a sequence of cofibrations
of Γ–spaces with subquotients isomorphic to (L/K)∧n ∧ X∧(n+1) . The smash
product of Γ–spaces preserves stable equivalences between cofibrant objects
[29, Thm. 5.12], so the induced maps on the subquotients of the filtrations for
Z and P are all stable equivalences. So the maps induced on all finite stages,
and finally the map Z −→ P on colimits are also stable equivalences.

By induction the lemma thus holds whenever the cofibration Y −→ Z is the
composite of finitely many maps obtained by cobase changes from generating
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cofibrations. Since homotopy groups of Γ–spaces commute with transfinite
compositions over cofibrations, the lemma holds whenever Y −→ Z is such a
transfinite composition of cobase changes of generating cofibrations. Finally,
if the lemma holds for a cofibration Y −→ Z , then it also holds for any re-
tract. But all cofibrations of Gamma-rings are obtained by a sequence of these
constructions by the small object argument.

We finally let R3 be a stably fibrant replacement of the Gamma-ring R2 . We
can display all the relevant objects thus constructed in a commutative diagram
of Gamma-rings

S[G] //

��

R��

∼

��
S[cR×]

∼

��

// // R1
∼ // //

∼

��

Rf

S[UR×] // R3

In this diagram the Gamma-rings Rf , R1 and R3 are fibrant, and the maps
between them are stable equivalences. Furthermore, the induced map from the
simplicial group UR× to the invertible components of the underlying monoid of
R3 is a weak equivalence. As described in 4.1, the simplicial group UR× acts
by conjugation on R3 via homomorphisms of Gamma-rings, and this action
extends the action of G.

Remark 4.5 Construction 4.2 can be made functorial in the triple (R,G,ψ :
G −→ R(1+)) since the factorizations in the model categories of simplicial
monoids and of Gamma-rings can be made functorial.

5 The comparison map

We now use the conjugation action of the previous section in the case of the
Gamma-ring DB . We obtain a model for the homotopy invariant space of
Gamma-ring maps from HZ to DB on which the homotopy units of DB act
by conjugation. So we can form the homotopy orbit space with respect to the
conjugation action. We then construct a weak map from the classifying space
of the groupoid of formal group laws and strict isomorphisms to the homotopy
orbit space of the conjugation action. In the remaining sections we show that
that map is a weak equivalence.
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In the later sections we need a version of the weak map from the classifying
space FGLstr(B) to the homotopy orbit space for other Gamma-rings. So we
set up the construction of the (weak) map in a slightly more general context.

Construction 5.1 Again we consider a Gamma-ring R, a simplicial group G
and a homomorphism of simplicial monoids ψ : G −→ R(1+). We now make
the additional assumption that the image of G lands in the unit component of
R, ie, the composite map

G
ψ

−−−→ R(1+) −→ π0R

is constant with value 1 ∈ π0R. This assumption is not very important, but it
slightly simplifies certain arguments later. Moreover we are given a simplicial set
X with an action of the simplicial group G and suppose we are are also given a
G–equivariant map X −→ mapGR(HZ, R), where G acts on the mapping space
by conjugation (4.1). In our main example, R will be the Gamma-ring DB and
G will be the discrete group of power series in one variable with leading term x
and with multiplication give by substitution. Furthermore, X will be the set of
formal group laws over B , and the map FGL(B) −→ mapGR(HZ,DB) takes
F to F∗ .

In Construction 4.2 we produced a simplicial group UR× , a homomorphism of
simplicial groups G −→ UR× and a commutative diagram of Gamma-rings

S[G]

��

S[G]

��

// S[UR×]

��

Rf R1 ∼
//

∼
oooo R3

in which the lower horizontal maps are stable equivalences between stably fi-
brant models of R. Furthermore, the induced map from the simplicial group
UR× to the invertible components of the underlying monoid of R3 is a weak
equivalence. The simplicial group G acts by conjugation on R, R1 and R3 ,
hence on the spaces of Gamma-ring maps from any other Gamma-ring into R,
R1 and R3 . If S is a cofibrant Gamma-ring, then the lower horizontal maps
induce weak equivalences

mapGR(S,Rf)
∼

←−−− mapGR(S,R1)
∼

−−−→ mapGR(S,R3)

which are G–equivariant. Furthermore the action of G on mapGR(S,R3) ex-
tends to an action of the group UR× . So we have extended, up to weak equiv-
alence, the action of the group G to the action of a simplicial group weakly
equivalent to the homotopy units of R.
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If we now choose a cofibrant replacement HZc −→ HZ in the model category
of Gamma-rings, then the space mapGR(HZc, R3) is a model for the homo-
topy invariant space of Gamma-ring maps. Furthermore, the simplicial group
UR× acts on this space by conjugation, hence so does its subgroup UR×

1 ,
the connected component of the identity element. We abbreviate the space
mapGR(HZc, R3) to Ring(HZ, R) and write Ring(HZ, R)/conj. for the homo-
topy orbit space of the conjugation action of the connected simplicial group
UR×

1 ,
Ring(HZ, R)/conj. = mapGR(HZc, R3)hUR×

1

.

We now use the G–space X and the equivariant map X −→ mapGR(HZ, R)
to construct a weak map from the homotopy orbit space XhG to the homotopy
orbit space Ring(HZ, R)/conj.. We let X̃ denote the pullback of the diagram

mapGR(HZc, R1)

∼
����

X // mapGR(HZc, Rf)

Since all spaces in the diagram have an action by the group G and all maps are
equivariant, the group G acts on the space X̃ . Since the map R1 −→ Rf is an
acyclic fibration of Gamma-rings, the induced map on homomorphism spaces
is an acyclic fibration, hence so is the map X̃ −→ X . The stable equivalence
of Gamma-rings R1 −→ R3 induces a G–equivariant map of homomorphism
spaces mapGR(HZc, R1) −→ mapGR(HZc, R3).

The conjugation action of G on the target space extends to an action of the
simplicial group UR× . By our assumption on the homomorphism ψ : G −→
R(1+) the image of G lands in the identity component UR×

1 . We denote by κ
the map induced on homotopy orbit spaces

κ : X̃hG −−−−−→ mapGR(HZc, R1)hG

−−−−−→ mapGR(HZc, R3)hUR×
1

= Ring(HZ, R)/conj.

So altogether we have obtained a weak map of homotopy orbit spaces

XhG
∼

←−−− X̃hG
κ

−−−→ Ring(HZ, R)/conj.

Now we return to the main example and apply Construction 5.1 to the Gamma-
ring DB . In this case G is the discrete group Φ(B) of power series ϕ(x) in one
variable over B with leading term x, with composition (substitution) of power
series as the group structure. This group acts on the set of formal group laws
over B via

Fϕ(x, y) = ϕ(F (ϕ-1(x), ϕ-1(y))) .
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In fact, Fϕ is defined so that ϕ : F −→ Fϕ is a strict isomorphism of formal
group laws. The homomorphism Φ(B) −→ DB(1+) ∼= x ·B[[x]] is the inclusion.
Because of the equality

(Fϕ)∗ = ϕ · F∗ · ϕ
-1

as maps of Gamma-rings HZ −→ DB , the assignment F 7→ F∗ from the set
FGL(B) of formal group laws to the set of Gamma-ring maps from HZ to DB
is Φ(B)–equivariant. The homotopy orbit space FGL(B)hΦ(B) is isomorphic
to the classifying space of the groupoid of formal group laws and strict isomor-
phisms, which we denote by FGLstr(B). So Construction 5.1 yields maps

FGLstr(B) = FGLstr(B)hΦ(B)
˜FGLstr(B)hΦ(B)

∼oo

κ

��
Ring(HZ,DB)/conj.

where the upper map is a weak equivalence. We use the notation F̃GL
str

(B)

for the homotopy orbit space ˜FGLstr(B)hΦ(B) . The following theorem is our
main result:

Theorem 5.2 The map

κ : F̃GL
str

(B) −→ Ring(HZ,DB)/conj.

is a weak equivalence.

The proof of Theorem 5.2 occupies the rest of this paper. Since the homotopy
orbit space construction defining Ring(HZ,DB)/conj. involves a connected
simplicial group, the quotient map

Ring(HZ,DB) −→ Ring(HZ,DB)/conj.

induces a bijection of path components. The set [HZ,DB]Gamma-rings is canon-
ically isomorphic to the components of the mapping space Ring(HZ,DB), so
Theorem 3.8 is just the bijection of path components induced by the weak
equivalence κ of Theorem 5.2.

In addition to the homotopy classes of Gamma-ring maps, Theorem 5.2 allows us
to identify the higher homotopy groups of the space Ring(HZ,DB) of Gamma-
ring maps. Since the group π1(DB)× ∼= π1DB is trivial by 3.2 (b), the sim-
plicial group (DB)×1 is 1–connected, so the quotient map Ring(HZ,DB) −→
Ring(HZ,DB)/conj. induces an equivalence of fundamental groupoids. To-
gether with Theorem 5.2 this implies that the fundamental groupoid of the

Geometry & Topology, Volume 8 (2004)



362 Stefan Schwede

space Ring(HZ,DB) is equivalent to the groupoid FGLstr(B). In particular
this yields isomorphisms

π1 Ring(HZ,DB;F∗) ∼= Autstrict(F )

between the fundamental group at the basepoint F∗ ∈ Ring(HZ,DB) and
the strict automorphism group of F . Since the homotopy orbit space of the
conjugation action is weakly equivalent to the classifying space of a groupoid,
its homotopy groups are trivial above dimension 1; so for every F the action
map

U(DB)×1 −→ Ring(HZ,DB) , u 7−→ u · F∗ · u
−1

induces isomorphisms of homotopy groups πnDB ∼= πn Ring(HZ,DB;F∗) for
n ≥ 2.

Example 5.3 For algebras over the rational numbers, the map κ of The-
orem 5.2 is trivially an equivalence. Indeed, if B is a Q–algebra, and F
a 1–dimensional and commutative formal group law over B , then there is a
strict isomorphism (called the logarithm of F ) between F and the additive
formal group law [19, III.1 Cor. 1]. Moreover, F has no non-trivial strict au-
tomorphisms, so the classifying space of the groupoid FGLstr(B) is weakly
contractible.

On the other hand, the Gamma-ring DB is now stably equivalent to the
Eilenberg–MacLane Gamma-ring HB by Theorem 3.2 (b). So both the space
Ring(HZ,DB) and the unit component of (DB)× are weakly contractible,
hence so is the homotopy orbit space Ring(HZ,DB)/conj.

Remark 5.4 Instead of taking homotopy orbits with respect to the connected
simplicial group U(DB)×1 one can divide out the conjugation action of the
entire homotopy units U(DB)× on the space Ring(HZ,DB). The resulting
orbit space receives a (weak) map from the groupoid of formal group laws and
all (ie, not necessarily strict) isomorphisms. The same proof as for Theorem
5.2 shows that that map

F̃GL(B) −→ Ring(HZ,DB)hU(DB)×

is a weak equivalence.

6 A filtration of DB

The Gamma-ring DB has a natural filtration arising from powers of the aug-
mentation ideal of the power series rings. There are truncated versions DkB of
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the Gamma-ring DB and analogues of the map κ of Theorem 5.2 for every k .
In this section we reduce the proof of Theorem 5.2 to the analogous statement
about the stages of the filtration, see Theorem 6.4.

For k ≥ 1 we denote by DkB the truncated version of the Gamma-ring DB
obtained by dividing out all power series in the (k + 1)-st power of the aug-
mentation ideal. So as a Γ–space,

DkB(K) = kernel ( B̃[[K]]/Ik+1 −→ B̃[[∗]] = B )

where I = K · B̃[[K]] is the ideal of B̃[[K]] consisting of power series without
constant term. The unit map again comes from the inclusion of generators
and the multiplication is induced by substitution of (truncated) power series,
similar to the definition for DB . In other words: DkB has a unique Gamma-
ring structure for which the natural projection map DB −→ DkB is a homo-
morphism of Gamma-rings. Note that D1B is isomorphic to the Eilenberg–
MacLane Gamma-ring HB . There are maps of Gamma-rings DB −→ DkB
and DkB −→ Dk−1B induced by truncation of power series.

Now we apply Construction 5.1 to the Gamma-ring DkB . The group we work
relative to is Φk(B), the quotient of the group Φ(B) of power series over B with
leading term x by the normal subgroup of power series which are congruent to
the power series x modulo xk+1 . The group Φk(B) injects into the monoid
DkB(1+), so Construction 4.2 provides a diagram of Gamma-rings

S[Φk(B)]

��

S[Φk(B)]

��

// S[U(DkB)×]

��
(DkB)f (DkB)1 ∼

//
∼

oooo (DkB)3

in which the lower horizontal maps are stable equivalences between fibrant
Gamma-rings. Furthermore the induced map from the simplicial group
U(DkB)× to the invertible components of the underlying monoid of (DkB)3 is
a weak equivalence. Hence the simplicial group U(DkB)× acts by conjugation
on the space

Ring(HZ,DkB) = mapGR(HZc, (DkB)3)

extending the action of the group Φk(B). As in (5.1) we denote by

Ring(HZ,DkB)/conj.

the homotopy orbit space of Ring(HZ,DkB) by the conjugation action of
U(DkB)×1 , the identity component of U(DkB)× .
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Since the Constructions 4.2 and 5.1 can be made functorial, truncations induce
compatible maps

Ring(HZ,DB) −→ Ring(HZ,DkB)

and Ring(HZ,DkB) −→ Ring(HZ,Dk−1B)

and similarly for the orbit spaces by the conjugation actions.

Lemma 6.1 The maps

Ring(HZ,DB) −−−→ holimk Ring(HZ,DkB)

and

Ring(HZ,DB)/conj. −−−→ holimk (Ring(HZ,DkB)/conj.)

induced by truncation are weak equivalences.

Proof We apply the homotopy limit construction [9] objectwise to Gamma-
rings to obtain a construction of homotopy limits for Gamma-rings. As we
explained in the proof of Theorem 3.2 (a), the homotopy fibre of the projection
DB −→ DkB is the product of certain Γ–spaces (B⊗Sm)! for m > k , each of
which is (2k − 1)–connected. Hence the map

(DB)3 −→ holimk (DkB)3

is a stable equivalence of Gamma-rings. So after taking homomorphism spaces
from HZc we obtain a weak equivalence of spaces

mapGR(HZc, (DB)3)
∼
−−−→ mapGR(HZc,holimk (DkB)3)

∼= holimk Ring(HZ,DkB)

which proves the first statement. Similarly, the induced map of homotopy units

(DB)× −→ holimk (DkB)×

is a weak equivalence, and so also the homotopy orbit space Ring(HZ,DB)/conj.
is the homotopy inverse limit of the truncated versions.

On the formal group law side, the classifying space FGLstr(B) can also be ex-
pressed as a homotopy limit of suitable truncated versions. We denote by BudkB
the classifying space of the groupoid of k–buds [28, Def. 2.1] (also called k–jets)
of formal group laws over B and k–buds of strict isomorphisms. Truncation
induces maps

FGLstr(B) −→ BudkB and BudkB −→ Bud
k−1
B .
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The classifying spaces FGLstr(B) and BudkB are isomorphic to the homotopy
orbit spaces FGL(B)hΦ(B) and (BudkB)hΦk(B) respectively. Since the group
Φ(B) is the inverse limit of the groups Φk(B) and the set of formal group laws
is the inverse limit of the sets of k–buds, we have

Lemma 6.2 The map

FGLstr(B) −→ holimk Bud
k
B

induced by truncation on classifying spaces is a weak equivalence.

Proof This an instance of a general fact about homotopy orbits of groups
acting on sets, alias translation categories. Suppose {Gk −→ Gk−1}k≥1 is a
sequence of surjective group homomorphisms, {Xk −→ Xk−1}k≥1 a tower of
sets, and suppose that Gk acts on Xk in such a way that the map Xk −→ Xk−1

is Gk–equivariant. Then the inverse limit G = limkGk of groups acts on the
inverse limit X = limkXk of sets and the canonical map

XhG −→ holimk (Xk)hGk

is a weak equivalence. This follows from the homotopy fibre sequences

Xk −→ (Xk)hGk
−→ BGk

by passage to homotopy inverse limit together with the fact that the natural
maps

X = limk Xk −→ holimk Xk and BG −→ holimk BGk

are weak equivalences (we note that the path components of the homotopy
inverse limit of the classifying spaces BGk are in bijective correspondence with
the set lim1

kGk ; since we consider surjective group homomorphisms, this lim1–
term is trivial and the map from BG to the homotopy inverse limit is indeed
a weak equivalence). In our example Xk is the set of k–buds of formal group
laws and Gk is the group Φk(B) of k–buds of power series conjugating the
k–buds of formal group laws.

Every k–bud of formal group law F gives rise to a map of Gamma-rings HZ −→
DkB in the same fashion as genuine formal group laws give maps to DB (3.5).
The group Φk(B) of truncated invertible power series conjugates the set of
k–buds and the map BudkB −→ mapGR(HZ,DkB) is Φk(B)–equivariant. If
we carry out Construction 5.1 with R = DkB and with the group Φk(B)
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conjugating the k–buds of formal group laws, we obtain a map of homotopy
orbit spaces

κk : B̃ud
k

B = (B̃udkB)hΦk(B) −→ mapGR(HZc, (DkB)3)hU(DkB)×
1

= Ring(HZ,DkB)/conj.

The constructions are natural, so we end up with a commutative diagram

F̃GL
str

(B)

∼

��

κ // Ring(HZ,DB)/conj.

∼

��

holimk B̃ud
k

B κk

// holimk Ring(HZ,DkB)/conj.

(6.3)

in which the vertical maps are weak equivalences by Lemmas 6.1 and 6.2. So
Theorem 5.2 follows once we have shown

Theorem 6.4 For all k ≥ 1 the map

κk : B̃ud
k

B −→ Ring(HZ,DkB)/conj.

is a weak equivalence.

Remark 6.5 If k is not a prime power, then the functor B⊗Sk is a retract of a
diagonalizable functor (Lemma 12.5), and so the Γ–space underlying (B⊗Sk)!

is stably contractible (8.9 (e)). Hence the reduction map DkB −→ Dk−1B is
a stable equivalence of Gamma-rings and the induced map on homotopy units
(DkB)× −→ (Dk−1B)× is a weak equivalence of simplicial monoids. Thus the
map of homotopy orbit spaces

Ring(HZ,DkB)/conj.
red.
−−−→ Ring(HZ,Dk−1B)/conj.

is a weak equivalence. By Remark 7.3 below, the reduction functor BudkB −→
Budk−1

B is an equivalence of categories. Hence in the inductive step nothing
happens unless k = ph is a prime power. However it is convenient to make this
case distinction only at the very end (see Step 1 in the proof of Theorem 12.3).

7 Some singular extensions of Gamma-rings

In this section we start the inductive proof of Theorem 6.4. We exploit that the
truncation maps DkB −→ Dk−1B are “singular extensions” of Gamma-rings.
This lets us reduce the problem to a comparison of the derivation space of the

Geometry & Topology, Volume 8 (2004)



Formal groups and stable homotopy of commutative rings 367

Gamma-ring HZ with coefficients in the “kernel” (B ⊗ Sk)! of the extension
to the groupoid of symmetric 2–cocycles.

The case k = 1 of Theorem 6.4 is straightforward. There is only one 1–bud of
formal group law, and the only 1–bud of strict automorphism is the identity.
On the other hand, D1B is isomorphic to the Eilenberg–MacLane Gamma-ring
HB , so both the space Ring(HZ,D1B) and the unit component (D1B)×1 of
the homotopy units are weakly contractible. Hence source and target of the
map

κ1 : B̃ud
1

B −→ Ring(HZ,D1B)/conj.

are weakly contractible and κ1 is a weak equivalence.

7.1 Symmetric 2–cocycles For the inductive step we recall how the dif-
ference between k–buds and (k − 1)–buds of formal group laws is controlled
by symmetric 2–cocycles. A symmetric 2–cocycle of degree k with values in B
is a homogeneous polynomial c(x, y) ∈ B[x, y] of degree k which satisfies the
relations

c(x, y) = c(y, x) and c(x, y) + c(x+ y, z) = c(x, y + z) + c(y, z) .

If F is any k–bud of formal group law over B and c is a k–homogenous 2–
cocycle, then the truncated power series F (x, y) + c(x, y) is another k–bud
of formal group law with the same (k − 1)–bud as F . Conversely, if F and
F ′ are two k–buds with the same reduction modulo the k–th powers of the
augmentation ideal, then c = F − F ′ is a k–homogenous 2–cocycle. The proof
of this is straightforward, compare [28, Sec. II] or [19, III.1 Lemma 2].

We define Z(B ⊗ Sk), the groupoid of symmetric 2–cocycles of degree k , as
the category whose objects are the symmetric 2–cocycles of degree k over B .
The set of morphisms from a cocycle c to a cocycle c′ consists of those b ∈ B
satisfying c′ = c+ b ·

[
xk + yk − (x+ y)k

]
; composition is given by addition in

B .

Suppose F is a k–bud of formal group law. Then we can define a functor

F +− : Z(B ⊗ Sk) −→ BudkB

on objects by (F +−)(c) = F + c and on morphisms by (F +−)(b) = x+ b ·xk .
The relation

F x+bx
k

(y, ȳ) ≡ F (y, ȳ) + b ·
[
yk + ȳk − (y + ȳ)k

]
mod (y, ȳ)k+1

shows that if b : c −→ c′ is a morphism of cocycles, then the power series
x+ b · xk is indeed an isomorphism from F + c to F + c′ .
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Lemma 7.2 For every k–bud of formal group law F , the functor

F +− : Z(B ⊗ Sk) −→ BudkB

induces a weak equivalence from the classifying space of the groupoid Z(B ⊗ Sk)
to the homotopy fibre of the truncation map BudkB −→ Bud

k−1
B over the base-

point F .

Proof This again is an instance of a general fact about homotopy orbits of
groups acting on sets, alias translation categories. Suppose G −→ Ḡ is an
epimorphism of groups with kernel K . Moreover, let X be a G–set, X̄ a
Ḡ–set and π : X −→ X̄ a G–equivariant map. Then for every point x ∈ X̄
the kernel K acts on the preimage π−1(x). In this situation the sequence of
homotopy orbit spaces

π−1(x)hK −→ XhG −→ X̄hḠ

is a homotopy fibre sequence over the point x.

In the situation at hand the epimorphism is the truncation Φk(B) −→ Φk−1(B),
whose kernel is isomorphic to the additive group of B via b 7−→ x + b · xk .
The groups conjugate the k–buds respectively (k − 1)–buds of formal group
laws. For every choice of k–bud of formal group law F , the map F + − is
an isomorphism, equivariant for B ∼= kernel : Φk(B) −→ Φk−1(B), from the
symmetric 2–cocycles to the k–buds which have the same (k − 1)–bud as F .
Hence the lemma follows.

Remark 7.3 The symmetric 2–cocycles have been identified by Lazard [28, II
Lemme 3], see also [19, III.1 Thm. 1a]. There is a universal integral symmetric
2–cocycle ck ∈ Z[x, y] of degree k given by

ck(x, y) =
1

dk

[
xk + yk − (x+ y)k

]

and the degree k symmetric 2–cocycles over B are precisely the multiples b · ck
for b ∈ B . Here dk is the greatest common divisor of the binomial coefficients(
k
i

)
for 1 ≤ i ≤ k − 1, which evaluates to

dk =

{
p if k = ph for a prime p and h ≥ 1
1 else.

Hence the classifying space of Z(B ⊗ Sk) can be identified as follows: if k is
not a prime power, then the classifying space is weakly contractible and the
reduction functor BudkB −→ Bud

k−1
B is an equivalence of categories. If k = ph
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for some prime p, then the groupoid Z(B⊗Sp
h

) is isomorphic to the translation
category of the action of B on itself given by

(b, x) 7−→ p · b + x .

Hence the components of the classifying space of Z(B⊗Sp
h

) are in bijective cor-
respondence with the set B/pB and the fundamental group at each basepoint
is isomorphic to the group of those b ∈ B such that pb = 0. However, in the
rest of this paper we will not use this explicit knowledge about the symmetric
2–cocycles.

Now we identify the difference between the spaces of Gamma-ring maps from
HZ to DkB and to Dk−1B , ie, we study the homotopy fibers of the reduction
map

Ring(HZ,DkB)/conj. −→ Ring(HZ,Dk−1B)/conj.

For this purpose we consider the Gamma-ring HZ× (B⊗Sk)! . We present the
construction in a more general context, since we need it later.

7.4 Split singular extensions Let G be a functor from the category of
finitely generated free abelian groups to the category of all abelian groups, and
suppose that G is reduced in the sense that G(0) ∼= 0. We define a Gamma-ring
HZ×G! , the split singular extension of HZ by the bimodule G! .

First there is an HZ–bimodule G! associated to the functor G; the notation is
taken from [37, Ex. 2.6], where the construction first appeared. As a Γ–space,
G! is the composite

Γop Z̃
−−−→ (f. g. free ab. groups)

G
−−−→ Ab

Φ
−−−→ (pt. sets)

of the reduced free functor Z̃, followed by G and the forgetful functor Φ from
abelian groups to pointed sets. The Γ–space G! has the structure of an HZ–
bimodule via the composite

HZ ∧G! ∧HZ
assembly

// HZ ◦G! ◦HZ // G! .

The first map is an instance of the assembly map (2.5) from the smash product
to the composition product of Γ–spaces; the second map is induced by eval-
uation maps (this uses that the original functor G was defined for and takes
values in abelian groups).

The product HZ × G! becomes a Gamma-ring as follows. The unit map of
HZ×G! is the composition of the unit η : S −→ HZ with the inclusion HZ −→
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HZ×G! . The multiplication map is the composite

(HZ×G!) ∧ (HZ×G!) −−−−−−−−→ (HZ ∧HZ)× (HZ ∧G!)× (G! ∧HZ)

(µHZ, l+r)
−−−−−−−−→ HZ × G!

where l and r denote the left respectively right action of HZ on G! .

In particular we can apply Construction 7.4 to the functor B⊗Sk which takes
a finitely generated free abelian group A to the tensor product of B with the
k -th symmetric power of A. If F is any k–bud of formal group law, then
F∗ : HZ −→ DkB is a morphism of Gamma-rings. Homogenous polynomials
of degree k naturally inject into the quotient of power series by terms of degree
k + 1, which gives a map of Γ–spaces Incl : (B ⊗ Sk)! −→ DkB . Moreover,
their pointwise sum in DkB

F∗ + Incl. : HZ× (B ⊗ Sk)! −→ DkB

is again a map of Gamma-rings.

Lemma 7.5 The commutative square

HZ× (B ⊗ Sk)!

proj.

��

F∗+Incl.
// DkB

��
HZ

F∗

// Dk−1B

is a homotopy fibre square of Gamma-rings.

Proof It suffices to show that the underlying square of Γ–spaces is homotopy
cartesian. As a Γ–space DB splits as a product

DkB ∼= Dk−1B × (B ⊗ Sk)!

and under this isomorphism the map F∗ + Incl. becomes the map

F∗ × Id : HZ× (B ⊗ Sk)! −→ Dk−1B × (B ⊗ Sk)! ,

so the claim follows.

The additive group of the ring B includes into the underlying monoid of the
Gamma-ring HZ× (B⊗Sk)! via the map which sends b ∈ B to the polynomial
x + b · xk , considered as an element of (HZ × (B ⊗ Sk)!)(1+) ∼= Z[x] × B[xk]
(where x is an indeterminate corresponding to the non-basepoint element of
1+ ). We can now apply Construction 4.2 to the Gamma-ring HZ× (B ⊗ Sk)!
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relative to the additive group of B . The construction produces a commutative
diagram of Gamma-rings

S[B]

��

S[B]

��

// S[U(HZ× (B ⊗ Sk)!)×]

��

(HZ × (B ⊗ Sk)!)f (HZ× (B ⊗ Sk)!)1 ∼
//

∼
oooo (HZ × (B ⊗ Sk)!)3

in which the lower horizontal maps are stable equivalences between fibrant
Gamma-rings. The induced map from the simplicial group U(HZ×(B⊗Sk)!)×

to the invertible components of the underlying monoid of (HZ× (B⊗Sk)!)3 is
a weak equivalence.

We denote by

der(HZ, B ⊗ Sk) = mapGR(HZc, (HZ× (B ⊗ Sk)!)3)

the space of Gamma-ring maps from HZc to (HZ×(B⊗Sk)!)3 and refer to this
space as the space of derivations of HZ with coefficients in B⊗Sk . The group
U(HZ × (B ⊗ Sk)!)× acts by conjugation on the space of derivations and we
denote by der(HZ, B ⊗Sk)/conj. the homotopy orbit space of the conjugation
action of the identity component U(HZ × (B ⊗ Sk)!)×1 . Since the square of
monoids

B //

b 7−→

x+ b·xk

��

(HZ× (B ⊗ Sk)!)(1+)

F∗+Incl.

��
Φk(B) // DkB(1+)

commutes and the constructions of Sections 4 are functorial in Gamma-rings
equipped with a map from a group to the underlying monoid, the map

F∗ + Incl. : HZ× (B ⊗ Sk)! −→ DkB

induces maps between the respective derived spaces of Gamma-ring maps from
HZ and their homotopy orbit spaces.

Lemma 7.6 The two maps

der(HZ, B ⊗ Sk)
F∗+Incl.
−−−−−−→ Ring(HZ,DkB) and

der(HZ, B ⊗ Sk)/conj.
F∗+Incl.
−−−−−−→ Ring(HZ,DkB)/conj.
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induce weak equivalences between the derivation space, respectively its homo-
topy orbit space, and the respective homotopy fibres of the truncation maps

Ring(HZ,DkB) −→ Ring(HZ,Dk−1B) and

Ring(HZ,DkB)/conj. −→ Ring(HZ,Dk−1B)/conj.

over the basepoint F∗ .

Proof The first statement is a direct consequence of the fact that the square
of Lemma 7.5 is homotopy cartesian. The second follows from the first since
the sequence of simplicial groups

U(HZ× (B ⊗ Sk)!)×1 −−−→ U(DkB)×1 −→ U(Dk−1B)×1

is also a homotopy fibre sequence, again because of Lemma 7.5.

We denote by Z̃
2

s(B ⊗ S
k) the pullback of the diagram

mapGR(HZc, (HZ× (B ⊗ Sk)!)1)

∼
����

Z2
s(B ⊗ S

k) // mapGR(HZc, (HZ × (B ⊗ Sk)!)f)

All maps are equivariant with respect to the action of the additive group of B ,

so this group acts on Z̃
2

s(B ⊗ S
k). Furthermore the weak equivalence

mapGR(HZc, (HZ× (B ⊗ Sk))1)
∼
−−−→ mapGR(HZc, (HZ× (B ⊗ Sk))3)

is B–equivariant, and on the target the action extends to an action by the
simplicial group U(HZ× (B⊗Sk))×1 . So we get an induced map on homotopy
orbits

κB⊗Sk : Z̃
2

s(B ⊗ S
k)hB −→ mapGR(HZc, (HZ × (B ⊗ Sk)!)1)hB −→

mapGR(HZc, (HZ × (B ⊗ Sk)!)3)hU(HZ×(B⊗Sk)!)×
1

= der(HZ, B ⊗ Sk)/conj.

Note that the homotopy orbit space of the action of B on the set Z2
s(B ⊗ S

k)
of symmetric 2–cocycles is isomorphic to the classifying space of the groupoid
Z(B⊗Sk) (7.1); hence we use the notation Z̃(B⊗Sk) for the weakly equivalent

homotopy orbit space Z̃
2

s(B ⊗ S
k)hB .

Now we can reduce the inductive step of Theorem 6.4 to a statement about the
map κB⊗Sk . We assume inductively that the map

κk−1 : B̃ud
k−1

B −→ Ring(HZ,Dk−1B)/conj.
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is a weak equivalence. This guarantees in particular that the (k − 1)–buds of
formal group laws account for all components of the target space. Since every
(k − 1)–bud of formal group law extends to a k–bud, the reduction map

Ring(HZ,DkB)/conj. −→ Ring(HZ,Dk−1B)/conj.

is surjective on components. If we fix a k–bud of F of formal group law, then
the diagram

Z̃(B ⊗ Sk)

κ
B⊗Sk

��

F+−
//
B̃udkB

κk

��
der(HZ, B ⊗ Sk)/conj.

F∗+Incl.
// Ring(HZ,DkB)/conj.

(7.7)

is commutative. By Lemmas 7.2 and 7.6, the horizontal maps identify the
respective homotopy fibres of the truncation maps over the basepoints F and
F∗ . Since formal group laws account for all components of the target space, we
have thus reduced the inductive step of the proof of Theorem 6.4, and hence of
the main theorem, to showing

Theorem 7.8 The map

κB⊗Sk : Z̃(B ⊗ Sk) −→ der(HZ, B ⊗ Sk)/conj.

is a weak equivalence for all commutative rings B and all k ≥ 1.

The remaining sections are spent verifying that the map κB⊗Sk is indeed a
weak equivalence. If k is not a prime power, then source and target of the
map κB⊗Sk are weakly contractible, compare Remark 6.5. However there is no
need to make this case distinction until the very end (see Step 1 in the proof of
Theorem 12.3).

8 Symmetric 2–cocycles and derivations

In this section we provide some general constructions which will be needed in
the sequel. We consider functors G from finitely generated free abelian groups
to all abelian groups which are reduced in the sense that G(0) ∼= 0. For such
functors we discuss symmetric 2–cocycles and show how these lead to Gamma-
ring maps into the split extension HZ×G! (7.4). We also recall the Dold–Puppe
stabilization Gst of the functor G (8.9). The work of this section is summarized
in a certain map (8.10)

λG : Z(G) −→ mapGR(HZc,HZ×G!
st)hGst(Z)
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with source the groupoid Z(G) of symmetric 2–cocycles of G. In the case
where G is the symmetric power functor B ⊗ Sk , we identify the map λB⊗Sk

(up to weak equivalence) with the map κB⊗Sk of Theorem 7.8 in Section 9.

8.1 Cocycles of a functor We let F denote the abelian category of reduced
functors from finitely generated free abelian groups to all abelian groups. Sup-
pose G ∈ F is a such functor. Then a symmetric 2–cocycle with values in G is
an element c ∈ G(Z ⊕ Z) which is

(a) fixed by the involution of G(Z ⊕ Z) induced by the interchange of sum-
mands and

(b) in the kernel of the map

G

(
1 0 0
0 1 0

)
−G

(
1 0 0
0 1 1

)
+G

(
1 1 0
0 0 1

)
−G

(
0 1 0
0 0 1

)
:

G(Z ⊕ Z) −→ G(Z ⊕ Z⊕ Z) .

We denote by Z2
s(G) the group of symmetric 2–cocycles in G.

A group homomorphism

θ : G(Z) −→ Z2
s(G) ⊂ G(Z ⊕ Z)

is defined by
θ = G(1, 0) −G(1, 1) +G(0, 1) .

The cocycle θ(a) associated to a ∈ G(Z) is sometimes referred to as the prin-
cipal cocycle of a. We denote by Z(G) the translation category of the action
of G(Z) on the set Z2

s(G) of symmetric 2–cocycles given by (a, c) 7−→ θ(a) + c.
More precisely, Z(G) is the groupoid whose objects are the symmetric 2–
cocycles Z2

s(G) and where the set of morphisms from a cocycle c to a cocycle
c′ consists of those elements a ∈ G(Z) such that c′ = θ(a) + c. Composition in
Z(G) is given by addition in the group G(Z).

Example 8.2 If G = B ⊗Sk is the symmetric power functor, then G(Z⊕ Z)
is the group of homogenous polynomials of degree k in two variables over the
ring B . For c ∈ (B ⊗ Sk)(Z ⊕ Z), the cocycle condition (a) translates into
c(x, y) = c(y, x) and condition (b) translates into the equation

c(x, y) + c(x+ y, z) = c(x, y + z) + c(y, z) .

Hence the symmetric 2–cocycles with values in B⊗Sk coincide with the homoge-
nous 2–cocycles of degree k as defined in 7.1. Moreover, the group (B⊗Sk)(Z)
is isomorphic to the additive group of B and the map

θ : B ∼= (B ⊗ Sk)(Z) −→ Z2
s(B ⊗ S

k)
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sends b ∈ B to the cocycle b ·
[
xk + yk − (x+ y)k

]
. Hence the cocycle groupoid

for the functor B ⊗ Sk as defined in 8.1 coincides with Z(B ⊗ Sk) as defined
in 7.1.

8.3 The universal 2–cocycle We let I ∈ F denote the inclusion functor
and P ∈ F the functor which takes an abelian group A to the reduced free
abelian group generated by the underlying pointed set of A. The Yoneda
isomorphism HomF (P,G) ∼= G(Z) shows that P is a projective object of F .
Evaluation gives a natural epimorphism

P (A) = Z̃[A] −→ A = I(A) ,

ie, an epimorphism ǫ : P −→ I in the category F . We let J denote the kernel;
the relevance for us is that J represents the symmetric 2–cocycle functor. The
element

cu = [1, 0] − [1, 1] + [0, 1] ∈ Z̃[Z⊕ Z] = P (Z⊕ Z) (8.4)

is in the kernel of the evaluation map, so it is an element of J(Z ⊕ Z). As
an element of P (Z ⊕ Z), cu is the principal cocycle associated to [1] ∈ P (Z).
Hence cu is a symmetric 2–cocycle of J (but it is not principal for J because
the element [1] ∈ P (Z) does not belong to J(Z)).

Lemma 8.5 The symmetric 2–cocycle cu with values in the functor J is
universal in the sense that the map

HomF (J,G) −→ Z2
s(G) , f 7−→ f(cu)

is an isomorphism for all functors G ∈ F .

Proof Both HomF (J,G) and Z2
s(G) are additive and left exact in the functor

G. Hence it suffices to check the claim for a set of injective cogenerators of the
category F . If A is a finitely generated free abelian group we define a functor
IA by the formula

IA(M) = map∗(Hom(M,A),Q/Z) .

Here Hom(M,A) denotes the set of group homomorphisms from M to A and
‘map∗ ’ refers to the group of set-theoretic maps from Hom(M,A) to Q/Z pre-
serving 0, with group structure by pointwise addition. The Yoneda isomorphism

HomF (G,IA) ∼= Hom(G(A),Q/Z)

implies that IA is injective and that the functors IA form a collection of injec-
tive cogenerators as A varies.
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It remains to verify that for all finitely generated free abelian groups A eval-
uation at the cocycle cu ∈ Z2

s(J) is an isomorphism from HomF (J,IA) to
Z2
s(IA). We claim that the group Z2

s(IA) can be identified with the quotient of
the group map∗(A,Q/Z) of pointed set maps from A to Q/Z by the subgroup
Hom(A,Q/Z) of additive maps. We use the natural basis of Z⊕ Z to identify
IA(Z⊕ Z) = map∗(Hom(Z⊕ Z, A),Q/Z) with the group of set-theoretic maps
g : A⊕A −→ Q/Z satisfying g(0, 0) = 0. Under this identification the cocycle
conditions for elements of IA(Z⊕ Z) translate into the conditions

g(x, y) = g(y, x) and g(x, y) + g(x+ y, z) = g(x, y + z) + g(y, z)

for all x, y, z ∈ A on the function g ∈ map∗(A ⊕ A,Q/Z). In other words: g
is a factor set of an abelian group extension of A by Q/Z. Since A is free
abelian, every such extension splits, so g is principal, ie, there exists a function
h : A −→ Q/Z satisfying g(x, y) = h(x) − h(x + y) + h(y) and h(0) = 0.
Moreover, h is uniquely determined by this up to an additive function.

All this means that the bottom row in the commutative diagram of abelian
groups

0 // HomF (I,IA)

∼=
��

// HomF (P,IA)

∼=
��

// HomF (J,IA)

f 7→f(cu)
��

// 0

0 // Hom(A,Q/Z) // map∗(A,Q/Z)
ϑ

// Z2
s(IA) // 0

is exact where ϑ is defined by ϑ(h)(x, y) = h(x) − h(x + y) + h(y). The
upper row is exact since IA is an injective object and J is the kernel of the
epimorphism ǫ : P −→ I . The left and middle vertical maps are special cases
of the Yoneda isomorphism HomF (G,IA) ∼= Hom(G(A),Q/Z), so the right
vertical map is also an isomorphism and cu ∈ Z2

s(J) is indeed a universal
symmetric 2–cocycle.

8.6 The universal derivation We saw in Lemma 8.5 that the functor
J = kernel(ǫ : P −→ I) supports a universal symmetric 2–cocycle. Now we
construct a universal derivation, ie, a certain homomorphism of Gamma-rings

HZ −→ HZ× J !

into the split extension (7.4) of HZ by J ! . The first component of this map
is the identity map of HZ. To describe the second component we consider the
map of Γ–spaces

η ◦ 1 − 1 ◦ η : HZ −→ HZ ◦HZ

where η : S −→ HZ is the unit map of HZ given by inclusion of generators into
the free abelian groups, and where we use the identifications S ◦HZ ∼= HZ ∼=
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HZ ◦ S. We note that HZ ◦HZ = P ! and that the composite of η ◦ 1− 1 ◦ η
with the evaluation map ǫ! : HZ ◦HZ = P ! −→ I ! = HZ is trivial. So we can
define du : HZ −→ J ! as the unique morphism of Γ–spaces whose composite
with the inclusion J ! ⊆ P ! is the difference η ◦ 1− 1 ◦ η . We refer to du as the
universal derivation. Now we claim that the map

(1, du) : HZ −→ HZ× J !

is a homomorphism of Gamma-rings. The only thing to verify is the multiplica-
tivity, and it suffices to do this after composition with the injective Gamma-ring
map HZ×J ! −→ HZ×P ! induced by the inclusion J −→ P . By the definition
of the product of HZ×P ! = HZ×(HZ◦HZ) in 7.4 this boils down to verifying
the commutativity of the diagram

HZ ◦HZ
(1◦(η◦1−1◦η) , (η◦1−1◦η)◦1)

//

µ

��

HZ◦3 ×HZ◦3

(µ◦1)×(1◦µ)
��

HZ

η◦1−1◦η
((RRRRRRRRRRRRRRR (HZ ◦HZ)× (HZ ◦HZ)

+
ttiiiiiiiiiiiiiiiii

HZ ◦HZ

where µ : HZ ◦HZ −→ HZ is the “multiplication” induced by the evaluation
map P −→ I . The commutativity of the diagram in turn follows from the
identities

(µ ◦ 1)(1 ◦ η ◦ 1) = 1HZ◦HZ and (µ ◦ 1)(1 ◦ 1 ◦ η) = (1 ◦ η)µ

(here juxtaposition means composition of Γ–space maps) and their analogues
for µ ◦ 1 replaced by 1 ◦ µ.

Hence for a functor G ∈ F we can define a map

Z2
s(G) ∼= HomF (J,G) −→ mapGR(HZ,HZ×G!) (8.7)

by sending a morphism f : J −→ G to the composite Gamma-ring map

HZ
du−−−−−−→ HZ× J ! 1×f !

−−−−−−→ HZ×G! .

If c ∈ Z2
s(G) is a cocycle represented by fc : J −→ G, then we refer to the

above Gamma-ring map as the derivation associated to the 2–cocycle c.

The group G(Z) maps to the underlying monoid (HZ×G!)(1+) ∼= Z×G(Z) of
the split extension via a 7−→ (1, a), hence it acts on the Gamma-ring HZ×G!

by conjugation (4.1). The group G(Z) also acts on the symmetric 2–cocycles
via the homomorphism θ : G(Z) −→ Z2

s(G) (8.1).
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Lemma 8.8 The map

Z2
s(G) ∼= HomF (J,G) −→ mapGR(HZ,HZ×G!)

which sends a morphism f : J −→ G to the Gamma-ring map (1, f ! ◦ du) :
HZ −→ HZ×G! is equivariant for the action of G(Z).

Proof Let a ∈ G(Z) be an element and f : J −→ G a morphism of functors.
Under the Yoneda isomorphism G(Z) ∼= HomF (P,G) and the isomorphism
Z2
s(G) ∼= HomF (J,G) of Lemma 8.5, the map θ : G(Z) −→ Z2

s(G) corresponds
to the map HomF (P,G) −→ HomF (J,G) induced by the inclusion ι : J −→ P .

So we have to verify the equality

(1, df+a◦ι) = (1, a) · (1, df ) · (1, a)
−1

as maps HZ −→ HZ×G! . Only the second component matters. If we substitute
definitions 4.1 of the conjugation action and 7.4 of the multiplication in HZ×G!

we see that the second component of right hand side is a sum

projG! ◦
[
(1, a) · (1, df ) · (1, a)

−1
]

= r-a + df + la .

Here la : HZ −→ G! is left multiplication with a ∈ G!(1+) ∼= G(Z), ie, the
composition

HZ ∼= S ∧HZ
a∧1
−−−→ G! ∧HZ

action
−−−−−−→ G! ,

and r-a is right multiplication with −a ∈ G!(1+).

Since df+a◦ι = df + da◦ι it suffices to show that

da◦ι = r-a + la

as maps HZ −→ G! . By naturality it is enough to check the universal example,
ie, to take G = P and a = [1] ∈ Z̃[Z] = P (Z), which corresponds to the identity
of P under the Yoneda isomorphism. By definition

dι = η ◦ 1− 1 ◦ η : HZ −→ P ! = HZ ◦HZ .

So the claim follows since l[1] = η ◦ 1 and r-[1] = −1 ◦ η .

8.9 Dold–Puppe stabilization and MacLane’s Q–construction We re-
call the Dold–Puppe stabilization of a functor G ∈ F (compare [11, 8.3]).
We work with a specific model for the Dold–Puppe stabilization which uses
MacLane’s cubical construction [14, Sec. 12]. In the original paper of Eilenberg
and MacLane the cubical construction was defined for the free functor P = Z̃,
but the definition extends to arbitrary reduced functors in F , see [35, Sec.
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4] or [27, 6.2] for the definition. A convenient reference for the relationship
between Dold–Puppe stabilization and MacLane’s cubical construction is [27].
The cubical construction QG of a functor G ∈ F is a chain complex of functors,
concentrated in non-negative dimensions, with the following properties:

(a) QG is homotopy-additive in the sense that for every pair of finitely gen-
erated free abelian groups A and A′ the canonical map

QG(A)⊕QG(A′) −→ QG(A⊕A′)

is a quasi-isomorphism.

(b) there is a natural isomorphism

H∗QG(Z) ∼= Lst
∗ G

∼= π∗G
! ,

ie, the homology groups of the complex QG(Z) are isomorphic to the
Dold–Puppe stable derived functors of G and to the stable homotopy
groups of the Γ–space G! .

(c) In dimension zero, (QG)0 = G and in positive dimensions QG is a finite
sum of higher order cross-effects (see [15, Sec.9] or [27, Sec. 7]) of G.

(d) As a functor of G, the assignment G 7−→ QG is additive, exact, and
commutes with limits and colimits.

(e) Suppose the functor G is diagonalizable, ie, there exists a functor

Ḡ : (f.g. free ab. groups)× (f.g. free ab. groups) −→ Ab

of two variables satisfying Ḡ(A, 0) ∼= 0 ∼= Ḡ(0, A) and a natural isomor-
phism G(A) ∼= Ḡ(A,A). Then the complex QG is acyclic.

Property (a) is proved in [35, 4.2] and [27, 6.3]. The first isomorphism of part (b)
follows from [35, 4.1] or [27, 7.5]; essentially by definition the stable homotopy
groups of the Γ–space G! are the Dold–Puppe stable derived functors of G.
Part (c) is proved in [27, 6.3]. Property (d) follows from (c) since taking cross-
effects is exact and commutes with limits and colimits. If G is diagonalizable,
then [11, 5.20] shows that the stable derived functors of G are trivial. So by
part (b) the complex QG(Z) is acyclic and by part (a) QG is acyclic as a
complex of functors.

Properties (a) and (b) already characterize QG up to a chain of natural quasi-
isomorphisms; this is because on the level of homotopy categories, G 7−→ QG is
left adjoint to the inclusion of the subcategory of homotopy additive complexes
of functors.
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We denote by Gst the simplicial functor which corresponds to QG under the
Dold–Kan equivalence between simplicial objects and non-negative chain com-
plexes in the abelian category F . So Gst is defined by the property that its
normalized chain complex is isomorphic to QG. By property (c), the functor
of zero-simplices of Gst is G, which gives a map G −→ Gst which induces
isomorphism of stable homotopy groups upon passage to associated Γ–spaces
G! −→ G!

st .

Construction 7.4 which associates the Gamma-ring HZ×G! to a functor G ∈ F
makes perfect sense for simplicial functors, ie, simplicial objects in the abelian
category F . Moreover, the stabilization map G −→ Gst induces a stable equiv-
alence of Gamma-rings HZ×G! −→ HZ×G!

st . Combining the map (8.7) with
this Gamma-ring homomorphism and the approximation map HZc −→ HZ
gives a map

Z2
s(G) ∼= HomF (J,G)

f 7→ (1, f !◦du)
−−−−−−−−−−→ mapGR(HZ,HZ×G!)

−−−−−−−−−−→ mapGR(HZc,HZ×G!
st) .

By Lemma 8.8 this map is equivariant for the action of G(Z) by translation
and conjugation respectively. Hence passing to homotopy orbits yields a map

λG : Z(G) ∼= Z2
s(G)hG(Z) −→ mapGR(HZc,HZ×G!

st)hGst(Z) . (8.10)

Here we identified the classifying space of the groupoid Z(G) of symmetric 2–
cocycles (8.1) with the homotopy orbit space of the action of G(Z) on the set
Z2
s(G).

9 A change of models

So far we have reduced the proof of our main theorem, Theorem 5.2, to the
verification that the map

κB⊗Sk : Z̃(B ⊗ Sk) −→ der(HZ, B ⊗ Sk)/conj.

constructed in Section 7 is a weak equivalence for all k ≥ 1. In this section we
bring the map κB⊗Sk into a more manageable form by constructing a commu-
tative square

Z̃(B ⊗ Sk)

∼

��

κ
B⊗Sk

// der(HZ, B ⊗ Sk)/conj.

∼

��

Z(B ⊗ Sk)
λ

B⊗Sk

// mapGR(HZc,HZ × (B ⊗ Sk)!st)h(B⊗Sk)st(Z)

(9.1)
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in which the vertical maps are weak equivalences. The lower horizontal map
λB⊗Sk is an instance of (8.10). This then leaves us with the task to verify that
λB⊗Sk is a weak equivalence for all k ≥ 1.

The construction of the square (9.1) is technical. The idea is that by properties
8.9 (a) and (b) of the cubical construction, (B⊗Sk)!st is a stably fibrant model
of the Γ–space (B⊗Sk)! . Hence the map HZ× (B⊗Sk)! −→ HZ× (B⊗Sk)!st
is a stable equivalence of Gamma-rings with fibrant target. In particular, the
space of Gamma-ring maps mapGR(HZc,HZ × (B ⊗ Sk)!st) is a model for the
homotopy invariant morphism space, ie, it is weakly equivalent to the derivation
space der(HZ, B⊗Sk). In order to identify these two derivation spaces we have
to take a little more care because we need to work relative to the classifying
space of symmetric 2–cocycles.

We reexamine Construction 4.2, applied to the Gamma-ring HZ × (B ⊗ Sk)! .
This construction yields a commutative diagram of Gamma-rings

S[B]

��

S[B]

��

// S[U(HZ× (B ⊗ Sk)!)×]

��

(HZ × (B ⊗ Sk)!)f (HZ× (B ⊗ Sk)!)1 ∼
//

∼
oooo (HZ × (B ⊗ Sk)!)3

in which the lower horizontal maps are stable equivalences between stably fi-
brant Gamma-rings. Here we work relative to the homomorphism

B −→ HZ× (B ⊗ Sk)!(1+) = Z[x]×B[xk]

which sends b ∈ B to x+b ·xk . Furthermore, the induced map from the simpli-
cial group U(HZ× (B⊗Sk)!)× to the invertible components of the underlying
monoid of (HZ× (B ⊗ Sk)!)3 is a weak equivalence.

Since the Gamma-ring HZ× (B ⊗ Sk)!st is stably fibrant and the map

HZ× (B ⊗ Sk)! −→ (HZ× (B ⊗ Sk)!)f

in the functorial fibrant replacement is an acyclic cofibration, we can choose a
Gamma-ring map from (HZ × (B ⊗ Sk)!)f to HZ × (B ⊗ Sk)!st under HZ ×
(B⊗Sk)! . This map will automatically be a stable equivalence. We can perform
constructions 4.2 and 5.1 starting from either of these two fibrant replacements.
The stable equivalence between them induces a weak equivalence between the
two homotopy orbit spaces of the conjugation action. In other words, we can
assume that the stably fibrant replacement of the split extension HZ×(B⊗Sk)!

which was chosen in the beginning is equal to HZ× (B ⊗ Sk)!st .
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The simplicial group U(HZ × (B ⊗ Sk)!)× is defined according to the recipe
(4.2) by a factorization in the model category of simplicial monoids

B −→ c(HZ × (B ⊗ Sk)!)×
∼
−−−→ (HZ× (B ⊗ Sk)!)×

and then forming the algebraic group completion of c(HZ× (B ⊗ Sk)!)× . The
simplicial monoid (HZ×(B⊗Sk)!)× is, by definition, the union of the invertible
components in (HZ × (B ⊗ Sk)!st)(1

+) ∼= Z× (B ⊗ Sk)st(Z). So the simplicial
monoid

(HZ× (B ⊗ Sk)!st)
× ∼= {±1} × (B ⊗ Sk)st(Z)

is already a simplicial group, hence there exists a unique extension to a homo-
morphism of simplicial groups U(HZ× (B ⊗Sk)!)× −→ {±1} × (B ⊗Sk)st(Z)
which is necessarily a weak equivalence by Lemma 4.3.

Since k ≥ 2, the stable derived functors of B ⊗ Sk vanish in dimension 0 and
1 [11, 12.3], so the simplicial abelian group (B ⊗Sk)st(Z) is simply connected,
and the unit component of the monoid (HZ × (B ⊗ Sk)!st)(1

+) is equal to
(B⊗Sk)st(Z). Restriction to the unit components thus gives a weak equivalence
of connected simplicial groups U(HZ × (B ⊗ Sk)!)×1 −→ (B ⊗ Sk)st(Z).

The next step in the construction of the conjugation action (4.2) was the for-
mation of the pushout (HZ× (B ⊗ Sk)!)2 of Gamma-rings:

S[c(HZ× (B ⊗ Sk)!)×] //

∼

��

(HZ× (B ⊗ Sk)!)1

��

// HZ× (B ⊗ Sk)!st

S[U(HZ× (B ⊗ Sk)!)×] // (HZ× (B ⊗ Sk)!)2

55k
k

k
k

k
k

k
k

��

∼

��

(HZ× (B ⊗ Sk)!)3

;;
v

v
v

v
v

v
v

v
v

v
v

v

The simplicial group map U(HZ × (B ⊗ Sk)!)× −→ {±1} × (B ⊗ Sk)st(Z)
adjoins to a homomorphism of Gamma-rings from the spherical group ring
S[U(HZ × (B ⊗ Sk)!)×] to HZ × (B ⊗ Sk)!st . This in turn induces a map
from the pushout (HZ × (B ⊗ Sk)!)2 to HZ × (B ⊗ Sk)!st , represented as
the upper dotted arrow in the previous diagram. Since the approximation
map (HZ × (B ⊗ Sk)!)2 −→ (HZ × (B ⊗ Sk)!)3 is an acyclic cofibration of
Gamma-rings, we can finally choose an extension to a stable equivalence from
(HZ × (B ⊗ Sk)!)3 to HZ × (B ⊗ Sk)!st . Since this map was constructed
relative to the group ring of the simplicial group U(HZ × (B ⊗ Sk)!)× , it is
equivariant with respect to the conjugation action of U(HZ × (B ⊗ Sk)!)×1 on
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(HZ×(B⊗Sk)!)3 and (through the map U(HZ×(B⊗Sk)!)×1 −→ (B⊗Sk)st(Z))
on HZ× (B⊗Sk)!st . By passage to homotopy orbits we get a weak equivalence

der(HZ, B ⊗ Sk)/conj. = mapGR(HZc, (HZ × (B ⊗ Sk)!)3)hU(HZ×(B⊗Sk)!)×
1

∼
−−−−−−→ mapGR(HZc,HZ× (B ⊗ Sk)!st)h(B⊗Sk)st(Z)

Moreover, the square (9.1) commutes.

10 A useful adjunction

By the results of the previous two sections, the proof of the main theorem is
reduced to an identification of the space of Gamma-ring maps

mapGR(HZc,HZ× (B ⊗ Sk)!st)

(or more precisely a certain homotopy orbit space thereof) with the classifying
space of symmetric 2–cocycles. In this section we use an adjunction to reinter-
pret the above mapping space in terms of the category sF of simplicial functors
from the category of finitely generated free abelian groups to the category of
abelian groups.

We note in Lemma 10.4 that the construction (7.4) of the split singular extension
has a left adjoint

L : GR/HZ −→ sF

from the category of Gamma-rings over HZ to the category of simplicial func-
tors. Moreover, the two functors form a simplicial Quillen adjoint pair of model
categories. So the mapping space we are interested in is isomorphic to the
mapping space

mapsF (L(HZc), (B ⊗ Sk)st)

in the category of simplicial functors. To identify the mapping space in this
adjoint form, we evaluate the left adjoint L on the cofibrant replacement of the
Eilenberg–MacLane Gamma-ring HZ.

As in (8.3), J ∈ F denotes the kernel of the evaluation map ǫ : P −→ I . By
Lemma 8.5 the functor J supports the universal symmetric 2–cocycle. The
Gamma-ring map

HZc −→ HZ× J !

which is the composite of the approximation map HZc −→ HZ and the uni-
versal derivation (8.6) is adjoint to a map of simplicial functors

δ : L(HZc) −→ J . (10.1)

The main result of this section is
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Theorem 10.2 The map δ : L(HZc) −→ J which is adjoint to the universal
derivation is a stable equivalence of simplicial functors.

Remark 10.3 For any functor G ∈ F the Dold–Puppe stabilization Gst was
defined so that its normalized chain complex is the cubical construction QG
(8.9). So Theorem 10.2 and the Dold–Kan correspondence between simplicial
objects and chain complexes in the abelian category F imply that the homotopy
groups of the space

mapGR(HZc,HZ×G!
st)
∼= mapsF (L(HZc), Gst)

are isomorphic to the hyper-cohomology groups Ext∗F (J,QG), for ∗ ≤ 0.

The category sF of simplicial functors admits a stable model structure, see [46,
6.13]. In this model structure, a map G −→ Ḡ is a weak equivalence or fibration
if and only if the associated map of Γ–spaces G! −→ Ḡ! is a stable equivalence
or stable fibration respectively. The stably fibrant objects are precisely the
homotopy additive simplicial functors.

The split extension functor (7.4) which sends G ∈ sF to HZ×G! , considered
as a Gamma-ring over HZ, commutes with limits. Moreover, the category sF
of simplicial functors is complete, well-powered and has a set of cogenerators.
So by Freyd’s Adjoint Functor Theorem [31, V.8 Cor.] there is a left adjoint
L : GR/HZ −→ sF . The right adjoint HZ× (−)! preserves stable equivalences
and stable fibrations since in both categories these are defined on “underlying”
Γ–spaces. Hence we obtain

Lemma 10.4 The functor which sends a simplicial functor G ∈ sF to HZ×
G! , viewed as a Gamma-ring over HZ, is the right adjoint of a Quillen adjoint
pair between the category sF of simplicial functors, endowed with the stable
model structure, and the stable model category of Gamma-rings over HZ.

We prove Theorem 10.2 by constructing a commutative square of HZc–bi-
modules

B̃(HZc)
ηHZc

//

ass.

��

(BL(HZc))!

(Bδ)!

��

B̃(P )!
ũ!

// (BJ)!

(10.5)

For a simplicial functor G ∈ sF we denote by BG = Z̃[S1]⊗G the (additive)
bar construction, another simplicial functor. The bimodules B̃(HZc) and B̃(P )!
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are “multiplicative” bar constructions defined below. Three of the four objects
are actually HZ–bimodules, which we view as HZc–bimodules via restriction
of scalars. In the square the left vertical and the two horizontal maps are stable
equivalences by Theorems 10.7, 10.9 and 10.10 respectively. Hence the map
(Bδ)! : (BL(HZc))! −→ (BJ)! is a stable equivalence. Since the assignment
G 7−→ (BG)! detects stable equivalences, the map δ : L(HZc) −→ J is indeed
a stable equivalence of simplicial functors.

10.6 A bar construction The reduced bar construction is a functor

B̃ : GR/HZc −→ HZc-mod-HZc

from the category of Gamma-rings over HZc to the category of HZc–bimodules.
In this construction it is important that we start with Gamma-rings over the
cofibrant approximation HZc , not just over HZ. If we worked over HZ, the
bar construction would have the wrong homotopy type since the point set level
smash product of HZ with itself is not stably equivalent to HZc ∧HZc

If Q is a Gamma-ring over HZc , then the (unreduced) bar construction B(Q)
is defined as the realization of a simplicial HZc–bimodule which in simplicial
dimension n has the form

HZc ∧ Q ∧ . . . ∧ Q︸ ︷︷ ︸
n

∧HZc .

The simplicial structure maps are induced by the multiplication and unit map
of Q and the structure map Q −→ HZc . The inclusion of the 0-simplices
induces a map

HZc ∧ HZc −→ B(Q)

of HZc–bimodules, and the reduced bar construction B̃(Q) is the quotient of
B(Q) by HZc ∧HZc .

For every simplicial functor G there is a map

τG : B̃(HZc ×G!) −→ (BG)!

defined as the geometric realization of a map of simplicial HZc–bimodules

n 7→


 HZc ∧ (HZc ×G!) ∧ . . . ∧ (HZc ×G!)︸ ︷︷ ︸

n

∧HZc −→ G! × · · · ×G!
︸ ︷︷ ︸

n




whose i-th projection, for 1 ≤ i ≤ n, is given symbolically by

x0 ∧ (x1, g1) ∧ . . . ∧ (xn, gn) ∧ xn+1 7→ x0 ·x1 · · · xi−1 ·gi ·xi+1 · · · xn ·xn+1 .
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We define a map ηQ : B̃(Q) −→ (BLQ)! as the composite

B̃(Q) −→ B̃(HZc × (LQ)!)
τLQ
−−−−−→ (BLQ)! ;

the first map is induced by the Gamma-ring map Q −→ HZc × (LQ)! , which
in turn comes from the structure map Q −→ HZc and the adjunction unit
Q −→ HZ × (LQ)! . For the proof of Theorem 10.2 we are only interested in
the special case Q = HZc , but to establish that ηHZc is a weak equivalence we
will use a resolution argument which requires the general case of an arbitrary
Gamma-ring over HZc .

Theorem 10.7 The map of HZc–bimodules

ηQ : B̃(Q) −→ (BL(Q))!

is a stable equivalence for every cofibrant Gamma-ring Q over HZc .

Proof We first assume that Q is free, ie, that

Q = TX =
∨

n≥0

X∧n

is the tensor algebra generated by a cofibrant Γ–space X over HZc . Then the
HZc–bimodule B̃(TX) can be analyzed through a combinatorial filtration as
follows. For p ≥ 0 we define FpB as the realization of a simplicial sub-HZc–
bimodule of the bar construction B(TX). In simplicial degree n we set

(FpB)n = HZc ∧ (
∨

i1+···+in≤p

X∧i1 ∧ . . . ∧ X∧in) ∧ HZc

⊆ HZc ∧ (TX)∧ n ∧ HZc = B(TX)n .

The 0-th filtration is HZc ∧ HZc and the subquotient F1B/F0B is isomorphic
to the suspension of HZc ∧ X ∧ HZc . To identify the subquotients of the
filtration we use certain simplicial sets Dp . We define Dp as the quotient of
the standard simplicial p–simplex with the union of the first and last (p− 1)–
face collapsed to a basepoint. Then D1 = S1 is the simplicial circle and Dp is
weakly contractible for p ≥ 2.

We note that the p-th subquotient is the realization of a simplicial object which
in dimension n is of the form

(FpB/Fp−1B)n = HZc ∧ (
∨

i1+···+in=p

X∧i1 ∧ . . . ∧ X∧in) ∧ HZc .

The map
HZc ∧ X∧p ∧ HZc −→ (FpB/Fp−1B)p
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indexed by the p–tuple (1, 1, . . . , 1) yields a map

HZc ∧ X∧p ∧ HZc ∧ ∆p −→ FpB/Fp−1B

which factors over an isomorphism between HZc ∧ X∧p ∧ HZc ∧ Dp and
FpB/Fp−1B . Since Dp is weakly contractible for p ≥ 2, all the filtration sub-
quotients FpB/Fp−1B are stably contractible for p ≥ 2. So the inclusion

HZc ∧ ΣX ∧ HZc ∼= F1B/F0B
i

−−−→ B(TX)/F0B = B̃(TX)

is a stable equivalence of HZc–bimodules. To complete the verification that
ηTX is a stable equivalence it remains to show that the composite

ηTX ◦ i : HZc ∧ ΣX ∧ HZc −→ (BL(TX))!

is a stable equivalence.

We can rewrite the target (BL(TX))! in a more familiar form. Let Φ denote
the forgetful functor from the category of finitely generated free abelian groups
to the category of pointed sets, and let Z̃ denote the reduced free functor from
the category of pointed sets to the category of all abelian groups. By composing
the Γ–space X with these two functor we obtain an object Z̃ ◦ X ◦ Φ of the
category sF . The various adjunctions show that Z̃◦X◦Φ and L(TX) represent
the same functor, namely the one which sends an object G ∈ sF to the set of
Γ–space from X to the underlying Γ–space of G! . Hence L(TX) is isomorphic
to Z̃ ◦ X ◦ Φ in the category sF . Since the free functor Z̃ takes suspension
of simplicial sets to bar construction of simplicial abelian groups, BL(TX) is
then isomorphic to Z̃ ◦ΣX ◦Φ in the category sF .

Under the isomorphism BL(TX) ∼= Z̃ ◦ ΣX ◦ Φ the map ηTX ◦ i corresponds
to the composite

HZc ∧ ΣX ∧HZc −→ HZc ◦ ΣX◦HZc −→ HZ ◦ ΣX ◦HZ

= (Z̃ ◦ ΣX ◦ Φ)! ∼= (BL(TX))! .

The left map is the assembly map (2.5), which is a stable equivalence by [29,
5.23] since HZc and ΣX are cofibrant as Γ–spaces. The second map is a
weak equivalence since the composition product of Γ–spaces preserves stable
equivalences (Theorem 2.6 (a)).

The general case is proved by resolving an arbitrary cofibrant Gamma-ring by
free Gamma-rings as follows. If R is a simplicial object in the category of
Gamma-rings, we denote by |R|GR its geometric realization [22, VII 3.1] in the
category of Gamma-rings, ie, the coend [31, IX.6]

|R|GR =

∫

n∈∆
Rn ×GR ∆n ;
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here (−)×GR∆n refers to the enrichment of the category of Gamma-rings over
simplicial sets, which has to be distinguished from the objectwise smash product
of the underlying Γ–space with ∆n

+ .

Claim Let R be a simplicial object in the category of Gamma-rings over
HZc such that for all n ≥ 0 the map ηRn : B̃(Rn) −→ (BL(Rn))

! is a stable
equivalence. Then the map η|R|GR

: B̃(|R|GR) −→ (BL(|R|GR))! is also a stable
equivalence.

To prove the claim it suffices to show that the map is a stable equivalence of
underlying Γ–spaces. We consider the commutative square

|B̃(R)|

|ηR|

��

∼ // B̃(|R|GR)

η|R|GR

��

|(BLR)!| ∼=
// (BL|R|GR)!

On the left the functors B̃ and (BL−)! are applied dimensionwise to the sim-
plicial Gamma-ring R, and then we form the realization of the underlying sim-
plicial Γ–space. The two horizontal maps are isomorphisms, so we may show
that the left vertical map is a stable equivalence. A map of simplicial Γ–spaces
which is dimensionwise a stable equivalence becomes a stable equivalence after
realization. So the left vertical map in the above square is a stable equivalence
of underlying Γ–spaces, which proves the claim.

We apply the claim to the cotriple resolution [31, VII.6] of a given cofibrant
Gamma-ring Q over HZc . The tensor algebra functor T from the category of
Γ–spaces to the category of Gamma-rings is left adjoint to the forgetful functor.
The adjunction gives rise to a cotriple, hence to a simplicial Gamma-ring R
which in simplicial dimension n consists of the Gamma-ring Rn = T n+1Q.
We claim that this simplicial Gamma-ring R is cofibrant in the Reedy model
structure ([40, Thm. A], [23, 5.2.5], [22, VII 2.1]). Indeed, the maps from
the latching objects to the levels of the simplicial Gamma-ring R are freely
generated by a wedge summand inclusion of Γ–spaces whose cokernel is a wedge
of smash powers of Q. Since Q is cofibrant as a Gamma-ring, it is cofibrant as
a Γ–space [47, 4,1 (3)], hence so are its smash powers. So the maps from the
latching objects to the levels of the R are cofibrations of Gamma-rings, ie, R
is Reedy cofibrant. In particular, for all n ≥ 0 the underlying Γ–space of T nQ
is cofibrant, and hence for Rn = T (T nQ) the map ηRn : B̃(Rn) −→ (BL(Rn))

!

is a stable equivalence by the first part of this proof. By the claim, the map
η|R|GR

: B̃(|R|GR) −→ (BL(|R|GR))! is also a stable equivalence.
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The cotriple resolution comes with an augmentation |R|GR −→ Q. After for-
getting the multiplication, the augmented simplicial Γ–space |R|GR −→ Q has
an extra degeneracy, so the augmentation map |R|GR −→ Q is an objectwise
equivalence of Gamma-rings [22, III 5.1]. Since R is Reedy cofibrant, the real-
ization |R|GR is cofibrant [22, VII 3.6]. Since the functors B̃ and (BL−)! both
preserve stable equivalences between cofibrant Gamma-rings, ηQ is a stable
equivalence as claimed.

10.8 Another bar construction The lower left hand corner of the square
(10.5) arises from a simplicial functor B̃(P ) ∈ sF which is another reduced bar
construction. We note that the category F of reduced functors from finitely
generated free abelian groups to abelian abelian groups has a monoidal com-
position product ◦ with unit the inclusion functor I ; before composing two
functors, one of them has to be left Kan extended [31, X.3] from finitely gener-
ated free to all abelian groups.

The functor P ∈ F is the composite of the forgetful functor from abelian groups
to pointed sets with its adjoint free functor. Hence P has the structure of a
cotriple on the category of abelian groups. This cotriple gives rise to a simplicial
object B(P ), augmented over the functor I , which in simplicial dimension n is
given by

B(P )n = P ◦ · · · ◦ P︸ ︷︷ ︸
n+1

,

compare [31, VII.6]. The augmentation B(P )0 = P −→ I is given by the
evaluation map ǫ.

The HZ–bimodule B(P )!n = (P ◦(n+1))! is equal to the (n+2)–fold composition
product of the Eilenberg–MacLane Γ–space HZ. So the assembly map (2.5)
induces a map of simplicial HZc–bimodules

B(HZc)n = (HZc)∧(n+2) assembly
−−−−−−→ HZ◦(n+2) = B(P )!n .

We denote by B̃(P ) the simplicial functor obtained from B(P ) by collapsing the
simplicial 0-skeleton. The assembly map passes to a map B̃(HZc) −→ B̃(P )!

on quotients by the respective simplicial 0-skeleta.

Theorem 10.9 The assembly map

B̃(HZc) −−−−−−→ B̃(P )!

is a stable equivalence of HZc–bimodules.
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Proof Since HZc is cofibrant as a Γ–space, the assembly map from a smash
power of a certain number of copies of HZc to the composition power of the
same number of copies of HZ is a stable equivalence by [29, 5.23] and The-
orem 2.6 (a). A map of simplicial Γ–spaces which is dimensionwise a stable
equivalence induces a stable equivalence on realizations. So the assembly maps

B(HZc) −→ B(P )! and B̃(HZc) −→ B̃(P )!

on realizations are stable equivalences of HZc–bimodules.

The lower horizontal map in the square (10.5) arises from an objectwise equiv-
alence

u : B(P ) −→ P ⊕J EJ

of simplicial functors by passage to quotient and application of the (−)!–con-
struction. The target P ⊕J EJ is the simplicial functor defined as the pushout
of the diagram

P
ι

←−−− J −→ Z̃[∆1]⊗ J .

The map ι : J −→ P is the inclusion and J −→ Z̃[∆1] ⊗ J is induced by the
inclusion of the non-basepoint vertex of ∆1 .

We describe the map

un : B(P )n = P ◦(n+1) −→ (P ⊕J EJ)n = P × Jn

in simplicial dimension n by giving the components of the various factors of
the target. The projection of un to the first factor is the map

ǫ◦n ◦ 1 : P ◦(n+1) −→ P .

The projection of un to the i-th factor of J , for 1 ≤ i ≤ n is the map

ǫ◦(n−i) ◦ 1 ◦ ǫ◦i − ǫ◦(n−i+1) ◦ 1 ◦ ǫ◦(i−1) : P ◦(n+1) −→ J ;

the target of each of the two summands is really the functor P , but the difference
is annihilated by ǫ : P −→ I , so it lands in J = kernel(ǫ). Note that P is the
functor of 0-simplices in P ⊕J EJ , and the quotient of P ⊕J EJ by P is
isomorphic to the simplicial functor BJ . So the map u passes to quotients and
yields a map of simplicial functors ũ : B̃(P ) −→ BJ .

Theorem 10.10 The map

ũ : B̃(P ) −→ BJ

is an objectwise weak equivalence of simplicial functors.
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Proof The simplicial subfunctor Z̃[∆1]⊗ J of P ⊕J EJ is objectwise weakly
contractible. So the quotient map

q : P ⊕J EJ −→ (P ⊕J EJ) / (Z̃[∆1]⊗ J) ∼= I

is an objectwise weak equivalence of simplicial functors.

The composite map q ◦ u : B(P ) −→ I is the augmentation of the cotriple
resolution. Whether or not it is an objectwise weak equivalence can be checked
by looking at the augmented simplicial Γ–space B(P )! −→ I ! . However this
augmented simplicial Γ–space has an extra degeneracy, so the augmentation
B(P )! −→ I ! , and hence the map u, is an objectwise weak equivalence [22, III
5.1].

The simplicial 0-skeleta of B(P ) and P ⊕J EJ are both equal to the functor P .
So if we collapse the 0-skeleta, then the induced map of quotients ũ : B̃(P ) −→
BJ is also an objectwise weak equivalence.

11 A homological criterion

In this section we give a homological condition, Theorem 11.1 below, for when
the map

λG : Z(G) −→ mapGR(HZc,HZ×G!
st)hGst(Z)

defined in (8.10) is a weak equivalence. Here Z(G) denotes the groupoid of sym-
metric 2–cocycles of the functor G (8.1). Gst is the Dold–Puppe stabilization
of G, a simplicial functor which corresponds to the cubical construction QG
under the Dold–Kan equivalence between simplicial objects and non-negative
complexes in the category F , compare (8.9). In the next section we verify the
criterion of Theorem 11.1 in the case of the symmetric power functors B ⊗Sk .

As before, F denotes the abelian category of reduced functors from finitely
generated free abelian groups to all abelian groups and I ∈ F is the inclusion
functor. The functor category F is abelian and exactness can be checked ob-
jectwise; F has enough projectives and injectives. The map G −→ QG is the
inclusion as the object in dimension zero. Also, Ext∗F (I,−) denotes hyper-Ext
groups of the inclusion functor I with coefficients in a chain complex of functors,
ie, the graded abelian group of maps out of I in the derived category D+(F)
of bounded below complexes of functors. A priori, these hyper-Ext groups can
be non-trivial in negative dimensions.
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Theorem 11.1 Let G ∈ F be a functor such that for all integers m ≤ 2 the
map

ExtmF (I,G) −→ ExtmF (I,QG)

is an isomorphism. Then the map

λG : Z(G) −→ mapGR(HZc,HZ×G!
st)hGst(Z)

is a weak equivalence of simplicial sets.

Remark 11.2 By [46, 6.1], the hyper-cohomology groups ExtmF (I,QG) are
isomorphic to the topological Hochschild cohomology groups of HZ with coef-
ficients in the bimodule G! .

On the other hand, if A is an abelian group, then a theorem of Jibladze and
Pirashvili [26, Thm. A] identifies the cohomology groups Ext∗F (I,A ⊗−) with
the MacLane cohomology groups of A [30]. Because of this, for an arbitrary
functor G ∈ F the groups Ext∗F (I,G) are sometimes referred to as the MacLane
cohomology groups of Z with coefficients in the functor G. So the criterion of
Theorem 11.1 ask whether the natural map from the MacLane cohomology to
the topological Hochschild cohomology of the functor G is an isomorphism.

A theorem of Pirashvili and Waldhausen [37, 3.2] says that if cohomology is
replaced by homology, then the MacLane theory coincides with the topological
Hochschild theory for arbitrary coefficient functors. By [46, 6.7], the cohomo-
logical theories also agree if the coefficient functor is additive.

However, as the following example shows, the hypothesis of Theorem 11.1 is not
satisfied for an arbitrary functor G ∈ F . So for general coefficients, MacLane
cohomology and topological Hochschild cohomology do not coincide.

Example 11.3 We give an example of a functor for which the hypothesis of
Theorem 11.1 fails. For a fixed prime p the Frobenius maps

Z/p⊗ Sp
h−1

−→ Z/p⊗ Sp
h

, a⊗ x 7−→ a⊗ xp

define a morphism in the category F . We consider the functor

G = colimh Z/p⊗ Sp
h

defined as the colimit of the sequence of Frobenius maps. Since the Frobenius
transformations are injective, the natural map

I
projection
−−−−−−−−→ Z/p⊗ I = Z/p⊗ Sp

0 inclusion
−−−−−−−−→ G

is a non-trivial element of HomF (I,G). On the other hand, the stable derived
functors of the symmetric power functor A⊗Sk are trivial up to dimension 2k−3

Geometry & Topology, Volume 8 (2004)



Formal groups and stable homotopy of commutative rings 393

[11, 12.3], so Q(Z/p ⊗ Sp
h

) has trivial homology up to dimension (2ph − 3).
Since the Q–construction and homology commute with filtered colimits, the
complex QG is acyclic, so the hyper-cohomology groups Ext∗F (I,QG) are triv-
ial. In particular the map

Ext0F (I,G) −→ Ext0F (I,QG)

is not injective.

Proof of Theorem 11.1 The map λG (8.10) is obtained from the commuta-
tive square of simplicial abelian groups

G(Z)

Θ

��

// Gst(Z)

Θ
��

Z2
s(Gst)

��

Z2
s(G) // mapGR(HZc,HZ×G!

st)

by passage to vertical homotopy cofibres in the category of simplicial abelian
groups. So it suffices to show that the square is homotopy cocartesian (in the
category of simplicial abelian groups). Evaluation at Z is represented by the
projective functor P , symmetric 2–cocycles are represented by the functor J
(Lemma 8.5), and the split extension construction (7.4) has a left adjoint L
(Lemma 10.4). So the square is isomorphic to the square

HomF (P,G)

Hom(ι,G)
��

// mapsF (P,Gst)

��
HomF (J,G) // mapsF (L(HZc), Gst)

where ι : J −→ P is the inclusion.

The map δ : L(HZc) −→ J (10.1) which is adjoint to the universal derivation
is a stable equivalence by Theorem 10.2. We let α : Jc −→ J be a cofibrant ap-
proximation of the functor J in the strict model structure of simplicial functors
where the weak equivalences are defined objectwise; equivalently, the normal-
ized chain complex of Jc is a projective resolution of J . Then δ : L(HZc) −→ J
lifts to a map of simplicial functors δ̄ : L(HZc) −→ Jc . The lift δ̄ is then a
stable equivalence between cofibrant simplicial functors. Since Gst is homotopy
additive, alias stably fibrant, the map δ̄ induces a weak equivalence of simpli-
cial abelian groups upon application of mapsF (−, Gst). Since G is a constant
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simplicial functor, the map

mapsF(α,G) : HomF (J,G) = mapsF (J,G) −→ mapsF(Jc, G)

is an isomorphism. In other words, it suffices to show that the square in the
category of simplicial abelian groups

mapsF (P,G)

map(ι◦α,G)
��

// mapsF (P,Gst)

map(ι◦α,Gst)
��

mapsF (Jc, G) // mapsF (Jc, Gst)

is homotopy cocartesian. For this in turn it is enough to show that the map on
horizontal homotopy cofibres

mapsF(ι ◦ α,Gst/G) : mapsF (P,Gst/G) −→ mapsF (Jc, Gst/G)

is a weak equivalence where Gst/G denotes to cofibre of the stabilization map.

If K and K ′ are two simplicial functors such that K is cofibrant, then the
Dold–Kan theorem provides a natural isomorphisms of groups

πn mapsF (K,K ′) ∼= [NK[n],NK ′]

for n ≥ 0, where N is the normalized chain complex and [−,−] denotes maps in
the derived category D+(F) of bounded below chain complexes of functors. The
normalized chain complex of Jc is quasi-isomorphic to J , and the normalized
chain complex of Gst is the cubical construction QG. So we need to show that
the map

[P [n], QG/G] −→ [J [n], QG/G]

is an isomorphism for n ≥ 0. The short exact sequence of functors J −→
P −→ I yields a long exact sequence after applying [−, QG/G], so it is enough
to show that the groups

[I[n], QG/G] = Ext−nF (I,QG/G)

vanish for n ≥ −1. This in turn follows from the assumption that the map

ExtmF (I,G) −→ ExtmF (I,QG)

is an isomorphism for all integers m ≤ 2.

12 Cohomology of symmetric power functors

The purpose of this section is to prove that the symmetric power functors satisfy
the homological criterion of Theorem 11.1; this completes the proof of the main
theorem.
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Theorem 12.1 For all m ∈ Z, all k ≥ 1 and all abelian groups A the map

ExtmF (I,A ⊗ Sk) −→ ExtmF (I,Q(A ⊗ Sk))

is an isomorphism.

Remark 12.2 Theorem 12.1 can be interpreted as saying that MacLane co-
homology coincides with topological Hochschild cohomology for the symmet-
ric power functors, compare Remark 11.2. The groups ExtmF (I,A ⊗ Sk) have
been calculated for A = Z/p and for A = Z by Franjou-Lannes-Schwartz and
Franjou-Pirashvili, see [17, Thm. 6.6 and Prop. 9.1] and [18, 2.1]. So Theo-
rem 12.1 is a calculation of the topological Hochschild cohomology groups of
HZ with coefficients in the bimodule (A⊗ Sk)! . In particular, the topological
Hochschild cohomology groups of HZ with coefficients in (A⊗ Sk)! are trivial
in negative dimensions.

Our proof of Theorem 12.1 is not completely satisfactory because it uses the
explicit calculations of the groups ExtmF (I,Sk); these enter as the sparseness
hypothesis (c) of Theorem 12.3 below. It would be desirable to have a direct
proof of Theorem 12.1 which would hopefully shed more light on the question
for which coefficient functors MacLane cohomology coincides with topological
Hochschild cohomology. Example 11.3 shows that some restriction on the func-
tor has to be imposed.

Theorem 12.1 is a special case of the following Theorem 12.3. To apply it, we
choose a projective resolution P∗ −→ I of the functor I in the abelian category
F . Then we let T : Ch+(F) −→ coCh be the homomorphism complex out of
this resolution,

T (X) = Hom•
F (P∗,X) .

So T (X) is a (usually unbounded) cochain complex of abelian groups and as
a functor of X it is additive, exact, and preserves inverse limits and quasi-
isomorphisms. The cohomology groups of Hom•

F (P∗,X) are the hyper-co-
homology groups Ext∗F (I,X). By a theorem of Pirashvili ([34, 2.15], see also
[17, 0.4] or the appendix of [4]), the extension groups Ext∗F (I,−) vanish for
every diagonalizable functor (8.9 (e)), so Hom•

F (P∗,−) takes diagonalizable
functors to acyclic complexes. The sparseness condition (c) is proved in [18,
Prop. 2.1].

The homomorphism complex Hom•
F (P∗,−) is the only functor to which we

apply Theorem 12.3; nevertheless we state and prove it in the general form
because we think it makes the proof more understandable.
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Theorem 12.3 Let T : Ch+(F) −→ coCh be a functor from the category
of bounded below chain complexes in the abelian category F to the category
of (not necessarily bounded) cochain complexes of abelian groups. Suppose
furthermore that

(a) T is additive, exact and preserves inverse limits and quasi-isomorphisms,

(b) the complex T (D) is acyclic for every diagonalizable functor D ∈ F (8.9
(e)), considered as a complex concentrated in dimension 0, and

(c) T is sparse on symmetric powers in the sense that for all k ≥ 1 the co-
homology of the complex T (Sk) is concentrated in dimensions congruent
to 1 modulo 2k .

Then for all abelian groups A, and all k ≥ 1 the natural map

T (A⊗ Sk) −→ T (Q(A⊗ Sk))

is a quasi-isomorphism.

Remark 12.4 The heart of Theorem 12.3 is a convergence issue, or a ques-
tion to what extent the functor T commutes with infinite sums (up to quasi-
isomorphism). Indeed, for any functor G ∈ F , the cokernel of the stabilization
map G −→ QG is a bounded below complex of diagonalizable functors [27,
7.4], usually with non-trivial homology in arbitrarily high dimensions. So the
cokernel QG/G can be written as the colimit of a sequence of bounded complex
of diagonalizable functors. So if a functor T as in Theorem 12.3 commutes with
filtered colimits or infinite sums, then properties (a) and (b) already imply that
T (QG/G) is acyclic, and so T (G) −→ T (QG) is a quasi-isomorphism, for all
G ∈ F . In the case of interest for us, namely T = Hom•

F (P∗,−), the functor
T fails to commute with infinite sums, essentially because the inclusion func-
tor I is not a small (or compact) object in the derived category of F . And
indeed, Hom•

F (P∗, QG/G) fails to be acyclic in general as Example 11.3 shows.
However the sparseness condition (c) makes it possible to obtain the desired
conclusion for the symmetric power functors.

The following observation goes back, at least, to Dold and Puppe [11]. For every
k ≥ 1 let dk denote the greatest common divisor of the binomial coefficients(
k
i

)
for 1 ≤ i ≤ k − 1. Then

dk =

{
p if k = ph for a prime p and h > 0,
1 else.
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Lemma 12.5 [11, 10.9] For every k ≥ 1 and every abelian group A, multipli-
cation by the number dk on the functor A ⊗ Sk factors over a diagonalizable
functor (8.9 (e)). In particular, if k is not a prime power, then A ⊗ Sk is a
retract of a diagonalizable functor.

Proof For every 1 ≤ i ≤ k − 1 the comultiplication of the symmetric algebra
gives a map of functors

∆i,k−i : A⊗ Sk −→ A⊗ Si ⊗ Sk−i ;

the explicit formula for this map is given by

a⊗ x1 · · · · · xk 7−→ a⊗
∑

T⊂{1,2,...,k}, |T |=i

(
∏

j∈T

xj)⊗ (
∏

j 6∈T

xj) .

The composite of ∆i,k−i with the natural projection A⊗Si⊗Sk−i −→ A⊗Sk

is multiplication by the binomial coefficient
(
k
i

)
. So if we choose a presentation

dk =
k−1∑

i=1

λi ·

(
k

i

)

for suitable integers λi then the composition

A⊗ Sk
∑

λi·∆i,k−i
−−−−−−−−−→

k−1⊕

i=1

A⊗ Si ⊗ Sk−i −→ A⊗ Sk

is multiplication by the number dk .

Finally, we give the proof of Theorem 12.3. For a functor G ∈ F we use
the notation Q̄G for the quotient complex QG/G. By the exactness of T we
then have to show that for all abelian groups A, and all k ≥ 1 the complex
T (Q̄(A⊗ Sk)) is acyclic.

Step 1 Diagonalizable functors

Suppose D ∈ F is diagonalizable (8.9 (e)). Then QD is an acyclic complex by
8.9 (e), and so T (QD) is acyclic. By property (b) of the functor T the complex
T (D), and hence, by exactness, the quotient complex T (Q̄D) is also acyclic.

If k is not a prime power then A⊗ Sk is a retract of a diagonalizable functor
by Lemma 12.5, so Theorem 12.3 holds for such exponents. From now on we
assume that the exponent is of the form k = ph for a prime number p and some
h ≥ 0.
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Step 2 Reduction to the case A = Z/p

For the course of this proof we call an abelian group A good if the complex

T (Q̄(A⊗ Sp
h

))

is acyclic. We show that if the group Z/p is good, then every abelian group is
good.

Multiplication by the number p is an epimorphism on the functor Q/Z ⊗ Sp
h

with kernel isomorphic to Z/p ⊗ Sp
h

. Since the cubical construction and the

functor T are exact, multiplication by p on the complex T (Q̄(Q/Z ⊗ Sp
h

)) is

surjective and has kernel isomorphic to T (Q̄(Z/p⊗Sp
h

)), which is acyclic since
Z/p was assumed to be good. So multiplication by p is a quasi-isomorphism

on the complex T (Q̄(Q/Z ⊗ Sp
h

)). On the other hand, multiplication by p on

Q/Z ⊗ Sp
h

factors over a diagonalizable functor D , say, by Lemma 12.5. So

multiplication by p on T (Q̄(Q/Z⊗Sp
h

)) factors through the complex T (Q̄D),

which is acyclic by Step 1. Since multiplication by p on T (Q̄(Q/Z⊗Sp
h

)) is both

a quasi-isomorphism and factors through an acyclic complex, T (Q̄(Q/Z⊗Sp
h

))
must itself be acyclic, and so the group Q/Z is good.

The Q̄–construction and the functor T commute with products. So the product
of a family of good abelian groups is again good. In particular a product of any
number of copies of the group Q/Z is good. Every injective abelian group is
a summand of a product of copies of Q/Z, hence injective abelian groups are
good.

If A is a subgroup of an abelian group B , then the sequence of functors

0 −→ A⊗ Sp
h

−→ B ⊗ Sp
h

−→ (B/A)⊗ Sp
h

−→ 0

is exact. Since the cubical construction and the functor T are also exact, A
is good as soon as B and B/A are. Since an arbitrary abelian group can be
embedded into an injective abelian group with injective cokernel, every abelian
group is good.

Step 3 Reformulation in terms of exterior power functors

Let Λp
h

∈ F denote the exterior power functor of degree ph . The Koszul
complex (see [25, 4.3.1.7] or [17, 3.2]) is an extension of length ph − 1 of the

functor Z/p ⊗ Λp
h

by the functor Z/p ⊗ Sp
h

with the special property that
all functors occurring in the extension are diagonalizable. By Step 1, all these
intermediate terms are sent to acyclic complexes by T (Q̄−). Since both T and
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Q̄ are exact, the complex T (Q̄(Z/p⊗Sp
h

)) is acyclic if and only if the complex

T (Q̄(Z/p⊗ Λp
h

)) is acyclic.

The spareness assumption 12.3 (c) on the cohomology of T (Sp
h

) and the short
exact sequence of functors

0 −→ Sp
h ×p
−−−→ Sp

h

−→ Z/p⊗ Sp
h

−→ 0

imply that the cohomology of the complex T (Z/p ⊗ Sp
h

) is concentrated in
dimensions congruent to 0 or 1 mod 2ph . The existence of the Koszul complex
then shows that the cohomology of the complex T (Z/p⊗ Λp

h

) is concentrated
in dimensions congruent to ph − 1 or ph mod 2ph .

Now we set up an induction on the exponent h. For the inductive step we
use a certain complex of functors which relates the exterior power functor of
degree ph to that of degree ph−1 . Here and in what follows we extend the
cubical construction to bounded below chain complexes of functors by applying
the functor Q dimensionwise and taking the total complex of the resulting
bicomplex. This extended Q–construction is still exact and preserves quasi-
isomorphisms.

Step 4 There exists a complex C of functors from F , concentrated

in non-negative dimensions, with the following properties:

(a) In dimension zero, C0 = Z/p ⊗ Λp
h

and the inclusion Z/p ⊗ Λp
h

−→ C
induces quasi-isomorphisms

Q(Z/p ⊗ Λp
h

) −→ QC and T (Z/p⊗ Λp
h

) −→ T (C) .

(b) All non-trivial homology functors of C are isomorphic to Z/p⊗ Λp
h−1

.

We let F(Fp) denote the category of reduced functors from finitely generated
Fp–vector spaces to Fp–vector spaces. We first construct a complex in the
category F(Fp); the desired complex is then obtained by composition with

−⊗ Fp : (f.g. free abelian groups) −→ (f.g. Fp–vector spaces)

and the inclusion of Fp–vector spaces into abelian groups.

For every Fp–vector space V let L∗(V ) denote the quotient of the symmetric
algebra on V by the ideal generated by all p-th powers of elements. Then L∗(V )
inherits the grading from the symmetric algebra and we let Ln(V ) denote the
summand of homogenous degree n. If p = 2, then the functors Ln coincide
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with the exterior power functors Λn . By [16, 1.3.1] there exists a complex X
(a quotient of the deRham complex) with

Xi =

{
Li ⊗ Λp

h−i
Fp

for 0 ≤ i ≤ ph

0 else.

whose only non-trivial homology is in dimension ph−1(p− 1) where we have

Hph−1(p−1)X
∼= Λp

h−1

Fp

(we have reversed the grading of [16, 1.3.1] so that the differential decreases the
dimension and X is a chain complex as opposed to a cochain complex). The
complex X is part of the complex we are looking for, and we obtain the other
part by dualization as follows.

The dual DF of a functor F ∈ F(Fp) is defined by DF (V ) = F (V ∨)∨ ,
where V ∨ refers to the dual vector space of V . DF is again an object of the
category F(Fp). Dualization is contravariant and exact in F and it satisfies
D(F ⊗ G) ∼= DF ⊗ DG. The exterior power functors and the functors Ln

are self-dual, ie, there are isomorphisms DΛn
Fp

∼= Λn
Fp

and DLn ∼= Ln . So if
we dualize the complex X we obtain a complex DX which is concentrated in

dimensions −ph through 0, which satisfies (DX)0 ∼= Λp
h

Fp
, (DX)−ph

∼= Lp
h

and
whose only non-trivial homology is

H−ph−1(p−1)DX
∼= DΛp

h−1

Fp

∼= Λp
h−1

Fp
.

The desired complex C is now obtained by splicing infinitely many copies of the

complexes X and DX alternatingly at Lp
h

and Λp
h

Fp
, and then passing from

the complex in F(Fp) to a complex in F . More precisely,

C0 = Λp
h

Fp

Cn(ph−1)+i =

{
Xi for 1 ≤ i ≤ ph − 1 and n ≥ 0 even,
DXph−i for 1 ≤ i ≤ ph − 1 and n ≥ 0 odd.

The map Q(Z/p ⊗ Λp
h

) −→ QC : Let C/C0 denote the quotient complex
which is equal to C except in dimension zero, where it is trivial. The complex
C/C0 is bounded below and consists entirely of diagonalizable functors. Since
the Q–construction of a diagonalizable functor is acyclic (8.9 (e)), the complex

Q(C/C0) is also acyclic. Since Q is exact, the map Q(Z/p⊗Λp
h

) −→ QC is a
quasi-isomorphism.

The map T (Z/p⊗Λp
h

) −→ T (C) : The fact that this map is a quasi-isomor-
phism is a consequence of the sparseness assumption 12.3 (c) on T . In more
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detail: the complex C/C0 can be written as the inverse limit of the tower of
truncated complexes Kn defined by

(Kn)i =





Ci if 1 ≤ i ≤ 2n(ph − 1),

Z/p⊗ Λp
h

if i = 2n(ph − 1) + 1,
0 else.

The boundary maps of Kn are those of C and the inclusion of the cycles

Z/p⊗ Λp
h ∼= D(X0) −→ D(X1) = C2n(ph−1) .

The chain map Kn+1 −→ Kn is the identity up to dimension 2n(ph − 1) and
the epimorphism

C2n(ph−1)+1 = X1 −→ X0 = Z/p⊗ Λp
h

.

in dimension 2n(ph − 1) + 1.

For each n, the kernel of the projection Kn −→ (Z/p ⊗ Λp
h

)[2n(ph − 1) + 1]
onto the top functor is a bounded complex of diagonalizable functors. Since
T is exact and takes diagonalizable functors to acyclic complexes, the induced
map

T (Kn)
∼

−−−→ T ((Z/p⊗ Λp
h

)[2n(ph − 1) + 1])

is a quasi-isomorphism.

By the sparseness assumptions and Step 3, the cohomology of T (Z/p⊗Λp
h

) is
concentrated in dimensions congruent to ph − 1 and ph mod 2ph . Hence the
cohomology of T (Kn) is concentrated in dimensions congruent to −2n+ph and
−2n+ph+1 mod 2ph . Hence the surjective map T (Kn+1) −→ T (Kn) induces
trivial maps on cohomology groups for dimensional reasons. Since T commutes
with inverse limits, T (C/C0) is the inverse limit of the tower of complexes
T (Kn) for n ≥ 1, so T (C/C0) is acyclic.

Example 12.6 It might be instructive to describe the complex C just con-
structed in the smallest non-trivial case, namely for p = 2 and h = 1. Then C
is the mod 2 reduction of an ‘integral’ complex C̃ defined by

C̃i =





0 if i < 0,
Λ2 if i = 0, and
I ⊗ I if i > 0.

The differential di : C̃i −→ C̃i−1 is given by

di(x⊗ y) =





x ∧ y if i = 1,
x⊗ y + y ⊗ x if i ≥ 2 and i is even,
x⊗ y − y ⊗ x if i ≥ 2 and i is odd.
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The homology of the complex C̃ is given by

Hi C̃ ∼=

{
Z/2⊗ I if i ≥ 1 and i is odd,
0 else.

Since the homology functors of C̃ are additive and since C̃ is diagonalizable
in positive dimensions, C̃ is quasi-isomorphic to the cubical construction QΛ2 .
Hence by 8.9 (b) we can read off the Dold–Puppe stable derived functors of Λ2

as

Lst
i Λ2 ∼= Hi C̃(Z) ∼=

{
Z/2 if i ≥ 1 and i is odd,
0 else,

compare e.g. [50]. The complex C constructed in Step 4 for p = 2 and h = 1 is
isomorphic to the reduction Z/2⊗ C̃ ; by the universal coefficient theorem, the
homology functors of C are thus isomorphic to the functor Z/2 ⊗ I in every
positive dimension, and trivial otherwise.

Step 5 The complex T (Q̄(Z/p ⊗ Λp
h

)) is acyclic for all h ≥ 0.

We proceed by induction. For h = 0 we have Z/p ⊗ Λ1 = Z/p ⊗ I which is
an additive functor. Thus all cross-effect vanish and by property 8.9 (c) of the
cubical construction, the complex Q̄(Z/p⊗Λ1) is trivial. Hence T (Q̄(Z/p⊗Λ1))
is also trivial.

Now suppose that h ≥ 1 and assume that T (Q̄(Z/p⊗Λp
h−1

)) is already known
to be acyclic. Let C be any complex as in Step 4. We consider the commutative
square of bounded below chain complexes of functors

Z/p⊗ Λp
h //

��

C

��
Q(Z/p ⊗ Λp

h

) // QC

where we view the functor Z/p⊗ Λp
h

as a complex concentrated in dimension

zero and the horizontal maps are induced by the inclusion Z/p⊗ Λp
h

−→ C .

By property (a) of the complex C and since T preserves quasi-isomorphisms,
both rows of the square induce a quasi-isomorphism after applying T . Since T
is exact, the map

T (Q̄(Z/p⊗ Λp
h

)) −→ T (Q̄C)

is thus a quasi-isomorphism. So in order to finish the induction step, it remains
to show that the complex T (Q̄C) is acyclic.
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This last step is where the induction hypothesis is used. The complex C is the
inverse limit of its Postnikov tower (homological truncations)

· · · −→ Pn −→ · · · −→ P1 −→ P0 −→ P−1 = 0 .

In the tower each map Pn −→ Pn−1 is a surjection whose kernel is quasi-
isomorphic to the n-th homology functor of C concentrated in dimension n. By
property (b) of the complex C all non-trivial homology functors are isomorphic

to the exterior power functor Z/p⊗Λp
h−1

, for which we already know that the

map T (Q̄(Z/p⊗ Λp
h−1

)) is acyclic. Since the Q–construction and T are exact
we conclude by induction that for all n ≥ 0 the complex T (Q̄Pn) is acyclic.

The Postnikov tower consists of bounded below chain complexes and it stabilizes
in each dimension. So the complex Q̄C is the inverse limit of the complexes
Q̄Pn . Since T commutes with the inverse limits, T (Q̄C) is the inverse limits
of the acyclic complexes T (Q̄Pn). Since T and Q̄ also preserve epimorphisms,
this inverse limit is acyclic.

13 Perspectives

We end the paper with an application of Theorem 5.2 which concerns an inter-
esting homotopical property of the Gamma-ring DB . Then we discuss some
variants of the Construction 3.5 of Gamma-ring maps from formal group laws,
and some possible directions for further investigation.

For the application we use the conjugation action to obtain an obstruction
to the existence of k–algebra structures on Gamma-rings. With this tool we
then show that the Gamma-ring DB is not stably equivalent to the Eilenberg–
MacLane Gamma-ring of any simplicial ring (unless B is a Q–algebra). To
motivate the criterion we look at the classical case of discrete rings first. If k is
a commutative ring and A any associative ring, then the k–algebra structures
on A correspond to the central ring maps k −→ A. In particular, the unit
map of every such k–algebra structure gives an element of the set Ring(k,A)
of ring maps which is a fixed point of the conjugation action of the units of
A. Something similar happens for Gamma-rings. Suppose R is a Gamma-ring
which is stably equivalent to an algebra over the commutative Gamma-ring
k . Any chain of equivalences to a k–algebra determines a homotopy class of
Gamma-ring maps [η] ∈ [k,R]Ho GR underlying the unit map of the algebra
structure.
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Theorem 13.1 Suppose η ∈ Ring(k,R) is a Gamma-ring map whose homo-
topy class underlies a k–algebra structure of R. Then the conjugation action
map

UR× −→ Ring(k,R) , u 7→ u · η · u−1

is null-homotopic. So if the conjugation action map is essential for every com-
ponent of the space Ring(k,R) of Gamma-ring maps, then R is not stably
equivalent to any k–algebra.

Proof We can assume that R is itself a stably fibrant k–algebra. Then Con-
struction 4.2 can be done in the category of k–algebras, as opposed to Gamma-
rings, relative to the trivial group (Lemma 4.4 is also valid in the category of
k–algebras). We obtain a diagram of k–algebras

k

��

k

��

// k[UR×]

��
R R1 ∼

//
∼

oooo R3 .

Ignoring the k–algebra structure we can use the objects in this diagram to
model the space of Gamma-ring maps from k to R. More precisely, the space
homGR(kc, R3) admits a conjugation action by the simplicial group UR× and
this action is equivalent to the one in question (here kc is a cofibrant replace-
ment of k as a Gamma-ring). But in this model for the conjugation action, the
composite of the approximation map kc −→ k with the unit map k −→ R3 of
the k–algebra structure on R3 is a point-set level fixed point of the conjugation
action of UR× .

If we combine the previous result with Theorem 5.2 we can deduce that the
Gamma-ring DB is not stably equivalent to the Eilenberg–MacLane Gamma-
ring of any simplicial ring, unless B is an algebra over the rational numbers.
This should be compared to Theorem 3.2 (b) which says that as a Γ–space,
DB is stably equivalent to the smash product HZ ∧L HB . In other words,
DB ‘additively’ decomposes into a product of Eilenberg–MacLane Γ–spaces.
In contrast the following corollary shows that the multiplicative structure of
DB is genuinely homotopy-theoretic. The idea of the proof is that any stable
equivalence between DB and a simplicial ring would give DB the structure
of an HZ–algebra. Such an algebra structure in turn gives rise to a “central”
Gamma-ring map HZ −→ DB (in the sense of Theorem 13.1). But Theorem
5.2 identifies all Gamma-ring map from HZ to DB and shows that none of
them is “central”.
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Corollary 13.2 For a commutative ring B the following conditions are equiv-
alent.

(1) B is an algebra over the rational numbers.

(2) The projection DB −→ D1B ∼= HB is a stable equivalence of Gamma-
rings.

(3) DB is stably equivalent (as a Gamma-ring) to the Eilenberg–MacLane
Gamma-ring of a simplicial ring.

Proof Condition (1) is equivalent to condition (2) by Theorem 3.2 (b), and
condition (2) implies condition (3). The proof that condition (3) implies condi-
tion (2) is a combination of Theorem 13.1, in the case k = HZ, with Theorem
5.2. Assume that condition (3) holds. Since the Eilenberg–MacLane Gamma-
ring of a simplicial ring is an HZ–algebra, there exist a component of the space
Ring(HZ,DB) of Gamma-ring maps for which the conjugation action map
DB× −→ Ring(HZ,DB) is homotopically trivial, by Theorem 13.1. But this
map is part of a homotopy fiber sequence

(DB)×1 −→ Ring(HZ,DB) −→ Ring(HZ,DB)/conj.

Since the base of this fibration is weakly equivalent to the classifying space of
a groupoid (Theorem 5.2), its homotopy groups are trivial above dimension
1. So the conjugation action map is injective on homotopy groups in positive
dimensions. Since the map is also null-homotopic, the space (DB)×1 must be
weakly contractible, which implies condition (2).

13.3 Coordinate free definition The definition of the Gamma-ring DB
and the Gamma-ring map F∗ depended on a formal group law F , ie, on a
1–dimensional commutative formal group with a choice of coordinate. We will
now describe coordinate-free versions of these constructions which at the same
time are defined in a more general context.

As input we consider a category C which has a zero object and finite coproducts.
The natural enrichment of C over the category Γop of finite pointed sets is given
by

X ∧ k+ = X ∐ · · · ∐X︸ ︷︷ ︸
k

(coproduct in C ).

Every object X of C has an endomorphism Gamma-ring [46, 4.6], denoted
EndC(X) and defined by

EndC(X)(k+) = HomC(X,X ∧ k
+) .
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The unit map S −→ EndC(X) comes from the identity map of X , viewed
as a point in EndC(X)(1+), and the multiplication EndC(X) ∧ EndC(X) −→
EndC(X) is induced by the composition product

EndC(X)(k+) ∧ EndC(X)(l+) −→ EndC(X)(k+ ∧ l+) ,

f ∧ g 7−→ (f ∧ l+) ◦ g .

As an example we can take C to be the category of commutative, complete
augmented B–algebras. If we choose the object X to be the power series ring
on one generator, then the endomorphism Gamma-ring of X is precisely DB .

Now we suppose that the object X of C is equipped with the structure of
abelian cogroup object. So there is a given co-addition map X −→ X ∐X and
a co-inverse map X −→ X which make the set HomC(X,Y ) into an abelian
group, natural for all objects Y of C . Every abelian cogroup structure on X
gives rise to a homomorphism of Gamma-rings HZ −→ EndC(X) as follows.
At a finite pointed set k+ the map

HZ(k+) = Z̃[k+] −→ HomC(X,X ∧ k
+) = EndC(X)(k+)

is the additive extension of the map that sends i ∈ k+ to the i-th coproduct
inclusion X −→ X ∧ k+ . When C is the category of commutative, complete
augmented B–algebras and X is the power series ring on one generator, then
making X into an abelian cogroup object is the same thing as giving a (1–
dimensional, commutative) formal group law F over B . Furthermore, in this
case the map HZ −→ EndC(X) arising from the abelian cogroup structure
corresponds to the map F∗ of Construction 3.5 under the identification DB ∼=
EndC(X). So from this point of view construction 3.5 is just a special case of the
fact that every abelian cogroup structures gives rise to a homomorphism from
the Eilenberg–MacLane Gamma-ring HZ to an endomorphism Gamma-ring.

13.4 Non-commutative formal group laws Construction 3.5 can be mod-
ified to work for not necessarily commutative formal group laws, but this variant
does not lead to any interesting phenomena. There is a Gamma-ring, denoted
by Gp, which is constructed the same way HZ is, but with free groups instead
of free abelian groups. So as a Γ–space, Gp takes a pointed set to the reduced
free group it generates. The multiplication again comes from substitution, this
times words in the generators of the free groups are substituted into each other.
Abelianization gives a Gamma-ring map Gp −→ HZ. If F is a 1–dimensional
but not necessarily commutative formal group law over the commutative ring
B , then it gives rise to a Gamma-ring map

F∗ : Gp −→ DB
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in much the same way as in Construction 3.5. The Gamma-ring map F∗ factors
over HZ if and only if the formal group law F is commutative.

While the construction makes sense, Gp is uninteresting as a source of Gamma-
ring homomorphisms: we claim that the unit map S −→ Gp from the sphere
Gamma-ring is a stable equivalence. This claim follows from the fact that
the map from a high dimensional sphere into the free group it generates is an
equivalence in the stable range. Since the Gamma-ring Gp is stably equivalent
to the initial Gamma-ring, the derived space of homomorphisms into any other
Gamma-ring is contractible.

13.5 Higher dimensional formal group laws Another variant of Con-
struction 3.5 proceeds from an n–dimensional commutative formal group law
F . This time the construction gives a weak Gamma-ring map

F∗ : HZ −→ Mn(DB)

into the Gamma-ring of n × n–matrices over DB . For an arbitrary Gamma-
ring R the Gamma-ring Mn(R) of n × n–matrices over R is defined as the
endomorphism Gamma-ring of the free R–module on n generators, ie,

Mn(R) = HomR-mod(R ∧ n
+, R ∧ n+)

(here HomR refers to the internal homomorphism Γ–space in the category
of R–modules). We define another Gamma-ring M̄n(DB) as the endomor-
phism Gamma-ring, in the sense of 13.3, of the power series ring in n gen-
erators in the category of augmented, complete B–algebras. Then there is a
stable equivalence Mn(DB) −→ M̄n(DB). Since an n–dimensional commu-
tative formal group law F is the same thing as an abelian cogroup structure
on the power series ring in n variables, it leads to a map of Gamma-rings
F∗ : HZ −→ M̄n(DB).

13.6 Formal module structures Yet another variation of our main theme
consists in considering formal module structures over an associative ring R. A
(1–dimensional) formal R–module (law) over a commutative ring B consists of
a (1–dimensional and commutative) formal group law F and a ring homomor-
phism from R into the endomorphism ring of the formal group law F . In the
spirit of Construction 3.5, any formal R–module structure F over B gives rise
to a Gamma-ring map F∗ : HR −→ DB with source the Eilenberg–MacLane
Gamma-ring of R.

By the same method as in Section 5 we obtain a map

κR : ˜FR-mod
str

(B) −→ Ring(HR,DB)/conj.

Geometry & Topology, Volume 8 (2004)



408 Stefan Schwede

from the groupoid of formal R–module structures over B and strict isomor-
phisms to the homotopy orbits of the derived space of Gamma-ring maps by
the connected component of the homotopy units DB× . It seems reasonable to
expect that the map κR is again a weak equivalence; whether this is the case
depends on whether the appropriate analog of Theorem 12.1 holds over the ring
R.

We denote by Rcom = R/(rs− sr) the quotient of R by the commutator ideal.
Then the arguments of Sections 6 through 11 can be adapted to show:

Theorem 13.7 Suppose that the ring R has the following property: for all
m ∈ Z, all k ≥ 0 and Rcom–modules A the map

ExtmF(Rcom)(I,A⊗Rcom Sk) −→ ExtmF(Rcom)(I,Q(A ⊗Rcom Sk))

is an isomorphism. Then the map

κR : ˜FR-mod
str

(B) −→ Ring(HR,DB)/conj.

is a weak equivalence of simplicial sets.

The hypothesis is true for R = Z — this is the content of Theorem 12.1. The
proof of Theorem 12.1 can be adapted to establish the hypothesis for R = Z/n.
We conjecture that indeed the hypothesis holds in general; we expect that a
‘good’ proof of Theorem 12.1, ie, a proof that does not use the calculations of
the MacLane cohomology groups Ext∗F (I,Sk) as input, would also work in the
more general context. If this is the case, the map κR is a weak equivalence for
any ring R.

Example 13.8 Suppose B is an Fp–algebra and F a formal group law over
F . In this case we can reinterpret the height of F in terms of the homotopy
class of the Gamma-ring map F∗ .

The p–series of F is either trivial or of the form

[p]F (x) = u · xp
h

+ terms of higher degree

for some h ≥ 1 and some non-zero u ∈ B . The number h is called the height
of F . If [p]F = 0, then F is isomorphic to the additive formal group law [19,
III.1 Cor. 2], and the height of F is infinite.

Claim The height of F is equal to the largest number h such that

HZ
F∗−−−→ DB −→ Dph−1B
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can be factored, in the homotopy category of Gamma-rings, over the Eilenberg–
MacLane Gamma-ring for Fp .

Indeed, if F has height h, then for every pointed set K the map

F∗(K) : Z̃[K] = HZ(K) −→ DB(K) ⊆ B̃[[K]]

satisfies

F∗(p · x) = [p]F (F∗(x)) ≡ 0 modulo degree ph .

So the composite map

HZ
F∗−−−→ DB −→ Dph−1B

factors uniquely over HFp on the point-set level. Conversely, suppose that
there exists a commutative square in the homotopy category of Gamma-rings

HZ
F∗ //

��

DB

��
HFp //_____ Dph−1B

By the analog of Theorem 6.4 for buds of formal Fp–modules (which holds
since the hypothesis of Theorem 13.7 are satisfied for R = Fp), the maps from
HFp −→ Dph−1B in the homotopy category of Gamma-rings are in bijective

correspondence with strict isomorphism classes of ph–buds of formal Fp–module
structures on B . But over an Fp–algebra every formal Fp–module bud is strictly
isomorphic to the additive formal group law [19, III.1 Cor. 2]. Hence the (ph−
1)–buds of F and of the additive formal group law over B induce the same maps
HZ −→ Dph−1B in the homotopy category of Gamma-rings. By Theorem 6.4,

the (ph − 1)–bud of F is thus strictly isomorphic to the (ph − 1)–bud of the
additive formal group law, and so [p]F ≡ 0 modulo degree ph−1. So the height
of F is at least h.
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