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Introduction

This textbook is an introduction to the modern foundations of stable homotopy theory and ‘algebra’
over structured ring spectra, based on symmetric spectra. We begin with a quick historical review and
attempt at motivation.

A crucial prerequisite for spectral algebra is an associative and commutative smash product on a
good point-set level category of spectra, which lifts the well-known smash product pairing on the homotopy
category. The first construction of what is now called ‘the stable homotopy category’, including its symmetric
monoidal smash product, is due to Boardman [6] (unpublished); accounts of Boardman’s construction
appear in [87], [84] and [2, Part III] (Adams devotes more than 30 pages to the construction and formal
properties of the smash product).

To illustrate the drastic simplification that occurred in the foundations in the mid-90s, let us draw
an analogy with the algebraic context. Let R be a commutative ring and imagine for a moment that the
notion of a chain complex (of R-modules) has not been discovered, but nevertheless various complicated
constructions of the unbounded derived category D(R) of the ring R exist. Moreover, constructions of
the derived tensor product on the derived category exist, but they are complicated and the proof that the
derived tensor product is associative and commutative occupies 30 pages. In this situation, you could talk
about objects A in the derived category together with morphisms A⊗LR A −→ A, in the derived category,
which are associative and unital, and possibly commutative, again in the derived category. This notion may
be useful for some purposes, but it suffers from many defects – as one example, the category of modules
(under derived tensor product in the derived category), does not in general form a triangulated category.

Now imagine that someone proposes the definition of a chain complex of R-modules and shows that
by formally inverting the quasi-isomorphisms, one can construct the derived category. She also defines
the tensor product of chain complexes and proves that tensoring with suitably nice (i.e., homotopically
projective) complexes preserves quasi-isomorphisms. It immediately follows that the tensor product descends
to an associative and commutative product on the derived category. What is even better, now one can
suddenly consider differential graded algebras, a ‘rigidified’ version of the crude multiplication ‘up-to-chain
homotopy’. We would quickly discover that this notion is much more powerful and that differential graded
algebras arise all over the place (while chain complexes with a multiplication which is merely associative
up to chain homotopy seldom come up in nature).

Fortunately, this is not the historical course of development in homological algebra, but the development
in stable homotopy theory was, in several aspects, as indicated above. In the stable homotopy category
people could consider ring spectra ‘up to homotopy’, which are closely related to multiplicative cohomology
theories. However, the need and usefulness of ring spectra with rigidified multiplications soon became
apparent, and topologists developed different ways of dealing with them. One line of approach uses operads
for the bookkeeping of the homotopies which encode all higher forms of associativity and commutativity,
and this led to the notions of A∞- respectively E∞-ring spectra. Various notions of point-set level ring
spectra had been used (which were only later recognized as the monoids in a symmetric monoidal model
category). For example, the orthogonal ring spectra had appeared as I∗-prefunctors in [56], the functors
with smash product were introduced in [8] and symmetric ring spectra appeared as strictly associative ring
spectra in [31, Def. 6.1] or as FSPs defined on spheres in [33, 2.7].

At this point it had become clear that many technicalities could be avoided if one had a smash product
on a good point-set category of spectra which was associative and unital before passage to the homotopy
category. For a long time no such category was known, and there was even evidence that it might not
exist [45]. In retrospect, the modern spectra categories could maybe have been found earlier if Quillen’s
formalism of model categories [62] had been taken more seriously; from the model category perspective, one
should not expect an intrinsically ‘left adjoint’ construction like a smash product to have a good homotopical
behavior in general, and along with the search for a smash product, one should look for a compatible notion
of cofibrations.

In the mid-90s, several categories of spectra with nice smash products were discovered, and simultane-
ously, model categories experienced a major renaissance. Around 1993, Elmendorf, Kriz, Mandell and May
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introduced the S-modules [26] and Jeff Smith gave the first talks about symmetric spectra; the details of
the model structure were later worked out and written up by Hovey, Shipley and Smith [36]. In 1995, Ly-
dakis [47] independently discovered and studied the smash product for Γ-spaces (in the sense of Segal [73]),
and a little later he developed model structures and smash product for simplicial functors [48]. Except for
the S-modules of Elmendorf, Kriz, Mandell and May, all other known models for spectra with nice smash
product have a very similar flavor; they all arise as categories of continuous (or simplicial), space-valued
functors from a symmetric monoidal indexing category, and the smash product is a convolution product
(defined as a left Kan extension), which had much earlier been studied by the category theorist Day [19].
This unifying context was made explicit by Mandell, May, Schwede and Shipley in [53], where another ex-
ample, the orthogonal spectra were first worked out in detail. The different approaches to spectra categories
with smash product have been generalized and adapted to equivariant homotopy theory [21, 51, 52] and
motivic homotopy theory [22, 37, 38].

Why symmetric spectra? The author is a big fan of symmetric spectra; two important reasons are
that symmetric spectra are easy to define and require the least amount of symmetry among the models
of the stable homotopy category with smash product. A consequence of the second point is that many
interesting homotopy types can be written down explicitly and in closed form. We give examples of this
in Section I.1.1 right after the basic definitions, among these are the sphere spectrum, suspension spectra,
Eilenberg-Mac Lane spectra, Thom spectra such as MO,MSO and MU and topological K-theory spectra.

Another consequence of ‘minimal symmetry’ requirements is that whenever someone writes down or
constructs a model for a homotopy type in one of the other worlds of spectra, then we immediately get
a model as a symmetric spectrum by applying one of the ‘forgetful’ functors from spectra with more
symmetries which we recall in Section I.7. In fact, symmetric spectra have a certain universal property
(see Shipley’s paper [76]), making them ‘initial’ among stable model categories with a compatible smash
product.

There are already good sources available which explain the stable homotopy category, and there are
many research papers and at least one book devoted to structured ring spectra. However, my experience is
that for students learning the subject it is hard to reconcile the treatment of the stable homotopy category
as given, for example, in Adams’ notes [2], with the more recent model category approaches to, say, S-
modules or symmetric spectra. So one aim of this book is to provide a source where one can learn about
the triangulated stable homotopy category and about stable model categories and a good point-set level
smash product with just one notion of what a spectrum is.

The monograph [26] by Elmendorf, Kriz, Mandell and May develops the theory of one of the competing
frameworks, the S-modules, in detail. It has had a big impact and is widely used, for example because
many standard tools can simply be quoted from that book. The theory of symmetric spectra is by now
highly developed, but the results are spread over many research papers. The aim of this book is to collect
basic facts in one place, thus providing an alternative to [26].

Prerequisites. As a general principle, I assume knowledge of basic algebraic topology and unstable
homotopy theory. I will develop in parallel the theory of symmetric spectra based on topological spaces
(compactly generated and weak Hausdorff) and simplicial sets. Whenever simplicial sets are used, I assume
basic knowledge of simplicial homotopy theory, as found for example in the books of Goerss and Jardine [30]
or May [55]. However, the use of simplicial sets is often convenient but hardly ever essential, so not much
understanding is lost by just thinking about topological spaces throughout.

On the other hand, no prior knowledge of stable homotopy theory is assumed. In particular, we define
the stable homotopy category using symmetric spectra and develop its basic properties from scratch.

From Chapter III on I will freely use the language of Quillen’s model categories and basic results of
homotopical algebra. The original source is Quillen’s monograph [62], a good introduction is the article [23]
by Dwyer and Spalinski, and Hovey’s book [35] is a thorough, extensive treatment.

Organization. We organize the book into chapters, each chapter into sections and some sections into
subsections. The numbering scheme for referring to definitions, theorems, examples etc. is as follows. If
we refer to something in the same chapter, then the reference number consists only of the arabic section
number and then a running number for all kinds of environments. If the reference is to another chapter,
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then we add the roman chapter number in front. So ‘Lemma 3.14’ refers to a Lemma in Section 3 of the
same chapter, with running number 14, while ‘Example I.2.21’ is an example from the second section of the
first chapter, with running number 21.

Each chapter has a section containing exercises, which follow a seperate numbering scheme, namely
the letter ‘E’ followed by the roman chapter number and then a running number for the exercises in that
chapter. So ‘Exercise E.I.13’ refers to the 13th exercise in Chapter I.

In the first chapter we introduce the basic concepts of a symmetric spectrum and symmetric ring
spectrum and then, before developing any extensive theory, discuss lots of examples. [stable equivalences]
There is a section on the smash product where we develop its basic formal and homotopical properties. One
of the few points where symmetric spectra are more complicated than other frameworks is that the usual
homotopy groups can be somewhat pathological. So we spend the last section of the first chapter on the
structure of homotopy groups and the notion of semistable symmetric spectra.

The second chapter is devoted to the stable homotopy category. We develop some basic theory
around the stable homotopy category, such as the triangulated structure, derived smash product, homotopy
(co-)limits, Postnikov sections, localization and completion, and discuss the Spanier-Whitehead category,
Moore spectra and finite spectra and (Bousfield) localization and completion. In Section II.10 we discuss
the mod-p Steenrod algebra and give a glimpse at the mod-p Adams spectral sequence.

In Chapter III model structures enter the scene. We start by establishing the various level model struc-
tures (projective, flat, injective, and their positive versions) for symmetric spectra of spaces and simplicial
sets, and then discuss the associated, more important, stable model structures. We also develop the model
structures for modules over a fixed symmetric ring spectrum and for algebras over an operad of simpli-
cial sets. The latter includes the stable model structures for symmetric ring spectra and for commutative
symmetric ring spectra.

As a general rule, I do not attribute credit for definitions and theorems in the body of the text. Instead,
there is a section ‘History and credits’ at the end of each chapter, where I summarize, to the best of my
knowledge, who contributed what. Additions and corrections are welcome.

Some conventions. Let us fix some terminology and enact several useful conventions. We think that
some slight abuse of language and notation can often make statements more transparent, but when we allow
ourselves such imprecision we feel obliged to state them clearly here, at the risk of being picky.

We denote by T the category of pointed, compactly generated topological spaces. For us a compactly
generated space is a Kelley space which is also weak Hausdorff; we review the definitions and collect various
properties of compactly generated spaces in Section A.2. A map between topological spaces always refers
to a continuous map, unless explicitly stated otherwise. Similarly, an action of a group on a space refers
to a continuous action. We denote by sS the category of pointed simplicial sets. We review the definitions
and collect various properties of simplicial sets in Section A.3.

It will be convenient to define the n-sphere Sn as the one-point compactification of n-dimensional
euclidian space Rn, with the point at infinity as the basepoint. We will sometimes need to identify the
1-sphere with the space |∆[1]/∂∆[1]|, the geometric realization of the simplicial 1-simplex ∆[1] modulo its
boundary. The precise identifications do not matter, but for definiteness we fix a homeomorphism now.
The realization |∆[1]/∂∆[1]| is canonically homeomorphic to the quotient space of the topological 1-simplex
∆[1] = {(x, y) ∈ R2 | x, y ≥ 0, x+ y = 1} with its endpoints identified. Our preferred homeomorphism is

(0.1) t : ∆[1]/∂∆[1]
∼=−−→ S1 , (x, y) 7→ x/y − y/x .

Here the understanding is that the formula describes the function on the open simplex (which is mapped
homeomorphically to R), and that the map extends continuously to the quotient space by sending the
identified endpoints to the point at infinity in S1.

For n ≥ 0, the symmetric group Σn is the group of bijections of the set {1, 2, . . . , n}; in particular,
Σ0 consists only of the identity of the empty set. It will often be convenient to identify the product
group Σn × Σm with the subgroup of Σn+m of those permutations which take the sets {1, . . . , n} and
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{n+ 1, . . . , n+m} to themselves. Whenever we do so, we implicitly use the monomorphism

+ : Σn × Σm −→ Σn+m , (τ, κ) 7→ τ + κ

given by

(τ + κ)(i) =

{
τ(i) for 1 ≤ i ≤ n,

κ(i− n) + n for n+ 1 ≤ i ≤ n+m.

We let the symmetric group Σn act from the left on Rn by permuting the coordinates, i.e.,
γ(x1, . . . , xn) = (xγ−1(1), . . . , xγ−1(n)). This action compactifies to an action on Sn which fixes the base-
point. The ‘canonical’ linear isomorphism

Rn × Rm −→ Rn+m , ((x1, . . . , xn), (y1, . . . , ym)) 7→ (x1, . . . , xn, y1, . . . , ym)

induces a homeomorphism Sn ∧ Sm −→ Sn+m which is equivariant with respect to the action of the group
Σn × Σm, acting on the target by restriction from Σn+m.

The topological spaces we consider are usually pointed, and we use the notation πnX for the n-th
homotopy group with respect to the distinguished basepoint, which we do not record in the notation.

We will often use the ‘exponential law’, i.e., the adjunction between smash product and mapping spaces.
Let us fix a few conventions, in particular when we adjoint spheres. For based spaces (or simplicial sets)
K,X and Z we define the adjunction bijection

(0.2) a : map(X ∧K,Z) ∼= map(X,map(K,Z))

by (a(f)(x))(k) = f(x ∧ k), where f : X ∧K −→ Z is a based continuous (or simplicial) map, x ∈ X and
k ∈ K.

The m-fold loop space of a based space (or simplicial set) Z is the space (respectively simplicial set)
ΩmZ = map(Sm, Z). We use the adjunction bijection and the homeomorphism Sm∧Sn ∼= Sm+n to identify
Ωm(ΩnZ) = map(Sm,map(Sn, Z)) with Ωm+nZ = map(Sm+n, Z) without further notice. In particular, we
can, and will, identify Ωm with the m-fold iterate of Ω. The m-th homotopy group of a based space Z is the
set of based homotopy classes of based maps Sm −→ Z or, equivalently, the set of path components of the
mapping space ΩmZ = map(Sm, Z). This has a natural group structure for m ≥ 1, which is commutative
for m ≥ 2. Looping a space shifts its homotopy groups; more precisely, the adjunction bijection passes to
a bijection

(0.3) πk(ΩmZ) = [Sk,map(Sm, Z)]
a−−→ [Sk+m, Z] = πk+mZ

on homotopy classes. So the map a takes the homotopy class of a based map f : Sk −→ ΩmZ to the
homotopy class of a(f) : Sk+m −→ Z given by a(f)(t ∧ s) = f(t)(s) for t ∈ Sk, s ∈ Sm.

Limits and colimits. Limits and colimits in a category are hardly ever unique, but the universal
property which they enjoy makes then ‘unique up to canonical isomorphism’. We want to fix our language
for talking about this unambiguously. We recall that a colimit of a functor F : I −→ C is a pair (F̄ , κ)
consisting of an object F̄ of C and a natural transformation κ : F −→ cF̄ from F to the constant functor
with value F̄ which is initial among all natural transformations from F to constant functors. We often
follow the standard abuse of language and call the object F̄ a colimit, or even the colimit, of the functor F
and denote it by colimI F . When we need to refer to the natural transformation κ which is part of the data
of a colimit, we refer to the component κi : F (i) −→ colimI F at an object i ∈ I as the canonical morphism
from the object F (i) to the colimit. Dually for limits. [end, coends]

[use of naive homotopy groups π̂∗ versus π∗ for true homotopy groups. The more important concept
deserves the simpler name.]

Remark 0.4 (Manipulation rules for coordinates). Natural numbers occurring as levels of a symmetric
spectrum or as dimensions of homotopy groups are really placeholders for sphere coordinates. The role of
the symmetric group actions on the spaces of a symmetric spectrum is to keep track of how such coordinates
are shuffled. Permutations will come up over and over again in constructions and results about symmetric
spectra, and there is a very useful small set of rules which predict when to expect permutations. I recommend
being very picky about the order in which dimensions or levels occur when performing constructions with
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symmetric spectra, as this predicts necessary permutations and helps to prevent mistakes. Sometimes
missing a permutation just means missing a sign; in particular missing an even permutation may not have
any visible effect. But in general the issue is more serious; for symmetric spectra which are not semistable,
missing a permutation typically misses a nontrivial operation.

A first example of this are the centrality and commutativity conditions for symmetric ring spectra,
which use shuffle permutations χn,1 and χn,m. A good way of remembering when to expect a shuffle is to
carefully distinguish between indices such as n + m and m + n. Of course these two numbers are equal,
but the fact that one arises naturally instead of the other reminds us that a shuffle permutation should be
inserted. A shuffle required whenever identifying n + m with m + n is just one rule, and here are some
more.

Main rule: When manipulating expressions which occur as levels of symmetric spectra or dimensions
of spheres, be very attentive for how these expressions arise naturally and when you use the basic rules
of arithmetic of natural numbers. When using the basic laws of addition and multiplication of natural
numbers in such a context, add permutations according to the following rules (i)-(v).

(i) Do not worry about associativity of addition or multiplication, or the fact that 0 respectively 1 are
units for those operations. No permutations are required.

(ii) Whenever using commutativity of addition as in n + m = m + n, add a shuffle permutation χn,m ∈
Σn+m.

(iii) Whenever using commutativity of multiplication as in nm = mn, add a multiplicative shuffle χ×n,m ∈
Σnm defined by

χ×n,m(j + (i− 1)n) = i+ (j − 1)m

for 1 ≤ j ≤ n and 1 ≤ i ≤ m.
(iv) Do not worry about left distributivity as in p(n+m) = pn+ pm. No permutation is required.
(v) Whenever using right distributivity as in (n+m)q = nq +mq, add the permutation

(χ×q,n × χ×q,m) ◦ χ×n+m,q ∈ Σ(n+m)q .

Rule (v) also requires us to throw in permutations whenever we identify a product nq with an iterated sum
q+ · · ·+ q (n copies) since we use right distributivity in the process. However, no permutations are needed
when instead identifying nq with a sum of q copies of n, since that only uses left distributivity.

The heuristic rules (i) through (v) above are a great help in guessing when to expect coordinate or
level permutations when working with symmetric spectra. But the rules are more than heuristics, and are
based on the following rigorous mathematics. Typically, there are ‘coordinate free’ constructions in the
background (compare Exercise E.I.5) which are indexed by finite sets A which are not identified with any
of the standard finite sets n = {1, . . . , n}. The outcome of such constructions may naturally be indexed
by sets which are built by forming disjoint unions or products. The permutations arise because in contrast
to the arithmetic rules for + and ·, their analogues for disjoint union and cartesian product of sets only
holds up to isomorphism, and one can arrange to make some, but not all, of the required isomorphisms be
identity maps.

In more detail, when we want to restrict a ‘coordinate free’ construction to symmetric spectra, we
specialize to standard finite sets n; however, if the coordinate free construction involves disjoint union or
cartesian product, we need to identify the unions or products of standard finite sets in a consistent way
with the standard finite set of the same cardinality. A consistent way to do that amounts to what is called
a structure of bipermutative category on the category of standard finite sets. So we define binary functors
+ and · on standard finite sets resembling addition and multiplication of natural numbers as closely as
possible.

We let Fin denote the category of standard finite sets whose objects are the sets n for n ≥ 0 and whose
morphisms are all set maps. We define the sum functor + : Fin×Fin −→ Fin by addition on objects and
by ‘disjoint union’ on morphisms. More precisely, for morphisms f : n −→ n′ and g : m −→ m′ we define
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f + g : n + m −→ n′ + m′ by

(f + g)(i) =

{
f(i) if 1 ≤ i ≤ n, and

g(i− n) + n′ if n+ 1 ≤ i ≤ n+m.

This operation is strictly associative and the empty set 0 is a strict unit. The symmetry isomorphism is
the shuffle map χn,m : n + m −→m + n.

We define the product functor · : Fin × Fin −→ Fin by multiplication on objects and by ‘cartesian
product’ on morphisms. To make sense of this we have to linearly order the product of the sets n and m.
There are two choices which are more obvious than others, namely lexicographically with either the first or
the second coordinate defined as the more important one. Both choices work fine, and we will prefer the first
coordinate. More precisely, for morphisms f : n −→ n′ and g : m −→m′ we define f · g : n ·m −→ n′ ·m′
by

(f · g)(j + (i− 1)n) = f(j) + (g(i)− 1)n′

for 1 ≤ j ≤ n and 1 ≤ i ≤ m. The product · is also strictly associative and the set 1 is a strict unit. The
commutativity isomorphism is the multiplicative shuffle χ×nm : n ·m −→m · n.

This choice of ordering the product of n and m has the effect of making n ·m ‘naturally’ the same as
n + · · ·+ n (m copies), because we have

f · Idm = f + · · ·+ f (m copies).

Since p·k ‘is’ p+· · ·+p (k times), we can take the left distributivity isomorphism p·(n+m) = (p·n)+(p·m)
as the identity (compare rule (iv)).

In contrast, Idn ·g is in general not equal to g + · · ·+ g (n copies), but rather we have

Idn ·g = χ×m′,n(g + · · ·+ g)χ×n,m

for a morphism g : m −→ m′. However, then right distributivity isomorphism cannot be taken as the
identity; since the coherence diagram

q · (n + m)
χ×q,n+m //

left dist.

(n + m) · q

right dist.

��
q · n + q ·m

χ×q,n+χ×q,m

// n · q + m · q

is supposed to commute, we are forced to define the right distributivity isomorphism (n + m) ·q ∼= (n ·q) +
(m · q) as (χ×q,n × χ×q,m) ◦ χ×n+m,q, which explains rule (v) above.

Acknowledgments. A substantial part of this book was written during a sabbatical semester taken by
the author at the Massachusetts Institute of Technology in the fall 2006, where I could also try out some of
the contents of this book in a graduate course. I am grateful to Haynes Miller for the invitation that made
this possible. I would like to thank Mark Hovey, Brooke Shipley and Jeff Smith for the permission to use the
title of their paper [36] also for this book. I thank the following people for helpful comments, corrections
and improvements: Daniel Davis, Johannes Ebert, Moritz Groth, Lars Hesselholt, Jens Hornbostel, Katja
Hutschenreuter, Michael Joachim, Tyler Lawson, Mike Mandell, Yvonne May, Irakli Patchkoria, Steffen
Sagave and Brooke Shipley. Two anonymous referees have provided helpful and useful criticism. I thank
Bill Dwyer for making his implementation of the ‘dangerious bend’ sign available to me.



CHAPTER I

Basics

1. Symmetric spectra

Definition 1.1. A symmetric spectrum consists of the following data:

• a sequence of pointed spaces Xn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Xn for each n ≥ 0
• based maps σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the composite

(1.2) Xn ∧ Sm
σn ∧ Id // Xn+1 ∧ Sm−1

σn+1∧Id // · · ·
σn+m−2∧Id // Xn+m−1 ∧ S1

σn+m−1 // Xn+m

is Σn × Σm-equivariant. Here the symmetric group Σm acts by permuting the coordinates of Sm, and
Σn × Σm acts on the target by restriction of the Σn+m-action. We often denote the composite map (1.2)
by σm, with the understanding that σ0 is the identity map. We refer to the space Xn as the n-th level of
the symmetric spectrum X.

A morphism f : X −→ Y of symmetric spectra consists of Σn-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ S1) for
all n ≥ 0.

By our standing hypothesis, ‘space’ in the previous definition means a compactly generated weak Haus-
dorff space, compare Appendix A.2. The category of symmetric spectra is denoted by Sp; when we need
to emphasize that we use spaces (as opposed to simplicial set), we add the index T (which denotes the
category of compactly generated weak Hausdorff space) and use the notation SpT. Symmetric spectra of
simplicial sets, to be defined in 3.1 below, will accordingly be denoted SpsS.

Definition 1.3. A symmetric ring spectrum R consists of the following data:

• a sequence of pointed spaces Rn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Rn for each n ≥ 0
• Σn × Σm-equivariant multiplication maps

µn,m : Rn ∧Rm −→ Rn+m

for n,m ≥ 0, and
• two unit maps

ι0 : S0 −→ R0 and ι1 : S1 −→ R1 .

This data is subject to the following conditions:
(Associativity) The square

Rn ∧Rm ∧Rp
Id∧µm,p //

µn,m∧Id

��

Rn ∧Rm+p

µn,m+p

��
Rn+m ∧Rp µn+m,p

// Rn+m+p

commutes for all n,m, p ≥ 0.

9
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(Unit) The two composites

Rn ∼= Rn ∧ S0
Rn∧ι0 // Rn ∧R0

µn,0 // Rn

Rn ∼= S0 ∧Rn
ι0∧Rn // R0 ∧Rn

µ0,n // Rn

are the identity for all n ≥ 0.
(Centrality) The diagram

Rn ∧ S1
Rn∧ι1 //

twist

��

Rn ∧R1

µn,1 // Rn+1

χn,1

��
S1 ∧Rn ι1∧Rn

// R1 ∧Rn µ1,n

// R1+n

commutes for all n ≥ 0. Here χn,m ∈ Σn+m denotes the shuffle permutation which moves the first n
elements past the last m elements, keeping each of the two blocks in order; in formulas,

(1.4) χn,m(i) =

{
i+m for 1 ≤ i ≤ n,

i− n for n+ 1 ≤ i ≤ n+m.

A morphism f : R −→ S of symmetric ring spectra consists of Σn-equivariant based maps fn : Rn −→
Sn for n ≥ 0, which are compatible with the multiplication and unit maps in the sense that fn+m ◦ µn,m =
µn,m ◦ (fn ∧ fm) for all n,m ≥ 0, and f0 ◦ ι0 = ι0 and f1 ◦ ι1 = ι1.

A symmetric ring spectrum R is commutative if the square

Rn ∧Rm
µn,m

��

twist // Rm ∧Rn
µm,n

��
Rn+m χn,m

// Rm+n

commutes for all n,m ≥ 0. Note that this commutativity diagram implies the centrality condition above.

Definition 1.5. A right module M over a symmetric ring spectrum R consists of the following data:

• a sequence of pointed spaces Mn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Mn for each n ≥ 0,

and
• Σn × Σm-equivariant action maps αn,m : Mn ∧Rm −→Mn+m for n,m ≥ 0.

The action maps have to be associative and unital in the sense that the following diagrams commute

Mn ∧Rm ∧Rp
Mn∧µm,p //

αn,m∧Rp
��

Mn ∧Rm+p

αn,m+p

��

Mn
∼= Mn ∧ S0

Mn∧ι0 //

TTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTT
Mn ∧R0

αn,0

��
Mn+m ∧Rp αn+m,p

// Mn+m+p Mn

for all n,m, p ≥ 0. A morphism f : M −→ N of right R-modules consists of Σn-equivariant based maps
fn : Mn −→ Nn for n ≥ 0, which are compatible with the action maps in the sense that fn+m ◦ αn,m =
αn,m ◦ (fn ∧Rm) for all n,m ≥ 0. We denote the category of right R-modules by mod-R.

Remark 1.6. We have stated the axioms for symmetric ring spectra in terms of a minimal amount of data
and conditions. Now we put these conditions into perspective. We consider a symmetric ring spectrum R.
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(i) It will be useful to have the following notation for iterated multiplication maps. For natural numbers
n1, . . . , ni ≥ 0 we denote by

µn1,...,ni : Rn1
∧ . . . ∧Rni −→ Rn1+···+ni

the map obtained by composing multiplication maps smashed with suitable identity maps; by associa-
tivity, the parentheses in the multiplications don’t matter. More formally we can define the iterated
multiplication maps inductively, setting

µn1,...,ni = µn1,n2+···+ni ◦ (IdRn1
∧µn2,...,ni) .

(ii) We can define higher-dimensional unit maps ιm : Sm −→ Rm for m ≥ 2 as the composite

Sm = S1 ∧ . . . ∧ S1 ι1∧...∧ι1−−−−−−→ R1 ∧ . . . ∧R1
µ1,...,1−−−−→ Rm .

Centrality then implies that ιm is Σm-equivariant, and it implies that the diagram

Rn ∧ Sm
Rn∧ιm //

twist

��

Rn ∧Rm
µn,m // Rn+m

χn,m

��
Sm ∧Rn

ιm∧Rn
// Rm ∧Rn µm,n

// Rm+n

commutes for all n,m ≥ 0, generalizing the original centrality condition.
(iii) As the terminology suggests, the symmetric ring spectrum R has an underlying symmetric spectrum.

In fact, the multiplication maps µn,m make R into a right module over itself, and more generally,
every right R-module M has an underlying symmetric spectrum as follows. We keep the spaces Mn

and symmetric group actions and define the missing structure maps σn : Mn ∧ S1 −→ Mn+1 as the
composite αn,1 ◦ (Mn ∧ ι1). Associativity implies that the iterated structure map σm : Mn ∧ Sm −→
Mn+m equals the composite

Mn ∧ Sm
Mn∧ιm−−−−−→ Mn ∧Rm

αn,m−−−→ Mn+m .

So the iterated structure map is Σn ×Σm-equivariant by part (ii) and the equivariance hypothesis on
αn,m, and we have in fact obtained a symmetric spectrum.

The forgetful functors which associates to a symmetric ring spectrum or module spectrum its
underlying symmetric spectrum have left adjoints. We will construct the left adjoints in Example 5.27
below after introducing the smash product of symmetric spectra. The left adjoints associate to a
symmetric spectrum X the ‘free R-module’ X ∧R respectively the ‘free symmetric ring spectrum’ TX
generated by X, which we will refer to as the tensor algebra.

(iv) Using the internal smash product of symmetric spectra introduced in Section 5, we can identify the
‘explicit’ definition of a symmetric ring spectrum which we just gave with a more ‘implicit’ definition
of a symmetric spectrum R together with morphisms µ : R ∧ R −→ R and ι : S −→ R (where S
is the sphere spectrum, see Example 1.8) which are suitably associative and unital. The ‘explicit’
and ‘implicit’ definitions of symmetric ring spectra coincide in the sense that they define isomorphic
categories, see Theorem 5.25.

Primary invariants of a symmetric spectrum are its homotopy groups, which come in two flavors as
‘naive’ and ‘true’ homotopy groups. The former kind is defined directly from the homotopy groups of the
spaces in a spectrum: the k-th naive homotopy group of a symmetric spectrum X is defined as the colimit

π̂kX = colimn πk+nXn

taken over the stabilization maps ι : πk+nXn −→ πk+n+1Xn+1 defined as the composite

(1.7) πk+nXn
−∧S1

−−−−−→ πk+n+1

(
Xn ∧ S1

) (σn)∗−−−−−→ πk+n+1Xn+1 .

For large enough n, the set πk+nXn has a natural abelian group structure and the stabilization maps are
homomorphisms, so the colimit π̂kX inherits a natural abelian group structure.
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As will hopefully become clear later, these naive homotopy groups are often ‘wrong’; for example, the
category which one obtains by localizing at the class of π̂∗-isomorphisms is not equivalent to the stable
homotopy category as we discuss it in Chapter II. However, we need the naive homotopy groups to define
the more important true homotopy groups (see Definition 6.1 below), and also as a calculational tool to get
at the true homotopy groups.

1.1. Basic examples. Before developing any more theory, we give some examples of symmetric spec-
tra and symmetric ring spectra which represent prominent stable homotopy types. We discuss the sphere
spectrum (1.8), suspension spectra (1.13), Eilenberg-Mac Lane spectra (1.14), Thom spectra (1.16, 1.18)
and spectra representing topological K-theory 1.20. It is a nice feature of symmetric spectra that one can
explicitly write down these examples in closed form with all the required symmetries. We also give, when-
ever possible, the naive homotopy groups of these symmetric spectra. It will turn out that all the examples
in the section are in fact semistable (to be defined in Definition 3.14) and hence the naive homotopy groups
coincide with the more important true homotopy groups (to be defined in Definition 6.1).

Example 1.8 (Sphere spectrum). The symmetric sphere spectrum S is given by Sn = Sn, where the
symmetric group permutes the coordinates and σn : Sn ∧ S1 −→ Sn+1 is the canonical homeomorphism.
This is a commutative symmetric ring spectrum with identity as unit map and the canonical homeomorphism
Sn∧Sm −→ Sn+m as multiplication map. The sphere spectrum is the initial symmetric ring spectrum: if R
is any symmetric ring spectrum, then a unique morphism of symmetric ring spectra S −→ R is given by the
collection of unit maps ιn : Sn −→ Rn (compare 1.6 (ii)). Being initial, the sphere spectrum plays the same
formal role for symmetric ring spectra as the integers Z play for rings. This justifies the notation ‘S’ using
the \mathbb font. The category of right S-modules is isomorphic to the category of symmetric spectra, via
the forgetful functor mod- S −→ Sp. Indeed, if X is a symmetric spectrum then the associativity condition
shows that there is at most one way to define action maps

αn,m : Xn ∧ Sm −→ Xn+m ,

namely as the iterated structure map σm, and these do define the structure of right S-module on X.
The naive homotopy group π̂kS = colimn πk+nS

n is called the k-th stable homotopy group of spheres,
or the k-th stable stem, and will be denoted πs

k. Since Sn is (n− 1)-connected, the group πs
k is trivial for

negative values of k. The degree of a self-map of a sphere provides an isomorphism πs
0
∼= Z. For k ≥ 1,

the homotopy group πs
k is finite. This is a direct consequence of Serre’s calculation of the homotopy groups

of spheres modulo torsion, which we recall without giving a proof, and Freudenthal’s suspension theorem
[justify].

Theorem 1.9 (Serre). Let m > n ≥ 1. Then

πmS
n =

{
(finite group)⊕ Z if n is even and m = 2n− 1

(finite group) else.

Thus for k ≥ 1, the stable stem πs
k = π̂kS is finite.

As a concrete example, we inspect the colimit system defining πs
1, the first stable stem. Since the

universal cover of S1 is the real line, which is contractible, the theory of covering spaces shows that the
groups πnS

1 are trivial for n ≥ 2. The Hopf map

η : S3 ⊆ C2\{0} proj.−−−→ CP1 ∼= S2

is a locally trivial fiber bundle with fiber S1, so it gives rise to a long exact sequence of homotopy
groups. Since the fiber S1 has no homotopy above dimension one, the group π3S

2 is free abelian of rank
one, generated by the class of η. By Freudenthal’s suspension theorem the suspension homomorphism
− ∧ S1 : π3S

2 −→ π4S
3 is surjective and from π4S

3 on the suspension homomorphism is an isomorphism.
So the first stable stem πs

1 is cyclic, generated by the image of η, and its order equals the order of the
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suspension of η. On the one hand, η itself is stably essential, since the Steenrod operation Sq2 acts non-
trivially on the mod-2 cohomology of the mapping cone of η, which is homeomorphic to CP2 (we spell this
out in more detail in Example II.10.11) below.

On the other hand, twice the suspension of η is null-homotopic. To see this we consider the commutative
square

(x, y)
_

��

S3
η //

��

CP1

��

[x : y]
_

��
(x̄, ȳ) S3

η
// CP1 [x̄ : ȳ]

in which the vertical maps are induced by complex conjugation in both coordinates of C2. The left vertical
map has degree 1, so it is homotopic to the identity, whereas complex conjugation on CP1 ∼= S2 has degree
−1. So (−1) ◦ η is homotopic to η. Thus the suspension of η is homotopic to the suspension of (−1) ◦ η,
which by the following lemma is homotopic to the negative of η ∧ S1.

Lemma 1.10. Let Y be a pointed space, m ≥ 0 and f : Sm −→ Sm a based map of degree k. Then for
every homotopy class x ∈ πn(Y ∧ Sm) the classes (IdY ∧f)∗(x) and k · x become equal in πn+1(Y ∧ Sm+1)
after one suspension.

Proof. Let dk : S1 −→ S1 be any pointed map of degree k. Then the maps f ∧ S1, Sm ∧ dk :
Sm+1 −→ Sm+1 have the same degree k, hence they are based homotopic. Suppose x is represented by
ϕ : Sn −→ Y ∧ Sm. Then the suspension of (Y ∧ f)∗(x) is represented by (Y ∧ f ∧ S1) ◦ (ϕ ∧ S1) which
is homotopic to (Y ∧ Sm ∧ dk) ◦ (ϕ ∧ S1) = (ϕ ∧ S1) ◦ (Sn ∧ dk). Precomposition with the degree k map
Sn ∧ dk of Sn+1 induces multiplication by k, so the last map represents the suspension of k · x. �

The conclusion of Lemma 1.10 does not in general hold without the extra suspension, i.e., (Y ∧ f)∗(x)
need not equal k ·x in πn(Y ∧Sm): as we showed above, (−1)◦η is homotopic to η, which is not homotopic
to −η since η generates the infinite cyclic group π3S

2.
As far as we know, the stable homotopy groups of spheres don’t follow any simple pattern. Much

machinery of algebraic topology has been developed to calculate homotopy groups of spheres, both unstable
and stable, but no one expects to ever get explicit formulae for all stable homotopy groups of spheres. The
Adams spectral sequence based on mod-p cohomology (see Section II.10) and the Adams-Novikov spectral
sequence based on MU (complex cobordism) or BP (the Brown-Peterson spectrum at a fixed prime p) are
the most effective tools we have for explicit calculations as well as for discovering systematic phenomena.

Example 1.11 (Multiplication in the stable stems). The stable stems πs
∗ = π̂∗S form a graded commutative

ring which acts on the naive and true homotopy groups of every other symmetric spectrum X. We denote
the action simply by a ‘dot’

· : π̂kX × πs
l −→ π̂k+lX .

The definition is essentially straightforward, but there is one subtlety in showing that the product is well-
defined.

We first define the action of πs
∗ on the naive homotopy groups π̂∗X of a symmetric spectrum X. Suppose

f : Sk+n −→ Xn and g : Sl+m −→ Sm represent classes in π̂kX respectively πs
l . We denote by f · g the

composite

Sk+n+l+m f∧g−−−−→ Xn ∧ Sm
σm−−−→ Xn+m

and then define

(1.12) [f ] · [g] = (−1)nl · [f · g]

in the group π̂k+lX. The sign can be explained by the principle that all natural number must occur in the
‘natural order’, compare Remark 0.4. In f ·g the dimension of the sphere of origin is naturally (k+n)+(l+m),
but in order to represent an element of π̂k+lX the numbers should occur in the order (k + l) + (n + m).
Hence a shuffle permutation is to be expected, and it enters in the disguise of the sign (−1)ln.
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We check that the multiplication is well-defined. If we replace g : Sl+m −→ Sm by its suspension g∧S1,
then

f · (g ∧ S1) = σm+1 ◦ (f ∧ g ∧ S1) = σn+m ◦ (σm ∧ S1) ◦ (f ∧ g ∧ S1) = σn+m ◦ ((f · g) ∧ S1) .

Since the sign in the formula (1.12) does not change, the resulting stable class is independent of the
representative g of the stable class in πs

l . Independence of the representative for π̂kX is slightly more
subtle. If we replace f : Sk+n −→ Xn by the representative σn(f ∧ S1) : Sk+n+1 −→ Xn+1, then f · g gets
replaced by the lower horizontal composite in the commutative diagram

Sk+n+l+m+1
f∧g∧Id //

Id∧χl+m,1
��

Xn ∧ Sm+1

Xn∧χm,1
��

Sk+n+1+l+m
f∧Id∧g

//

σn(f∧S1)·g

55Xn ∧ S1+m

σ1+m

// Xn+1+m

By Lemma 1.10 the map Xn∧χm,1 induces multiplication by (−1)m on homotopy groups after one suspen-
sion. This cancels part of the sign (−1)l+m that is the effect of precomposition with the shuffle permutation
χl+m,1 on the left. So in the colimit π̂k+lX we have

[σn(f ∧ S1) · g] = (−1)l · [σm+1(f ∧ g ∧ S1)] = (−1)l · [f · g] .

Since the dimension of f ∧ S1 is one more than the dimension of f , the extra factor (−1)l makes sure that
product [f ] · [g] as defined in (1.12) is independent of the representative of the stable class [f ].

Now we verify that the dot product is biadditive. We only show the relation (x+ x′) · y = x · y+ x′ · y,
and additivity in y is similar. Suppose as before that f, f ′ : Sk+n −→ Xn and g : Sl+m −→ Sm represent
classes in π̂kX respectively πs

l . Then the sum of f and f ′ in πk+nXn is represented by the composite

Sk+n pinch−−−→ Sk+n∨Sk+n f∨f ′−−−→ Xn .

In the square

Sk+l+n+m

pinch

��

1∧χl,n∧1 // Sk+n+l+m

(f+f ′)∧g

++WWWWWWWWWWWWWWWWWWWWWWWW

pinch∧Id

��
(Sk+n∨Sk+n) ∧ Sl+m

(f∨f ′)∧g
// Xn ∧ Sm

Sk+l+n+m∨Sk+l+n+m
(1∧χl,n∧1)∨(1∧χl,n∧1)

// Sk+n+l+m∨Sk+n+l+m

(f∧g)∨(f ′∧g)

33gggggggggggggggggggggggg
∼=

OO

the right part commutes on the nose and the left square commutes up to homotopy. After composing with
the iterated structure map σm : Xn∧Sm −→ Xn+m, the composite around the top of the diagram becomes
(f + f ′) · g, whereas the composite around the bottom represents fg + f ′g. This proves additivity of the
dot product in the left variable.

If we specialize to X = S then the product provides a biadditive graded pairing · : πs
k × πs

l −→ πs
k+l of

the stable homotopy groups of spheres. We claim that for every symmetric spectrum X the diagram

π̂kX × πs
l × πs

j
·×Id //

Id×·
��

π̂k+lX × πs
j

·
��

π̂kX × πs
l+j ·

// π̂k+l+jX
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commutes, so the product on the stable stems and the action on the homotopy groups of a symmetric
spectrum are associative. After unraveling all the definitions, this associativity ultimately boils down to
the equality

(−1)ln · (−1)j(n+m) = (−1)jm · (−1)(l+j)n

and commutativity of the square

Xn ∧ Sm ∧ Sq

Id∧∼=
��

σm∧Id // Xn+m ∧ Sq

σq

��
Xn ∧ Sm+q

σm+q

// Xn+m+q

Finally, the multiplication in the homotopy groups of spheres is commutative in the graded sense. Indeed,
for representing maps f : Sk+n −→ Sn and g : Sl+m −→ Sm the square

Sk+n+l+m

χk+n,l+m

��

f∧g // Sn+m

χn,m

��
Sl+m+k+n

g∧f
// Sm+n

commutes. The two vertical coordinate permutations induce the signs (−1)(k+n)(l+m) respectively (after
one suspension) (−1)nm on homotopy groups. So in the stable group we have

[f ] · [g] = (−1)nl · [f · g] = (−1)kl+km · [g · f ] = (−1)kl · [g] · [f ] .

The following table gives the stable homotopy groups of spheres through dimension 8:

n 0 1 2 3 4 5 6 7 8
πs
n Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 (Z/2)2

generator ι η η2 ν ν2 σ ησ, ε

Here ν and σ are the Hopf maps which arises unstably as fiber bundles S7 −→ S4 respectively S15 −→ S8.
The element ε in the 8-stem can be defined using Toda brackets (see Construction IV.2.5) as ε = ησ+〈ν, η, ν〉.
The table contains or determines all multiplicative relations in this range except for η3 = 12ν. A theorem
of Nishida’s [ref] says that every homotopy element of positive dimension is nilpotent. We explain in
Section II.10 how this table can be obtained with the help of the Adams spectral sequence.
� A word of warning: it is tempting to try to define a product on the naive homotopy groups of a

symmetric ring spectrum R in a similar fashion, by smashing representatives and shuffling sphere
coordinates into their natural order. This will indeed give an associative product whenever the underlying
symmetric spectrum of R is semistable. However, if R is not semistable, then smashing of representatives
does not descend to a well-defined product on naive homotopy groups! In that case the algebraic structure
that the homotopy groups of R enjoy is more subtle, and we discuss it in Exercise E.I.67. In any case,
the true homotopy groups of a symmetric ring spectrum have a natural multiplication, by Proposition 6.25
below.

Example 1.13 (Suspension spectra). Every pointed space K gives rise to a suspension spectrum Σ∞K via

(Σ∞K)n = K ∧ Sn

with structure maps given by the canonical homeomorphism (K ∧Sn)∧S1
∼=−→ K ∧Sn+1. For example, the

sphere spectrum S is isomorphic to the suspension spectrum Σ∞S0.
The naive homotopy group

πs
kK = π̂k (Σ∞K) = colimn πk+n(K ∧ Sn)
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is called the k-th stable homotopy group of K. Since K ∧ Sn is (n− 1)-connected, the suspension spectrum
Σ∞K is connective, i.e., all homotopy groups in negative dimensions are trivial. The Freudenthal suspension
theorem implies that for every suspension spectrum, the colimit system for a specific homotopy group always
stabilizes. A symmetric spectrum X is isomorphic to a suspension spectrum (necessarily that of its zeroth
space X0) if and only if every structure map σn : Xn ∧ S1 −→ Xn+1 is a homeomorphism.

Example 1.14 (Eilenberg-Mac Lane spectra). For an abelian group A, the Eilenberg-Mac Lane spectrum
HA is defined by

(HA)n = A[Sn] ,

the reduced A-linearization of the n-sphere. Let us review the linearization construction in some detail
before defining the rest of the structure of the Eilenberg-Mac Lane spectrum.

For a general based space K, the underlying set of the A-linearization A[K] is tensor product of A with
the reduced free abelian group generated by the points of K. In other words, points of A[K] are finite sums
of points of K with coefficients in A, modulo the relation that all A-multiples of the basepoint are zero.
The set A[K] is topologized as a quotient space of the disjoint union of the spaces An ×Kn (with discrete
topology on An), via the surjection

qn≥0 A
n ×Kn −→ A[K] , (a1, . . . , an, k1, . . . , kn) 7→

n∑
i=1

ai · ki .

There is a natural map H̃n(K,A) −→ πn(A[K], 0) from the reduced singular homology groups of K with
coefficients in A to the homotopy groups of the linearization: let x =

∑
i ai · fi be a singular chain of K

with coefficients ai in A, i.e., every fi : ∆[n] −→ K is a continuous map from the topological n-simplex. We
use the abelian group structure of A[K] and add the maps fj pointwise and multiply by the coefficients, to
get a single map x : ∆[n] −→ A[K], i.e., for z ∈ ∆[n] we set

x(z) =
∑
i

ai · fi(z) .

If the original chain x is a cycle in the singular chain complex, then the map x sends the boundary of the
simplex to the neutral element 0 of A[K]. So x factors over a continuous based map ∆[n]/∂∆[n] −→ A[K].
After composing with a homeomorphism between the n-sphere and ∆[n]/∂∆[n] this maps represents an
element in the homotopy group πn(A[K], 0). If K has the based homotopy type of a CW-complex, then

the map H̃n(K,A) −→ πn(A[K], 0) is an isomorphism [ref]. In the special case K = Sn this shows that
the A[Sn] has only one non-trivial homotopy group in dimension n, where it is isomorphic to A. In other
words, (HA)n = A[Sn] is an Eilenberg-Mac Lane space of type (A,n).

Now we return to the definition of the Eilenberg-Mac Lane spectrum HA. The symmetric group acts on
(HA)n = A[Sn] by permuting the smash factors of Sn. The structure map σn : (HA)n ∧ S1 −→ (HA)n+1

is given by

A[Sn] ∧ S1 −→ A[Sn+1] ,
(∑

i
ai · xi

)
∧ y 7−→

∑
i
ai · (xi ∧ y) .

If A is not just an abelian group but also has a ring structure, then HA becomes a symmetric ring
spectrum via the multiplication map

(HA)n ∧ (HA)m = A[Sn] ∧ A[Sm] −→ A[Sn+m] = (HA)n+m(∑
i
ai · xi

)
∧
(∑

j
bj · yj

)
7−→

∑
i,j

(ai · bj) · (xi ∧ yj) .

The unit maps Sm −→ (HA)m are given by the inclusion of generators.
We shall see in Example 5.28 below that the Eilenberg-Mac Lane functor H can be made into a lax

symmetric monoidal functor with respect to the tensor product of abelian groups and the smash product of
symmetric spectra; this also explains why H takes rings (monoids in the category of abelian with respect
to tensor product) to ring spectra (monoids in the category of symmetric spectra with respect to smash
product).
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Eilenberg-Mac Lane spectra enjoy a special property: the n-th space (HA)n and the loop space of the
next space (HA)n+1 are both Eilenberg-Mac Lane spaces of type (A,n), and in fact the map σ̃n : (HA)n −→
Ω(HA)n+1 adjoint to the structure map is a weak equivalence for all n ≥ 0. Spectra with this property
play an important role in stable homotopy theory, and they deserve a special name:

Definition 1.15. A symmetric spectrum of topological spaces X is an Ω-spectrum if for all n ≥ 0 the
map σ̃n : Xn −→ ΩXn+1 which is adjoint to the structure map σn : Xn ∧ S1 → Xn+1 is a weak homotopy
equivalence.

In other words, HA is an Ω-spectrum. It follows that the naive homotopy groups of the symmetric
spectrum HA are concentrated in dimension zero, where we have a natural isomorphism A = π0(HA)0

∼=
π̂0HA.

Example 1.16 (Real Thom spectra). We define a commutative symmetric ring spectrum MO whose stable
homotopy groups are isomorphic to the ring of cobordism classes of closed smooth manifolds. We set

MOn = EO(n)+ ∧O(n) S
n ,

the Thom space of the tautological vector bundle EO(n) ×O(n) Rn over BO(n) = EO(n)/O(n). Here
O(n) is the n-th orthogonal group consisting of Euclidean automorphisms of Rn. The space EO(n) is the
geometric realization of the simplicial space which in dimension k is the (k + 1)-fold product of copies of
O(n), and where face maps are projections. Thus EO(n) is contractible and has a right action by O(n).
The right O(n)-action is used to form the orbit space MOn, where we remember that Sn is the one-point
compactification of Rn, so it comes with a left O(n)-action.

The symmetric group Σn acts on O(n) by conjugation with the permutation matrices. Since the ‘E’-
construction is natural in topological groups, this induces an action of Σn on EO(n). If we let Σn act on
the sphere Sn by coordinate permutations and diagonally on EO(n)+∧Sn, then the action descends to the
quotient space MOn.

The unit of the ring spectrum MO is given by the maps

Sn ∼= O(n)+ ∧O(n) S
n −→ EO(n)+ ∧O(n) S

n = MOn

using the ‘vertex map’ O(n) −→ EO(n). There are multiplication maps

MOn ∧MOm −→ MOn+m

which are induced from the identification Sn ∧ Sm ∼= Sn+m which is equivariant with respect to the group
O(n)×O(m), viewed as a subgroup of O(n+m) by block sum of matrices. The fact that these multiplication
maps are associative and commutative uses that

• for topological groups G and H, the simplicial model of EG comes with a natural, associative and
commutative isomorphism E(G×H) ∼= EG× EH;

• the group monomorphisms O(n) × O(m) −→ O(n + m) by orthogonal direct sum are strictly
associative, and the following diagram commutes

O(n)×O(m) //

twist

��

O(n+m)

conj. by χn,m

��
O(m)×O(n) // O(m+ n)

where the right vertical map is conjugation by the permutation matrix of the shuffle permuta-
tion χn,m.

Essentially the same construction gives commutative symmetric ring spectra MSO representing oriented
bordism and MSpin representing spin bordism. For MSO this uses that conjugation of O(n) by a per-
mutation matrix restricts to an automorphism of SO(n) and the block sum of two special orthogonal
transformations is again special. For MSpin it uses that the block sum pairing and the Σn-action uniquely
lift from the groups SO(n) to their universal covers Spin(n).
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In Example 6.43 we provide a different model of the Thom spectrum MO made from Thom spaces over
Grassmannians. Moreover, the Grassmannian model admits a ‘periodization’, i.e., a Z-graded commutative
symmetric ring spectrum MOP whose degree 0 component is π̂∗-isomorphic to MO and whose degree 1
component contains a unit of dimension 1. Any commutative symmetric ring spectrum with an odd dimen-
sional unit satisfies 2 = 0, and so all homotopy groups of the spectrum MO are F2-vector spaces (compare
Corollary 6.45).

The Thom-Pontrjagin construction provides homomorphisms π̂kMO −→ ΩO
k from the k-th naive ho-

motopy group of the spectrum MO to the group of cobordism classes of k-dimensional smooth closed
manifolds [direction], and similarly for the other families of classical Lie groups. [structure on stable normal
bundle; takes product in π̂∗MO to cartesian product of manifolds] By a theorem of Thom’s [ref], the Thom-
Pontrjagin map is an isomorphism. [explicit description of π∗MG, whenever known] [add MΣ, MGl(A),. . . .
Does MBr fit (how does Σn acts on Brn)? MBr is stably equivalent to HZ/2 (find explicit map), so MΣ,
MGl(A), MO are GEMs] We intend to discuss these and other examples of Thom spectra in more detail
in a later chapter.

Example 1.17 (Real Thom spectra). Now we given another commutative symmetric ring spectrum model
for MO, level equivalent to the previous example. We construct this with more structure, namely as a
coordinate free orthogonal spectrum. For a real inner product space V we let L(V, V ⊗ R∞) be the space
of linear isometric embeddings from V into V ⊗R∞. If V is non-zero, then V ⊗R∞ is infinite dimensional
and the space L(V, V ⊗R∞) is contractible [ref]. The orthogonal group O(V ) acts freely and continuously
from the right on L(V, V ⊗ R∞) by precomposition. We can thus form the space

M ′O(V ) = L(V, V ⊗ R∞)+ ∧O(V ) S
V ,

the Thom space of the tautological vector bundle L(V, V ⊗R∞)×O(V )V over the space L(V, V ⊗R∞)/O(V ),
the Grassmannian of dim(V )-dimensional subspaces of V ⊗ R∞. The group O(V ) also acts continuously
from the left on L(V, V ⊗ R∞) through its action on V ⊗ R∞; we give M ′O(V ) the induced action.

If W is another finite dimensional real inner product space we can define a multiplication map

µV,W : M ′O(V ) ∧M ′O(W ) −→ M ′O(V ⊕W )

by

(L(V, V ⊗ R∞)+ ∧O(V ) S
V ) ∧ (L(W,W ⊗ R∞)+ ∧O(W ) S

W ) −→
L(V ⊕W, (V ⊕W )⊗ R∞)+ ∧O(V⊕W ) S

V⊕W

[ϕ, v] ∧ [ψ,w] 7−→ [ϕ⊕ ψ, v ⊕ w]

Here we have implicitly identified

(V ⊗ R∞)⊕ (W ⊗ R∞) with (V ⊕W )⊗ R∞

and SV ∧ SW with SV⊕W . The multiplication maps are associative and commutative, and they are unital
with respect to the maps

ιV = [iV ,−] : SV −→ L(V, V ⊗ R∞)+ ∧O(V ) S
V = M ′O(V )

where iV (v) = v ⊗ (1, 0, 0, . . . ) : V −→ V ⊗ R∞ is the isometric embedding given by the first coordinate
of R∞. The same construction gives commutative symmetric ring spectrum M ′SO by deviding out only
the action of the special orthogonal group SO(V ) of V .

In Example 6.43 we provide a different model of the Thom spectrum MO made from Thom spaces over
Grassmannians. Moreover, the Grassmannian model admits a ‘periodization’, i.e., a Z-graded commutative
symmetric ring spectrum MOP whose degree 0 component is π̂∗-isomorphic to MO and whose degree 1
component contains a unit of dimension 1. Any commutative symmetric ring spectrum with an odd dimen-
sional unit satisfies 2 = 0, and so all homotopy groups of the spectrum MO are F2-vector spaces (compare
Corollary 6.45).

The Thom-Pontrjagin construction provides homomorphisms π̂kMO −→ ΩO
k from the k-th naive ho-

motopy group of the spectrum MO to the group of cobordism classes of k-dimensional smooth closed
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manifolds [direction], and similarly for the other families of classical Lie groups. [structure on stable normal
bundle; takes product in π̂∗MO to cartesian product of manifolds] By a theorem of Thom’s [ref], the Thom-
Pontrjagin map is an isomorphism. [explicit description of π∗MG, whenever known] [add MΣ, MGl(A),. . . .
Does MBr fit (how does Σn acts on Brn)? MBr is stably equivalent to HZ/2 (find explicit map), so MΣ,
MGl(A), MO are GEMs]

Example 1.18 (Complex cobordism spectra). The Thom ring spectra MU , MSU and MSp representing
unitary, special unitary or symplectic bordism have to be handled slightly differently from real Thom spectra
such as MO in the previous example. The point is that MU and MSU are most naturally indexed on ‘even
spheres’, i.e., one-point compactifications of complex vector spaces, and MSp is most naturally indexed on
spheres of dimensions divisible by 4. However, a small variation gives MU , MSU and MSp as commutative
symmetric ring spectra, as we shall now explain. The complex cobordism spectrum MU plays an important
role in stable homotopy theory because of its relationship to the theory of formal groups laws. Thus module
and algebra spectra over MU are important, and we plan to study these in some detail later.

We first consider the collection of pointed spaces MU with

(MU)n = EU(n)+ ∧U(n) S
Cn ,

the Thom space of the tautological complex vector bundle EU(n) ×U(n) Cn over BU(n) = EU(n)/U(n).
Here U(n) is the n-th unitary group consisting of Euclidean automorphisms of Cn. The Σn-action arises
from conjugation by permutation matrices and the permutation of complex coordinates, similarly as in the
case of MO above.

There are multiplication maps

(MU)p ∧ (MU)q −→ (MU)p+q

which are induced from the identification Cp ⊕ Cq ∼= Cp+q which is equivariant with respect to the group
U(p)×U(q), viewed as a subgroup of U(p+q) by direct sum of linear maps. There is a unit map ι0 : S0 −→
(MU)0, but instead of a unit map from the circle S1, we only have a unit map S2 −→ (MU)1. Thus we
do not end up with a symmetric spectrum since we only get structure maps (MU)n ∧ S2 −→ (MU)n+1

involving the 2-sphere. In other words, MU has the structure of what could be called an ‘even symmetric
ring spectrum’ (MU is really a ‘unitary ring spectrum’, compare Section 7.2 below).

In order to get an honest symmetric ring spectrum we now use a general construction which turns a com-
mutative monoid R in the category of symmetric sequences into a new such monoid Φ(R) by appropriately
looping all the spaces involved. We set

Φ(R)n = map(Sn, Rn)

and let the symmetric group act by conjugation. Then the product of R combined with smashing maps
gives Σn × Σm-equivariant maps

Φ(R)n ∧ Φ(R)m = map(Sn, Rn) ∧map(Sm, Rm) −→ map(Sn+m, Rn+m) = Φ(R)n+m

f ∧ g 7−→ f · g = µn,m ◦ (f ∧ g) .

Now we apply this construction to MU and obtain a commutative monoid MU = Φ(MU) in the
category of symmetric sequences. We make MU into a symmetric ring spectrum via the unit map S1 −→
(MU)1 = map(S1, (MU)1) which is adjoint to

ι : S2 ∼= U(1)+ ∧U(1) S
2 −→ EU(1)+ ∧U(1) S

2 = (MU)1

using the ‘vertex map’ U(1) −→ EU(1). More precisely, we use the decomposition C = R · 1⊕R · i to view
S2 as the smash product of a ‘real’ and ‘imaginary’ circle, and then we view the source of the unit map
S1 −→ (MU)1 = map(S1, (MU)1) as the real circle, and we think of the imaginary circle as parameterizing
the loop coordinate in the target (MU)1. Since the multiplication of MU is commutative, the centrality
condition is automatically satisfied. Then the iterated unit map

Sn −→ (MU)n = Ωn(MU)n
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is given by

(x1, . . . , xn) 7−→ ((y1, . . . , yn) 7→ µ(ι(x1, y1), . . . , ι(xn, yn)))

where µ : (MU)∧n1 −→ (MU)n is the iterated multiplication map.
The naive (and true) homotopy groups of MU are given by

π̂kMU = colimn πk+n map(Sn, (MUn)) ∼= colimn πk+2n(EU(n)+ ∧U(n) S
2n) ;

so by Thom’s theorem they are isomorphic to the ring of cobordism classes of stably almost complex k-
manifolds. So even though the individual spaces MUn = map(Sn, EU(n)+∧U(n)S

2n) are not Thom spaces,
the symmetric spectrum which they form altogether has the ‘correct’ homotopy groups (and in fact, the
correct stable homotopy type). [π∗MU ; semistable since orthogonal spectrum]

Essentially the same construction gives a commutative symmetric ring spectrum MSU . The symplectic
bordism and MSp can also be handled similarly: it first arises as a commutative monoid MSp in symmetric
sequences with structure maps (MSp)n ∧ S4 −→ (MSp)n+1 and a unit map S4 −→ (MSp)1. If we apply
the construction Φ three times, we obtain a commutative symmetric ring spectrum MSp = Φ3(MSp)
representing symplectic bordism.

A symmetric spectrum X is a positive Ω-spectrum if the map σ̃n : Xn −→ ΩXn+1 is a weak equivalence
for all positive values of n (but not necessarily for n = 0). Examples which arise naturally as positive Ω-
spectra are the spectra of topological K-theory (Example 1.20) and algebraic K-theory K(C) (Example 3.50)
and spectra arising from special (but not necessarily very special) Γ-spaces by evaluation on spheres.

For every Ω-spectrum X and all k, n ≥ 0, the canonical map πkXn −→ π̂k−nX is a bijection. Indeed,
the homotopy groups of ΩXn+1 are isomorphic to the homotopy groups of Xn+1, shifted by one dimension.
So the colimit system which defines π̂k−nX is isomorphic to the colimit system

(1.19) πkXn −→ πk (ΩXn+1) −→ πk (Ω2Xn+2) −→ · · · ,

where the maps in the system are induced by the maps σ̃n adjoint to the structure maps. In an Ω-spectrum,
the maps σ̃n are weak equivalences, so all maps in the sequence (1.19) are bijective, hence so is the map
from each term to the colimit π̂k−nX.

Example 1.20 (Topological K-theory). We define the commutative symmetric ring spectrum ku of con-
nective complex topological K-theory. We need some preparations. We let U be a complex hermitian inner
product space U of finite or countably infinite dimension. For a finite based set A we denote by Λ(A,U)
the space of of tuples (Va), indexed by the non-basepoint elements of A, of finite dimensional, pairwise
orthogonal complex subvector spaces of U . The topology on this space is as a disjoint union, indexed over
the dimension vectors (dim(Va)) ∈ NA; for a fixed dimension vector, the topology is that of a subspace of a
product of Grassmannians of U . The basepoint of Λ(A,U) is the tuple where each Va is the zero subspace.
For a based map α : A −→ B an induced continuous map α∗ : Λ(A,U) −→ Λ(B,U) sends (Va) to (Wb)
where

Wb =
⊕
α(a)=b

Va .

Now we let K be a based topological space. We define the value Λ(K,U) by

Λ(K,U) =
(
qn≥0K

n × Λ(n+,U)
)
/ ∼ ,

where the equivalence relation (This is in fact a coend, over the category Γ of standard finite based sets
[...]). So an element of Λ(K,U) is represented by a tuple (k1, . . . , kn) of points of K ‘labelled’ with pairwise
orthogonal vector subspaces (V1, . . . , Vn) in U for some n. The topology is such that, informally speaking,
the vector spaces Vi and Vj are summed up whenever two points ki and kj collide and Vi disappears when ki
approaches the basepoint of K.

If U ′ is another complex inner product space of at most countable dimension and B another finite based
set we define a multiplication map

Λ(A,U) ∧ Λ(B,U ′) −→ Λ(A ∧B, U ⊗ U ′) , (Va) ∧ (Wb) 7−→ (Va ⊗Wb)a∧b .
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The multiplication maps µn,m are associative and commutative in the sense that the squares

Λ(A,U) ∧ Λ(B,U ′) ∧ Λ(C,U ′′) //

��

Λ(A,U) ∧ Λ(B ∧ C,U ′ ⊗ U ′′)

��

Λ(A,U) ∧ Λ(B,U ′) //

��

Λ(A ∧B, U ⊗ U ′)

��
Λ(A ∧B, U ⊗ U ′) ∧ Λ(C,U ′′) // Λ(A ∧B ∧ C, U ⊗ U ′ ⊗ U ′′) Λ(B,U ′) ∧ Λ(A,U) // Λ(B ∧A, U ′ ⊗ U)

commute.
Given a finite dimensional real inner product space V we let

Sym(V ) =
⊕
n≥0

C⊗R (V ⊗n)Σn

denote the complexification of the symmetric algebra of V . This has a preferred hermitian inner product
such that the defining action of O(V ) on V extends to a unitary action of O(V ) on Sym(V ). Moreover, the
natural isomorphism

Sym(V )⊗C Sym(W ) ∼= Sym(V ⊕W )

respects the inner products and is O(V )×O(W )-equivariant.
We can now define an orthogonal spectrum ku. The value of ku on a real inner product space V is

ku(V ) = Λ(SV , Sym(V )) ,

the configuration space of the V -sphere with labels in orthogonal subspaces of the symmetric alge-
bra Sym(V ). We let the orthogonal group O(V ) act diagonally, via the action on the sphere SV and
the action on unitary action on Sym(V ). Explicitly, given an orthogonal automorphism ϕ : V −→ V ,
elements v1, . . . , vn of SV and pairwise orthogonal subspaces X1, . . . Xn of Sym(V ), we set

ϕ · [v1, . . . , vn; X1, . . . , Xn] = [ϕ(v1), . . . , ϕ(vn); ϕ∗(X1), . . . , ϕ∗(Xn)] .

We define an O(V )×O(W )-equivariant multiplication map

µV,W : ku(V ) ∧ ku(W ) = Λ(SV , Sym(V )) ∧ Λ(SW , Sym(W ))

−→ Λ(SV ∧ SW , Sym(V )⊗C Sym(W )) ∼= Λ(SV⊕W , Sym(V ⊕W )) = ku(V ⊕W ) .

The maps µV,W are associative and commutative. Now we define an O(V )-equivariant unit map

ιV : SV −→ Λ(SV , Sym(V )) , v 7−→ [v,C·1] ,

where C · 1 is the line in Sym(V ) spanned by the unit element 1 of the symmetric algebra.
If the vector space V is non-zero, then the symmetric algebra Sym(V ) in infinite dimensional. We will

show in [...] below that then the Γ-space Λ(−,U) is ’special’ and so [...] Hence the orthogonal spectrum ku
is a positive Ω-spectrum.

A morphism of symmetric ring spectra dim : ku −→ HZ to the integral Eilenberg-Mac Lane spectrum
(see Example 1.14)is given by the dimension function, i.e., on a real inner product spaces V the map

dim : ku(V ) = Λ(SV , Sym(V )) −→ Z[SV ] = HZ(V )

is given by

dim[λ1, . . . , λn; V1, . . . , Vn] =

n∑
i=1

(dimVi) · λi .

The dimension morphism dim : ku −→ HZ induces an isomorphism on π0.
We can identify level 0 and level 1 of ku very explicitly. The symmetric algebra Sym(0) of the zero

vector space is 1-dimensional, generated by the unit, and hence the space ku0 = Λ(S0, Sym(0)) has two
points, the basepoint and the configuration [0,C·1] where 0 is the non-basepoint of S0. So the unit map
ι0 : S0 −→ ku0 is a homeomorphism. We choose a homeomorphism of S1 (the one-point compactification
of R) with the unit sphere S(C) = {z ∈ C | |z| = 1} of the complex number, taking the basepoint of S1 at
infinity to 1 ∈ C. This induces a homeomorphism of configuration spaces

(1.21) ku1 = Λ(S1, Sym(R)) ∼= Λ(S(C), C∞) .
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Given a tuple (λ1, . . . , λn) ∈ S(C)n and a tuple (V1, . . . , Vn) of pairwise orthogonal subspaces of C∞ we
let ψ(λ1, . . . , λn; V1, . . . , Vn) be the unitary transformation of C∞ that is multiplication by λi on Vi and
the identity on the orthogonal complement of

⊕n
i=1 Vi. As n varies, these maps are compatible with the

equivalence relation and so they assemble into a continuous map

ψ : Λ(S(C),C∞) −→ U .

This map is bijective because every unitary transformation is diagonalizable with finitely many eigenvalues
in the unit circle and pairwise orthogonal eigenspaces.

We identify the homotopy groups of the spectrum ku in low dimensions. The space

kun = Λ(Sn, Sym(Rn))

is the values of a Γ-space on Sn, so it is (n−1)-connected [ref]. In particular, the spectrum kun is connective,
i.e., its homotopy groups vanish in negative dimensions. The inclusion U(2) −→ U is 4-connected and U(2)
is homeomorphic to S1×S3, so the first and third homotopy group of U , and hence of ku1, are free abelian
of rank 1, and the second homotopy group of ku1 is trivial. Specific generators of π1(ku1) and π3(ku1) are
given by the unit map ι1 : S1 −→ ku1 respectively the composite

u : S3 ∼= SU(2)
incl.−−−→ U

'−−−−→
(1.21)

ku1 .

Since ku is a positive Ω-spectrum the natural map πk+1(ku1) −→ π̂k(ku) is an isomorphism for all k ≥ 0.
Altogether we have shown that π0(ku) ∼= π2(ku) ∼= Z, generated by the classes of ι1 : S1 −→ ku1 respectively
u : S3 −→ ku1, and π1(ku) is trivial.

The class in π2(ku) represented by u is called the Bott class; we will abuse notation and denote this
class also by u. The Bott periodicity theorem constructs a homotopy equivalence Ω2BU ' Z × BU . An
incarnation of this Bott periodicity in our context is the fact that the map

ku1 −→ Ω3(ku2)

which is adjoint to multiplication by u,

ku1 ∧ S3 ku1∧u−−−−→ ku1 ∧ ku1
µ1,1−−→ ku2

is a weak equivalence [ref]. Since ku1 is also weakly equivalent to Ω(ku2), we conclude that ku1 and Ω2(kun)
are weakly equivalent. This form of Bott periodicity implies that the homotopy ring of ku is polynomial
on the Bott class, i.e., π̂∗(ku) = Z[u] as a graded ring. The symmetric spectrum KU of of periodic complex
topological K-theory is constructed from the connective version ku by ‘inverting the Bott class’. We spell
out this process of inverting a homotopy class in Example 6.58 below. We will discuss another model for
connective topological K-theory in Example 7.10.

The complex K-theory spectra ku and KU of the previous example have real variants ko and KO; in
the definitions we simply have to replace complex universes by real universes. [spell out?] Both ko and KO
are commutative symmetric ring spectra and their underlying symmetric spectra are positive Ω-spectra.
The real version has a Bott-periodicity of order 8, i.e., there is a homotopy equivalence

Ω8BO ' Z×BO ;

in the spectra ko and KO this periodicity is realized by a Bott class β ∈ π̂8(ko) which becomes invertible
in the homotopy ring of KO [define this] and arises from a specific map S9 −→ ko1. The following table
(and Bott periodicity) gives the homotopy groups of the spectra ko and KO:

n 0 1 2 3 4 5 6 7 8
π̂n(ko) Z Z/2 Z/2 0 Z 0 0 0 Z

generator ι η η2 ξ β

Here η is the Hurewicz image of the Hopf map, i.e., the image of the class η ∈ π̂1S under the unique
homomorphism of ring spectra S −→ ko. There are ‘complexification maps’, i.e., homomorphisms of ring
spectra ko −→ ku and KO −→ KU , which are injective on homotopy groups in dimensions divisible by 4,
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and bijective in dimensions divisible by 8. The elements ξ and β can be defined by the property that they
hit 2u2 ∈ π̂4(ku) respectively u4 ∈ π̂8(ku) under this complexification map. Thus there is the multiplicative
relation ξ2 = 4β in π̂8(ko).

As in the complex case, the periodic ring spectrum KO can be obtained from the connective ring
spectrum ko by inverting a geometric representative of the Bott class, see Example 6.58. [Is there a self-
conjugate version KT , or, even better, the real, C2-equivariant version KR?]

2. Properties of naive homotopy groups

In Section 3.2 we will discuss various constructions which one can do to a symmetric spectrum. When-
ever possible we want to say how a construction effects the naive homotopy groups. So in this section
we develop a few general properties of naive homotopy groups. More specifically, we construct long ex-
act sequences of naive homotopy groups from a morphism of symmetric spectra and we identify the naive
homotopy groups of a wedge and a finite product of spectra.

The naive homotopy groups of a symmetric spectrum do not depend on the symmetric group actions,
so they are really defined for ‘sequential spectra’, i.e., ‘symmetric spectra without symmetric group actions’.
We develop the basic properties of naive homotopy groups in this more general context. This extra generality
is useful because a symmetric spectrum sometimes decomposes into simpler pieces after forgetting the
symmetric group actions, but the levelwise decompositions are not equivariant. Since the naive homotopy
groups don’t care about the symmetries, such a non-equivariant splitting still gives information about naive
homotopy groups. An example of this strategy is the decomposition of the naive homotopy groups of a
twisted smash product, see Example 3.27.

Definition 2.1. A sequential spectrum consists of a sequence of pointed spaces Xn and based maps σn :
Xn ∧ S1 −→ Xn+1 for n ≥ 0. A morphism f : X −→ Y of sequential spectra consists of based maps
fn : Xn −→ Yn for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn =
σn ◦ (fn ∧ IdS1) for all n ≥ 0. The category of sequential spectra is denoted by SpN.

We refer to the space Xn as the n-th level of the sequential spectrum X. The k-th naive homotopy
group of a sequential spectrum X is defined as the colimit

π̂kX = colimn πk+nXn

taken over the stabilization maps ι : πk+nXn −→ πk+n+1Xn+1 defined as for symmetric spectra as the
composite (1.7).

2.1. Loop and suspension. The loop spectrum ΩX of a symmetric or sequential spectrum X is
defined by

(ΩX)n = Ω(Xn) ,

the based mapping space from the circle S1 to the n-th level of X. In the symmetric (as opposed to
‘sequential’) case, the symmetric group Σn acts on Ω(Xn) through the given action on Xn and trivially on
the circle. The structure map is the composite

(ΩX)n ∧ S1 = Ω(Xn) ∧ S1 −→ Ω(Xn ∧ S1)
Ω(σn)−−−−→ Ω(Xn+1) = (ΩX)n+1

where the first map takes l ∧ t ∈ Ω(Xn) ∧ S1 to the loop S1 −→ Xn ∧ S1 which sends s to l(s) ∧ t.
The suspension S1 ∧X of a symmetric or sequential spectrum X is defined by

(S1 ∧X)n = S1 ∧Xn ,

the smash product of the circle with the n-th level of X. In the symmetric (as opposed to ‘sequential’) case,
the symmetric group Σn acts on S1 ∧Xn through the given action on Xn and trivially on the circle. The
structure map is the composite

(S1 ∧X)n ∧ S1 = S1 ∧Xn ∧ S1 Id∧σn−−−−→ S1 ∧Xn+1 = (S1 ∧X)n+1 .

We define an adjunction

(2.2) ˆ : SpN(X,ΩY )
∼=−−→ SpN(S1 ∧X,Y )
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which takes a morphism f : X −→ ΩY to the morphism f̂ : S1∧X −→ Y whose n-th level f̂n : S1∧Xn −→
Yn is given by f̂n(t ∧ x) = fn(x)(t). If X and Y are symmetric spectra, then the adjunction bijection (2.2)
restricts to a similar adjunction bijection ˆ : Sp(X,ΩY ) ∼= Sp(S1 ∧ X,Y ) between the morphism sets of
symmetric spectra.

Now we show that looping and suspending a spectrum shifts the naive homotopy groups. The loop
homomorphism starts from the isomorphism

(2.3) α : πk+n(ΩXn) ∼= π1+k+nXn

that is defined by the same adjunction as above, i.e., the class represented by a continuous map f : Sk+n −→
ΩXn is sent to the class of the map f̂ : S1+k+n −→ Xn given by f̂(s∧ t) = f(t)(s), where s ∈ S1, t ∈ Sk+n.
As n varies, these particular isomorphisms are compatible with stabilization maps, so they induce an
isomorphism

(2.4) α : π̂k(ΩX)
∼=−−→ π̂1+kX

on colimits. (Note that the identification α differs from the adjunction isomorphism (0.3) by precomposition
with the coordinate permutation χk+n,1 : Sk+n+1 −→ S1+k+n; the adjunction isomorphisms themselves are
not compatible with stabilization.)

The maps S1 ∧− : πk+nXn −→ π1+k+n(S1 ∧Xn) given by smashing from the left with the identity of
the circle are compatible with the stabilization process for the homotopy groups of X respectively S1 ∧X,
so upon passage to colimits they induce a natural map of naive homotopy groups

S1 ∧ − : π̂kX −→ π̂1+k(S1 ∧X) ,

which we call the suspension homomorphism.
We let η : X −→ Ω(S1 ∧ X) and ε : S1 ∧ ΩX −→ X denote the unit respectively counit of the

adjunction (2.2). Then for every map f : Sk+n −→ ΩXn we have f̂ = εn ◦ (S1 ∧ f) and for every map
g : Sk+n −→ Xn we have S1 ∧ g = η̂n ◦ g. This means that the two triangles

(2.5)

π̂k(ΩX)
α //

S1∧− ''OOOOOOOOOOO
π̂1+kX π̂kX

S1∧− //

π̂kη &&MMMMMMMMMMM π̂1+k(S1 ∧X)

π̂1+k(S1 ∧ ΩX)

π̂1+kε

77ppppppppppp
π̂k(Ω(S1 ∧X))

α

66mmmmmmmmmmmm

commute.

Proposition 2.6. For every sequential spectrum X and integer k the loop and suspension homomorphisms

(2.7) α : π̂k(ΩX) −→ π̂1+kX and S1 ∧ − : π̂kX −→ π̂1+k(S1 ∧X)

are isomorphisms of naive homotopy groups. Moreover, the unit η : X −→ Ω(S1 ∧ X) and counit ε :
S1 ∧ ΩX −→ X of the adjunction (2.2) are π̂∗-isomorphisms.

For every sequential spectrum X the Σn-action on the sphere coordinates of the spectrum Sn∧X induces
the sign action on naive homotopy groups.

Proof. We already argued that the loop homomorphism α on naive homotopy groups is bijective
since it is the colimit of compatible bijections. The case of the suspension homomorphism S1 ∧ − is
slightly more involved. We show injectivity first. Let f : Sk+n −→ Xn represent an element in the
kernel of the suspension homomorphism. By stabilizing, if necessecary, we can assume that the suspension
S1∧f : S1+k+n −→ S1∧Xn is nullhomotopic. Then σnτ(S1∧f) : S1+k+n −→ Xn+1 is also nullhomotopic,
where τ : S1 ∧ X ∼= X ∧ S1 is the twist homeomorphism. The maps σnτ(S1 ∧ f) and σn(f ∧ S1), the
stabilization of f , only differ by a coordinate permutation of the source sphere, hence the stabilization of f is
nullhomotopic. So f represents the trivial element in π̂kX, which shows that the suspension homomorphism
is injective.

It remains to show that the suspension homomorphism is surjective. Let g : S1+k+n −→ S1 ∧Xn be a
map which represents a class in π̂1+k(S1 ∧X). We consider the map f = σnτg : S1+k+n −→ Xn+1 where τ
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is again the twist homeomorphism. We claim that (−1)k+n(S1 ∧ f) : S1+1+k+n −→ S1 ∧Xn+1 represents
the same class as g in π̂1+k(S1 ∧X). To see this, we contemplate the diagram

S1+k+n+1
g∧S1

//

S1∧χk+n,1

��

S1 ∧Xn ∧ S1

S1∧σn
��

S1+1+k+n
S1∧g //

S1∧f

44S1 ∧ S1 ∧Xn
S1∧τ // S1 ∧Xn ∧ S1

S1∧σn // S1 ∧Xn+1

The composite through the upper right corner is the stabilization of g and the composite through the lower
left corner represents (−1)k+n(S1∧f). However, this diagram does not commute! The two composites from
S1+k+n+1 to S1 ∧Xn ∧ S1 differ by the automorphisms of S1+k+n+1 and S1 ∧Xn ∧ S1 which interchanges
the outer two sphere coordinates in each case. This coordinate change in the source induces multiplication
by −1; the coordinate change in the target is a map of degree −1, so after a single suspension it also induces
multiplication by −1 on homotopy groups (see Lemma 1.10). Altogether this shows that the diagram above
commutes up to homotopy after one suspension, and so the suspension map on naive homotopy groups is
also surjective.

Since loops and suspension homomorphism are bijective and the triangles (2.5) commute, the unit and
counit of the adjunction are π̂∗-isomorphisms.

For the last claim we note that the iterated suspension isomorphism

Sm ∧ − : π̂kX −→ π̂m+k(Sm ∧X)

can be made Σm-equivariant as follows. We let Σm act trivially on the source; we let Σm act by conjugation
on the target, i.e., by permuting the first m coordinates in the source sphere and the coordinates of Sm in
the target of

πm+k+n(Sm ∧Xn) = [Sm+k+n, Sm ∧X] ,

and then pass to the colimit. Permuting source coordinates acts by sign on unstable homotopy groups,
hence also on π̂m+k(Sm ∧X). To compensate this effect, the action on Sm in the colimit must also be by
sign. �

2.2. Mapping cone and homotopy fiber. Now we review the mapping cone and the homotopy fiber
of a map of based spaces in some detail, along with their relationships to one another and to suspension
and loop space. The (reduced) mapping cone C(f) of a morphism of based spaces f : A −→ B is defined by

(2.8) C(f) = ([0, 1] ∧A) ∪f B .

Here the unit interval [0, 1] is pointed by 0 ∈ [0, 1], so that [0, 1]∧A is the reduced cone of A. The mapping
cone comes with an inclusion i : B −→ C(f) and a projection p : C(f) −→ S1 ∧A; the projection sends B
to the basepoint and is given on [0, 1] ∧A by p(x ∧ a) = t(x) ∧ a where

t : [0, 1] −→ S1 is defined as t(x) =
2x− 1

x(1− x)
.

What is relevant about the map t is not the precise formula, but that it passes to a homeomorphism between
the quotient space [0, 1]/{0, 1} and the circle S1, and that it satisfies t(1− x) = −t(x).

We observe that an iteration of the mapping cone construction yields the suspension of A, up to
homotopy.

Lemma 2.9. Let f : A −→ B be any continuous based map.

(i) The collapse map

∗ ∪ p : C(i) = ([0, 1] ∧B) ∪i C(f) −→ S1 ∧A
is a based homotopy equivalence.
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(ii) The square

C(i)

∗∪p
��

p∪∗ // S1 ∧B

τ∧B
��

S1 ∧A
S1∧f

// S1 ∧B

commutes up to natural, based homotopy, where τ is the involution of S1 given by τ(x) = −x.
(iii) Let β : Z −→ B be a continuous based map such that the composite iβ : Z −→ C(f) is null-homotopic.

Then there exists a based map h : S1 ∧ Z −→ S1 ∧ A such that (S1 ∧ f) ◦ h : S1 ∧ Z −→ S1 ∧ B is
homotopic to S1 ∧ β.

Proof. (i) A homotopy inverse r : S1 ∧A −→ ([0, 1] ∧B) ∪i C(f) of ∗ ∪ p is defined by the formula

r(x ∧ a) =

{
2x ∧ a in C(f) for 0 ≤ x ≤ 1/2, and

(2− 2x) ∧ f(a) in [0, 1] ∧B for 1/2 ≤ x ≤ 1.

We give explicit based homotopies between the two composites r and ∗∪p and the respective identitiy maps.
The space C(i) = ([0, 1]∧B)∪iC(f) is homeomorphic to the quotient of the disjoint union of [0, 1]∧B and
[0, 1]∧A by the equivalence relation that identifies 1∧ f(a) in [0, 1]∧B with 1∧a in [0, 1]∧A for all a ∈ A.
So we can define a homotopy on the space C(i) by gluing two compatible homotopies. The homotopy

[0, 1]× ([0, 1] ∧B) −→ C(i) , (t, x ∧ b) 7−→ (1− t)x ∧ b in [0, 1] ∧B .

and the homotopy

[0, 1]× ([0, 1] ∧A) −→ C(i) , (t, x ∧ a) 7→

{
(1 + t)x ∧ a in C(f) for 0 ≤ x ≤ 1/(1 + t), and

(2− x(1 + t)) ∧ f(a) in [0, 1] ∧B for 1/(1 + t) ≤ x ≤ 1,

are compatible, and the combined homotopy starts at t = 0 with the identity and ends at t = 1 with the
map r ◦ (∗ ∪ p).

A homotopy from the identity of S1 ∧A to (∗ ∪ p) ◦ r is given by

[0, 1]× (S1 ∧A) −→ S1 ∧A , (t, x ∧ a) 7−→ (1 + t)x ∧ a
which is to be interpreted as the basepoint if (1 + t)x ≥ 1.

(ii) Again we glue the desired homotopy from two pieces, namely

[0, 1]× ([0, 1] ∧B) −→ S1 ∧B , (t, x ∧ b) 7−→ (1 + t− x) ∧ b ,
which has to be interpreted as the basepoint if x ≤ t and

[0, 1]× ([0, 1] ∧A) −→ S1 ∧B , (t, x ∧ a) 7−→ (t+ x− 1) ∧ f(a)

which has to be interpreted as the basepoint if t + x ≤ 1. The two homotopies are compatible and the
combined homotopy starts with the map (τ ∧B)◦ (p∪∗) for t = 0 and it ends with the map (S1∧f)◦ (∗∪p)
for t = 1.

(iii) Let H : [0, 1] ∧ Z −→ C(f) be a based null-homotopy of the composite iβ : Z −→ C(f), i.e.,
H(1 ∧ x) = i(β(x)) for all x ∈ Z. The composite pAH : [0, 1] ∧ Z −→ S1 ∧ A then factors as pAH = hpZ
for a unique map h : S1 ∧ Z −→ S1 ∧A.

To analyze (S1∧f)◦h we compose it with the map ∗∪pZ : ([0, 1]∧Z)∪1×Z ([0, 1]∧Z) −→ S1∧Z which
collapses the second cone and which is a homotopy equivalence by (i). We obtain a sequence of equalities
and homotopies

(S1 ∧ f) ◦ h ◦ (∗ ∪ pZ) = (S1 ∧ f) ◦ (∗ ∪ pA) ◦ (([0, 1] ∧ β) ∪H)

' (τ ∧B) ◦ (pB ∪ ∗) ◦ (([0, 1] ∧ β) ∪H)

= (τ ∧B) ◦ (S1 ∧ β) ◦ (pZ ∪ ∗)
= (S1 ∧ β) ◦ (τ ∧ Z) ◦ (pZ ∪ ∗) ' (S1 ∧ β) ◦ (∗ ∪ pZ)
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Here ([0, 1] ∧ β) ∪ H : CZ ∪1×Z CZ −→ CB ∪i C(f) = C(i). The two homotopies result from part (ii)
applied to f respectively the identity of Z. Since the map ∗ ∪ pZ is a homotopy equivalence, this proves
that (S1 ∧ f) ◦ h is homotopic to S1 ∧ β. �

Now we can introduce mapping cones for (symmetric and sequential) spectra. The mapping cone C(f)
of a morphism of symmetric or sequential spectra f : X −→ Y is defined by

(2.10) C(f)n = C(fn) = ([0, 1] ∧Xn) ∪f Yn ,
the reduced mapping cone of fn : Xn −→ Yn. In the symmetric (as opposed to ‘sequential’) case, the
symmetric group Σn acts on C(f)n through the given action on Xn and Yn and trivially on the interval.
The inclusions in : Yn −→ C(f)n and projections pn : C(f)n −→ S1 ∧ Xn assemble into morphisms of
symmetric (respectively sequential) spectra i : Y −→ C(f) and p : C(f) −→ S1 ∧X.

We define a connecting homomorphism δ : π̂1+kC(f) −→ π̂kX as the composite

(2.11) π̂1+kC(f)
p∗−−−→ π̂1+k(S1 ∧X)

S−1∧−−−−−−−→ π̂kX ,

where the second map is the inverse of the suspension isomorphism S1 ∧− : π̂kX −→ π̂1+k(S1 ∧X). If we
unravel all the definition, we see that δ sends the class represented by a based map ϕ : S1+k+n −→ C(f)n
to (−1)k+n times the class of the composite

S1+k+n ϕ−−→ C(f)n
pn−−−→ S1 ∧Xn

twist−−−→ Xn ∧ S1 σn−−−→ Xn+1 .

Proposition 2.12. For every morphism f : X −→ Y of sequential spectra the long sequence of abelian
groups

· · · −→ π̂kX
f∗−−−→ π̂kY

i∗−−→ π̂kC(f)
δ−−→ π̂k−1X −→ · · ·

is exact.

Proof. We start with exactness at π̂kY . The composite of f : X −→ Y and the inclusion Y −→ C(f)
is null-homotopic, so it induces the trivial map on π̂k. It remains to show that every element in the kernel
of i∗ is in the image of f∗. Let β : Sk+n −→ Yn represent an element in the kernel. By increasing n, if
necessary, we can assume that iβ : Sk+n −→ C(fn) is null-homotopic. By Lemma 2.9 (iii) there is a based
map h : S1+k+n −→ S1 ∧Xn such that (S1 ∧ fn) ◦ h is homotopic to S1 ∧ β. The composite

h̃ : Sk+n+1 χk+n,1−−−−−→ S1+k+n h−−−−→ S1 ∧Xn

τS1,Xn−−−−→ Xn ∧ S1

then has the property that (fn ∧ S1) ◦ h̃ is homotopic to β ∧ S1. The map σn ◦ h̃ : Sk+n+1 −→ Xn+1

represents a homotopy class in π̂kX and we have

f∗[σn ◦ h̃] = [fn+1 ◦ σn ◦ h̃] = [σn ◦ (fn ∧ S1) ◦ h̃] = [σn ◦ (β ∧ S1)] = [β] .

So the class represented by β is in the image of f∗ : π̂kX −→ π̂kY .
We now deduce the exactness at π̂kC(f) and π̂k−1X by comparing the mapping cone sequence for

f : X −→ Y to the mapping cone sequence for the morphism i : Y −→ C(f) (shifted to the left). The
collapse map

∗ ∪ p : C(i) = CY ∪i C(f) −→ S1 ∧X
is levelwise a homotopy equivalence by Lemma 2.9 (i), and thus induces an isomorphism of naive homotopy
groups. Now we consider the diagram

C(f)
ii //

p
''NNNNNNNNNNN C(i)

p∪∗ //

∗∪p
��

S1 ∧ Y

τ∧Y
��

S1 ∧X
S1∧f

// S1 ∧ Y

whose upper row is part of the mapping cone sequence for the morphism i : Y −→ C(f). The left triangle
commutes on the nose and the right triangle commutes up to based homotopy by Lemma 2.9 (ii). The
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involution τ : S1 −→ S1 has degree −1, so the automorphism τ ∧Y of S1 ∧Y induces multiplication by −1
on naive homotopy groups. We get a commutative diagram

π̂kY
i∗ // π̂kC(f)

(ii)∗ // π̂kC(i)
δ //

(S−1∧−)◦(∗∪p)∗ ∼=
��

π̂k−1Y

(−1)·
��

π̂kY i∗
// π̂kC(f)

δ
// π̂k−1X

f∗

// π̂k−1Y

(using for the right square the naturality of the suspension isomorphism). By the previous paragraph,
applied to i : Y −→ C(f) instead of f , the upper row is exact at π̂kC(f). Since all vertical maps are
isomorphisms, the original lower row is exact at π̂kC(f). But the morphism f was arbitrary, so when
applied to i : Y −→ C(f) instead of f , we obtain that the upper row is exact at π̂kC(i). Since all vertical
maps are isomorphisms, the original lower row is exact at π̂k−1X. This finishes the proof. �

A continuous map f : A −→ B of spaces is an h-cofibration if it has the homotopy extension property,
i.e., given a continuous map ϕ : B −→ X and a homotopy H : [0, 1] × A −→ X such that H(0,−) = ϕf ,
there is a homotopy H̄ : [0, 1] × B −→ X such that H̄ ◦ ([0, 1] × f) = H and H̄(0,−) = ϕ. An equivalent
condition is that the map [0, 1]×A∪0×f B −→ [0, 1]×B has a retraction. For every h-cofibration the map
C(f) −→ B/A which collapses the cone of A to a point is a based homotopy equivalence (see Corollary 2.2
of Appendix A).

Let f : X −→ Y be a morphism of sequential spectra that is levelwise an h-cofibration. Then by the
above, the morphism c : C(f) −→ Y/X that collapses the cone of X is a level equivalence, and so it induces
an isomorphism of homotopy groups. We can thus define another connecting map

δ : π̂k(Y/X) −→ π̂k−1X

as the composite of the inverse of the isomorphism c∗ : π̂kC(f) −→ π̂k(Y/X) and the connecting homomor-
phism π̂kC(f) −→ π̂k−1X defined in (2.11).

Corollary 2.13. Let f : X −→ Y be a morphism of sequential spectra that is levelwise an h-cofibration
and denote by q : Y −→ Y/X the quotient map. Then the long sequence of naive homotopy groups

· · · −→ π̂kX
f∗−−−→ π̂kY

q∗−−−→ π̂k(Y/X)
δ−−→ π̂k−1X −→ · · ·

is exact.

Now we discuss the homotopy fiber, a construction ‘dual’ to the mapping cone. The homotopy fibre of
a morphism f : A −→ B of based spaces is the fiber product

F (f) = ∗ ×B B[0,1] ×B A = {(λ, a) ∈ B[0,1] ×A | λ(0) = ∗, λ(1) = f(a)} ,

i.e., the space of paths in B starting at the basepoint and equipped with a lift of the endpoint to A. As
basepoint of the homotopy fiber we take the pair consisting of the constant path at the basepoint of B and
the basepoint of A. The homotopy fiber comes with maps

ΩB
i−−→ F (f)

p−−→ A ;

the map p is the projection to the second factor and the value of the map i on a based loop ω : S1 −→ B
is i(ω) = (ω ◦ t, ∗).

We can apply the homotopy fiber levelwise to a morphism of spectra. Let f : X −→ Y be a morphism
between sequential or symmetric spectra. The homotopy fiber F (f) is the spectrum defined by

F (f)n = F (fn) ,

the homotopy fiber of fn : Xn −→ Yn. In the symmetric (as opposed to ‘sequential’) case, the symmetric
group Σn acts on F (f)n through the given action on Xn and Yn and trivially on the interval. The inclusions
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in : Ω(Yn) −→ F (f)n and projections pn : F (f)n −→ Xn assemble into morphisms of symmetric (respec-
tively sequential) spectra i : ΩY −→ F (f) and p : F (f) −→ X. Put another way, the homotopy fiber is the
fibre product

F (f) = ∗ ×Y Y [0,1] ×Y X
i.e., the pullback in the cartesian square of spectra:

(2.14)

F (f)

��

p // X

(∗,f)

��
Y [0,1]

(ev0,ev1)
// Y × Y

Here evi : Y [0,1] −→ Y for i = 0, 1 is the ith evaluation map which takes a path ω ∈ Y [0,1] to ω(i), i.e., the
start or endpoint.

We define a connecting homomorphism δ : π̂1+kY −→ π̂kF (f) as the composite

(2.15) π̂1+kY
α−1

−−→ π̂k(ΩY )
i∗−−→ π̂kF (f) ,

where α : π̂k(ΩY ) −→ π̂1+kY is the loop isomorphism.
We can compare the mapping cone and homotopy fibre as follows. For a map f : A −→ B of based

spaces we define a map h̄ : [0, 1]× F (f) −→ ([0, 1] ∧A) ∪f B = C(f) by

(t, λ, a) 7−→

{
2t ∧ a for 0 ≤ t ≤ 1/2, and

λ(2− 2t) for 1/2 ≤ t ≤ 1.

We note that the two formulas match at t = 1/2 because λ(1) = f(a) = 1 ∧ a in C(f). Since h̄(0, λ, a) and
h̄(1, λ, a) are the basepoint of the mapping cone for all (λ, a) in F (f), the map h̄ factors over a based map

h : S1 ∧ F (f) −→ C(f) ,

which satisfies h ◦ p = h̄ and is natural in f . So for a morphism f : X −→ Y of spectra, sequential or
symmetric, the maps h for the various levels together form a natural morphism of (sequential respectively
symmetric) spectra

(2.16) h : S1 ∧ F (f) −→ C(f) .

Proposition 2.17. For every morphism f : X −→ Y of sequential spectra the long sequence of abelian
groups

· · · −→ π̂kF (f)
p∗−−−→ π̂kX

f∗−−−→ π̂kY
δ−−→ π̂k−1F (f)

p∗−−−→ π̂k−1X −→ · · ·
is exact and the morphism h : S1 ∧ F (f) −→ C(f) is a π̂∗-isomorphism.

Proof. The long sequence is exact because it is obtained from the unstable long exact sequences for
the homotopy fiber sequences F (fn) −→ Xn −→ Yn by passage to the colimit (which is exact).

For showing that h is a π̂∗-isomorphism it suffices to show that the composite h∗◦(S1∧−) : π̂kF (f) −→
π̂1+kC(f) is an isomorphism. We claim that the diagram

π̂1+kY

(−1)·

��

δ // π̂kF (f)

h∗◦(S1∧−)

��

p∗ // π̂kX

π̂1+kY
i∗

// π̂1+kC(f)
δ

// π̂kX

commutes. The morphism h∗◦(S1∧−) : π̂kF (f) −→ π̂1+kC(f) and the identity maps of the naive homotopy
groups of X and Y thus give a natural map from the long exact sequence of the homotopy fiber to the long
exact sequence of the mapping cone, with an extra sign. A sign does not affect exactness of a sequence,
and so the five lemma shows that h∗ ◦ (S1 ∧ −) is an isomorphism. Hence h is a π̂∗-isomorphism.
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We still have to justify the commutativity of the previous diagram. For the right square this is the
definition of the connecting homomorphism, naturality of the suspension isomorphism and the fact that the
composite

S1 ∧ F (f)
h−−→ C(f)

p−−→ S1 ∧X
is homotopic to S1 ∧ p via the homotopy

[0, 1]× (S1 ∧ F (f)) −→ S1 ∧X , (t, x ∧ (λ, a)) 7−→

{
2x/(2− t) ∧ a for 0 ≤ x ≤ 1− t/2, and

∗ for 1− t/2 ≤ x ≤ 1.

(to be interpreted levelwise). For the left square we need that the diagram

S1 ∧ ΩY
τ∧i //

ε

��

S1 ∧ F (f)

h

��
Y

i
// C(f)

commutes up to based homotopy, where ε is the adjunction counit. One possible such homotopy is

[0, 1]× (S1 ∧ ΩY ) −→ C(f)

(t, x ∧ ω) 7−→

{
∗ for 0 ≤ x ≤ t/2, and

ω(2(1− t)/(2− s)) for t/2 ≤ x ≤ 1.

Given this, we have

h∗(S
1 ∧ δ(y)) = h∗(S

1 ∧ i∗(α−1(y))) = (h ◦ (S1 ∧ i))∗(S1 ∧ α−1(y))

= −(i ◦ ε)∗(S1 ∧ α−1(y)) =(2.5) −i∗(y)

and this finishes the proof. �

For every Serre fibration ϕ : E −→ B of topological spaces the map c : F −→ F (ϕ) from the strict
fiber to the homotopy fiber that sends e ∈ F to (const∗, e). is a weak equivalence. We let f : X −→ Y
be a morphism of sequential spectra that is levelwise a Serre fibration; then by the above the morphism
c : F −→ F (f) from the strict fibre to the homotopy fiber of f is a level equivalence. So we can define
another connecting morphism

δ : πkY −→ π̂k−1F

as the composite of the connecting homomorphism π̂kY −→ π̂k−1F (f) defined in (2.15) and the inverse of
the isomorphism c∗ : π̂k−1F (f) −→ π̂k−1F .

Corollary 2.18. Let f : X −→ Y be a morphism of sequential spectra that is levelwise a Serre fibration
and denote by i : F −→ X the inclusion of the fiber over the basepoint. Then the long sequence of naive
homotopy groups

· · · −→ π̂kF
i∗−−→ π̂kX

f∗−−−→ π̂kY
δ−−→ π̂k−1F −→ · · ·

is exact.

We draw some consequences of previous propositions.

Proposition 2.19. (i) For every family of sequential spectra {Xi}i∈I and every integer k the canonical
map ⊕

i∈I
π̂kX

i −→ π̂k

(∨
i∈I

Xi

)
is an isomorphism of abelian groups.
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(ii) For every finite indexing set I, every family {Xi}i∈I of sequential spectra and every integer k the
canonical map

π̂k

(∏
i∈I

Xi

)
−→

∏
i∈I

π̂kX
i

is an isomorphism of abelian groups.
(iii) For every family of sequential spectra the canonical morphism from the wedge to the weak product is

a π̂∗-isomorphism. In particular, for every finite family of symmetric spectra the canonical morphism
from the wedge to the product is a π̂∗-isomorphism.

(iv) For every based CW-complex K the functor K ∧ − preserves π̂∗-isomorphisms of sequential spectra.
(v) For every finite based CW-complex K the functor map(K,−) preserves π̂∗-isomorphisms of sequential

spectra.

Proof. (i) We first show the special case of two summands. If A and B are two symmetric spectra,
then the wedge inclusion iA : A −→ A ∨B has a retraction. So the associated long exact homotopy group
sequence of Proposition 2.12 splits into short exact sequences

0 −→ π̂kA
(iA)∗−−−−→ π̂k(A ∨B)

i∗−−→ π̂k(C(iA)) −→ 0 .

The mapping cone C(iA) is isomorphic to (CA)∨B and thus homotopy equivalent to B. So we can replace
π̂k(C(iA)) by π̂kB and conclude that π̂k(A ∨B) splits as the sum of π̂kA and π̂kB, via the canonical map.
The case of a finite indexing set I now follows by induction, and the general case follows since homotopy
groups of symmetric spectra commute with filtered colimits [more precisely, the image of every compact
space in an infinite wedge lands in a finite wedge].

(ii) Unstable homotopy groups commute with products, which for finite indexing sets are also sums,
which commute with filtered colimits.

(iii) This is a direct consequence of (i) and (ii). More precisely, for finite indexing set I and every
integer k the composite map⊕

i∈I
π̂kX

i −→ π̂k(
∨
i∈I

Xi) −→ π̂k(
∏
i∈I

Xi) −→
∏
i∈I

π̂kX
i

is an isomorphism, where the first and last maps are the canonical ones. These canonical maps are isomor-
phisms by parts (i) respectively (ii), hence so is the middle map.

For a finite CW-complex K we prove parts (iv) and (v) simultaneously by induction on the number of
cells. If K consists only of the basepoint, then K ∧X and map(K,X) are trivial and the claim is trivially
true. Now suppose we have shown the claim for K and K ′ is obtained from K by attaching an n-cell.
Then the mapping cone C(i) of the inclusion i : K −→ K ′ is based homotopy equivalent to an n-sphere.
Hence smashing with C(i) shifts the naive homotopy groups by Proposition 2.6, and thus preserves π̂∗-
isomophisms. The mapping cone of the morphism i ∧ X : K ∧ X −→ K ′ ∧ X is naturally isomorphic to
C(i)∧X; since K ∧− and C(i)∧− preserve π̂∗-isomorphisms, the long exact sequence of Proposition 2.12
and the five lemma show that K ′ ∧X preserves π̂∗-isomorphisms.

The induction step for map(K,X) is exactly dual. Since C(i) is homotopy equivalent to Sn, the
spectrum map(C(i), X) is homotopy equivalent to ΩnX, and hence the functor map(C(i),−) preserves
π̂∗-isomophisms by Proposition 2.6. The homotopy fiber of the morphism map(i,X) : map(K ′, X) −→
map(K,X) is naturally isomorphic to map(C(i), X); since map(K,−) and map(C(i),−) preserve π̂∗-
isomorphisms, the long exact sequence of Proposition 2.17 and the five lemma show that map(K ′,−)
preserves π̂∗-isomorphisms. This finishes the proof of claims (iv) and (v) for finite CW-complexes.

An infinite CW-complex is the filtered colimit, along h-cofibrations, of its finite subcomplexes. Since
homotopy groups commute with such filtered colimits, the general case of part (iv) follows from the special
case above. �

The previous Proposition is stated for sequential spectra. However, the forgetful functor from symmetric
to sequential spectra preserves limits, colimits and smash products with and maps from a based spaces. So
all the conclusion of the corollary also hold for symmetric spectra.
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Remark 2.20. The restriction to finite indexing sets in parts (ii) of the previous corollary is essential,
and it ultimately comes from the fact that infinite products do not in general commute with sequential
colimits. Here is an explicit example: we consider the symmetric spectra S≤i obtained by truncating the
sphere spectrum above level i, i.e.,

(S≤i)n =

{
Sn for n ≤ i,
∗ for n ≥ i+ 1

with structure maps as a quotient spectrum of S. Then S≤i has trivial homotopy groups for all i. The 0th
naive homotopy group of the product

∏
i≥1 S≤i is the colimit of the sequence of maps∏

i≥n

πnS
n −→

∏
i≥n+1

πn+1S
n+1

which first projects away from the factor indexed by i = n and then takes a product of the suspensions
homomorphisms −∧S1 : πnS

n −→ πn+1S
n+1. The colimit is thus isomorphic to the quotient of an infinite

product of copies of the group Z by the direct sum of the same number of copies of Z. Hence the right
hand side of the canonical map

π̂0

∏
i≥1

S≤i
 −→

∏
i≥1

π̂0(S≤i)

is trivial, while the left hand side is not.

In Example 4.33 below we give a different example for the fact that a product of π̂∗-isomorphisms
need not be a π̂∗-isomorphism, namely a spectrum X all of whose naive homotopy groups are trivial,
but such that π̂0(XN) is non-zero. That example shows in particular that the restriction to finite K in
Proposition 2.19 (v) is essential.

Example 2.21 (Telescope and diagonal of a sequence). We will sometimes be confronted with a sequence
of morphisms of sequential or symmetric spectra

(2.22) X0 f0

−−→ X1 f1

−−→ X2 f2

−−→ · · ·

of which we want to take a kind of colimit in a homotopy invariant way, and such that the homotopy groups
of the ‘colimit’ are the colimits of the homotopy groups. We describe two constructions which do this job,
the mapping telescope and the diagonal.

The mapping telescope teliX
i of the sequence (2.22) is a classical construction for spaces which we apply

levelwise to symmetric spectra. It is defined as the coequalizer of two maps of (sequential or symmetric)
spectra ∨

i≥0X
i // //

∨
i≥0 [i, i+ 1]+ ∧Xi

Here [i, i+ 1] denotes a copy of the unit interval (when in the context of spaces) respectively the 1-simplex
∆[1] (when in the context of simplicial sets). One of the morphisms takes Xi to {i + 1}+ ∧ Xi by the
identity, the other one takes Xi to {i+ 1}+ ∧Xi+1 by the morphism f i. [sequential vs symmetric]

The diagonal diagiX
i of the sequence (2.22) is the spectrum given by

(diagiX
i)n = Xn

n ,

i.e., we take the n-th level of the n-th (sequential or symmetric) spectrum. In the symmetric case, we use
given Σn-action on this space as part of the symmetric spectrumXn. The structure map (diagiX

i)n∧S1 −→
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(diagiX
i)n+1 is the composite around either way in the commutative square:

Xn
n ∧ S1

σnn //

fnn∧Id

��

Xn
n+1

fnn+1

��
Xn+1
n ∧ S1

σn+1
n

// Xn+1
n+1

Lemma 2.23. For every sequence of sequential spectra (2.22), there is a chain of two natural π̂∗-
isomorphisms between the diagonal diagiX

i and the mapping telescope teliX
i of the sequence. In particular

this gives natural isomorphisms of naive homotopy groups

π̂k(diagiX
i) ∼= colimi π̂k(Xi) .

If the sequence consists of morphisms of symmetric spectra, then the chain is through morphisms of sym-
metric spectra as well.

Proof. We use the ‘partial telescopes’ tel[0,n]X
i, the coequalizer of two maps of (symmetric or se-

quential) spectra ∨n−1
i=0 X

i // //
∨n
i=0 [i, i+ 1]+ ∧Xi

defined as before. The spectrum tel[0,n]X
i includes into the next spectrum tel[0,n+1]X

i with (categorical)

colimit the mapping telescope. The morphism cn : tel[0,n]X
i −→ Xn which projects each wedge summand

[i, i+ 1]+ ∧Xi onto Xi and then applies the morphism fn−1 · · · f i : Xi −→ Xn is a homotopy equivalence.
The commutative diagram of spectra

tel[0,0]X
i //

c0

��

tel[0,1]X
i //

c1

��

tel[0,2]X
i //

c2

��

· · ·

X0

f0
// X1

f1
// X2

f2
// · · ·

induces a morphism

diagn(tel[0,n]X
i) −→ diagnX

n

on diagonals which is thus levelwise a homotopy equivalence, hence a π̂∗-isomorphism. On the other hand
we have a morphism of symmetric spectra

(2.24) diagn(tel[0,n]X
i) −→ teliX

i

which is levelwise given by the inclusion of a partial telescope in the full mapping telescope. This morphism
is a π̂∗-isomorphism by ‘cofinality‘: indeed, any basepoint in a compactly generated weak Hausdorff space
is closed and the telescope has the weak topology with the respect to the filtration by the closed subspaces
tel[0,n]X

i. So every continous map from a compact space to the reduced mapping telescope of a sequence of
based compactly generated weak Hausdorff spaces has its image in one of the final stages. In particular, the
unstable homotopy group of the mapping telescope is the colimit of the sequence of homotopy groups A.2.8.
So the right hand side of (2.24) is a sequential colimit of groups which are themselves sequential colimits,
and it is thus the colimit over the partially ordered set N×N of the functor (n, i) 7→ πk+n(Xi

n). The group
π̂k(diagi tel[0,n]X

i) is isomorphic to the colimit over the diagonal terms in this system. Since the diagonal
embedding N −→ N × N is cofinal, the colimit over the diagonal terms is isomorphic to the colimit over
N× N, which proves the isomorphism (2.24). �

Let me point out an advantage of the diagonal construction over the mapping telescope of a sequence of
spectra: the diagonal construction has nicer formal and in particular multiplicative properties, as we shall
see, for example, in Examples 6.53 and 3.54.
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3. Basic constructions

In this section we discuss various constructions involving symmetric spectra and symmetric ring spectra.
We start by introducing symmetric spectra of simplicial sets, a close relative of the category of symmetric
spectra of spaces. In Section 3.2 we discuss constructions which produce new symmetric spectra from old
ones. We define limits and colimits (3.5), smash product with and functions from a space (3.6), shifts (3.9),
induction (3.17), free (3.20) and semifree symmetric spectra (3.23), twisted smash product with a Σm-
space (3.27), mapping spaces (3.36) and internal Hom spectra (3.38).

In Section 3.3 we explain some elementary constructions involving ring spectra: endomorphism ring
spectra (3.41), monoid ring spectra (3.42), matrix ring spectra (3.44), inverting an integer (3.47) or an
element in π0 of a symmetric ring spectrum (3.48) and adjoining roots of unity to a symmetric ring spec-
trum (3.49) and algebraic K-theory spectra (3.50).

3.1. Symmetric spectra of simplicial sets. After the interlude about naive homotopy groups of
sequential spectra we return to symmetric spectra. We will often use a variation on the notions of symmetric
spectrum and symmetric ring spectrum where topological spaces are replaced by simplicial sets. We can go
back and forth between the two concepts using the adjoint functors of geometric realization and singular
complex, as we explain below.

Definition 3.1. A symmetric spectrum of simplicial sets consists of the following data:

• a sequence of pointed simplicial sets Xn for n ≥ 0
• a basepoint preserving simplicial left action of the symmetric group Σn on Xn for each n ≥ 0
• pointed morphisms σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0,

such that for all n,m ≥ 0, the composite

Xn ∧ Sm
σn ∧ Id // Xn+1 ∧ Sm−1

σn+1∧Id // · · ·
σn+m−2∧Id // Xn+m−1 ∧ S1

σn+m−1 // Xn+m

is Σn×Σm-equivariant. Here S1 denotes the ‘small simplicial circle’ S1 = ∆[1]/∂∆[1] and Sm = S1∧. . .∧S1

is the m-th smash power, with Σm permuting the factors.

Morphisms of symmetric spectra of simplicial sets are defined just as for symmetric spectra of spaces.
We denote the category of symmetric spectra of simplicial sets by SpsS. There are many situations in which
symmetric spectra of spaces and simplicial sets can be used interchangeably. We then often use the term
‘symmetric spectrum’ and the notation Sp without an index T or sS as a generic term/symbol for either
the category of symmetric spectra of spaces or simplicial sets.

We similarly define a symmetric ring spectrum of simplicial sets by replacing ‘space’ by ‘simplicial set’
in Definition 1.3, while also replacing the topological circle S1 by the simplicial circle S1 = ∆[1]/∂∆[1] and
replacing Sm by the m-fold smash power Sm = S1 ∧ . . . ∧ S1.

As we already mentioned we can apply the adjoint functors ‘geometric realization’, denoted | − |, and
‘singular complex’, denoted S, levelwise to go back and forth between topological and simplicial symmetric
spectra. We recall the definitions and main properties of these functors in Appendix A.3. We use that
geometric realization is a ‘strong symmetric monoidal’ functor, i.e., there is natural, unital, associative and
commutative homeomorphism

(3.2) rA,B : |A| ∧ |B| ∼= |A ∧B|

for pointed simplicial sets A and B. Indeed, the canonical continuous map |A × B| −→ |A| × |B| is
a homeomorphism (since we work in the category of compactly generated topological spaces) and the
homeomorphism rA,B is obtained from there by passing to quotients.

We already allowed ourselves the freedom to use the same symbols for the topological and simplicial
spheres. The justification is that the geometric realization of the simplicial Sm is homeomorphic to the
topological Sm. Let us be completely explicit about how we identify these two spaces. Since the simplicial
set S1 = ∆[1]/∂∆[1] is generated by its non-degenerate 1-simplex, its realization |S1| is a quotient space of
the topological 1-simplex ∆[1] = {(x, y) ∈ R2 |x, y ≥ 0, x + y = 1}. We agree to use the homeomorphism
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h : |S1| −→ S1 which sends the open simplex inside |S1| to R by (x, y) 7→ x/y − y/x. Then we obtain a
Σm-equivariant homeomorphism as the composite

(3.3) |Sm| = |S1 ∧ · · · ∧ S1|
r−1

S1,...,S1

−−−−−−→ |S1| ∧ · · · ∧ |S1| h
(m)

−−−→ S1 ∧ · · · ∧ S1 ∼= Sm .

Now we can define the adjoint functors ‘geometric realization’ and ‘singular complex’ for symmetric spectra.
If Y is a symmetric spectrum of simplicial sets we define a symmetric spectrum |Y | of topological spaces
by |Y |n = |Yn| with structure maps

|Yn| ∧ S1 Id∧h−1

−−−−−→ |Yn| ∧ |S1|
rYn,S1

−−−−→ |Yn ∧ S1| |σn|−−→ |Yn+1| .

Commutativity of the isomorphism (3.2) guarantees that the equivariance condition for the iterated struc-
ture map σm is inherited by the realization |Y |.

Adjoint to the homeomorphism (3.2) is a ‘lax symmetric monoidal’ transformation of pointed simplicial
sets, i.e., a natural, unital, associative and commutative morphism r̂X,Y : S(X) ∧ S(Y ) −→ S(X ∧ Y ) for
pointed spaces X and Y . So if X is a symmetric spectrum of topological spaces, then we get a symmetric
spectrum S(X) of simplicial sets by S(X)n = S(Xn) with structure map

S(Xn) ∧ S1 Id∧ĥ−−−→ S(Xn) ∧ S(S1)
r̂Xn,S1

−−−−→ S(Xn ∧ S1)
S(σn)−−−−→ S(Xn+1) .

Here ĥ : S1 −→ S(S1) is the morphism of pointed simplicial sets which is adjoint to the h : |S1| −→ S1. We
use the adjunction unit and counit between |− | and S levelwise to make geometric realization and singular
complex into adjoint functors between topological and simplicial symmetric spectra.

Geometric realization and singular complex are lax symmetric monoidal functors with respect to the
smash products of pointed spaces and pointed simplicial sets (geometric realization is even strong symmetric
monoidal, i.e., commutes with the smash product up to homeomorphism). So both constructions preserve
multiplications, so they take ring spectra to ring spectra and preserve commutativity.

The homotopy groups of a symmetric spectrum based on simplicial sets Y are defined as the homotopy
groups of the geometric realization |Y |.

A symmetric spectrum of simplicial sets Y is an Ω-spectrum respectively positive Ω-spectrum if the
geometric realization |Y | is an Ω-spectrum, respectively positive Ω-spectrum, of topological spaces. A
symmetric spectrum of simplicial sets Y is thus an Ω-spectrum if and only if for all n ≥ 0 the map
|Yn| −→ Ω|Yn+1| which is adjoint to the composite

|Yn| ∧ S1 ∼=−−→ |Yn ∧ S1| |σn|−−→ |Yn+1|

is a weak homotopy equivalence. Our definition of ‘Ω-spectrum’ differs slightly from other sources in that
we do not require that each simplicial set Yn has to be a Kan complex. If Y is a symmetric spectrum of
simplicial sets in which all the Yn’s are Kan, then the natural maps |ΩYn| −→ Ω|Yn| adjoint to

|ΩYn| ∧ S1 −→ |(ΩYn) ∧ S1| |evaluate|−−−−−−→ |Yn|

are weak equivalences, and so Y is an Ω-spectrum in our sense if and only if the morphisms of simplicial
sets σ̃n : Yn −→ ΩYn+1 adjoint to the structure maps are weak equivalences.

Proposition 3.4. For every sequential or symmetric spectrum of spaces A the natural map S1 ∧S(A) −→
S(S1 ∧ A) is a π̂∗-isomorphism. For every morphism f : A −→ B of sequential or symmetric spectra of
spaces the natural map CS(f) −→ S(Cf) is a π̂∗-isomorphism.

3.2. Constructions. We discuss various constructions which produce new symmetric spectra from
old ones. Whenever possible, we describe the effect that a certain construction has on the naive homotopy
groups.

Example 3.5 (Limits and colimits). The category of symmetric spectra has all limits and colimits, and
they are defined levelwise. Let us be a bit more precise and consider a functor F : J −→ Sp from a small
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category J to the category of symmetric spectra (of spaces or simplicial sets). Then we define a symmetric
spectrum colimJ F in level n by

(colimJ F )n = colimj∈J F (j)n ,

the colimit being taken in the category of pointed Σn-spaces (or pointed Σn-simplicial sets). The structure
map is the composite

(colimj∈J F (j)n) ∧ S1 ∼= colimj∈J(F (j)n ∧ S1)
colimJ σn−−−−−−→ colimj∈J F (j)n+1 ;

here we exploit that smashing with S1 is a left adjoint, and thus the natural map colimj∈J(F (j)n∧S1) −→
(colimj∈J F (j)n) ∧ S1 is an isomorphism, whose inverse is the first map above.

The argument for inverse limits is similar, but we have to use that structure maps can also be defined
in the adjoint form. We can take

(limJF )n = limj∈JF (j)n ,

and the structure map is adjoint to the composite

limj∈JF (j)n
limJ σ̂n−−−−−→ limj∈JΩ(F (j)n+1) ∼= Ω (limj∈JF (j)n+1) .

The inverse limit, calculated levelwise, of a diagram of symmetric ring spectra and homomorphisms
is again a symmetric ring spectrum. In other words, symmetric ring spectra have limits and the forgetful
functor to symmetric spectra preserves them. Symmetric ring spectra also have co-limits, but they are not
preserved by the forgetful functor.

Example 3.6 (Smash products with and functions from spaces). If K is pointed space and X a symmetric
spectrum, we can define two new symmetric spectra K ∧X and XK by smashing with K or taking maps
from K levelwise; the structure maps and symmetric group actions do not interact with K.

In more detail we set

(K ∧X)n = K ∧Xn respectively (XK)n = XK
n = map(K,Xn)

for n ≥ 0. The symmetric group Σn acts through its action on Xn. The structure map is given by the
composite

(K ∧X)n ∧ S1 = K ∧Xn ∧ S1 Id∧σn−−−−−→ K ∧Xn+1 = (K ∧X)n+1

respectively by the composite

XK
n ∧ S1 −→ (Xn ∧ S1)K

σKn−−→ XK
n+1

where the first map is adjoint to the evaluation map XK
n ∧S1∧K −→ Xn∧S1 and the second is application

of map(K,−) to the structure map of X. For example, the spectrum K ∧ S is equal to the suspension
spectrum Σ∞K.

Just as the functors K ∧− and map(K,−) are adjoint on the level of based spaces (or simplicial sets),
the two functors just introduced are an adjoint pair on the level of symmetric spectra. The adjunction

(3.7) ˆ : Sp(X,Y K)
∼=−−→ Sp(K ∧X,Y )

takes a morphism f : X −→ Y K to the morphism f̂ : K ∧X −→ Y whose n-th level f̂n : K ∧Xn −→ Yn is

given by f̂n(k ∧ x) = fn(x)(k).
We note that if X is an Ω-spectrum, then so is XK , provided we also assume that

• K is cofibrant (for example a CW-complex) when in the context of topological spaces, or
• X is levelwise a Kan complex when in the context of simplicial sets.

Indeed, under either hypothesis, the mapping space functor map(K,−) takes the weak equivalence σ̃n :
Xn −→ ΩXn+1 to a weak equivalence

XK
n = map(K,Xn)

map(K,σ̃n)−−−−−−−→ map(K,ΩXn+1) ∼= Ω(XK
n+1) .

Loops and suspensions are the special case K = S1 of this discussion (where S1 denotes the onepoint
compactification of R in the topological context, and the simplicial set ∆[1]/∂∆[1] in the simplicial context).
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We obtain two adjoint constructions, the suspension S1∧X and the loop spectrum ΩX = XS1

of a symmetric
spectrum X. These spectra a levelwise given by (S1 ∧X)n = S1 ∧Xn respectively (ΩX)n = Ω(Xn) where
the structure maps and symmetric groups actions do not interact with the new suspension respectively loop
coordinate. As a special case of (3.7) we have an adjunction ˆ : Sp(X,ΩY ) ∼= Sp(S1 ∧X,Y ) that already
showed up in (2.2) during the discussion of the loop and suspension isomorphism.

Proposition 3.8. Let f : S1 ∧ A −→ X be a morphism of symmetric spectra. In the simplicial context,

suppose also that X is levelwise Kan. Then f is a π̂∗-isomorphism if and only if its adjoint f̂ : A −→ ΩX
is a π̂∗-isomorphism.

Proof. The morphism f and its ajoint are related by f = ε◦(S1∧ f̂) where ε : S1∧ΩX is the counit of
the adjunction. In the context of spectra of spaces, the counit is a π̂∗-isomorphism by Proposition 2.6. In the
context of spectra of simplicial sets the morphism |ΩX| −→ Ω|X| is a level equivalence since X is levelwise
Kan, so the counit is also a π̂∗-isomorphism. We conclude that the morphism f is a π̂∗-isomorphism if and

only if the morphism S1∧ f̂ : S1∧A −→ S1∧ΩX is. Since suspension shifts homotopy groups, this happens
if and only if f is a π̂∗-isomorphism. �

Example 3.9 (Shift). The shift of a symmetric spectrum X is given by

(shX)n = X1+n

with action of Σn by restriction of the Σ1+n-action on X1+n along the monomorphism (1+−) : Σn −→ Σ1+n

which is explicitly given by (1 + γ)(1) = 1 and (1 + γ)(i) = γ(i − 1) + 1 for 2 ≤ i ≤ 1 + n. The structure
maps of shX are the reindexed structure maps for X. As an example, the shift of a suspension spectrum
is another suspension spectrum, sh(Σ∞K) = Σ∞(K ∧ S1).

For any symmetric spectrum X, integer k and large enough n we have

π(k+1)+n(shX)n = πk+(1+n)X1+n ,

and the maps in the colimit system for π̂k+1(shX) are the same as the maps in the colimit system for π̂kX.
Thus we get the equality of naive homotopy groups π̂k+1(shX) = π̂kX.

We can iterate the shift construction and get (shmX)n = Xm+n. In every level of the symmetric
spectrum shmX the symmetric group Σm acts via the ‘inclusion’ (− + n) : Σm −→ Σm+n, and these
actions are compatible with the structure maps. So in this way shmX becomes a Σm-symmetric spectrum.
We note that for k,m ≥ 0 we have

(shk(shmX))n = (shmX)k+n = Xm+k+n = (shm+kX)n .

We observe that the symbols k and m have switched places along the way, which suggests that we should
write

(3.10) shk(shmX) = shm+kX

and that we should avoid writing shk(shmX) as shk+mX. Of course, m + k = k + m, and so shm+kX

equals shk+mX; but for x ∈ Xn, γ ∈ Σk and κ ∈ Σm we have the relation

γ · (κ · x) = (κ+ γ) · x .
So the interpretation (3.10) is better because it records the equivariance properties correctly.

Example 3.11 (Semistable symmetric spectra). We have already seen in Proposition 2.6 that the loop
and suspension constructions shift the homotopy groups; these phenomena depend only on the underlying
sequential spectra. In the situation of symmetric spectra, there is a natural morphism λX : S1∧X −→ shX
whose level n component λn : S1 ∧Xn −→ X1+n is the composite

(3.12) S1 ∧Xn

∼=−−−−→
twist

Xn ∧ S1 σn−−−→ Xn+1
(1,...,n+1)−−−−−−−→

=χn,1
X1+n .

One should note that the shuffle permutation is necessary to get a morphism, even of sequential spectra;
for sequential spectra this is not available, and in fact there is no natural morphism from the suspension to
the shift of a sequential spectrum.
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Proposition 3.13. For every symmetric spectrum X the morphism λX : S1 ∧ X −→ shX induces a
monomorphism on all naive homotopy groups.

Proof. Since the suspension homomorphism S1 ∧ − : π̂kX −→ π̂1+k(S1 ∧X) is bijective (see Propo-
sition 2.6), it suffices to show that the composite

π̂1+k(λX) ◦ (S1 ∧ −) : π̂kX −→ π̂1+k(shX)

is injective for all integers k. We let f : Sk+n −→ Xn represent an element in the kernel of this composite.
By increasing n, if necessary, we can assume without loss of generality that the composite (λX)n ◦ (S1∧f) :
S1+k+n −→ X1+n = (shX)n is nullhomotopic. This composite and the map

σn ◦ (f ∧ S1) : Sk+n+1 −→ Xn+1

differ by precomposition with the coordinate permutation χ1,k+n : S1+k+n −→ Sk+n+1 and postcomposition
with the homeomorphism χn,1 : Xn+1 −→ X1+n. So σn ◦ (f ∧S1) is also nullhomotopic. Since σn ◦ (f ∧S1)
and f represent the same class in π̂kX, the class of f in π̂kX is zero. �

The map induced by the morphism λX on naive homotopy groups is not in general surjective. The
symmetric spectra for which (λX)∗ is surjective (hence bijective) play an important role and deserve a
special name.

Definition 3.14. A symmetric spectrum X is semistable if the morphism λX : S1 ∧ X −→ shX is a
π̂∗-isomorphism.

The class of semistable symmetric spectra is closed under various constructions:

Proposition 3.15. (i) A symmetric spectrum of simplicial sets is semistable if and only if its geometric
realization is. A symmetric spectrum of spaces is semistable if and only if its singular complex is.

(ii) Let f : A −→ B be a π̂∗-isomorphism of symmetric spectra. Then A is semistable if and only if B is
semistable.

(iii) For a symmetric spectrum X the following are equivalent:
• the spectrum X is semistable;
• the suspended spectrum S1 ∧X is semistable;
• the shifted spectrum shX is semistable.

In the context of spaces, or if X is levelwise Kan, these conditions are furthermore equivalent to
• the morphism λ̃X : X −→ Ω shX is a π̂∗-isomorphism;
• the looped spectrum ΩX is semistable.

Proof. (i) Both shift and suspension commute with geometric realization. So for a symmetric spectrum
of simplicial sets Y the morphism λ|Y | is isomorphic to |λY |, and the claim follows. [...]

(ii) Since f is a π̂∗-isomorphism, both the maps S1 ∧ f : S1 ∧ A −→ S1 ∧ B and sh f : shA −→ shB
are π̂∗-isomorphisms. We have λB(S1 ∧ f) = (sh f)λA, so λA is a π̂∗-isomorphisms if and only if λB is.

(iii) We have S1 ∧ (shX) = sh(S1 ∧ X) and the morphisms S1 ∧ λX and λS1∧X differ by the twist
isomorphism of the two circles. So λS1∧X if a π̂∗-isomorphism if and only if S1 ∧ λX is. Since suspension
shifts homotopy groups, this happens if and only if λX is a π̂∗-isomorphism. So X is semistable if and
only if its suspensions S1 ∧X is. Similarly, the morphisms sh(λX) and λshX differ by the automorphism of
sh(shX) that interchanges the two shifted coordinates. So λshX if a π̂∗-isomorphism if and only if sh(λX)
is. Since shifting shifts homotopy groups, this happens if and only if λX is a π̂∗-isomorphism. So X is
semistable if and only if its shift is.

In the context of spaces, or ifX is levelwise Kan, then Proposition 3.8 showa that λX is a π̂∗-isomorphism
if and only if its adjoint is. Also, now the adjunction counit S1 ∧ ΩX −→ X is a π̂∗-isomorphism (see
Proposition 2.6, so X is semistable if and only if S1 ∧ ΩX is, and by the above this happens if and only if
ΩX is semistable. �

Proposition 3.16. (i) A wedge of semistable symmetric spectra is semistable.
(ii) A finite product of semistable symmetric spectra is semistable.
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(iii) If X is a semistable symmetric spectrum and K a based CW-complex (respectively simplicial set), then
K ∧X is semistable.

(iv) Let X be a semistable symmetric spectrum; in the simplicial context suppose also that X is level-
wise Kan. If K is a finite based CW-complex (respectively finite simplicial set), then map(K,X) is
semistable.

(v) Let f : X −→ Y be a morphism between semistable symmetric spectra. The mapping cone C(f) is
semistable. In the context of spaces, or if X and Y are levelwise Kan, the homotopy fiber F (f) is
again semistable.

(vi) Let X be a symmetric spectrum such that all even permutations in Σn induce the identity map on the
homotopy groups of Xn. Then X is semistable.

Proof. (i) Let {Xi}i∈I by a family of semistable symmetric spectra. Since each morphism λXi is
a π̂∗-isomorphism so is their wedge (by Proposition 2.19 (i)). Suspension and shift preserves wedge, so
λ∨Xi : S1 ∧ (

∨
Xi) −→ sh(

∨
Xi) is isomorphic to the wedge of the morphisms λXi , and hence a π̂∗-

isomorphism.
(ii) It suffices to consider a product of two semistable symmetric spectra X and Y . The morphism

λX×Y : S1 ∧ (X × Y ) −→ sh(X × Y ) equals the composite

S1 ∧ (X × Y ) −→ (S1 ∧X)× (S1 ∧ Y )
λX×λY−−−−−→ (shX)× (shY ) = sh(X × Y )

where the first morphisms is the canonical one. Suspension shifts homotopy groups and homotopy groups
commute with finite products (by Proposition 2.19 (ii)), so the first morphism is a π̂∗-isomorphism. As
a product of two π̂∗-isomorphisms, the morphism λX × λY is also a π̂∗-isomorphism. So λX×Y is a π̂∗-
isomorphism, i.e., the product X × Y is semistable.

(iii) Smashing with any based space or simplicial set commutes with suspension and shift. Smashing
with a based CW-complex (or any simplicial sets) preserves π̂∗-isomorphisms by Proposition 2.19 (iv). So
λK∧X is a π̂∗-isomorphism because K ∧ λX is, hence K ∧X is again semistable.

(iv) Since X is semistable, the morphism λ̃X : X −→ Ω shX is a π̂∗-isomorphism (see Proposi-

tion 3.15 (iii)). The morphism λ̃map(K,X) : map(K,X) −→ Ω sh(map(K,X)) equals the composite

map(K,X)
map(K,λ̃X)−−−−−−−→ map(K,Ω shX) ∼= Ω sh(map(K,X)) ,

where the second morphism is an assembly isomorphism. Since λ̃X is a π̂∗-isomorphism, so is map(K, λ̃X)

(by Proposition 2.19 (v)). So λ̃map(K,X) is a π̂∗-isomorphism, hence map(K,X) is again semistable.
(v) Both suspension and shift commute with mapping cones. So the morphisms λX , λY and λC(f)

related the long exact sequences of homotopy groups (compare Proposition 2.12) for the mapping cones of
S1 ∧ f : S1 ∧X −→ S1 ∧ Y and sh f : shX −→ shY . Since λX and λY are π̂∗-isomorphisms, so is λC(f).
So the mapping cone is again semistable.

Since the symmetric spectrum S1 ∧ F (f) is π̂∗-isomorphic to the mapping cone C(f), it is semistable
by the previous paragraph and part (ii) of Proposition 3.15. So F (f) is itself semistable by part (i) of
Proposition 3.15.

(vi) We show that for every integer k the composite

π̂kX
S1∧−−−−−−→ π̂k(S1 ∧X)

(λX)∗−−−−−→ π̂1+k(shX) = π̂kX

is multiplication by (−1)k. Since the suspension homomorphism S1∧− : π̂kX −→ π̂1+k(S1∧X) is bijective
(see Proposition 2.6), this shows that λX induces isomorphisms of all naive homotopy groups. We let
f : Sk+n −→ Xn represent an element in π̂kX. By increasing n, if necessary, we can assume without loss
of generality that n is even. The class (λX)∗[S

1 ∧ f ] is represented by the lower horizontal map in the
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commutative square:

Sk+n+1
σXn ◦(f∧S

1) //

χk+n,1

��

Xn+1

χn,1

��
S1+k+n

(λX)n◦(S1∧f)

// X1+n

The upper horizontal map represents the same class as f . The permutation χn,1 is even, so the map
χn,1 : Xn+1 −→ X1+n induces the identity on homotopy groups. Precomposition with the permutation
χk+n,1 on the sphere induces multiplication by its degree, i.e., by (−1)k. So (λX)n ◦ (S1 ∧ f) is homotopic
to (−1)k · [σXn ◦ (f ∧ S1)] = (−1)k · [f ]. �

If f : X −→ Y is an h-cofibration (in the context of spaces) respectively an injective morphism (in the
simplicial context), then the mapping cone C(f) is level equivalent, thus π̂∗-isomorphic, to the quotient
Y/X. Thus if two of the spectra X, Y and Y/X are semistable, then so is the third. [same with homotopy
fiber]

Examples of spectra that satisfy the hypothesis (vi) of the previous proposition are all symmetric spec-
tra X such that action of Σn on Xn extends to a continuous action of the orthogonal group O(n) (over
the embedding Σn −→ O(n) as permutation matrices), because then the action of every even permutations
is homotopic to the identity. Examples are given by suspension spectra (1.13), Eilenberg-Mac Lane spec-
tra (1.14), the various Thom spectra MO, MSO and MSpin of Example 1.16 or MU , MSU and MSp of
Example 1.18, or more generally all symmetric spectra that extend to orthogonal spectra (in the sense of
Definition 7.2 below).

As we show in Proposition 5.57 below, the smash product of two semistable symmetric spectra is
semistable (under mild ‘flatness’ hypotheses). In Theorem 8.25 below we provide various characterizations
of semistable spectra. In Proposition 8.26 (ii) below we show that a symmetric spectrum X is semistable
if the naive homotopy groups of X are dimensionwise finitely generated as abelian groups.

Examples of symmetric spectra that are not semistable can be obtained via induction as in the next
Example 3.17, and by free and semifree symmetric spectra generated in positive levels (Examples 3.20
and 3.23).

Example 3.17 (Induction). The shift functor introduced in Example 3.9 has a left and a right adjoint.
We use the notation ‘.’ for the left adjoint and refer to it as induction because it induces group actions
from one symmetric group to the next. This construction is a special case of the more general construction
L .m X of the twisted smash product of a Σm-space with a spectrum, see Example 3.27 below.

The induced spectrum .X is trivial in level 0 and is given in positive levels by

(.X)1+n = Σ+
1+n ∧1×Σn Xn .

So ignoring the action of the symmetric group, the space (or simplicial set) (.X)1+n is a wedge of n + 1
copies of Xn. The structure map is obtained from the structure map of X and the ‘inclusion’ of Σ1+n into
Σ1+n+1, i.e.,

Σ+
1+n ∧1×Σn Xn ∧ S1 −→ Σ+

1+n+1 ∧1×Σn+1 Xn+1 , γ ∧ a ∧ t 7−→ (γ + 1) ∧ σn(a ∧ t) .
We claim that the naive homotopy groups of .X are a countably infinite sum of shifted copies of

the naive homotopy groups of X. For any m ≥ 1 we let (.(m)X)1+n denote the wedge summand of
(.X)1+n = Σ+

1+n ∧1×Σn Xn indexed by the (1×Σn)-coset containing the transposition (1,m) if 1 +n ≥ m,

and a one-point space for 1 + n < m. The structure map takes (.(m)X)1+n ∧ S1 to (.(m)X)1+n+1, so as n
varies we obtain a sequential subspectrum .(m)X of .X. The action of the symmetric groups, however, does
not stabilize .(m)X, so .(m)X is not a symmetric subspectrum. As a sequential spectrum, .X is moreover
the internal wedge of the spectra .(m)X,

(3.18) . X =
∨
m≥1

.(m)X .
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So by Proposition 2.19 (i) the natural map⊕
m≥1

π̂k

(
.(m)X

)
−→ π̂k

(∨
m≥1

.(m) X
)

= π̂k(.X)

is an isomorphism. The shifted sequential spectrum sh
(
.(m)X

)
is isomorphic to X, at least from level m

on, and so the group k-th naive homotopy group of .(m)X is isomorphic to the (k + 1)-th naive homotopy
group of X. So altogether we have established an isomorphism between π̂k(.X) and a countably infinite
sum of copies of π̂k+1X. This calculation is a special case of the more general result for the naive homotopy
groups of a twisted smash product L .m X, see (3.30). We will review the calculation of π̂k(.X) in a more
structured way in (8.22) below.

Now we observe that induction is indeed left adjoint to the shifting. The adjunction unit ηX : X −→
sh(.X) is given in level n as the map

[1 ∧ −] : Xn −→ Σ+
1+n ∧1×Σn Xn .

We omit the verification that for every morphism of symmetric spectra f : X −→ shZ there is a unique

morphism f̂ : .X −→ Z such that f = (sh f̂)ηX . The adjunction counit ε : .(shZ) −→ Z is given in
level 1 + n by

Σ+
1+n ∧1×Σn X1+n −→ X1+n , [γ ∧ a] 7−→ γ · a .

The adjunction unit is in fact a wedge summand inclusion and sh(.X) splits as X ∨ .(shX). We define
a morphism ρ : .(shX) −→ sh(.X) in level 1 + n as the map

Σ+
1+n ∧1×Σn X1+n −→ Σ+

2+n ∧1×Σ1+n X1+n , [γ ∧ a] 7−→ [(1 + γ)(1 2) ∧ a] .

We observe here that for every permutation σ ∈ Σn the element (1 + 1 + σ) ∈ Σ2+n commutes with the
transposition (1 2), so that the formula above is well-defined. Now we claim that the map

(3.19) ηX ∨ ρ : X ∨ .(shX) −→ sh(.X)

is an isomorphism. To prove the claim, let us consider the symmetric group Σ1+n as a Σn-biset by restricting
the translation acts on both sides via the monomorphism 1 +− : Σn −→ Σ1+n. Then Σ1+n splits as S ∪T ,
the disjoint union of the two Σn-bisets

S = {γ ∈ Σ1+n | γ(1) = 1} respectively T = {γ ∈ Σ1+n | γ(1) 6= 1} .

So sh(.X) splits levelwise as

(sh(.X))n = Σ+
1+n ∧1×Σn Xn = (S+ ∧Σn Xn) ∨ (T+ ∧Σn Xn) .

Since S is free and transitive as a right Σn-set, the summand (S+ ∧Σn Xn) is a single copy of Xn, which
is precisely the image in level n of the adjunction unit ηX . The other summand T is also free a right
Σn-set, but it consists of n right Σn-orbits, each containing precisely one of the transpositions (1 i) for
i = 2, . . . , 1 + n. So (T+ ∧Σn Xn) is a wedge of n copies of Xn, and this is precisely the image in level n of
the morphism ρ.

If we compare the splitting (3.18) of .X in the category of sequential spectra with the splitting (3.19)
of sh(.X) in the category of symmetric spectra, we see that the image of the unit ηX : X −→ sh(.X) is
precisely the shift of .(1)X, whereas the image of ρ : .(shX) −→ sh(.X) is the wedge of the shifts of .(m)X
for m ≥ 2.

The morphism λ.X : S1 ∧ .X −→ sh(.X) factors as the composite

S1 ∧ .X ∼= .(S1 ∧X)
.(λX)−−−−→ .(shX)

ρ−−→ sh(.X) .

So under the splitting (3.19) of sh(.X) into the wedge of X and .(shX), λ.X lands in the second summand.
If X has at least on non-trivial naive homotopy group, then the map ρ is not surjective on naive homotopy
groups, hence λ.X is not surjective on naive homotopy groups either. We conclude that an induced spectrum
.X is not semistable as soon as X has at least one non-trivial naive homotopy group.
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Example 3.20 (Free symmetric spectra). Given a based space (or simplicial set) K and m ≥ 0, we define
a symmetric spectrum FmK which is ‘freely generated by K in level m’. The spectrum FmK is trivial
below level m and is given by

(FmK)m+n = Σ+
m+n ∧1×Σn K ∧ Sn

in levels m and above. Here 1 × Σn is the subgroup of Σm+n of permutations which fix the first m
elements. The structure map σm+n : (FmK)m+n∧S1 −→ (FmK)m+n+1 is given by smashing the ‘inclusion’
−+ 1 : Σm+n −→ Σm+n+1 with the identity of K and the preferred isomorphism Sn ∧ S1 ∼= Sn+1.

Induction of free spectra. Free symmetric spectra generated in level zero are just suspension spectra,
i.e., there is a natural isomorphism F0K ∼= Σ∞K. Inducing a free symmetric spectrum gives a free spectrum
generated on level higher, i.e., there is a natural isomorphism

(3.21) . (FmK) ∼= F1+mK ,

where . is the induction discussed in the previous examples. Indeed, an isomorphism which immediately
meets the eye is given in level 1 +m+ n by

Σ+
1+m+n ∧1×Σm+n (Σ+

m+n ∧1×Σn K ∧ Sn)m+n −→ Σ+
1+m+n ∧1×Σn K ∧ Sn

[γ ∧ [τ ∧ x]] 7−→ [γ(1 + τ)) ∧ x]

for γ ∈ Σ1+m+n, τ ∈ Σm+n and x ∈ K ∧ Sn.
Freeness property. The ‘freeness’ property of FmK is made precise by the following fact: for every

based continuous map f : K −→ Xm (or morphism of based simplicial sets) there is a unique morphism of

symmetric spectra f̂ : FmK −→ X such that the composite

K
k 7→1∧k∧0−−−−−−→ Σ+

m ∧K ∧ S0 = (FmK)m
f̂m−−→ Xm

equals f (here 1 ∈ Σm is the unit element and 0 ∈ S0 is the non-basepoint). So technically speaking this
bijection makes Fm : T −→ Sp into a left adjoint of the forgetful functor which takes a symmetric spectrum
X to the pointed space Xm. The freeness property can be obtained as a special case of semifree symmetric
spectra below [ref], or it can be established by induction on m, using the isomorphsm .(FmK) ∼= F1+mK

above and the adjunction between shift and . [ref]. In any case, the morphism f̂ : FmK −→ X corresponding
to f : K −→ Xm is given in level m+ n as the composite

Σ+
m+n ∧1×Σn K ∧ Sn

Id∧σn(f∧Id)−−−−−−−−→ Σ+
m+n ∧1×Σn Xm+n

act−−→ Xm+n

where σn : Xm ∧ Sn −→ Xm+n is the iterated structure map of X.
Right Σm-action. The free symmetric spectrum FmK comes naturally with a right action of the

symmetric group Σm; we will refer to this as the ‘right action on the free coordinates’. In level m + n a
permutation σ ∈ Σm acts on (FmK)m+n = Σ+

m+n ∧1×Σn K ∧ Sn by

(3.22) [γ ∧ x] · σ = [γ(σ + 1) ∧ x] ,

where γ ∈ Σm+n and x ∈ K ∧ Sn. This right Σm-action is well defined and commutes with the left action
of Σm+n and the structure maps, so the action is indeed by automorphisms of symmetric spectra. The
isomorphism (3.21) between .(FmK) and F1+mK is Σm-equivariant when we let Σm acts on F1+mK by
restriction of the action along the homomorphism 1 + − : Σm −→ Σ1+m. We claim that moreover, the
adjunction bijection

T(K,Xm) ∼= Spec(FmK,X) , f 7−→ f̂

is equivariant for the two natural left actions of Σm; these actions are given on the left hand side by

(σ · f)(k) = σ · (f(k)) for f : K −→ Xm and k ∈ K, and on the right hand side by (σf̂)(z) = f̂(z · σ) for

f̂ : FmK −→ X. And indeed: we have

(σ · f̂)m[1 ∧ k ∧ 0] = (f̂)m[σ ∧ k ∧ 0] = σ ·
(
f̂m[1 ∧ k ∧ 0]

)
,

so σ · f̂ has the defining property of σ̂f , and hence these two homomorphisms are equal. One final remark
about the right Σm-action on the free coordinates of FmK: the symmetric group Σm+n is free as a right
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Σm × Σn-set. So the underlying space of (FmK)m+n is isomorphic to a wedge of (m + n)!/n! copies of
K ∧Sn, and the right action of Σm freely permutes the wedge summands. Hence the Σm-action on the free
coordinates is levelwise free away from the basepoint.

Naive homotopy groups. Using that FmK is isomorphic to the m-fold iterate of . applied to the
suspension spectrum Σ∞K allows us to identify the naive homotopy groups of the free spectrum. Indeed,
by the calculation of the naive homotopy groups of .A in the previous example and induction, π̂k(FmK) is
isomorphic to a countable sum of copies of π̂k+m(Σ∞K) = πs

k+mK, as long as m ≥ 1.

We point out a special case which will be relevant later. The symmetric spectrum F1S
1 freely generated

by the circle S1 in level 1 ought to be a desuspension of the suspension spectrum of the circle. And indeed, we
shall see in Example 4.26 that F1S

1 stably equivalent (to be defined in Section 4) to the sphere spectrum S.
More generally, the free symmetric spectrum FmK is stably equivalent to Ωm(Σ∞K), the m-fold loop
spectrum of the suspension spectrum of K, compare Example 4.35.

However, the naive homotopy groups of F1S
1 are a countable sum of copies of the stable stems, so

F1S
1 is not π̂∗-isomorphic to the sphere spectrum S, whose zeroth homotopy group is a single copy of the

integers.

Example 3.23 (Semifree symmetric spectra). There are somewhat ‘less free’ symmetric spectra which
start from a pointed Σm-space (or Σm-simplicial set) L; we want to install L in level m, and then fill in the
remaining data of a symmetric spectrum as freely as possible. In other words, we claim that the forgetful
evaluation functor

evm : SpT −→ Σm-T , X 7−→ Xm

(and its analog for symmetric spectra of simplicial sets) has a left adjoint which we denote Gm; we refer
to GmL as the semifree symmetric spectrum generated by L in level m. (The evaluation functor evm also
has a right adjoint which will feature in Example 4.2.) The spectrum GmL is trivial below level m, and
otherwise given by

(GmL)m+n = Σ+
m+n ∧Σm×Σn L ∧ Sn .

The structure map σm+n : (GmL)m+n ∧S1 −→ (GmL)m+n+1 is defined by smashing the ‘inclusion’ −+ 1 :
Σm+n −→ Σm+n+1 with the identity of L and the preferred isomorphism Sn ∧ S1 ∼= Sn+1.

Free versus semifree spectra. Free and semifree symmetric spectra can be obtained from each other as
follows. On the one hand, every free symmetric spectrum is semifree, i.e., there is a natural isomorphism
FmK ∼= Gm(Σ+

m ∧K) by ‘cancelling Σm’. On the other hand, a semifree spectrum GmL can be obtained
from the free spectrum FmL by coequalizing the right Σm-action on the free coordinates (3.22) and the
given left Σm-action on L. Indeed, in the relevant levels m+n, the only difference between FmL and GmL
is that the action of a larger group (Σm ×Σn as opposed to 1×Σn) is divided out in the semifree case; so
the natural projection

(FmL)m+n = Σ+
m+n ∧1×Σn L ∧ Sn −→ Σ+

m+n ∧Σm×Σn L ∧ Sn = (GmL)m+n

relates the two constructions by a morphism of symmetric spectra and factors over an isomorphism

(3.24) (FmL)/Σm −→ GmL

where the left hand side denotes the quotient (in level m+ n) by the equivalence relation

[γ(σ + 1) ∧ l ∧ x] = [γ ∧ l ∧ x] · σ ∼ [γ ∧ (σl) ∧ x]

for γ ∈ Σm+n, σ ∈ Σm, l ∈ L and x ∈ Sn.
Semifreeness property. The ‘semifreeness’ property of GmL, or more technically the adjunction bi-

jection, works as follows: we claim that for every morphism of based Σm-spaces (or Σm-simplicial sets)

f : L −→ Xm there is a unique morphism of symmetric spectra f̂ : GmL −→ X such that the composite

L
1∧−−−−→ Σ+

m ∧Σm L = (GmL)m
f̂m−−→ Xm

equals f . The requirements of equivariance and compatibility with structure maps imply that there is at

most one morphism with this property. Given f , we define the corresponding morphism f̂ : GmL −→ X in
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level m+ n as the composite

Σ+
m+n ∧Σm×Σn L ∧ Sn

Id∧σn(f∧Id)−−−−−−−−→ Σ+
m+n ∧Σm×Σn Xm+n

act−−→ Xm+n

where σn : Xm∧Sn −→ Xm+n is the iterated structure map of X. We omit the straightforward verification

that f̂ is indeed a morphism.
Building symmetric spectra from semifree pieces. Semifree spectra are the basic building blocks in the

theory of symmetric spectra. This slogan can be made precise in various ways. The first, and almost
tautological, way takes the form of a natural coequalizer diagram

(3.25)
∨
n≥0Gn+1(Σ+

n+1 ∧Σn×1 Xn ∧ S1)
σ //
I

//
∨
m≥0GmXm // X .

The upper map σ to be coequalized takes the nth wedge summand to the (n+ 1)st wedge summand by the
adjoint of

σn : Xn ∧ S1 −→ Xn+1 = (Gn+1Xn+1)n+1 .

The other map I takes the nth wedge summand to the nth wedge summand by the adjoint of the wedge
summand inclusion

Xn ∧ S1 −→ Σ+
n+1 ∧Σn×Σ1

(Xn ∧ S1) = (GnXn)n+1

indexed by the identity of Σn+1. The morphism to X is the wedge over the adjoints of the identity maps
of the spaces Xm.

The fact that Gm is left adjoint to evaluation at level m directly implies that X has the universal
property of a coequalizer of σ and I. Indeed, a morphism f :

∨
m≥0GmXm −→ Z corresponds bijectively

to a family of equivariant based maps fm : Xm −→ Zm. The morphism f coequalizes the maps σ and I if
and only if the maps fm satisfy fm+1 ◦ σm = σm ◦ (fm ∧ IdS1) for all m, i.e., if they form a morphism of
symmetric spectra from X to Z.

The coequalizer (3.25) can be used to reduce certain statements about general symmetric spectra to
the special case of semifree spectra. In Construction 5.29 we will discuss a different way in which a general
symmetric spectrum is ‘built up’ from semifree symmetric spectra.

Shifts of semifree spectra. We identify the shift of a semifree symmetric spectrum. For this purpose it
will be more convenient to shift the indexing and start with a based Σ1+m-space (or simplicial set) L, as
opposed to a Σm-space. We denote by shL the restriction of L to a Σm-space along the monomorphism
1+− : Σm −→ Σ1+m. We define a morphism ξ : Gm(shL) −→ sh(G1+mL) as adjoint to the Σm-equivariant
map [1 ∧ −] : shL −→ Σ+

1+m ∧Σ1+m
L = (sh(G1+mL))m; this morphism can be wedged together with the

morphism λG1+mL defined in (3.12) to yield a morphism

(3.26) λG1+mL ∨ ξ : (S1 ∧G1+mL) ∨ Gm(shL) −→ sh(G1+mL) .

As we discuss in Exercise E.I.9 the map (3.26) is an isomorphism. The map (3.26) is even an isomorphism for
m = −1, if we interpret G−1 as a trivial spectrum; in other words, in this case λG0L : S1∧G0L −→ sh(G0L)
is an isomorphism.

We can specialize to free symmetric spectra. Using F1+mK = G1+m(Σ+
1+m ∧ K) and the fact that

sh(Σ1+m) is the disjoint union of (1 +m) free transitive Σm-sets we obtain

(S1 ∧ F1+mK) ∨
1+m∨
i=1

FmK ∼= sh(F1+mK) .

This wedge decomposition is hiding some of the symmetries. Indeed, the free spectrum F1+mK, and
hence its shift, has a right action of the symmetric groups Σ1+m as in (3.22). To make the decomposition
equivariant we have to rewrite the second summand of the left hand side as the spectrum FmK ∧Σm Σ+

1+m

induced from the right Σm-spectrum FmK along the homomorphism 1 +− : Σm −→ Σ1+m. Then the map

λF1+mK ∨ ξ : (S1 ∧ F1+mK) ∨ (FmK ∧Σm Σ+
1+m) −→ sh(F1+mK)

is a Σ1+m-equivariant isomorphism.
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One can describe the naive homotopy groups of the semifree spectrum GmL functorially in terms of the
stable homotopy groups of L and the induced Σm-action. This is most naturally done with all the structure
present in the naive homotopy groups, and so we defer this discussion to Example 8.18. As for the stable
homotopy type represented by a semifree spectrum, we refer to Example 4.36.

Example 3.27 (Twisted smash product). The twisted smash product starts from a number m ≥ 0, a
pointed Σm-space (or Σm-simplicial set) L and a symmetric spectrum X and produces a new symmetric
spectrum which we denote L.mX. This construction is a simultaneous generalization of the smash product
of a space and a spectrum (Example 3.6), induction (Example 3.17), and semifree symmetric spectra (Ex-
ample 3.23). Once the internal smash product of symmetric spectra is available, we will identify the twisted
smash product L.mX with the smash product of the semifree spectrum GmL and X, see Proposition 5.13
below.

We define the twisted smash product L .m X as a point in levels smaller than m and in general by

(L .m X)m+n = Σ+
m+n ∧Σm×Σn L ∧Xn .

The structure map σm+n : (L.mX)m+n∧S1 −→ (L.mX)m+n+1 is obtained from Id∧σn : L∧Xn∧S1 −→
L ∧Xn+1 by inducing up.

Here are some special cases. Taking X = S gives semifree symmetric spectra as GmL = L .m S and so
a free spectrum FmK is isomorphic to the twisted smash product (Σ+

m ∧K) .m S. For m = 0 we get

K .0 X = K ∧X ,

the levelwise smash product of K and X. Induction can be recovered as .X = S0 .1X. The twisted smash
product has an associativity property in the form of a natural isomorphism

L .m (L′ .n X) ∼= (Σ+
m+n ∧Σm×Σn L ∧ L′) .m+n X .

The twisted smash product is related by various adjunctions to other constructions. As we noted at
the end of Example 3.9, the m-fold shift of a symmetric spectrum Z has an action of Σm through spectrum
automorphisms, i.e., shm Z is a Σm-symmetric spectrum. The levelwise smash product L ∧ X (in the
sense of Example 3.6) of the underlying space of L and X also is a Σm-symmetric spectrum through the
action on L. Given a morphism f : L .m X −→ Z of symmetric spectra, we can restrict the component
in level m+ n to the summand 1 ∧ L ∧Xn in (L .m X)m+n and obtain a Σm × Σn-equivariant based map

f̂n = fm+n(1 ∧ −) : L ∧ Xn −→ Zm+n = (shm Z)n. The compatibility of the fm+n’s with the structure

maps translates into the property that the maps f̂ = {f̂n}n≥0 form a morphism of Σm-symmetric spectra
from L∧X to shm Z. Conversely, every Σm-equivariant morphism L∧X −→ shm Z arises in this way from
a morphism f : L .m X −→ Z. We can rephrase this as slightly in a form resembling an adjunction, using
the morphism of Σm-symmetric spectra

(3.28) ηL,X : L ∧X −→ shm(L .m X)

defined in level n as the map

[1 ∧ −] : L ∧Xn −→ Σ+
m+n ∧Σm×Σn L ∧Xn = (L .m X)m+n = shm((L .m X))n .

Then for any f : L .m X −→ Z as above, f̂ = (shm f) ◦ ηL,X , and so the assignment

(3.29) Sp(L .m X,Z) −→ Σm-Sp(L ∧X, shm Z) , f 7−→ f̂ = (shm f) ◦ ηL,X
is a bijection, natural in all three variables.

The case m = 1 and L = S0 gives a bijection,

Sp(.X,Z) ∼= Sp(X, shZ) ,

natural in the symmetric spectra X and Z, which shows that X 7→ .X is left adjoint to shifting.
Now we express the naive homotopy groups of a twisted smash product L .m X in terms of the naive

homotopy groups of the spectrum L ∧ X, the levelwise smash product of the underlying based space (or
simplicial set) of L and X. For this calculation we decompose the sequential spectrum which underlies
L .m X; the wedge decomposition of the induced spectrum .X in Example 3.17 is a special case.
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We denote by Om the set of order preserving injections f : m −→ ω from the set m = {1, . . . ,m} to
the set ω = {1, 2, . . . } of positive integers. Every such f ∈ Om gives rise to a sequential subspectrum (not
a symmetric subspectrum) L .fm X of L .m X as follows. We recall that a permutation γ ∈ Σm+n is an
(m,n)-shuffle if the restriction of γ to {1, . . . ,m} and the restriction to {m+ 1, . . . ,m+ n} are monotone.
For f ∈ Om we denote by |f | the maximum of the values of f . If the image of f is contained in m + n for
a particular n ≥ 0, then there is a unique (m,n)-shuffle χ(f) which agrees with f on m. Conversely, every
(m,n)-shuffle arises in this way from a unique f ∈ Om. The sequential spectrum L .fm X is given by

(L .fm X)m+n =

{(
χ(f) · (Σm × Σn)

)+ ∧Σm×Σn (L ∧Xn) if Im(f) ⊂m + n

∗ else.

Note that L .fm X is also trivial below level m.
Since the (m,n)-shuffles provide a set of right coset representatives for the group Σm × Σn in Σm+n,

we have an internal wedge decomposition

(L .m X)m+n =
∨

f∈Om

(L .fm X)m+n .

The monomorphism − + 1 : Σm+n −→ Σm+n+1 takes (m,n)-shuffles to (m,n + 1)-shuffle and satisfies
χ(f)+1 = χ(f) whenever Im(f) ⊂m + n. The structure map σm+n : (L.mX)m+n∧S1 −→ (L.mX)m+n+1

thus preserves the wedge decomposition and so the underlying sequential spectrum of L .m X decomposes
as an internal wedge of the sequential spectra L .fm X for f ∈ Om. For m = 1 and L = S0 we have
S0 .1 X = .X, the induced spectrum. In this case the splitting specializes to the splitting (3.18) of .X.

A consequence of the above splitting is that the underlying sequential spectrum of L .m X, and hence
its naive homotopy groups do not depend on the Σm-action on L. Since the naive homotopy groups of
a wedge are the direct sum of the naive homotopy groups (Proposition 2.19 (i)), the inclusions induce an
isomorphism ⊕

f∈Om

π̂k(L .fm X)
∼=−→ π̂k(L .m X) .

For f ∈ Om let n ≥ 0 be the smallest number such that Im(f) ⊂ m + n (i.e., the difference of the
maximum of f and m). Then the shifted sequential spectrum shm+n(L.fmX) is isomorphic to the underlying
sequential spectrum of shn(L ∧X), so the group π̂k(L .fm X) = π̂k+m+n(shm+n(L .fm X)) is isomorphic to
π̂k+m+n(shn(L ∧X)) = π̂k+m(L ∧X). Combining these two isomorphisms gives

(3.30)
⊕
f∈Om

π̂k+m(L ∧X) ∼= π̂k(L .m X) .

We emphasize that (3.30) is in general only an isomorphism of abelian group, but that it does not preserve
certain extra structure which is available on the naive homotopy groups and which we discuss in Section 8.1.
We return to this point in Example 8.15 below. A consequence of the isomorphism (3.30) is:

Proposition 3.31. Let L be a cofibrant based Σm-space (respectively a based Σm-simplicial set). Then the
twisted smash product functor L .m − preserves π̂∗-isomorphisms. For every symmetric spectrum of spaces
A and every cofibrant based Σm-space L, the natural map

S(L) .m S(A) −→ S(L .m A)

is a π̂∗-isomorphism.

Proof. First we consider a symmetric spectrum C such that all naive homotopy groups π̂kC vanish.
Then for every cofibrant based space K (or any based simplicial set K) the naive homotopy groups of
the symmetric spectrum K ∧ C also vanish by Proposition 2.19 (iv). By (3.30) the naive homotopy group
π̂k+m(L .m C) is isomorphic to a direct sum of copies of the naive homotopy group π̂k(L∧C). Hence all the
groups π̂k+m(L .m C) are trivial by the above (in the context of spaces we use that the underlying based
space of a based Σm-CW-complex is cofibrant).
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If f : X −→ Y is a π̂∗-isomorphism, then its mapping cone C(f) has trivial naive homotopy groups by
the long exact sequence of Proposition 2.12. By the last paragraph the symmetric spectrum L .m C(f) has
trivial naive homotopy groups. Since the twisted smash product functor commutes with taking mapping
cones, the mapping cone of the morphism L .m f : L .m X −→ L .m Y has trivial naive homotopy groups.
So L .m f is a π̂∗-isomorphism.

For the second statement we use that the map in question is a π̂∗-isomorphism if and only if its adjoint
is. This adjoint factors as the composite

|S(L) .m S(A)| ∼= |S(L)| .m |S(A)| ε.m|S(A)|−−−−−−→ L .m |S(A)| L.mε−−−→ L .m A .

The first map is a level equivalence because ε : S(L) −→ L is a weak equivalence between Σm-CW-
complexes and the symmetric spectrum |S(A)| is levelwise of the homotopy type of a CW-complex. The
adjunction counit ε : |S(A)| −→ A is a level equivalence, hence π̂∗-isomorphism, so the second map L .m ε
is a π̂∗-isomorphism by the above. �

We can also identify the shift of a twisted smash product. Firstly, we have sh(L .0 X) = sh(L ∧X) =
L∧ shX. In general, the shift of a twisted smash product decomposes into two pieces which are themselves
twisted smash products: in Exercise E.I.9 we construct a natural isomorphism

sh(L .1+m X) ∼= (shL) .m X ∨ L .1+m (shX)

for any pointed Σ1+m-space (or simplicial set) L, where shL denotes the restriction of L to a Σm-space along
the monomorphism 1 +− : Σm −→ Σ1+m. A way to remember this is to say that ‘shifting is a derivation
with respect to twisted smash product’. For m = 0 and L = S0 we have S0 .1 X = .X, the induction of X.
So in this case the splitting of sh(S0 .1 X) recovers the splitting sh(.X) ∼= X ∨ .(shX) of (3.19). If X = S
is the sphere spectrum, we have L .1+m S = G1+mL and shS = S1 ∧ S, so as another special case of the
splitting of sh(L .m X) we obtain a wedge decomposition of the shift of a semifree symmetric spectrum

sh(G1+mL) ∼= Gm(shL) ∨ (S1 ∧G1+mL) .

We can specialize even further to free symmetric spectra. Using F1+mK = G1+m(Σ+
1+m ∧K) and the fact

that sh(Σ1+m) is the disjoint union of (1 +m) free transitive Σm-sets we obtain

sh(F1+mK) ∼=
1+m∨
i=1

FmK ∨ F1+m(S1 ∧K) .

Example 3.32 (Equivariant function spectrum). We define an equivariant function spectrum which gen-
eralizes the function spectrum XK discussed in Example 3.6. This construction takes as input a based Σm-
space (or Σm-simplicial set) L and a symmetric spectrum X. The equivariant function spectrum .m(L,X)
is defined in level n as

.m(L,X)n = mapΣm(L,Xm+n) ,

the space (or simplicial set) of Σm-equivariant maps from L to Xm+n, where Σm acts on the target via
the ‘inclusion’ − + 1 : Σm −→ Σm+n. The Σn-action on (.m(L,X))n is obtained from the action on
the target Xm+n by restriction along the homomorphism 1 + − : Σn −→ Σm+n. The structure map
σn : .m(L,X)n ∧ S1 −→ .m(L,X)n+1 is the composite

mapΣm(L,Xm+n) ∧ S1 assembly−−−−−→ mapΣm(L,Xm+n ∧ S1)
mapΣm (L,σm+n)−−−−−−−−−−−→ mapΣm(L,Xm+n+1) ,

where the first map is of assembly type and is obtained from

map(L,Xm+n) ∧ S1 −→ map(L,Xm+n ∧ S1) , f ∧ t 7−→ [x 7→ f(x) ∧ t]

by restriction to the subspaces of Σm-equivariant maps. In the special case m = 0 we have .0(L,X) = XL,
i.e., the equivariant function spectrum reduced to the (non-equivariant) function spectrum in the sense of
Example 3.6.
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Since Xm+n = (shmX)n, the nth level of .m(L,X) equals the space of Σm-equivariant maps from L to
(shmX)n. So we can view .m(L,X) as the symmetric spectrum of Σm-equivariant maps from L to shmX,
the m-fold shift of X. This explains the name ‘equivariant function spectrum’.

Equivariant function spectra commute with shift in the second variable, up to a natural isomorphism
involving a shuffle permutation. More precisely, for a given level n we consider the isomorphism

.m(L, shX)n = mapΣm(L, (shX)m+n) = mapΣm(L,X1+m+n)

mapΣm (L,χ1,m+1n)−−−−−−−−−−−−−→ mapΣm(L,Xm+1+n) = .m(L,X)1+n = sh(.m(L,X))n .

As n varies, these maps constitute an isomorphism of symmetric spectra

χ : .m(L, shX)
∼=−−→ sh(.m(L,X)) .

For the Σ1+m-space Σ+
1+m ∧1×Σm L induced from the Σm-space L along the homomorphism 1 + − :

Σm −→ Σ1+m, the collection of adjunction isomorphisms

mapΣ1+m(Σ+
1+m ∧1×Σm L,X1+m+n) ∼= mapΣm(L,X1+m+n) = mapΣm(L, (shX)m+n)

constitute an isomorphism of symmetric spectra

.1+m(Σ+
1+m ∧1×Σm L,X) ∼= .m(L, shX) .

[If we use the ‘shift adjoint’ notation .L = Σ+
1+m ∧1×Σm L, this becomes .1+m(.L,X) ∼= .m(L, shX) ]

Finally, we can combine all the above to a natural isomorphism

.m(Σ+
m ∧K,X) ∼= (shmX)K

where K is any (non-equivariant) based space (or simplicial set).
The twisted smash product L .m − (Example 3.27) with a Σm-space L (or simplicial set) is left ad-

joint to the equivariant function spectrum .m(L,−), we shall now explain. We summarize the adjunction
isomorphisms in the commutative triangle, where X and Z are arbitrary symmetric spectra:

(3.33)

Sp(L .m X,Z)

(shm−)◦ηL,X ))SSSSSSSSSSSSSSS
.m(L,−)◦µX,L // Sp(X, .m(L,Z))

evL,Z ◦(L∧−)uujjjjjjjjjjjjjjj

Σm-Sp(L ∧X, shm Z)

The bottom entry is the set of Σm-equivariant morphisms of symmetric spectra from L∧X (with Σm-action
through L) to the m-fold shift shm Z (with Σm-action on the shifted coordinates). The maps are defined
with the help of the homomorphisms of Σm-symmetric spectra

ηL,X : L ∧X −→ shm(L .m X) , evL,Z : L ∧ .m(L,Z) −→ shm Z

and the homomorphism of symmetric spectra

µL,X : X −→ .m(L,L .m X) ;

the latter is the unit of the adjunction for the functor pair (L .m −, .m(L,−)). The morphism ηL,X was
defined in (3.28). The morphism evL,Z is defined in level n as the map evaluation map

(3.34) L ∧ .m(L,Z)n = L ∧mapΣm(L,Zm+n) −→ Zm+n = (shm Z)n .

The morphism µL,X is defined in level n as the map

Xn −→ mapΣm(L,Σ+
m+n ∧Σm×Σn L ∧Xn)

given by

(ηL,X)n(x)(l) = [1 ∧ l ∧ x] .
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The vertical map labelled ‘evm’ is essentially evaluation at level m and is bijective by the semifreeness
property of the symmetric spectrum GmL (compare Example 3.23) and the definition of Hom(X,Z)m as
map(X, shm Z). The relation

evL,L.mX ◦(L ∧ µX,L) = ηL,X : L ∧X −→ shm(L .m X)

and the naturality of evL,Z imply that the triangle (3.33) commutes.
All these maps are natural in L, X and Z. We omit the straightforward, but boring, verification that

all maps are bijective. In particular, the lower horizontal bijection makes the twisted smash product functor
L .m − a left adjoint of the equivariant function spectrum functor .m(L,−).

There are two more adjunctions: (the semifree symmetric spectrum GmL (Example 3.23))

(3.35) Σm-Sp(L ∧X, shm Z)
∼=−−→ Σm-T(L,map(X, shm Z))

evm←−−−− Sp(GmL,Hom(X,Z))

[mapping spaces are only introduced later...] The adjunction bijections can be promoted to ‘enriched
adjunctions’, where isomorphisms of mapping spaces or even symmetric function spectra take the place of
bijections. For the precise formulation we refer to Exercise E.I.11.

Example 3.36 (Mapping spaces). There is a whole space, respectively simplicial set, of morphisms between
two symmetric spectra. For symmetric spectra X and Y , every morphism f : X −→ Y consists of a family
of based maps {fn : Xn −→ Yn}n≥0 which satisfy some conditions. So the set of morphisms from X to Y
is a subset of the product of mapping spaces

∏
n≥0 map(Xn, Yn) and we give it the subspace topology of

the (compactly generated) product topology. We denote this mapping space by map(X,Y ).
Now suppose thatX and Y are symmetric spectra of simplicial sets. Then the mapping space map(X,Y )

is the simplicial set whose n-simplices are the spectrum morphisms from ∆[n]+ ∧X to Y . For a monotone
map α : [n] −→ [m] in the simplicial category ∆, the map α∗ : map(X,Y )m −→ map(X,Y )n is given by
precomposition with α∗ ∧ Id : ∆[n]+ ∧X −→ ∆[m]+ ∧X. The morphism space has a natural basepoint,
namely the trivial map from ∆[0]+ ∧ X to Y . We can, and will, identify the vertices of map(X,Y ) with
the morphisms from X to Y using the natural isomorphism ∆[0]+ ∧X ∼= X.

Furthermore, for a pointed space K and topological symmetric spectra X and Y we have adjunction
homeomorphisms

map(K,map(X,Y )) ∼= map(K ∧X,Y ) ∼= map(X,Y K) ,

where the first mapping space is taken in the category T of compactly generated spaces. In the context of
symmetric spectra of simplicial sets, the analogous isomorphisms of mapping simplicial sets hold as well.

The topological and simplicial mapping spaces are related by various adjunctions. We list some of these.
For a simplicial spectrum X and a topological spectrum Y there is a natural isomorphism of simplicial sets

map(X,S(Y )) ∼= S(map(|X|, Y ))

which on vertices specializes to the adjunction between singular complex and geometric realization. Indeed,
an n-simplex of the left hand side is a morphism ∆[n]+ ∧X −→ S(Y ) of symmetric spectra of simplicial
sets. We can pass to the adjoint morphism |∆[n]+ ∧ X| −→ Y of symmetric spectra of spaces, exploit
that realization commutes with smash products and then identify the realization |∆[n]| with the topological
n-simplex ∆[n] as in (3.1) of Appendix A. The outcome is a morphism ∆[n]+ ∧ |X| −→ Y whose adjoint
∆[n] −→ map(|X|, Y ), a continuous map of unbased spaces, is an n-simplex of the singular complex of the
mapping space map(|X|, Y ).

For free symmetric spectra we have Σm-equivariant isomorphisms

(3.37) map(FmK,Y ) ∼= map(K,Ym) .

In more detail: in the context of spectra of spaces, the adjunction bijection between mapping sets which we
specified in Example 3.20 is indeed a homeomorphism. In the context of spectra of simplicial sets, we can
use the adjunction bijection for ∆[n]+ ∧K and exploit Fm(∆[n]+ ∧K) = ∆[n]+ ∧ FmK and get a natural
bijection between the n-simplices of the two mapping simplicial sets. For K = S0 isomorphism (3.37)
specializes to an isomorphism map(FmS

0, Y ) ∼= Ym.
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We have associative and unital composition maps

map(Y,Z) ∧map(X,Y ) −→ map(X,Z) .

Indeed, for symmetric spectra of topological spaces this is just the observation that composition of mor-
phisms is continuous for the mapping space topology. For symmetric spectra of simplicial sets the compo-
sition maps are given on n-simplices by

Sp(∆[n]+ ∧ Y,Z) ∧ Sp(∆[n]+ ∧X,Y ) −→ Sp(∆[n]+ ∧X,Z)

g ∧ f 7−→ g ◦ (∆[n]+ ∧ f) ◦ (diag ∧X)

where diag : ∆[n]+ −→ ∆[n]+ ∧∆[n]+ is the diagonal map.

Example 3.38 (Internal Hom spectra). Symmetric spectra have internal function objects: for symmetric
spectra X and Y we define a symmetric spectrum Hom(X,Y ) in level n by

Hom(X,Y )n = map(X, shn Y )

with Σn-action induced by the action on shn Y as described in Example 3.9. The structure map
σn : Hom(X,Y )n ∧ S1 −→ Hom(X,Y )n+1 is the composite

map(X, shn Y ) ∧ S1 assembly−−−−−→ map(X,S1 ∧ shn Y )
map(X,λshn Y )−−−−−−−−−−→ map(X, shn+1 Y ) ;

here the first map is of ‘assembly type’, i.e., it takes f ∧ t to the map which sends x ∈ X to t ∧ f(x) (for
f : X −→ shn Y and t ∈ S1), and λshn Y : S1 ∧ shn Y −→ sh(shn Y ) = shn+1 Y is the natural morphism
defined in (3.12).

In order to verify that this indeed gives a symmetric spectrum we describe the iterated structure map.

Let us denote by λ
(m)
Y : Sm ∧ Y −→ shm Y the morphism whose n-th level is the composite

(3.39) Sm ∧ Yn
twist−−−→ Yn ∧ Sm

σm−−→ Yn+m
χn,m−−−→ Ym+n = (shm Y )n .

For m = 0 this is the canonical isomorphism S0 ∧ Y ∼= Y and for m = 1 this specializes to the morphism

λY : S1 ∧ Y −→ shY of (3.12); in general λ
(m)
Y is a morphism of Σm-symmetric spectra. Then for all

k,m ≥ 0 the diagram

Sk ∧ Sm ∧ Y
Id∧λ(m)

Y //

∼=
��

Sk ∧ shm Y
λ

(k)
shm Y // shk(shm Y )

Sk+m ∧ Y
χk,m∧Id

// Sm+k ∧ Y
λ

(m+k)
Y

// shm+k Y

commutes. This implies that the iterated structure map of the spectrum Hom(X,Y ) equals the composite

map(X, shn Y ) ∧ Sm assembly−−−−−→ map(X,Sm ∧ shn Y )
map(X,λ

(m)
shn Y

)
−−−−−−−−−−→ map(X, shn+m Y )

and is thus Σn × Σm-equivariant. The first map is again of ‘assembly type’, i.e., for f : X −→ shn Y and
t ∈ Sm it takes f ∧ t to the map which sends x ∈ X to t ∧ f(x).

Taking function spectrum commutes ‘on the nose’ with shifting in the second variable, i.e., we have

(3.40) Hom(X, shY ) = sh
(

Hom(X,Y )
)
,

where we really mean equality, not just isomorphism. Indeed, in level n we have

Hom(X, shY )n = map(X, shn(shY )) = map(X, sh1+n Y )

= Hom(X,Y )1+n =
(

sh
(

Hom(X,Y )
))
n
.

The symmetric group actions and structure maps coincide as well; as we explained in (3.10), simplifying the
expression shn(shY ) to sh1+n Y (rather than shn+1 Y ) is the right way to get the group actions straight.
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A natural isomorphism of symmetric spectra Hom(FmS
0, Y ) ∼= shm Y is given at level n by

Hom(FmS
0, Y )n = map(FmS

0, shn Y ) ∼= (shn Y )m = Yn+m
χn,m−−−→ Ym+n = (shm Y )n

where the second map is the adjunction bijection described in Example 3.20. This isomorphism is equivariant
for the left actions of Σm induced on the source from the right Σm-action on a free spectrum described
in Example 3.20. In the special case m = 0 we have F0S

0 = S, which gives a natural isomorphism of
symmetric spectra Hom(S, Y ) ∼= Y .

The internal function spectrum functor Hom(X,−) is right adjoint to the internal smash product −∧X
of symmetric spectra, to be discussed in Section 5.

3.3. Constructions involving ring spectra.

Example 3.41 (Endomorphism ring spectra). For every symmetric spectrum X, the symmetric function
spectrum Hom(X,X) defined in Example 3.38 has the structure of a symmetric ring spectrum which we call
the endomorphism ring spectrum of X. The multiplication map µn,m : Hom(X,X)n ∧ Hom(X,X)m −→
Hom(X,X)n+m is defined as the composite

map(X, shnX) ∧map(X, shmX)
shm ∧ Id−−−−−→ map(shmX, shm(shnX)) ∧map(X, shmX)

= map(shmX, shn+mX) ∧map(X, shmX)
◦−−−−→ map(X, shn+mX)

where the second map is the composition pairing of Example 3.36. We refer to (3.10) for why it is ‘right’ to
identify shm(shnX) with shn+mX (note the orders in which m and n occur), so that no shuffle permutation
is needed.

While this construction always works on the pointset level, one can only expect Hom(X,X) to be
homotopically meaningful under certain conditions on X. The stable model structures which we discuss in
Section III.4 will explain which conditions are sufficient.

In much the same way as above we can define associative and unital action maps Hom(X,Z)n ∧
Hom(X,X)m −→ Hom(X,Z)n+m and Hom(X,X)n ∧ Hom(Z,X)m −→ Hom(Z,X)n+m for any other
symmetric spectrum Z. This makes Hom(X,Z) and Hom(Z,X) into right respectively left modules over
the endomorphism ring spectrum of X.

Example 3.42 (Spherical monoid ring). If M is a topological or simplicial monoid (depending on the kind
of symmetric spectra under consideration), we define the spherical monoid ring SM by

(SM)n = M+ ∧ Sn

with symmetric group actions and structure maps only on the spheres; here M+ denotes the underlying
space (or simplicial set) of M with a disjoint basepoint added. In other words, the underlying symmetric
spectrum of the spherical monoid ring is the suspension spectrum, as defined in Example 1.13, of M+. The
spherical monoid ring becomes a symmetric ring spectrum as follows: the unit maps of SM are the maps
1∧− : Sn −→M+∧Sn = (SM)n which include via the unit element 1 of the monoid M . The multiplication
map µn,m is given by the composite

(M+ ∧ Sn) ∧ (M+ ∧ Sm) ∼= (M ×M)+ ∧ (Sn ∧ Sm)
mult.∧µn,m−−−−−−−−−→ M+ ∧ Sn+m .

A right module over the spherical monoid ring SM is ‘the same as’ a symmetric spectrum with a (continuous
or simplicial) right action by the monoid M through endomorphisms.

If R is a symmetric ring spectrum, then the zeroth space (or simplicial set) R0 is a topological (or
simplicial) monoid via the composite

R0 ×R0 −→ R0 ∧R0
µ0,0−−→ R0 .

The monoid R0 is commutative if the ring spectrum R is. Given any monoid homomorphism f : M −→ R0

we define a homomorphism of symmetric spectra f̂ : SM −→ R in level n as the composite

M+ ∧ Sn f∧Id−−−→ R+
0 ∧ Sn −→ R0 ∧ Sn

σn−−→ Rn .
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This morphism is in fact unital and associative, i.e., a morphism of symmetric ring spectra. Moreover, f̂
is uniquely determined by the property that it gives back f in level 0. We can summarize this as saying
that the construction of the monoid ring over S is left adjoint to the functor which takes a symmetric ring
spectrum R to the (topological or simplicial) monoid R0. [pointed monoids]

Example 3.43 (Monoid ring spectra). The previous construction works more generally when we start with
a symmetric ring spectrum R instead of the sphere spectrum. If R is a symmetric ring spectrum and M a
topological or simplicial monoid (depending on the kind of symmetric spectra), we can define a symmetric
ring spectrum RM by RM = M+ ∧R, i.e., the levelwise smash product with M with a disjoint basepoint
added. The unit map is the composite of the unit map of R and the morphism R ∼= {1}+ ∧R −→M+ ∧R
induced by the unit of M . The multiplication map µn,m is given by the composite

(M+ ∧Rn) ∧ (M+ ∧Rm) ∼= (M ×M)+ ∧ (Rn ∧Rm)
mult.∧µn,m−−−−−−−−−→ M+ ∧Rn+m .

If both R and M are commutative, then so is RM . A right module over the symmetric ring spectrum RM
amounts to the same data as an R-module together with a continuous (or simplicial) right action of the
monoid M by R-linear endomorphisms.

As we shall see later, the homotopy groups of RM are the R-homology groups of the underlying space
of M , with the Pontryagin product as multiplication. In the special case of a discrete spherical monoid
ring, the homotopy groups are the monoid ring, in the ordinary sense, of the homotopy groups, i.e., there
is a natural isomorphism of graded rings

π∗ (RM) ∼= (π∗R)M .

[add this below]

Example 3.44 (Matrix ring spectra). If R is a symmetric ring spectrum and k ≥ 1 we define the symmetric
ring spectrum Mk(R) of k × k matrices over R by

Mk(R) = map(k+, k+ ∧R) .

Here k+ = {0, 1, . . . , k} with basepoint 0, and so Mk(R) is a k-fold product of a k-fold coproduct (wedge)
of copies of R. So ‘elements’ of Mk(R) are more like matrices which in each row have at most one nonzero
entry. The multiplication

µn,m : map(k+, k+ ∧Rn) ∧ map(k+, k+ ∧Rm) −→ map(k+, k+ ∧Rn+m)

sends f ∧ g to the composite

k+ g−−→ k+ ∧Rm
f∧Id−−−−→ k+ ∧Rn ∧Rm

k+∧µn,m−−−−−−→ k+ ∧Rn+m .

We shall see below that homotopy groups take wedges and products to direct sums; this implies a natural
isomorphism of graded rings

π∗(Mk(R)) ∼= Mk(π∗R) .

We revisit this in more detail in Example 6.29

Example 3.45 (Opposite ring spectrum). For every symmetric ring spectrum R we can define the opposite
ring spectrum Rop by keeping the same spaces (or simplicial sets), symmetric group actions and unit maps,
but with new multiplication µop

n,m on Rop given by the composite

Rop
n ∧Rop

m = Rn ∧Rm
twist−−−→ Rm ∧Rn

µm,n−−−→ Rm+n
χm,n−−−→ Rn+m = Rop

n+m .

As a consequence of centrality of ι1, the higher unit maps for Rop agree with the higher unit maps for R.
By definition, a symmetric ring spectrum R is commutative if and only if Rop = R. In the internal form,
the multiplication µop is obtained from the multiplication µ : R ∧R −→ R as the composite

R ∧R τR,R−−−→ R ∧R µ−→ R .
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For example, we have (HA)op = H(Aop) for the Eilenberg-Mac Lane ring spectra (Example 1.14) of an
ordinary ring A and its opposite, and (RM)op = (Rop)Mop for the monoid ring spectra (Example 3.42) of
a simplicial or topological monoid M and its opposite.

By the centrality of the unit, the underlying symmetric spectra of R and Rop are equal (not just
isomorphic), hence R and Rop have the same (not just isomorphic) naive and true homotopy groups. As
we discuss in Example 6.30 below, we have

π∗(R
op) = (π∗R)op

(again equality) as graded rings, where the right hand side is the graded-opposite ring, i.e., the graded
abelian group π∗R with new product x ·op y = (−1)kl · y · x for x ∈ πkR and y ∈ πlR.

Example 3.46 (Function ring spectra). If R is a symmetric ring spectrum and L an unpointed space, then

the mapping spectrum RL
+

(compare Example 3.6) is again a symmetric ring spectrum. The multiplication

maps RL
+

n ∧RL+

m −→ RL
+

n+m are the composites

map(L+, Rn) ∧map(L+, Rm)
∧−−→ map(L+ ∧ L+, Rn ∧Rm)

map(diag,µn,m)−−−−−−−−−−→ map(L+, Rn+m)

using the diagonal map L+ −→ L+∧L+. Associativity of the multiplication on RL
+

comes from associativity

of R and coassociativity of the diagonal map. The unit map ιn : Sn −→ RL
+

n is the composite of the unit

map of R with the map Rn −→ RL
+

n that takes a point (or simplex) x ∈ Rn to the constant map that

sends all of L to x. If the multiplication of R is commutative, then so is the multiplication of RL
+

, since
the diagonal map is cocommutative.

A concrete example is X = HA, the Eilenberg-Mac Lane spectrum of an abelian group A. Then

π̂−k(HAL
+

) ∼= Hk(L,A) ,

a natural isomorphism of abelian groups, where the right hand side is the singular cohomology of L with

coefficients in A. Indeed, since HA is an Ω-spectrum, so is HAL
+

for any cofibrant space or any simplicial

set. So the canonical map [L,A[Sk]] = π0 map(L+, A[Sk]) = π0(HAL
+

)k −→ π̂−k(HAL
+

) is bijective,
where [L,A[Sk]] is the set of homotopy classes of (unbased) maps. Since A[Sk] is an Eilenberg-Mac Lane
space of type (A, k), evaluation at the fundamental cohomology class ιk ∈ Hk(A[Sk], A) is an isomorphism

[L,A[Sk]] −→ Hk(L,A) , [f ] 7−→ f∗(ιk) .

If A is a ring, then HA becomes a ring spectrum and this isomorphism takes the product of homotopy
groups to the cup product in singular cohomology.

Example 3.47 (Inverting m). We consider an integer m and define S[1/m], the sphere spectrum with m
inverted by starting from the sphere spectrum (of topological spaces) and using a map ϕm : S1 −→ S1 of
degree m as the new unit map ι1. Since the multiplication on S is commutative, centrality is automatic.
So S[1/m] has the same spaces and symmetric group actions as S, but the n-th unit map ιn of S[1/m] is
the n-fold smash power of ϕm, which is a self map of Sn of degree mn. The unit maps form a morphism
S −→ S[1/m] of symmetric ring spectra which on homotopy groups induces an isomorphism

π̂∗ S[1/m] ∼= π̂∗S⊗ Z[1/m] .

For m = 0, the homotopy groups are thus trivial and for m = 1 or m = −1 the unit morphism S −→ S[1/m]
is a π̂∗-isomorphism.

Example 3.48 (Inverting homotopy elements). Let R be a symmetric ring spectrum and let x : S1 −→ R1

be a central map of pointed spaces (or simplicial sets), i.e., such that the square

Rn ∧ S1 Id∧x //

τ

��

Rn ∧R1

µn,1 // Rn+1

χn,1

��
S1 ∧Rn x∧Id

// R1 ∧Rn µ1,n

// R1+n
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commutes for all n ≥ 0. We observe that if R is commutative, then any map from S1 to R1 is central.
We define a new symmetric ring spectrum R[1/x] as follows. For n ≥ 0 we set

R[1/x]n = map(Sn, R2n) ,

the n-fold loop space of R2n. In order to guess the correct action and multiplication maps it is helpful to
think of 2n as n+n, and not as the n-fold sum of 2’s. The group Σn acts on Sn by coordinate permutations,
on Rn+n via restriction along the diagonal embedding

∆ : Σn −→ Σ2n , ∆(γ) = γ + γ ,

and by conjugation on the whole mapping space. The multiplication µn,m : R[1/x]n ∧ R[1/x]m −→
R[1/x]n+m is the map

map(Sn, R2n) ∧map(Sm, R2m) −→ map(Sn+m, R2(n+m))

f ∧ g 7−→ (1n + χn,m + 1m) ◦ µ2n,2m ◦ (f ∧ g) .

Note that the interpretation 2n = n + n lets us predict the shuffle permutation: the natural target of
µ2n,2m ◦ (f ∧ g) is R2n+2m, whose index expands to (n+n) + (m+m). The visual difference to 2(n+m) =
(n + m) + (n + m) suggest to insert the permutation 1n + χn,m + 1m which moves the indices into the
correct order. The multiplication map is associative since smashing of maps and the product of R are, and
because the relation

(1n+m + χn+m,k + 1k)(1n + χn,m + 1m + 12k) = (1n + χn,m+k + 1m+k)(12n + 1m + χm,k + 1k)

holds in the group Σ2n+2m+2k. The multiplication map is Σn ×Σm-equivariant since the original multipli-
cation maps are equivariant and since the diagonal embeddings satisfy

∆(γ + τ)(1n + χn,m + 1m) = (1n + χn,m + 1m)(∆(γ) + ∆(τ))

for γ ∈ Σn and τ ∈ Σm. We have R[1/x]0 = R0 and the 0th unit map for R[1/x] is the same as for R.
Next we define based maps jn : Rn −→ map(Sn, R2n) as the adjoints of the maps

Rn ∧ Sn
Id∧x∧n−−−−−→ Rn ∧R∧n1

µn,1,...,1−−−−−→ Rn+n

Since the map µn,1,...,1 ◦ x∧n : Rn ∧ Sn −→ Rn+n is Σn ×Σn-equivariant, the adjoint jn is Σn-equivariant.
The maps jn are multiplicative in the sense of the relation µn,m(jn ∧ jm) = jn+mµn,m holds.

We define unit maps ιn : Sn −→ R[1/x]n as the composite of the unit map of R with jn (which agrees
with the n-fold power of the map j1 : S1 −→ R[1/x]1). This finishes the definition of R[1/x] which is again
a symmetric ring spectrum and comes with a morphism of symmetric ring spectra j : R −→ R[1/x].

We note that the central map x does not enter in the definition of the spaces R[1/x]n, and it is not
used in defining the multiplication of R[1/x], but it enters in the definition of the morphism j and hence
the unit map of the ring spectrum R[1/x]. Since R[1/x]n is the n-fold loop space of R2n, the homotopy
group πk+n(R[1/x]n) is isomorphic to πk+2nR2n; thus the colimit system which defines the naive homotopy
group π̂k(R[1/x]) involves ‘half of’ the groups which define π̂kR, but the effect of the map x is twisted into
the morphisms in the sequence, and so the homotopy groups of R and R[1/x] are typically different. We
show in Proposition 6.56 below that if R is semistable, then so is R[1/x] and the effect of the morphism
j : R −→ R[1/x] on the graded rings of homotopy groups is precisely inverting the class in π̂0R represented
by the map x.

Example 3.49 (Adjoining roots of unity). As an application of the localization construction of Exam-
ple 3.48 we construct a commutative symmetric ring spectrum which models the ‘Gaussian integers over S’
with 2 inverted. We start with the spherical group ring SC4 of the cyclic group of order 4, a commutative
symmetric ring spectrum as in Example 3.42. We invert the element

1− t2 ∈ ZC4 = π̂0(SC4)

where t ∈ C4 is a generator, and define

S[1/2, i] = SC4[1/(1− t2)] .
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In more detail, the space (SC4)1 = C+
4 ∧S1 is a wedge of 4 circles and the map from π1(SC4)1 to the stable

group π̂0(SC4) is surjective. So 1 − t2 ∈ π̂0(SC4) can be represented by a based map x : S1 −→ (SC4)1

to which we apply Example 3.48. The monoid ring spectrum SC4 is commutative and semistable, and so
Proposition 6.56 below shows that the graded ring of homotopy groups of SC4[1/(1− t2)] is obtained from
the ring π∗(SC4) by inverting the class 1− t2 in π̂0.

Because (1 + t2)(1 − t2) = 0 in the group ring ZC4, inverting 1 − t2 forces 1 + t2 = 0, so t becomes a
square root of −1. Since (1− t2)2 = 2(1− t2), inverting 1− t2 also inverts 2, and in fact

π0 S[1/2, i] ∼= ZC4[1/(1− t2)] = Z [1/2, i] ,

where i is the image of t. The ring spectrum S[1/2, i] is π̂∗-isomorphic as a symmetric spectrum to a wedge
of 2 copies of S[1/2], and thus deserves to be called the ‘Gaussian integers over S’ with 2 inverted. Moreover,
S[1/2, i] is a Moore spectrum for the ring Z[1/2, i], i.e., its integral homology is concentrated in dimension
zero (compare Section II.6.3).

If p is a prime number and n ≥ 1, we can similarly adjoin a primitive pn-th root of unity to the sphere
spectrum, provided we are also willing to invert p in the homotopy groups. We first form the monoid ring
spectrum SCpn of the cyclic group of order pn, let t ∈ Cpn denote a generator and invert the element

f = p− (tq(p−1) + tq(p−2) + · · ·+ tq + 1) in ZCpn = π̂0(SCpn), where q = pn−1. This defines

S[1/p, ζ] = SCpn [1/f ] .

We have f2 = pf , so inverting f also inverts the prime p and forces the expression p− f to become 0 in the
localized ring. If we let ζ denote the image of t in the localized ring, then the latter says that ζ is a root of
the cyclotomic polynomial, i.e.,

ζq(p−1) + ζq(p−2) + · · ·+ ζq + 1 = 0

where again q = pn−1. In fact we have ZCpn [1/f ] = Z[1/p, ζ] where ζ is a primitive pn-th root of unity;
moreover the commutative symmetric ring spectrum S[1/p, ζ] is a Moore spectrum for the ring Z[1/p, ζ].

We can do the same constructions starting with any semistable commutative symmetric ring spectrum
R instead of the sphere spectrum, yielding a new commutative symmetric ring spectrum R[1/p, ζ]. If p is
already invertible and the cyclotomic polynomial above is irreducible in π̂0R, then this adjoins a primitive
pn-th root of unity to the homotopy ring of R.

These examples are a special case of a much more general phenomenon: every number ring can be
‘lifted’ to an extension of the sphere spectrum by a commutative symmetric ring spectrum, provided we
also invert the ramified primes. However, the only proofs of this general fact that I know use obstruction
theory, and so we cannot give a construction which is as explicit and simple as the one above for adjoining
roots of unity.

Example 3.50 (Algebraic K-theory). There are various formalisms which associate to a category with
suitable extra structure an algebraic K-theory space. These spaces are typically infinite loop spaces in
a natural way, i.e., they arise from an Ω-spectrum. One very general framework is Waldhausen’s S·-
construction which accepts categories with cofibrations and weak equivalences as input and which produces
symmetric spectra which are positive Ω-spectra.

We consider a category C with cofibrations and weak equivalences in the sense of Waldhausen [88]. For
any finite set Q we denote by P(Q) the power set of Q viewed as a partially ordered set under inclusions,
and thus as a category. A Q-cube in C is a functor X : P(Q) −→ C. Such a Q-cube X is a cofibration cube
if for all S ⊂ T ⊂ Q the canonical map

colimS⊆U(T X(U) −→ X(T )

is a cofibration in C. (The colimit on the left can be formed by iterated pushouts along cofibrations, so it
exists in C.)

We view the ordered set [n] = {0 < 1 < · · · < n} as a category. If n = {ns}s∈Q is a Q-tuple of
non-negative integers, we denote by [n] the product category of the categories [ns], s ∈ Q. For a morphism
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i → j in [n] and a subset U ⊂ Q we let (i → j)U be the new morphisms in [n] whose sth component is
is → js if s ∈ U and the identity is → is if s 6∈ U . Then for each morphism i→ j in [n], the assignment

U 7→ (i→ j)U

defines a Q-cube in the arrow category Ar[n].
For a finite set Q and a Q-indexed tuple n = {ns}s∈Q we define a category SQn C as the full subcategory

of the category of functors from Ar[n] to C consisting of the functors

A : Ar[n] −→ C , (i→ j) 7→ Ai→j

with the following properties:

(i) if some component is → js of i → j is an identity (i.e., if is = js for some s ∈ Q), then Ai→j = ∗ is
the distinguished zero object of C;

(ii) for every pair of composable morphisms i→ j → k the cube

U 7→ A(j→k)U◦(i→j)

is a cofibration cube
(iii) for every pair of composable morphisms i→ j → k the square

colimU(QA(j→k)U◦(i→j) //

��

Ai→k

��
∗ // Aj→k

is a pushout in C.
The category SQn C depends contravariantly on [n], so that as [n] varies, we get a Q-simplicial category

SQ· C. We can make SQ· C into a Q-simplicial object of categories with cofibrations and weak equivalences
as follows. A morphism f : A −→ A′ is a cofibration in SQn C if for every pair of composable morphisms
i→ j → k the induced map of Q-cubes(

U 7→ A(j→k)U◦(i→j)
)
−→

(
U 7→ A′(j→k)U◦(i→j)

)
is a cofibration cube when viewed as a (|Q|+ 1)-cube in C. A morphism f : A −→ A′ is a weak equivalence
in SQn C if for every morphism i −→ j in [n] the morphism fi−→j is a weak equivalence in C. If Q has one

element, the SQ· C is isomorphic to S·C as defined by Waldhausen [88]. If P ⊂ Q there is an isomorphism
of Q-simplicial categories with cofibrations and weak equivalences

SQ· C ∼= SQ−P· (SP· C)
[define]. So a choice of linear ordering of the set Q specifies an isomorphism of categories

SQ· C ∼= S· · · ·S·C

to the |Q|-fold iterate of the S·-construction. Note that the permutation group of the set Q acts on SQ· C
by permuting the indices.

Now we are ready to define the algebraic K-theory spectrum K(C) of the category with cofibrations
and weak equivalences C. (This is really naturally a coordinate free symmetric spectrum in the sense of
Exercise E.I.5.) It is the symmetric spectrum of simplicial sets with nth level given by

K(C)n = N·

(
wS
{1,...,n}
· C

)
,

i.e., the nerve of the subcategory of weak equivalences in SQ· C for the special case Q = {1, . . . , n}. The

basepoint is the object of S
{1,...,n}
· C given by the constant functor with values the distinguished zero object.

The group Σn of permutations of the set {1, . . . , n}, acts on S
{1,...,n}
· C preserving weak equivalences, so it

acts on the simplicial set K(C)n. Note that K(C)0 is the nerve of the category wC of weak equivalences
in C.
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We still have to define the structure maps

σn : K(C)n ∧ S1 −→ K(C)n+1 .

[...] By a theorem of Waldhausen [ref], the symmetric spectrum K(C) is a positive Ω-spectrum.
Pairings of exact categories give rise to pairings of K-theory spectra. Consider a biexact functor

∧ : C × D −→ E between categories with cofibrations and weak equivalences. For disjoint finite subsets Q
and Q′ we obtain a biexact functor of (Q∪Q′)-simplicial categories with cofibrations and weak equivalences

∧ : SQ· C × SQ
′

· D −→ SQ∪Q
′

· E

by assigning

(A ∧A′)i∪i′→j∪j′ = Ai→j ∧A′i′→j′ .
We specialize to Q = {1, . . . , n} and Q′ = {n+ 1, . . . , n+m}, restrict to weak equivalences and take nerves.
This yields a Σn × Σm-equivariant map K(C)n ×K(D)m −→ K(E)n+m which factors as

K(C)n ∧K(D)m −→ K(E)n+m .

These maps are associative for strictly associative pairings [explain].
An example of a category with cofibrations and weak equivalences is the category Γ of finite pointed

sets n+ = {0, 1, . . . , n} with 0 as basepoint, and pointed set maps. Here the cofibrations are the injective
maps and the weak equivalences are the bijections. The ‘smash product’ functor

∧ : Γ× Γ −→ Γ , (n+,m+) 7→ (nm)+

is biexact and strictly associative so it makes the symmetric sequence {K(Γ)n}n≥0 into a strict monoid
of symmetric sequences. Here we identify n+ ∧ m+ with (nm)+ using the lexicographic ordering. The
object 1+ of Γ gives a 0-simplex in K(C)0; a theorem by Barratt-Priddy-Quillen asserts that the morphism
S −→ K(Γ) adjoint to this is a π̂∗-isomorphism. [compare with Jardine’s ‘The K-theory presheaf of spectra’]

3.4. Symmetric spectra and I-spaces. Symmetric spectra are intimately related to the category I of
(standard) finite sets and injective maps. We denote by I the category with objects the sets n = {1, . . . , n}
for n ≥ 0 (where 0 is the empty set) and with morphisms all injective maps. In other words, I is the
subcategory of the category Fin of standard finite sets (compare Remark 0.4) with only injective maps

as morphisms. We denote by TI and sSI the categories of I-spaces, i.e., covariant functors from I to the
category of pointed spaces or simplicial sets.

Example 3.51 (Smash product with I-spaces). Given an I-space T : I −→ T and a symmetric spectrum X,
we can form a new symmetric spectrum T ∧X by setting

(T ∧X)n = T (n) ∧Xn

with diagonal action of Σn (which equals the monoid of endomorphism of the object n of I). The structure
map is given by

(T ∧X)n ∧ S1 = T (n) ∧Xn ∧ S1 T (ι)∧σn−−−−−→ T (n + 1) ∧Xn+1 = (T ∧X)n+1

where ι : n −→ n + 1 is the inclusion. If K is a pointed space and T the constant functor with value K,
then T ∧X is equal to K ∧X, i.e., this construction reduces to the pairing of Example 3.6.

Example 3.52. The collection of spheres can be used to construct adjoint pairs of functors

TI
Σ∞ // SpT
Ω•

oo and sSI
Σ∞ // SpsS
Ω•

oo

between I-spaces and symmetric spectra. The left adjoint Σ∞ is the same as − ∧ S, the smash product of
an I-space with the sphere spectrum as in Example 3.51. So explicitly, we have

(Σ∞T )n = T (n) ∧ Sn
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with diagonal action of Σn; the structure map is given by

(Σ∞T )n ∧ S1 = T (n) ∧ Sn ∧ S1 T (ι)∧∼=−−−−−→ T (n + 1) ∧ Sn+1 = (Σ∞T )n+1

where ι : n −→ n + 1 is the inclusion, where the isomorphism is the canonical one. We refer to Σ∞T as
the suspension spectrum of the I-space T . This generalizes the suspension spectrum of a based space or
simplicial set (compare Example 1.13), which we recover for a constant I-space T .

The right adjoint Ω• is defined as follows. If X is a symmetric spectrum, we set

(Ω•X)(n) = map(Sn, Xn)

on objects, where the symmetric group Σn acts by conjugation, i.e., (γ∗f)(x) = γf(γ−1x) for f : Sn −→ Xn

and γ ∈ Σn. If α : n −→ n + m is an injective map then α∗ : map(Sn, Xn) −→ map(Sn+m, Xn+m) is given
as follows. We choose a permutation γ ∈ Σn+m such that γ(i) = α(i) for all i = 1, . . . , n and set

α∗(f) = γ∗(σ
m(f ∧ Sm)) ,

i.e., we let γ acts as just defined on the composite

Sn+m f∧Sm−−−−→ Xn ∧ Sm
σm−−→ Xn+m .

If γ̄ ∈ Σn+m is another permutation that agrees with α on n, then γ−1γ̄ fixes the set n elementwise, so
γ−1γ̄ = 1n + τ for a unique permutation τ ∈ Σm. This gives

γ̄∗(σ
m(f ∧ Sm)) = γ∗(1n + τ)∗(σ

m(f ∧ Sm)) = γ∗(σ
m(f ∧ Sm))

because the iterated structure map σm is Σn × Σm-equivariant. So the definition of α∗f is independent of
the choice of permutation. Functoriality of the assignment α 7→ α∗ is then straightforward.

The adjunction bijection

SpT(Σ∞T,X) ∼= TI(T,Ω•X)

takes a morphism ϕ : Σ∞T −→ X to the natural transformation ϕ̂ : T −→ Ω•X whose value at the object n
is the adjoint T (n) −→ map(Sn, Xn) of ϕn : T (n) ∧ Sn −→ Xn.

Now suppose that we are either in the context of simplicial set or all the maps T (ι) : T (n) −→ T (n + 1)
are h-cofibrations. The sphere spectrum is semistable, so if the external M-action on the stable homotopy
groups πs

∗(T (ω)) = π̂∗(T (ω)∧S) is trivial, Proposition ?? applies. We can then conclude that the symmetric
spectrum Σ∞T is semistable and there is a chain of two stable equivalences between Σ∞T , the suspension
spectrum of the I-space T , and Σ∞T , the suspension spectrum of the colimit space T (ω).

[for a symmetric ring spectrum R, the I-space Ω•R has a product]

Example 3.53. The free symmetric spectrum FmS
m generated by an m-sphere in level m (compare

Example 3.20) is isomorphic to the suspension spectrum of a representable I-space. Indeed, we let I(m,−)+

denote the I-space that is given by the representable functor of the object m with a disjoint basepoint.
Here the set I(m,m) is viewed as a discrete space respectively a constant simplicial set.

Indeed, both FmS
m and I(m,−)+∧ S consist only of basepoints below level m. In level m and above,

an isomorphism

Σm+n ∧1×Σn S
m ∧ Sn −→ I(m,m + n)+∧ Sm+n = (I(m,−)+∧ S)m+n

[γ ∧ x] 7−→ γ|m ∧ x ,

where γ|m : m −→m + n is the restriction of a permutation of m + n to the subset m.

Example 3.54 (Ring spectra from multiplicative I-spaces). We can use the construction which pairs an
I-space with a symmetric spectrum (see Example 3.51) to produce symmetric ring spectra which model the
suspension spectra of certain infinite loop spaces such as BO, the classifying space of the infinite orthogonal
group, even if these do not have a strictly associative multiplication. This works for infinite loop spaces
which can be represented as ‘monoids of I-spaces’, as we now explain.
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The symmetric monoidal sum operation restricts from the category Fin of standard finite sets to the
category I. Thus I has a symmetric monoidal product ‘+’ given by addition on objects and defined for
morphisms f : n −→ n′ and g : m −→m′ we define f + g : n + m −→ n′ + m′ by

(f + g)(i) =

{
f(i) if 1 ≤ i ≤ n, and

g(i− n) + n′ if n+ 1 ≤ i ≤ n+m.

The product + is strictly associative and has the object 0 as a strict unit. The symmetry isomorphism is
the shuffle map χn,m : n + m −→m + n.

Consider an I-space T : I −→ T with a pairing, i.e., an associative and unital natural transformation
µn,m : T (n) ∧ T (m) −→ T (n + m). If R is a symmetric ring spectrum, then the smash product T ∧R (see
Example 3.51) becomes a symmetric ring spectrum with respect to the multiplication map

(T ∧R)n ∧ (T ∧R)m −→ (T ∧R)n+m

defined as the composite

T (n) ∧Rn ∧ T (m) ∧Rm
Id∧twist∧Id−−−−−−−−→ T (n) ∧ T (m) ∧Rn ∧Rm

µn,m∧µn,m−−−−−−−→ T (n + m) ∧Rn+m .

If the transformation µ is commutative in the sense that the square

T (n) ∧ T (m)
µn,m //

twist

��

T (n + m)

T (χn,m)

��
T (m) ∧ T (n)

µm,n

// T (m + n)

commutes for all n,m ≥ 0 and if the multiplication of R is commutative, then the product of T ∧R is also
commutative. This construction generalizes monoid ring spectra (see Example 3.42): if M is a topological
(respectively simplicial) monoid, then the constant I-functor with values M+ inherits an associative and
unital product from M which is commutative if M is. The smash product of a ring spectrum R with such
a constant multiplicative functor equals the monoid ring spectrum R[M ]. The construction commutes with
taking opposite multiplications (compare Example 3.45): we have (T ∧ R)op = T op ∧ Rop for the smash
product of an I-space with multiplication and a ring spectrum.

A more interesting instance of this construction is a commutative symmetric ring spectrum which models
the suspension spectrum of the space BO+, the classifying space of the infinite orthogonal group, supplied
with a disjoint basepoint. Here we start with the ‘I-topological group’ O, a functor from I to topological
groups whose value at n is O(n), the n-th orthogonal group. The behavior on morphisms is determined by
requiring that a permutation γ ∈ Σn acts as conjugation by the permutation matrix associated to γ and
the inclusion ι : n −→ n + 1 induces

ι∗ : O(n) −→ O(n+ 1) , A 7−→
(
A 0
0 1

)
.

A general injective set map α : n −→m then induces the group homomorphism α∗ : O(n) −→ O(m) given
by

(α∗A)i,j =


Aα−1(i),α−1(j) if i, j ∈Im(α),

1 if i = j and i 6∈Im(α),

0 if i 6= j and i or j is not contained in Im(α).

Orthogonal sum of matrices gives a natural transformation of group valued functors

O(n)×O(m) −→ O(n + m) , (A,B) 7−→
(
A 0
0 B

)
.

This transformation is unital, associative and commutative, in a sense which by now is hopefully clear. The
classifying space functor B takes topological groups to topological spaces and commutes with products up to
unital, associative and commutative homeomorphism. So by taking classifying spaces objectwise we obtain
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an I-space BO with values BO(n) = BO(n). This I-space inherits a unital, associative and commutative
product in the sense discussed above, but with respect to the cartesian product, as opposed to the smash
product, of spaces. So if we add disjoint basepoints and perform the construction above, we obtain a
symmetric spectrum Σ∞BO+ whose value in level n is the space BO(n)+ ∧ Sn. By our discussion above,
this is a commutative symmetric ring spectrum. Since the action of the symmetric group on BO(n)+

extends to an action of the n-th orthogonal group, the symmetric ring spectrum Σ∞BO+ is semistable
(by Proposition 3.16 (vi)). [and related by a chain of two stable equivalences to Σ∞BO+, the unreduced
suspension spectrum of the space BO, the classifying space of the infinite orthogonal group. The upshot
of all of this is that Σ∞BO+ is a commutative symmetric ring spectrum which is stably equivalent (even
π̂∗-isomorphic) to the suspension spectrum of the space BO+.

This construction can be adapted to yield commutative symmetric ring spectra which model the unre-
duced suspension spectra of BSO,BSpin,BU,BSU and BSp. In each case, the respective family of classical
groups fits into an ‘I-topological group’ with commutative product, and from there we proceed as for the
orthogonal groups. More examples of the same kind are obtained from families of discrete groups which fit
into ‘I-groups’ with products, for example symmetric groups, alternating groups or general or special linear
groups over some ring. In those cases, we generally do not obtain semistable spectra, however, and it is
more subtle to analyse the stable homotopy type of the construction.

4. Stable equivalences

In this section we introduce and discuss the important notion of a stable equivalence of symmetric
spectra, see Definition 4.11. An important result is that a morphism of symmetric spectra which induces
isomorphisms on naive homotopy groups is a stable equivalence (see Theorem 4.23). So for morphisms of
symmetric spectra we have the implications

homotopy equivalence =⇒ level equivalence =⇒ π̂∗-isomorphism =⇒ stable equivalence.

In general, the reverse implications do not hold. However, for certain classes of spectra, one can argue in
the other direction:

• every stable equivalence between semistable spectra is a π̂∗-isomorphism (see Proposition 6.3);
• every π̂∗-isomorphism between Ω-spectra is a level equivalence;
• in the context of simplicial sets, every level equivalence between injective spectra is a homotopy

equivalence (see Proposition 4.6).

In Proposition 4.17 below we give a list of several equivalent characterizations of stable equivalences. In
Proposition 4.31 we prove that stable equivalences are closed under various constructions such as suspen-
sions, loop, shift adjoint, wedges, and finite products. Up to stable equivalence, every symmetric spectrum
can be replaced by an Ω-spectrum (Proposition 4.39). The ultimate consequence will be that the stable
homotopy category arises as the localization of the category of symmetric spectra obtained by ‘inverting
stable equivalences’, compare Theorem 1.6 of Chapter II.

4.1. Injective spectra. The notion of an injective symmetric spectrum of simplicial sets is needed
below to define stable equivalences of symmetric spectra.

Definition 4.1. A symmetric spectrum of simplicial sets X is injective if for every monomorphism i : A −→
B which is also a level equivalence and every morphism f : A −→ X there exists an extension g : B −→ X
with f = gi.

Injective spectra do not arise ‘in nature’ very often, so we give some examples arising as co-free and
co-semifree symmetric spectra. Moreover, we prove in Proposition 4.10 below that injectivity can always
be arranged up to level equivalence.

Example 4.2 (Co-free and co-semifree symmetric spectra). In Example 3.23 we discussed that the evalua-
tion functor evm : SpsS −→ ΣmsS at level m has a left adjoint Gm, whose values are the semifree symmetric
spectra. But this evaluation functor (and its analog for symmetric spectra of spaces) also has a right adjoint

Pm : ΣmsS −→ SpsS ,
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which we construct now. For a based Σm-simplicial set (or Σm-space) L we refer to PmL as the co-semifree
symmetric spectrum generated by L in level m. The spectrum PmL consists only of a point above level m
and for n ≤ m we have

(PmL)n = map1×Σm−n(Sm−n, L) ,

the subspace of (1 × Σm−n)-equivariant maps in map(Sm−n, L), with restricted Σn-action from L. The
structure map σn : (PmL)n ∧ S1 −→ (PmL)n+1 is adjoint to the map

map1×Σm−n(Sm−n, L)
incl.−−−→ map1×Σm−n−1(Sm−n, L) ∼= Ω

(
map1×Σm−n−1(Sm−n−1, L)

)
.

The forgetful functors ΣmsS −→ sS and ΣmT −→ T which forget the group action also have a right
adjoint given by K 7→ map(Σ+

m,K), the function space from the set Σm into K (i.e., a product of m! copies
of K). So the composite forgetful functors SpsS −→ sS and SpT −→ T which take X to Xm have right
adjoints Rm given by RmK = Pm(map(Σ+

m,K)).
In the context of simplicial sets certain co-free and co-semifree symmetric spectra provide examples

of injective spectra. We start from the fact that every Kan simplicial set K has the extension property
with respect to all injective weak equivalences of simplicial sets. So by adjointness, the co-free symmetric
spectrum RmK is injective whenever K is a Kan simplicial set.

More generally, a co-semifree symmetric spectrum PmL is injective whenever the based Σm-simplicial
set L is ‘strongly fibrant’ in the Σm-equivariant sense and has a special Σm-equivariant homotopy type, in
the sense of the following definition.

Definition 4.3. A Σm-simplicial set L is strictly Σm-fibrant if for every subgroup H of Σm the H-fixed
points LH are a Kan simplicial set and the map LH −→ LhH from the fixed points to the homotopy fixed
points is a weak equivalence.

As we recall in Proposition A.4.5, strictly Σm-fibrant Σm-simplicial sets are the fibrant objects in the
‘mixed’ equivariant model structure, and they can be characterized by the extension property (also known
as ‘right lifting property’) with respect to all monomorphisms of Σm-simplicial sets which are also weak
equivalences after forgetting the group action. So if L is strictly Σm-fibrant, again by adjointness the
co-semifree symmetric spectrum PmL is injective.

Now we deduce various properties that injective spectra have.

Proposition 4.4. Let X be an injective symmetric spectrum of simplicial sets.

(i) For every monomorphism i : A −→ B of symmetric spectra of simplicial sets the map

map(i,X) : map(B,X) −→ map(A,X)

is a Kan fibration. If in addition i is a level equivalence, then map(i,X) is a weak equivalence.
(ii) For every symmetric spectrum B of simplicial sets the function space map(B,X) is a Kan complex.
(iii) For every m ≥ 0 the Σm-simplicial set Xm is strictly Σm-fibrant. In particular, the underlying

simplicial set of Xm is a Kan complex.
(iv) For every based Σm-simplicial set L, the equivariant function spectrum .m(L,X) is injective. In

particular, the function spectrum XK for any based simplicial set K, the loop spectrum ΩX and the
shifted spectrum shX are injective.

Proof. (i) We check that map(i,X) has the right lifting property with respect to every acyclic cofi-
bration j : K −→ L of simplicial sets. By the adjunction between the smash pairing and mapping spaces,
a lifting problem in the form of a commutative square

K //

j

��

map(B,X)

map(i,X)

��
L // map(A,X)
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corresponds to a morphism K∧B∪K∧AL∧A −→ X, and a lifting corresponds to a morphism L∧B −→ X
which restricts to the previous morphism along the ‘pushout product’ map j∧i : K∧B∪K∧AL∧A −→ L∧B.
Since j is an acyclic cofibration and i is a level cofibration, the pushout product morphism j ∧ i is levelwise
an acyclic cofibration by the pushout product property in T respectively sS. So the lifting exists since we
assumed that X is injective.

The second part is very similar. If i is levelwise an acyclic cofibration, then for every cofibration
j : K −→ L (not necessarily a weak equivalence) of pointed spaces (simplicial sets), the pushout product
map j ∧ i is levelwise an acyclic cofibration. So map(i,X) has the right lifting property with respect to all
cofibration pointed spaces (simplicial sets).

Part (ii) is the special case of (i) where A is the trivial spectrum so that map(A,X) is a one-point
simplicial set.

For part (iii) is an exercise in juggling adjunctions. We need to show that Xm has the extension
property for monomorphisms i : A −→ B of Σm-simplicial sets which are non-equivariant weak equivalences.
Evaluation at level m has the semifree functor Gm as left adjoint (compare Example 3.23), so it suffices to
show that Gmi : GmA −→ GmB is a monomorphism and a level equivalence of symmetric spectra. The
explicit form of the (m+ n)th level as

(GmA)m+n = Σ+
m+n ∧Σm×Σn A ∧ Sn

shows that (GmA)m+n is (non-equivariantly) a wedge of
(
m+n
n

)
copies of A∧Sn. But smashing with Sn and

taking wedges preserves monomorphisms and weak equivalences of simplicial sets, so Gmi : GmA −→ GmB
is indeed a monomorphism and a level equivalence.

Property (iv) can be derived as follows. The functor which sends a symmetric spectrum X to the
equivariant function spectrum .m(L,X) is right adjoint to A 7→ L .m A the twisted smash product with
L (compare (3.33)). In level m + n the spectrum L .m A is given by Σ+

m+n ∧Σm×Σn L ∧ An. Since Σm+n

is free as right Σm × Σn, the simplicial set (L .m A)m+n is naturally a wedge of
(
m+n
n

)
copies of L ∧ An.

The processes of smashing with any based simplicial set and taking wedges preserves monomorphisms and
weak equivalences of based simplicial sets. So altogether we deduce that the twisted smash product functor
L .m − preserves monomorphisms and level equivalences of symmetric spectra of simplicial sets.

Now we are ready to show that the spectrum .m(L,X) is injective whenever X is: given a monomor-
phism i : A −→ B which is also a level equivalence, the morphism L .m i : L .m A −→ L .m B is again
a monomorphism and a level equivalence. Any morphism f : A −→ .m(L,X) has an adjoint morphism

f̂ : L .m A −→ X which has an extension ĝ : L .m B −→ X with f̂ = ĝ ◦ (L .m i) since X is injective. The
adjoint g : B −→ .m(L,X) is then the required extension of f .

If we specialize to m = 0 and L = K, we obtain that function spectrum XK is injective. For K = S1

this shows that the loop spectrum ΩX is injective. For the final claim we specialize to m = 1 and L = S0,
where .1(S0, X) specializes to the shift of X. �

We now get a criterion for level equivalence by testing against injective spectra. The criterion involves
homotopy classes of morphisms, which we define first.

Definition 4.5 (Homotopy relation). Two morphisms of symmetric spectra f0, f1 : A → X are called
homotopic if there is a morphism

H : I+ ∧A −→ X ,

called a homotopy, such that f0 = H ◦ i0, and f1 = H ◦ i1. Here I is either the unit interval [0, 1] when we
are in the context of symmetric spectra of spaces, or the simplicial 1-simplex ∆[1] when in the context of
simplicial sets. The morphisms ij : A −→ I+ ∧A for j = 0, 1 are the ‘end point inclusions’ which are given
levelwise by ij(a) = j∧a (in the context of spaces) or are induced by the face morphisms dj : ∆[0] −→ ∆[1]
(in the context of simplicial sets) and the identification A ∼= ∆[0]+ ∧A.

A homotopy between spectrum morphisms is really the same as levelwise based homotopies between
(f0)n and (f1)n : An → Xn compatible with the Σn-actions and structure maps. In particular, homotopic
morphisms induce the same map of naive homotopy groups.
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Homotopies can equivalently be given in two adjoint forms. By the adjunction (3.7) a homotopy

H : I+ ∧ A −→ X from f0 to f1 is adjoint to a morphism Ĥ : A −→ XI+

such that ev0 ◦Ĥ = f0 and

ev1 ◦Ĥ = f1 where evj : XI+ −→ X for j = 0, 1 is given levelwise by evaluation at j ∈ [0, 1] (respectively
the two vertices of ∆[1]) . Finally, the homotopy H is also adjoint to a morphism of (unbased) spaces or
simplicial sets I −→ map(A,X), which is either a path or a 1-simplex in the mapping space. So in the
context of spectra of spaces, two morphisms are homotopic if and only if they lie in the same path component
of the mapping space map(A,X). For spectra of simplicial sets, a morphism f0 is homotopic to a morphism
f1 if and only if there exists a 1-simplex H ∈ map(A,X)1 satisfying d1(H) = f0 and d0(H) = f1.

For symmetric spectra of spaces, homotopy is an equivalence relation; for symmetric spectra of simplicial
sets, ‘homotopy’ is in general neither symmetric nor transitive. The homotopy relation is an equivalence
relation when the target is injective: vertices of the simplicial set map(A,X) correspond bijectively to
morphisms A −→ X in such a way that 1-simplices correspond to homotopies. By Proposition 4.4 (ii), the
simplicial set map(A,X) is a Kan complex whenever X is injective. In every Kan complex, the relation
x ∼ y on vertices defined by existence of a 1-simplex z with d1z = x and d0z = y is an equivalence relation,
hence the homotopy relation for morphisms from A to X is an equivalence relation.

In any of the two worlds we denote by [A,X] the set of homotopy classes of morphisms from A to X, i.e.,
the classes under the equivalence relation generated by homotopy. The natural morphisms ∆[1]+∧S(X) −→
S([0, 1]+ ∧ X) and [0, 1]+ ∧ |Y | ∼= |∆[1]+ ∧ Y |, compatible with the end point inclusions, show that the
singular complex and geometric realization functor preserve the homotopy relation.

A morphism f : A −→ B of symmetric spectra is a homotopy equivalence if there exists a morphism
g : B −→ A such that gf and fg are homotopic to the respective identity morphisms. Hence every homotopy
equivalence of symmetric spectra is in particular levelwise a homotopy equivalence of spaces or simplicial
sets, thus a level equivalence, but the converse is not true in general.

Proposition 4.6. A morphism f : A −→ B of symmetric spectra of simplicial sets is a level equivalence if
and only if for every injective spectrum X the induced map [f,X] : [B,X] −→ [A,X] on homotopy classes
of morphisms is bijective. Every level equivalence between injective spectra of simplicial sets is a homotopy
equivalence.

Proof. Suppose first that f is a level equivalence. We replace f by the inclusion of A into the mapping
cylinder of f , which is homotopy equivalent to B. This way we can assume without loss of generality that f
is a monomorphism. By part (i) of Proposition 4.4 the map map(f,X) : map(B,X) −→ map(A,X) is then
a weak equivalence of simplicial sets, so in particular a bijection of components. Since the set π0 map(B,X)
of path components of the mapping spaces is in natural bijection with the set [B,X], and similarly for A,
this proves the claim.

Now suppose conversely that [f,X] : [B,X] −→ [A,X] is bijective for every injective spectrum X. If K
is a pointed Kan complex and m ≥ 0, then the co-free symmetric spectrum RmK of Example 4.2 is injective.
The adjunction for morphisms and homotopies provides a natural bijection [A,RmK] ∼= [Am,K]sS to the
based homotopy classes of morphisms of simplicial sets. So for every Kan complex K, the induced map
[fm, X] : [Bm,K] −→ [Am,K] is bijective, which is equivalent to fn being a weak equivalence of simplicial
sets. Since this holds for all m, the morphism f is a level equivalence.

Now we consider a level equivalence f : A −→ B with A and B injective; we obtain a homotopy
inverse g : B −→ A by the following standard representability argument. Since [f,A] : [B,A] −→ [A,A]
is bijective there is a morphism g : B −→ A such that gf : A −→ A is homotopic to the identity. Since
[f,B] : [B,B] −→ [B,A] is a bijection which takes fg : B −→ B and IdB to the homotopy class of f , the
morphism fg is homotopic to the identity of B. �

The definition of stable equivalences in the next subsection will use injective Ω-spectra. So we now
collect some properties of this class.

Proposition 4.7. Let X be an injective Ω-spectrum of simplicial sets.

(i) For every n ≥ 0, the adjoint structure map σ̃n : Xn −→ ΩXn+1 is a Σn-homotopy equivalence.
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(ii) For every based Σm-simplicial set L, the symmetric spectrum F (L, shmX)Σm is again an injective Ω-
spectrum. In particular, the function spectrum XK for any based simplicial set K, the loop spectrum
ΩX and the shifted spectrum shX are injective Ω-spectra.

Proof. (i) We show that for every subgroup H of Σn the map induced by σ̃n on H-fixed points is a
weak equivalence. Since X is an Ω-spectrum, σ̃n is a weak equivalence on underlying simplicial sets, so it
induces a weak equivalence on H-homotopy fixed points. The simplicial sets Xn and Xn+1 are strictly Σn-
fibrant respectively strictly Σn+1-fibrant by Proposition 4.4 (iii). The property ‘strictly fibrant’ is preserved
under looping and restriction to subgroups, so source and target of σ̃n are strictly Σn-fibrant. Hence the
horizontal maps in the commutative square

XH
n

σ̃Hn
��

' // XhH
n

σ̃hHn
��

ΩXH
n '

// ΩXhH
n

are weak equivalences. (We note that loops commute with fixed points and homotopy fixed points, so there
is no ambiguity in the meaning of the terms ΩXH

n and ΩXhH
n .) Since the right map is a weak equivalence,

so is the left map of H-fixed points. Hence σ̃n : Xn −→ ΩXn+1 is a strong Σn-weak equivalence between
strongly fibrant Σn-simplicial sets, hence a Σn-homotopy equivalence by [ref to Appendix].

(ii) We know by Proposition 4.4 (iv) that the spectrum F (L, shmX)Σm is again injective; it remains
to show that it is also an Ω-spectrum. The adjoint structure map σ̃m+n : Xm+n −→ ΩXm+n+1 is a
Σm+n-homotopy equivalence by part (i), hence the induced map

map(L, σ̃m+n)Σm : map(L,Xm+n)Σm −→ map(L,ΩXm+n+1)Σm

is a homotopy equivalence of simplicial sets. But this map is isomorphic to the nth adjoint structure map

σ̃n :
(
F (L, shmX)Σm

)
n
−→ Ω

(
F (L, shmX)Σm

)
n+1

of the spectrum F (L, shmX)Σm . So F (L, shmX)Σm is indeed an Ω-spectrum. �

Now we want to show that, up to level equivalence, the property of being injective is no restriction (see
Proposition 4.10 below). This means that we want to force a certain lifting property, and the small object
argument (see Theorem 1.7 of Appendix A) is the appropriate tool for this purpose. As usual with small
object arguments we have to limit the size of objects in order to obtain a set (as opposed to a proper class)
of test maps. We call a symmetric spectrum of simplicial sets countable if the cardinality of the disjoint
union of all simplices in all levels is countable.

Proposition 4.8. Let B be a symmetric spectrum of simplicial sets and V a symmetric subspectrum of
B such that the inclusion V −→ B is a level equivalence. If V 6= B, then there is a countable symmetric
subspectrum E of B that is not contained in V and such that the inclusion E∩V −→ E is a level equivalence.

Proof. We let m be the minimum of the numbers n such that Vn 6= Bn. For n < m we define
En = ∗. In level m we choose a simplex v of Bm − Vm (of any dimension) and let C be the simplicial
subset of Bm generated by v and the basepoint. Then C is countable, so by Proposition 3.6 of Appendix A
there is a countable, Σm-invariant simplicial subset Em of Bm containing v and such that the inclusion
Em ∩ Vm −→ Em is a weak equivalence. Since the simplex v does not belong to Vm, Em is not contained
in Vm.

Above level m we proceed inductively. Since En−1 is countable, so is En−1 ∧ S1 and its image
σn−1(En−1 ∧ S1) under the structure map σn : Bn−1 ∧ S1 −→ Bn. By Proposition A.3.6 there is a
countable, Σn-invariant simplicial subset En of Bn containing σn−1(En−1 ∧S1) and such that the inclusion
En ∩ Vn −→ En is a weak equivalence. By construction, the simplicial sets En are closed under the actions
of the symmetric groups and the struture maps of B, so they form the desired symmetric subspectrum
of B. �
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Proposition 4.9. A symmetric spectrum of simplicial sets X is injective if and only if for every monomor-
phism i : A −→ B which is also a level equivalence with B countable and every morphism f : A −→ X there
exists an extension g : B −→ X with f = gi.

Proof. Suppose that X has the extension property with respect to all injective level equivalences with
countable target (and hence source). We consider a general injective level equivalence i : A −→ B, with no
restriction on the cardinality of B, and a morphism f : A −→ X which we want to extend to B.

We denote by P the set of ‘partial extensions’: an element of P is a pair (U, h) consisting of

• a symmetric subspectrum U of B which contains the image of A and such that the inclusion
U −→ B (and hence the morphism A −→ U) is a level equivalence and

• a morphism h : U −→ X which extends f : A −→ X.

The set P can be partially ordered by declaring (U, h) ≤ (U ′, h′) if U is contained in U ′ and h′ extends h.
Then every chain in P has an upper bound, namely the union of all the subspectra U with the common
extension of the morphisms h. We are using here that the inclusion of the union into B is again a level
equivalence because homotopy groups commute with such filtered colimits. By Zorn’s lemma, the set P
has a maximal element (V, k).

We show that V = B, so k provides the required extension of f , showing that the spectrum X is
injective. We argue by contradiction and suppose that V is strictly smaller than B. Proposition 4.8 provides
a countable subspectrum E of B which is not contained in V and such that the inclusion E ∩ V −→ E
is a level equivalence. Since E is countable, the restriction of k : V −→ X to the intersection E ∩ V can
be extended to a morphism g : E −→ X. The morphisms g and k together then provide an extension
g ∪ k : E ∪ V −→ X of k, which contradicts the assumption that (V, k) is a maximal element in the set P
extensions. �

Proposition 4.10. There is an endofunctor (−)inj : SpsS −→ SpsS on the category of symmetric spectra
of simplicial sets and a natural level equivalence A −→ Ainj such that Ainj is an injective spectrum for all
symmetric spectra of simplicial sets A.

Proof. We choose a set K containing one representative of each isomorphism class of countable sym-
metric spectra of simplicial sets. Then we let I be the set of inclusions of symmetric subspectra i : A ⊆ B
for which B is in K and i is a level equivalence.

We apply the small object argument (see Theorem 1.7 of Appendix A) to the unique morphism from
a given symmetric spectrum A to the trivial spectrum. We obtain a functor A 7→ Ainj together with a
natural transformation j : A −→ Ainj which is an I-cell complex. The class of injective level equivalences
of symmetric spectra is closed under wedges, cobase change and composition, possibly transfinite. So every
I-cell complex is an injective level equivalence. In particular the morphism j is an injective level equivalence.
Moreover, the morphism from Ainj to the trivial spectrum is I-injective. Proposition 4.9 shows that Ainj is
an injective spectrum. �

4.2. Stable equivalences. Now we define the important concept of stable equivalences of symmetric
spectra.

Definition 4.11. A morphism f : A −→ B of symmetric spectra of simplicial sets is a stable equivalence
if for every injective Ω-spectrum X the induced map

[f,X] : [B,X] −→ [A,X]

of homotopy classes of spectrum morphisms is bijective.
A morphism f of symmetric spectra of topological spaces is a stable equivalence if the singular complex

S(f) : S(A) −→ S(B) is a stable equivalence in the previous sense.

Proposition 4.6 immediately implies that every level equivalence of symmetric spectra is a stable equiv-
alence. Theorem 4.23 below shows that more generally every π̂∗-isomorphism is a stable equivalence.
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Lemma 4.12. (i) Let A be a symmetric spectrum of simplicial sets, Y a symmetric spectrum of spaces

and h : |A| −→ Y a morphism. Then h is a stable equivalence if and only if its adjoint ĥ : A −→ S(Y )
is a stable equivalence.

(ii) A morphism of symmetric spectra of simplicial sets is a stable equivalence if and only if its geometric
realization is a stable equivalence of symmetric spectra of spaces.

Proof. (i) The composite of the adjunction unit A −→ S|A| and S(h) : S|A| −→ S(Y ) is the adjoint ĥ.

The adjunction unit is a level equivalence, hence stable equivalence, so ĥ is a stable equivalence if and only
if S(h) is. But the latter is equivalent, by definition, to h being a stable equivalence.

(ii) A morphism g : A −→ B of symmetric spectra of simplicial sets is a stable equivalence if and only
if its composite with the adjunction unit η : B −→ S|B| is a stable equivalence (since η is a level, hence
stable, equivalence). By (i), the composite ηg : A −→ S|B| is a stable equivalence if and only if its adjoint
η̂g = |g| : |A| −→ |B| is. �

Proposition 4.13. Every stable equivalence between Ω-spectra is a level equivalence. In the context of
symmetric spectra of simplicial sets, every stable equivalence between injective Ω-spectra is a homotopy
equivalence.

Proof. A spectrum of spaces is an Ω-spectrum if and only if its singular complex is an Ω-spectrum of
simplicial sets. So the case of spaces is a direct consequence of the case of simplicial sets.

For symmetric spectra of simplicial sets we argue as follows. Let f : X −→ Y be a stable equivalence
between Ω-spectra. We suppose first that X and Y are also injective. Since [f,X] : [Y,X] −→ [X,X] is
bijective there exists a morphism g : Y −→ X such that gf is homotopic to the identity of X. Since fgf is
homotopic to f and [f, Y ] : [Y, Y ] −→ [X,Y ] is bijective, we conclude that fg is homotopic to the identity
of Y . So f is a homotopy equivalence.

If X and Y are Ω-spectra (but not necessarily injective), we consider the injective replacement f inj :
X inj −→ Y inj as in Proposition 4.10. Then f inj is a stable equivalence between injective Ω-spectra, hence
a homotopy equivalence by the above. In particular, f inj is a level equivalence, hence so is the original
morphism f . �

Proposition 4.14. For every based Σm-simplicial set L, the twisted smash product functor L.m− preserves
stable equivalences between symmetric spectra of simplicial sets.

Proof. We let f : A −→ B be a stable equivalence between symmetric spectra of simplicial sets and
X any injective Ω-spectrum. In the commutative square

[L .m B,X]
[L.mf,X] //

∼=
��

[L .m A,X]

∼=
��

[B,F (L, shmX)Σm ]
[f,F (L,shmX)Σm ]

// [A,F (L, shmX)Σm ]

the vertical bijections are induced by the adjunction. The lower horizontal map is bijective since f is a
stable equivalence and F (L, shmX)Σm is an injective Ω-spectrum, (by Proposition 4.7 (ii)). So the upper
horizontal map is bijective and hence L .m f is a stable equivalence. �

Remark 4.15. Proposition 4.14 has an analogue for symmetric spectra of spaces: if L is a cofibrant based
Σm-space (i.e., a retract of a based Σm-CW-complex), then the twisted smash product functor L .m −
preserves stable equivalences between symmetric spectra of spaces. Indeed, the functor L.m− is isomorphic
to smashing with with the flat semifree spectrum GmL (see Proposition 5.13 below) and hence preserves
stable equivalences by Proposition 5.50 (iii).

We establish some useful criteria for stable equivalences in the context of simplicial sets. We call a
symmetric spectrum stably contractible if the unique morphism from the trivial spectrum to it is a stable
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equivalence, or –equivalently– if the unique morphism from it to the trivial spectrum is a stable equivalence.
In the next proof we need the natural morphism

(4.16) λ̃X : X −→ Ω(shX)

adjoint to the morphism λX : S1 ∧ X −→ shX defined in (3.12). In level n the morphism λ̃X is the
composite

Xn
σ̃n−−→ Ω(Xn+1)

Ω(χn,1)−−−−−→ Ω(X1+n) = (Ω(shX))n .

Since the second map Ω(χn,1) is an isomorphism, (λ̃X)n is a weak equivalence if and only if σ̃n is; so λ̃X is
a level equivalence if and only if X is an Ω-spectrum.

The conditions (i), (iv) and (v) in the following proposition are also equivalent in the context of
symmetric spectra of spaces, compare Proposition 4.29 below.

Proposition 4.17. For every morphism f : A −→ B of symmetric spectra of simplicial sets the following
are equivalent:

(i) the morphism f is a stable equivalence;
(ii) for every injective Ω-spectrum X the induced map map(f,X) : map(B,X) −→ map(A,X) is a homo-

topy equivalence of simplicial sets;
(iii) for every injective Ω-spectrum X the induced map Hom(f,X) : Hom(B,X) −→ Hom(A,X) is a level

equivalence of symmetric spectra;
(iv) the mapping cone C(f) of f is stably contractible;
(v) the suspension S1 ∧ f : S1 ∧A −→ S1 ∧B is a stable equivalence.

Proof. (i)⇒(ii) For every simplicial setK and every injective Ω-spectrumX the function spectrumXK

is again injective by Proposition 4.4 (iv) and an Ω-spectrum by Example 3.6. We have an adjunction bijec-
tion [K,map(A,X)] ∼= [A,XK ] where the left hand side means homotopy classes of morphisms of simplicial
sets. We recall that map(A,X) and map(B,X) are Kan simplicial sets by part (ii) of Proposition 4.4. So if f
is a stable equivalence, then [f,XK ] is bijective, hence [K,map(f,X)] : [K,map(B,X)] −→ [K,map(A,X)]
is bijective. Since this holds for all simplicial sets K, map(f,X) is a homotopy equivalence.

(ii)⇒(iii) For every injective Ω-spectrum X and n ≥ 0 the n-fold shifted spectrum shnX is again
injective (Proposition 4.4 (iv)) and an Ω-spectrum. So if f : A −→ B satisfies (ii), it also satisfies (iii) since
the nth level of the spectrum Hom(A,X) is defined as map(A, shnX).

(iii)⇒(iv) Let X be an injective Ω-spectrum. The simplicial set map(C(f), X) is isomorphic to the
homotopy fibre of the morphism Hom(f,X)0 : Hom(B,X)0 −→ Hom(A,X)0 between Kan simplicial
sets. So if condition (iii) holds, then map(C(f), X) is contractible. In particular, the set [C(f), X] =
π0 (map(C(f), X)) contains only one element, so the morphism from C(f) to the trivial spectrum is a
stable equivalence.

(iv)⇒(v) Let X be an injective Ω-spectrum. The simplicial set map(C(f), X) is (isomorphic to) the
homotopy fiber of the map map(f,X) : map(B,X) −→ map(A,X). By the already established implication
‘(i)⇒(ii)’ the simplicial set map(C(f), X) is contractible, so map(f,X) : map(B,X) −→ map(A,X) induces
a bijection on fundamental groups. Since the simplicial set map(A,X) is Kan, its fundamenal group is in
natural bijection with [S1,map(A,X)], the set of homotopy classes of morphisms from the simplicial circle.
Since [S1,map(A,X)] moreover bijects naturally with the set of [S1 ∧ A,X], this shows that the map
[S1 ∧ f,X] : [S1 ∧B,X] −→ [S1 ∧A,X] is bijective. So the suspension of f is a stable equivalence.

(v)⇒(i) Suppose that the suspension S1∧f is a stable equivalence and let X be an injective Ω-spectrum.
By Proposition 4.7 (ii) the shift shX is then again an injective Ω-spectrum, so the map [S1 ∧ f, shX] :
[S1 ∧B, shX] −→ [S1 ∧A, shX] is bijective. By adjointness, the lower horizontal map in the commutative
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square

[B,X]
[f,X] //

[B,λX ]

��

[A,X]

[A,λX ]

��
[B,Ω(shX)]

[f,Ω(shX)]
// [B,Ω(shX)]

is also bijective. The morphism λ̃X : X −→ Ω(shX) is a level equivalence between injective Ω-spectra,
and hence a homotopy equivalence by Proposition 4.6. So the two vertical morphisms in the previous
commutative square are bijective, and so is the upper horizontal map [f,X]. This shows that f is a stable
equivalence. �

Our next aim is to show that every morphism of symmetric spectra that induces isomorphisms of all
naive homotopy groups is a stable equivalence. For this purpose we introduce a functor called ‘Ω∞sh∞’
which attempts to turn a symmetric spectrum into an Ω-spectrum while keeping the naive homotopy
groups; however, the attempt is not always successful. We let Ω∞sh∞X be the mapping telescope (see
Example 2.21) of the sequence

(4.18) X
λ̃X−−→ Ω shX

Ω(λ̃shX)−−−−−−−→ · · · −−→ Ωm shmX
Ωm(λ̃shmX)−−−−−−−−−→ Ωm+1 shm+1X −−→ · · · .

Here λ̃X : X −→ Ω shX was defined in (4.16) and is adjoint to the morphism λX : S1 ∧ X −→ shX
from (3.12). This construction comes with a canonical natural morphism λ∞X : X −→ Ω∞sh∞X, the
embedding of the initial term into the mapping telescope.

Proposition 4.19. Let X be a symmetric Ω-spectrum. Then the morphism λ∞X : X −→ Ω∞sh∞X is a
level equivalence.

Proof. The n-th level of the morphism λ̃X is the composite of the adjoint structure map σ̃n : Xn −→
ΩXn+1 and an isomorphism. So if X is an Ω-spectrum, then the morphism λ̃X is a level equivalence.
Since the shift and loop functors preserve level equivalences (between spectra levelwise Kan spectra in the

simplicial context), all the morphisms Ωn(λ̃shnX) are then level equivalences. Hence the inclusion into the
mapping telescope λ∞X : X −→ Ω∞sh∞X is also a level equivalence. �

For every triple of integers k, n,m with n,m ≥ 0, k + n ≥ 0 and k + m ≥ 2 and every symmetric
spectrum X we now define an intertwining isomorphism

τm,n : πk+m(Ωn shnX)m = πk+m(ΩnXn+m) −→ πk+n(ΩmXm+n) = πk+n(Ωm shmX)n .

Note that in the source and target of τm,n, the indices m and n have changed places twice; the idea is to
let the intertwiner τm,n apply the shuffle permutations which are suggested by the two swaps of m and n in
the notation. In the source, however, the shuffle permutation χn,m may not make sense when k is negative,
so we use its sign instead. The intertwiner τm,n thus takes the class of a map f : Sk+m −→ ΩnXn+m to
the class

τm,n[f ] = (−1)mn · [Ωn(χn,m) ◦ f ] .

Proposition 4.20. Let X be a symmetric spectrum which is levelwise Kan when in the context of simplicial
sets. The intertwining isomorphism interchanges the effects of the stabilization map and the morphism
Ωm(λ̃shmX), i.e., the square

(4.21)

πk+m(Ωn shnX)m

ι

��

τm,n // πk+n(Ωm shmX)n

πk+n(Ωmλ̃shmX)n
��

πk+m+1(Ωn shnX)m+1 τm+1,n

// πk+n(Ωm+1 shm+1X)n
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commutes for all integers k,m, n such that m,n ≥ 0, k + n ≥ 0 and k + m ≥ 2. So for all n ≥ 0 and all
integers k such that k + n ≥ 0, passage to colimits over m yields a natural bijection:

τn : π̂k(Ωn shnX)
∼=−−→ πk+n(Ω∞sh∞X)n

Moreover, the square

(4.22)

π̂k(Ωn shnX)
τn //

π̂k(Ωnλ̃shn X)

��

πk+n(Ω∞sh∞X)n

ι

��
π̂k(Ωn+1 shn+1X) τn+1

// πk+n+1(Ω∞sh∞X)n+1

commutes.

Proof. The commutativity of the square (4.21) is straightforward check from the definitions. Since this
square commutes we can pass to colimits over m in the vertical direction. The intertwining isomorphisms
then induce a natural isomorphism

π̂k(Ωn shnX) = colimm πk+m(Ωn shnX)m −→ colimm πk+n(Ωm shmX)n .

The homotopy groups of a mapping telescope are naturally isomorphic to the colimit of the homotopy groups
of the terms [ref]. So the target of the previous isomorphism identifies with the group πk+n(Ω∞sh∞X)n,
and together we have constructed the isomorphism τn.

It remains to show the relation τn+1 ◦ π̂k(Ωnλ̃shnX) = ι ◦ τn as maps from the stable homotopy group
π̂k(Ωn shnX) to the unstable homotopy group πk+n+1(Ω∞sh∞X)n+1. Since the source is defined as a
colimit, it suffices to check this relation after restriction to πk+m(Ωn shnX)m for every m ≥ 0. But the
restriction of τn to πk+m(Ωn shnX)m is the composite of τm,n and the canonical map πk+n(Ωm shmX)n −→
πk+n(Ω∞sh∞X)n, so the desired relation follows again from the commutativity of the square (4.21) (but
this time with roles of m and n interchanged). �

� The previous proposition identifies the (unstable) homotopy groups of the levels of the spectrum
Ω∞sh∞X with the (stable) naive homotopy groups of X. A word of warning: while the proposi-

tion shows that the groups πk+n(Ω∞sh∞X)n and πk+n+1(Ω∞sh∞X)n+1 are isomorphic, the spectrum
Ω∞sh∞X is not in general an Ω-spectrum since the isomorphism obtained from the proposition need not
coincide with the stabilization map of the spectrum Ω∞sh∞X. In fact, Ω∞sh∞X is an Ω-spectrum if and
only if X is semistable, see Proposition 4.24 and Theorem 8.25 below.

Theorem 4.23. Every π̂∗-isomorphism of symmetric spectra is a stable equivalence.

Proof. We treat the context of spectra of simplicial sets first. We start with an observation for an
injective Ω-spectrum X. Proposition 4.19 shows that the morphism λ∞X : X −→ Ω∞sh∞X is a level
equivalence. Since X is an injective spectrum the map [λ∞X , X] : [Ω∞sh∞X,X] −→ [X,X] is bijective by
Proposition 4.6. So there exists a morphism r : Ω∞sh∞X −→ X such that the composite rλ∞X is homotopic
to the identity of X (the other composite need not be homotopic to the identity of Ω∞sh∞X).

Now we establish the following special case of the theorem: let C be a symmetric spectrum of simplicial
sets which is levelwise Kan and all of whose naive homotopy groups vanish. We show that then C is stably
contractible. Since looping and shifting shift naive homotopy groups, the hypotheses on C guarantee that all
naive homotopy groups of the spectrum Ωn shn C are trivial for all n ≥ 0. By Proposition 4.20 the unstable
homotopy group πl(Ω

∞sh∞ C)n is isomorphic to the naive stable homotopy group π̂l−n(Ωn shn C), hence
trivial, for all l ≥ 0. Since all homotopy groups of the simplicial set (Ω∞sh∞ C)n are trivial, the spectrum
Ω∞sh∞ C is levelwise weakly contractible. Then by Proposition 4.6 the set [Ω∞sh∞ C,X] has just one
element for every injective Ω-spectrum X.

Shifting, looping and taking mapping telescopes are constructions which preserve the homotopy relation,
hence so does the functor Ω∞sh∞. So we can define a map

[C,X] −→ [Ω∞sh∞ C,X] by [ϕ] 7→ [r ◦ Ω∞sh∞ ϕ] .
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A map [λ∞C , X] : [Ω∞sh∞ C,X] −→ [C,X] in the other direction is given by precomposition with λ∞C :
C −→ Ω∞sh∞ C. Since r is a retraction (up to homotopy) to λ∞X , the composite of the two natural maps
is the identity on [C,X]. Since the set [Ω∞sh∞ C,X] has only one element, the same is true for the set
[C,X]. Since X is an arbitrary injective Ω-spectrum, C is indeed stably contractible.

Now we consider a symmetric spectrum C of simplicial sets, not necessarily levelwise Kan, such that
all naive homotopy groups of C vanish. We show that then C is stably contractible. We apply the functors
‘geometric realization’ and ‘singular complex’ to replace C by the level equivalent spectrum S(|C|) which
is levelwise Kan and has trivial naive homotopy groups. So S(|C|) is stably contractible by the case above;
since level equivalences are stable equivalences, C is stably contractible.

Now we prove the theorem. Let f : A −→ B be a π̂∗-isomorphism and let C(f) be its mapping cone.
By the long exact of naive homotopy groups (see Proposition 2.12; taking mapping cones commutes with
realization) the naive homotopy groups of C(f) are trivial. By the previous paragraph, C(f) is stably
contractible, so f is a stable equivalence by the criterion (iv) of Proposition 4.17.

Now suppose that f : A −→ B is a π̂∗-isomorphism between symmetric spectra of spaces. Then its
singular complex S(f) : S(A) −→ S(B) is also a π̂∗-isomorphism, hence a stable equivalence by the above.
So f is a stable equivalence by definition. �

Proposition 4.24. Let X be a semistable symmetric spectrum. In the context of simplicial sets, suppose
also that X is levelwise Kan. Then the morphism λ∞X : X −→ Ω∞sh∞X is a π̂∗-isomorphism and Ω∞sh∞X
is a symmetric Ω-spectrum.

Proof. Since X is semistable the morphism λX : S1 ∧X −→ shX is a π̂∗-isomorphism, by definition.
So its adjoint λ̃X : X −→ Ω shX is a π̂∗-isomorphism by Proposition 3.8. If X is semistable, then so is
shnX, hence the morphism λ̃shnX is a π̂∗-isomorphism for every n ≥ 0. Since looping shifts homotopy
groups, the morphism Ωn(λ̃shnX) is a π̂∗-isomorphism for every n; so the canonical morphism λ∞X from X
to the mapping telesope Ω∞sh∞X is a π̂∗-isomorphism.

Since Ωn(λ̃shnX) is a π̂∗-isomorphism, the commutative square (4.22) shows that the adjoint structure
map σ̃n : (Ω∞sh∞X)n −→ Ω(Ω∞sh∞X)n+1 induces a bijection on all homotopy groups, taken with respect
to the given basepoints. This almost shows that σ̃n is a weak equivalence.

We let K be a finite based CW-complex. Since X is semistable, so is the function spectrum map(K,−)
(compare Proposition 3.16 (iv)). The square

π0(Ω∞sh∞map(K,X))n
(σ̃n)∗ //

∼=
��

π0(Ω(Ω∞sh∞map(K,X))n+1)

∼=
��

[K, (Ω∞sh∞X)n]
[K,σ̃n]

// [K,Ω(Ω∞sh∞X)n+1]

commutes and the upper horizontal map is bijective by the above. Since the lower map is bijective for all
finite based CW-complexes K, the adjoint structure map σ̃n : (Ω∞sh∞X)n −→ Ω(Ω∞sh∞X)n+1 is a weak
equivalence. Thus Ω∞sh∞X is an Ω-spectrum. �

For every pair of symmetric spectra A and B the canonical morphism A ∨ B −→ A × B is a π̂∗-
isomorphism by Proposition 2.19. So Theorem 4.23 immediately implies

Corollary 4.25. For every pair of symmetric spectra A and B the canonical morphism A ∨B −→ A×B
is a stable equivalence.

Now we give an important example of a stable equivalence which is not a π̂∗-isomorphism,



4. STABLE EQUIVALENCES 71

Example 4.26. Let λ : F1S
1 −→ F0S

0 = S denote the morphism which is adjoint to the identity in level 1.
For any injective Ω-spectrum X we consider the commutative square

[F0S
0, X]

[λ,X] //

ev0 ∼=
��

[F1S
1, X]

ev1∼=
��

π0(X0)
ι

// π1(X1)

The vertical maps given by evaluation at levels 0 respectively 1 are adjunction bijections (the ‘freeness
property’ in Example 3.20). Since X is an Ω-spectrum, the stabilization map ι : π0(X0) −→ π1(X1) is
bijective. So the map [λ,X] is bijective and λ is a stable equivalence.

In Example 3.20 we determined the 0-th naive homotopy group of F1S
1 as an infinitely generated free

abelian group, whereas π̂0S = πs
0 is free abelian of rank 1. Thus the morphism λ is not a π̂∗-isomorphism.

The stable equivalence λ : F1S
1 −→ S of the previous example is only one special case of a whole class

of stable equivalences (which are typically not π̂∗-isomorphisms either). For every symmetric spectrum A

we introduced a morphism λA : S1 ∧ A −→ shA in (3.12) and its adjoint λ̃A : A −→ Ω(shA) = sh(ΩA)
in (4.16). One should beware that even though sources and target of these two morphisms have abstractly

isomorphic naive homotopy groups, λA and λ̃A are not in general π̂∗-isomorphisms.
Using the adjunction (., sh) we can adjoin λ̃A two more times and product two more natural morphisms

(4.27) λ̄A : .A −→ ΩA and λ̂A : S1 ∧ .A −→ A .

More precisely, we define these two morphisms as the composite

.A
.λ̃A−−→ .(sh(ΩA))

εΩA−−→ ΩA

respectively the composite

S1 ∧ .A S1∧λ̄A−−−−−−→ S1 ∧ ΩA
ev−−→ A .

If we use the identification F1S
1 ∼= S1 ∧ .S, then for the sphere spectrum, the morphism λ̂S specializes to

the morphism λ : F1S
1 −→ S.

Proposition 4.28. For every symmetric spectrum A the morphism λ̂A : S1 ∧ .A −→ A is a stable equiva-
lence. In the context of topological spaces, or if A is levelwise Kan, then the morphism λ̄A : .A −→ ΩA is
a stable equivalence.

Proof. We first treat the case of symmetric spectra of simplicial sets. For every symmetric spectrum X
the adjunction bijections for the adjoint pairs (., sh) and (S1∧−,Ω), applied to morphisms and homotopies,
provide natural bijections

[S1 ∧ .A,X] ∼= [A, sh ΩX] .

Under this correspondence the map [λ̂A, X] : [A,X] −→ [S1 ∧ .A,X] becomes the map [A, λ̃X ] : [A,X] −→
[A, sh ΩX]. If X is an injective Ω-spectrum, then λ̃X : X −→ sh ΩX is a level equivalence between injective

spectra, hence a homotopy equivalence by Proposition 4.6. So [A, λ̃X ], and consequently also [λ̂A, X], is

bijective, which proves that λ̂A is a stable equivalence. If the symmetric spectrum A is also levelwise Kan,
then the evaluation morphism ev : S1 ∧ ΩA −→ A is a π̂∗-isomorphism, hence a stable equivalence. Since

λ̂A = ev ◦(S1∧λ̄A) is also a stable equivalence, the suspension of λ̄A is a stable equivalence. Proposition 4.17
shows that then λ̄A is a stable equivalence.

Now we treat symmetric spectra of spaces. We exploit that S1 ∧ .A is naturally isomorphic to the
twisted smash product S1 .1 A. Under this isomorphism, the composite

S1 .1 S(A)
ε.1S(A)−−−−−→ S(S1) .1 S(A) −→ S(S1 .1 A)

S(λ̂A)−−−−−→ S(A)



72 I. BASICS

corresponds to the morphism λ̂S(A) which we just recognized as a stable equivalence. The first map ε .1 S(A)

is a level equivalence since ε : S1 −→ S(S1) is a weak equivalence of simplicial sets. The second map is

a π̂∗-isomorphism, hence stable equivalence, by Proposition 3.31. So the third map S(λ̂A) is also a stable

equivalence; thus λ̂A is a stable equivalence, by definition.
To treat the map λ̄A : .A −→ ΩA we consider the commutative square:

.S(A) //

λ̄S(A)

��

S(.A)

S(λ̄A)

��
ΩS(A) // S(ΩA)

The upper horizontal map is the π̂∗-isomorphism of Proposition 3.31 for m = 1 and L = S0. The lower
horizontal map is a level equivalence. By the first paragraph, the left vertical map is a stable equivalence,
hence so is the right vertical map S(λ̄A). So λ̄A is a stable equivalence, by definition. �

Our next task is to develop various equivalent characterizations for stable equivalences. Some parts of
this have already been shown in the previous propositions, but they are repeated here for easier reference.

Proposition 4.29. For every morphism f : A −→ B of symmetric spectra the following are equivalent:

(i) f is a stable equivalence;
(ii) the mapping cone C(f) of f is stably contractible;
(iii) the suspension S1 ∧ f : S1 ∧A −→ S1 ∧B is a stable equivalence;
(iv) the induction .f : .A −→ .B is a stable equivalence.

In the context of spaces, or if A and B are levelwise Kan, then conditions (i)-(iv) are also equivalent to the
following two conditions:

(v) the homotopy fiber F (f) of f is stably contractible;
(vi) the loop Ωf : ΩA −→ ΩB is a stable equivalence.

Proof. We start by showing the equivalence of conditions (i) through (iv) for symmetric spectra
of simplicial sets. The equivalence of conditions (i), (ii) and (iii) is contained in Proposition 4.17. The
implication (i)⇒(iv) is the special case of Proposition 4.14 for m = 1 and L = S0. Suppose conversely that
.f is a stable equivalence. Then so is the suspension S1 ∧ .f by Proposition 4.14. The commutative square

S1 ∧ .A
S1∧.f //

λ̂A
��

S1 ∧ .B

λ̂B
��

A
f

// B

(whose vertical morphisms are stable equivalences by Proposition 4.28) shows that f is a stable equivalence.

Now we show that also for symmetric spectra of spaces, conditions (i) through (iv) are equivalent.
(i)⇔(ii) By the definitions of ‘stable equivalence’ in the topological context we need to show that the

singular complex S(f) : S(A) −→ S(B) is a stable equivalence if and only if S(C(f)), the singular complex
of the mapping cone, is stably contractible in the simplicial world. This follows from the equivalence of
conditions (i) and (ii) in the simplicial context and the fact that the natural map C(S(f)) −→ S(C(f)) from
the mapping cone of the singular complex to the singular complex of the mapping cone is a π̂∗-isomorphism
(see Proposition 3.4), hence a stable equivalence.

(i)⇔(iii) This is the same argument as in the last pararaph, just that now we exploit that the natural
map S1 ∧S(A) −→ S(S1 ∧A) from the suspension of the singular complex of a spectrum A to the singular
complex of the suspension is a π̂∗-isomorphism, hence a stable equivalence (see Proposition 3.4)

(i)⇔(iv) Again we reduce to the case of symmetric spectra of simplicial sets. This time we exploit that
the natural map .S(A) −→ S(.A) is a π̂∗-isomorphism, hence a stable equivalence, by Proposition 3.31 for
m = 1 and L = S0.
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For the rest of the proof we assume that we are in the context of spaces or A and B are levelwise Kan.
Conditions (iv) and (vi) are then equivalent because the natural morphism λ̄A : .A −→ ΩA is a stable
equivalence by Proposition 4.28.

(ii)⇐⇒(v) By the already established equivalence between conditions (ii) and (iii), the homotopy fiber
F (f) is stably contractible if and only if its suspension S1∧F (f) is stably contractible. By Proposition 2.17
the spectrum S1 ∧ F (f) is π̂∗-isomorphic, hence stable equivalent, to the mapping C(f). Altogether this
proves that F (f) is stably contractible if and only if C(f) is. �

Remark 4.30. As far as I can see, the suspension functor S1 ∧ − does not in general preserve weak
equivalences of spaces, hence not level equivalences of symmetric spectra of spaces [give example]. However,
S1 ∧ − preserves π̂∗-isomorphisms and stable equivalences in the topological context.

For the mapping telescope and the diagonal of a sequence of symmetric spectra, see Example 2.21.

Proposition 4.31. (i) A wedge of stable equivalences is a stable equivalence.
(ii) A finite product of stable equivalences is a stable equivalence.
(iii) Consider a commutative square of symmetric spectra

(4.32)

A
i //

f

��

B

g

��
C

j
// D

and let h = C(f) ∪ g : C(i) −→ C(j) be the map induced by f and g on mapping cones. Then if two
of the three morphisms f, g and h are stable equivalences, so is the third. [same for homotopy fibers]

(iv) Consider a commutative square (4.32) of symmetric spectra and suppose that in the context of simplicial
sets all four spectra are levelwise Kan. Let e : F (i) −→ F (j) be the map induced by f and g on
homotopy fibers. Then if two of the three morphisms e, f and g are stable equivalences, so is the third.

(v) Consider a commutative square (4.32) of symmetric spectra for which one of the following conditions
holds:
(a) the square is a pushout and i or f is a level cofibration.
(b) the square is a pullback and j or g is a level fibration.
Then f is a stable equivalence if and only if g is.

(vi) Let L be a cofibrant Σm-space respectively or any Σm-simplicial set. Then the twisted smash product
functor L .m − preserves stable equivalences. In particular, the levelwise smash product K ∧− with a
cofibrant based space or a based simplicial set preserves stable equivalences.

(vii) Let K be a finite based CW-complex respectively a finite based simplicial set, and f : A −→ B a stable
equivalence. Suppose that A and B are levelwise Kan complexes when in the simplicial context. Then
the morphism map(K, f) : map(K,A) −→ map(K,B) is a stable equivalence.

(viii) We consider a commutative diagram of symmetric spectra

A0
f0

//

ϕ0

��

A1
f1

//

ϕ1

��

A2
f2

//

ϕ2

��

A3
f3

//

ϕ3

��

· · ·

B0

g0
// B1

g1
// B2

g2
// B3

g3
// · · ·

in which all vertical morphisms ϕn : An −→ Bn are stable equivalences. Then the map teln ϕ
n :

telnA
n −→ telnB

n induced on mapping telescopes and the map diagn ϕ
n : diagnA

n −→ diagnB
n

induced on the diagonal symmetric spectrum are also stable equivalences. In the context of simpli-
cial sets, the map colimn≥0 ϕ

n : colimn≥0A
n −→ colimn≥0B

n induced on colimits is also a stable
equivalence.

(ix) Let fn : An −→ An+1 for n ≥ 0 be a sequence of composable stable equivalences of symmetric
spectra. Then canonical morphism A0 −→ telnA

n to the mapping telescope is a stable equivalence. In
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the context of simplicial sets, the canonical morphism A0 −→ colimn≥0A
n to the colimit is a stable

equivalence.
(x) Let I be a filtered category and let A,B : I −→ Sp be functors which take all morphisms in I to

monomorphisms of symmetric spectra. If τ : A −→ B is a natural transformation such that τ(i) :
A(i) −→ B(i) is a stable equivalence for every object i of I, then the induced morphism colimI τ :
colimI A −→ colimI B on colimits is a stable equivalence.

(xi) Let G be a group and f : A −→ B an G-equivariant morphism of G-symmetric spectra. If the
underlying morphism of symmetric spectra is a stable equivalence, then so is the induced morphism
fhG : AhG −→ BhG on homotopy orbit spectra.

Proof. (i) For symmetric spectra of simplicial sets, we argue from the definition: for every family
{Ai}i∈I of symmetric spectra and every injective Ω-spectrum X the natural map

[
∨
i∈I

Ai, X] −→
∏
i∈I

[Ai, X]

is bijective by the universal property of the wedge, applied to morphisms and homotopies. A wedge of
stable equivalences is a stable equivalence.

For symmetric spectra of spaces we note that for every family {Ai}i∈I of symmetric spectra the canonical
map

∨
i∈I S(Ai) −→ S(

∨
i∈I A

i) is a π̂∗-isomorphism because naive homotopy groups take wedges to sums
(Proposition 2.19) and taking singular complex does not chance the naive homotopy groups. This reduces
the claim for spaces to the claim for simplicial sets.

(ii) Finite products are stably equivalent to finite products by Corollary 4.25, so (ii) follows from part (i).
(iii) We start with the special case where C and D are trivial spectra. In other words, we show first that

given any morphism of symmetric spectra i : A −→ B, then if two of the spectra A, B and the mapping
cone C(i) are stably contractible, so is the third. If the cone C(i) is stably contractible, then i is a stable
equivalence (Proposition 4.29), hence A is stably contractible if and only if B is. If A and B are stably
contractible, then i is a stable equivalence, so C(i) is stably contrctible, again by Proposition 4.29. This
completes the special case.

In the general case, we exploit that the order in which we take iterated mapping cones in a commutative
square does not matter. More precisely, the mapping cone of the morphism h = C(f) ∪ g : C(i) −→ C(j)
is isomorphic to the mapping cone of the morphism k = C(i) ∪ j : C(f) −→ C(g) induced by i and j. By
Proposition 4.29, a morphism is a stable equivalence if and only if its mapping cone is stably contractible.
So the general case follows by applying the special case to the morphism k : C(f) −→ C(g).

(iv) The suspension of the homotopy fiber F (i) is naturally π∗-isomorphic, hence stably equivalent, to
the mapping cone C(i) (compare Proposition 2.17), and similarly for j. Moreover, e : F (i) −→ F (j) is a
stable equivalence if and only its suspensions S1∧e : S1∧F (i) −→ S1∧F (j) is a stable equivalence. So e is
a stable equivalence if and only if the morphism h : C(i) −→ C(j) on mapping cones is a stable equivalence.
Using this, part (iv) follows from part(iii).

(v) We start with case (a) of a pushout square. If f (and hence g) is a level cofibration, then the
symmetric spectrum of strict cofibers C/f(A) is level equivalent to the mapping cone C(f), and similarly
for g. Since the square is a pushout, the strict cofibers are isomorphic. So the mapping cones C(f) and
C(g) are level equivalent, hence stably equivalent. The criterion (ii) of Proposition 4.29 shows that f is a
stable equivalence if and only if g is. If i (and hence j) is a level cofibration, then by the same argument as
above the morphism h = C(f) ∪ g : C(i) −→ C(j) induced by f and g is a level, hence stable equivalence.
Hence part (iii) shows that f is a stable equivalence if and only if g is.

The case (b) of a pullback square is strictly dual. If g (and hence f) is a level fibration, then the
symmetric spectrum of strict fibers is level equivalent to the homotopy fiber F (g), and similarly for f .
Since the square is a pullback, the strict fibers are isomorphic. So the homotopy fibers F (g) and F (f)
are level equivalent, hence stably equivalent. The criterion (v) of Proposition 4.29 shows that g is a stable
equivalence if and only if f is. If j (and hence i) is a level fibration, we use ‘properness’ to reduce to the
previous case. We choose a factorization g = g′ϕ where ϕ : B −→ B′ is a level equivalence and g′ : B′ −→ D
is a level fibration. The morphism g′ is then a stable equivalence if and only if g is, so by the above the
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pullback j∗(g′) : C ×D B′ −→ C is a stable equivalence if and only if g is. Now f factors as the composite
of the level equivalence (by properness) (f, ϕi) : A −→ C ×D B′ and the morphism j∗(g′), so f is a stable
equivalence if and only if g is.

(vi) The case of simplicial sets has already been taken care of in Proposition 4.14. In the context of
space we contemplate the commutative diagram

S(L) .m S(A)
S(L).mS(f) //

��

S(L) .m S(B)

��
S(L .m A)

S(L.mf)
// S(L .m B)

in which the vertical maps are π̂∗-isomorphisms, hence stable equivalences, by Proposition 3.31. The upper
map is a stable equivalence by the case of simplicial sets, hence so is the lower map. This shows that L .m f
is a stable equivalence. Levelwise smash product with a based space (or simplicial set) K is the special case
of twisted smash product in level 0.

(vii) We start by showing that if A is stably contractible (and levelwise Kan when in the simplicial
context), then map(K,A) is stably contractible. We prove this by induction over the number of cells
(respectively the number of non-degenerate simplices) of K. If K consists of only one point, then map(K,A)
is a trivial spectrum, hence stably contractible. Now suppose that the claim is true for K and K ′ is
obtained from K by attaching an n-cell (respectively K ′ contains K and has exactly one additional non-
degenerate simplex of dimension n). Then the mapping cone of the inclusion i : K −→ K ′ is homotopy
equivalent (respectively weakly equivalent) to Sn, and so map(C(i), A) is level equivalent to ΩnA, hence
stably contractible by Proposition 4.29. On the other hand, map(C(i), A) is isomorphic to the homotopy
fiber of the map map(i, A) : map(K ′, A) −→ map(K,A). Since this homotopy fiber is stably contractible,
map(i, A) is a stable equivalence, again by Proposition 4.29. So map(K ′, A) is stably contractible because
map(K,A) is.

Now we consider a stable equivalence f : A −→ B (with A and B levelwise Kan complexes in the sim-
plicial context). Then the homotopy fiber F (f) is stably contractible by Proposition 4.29, so the symmetric
spectrum map(A,F (f)) is stably contractible by the above. But the symmetric spectrum map(A,F (f)) is
isomorphic to the homotopy fiber of the morphism map(K, f) : map(K,A) −→ map(K,B), so map(K, f)
is a stable equivalence, again by Proposition 4.29.

(viii) We treat the simplicial context first. For every injective Ω-spectrum X the simplicial set
map(telnA

n, X) is isomorphic to the ‘mapping microscope’ of the tower of simplicial sets map(fn, X) :
map(An+1, X) −→ map(An, X). All the simplicial sets map(An, X) are Kan complexes by Proposi-
tion 4.4 (ii) and the microscope construction takes sequences of weak equivalences between Kan simplicial
sets to weak equivalences. So the map map(teln ϕ

n, X) is a weak equivalence, and so teln ϕ
n is a stable

equivalence by Proposition 4.17. Lemma 2.23 relates the mapping telescope telnA
n to the diagonal spec-

trum diagnA
n through a chain of two natural π̂∗-isomorphisms. Since every π̂∗-isomorphism is also a stable

equivalence, the result for mapping telescopes implies the one for diagonals. [case of spaces]
In the simplicial world, the colimit of a sequence is level equivalent to the mapping telescope [ref], hence

also stably equivalent.
(ix) We can reduce statement (viii) to (vi) by comparing the given sequence with the constant sequence

consist of the spectra A0 and its identity map. The canonical map A0 −→ telnA
0 is a level equivalence.

(x) For every injective Ω-spectrum X the simplicial set map(colimI A,X) is isomorphic to the inverse
limit of the functor map(A,X) : Iop −→ sS, and similarly for the functor B. Since A and B consists of
injective morphisms, all morphisms in the inverse systems map(A,X) and map(B,X) are Kan fibrations
(by Proposition 4.4 (i)). Filtered inverse limits of weak equivalences along Kan fibrations are again weak
equivalences, so the map map(colimI B,X) −→ map(colimI A,X) is a weak equivalence of simplicial set,
which means that colimI A −→ colimI B is a stable equivalence. [topological case]
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(xi) Use the isomorphism

map(AhG, X) ∼= mapG(EG+,map(A,X)) = map(A,X)hG

and the fact that homotopy fixed points takes underlying weak equivalences between Kan simplicial G-sets
to weak equivalences. [topological case] �

Example 4.33. We give an example which shows that stable equivalences are in general badly behaved
with respect to infinite products: we present a stably contractible symmetric spectrum X = H(A/A•) such
that the countably infinite product of copies of X is not stably contractible. This shows that the restriction
to finite products in part (ii) of Proposition 4.31 is essential. Since the product

∏
n≥1X is the same as the

mapping spectrum from an infinite discreted space (or an infinite constant simplicial set) to X, the example
also shows that the restriction to finite CW-complexes (respectively simplicial sets) is essential in part (iv)
of Proposition 4.31.

For the example we pick an abelian group A and an exhaustive filtration 0 = A0 ⊂ A1 ⊂ A2 ⊂ . . . such
that An is a proper subgroup of An+1 for all n. We define a modified Eilenberg-Mac Lane spectrum by

Xn = (A/An)[Sn] ,

the linearization, with coefficient group A/An, of the n-sphere (either topological or simplicial). The
symmetric group acts on Xn through the permutation action on the sphere. The structure map is the
composite

(A/An)[Sn] ∧ S1 −→ (A/An)[Sn+1] −→ (A/An+1)[Sn] ,

where the first is the structure map of the Eilenberg-Mac Lane spectrum for the group A/An (see Exam-
ple 1.14) and the second map is induced by the quotient map A/An −→ A/An+1 of coefficient groups. (This
is also an example of the more general construction of the Eilenberg-Mac Lane spectrum associated to an
I-functor, compare Exercise E.I.52 (iv)).

As we argued in Example 1.14, the space Xn is an Eilenberg-Mac Lane space of type (A/An, n); however,
since the filtration is not constant, the spectrum X is not an Ω-spectrum. The naive homotopy groups of
X are trivial in all non-zero dimensions. The naive homotopy group π̂0X is isomorphic to the colimit of
the sequence of projection maps

A = A/A0 −→ A/A1 −→ A/A2 −→ · · ·

so π̂0X is trivial since the groups An exhaust A. Thus X is stably contractible by Theorem 4.23.
Now we calculate the naive homotopy groups of the infinite product XN of copies of X. Again, the space

(or simplicial set) in level n is an Eilenberg-Mac Lane space of dimension n, so the naive homotopy groups
are trivial in all non-zero dimensions. The naive homotopy group π̂0(XN) is isomorphic to the colimit of
the sequence maps

AN = (A/A0)N −→ (A/A1)N −→ (A/A2)N −→ · · ·
each of which is an infinite product of projection maps. If we choose a sequence of elements an ∈ An−An−1,
for n ≥ 1, then the tuple (an)n ∈ AN = π0X

N
0 does not become zero at any finite stage of the colimit system,

hence it represents a non-trivial element in π̂0(XN). As a semistable symmetric spectrum [see below] with
a non-trivial homotopy group, the product XN is not stably contractible.

Example 4.34. We have mentioned many constructions which preserves stable equivalences, and now we
also mention one which does not, namely shifting; this should be contrasted with the fact that shifting
does preserve π̂∗-isomorphisms because π̂k+1(shX) equals π̂kX as abelian groups. An example is the
fundamental stable equivalence λ : F1S

1 −→ S of Example 3.20 which is adjoint to the identity of S1. The
symmetric spectrum sh(F1S

1) is isomorphic to the wedge of F0S
1 = Σ∞S1 and F1S

2, while shS ∼= F0S
1;

the map shλ : sh(F1S
1) −→ shS is the projection to the wedge summand. The complementary summand

F1S
2 ∼= S1 ∧ F1S

1 is stably equivalent, via the suspension of λ, to S1 ∧ S ∼= Σ∞S1, and is thus not stably
contractible (for example since π1(Σ∞S1) ∼= π0S is free abelian of rank 1).
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Example 4.35 (Stable homotopy type of free spectra). We show that the free symmetric spectrum FmK
generated by a based space K in level m is stably equivalent to the m-fold loop of the suspension spectrum
of K. We start from the adjunction unit K −→ Ωm(K ∧ Sm) = Ωm(Σ∞K)m and claim that the adjoint
morphism

ϕm : FmK −→ Ωm(Σ∞K)

is a stable equivalence.
To prove our claim we argue by induction on m, the case m = 0 being clear since ϕ0 is an isomorphism.

In general, the square

.(FmK)
λ̂FmK //

∼=
��

Ω(FmK)

Ω(ϕm)

��
F1+mK

ϕ1+m

// Ω1+m(Σ∞K)

commutes, where the left isomorphism was constructed in (3.21). The morphism λ̂FmK is a stable equiva-
lence by Proposition 4.28, the morphism Ω(ϕm) is a stable equivalence by induction and Proposition 4.29.
So ϕ1+m is a stable equivalence.

For later reference we establish another property of the stable equivalence ϕm, namely that it is equi-
variant with respect to the two right actions of the symmetric group Σm. The right Σm-action on the
source is on the ‘free coordinates’ as defined in (3.22); the right action on the target is obtained from the
left action on the m loop coordinates. The equivariance property is not completely obvious; however, if we
unravel the definition of ϕm, its (m+ n)th level

(ϕm)m+n : Σ+
m+n ∧1×Σn K ∧ Sn −→ map(Sm,K ∧ Sm+n)

turns out to be given by

(ϕm)m+n[γ ∧ k ∧ t](s) = γ · (k ∧ s ∧ t) ,
where γ ∈ Σm+n, k ∈ K, t ∈ Sn and s ∈ Sm. For any permutation σ ∈ Σm, the relations

(ϕm)m+n ([γ ∧ k ∧ t] · σ) (s) = (ϕm)m+n[γ(σ + 1n) ∧ k ∧ t](s) = γ(σ + 1n) · (k ∧ s ∧ t)
= γ · (k ∧ σs ∧ t) = (ϕm)m+n[γ ∧ k ∧ t](σs)

show that indeed ϕm(z · σ) = ϕ(z) · σ.

Example 4.36 (Stable homotopy type of semifree spectra). We show that the semifree symmetric spectrum
GmL generated by a based Σm-space L in level m is stably equivalent to a Σm-homotopy orbit spectrum of
the m-fold loop of the suspension spectrum of L. To produce a stable equivalence we start from the map
ϕm : FmL −→ Ωm(Σ∞L) of the previous Example 4.35. As we showed above, this map is equivariant for
the two right actions of the symmetric group Σm (on the ‘free coordinates’ in the source (3.22) respectively
the loop coordinates in the target). Since ϕm is also natural in L, it is also equivariant for the two left Σm
actions in source and target induced from the left action on L.

Now we coequalize the left and right Σm-actions on source and target homotopically; more precisely we
take homotopy orbits of the diagonal Σm-action (i.e., homotopy orbits of the equivalence relation z ∼ σzσ−1)
on both sides of the map ϕm. Proposition 4.31 (x) allows us to deduce a stable equivalence of homotopy
orbit spectra

ϕmhΣm : (FmL)hΣm −→ (Ωm(Σ∞L))hΣm
.

We claim that the diagonal action of Σm on the free spectrum FmL is levelwise free away from the
basepoint. If the left action on L is trivial, this was shown in Example 3.20. In our more general situation,
the argument is similar: on

(FmL)m+n = Σ+
m+n ∧1×Σn L ∧ Sn

a permutation σ ∈ Σm acts diagonally by

σ · [γ ∧ l ∧ t] = [γ(σ−1 + 1n) ∧ σl ∧ t] .
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The symmetric group Σm+n is free as a right Σm × Σn-set. So the underlying space of (FmL)m+n is
isomorphic to a wedge of (m + n)!/n! copies of L ∧ Sn; in this decomposition, the diagonal action freely
permutes the wedge summands (and acts on L). Hence the diagonal Σm-action on FmL is levelwise free
away from the basepoint, as claimed. Because the diagonal action is free, the natural map

(FmL)hΣm −→ (FmL)/Σm

from homotopy orbits to strict orbits is a level equivalence. The strict orbit spectrum (FmL)/Σm (i.e., the
result of coequalizing the left and right Σm-actions), finally, is isomorphic to the semifree spectrum GmL,
compare (3.24). So altogether we have obtained a chain of two natural stable equivalences

GmL ←−− (FmL)hΣm

ϕmhΣm−−−−→ (Ωm(Σ∞L))hΣm

linking the semifree spectrum GmL to the homotopy orbit spectrum (Ωm(Σ∞L))hΣm
.

Example 4.37 (Stable homotopy type of twisted smash products). We show that the twisted smash
productL .m X of a based Σm-space L with a symmetric spectrum X is stably equivalent to a Σm-homotopy
orbit spectrum of the m-fold loop of the (untwisted) smash product L ∧X.

We start from the map
λ̄K∧X : .(K ∧X) −→ Ω(K ∧X)

where K is a (non-equivariant) based space. This map is a stable equivalence by Proposition 4.28. We
iterate this m times and arrive at the stable equivalence

λ[m] : (Σ+
m ∧K) .m X = .(· · · (.︸ ︷︷ ︸

m

(K ∧X) · ··) −→ Ωm(K ∧X) .

We claim that λ[m] is equivariant for the two right actions of the symmetric group Σm, coming from the
right translation action of Σm on itself in the source (3.22) and the left action on the loop coordinates in
the target. [show...]

Now we consider the map λ[m] where we replace K by a based Σm-space L. As we saw above, λ[m] is
equivariant for the right Σm-actions. Since λ[m] is natural in L, it is also equivariant for the two left Σm
actions in source and target induced from the left action on L.

Now we coequalize the left and right Σm-actions on source and target homotopically; more precisely we
take homotopy orbits of the diagonal Σm-action (i.e., homotopy orbits of the equivalence relation z ∼ σzσ−1)
on both sides of λ[m]. Proposition 4.31 (x) allows us to deduce a stable equivalence of homotopy orbit spectra

λ
[m]
hΣm

: ((Σ+
m ∧ L) .m X)hΣm −→ (Ωm(L ∧X))hΣm

.

We claim that the diagonal action of Σm on the twisted smash product (Σ+
m ∧ L) .m X is levelwise free

away from the basepoint. Indeed, on

(Σ+
m ∧ L) .m Xm+n

∼= Σ+
m+n ∧1×Σn L ∧Xn

a permutation σ ∈ Σm acts diagonally by

σ · [γ ∧ l ∧ x] = [γ(σ−1 + 1n) ∧ σl ∧ x] .

The symmetric group Σm+n is free as a right Σm ×Σn-set. So the underlying space of (Σ+
m ∧ L) .m Xm+n

is isomorphic to a wedge of (m+ n)!/n! copies of L ∧Xn; in this decomposition, the diagonal action freely
permutes the wedge summands (and acts on L). Hence the diagonal Σm-action on (Σ+

m ∧ L) .m Xm+n is
levelwise free away from the basepoint, as claimed. Because the diagonal action is free, the natural map

((Σ+
m ∧ L) .m X)hΣm −→ ((Σ+

m ∧ L) .m X)/Σm

from homotopy orbits to strict orbits is a level equivalence. The strict orbit spectrum ((Σ+
m ∧ L) .m X)/Σm

(i.e., the result of coequalizing the left and right Σm-actions), finally, is isomorphic to the twisted smash
product L .m X. So altogether we have obtained a chain of two natural stable equivalences

L .m X ←−− ((Σ+
m ∧ L) .m X)hΣm

λ
[m]
hΣm−−−−→ (Ωm(L ∧X))hΣm
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linking the twisted smash product L .m X to the homotopy orbit spectrum (Ωm(L ∧X))hΣm
.

We close this section with a construction which shows that up to stable equivalence, every symmetric
spectrum can be replaced by an Ω-spectrum. We construct a functor Q : Sp −→ Sp with values in Ω-spectra
together with a natural stable equivalence ηA : A −→ QA. The main construction is with symmetric spectra
of spaces.

First we let Km,n be the mapping cone of the morphism λnm : Fm+1S
n+1 −→ FmS

n that is adjoint to
the wedge summand inclusion Sn+1 −→ (FmS

n)m+1 = Σ+
m+1 ∧ Sn ∧ S1 indexed by the identity element.

A morphism f : Km,n −→ X then corresponds to a morphism ϕ : FmS
n −→ X and a null-homotopy

H : [0, 1] ∧ Fm+1S
n+1 −→ X of the composite ϕ ◦ λnm. By the freeness property and adjointness of loop

and suspension this data corresponds bijectively to a based map ϕ̂ : Sn −→ Xm and a null-homotopy
Ĥ : [0, 1]∧Sn −→ ΩXm+1 of the composite σ̃m ◦ ϕ̂. If we also adjoin the interval coordinate, then the data

altogether correponds to a based map f̂ : Sn −→ F (σ̃m : Xm −→ ΩXm+1) to the homotopy fiber of the
adjoint structure map. The same reasoning applies to homotopies between morphisms out of Km,n, so we
conclude that the map

(4.38) [Km,n, X] −→ πnF (σ̃m) [f ] 7−→ [f̂ ]

is a bijection from the set of homotopy classes of morphisms from Km,n to X to the n-th homotopy group
of the homotopy fiber F (σ̃m) of the adjoint structure map σ̃m : Xm −→ ΩXm+1.

Given a symmetric spectrum X we define GX by coning off all morphisms from Km,n to X for all
m,n ≥ 0:

GX = C(ev :
∨

m,n≥0

∨
f :Km,n−→X

Km,n −→ X) .

We let iX : X −→ GX denote the inclusion into the cone. We then iterate this construction and let G∞X
denote the colimit

G∞X = colim

(
X

iX−−−→ GX
iGX−−−−→ G2X

iG2X−−−−→ · · ·
)
.

Finally, we set QX = Ω sh(G∞X). Then Q is a functor that comes with a natural transformation ηX :
X −→ QX defined as the composite

X −→ G∞X
λ̃G∞X−−−−→ Ω sh(G∞X) = QX ,

where the first is the canonical map from X to the colimit.
To get a ‘Q’-functor for symmetric spectra of simplicial sets we set QX = S(Q(|X|)) when X is a

symmetric spectrum of simplicial sets. The natural stable equivalence is then obtained as the composite

ηX : X
unit−−→ S|X|

S(η|X|)−−−−−→ S(Q(|X|)) .

Proposition 4.39. For every symmetric spectrum X the spectrum QX is an Ω-spectrum and the morphism
ηX : X −→ QX is a stable equivalence.

Proof. We start with the case of spectra of spaces. We observe first that every morphism f : Km,n −→
G∞X for any m,n ≥ 0, is null-homotopic. Indeed, such a morphism factors through GkX for some finite
number k, and the lift f̃ : Km,n −→ GkX is among the morphisms that are coned off to build Gk+1X. So

the composite of iGkX ◦ f̃ : Km,n −→ Gk+1X is null-homotopic, hence so is the original map f .
Since every morphism from Km,n to G∞X is null-homotopic, the bijection (4.38) shows that the homo-

topy group πnF (σ̃m) of the homotopy fiber of the adjoint structure map σ̃m : (G∞X)m −→ Ω(G∞X)m+1

vanishes. This implies that the adjoint structure map σ̃m induces an injection on path components and
an isomorphism of all homotopy groups of positive dimensions. This does not yet mean that σ̃m is a weak
equivalence, but it implies that Ωσ̃m : Ω((G∞X)m) −→ Ω2((G∞X)m+1) as a weak equivalence. Since Ωσ̃m
is the (m−1)-th adjoint structure map of the spectrum Ω sh(G∞X), we have shown that QX = Ω sh(G∞X)
is an Ω-spectrum.
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The morphism λnm : Fm+1S
n+1 −→ FmS

n is a stable equivalence [ref] so its mapping cone Km,n is stably
contractible. Hence every wedge of copies of Km,n, for varying m and n, is stably contractible. But then for
every symmetric spectrum X the morphism X −→ GX is a stable equivalence. All the morphisms in the
colimits system defining G∞X are simultaneously h-cofibrations and stable equivalences, so the canonical
morphism X −→ G∞X is a stable equivalence by [ref]. The morphism λ̃G∞X isa π̂∗-isomorphism, thus a
stable equivalence. So ηX is a stable equivalence.

The singular complex of the Ω-spectrum of spaces Q|X| is an Ω-spectrum of simplicial sets. Every
level equivalence is a stable equivalence and the singular complex functor preserves stable equivalences (by
definition). Hence the case of simplicial sets follows from the case of spaces. �

Corollary 4.40. There is an endofunctor (Q−)inj : SpsS −→ SpsS on the category of symmetric spectra
of simplicial sets and a natural stable equivalence A −→ Ainj such that (QA)inj is an injective Ω-spectrum
for all symmetric spectra of simplicial sets A.

Proof. We define (QA)inj as the composite of the functor Q of Proposition 4.39 and the injective
replacement of Proposition 4.10. The morphism from A to QA is the composite

A
ηA−−−→ QA −→ (QA)inj

of the stable equivalence of Proposition 4.39 with the level equivalence (for the spectrum QA) of Proposi-
tion 4.10. �

5. Smash product

5.1. Construction of the smash product. One of the main features which distinguishes symmetric
spectra from the more classical spectra without symmetric group actions is the internal smash product. The
smash product of symmetric spectra is very much like the tensor product of modules over a commutative
ring. To stress that analogy, we recall three different ways to look at the classical tensor product and then
give analogies involving the smash product of symmetric spectra.

In the following, R is a commutative ring and M,N and W are right R-modules.

(A) Tensor product via bilinear maps. A bilinear map from M and N to another right R-module
W is a map b : M ×N −→ W such that for each m ∈ M the map b(m,−) : N −→ W is R-linear and for
each n ∈ N the map b(−, n) : M −→W is R-linear. The tensor product M ⊗R N is the universal example
of a right R-module together with a bilinear map from M ×N . In other words, there is a specified bilinear
map i : M ×N −→M ⊗R N such that for every R-module W the map

HomR(M ⊗R N,W ) −→ BilinR(M ×N,W ) , f 7→ f ◦ i

is bijective. As usual, the universal property characterizes the pair (M ⊗R N, i) uniquely up to preferred
isomorphism.

(B) Tensor product as an adjoint to internal Hom. The category of right R-modules has
‘internal Hom-objects’: the set HomR(N,W ) of R-linear maps between two right R-modules N and W is
naturally an R-module by pointwise addition and scalar multiplication. For fixed right R-modules M and
N , the functor HomR(M,HomR(N,−)) : mod-R −→ mod-R is representable and tensor product M ⊗R N
can be defined as a representing R-module. This point of view is closely related to the first approach since
the R-modules HomR(M,HomR(N,W )) and BilinR(M ×N,W ) are naturally isomorphic.

(C) Tensor product as a construction. Often the tensor product M ⊗R N is introduced as a
specific construction, usually the following: M ⊗RN is the free R-module generated by symbols of the form
m⊗ n for all m ∈M and n ∈ N subject to the following set of relations

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n , m⊗ (n+ n′) = m⊗ n+m⊗ n′
• (mr)⊗ n = (m⊗ n) · r = m⊗ (nr)
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for all m,m′ ∈ M , n, n′ ∈ N and r ∈ R. Since this is a minimal set of relations which make the map
M ×N −→M ⊗R N given by (m,n) 7→ m⊗ n into a bilinear map, the tensor product is constructed as to
have the universal property (A).

Now we introduce the smash product of symmetric spectra in three ways, analogous to the ones in the
algebraic context.

(A) Smash product via bilinear maps. We define a bimorphism b : (X,Y ) −→ Z from a pair of
symmetric spectra (X,Y ) to a symmetric spectrum Z as a collection of Σp×Σq-equivariant maps of pointed
spaces or simplicial sets, depending on the context,

bp,q : Xp ∧ Yq −→ Zp+q

for p, q ≥ 0, such that the ‘bilinearity diagram’

(5.1)

Xp ∧ Yq ∧ S1

Xp∧σq

vvnnnnnnnnnnnnnnn

bp,q∧S1

��

Xp∧twist // Xp ∧ S1 ∧ Yq

σp∧Yq

��
Xp ∧ Yq+1

bp,q+1
((QQQQQQQQQQQQQQQ
Zp+q ∧ S1

σp+q

��

Xp+1 ∧ Yq

bp+1,q

��
Zp+q+1 Zp+1+q

1×χ1,q

oo

commutes for all p, q ≥ 0. In Exercise E.I.15 we give a justification for the name ‘bimorphism’.
We can then define a smash product of X and Y as a universal example of a symmetric spectrum with

a bimorphism from X and Y . More precisely, a smash product for X and Y is a pair (X ∧ Y, i) consisting
of a symmetric spectrum X ∧ Y and a universal bimorphism i : (X,Y ) −→ X ∧ Y , i.e., a bimorphism such
that for every symmetric spectrum Z the map

(5.2) Sp(X ∧ Y,Z) −→ Bimor((X,Y ), Z) , f 7−→ fi = {fp+q ◦ ip,q}p,q

is bijective.

Example 5.3. As an example, and for later reference, we define a a bimorphism j : (GmL, Y ) −→ L .m Y
out of a semifree symmetric spectrum GmL and an arbitrary symmetric spectrum Y to the twisted smash
product and then show that this is in fact a universal bimorphism. The component of j of bidegree (p, q)
is necessarily trivial for p < m. For p = m+ n the respective component

jm+n,q : (GmL)m+n ∧ Yq = (Σ+
m+n ∧Σm×Σn L ∧ Sn) ∧ Yq(5.4)

−→ Σ+
m+n+q ∧Σm×Σn+q

L ∧ Yn+q = (L .m Y )m+n+q

is the (Σm+n × Σq)-equivariant extension of the (Σm × Σn × Σq)-equivariant composite

(L ∧ Sn) ∧ Yq
L∧twist−−−−−→ L ∧ Yq ∧ Sn

L∧σq−−−→ L ∧ Yq+n
L∧χq,n−−−−−→ L ∧ Yn+q

[1∧−]−−−→ Σ+
m+n+q ∧Σm×Σn+q L ∧ Yn+q .

We omit the straightforward verification that the maps jp,q indeed form a bimorphism.

Proposition 5.5. The bimorphism j : (GmL, Y ) −→ L .m Y is universal. Hence the pair (L .m Y , j) is a
smash product of the semifree symmetric spectrum GmL and Y .

Proof. We have to show that for every bimorphism b : (GmL, Y ) −→ Z there is a unique homomor-
phism f : L .m Y −→ Z such that b = f ◦ j. For uniqueness we note that f is necessarily trivial below
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level m and in level m+ q the map fm+q : Σ+
m+q ∧Σm×Σq L ∧ Yq −→ Zm+q is Σm+q-equivariant and hence

determined by the composite with

jm,q = [1 ∧ −] : L ∧ Yq −→ Σ+
m+q ∧Σm×Σq L ∧ Yq .

So there is at most one morphism f : L .m Y −→ Z with b = f ◦ j.
Conversely, we can construct a morphism f : L .m Y −→ Z from a bimorphism b : (GmL, Y ) −→ Z as

follows. Again f is necessarily trivial below level m. For q ≥ 0 we define

fm+q : (L .m Z)m+q = Σ+
m+q ∧Σm×Σq L ∧ Yq −→ Zm+q

as the Σm+q-equivariant extension of the is the (Σm × Σq)-equivariant map bm,q : L ∧ Yq −→ Zm+q. We
omit the verification, which uses the bilinearity of b, that these maps really define a homomorphism of
symmetric spectra. [ b = f ◦ j...] �

(B) Smash product as an adjoint to internal Hom. In Example 3.38 we introduced ‘internal
Hom objects’ in the category of symmetric spectra. For every pair of symmetric spectra Y,Z we defined
another symmetric spectrum Hom(Y,Z) such that the morphism from Y to Z are (in natural bijection
with) the points respectively vertices of the 0th level of Hom(Y,Z). We claim that for fixed symmetric
spectra X and Y , the set-valued functor Sp(X,Hom(Y,−)) is representable; the smash product X ∧ Y can
then be defined as a representing symmetric spectrum. This point of view can be reduced to perspective
(A) since the sets Sp(X,Hom(Y, Z)) and Bimor((X,Y ), Z) are in natural bijection (see Exercise E.I.15).
In particular, since the functor Bimor((X,Y ),−) is representable, so is the functor Sp(X,Hom(Y,−)).

(C) Smash product as a construction. Now we construct a symmetric spectrum X ∧ Y from two
given symmetric spectra X and Y . We want X ∧ Y to be the universal recipient of a bimorphism from
(X,Y ), and this pretty much tells us what we have to do. For n ≥ 0 we define the nth level (X ∧Y )n as the
coequalizer, in the category of pointed Σn-spaces or pointed Σn-simplicial sets (depending on the context),
of two maps

αX , αY :
∨

p+1+q=n

Σ+
n ∧Σp×Σ1×Σq Xp ∧ S1 ∧ Yq −→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq .

The wedges run over all non-negative values of p and q which satisfy the indicated relations. The map αX
takes the wedge summand indexed by (p, 1, q) to the wedge summand indexed by (p+ 1, q) using the map

σXp ∧ Id : Xp ∧ S1 ∧ Yq −→ Xp+1 ∧ Yq
and inducing up. The other map αY takes the wedge summand indexed by (p, 1, q) to the wedge summand
indexed by (p, 1 + q) using the composite

Xp ∧ S1 ∧ Yq
Id∧twist−−−−−→ Xp ∧ Yq ∧ S1

Id∧σYq−−−−→ Xp ∧ Yq+1
Id∧χq,1−−−−−→ Xp ∧ Y1+q

and inducing up.
The structure map (X ∧Y )n ∧S1 −→ (X ∧Y )n+1 is induced on coequalizers by the wedge of the maps

Σ+
n ∧Σp×Σq Xp ∧ Yq ∧ S1 −→ Σ+

n+1 ∧Σp×Σq+1
Xp ∧ Yq+1

induced from Id∧σYq : Xp∧Yq∧S1 −→ Xp∧Yq+1. One should check that this indeed passes to a well-defined
map on coequalizers. Equivalently we could have defined the structure map by moving the circle past Yq,
using the structure map of X (instead of that of Y ) and then shuffling back with the permutation χ1,q; the
definition of (X ∧Y )n+1 as a coequalizer precisely ensures that these two possible structure maps coincide,
and that the collection of maps

Xp ∧ Yq
x∧y 7→1∧x∧y−−−−−−−−→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq

projection−−−−−−→ (X ∧ Y )p+q

forms a bimorphism – and in fact a universal one.
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Construction 5.6. We define the smash product X ∧Y as the universal example of a symmetric spectrum
with a bimorphism from X and Y . More precisely, for every pair of symmetric spectra (X,Y ) we choose a
symmetric spectrum X ∧ Y and a universal bimorphism i : (X,Y ) −→ X ∧ Y , i.e., a bimorphism such that
for every symmetric spectrum Z the map

Sp(X ∧ Y,Z) −→ Bimor((X,Y ), Z) , f 7−→ fi = {fp+q ◦ ip,q}p,q
is bijective. Such a universal pair (X ∧ Y, i) always exists, as the coequalizer construction in (C) above
shows.

It will be convenient later to make the sphere spectrum S into a strict unit for the smash product (as
opposed to a unit up to coherent isomorphisms). So we make the following conventions:

• (Right unit) We choose X ∧ S = X with universal bimorphism i : (X,S) −→ X given by the
iterated structure map,

ip,q = σq : Xp ∧ Sq −→ Xp+q .

• (Left unit) We choose S ∧ Y = Y with universal bimorphism i : (S, Y ) −→ Y given by the
composite

ip,q : Sp ∧ Yq
twist−−−→ Yq ∧ Sp

σp−−−→ Yq+p
χq,p−−−−→ Yp+q .

We have to observe a couple of things for this to make sense. First, the iterated structure maps and
the composites [...] are indeed universal bimorphisms [...] Second, the two conventions are consistent for
the sphere spectrum because in both definitions, the universal bimorphism has the canonical isomorphism
Sn ∧ Sm ∼= Sn+m as its (n,m)-component.

Very often only the object X ∧Y will be referred to as the smash product, but one should keep in mind
that it comes equipped with a specific, universal bimorphism. We will often refer to the bijection (5.2) as
the universal property of the smash product of symmetric spectra.

The smash product X∧Y is a functor in both variables. This is fairly evident from the construction (C),
but since we defined the smash product via the universal property (A), we have to explain functoriality in this
context. If we use the universal property (A) the contravariant functoriality of the set Bimor((X,Y ), Z)
in X and Y turns into functoriality of the representing objects. In more detail, if f : X −→ X ′ and
g : Y −→ Y ′ are morphisms of symmetric spectra, then the collection of pointed maps{

Xp ∧ Yq
fp∧gq−−−−→ X ′p ∧ Y ′q

i′p,q−−→ (X ′ ∧ Y ′)p+q
}
p,q≥0

forms a bimorphism (X,Y ) −→ X ′ ∧ Y ′. So there is a unique morphism of symmetric spectra f ∧ g :
X ∧ Y −→ X ′ ∧ Y ′ such that (f ∧ g)p+q ◦ ip,q = i′p,q ◦ (fp ∧ gq) for all p, q ≥ 0. The uniqueness part of the
universal property implies that this is compatible with identities and composition in both variables.

If we define the smash product as a representing object for the functor Hom(X,Hom(Y,−)), then
functoriality in X and Y follows from functoriality of the latter functor in X and Y .

5.2. Coherence isomorphisms. Now that we have constructed a smash product functor we can
investigate its formal and homotopical properties. We start with the formal properties now; the homotopical
analysis will be taken up in Section 5.5.

The first thing to show is that the smash product is symmetric monoidal. Since ‘symmetric monoidal’
is extra data, and not a property, we are obliged to construct associativity isomorphisms

αX,Y,Z : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z) ,

symmetry isomorphisms

τX,Y : X ∧ Y −→ Y ∧X .

We have arranged things so that the sphere spectrum S is a strict unit, so the left and right unit
isomorphisms which are part of a symmetric monoidal structure are the identity maps and don’t have to
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be explicitly mentioned.

First construction. We can obtain all the isomorphisms of the symmetric monoidal structure just from
the universal property. In the construction of the smash product, we had chosen, for each pair of symmetric
spectra (X,Y ), a smash product X ∧ Y and a universal bimorphism i = {ip,q} : (X,Y ) −→ X ∧ Y .

For construction the associativity isomorphism we notice that the family{
Xp ∧ Yq ∧ Zr

ip,q∧Zr−−−−−→ (X ∧ Y )p+q ∧ Zr
ip+q,r−−−−→ ((X ∧ Y ) ∧ Z)p+q+r

}
p,q,r≥0

and the family{
Xp ∧ Yq ∧ Zr

Xp∧iq,r−−−−−→ Xp ∧ (Y ∧ Z)q+r
ip,q+r−−−−→ (X ∧ (Y ∧ Z))p+q+r

}
p,q,r≥0

both have the universal property of a tri morphism (whose definition is hopefully clear) out of X, Y and Z.
The uniqueness of representing objects gives a unique isomorphism of symmetric spectra

αX,Y,Z : (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

such that (αX,Y,Z)p+q+r ◦ ip+q,r ◦ (ip,q ∧ Zr) = ip,q+r ◦ (Xp ∧ iq,r).
The symmetry isomorphism τX,Y : X ∧ Y −→ Y ∧X corresponds to the bimorphism

(5.7)
{
Xp ∧ Yq

twist−−−→ Yq ∧ Xp
iq,p−−→ (Y ∧X)q+p

χq,p−−−→ (Y ∧X)p+q

}
p,q≥0

.

The block permutation χq,p is crucial here: without it the diagram (5.1) would not commute and we
would not have a bimorphism. If we restrict the composite τY,X ◦ τX,Y in level p + q along the map
ip,q : Xp ∧ Yq −→ (X ∧ Y )p+q we get ip,q again. Thus τY,X ◦ τX,Y = IdX∧Y and τY,X is inverse to τX,Y .

Second construction. The coherence isomorphisms can also be obtained from the construction of
the smash product in (C) above, as opposed to the universal property. In level n the spectra (X ∧ Y ) ∧ Z
and X ∧ (Y ∧ Z) are quotients of the spaces∨

p+q+r=n

Σ+
n ∧Σp+q×Σr

(
Σ+
p+q ∧Σp×Σq Xp ∧ Yq

)
∧ Zr

respectively ∨
p+q+r=n

Σ+
n ∧Σp×Σq+r Xp ∧

(
Σ+
q+r ∧Σq×Σr Yq ∧ Zr

)
.

The wedges run over all non-negative values of p, q and r which sum up to n. We get a well-defined map
between these two wedges by wedging over the maps

Σ+
n ∧Σp+q×Σr

(
Σ+
p+q ∧Σp×Σq Xp ∧ Yq

)
∧ Zr ←→ Σ+

n ∧Σp×Σq+r Xp ∧
(
Σ+
q+r ∧Σq×Σr Yq ∧ Zr

)
σ ∧ ((τ ∧ x ∧ y) ∧ z) 7−→ (σ(τ × 1)) ∧ (x ∧ (1 ∧ y ∧ z))

σ(1× γ) ∧ ((1 ∧ x ∧ y) ∧ z) ←− σ ∧ (x ∧ (γ ∧ y ∧ z))

where σ ∈ Σn, τ ∈ Σp+q, γ ∈ Σq+r, x ∈ Xp, y ∈ Yq and z ∈ Zr.
The symmetry isomorphism τX,Y : X ∧X −→ Y ∧X is obtained by wedging over the maps

Σ+
n ∧Σp×Σq Xp ∧ Yq −→ Σ+

n ∧Σq×Σp Yq ∧Xp

σ ∧ x ∧ y 7−→ (σχq,p) ∧ y ∧ x(5.8)

where σ ∈ Σn, x ∈ Xp and y ∈ Yq and passing to quotient spaces. The shuffle permutation χq,p is needed
to make this map well-defined on quotients.
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Remark 5.9. We’ll try to motivate the shuffle permutation χq,p in the definition (5.8) of the twist isomor-
phism; this is more natural in the ‘coordinate free’ description of the smash product X ∧ Y (we refer to
Exercise E.I.5 to a discussion of coordinate free symmetric spectra). If A is any finite set, then the value of
X ∧ Y at A is the appropriate coequalizer of wedges of terms

Bij(p + q, A)+ ∧Σp×Σq Xp ∧ Yq

where Bij(p + q, A) is the set of bijections from the disjoint union of p and q to A. The set Bij(p + q, A) is
naturally acted upon by ΣA = Bij(A,A) from the left and by Σp ×Σq from the right. Similarly, (Y ∧X)A
arises from

Bij(q + p, A)+ ∧Σq×Σp Yq ∧Xp .

Given a bijection σ : p + q −→ A, we obtain a bijection σχq,p : q + p −→ A by precomposing σ with the
symmetry isomorphism χq,p : q + p −→ p + q; this explains the assignment (5.8).

Theorem 5.10. The associativity and symmetry isomorphisms make the smash product of symmetric
spectra into a symmetric monoidal product with the sphere spectrum S as a strict unit object. This product
is closed symmetric monoidal in the sense that the smash product is adjoint to the internal Hom spectrum,
i.e., there is an adjunction isomorphism

Hom(X ∧ Y,Z) ∼= Hom(X,Hom(Y,Z)) .

Proof. We have to verify that several coherence diagrams commute. We start with the pentagon
condition for associativity. Given a fourth symmetric spectrum W we consider the pentagon

((W ∧X) ∧ Y ) ∧ Z
αW,X,Y ∧Z

ssggggggggggggggggggg
αW∧X,Y,Z

++WWWWWWWWWWWWWWWWWWW

(W ∧ (X ∧ Y )) ∧ Z

αW,X∧Y,Z ''NNNNNNNNNNN
(W ∧X) ∧ (Y ∧ Z)

αW,X,Y∧Zwwppppppppppp

W ∧ ((X ∧ Y ) ∧ Z)
W∧αX,Y,Z

// W ∧ (X ∧ (Y ∧ Z))

If we evaluate either composite at level o+ p+ q + r and precompose with

Wo ∧Xp ∧ Yq ∧ Zr
io,p∧Yq∧Zr−−−−−−−→ (W ∧X)o+p ∧ Yq ∧ Zr
io+p,q∧Zr−−−−−−→ ((W ∧X) ∧ Y )o+p+q ∧ Zr

io+p+q,r−−−−−→ (((W ∧X) ∧ Y ) ∧ Z)o+p+q+r

then both ways around the pentagon yield the composite

Wo ∧Xp ∧ Yq ∧ Zr
Wo∧Xp∧iq,r−−−−−−−−→Wo ∧Xp ∧ (Y ∧ Z)q+r
W0∧ip,q+r−−−−−−−→Wo ∧ (X ∧ (Y ∧ Z))p+q+r

io,p+q+r−−−−−→ (W ∧ (X ∧ (Y ∧ Z)))o+p+q+r .

So the uniqueness part of the universal property shows that the pentagon commutes.
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Coherence between associativity and symmetry isomorphisms means that the two composites from the
upper left to the lower right corner of the diagram

(5.11)

(X ∧ Y ) ∧ Z
αX,Y,Z

**UUUUUUUUUUUUU
τX,Y ∧Z

ttiiiiiiiiiiiii

(Y ∧X) ∧ Z
αY,X,Z

��

X ∧ (Y ∧ Z)

τX,Y∧Z
��

Y ∧ (X ∧ Z)

Y ∧τX,Z **UUUUUUUUUUUUU
(Y ∧ Z) ∧X

αY,Z,Xttiiiiiiiiiiiii

Y ∧ (Z ∧X)

should be equal, and the same kind of argument as for the pentagon relation for associativity works.
If we have a non-strict unit object with left and right unit isomorphisms, there would be more coherence

conditions relating associativity and symmetry isomorphisms to the unit morphisms. Since we made the
sphere spectrum a strict unit, these conditions are replaced by the following observations. The associativity
isomorphisms

αS,Y,Z : Y ∧ Z = (S ∧ Y ) ∧ Z −→ S ∧ (Y ∧ Z) = Y ∧ Z ,

αX,S,Z : X ∧ Z = (X ∧ S) ∧ Z −→ X ∧ (S ∧ Z) = X ∧ Z and

αX,Y,S : X ∧ Y = (X ∧ Y ) ∧ S −→ X ∧ (Y ∧ S) = X ∧ Y

are the identity morphisms. The symmetry isomorphisms

τS,Y : Y = S ∧ Y −→ Y ∧ S = Y and τX,S : X = X ∧ S −→ S ∧X = X

are the identity morphisms. [justify] [closed monoidal...] �

Remark 5.12. (Permutation action of Σn) In every symmetric monoidal category the symmetric group
Σn acts naturally on the n-th smash power of any object by ‘permuting the factors’. Suppose first that
the monoidal product � happens to be strictly associative, i.e., (X�Y )�Z = X�(Y�Z) as functors in
three variables, and the associativity isomorphism αX,Y,Z is the identity. Then we can omit parentheses

altogether and define an action of Σn on X(n) = X� · · ·�X (n factors) by letting the transposition (i, i+1)
act as the automorphism ti = X(i−1)�τX,X�X(n−1−i) (for 1 ≤ i ≤ n− 1). Then t2i is the identity for all i

(since τX,X = τ−1
X,X), and ti and tj commute for |i− j| ≥ 2 (since the monoidal product is a functor in two

variables). The hexagon relation (5.11) specializes to

ti+1ti = X(i−1)�τX,X�X�X(n−2−i) ,

and from this we deduce

titi+1ti = (X(i−1)�τX,X�X(n−1−i)) ◦ (X(i−1)�τX,X�X�X(n−2−i))

= X(i−1)�((τX,X�X) ◦ τX,X�X)�X(n−2−i)

= X(i−1)�(τX,X�X ◦ (X�τX,X))�X(n−2−i)

= (X(i−1)�τX,X�X�X(n−2−i)) ◦ (X(i)�τX,X�X(n−2−i))

= ti+1titi+1 .

The third equation is the naturality of the symmetry isomorphism. In general, however, the monoidal
product is not strictly associative, and if we want to be completely honest, we have to choose a way of
parenthesising the factors in X(n). One can still define an action of Σn on X(n) in a way that generalizes
the above construction, but we delegate the details to Exercise E.I.19.
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5.3. Smash product and various other constructions. Now we identify the smash product of
certain kinds of symmetric spectra and relate it by natural maps to other constructions. We start by
comparing the smash product with a semifree spectrum GmL with the twisted smash product L .m −, where
L is a based Σm-space (or Σm-simplicial set). In (5.4) we introduced a bimorphism j : (GmL, Y ) −→ L .m Y
and showed in Proposition 5.5 that this bimorphism is universal. If (GmL∧Y, i) is the chosen smash product
of GmL and Y , then universality of i provides a unique morphism κ : GmL ∧ Y −→ L .m Y of symmetric
spectra such that κi = j. Since i and j are both universal bimorphisms out of (GmL, Y ), the morphism κ
induces a bijection on morphisms into any symmetric spectrum. This shows

Proposition 5.13. Let L be a pointed Σm-space (or Σm-simplicial set) for some m ≥ 0 and Y a symmetric
spectrum. Then the unique morphism of symmetric spectra

κ : GmL ∧ Y −→ L .m Y

which satisfies κi = j is a natural isomorphism.

We specialize the previous proposition in several steps. The special case m = 0 provides a natural
isomorphism

K ∧X = K .0 X ∼= (Σ∞K) ∧X
for pointed spaces (or simplicial sets) K and symmetric spectra X. We can also consider a Σm-space L
and a Σn-space L′. If we spell out all definitions we see that L .m (GnL

′) is isomorphic to the semifree
symmetric spectrum Gm+n(Σ+

m+n∧Σm×ΣnL∧L′). So Proposition 5.13 specializes to a natural isomorphism

(5.14) Gm+n(Σ+
m+n ∧Σm×Σn L ∧ L′) ∼= GmL ∧GnL′ .

The isomorphism is adjoint to the Σm+n-equivariant map

Σ+
m+n ∧Σm×Σn L ∧ L′ −→ (GmL ∧GnL′)m+n ,

which in turn is adjoint to the Σm × Σn-equivariant map

L ∧ L′ = (GmL)m ∧ (GnL
′)n

im,n−−−→ (GmL ∧GnL′)m+n

given by the universal bimorphism. So the isomorphism (5.14) rephrases the fact that a bimorphism from
(GmL,GnL

′) to Z is uniquely determined by its (m,n)-component, which can be any Σm×Σn-equivariant
map L ∧ L′ −→ Zm+n. The isomorphism (5.14), and the ones which follow below, are suitably associative,
commutative and unital.

As a special case we can consider smash products of free symmetric spectra. If K and K ′ are pointed
spaces or simplicial sets then we have FmK = Gm(Σ+

m ∧ K) and FnK
′ = Gn(Σ+

n ∧ K ′), so the isomor-
phism (5.14) specializes to an associative, commutative and unital isomorphism

Fm+n(K ∧K ′) ∼= FmK ∧ FnK ′ .
As the even more special case for m = n = 0 we obtain a natural isomorphism of suspension spectra

(Σ∞K) ∧ (Σ∞L) ∼= Σ∞(K ∧ L)

for all pairs of pointed spaces (or pointed simplicial sets) K and L. [Σm × Σn-equivariant!]
We define a natural, Σn × Σm-equivariant morphism

(5.15) ξ : shnX ∧ shm Y −→ shn+m(X ∧ Y )

which interrelates smash product and shifts of symmetric spectra. By definition, the morphism ξ corre-
sponds, under the universal property of the smash product, to the bimorphism with (p, q)-component the
composite

(shnX)p ∧ (shm Y )q = Xn+p ∧ Ym+q
in+p,m+q−−−−−−→ (X ∧ Y )n+p+m+q

1n+χp,m+1q−−−−−−−−→ (X ∧ Y )n+m+p+q = (shn+m(X ∧ Y ))p+q .

If we want to emphasize the number of shifts or the spectra involved, we may decorate the map ξ with
indices, as in ξn,mX,Y . The homomorphism ξ is unital and compatible with the associativity and commutativity
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isomorphisms of the smash product, in the sense that a couple of diagrams commute. For example, unitality
refers to the commuting diagrams:

shnX ∧ shm S
∼= //

ξX,S

��

shnX ∧ (Sm ∧ S)
∼= // Sm ∧ shnX

λ
(m)
shn X

��
shn+m(X ∧ S) shn+mX shm(shnX)

shn S ∧ shm Y
∼= //

ξS,Y

��

(Sn ∧ S) ∧ shm Y
∼= // Sn ∧ shm Y

λ
(n)
shm Y

��
shn+m(S ∧ Y ) shn+m Y χn,m

// shn(shm Y )

Here we used the identification shn S ∼= Sn ∧ S via the canonical isomorphisms Sn ∧ Sm ∼= Sn+m. The
diagrams may be interpreted as saying that, up to the indicated identifications, the maps ξX,S and ξS,Y

‘are’ the morphism λ
(m)
X : Sm ∧X −→ shmX respectively λY : S1 ∧ Y −→ shY .

The associativity property is expressed in the commuting diagram:

(shnX ∧ shm Y ) ∧ shk Z
α

shn X,shm Y,shk Z //

ξX,Y ∧Id

��

shnX ∧ (shm Y ∧ shk Z)

Id∧ξY,Z
��

shn+m(X ∧ Y ) ∧ shk Z

ξX∧Y,Z

��

shnX ∧ shm+k(Y ∧ Z)

ξX,Y∧Z

��
shn+m+k((X ∧ Y ) ∧ Z)

shn+m+k(αX,Y,Z)

// shn+m+k(X ∧ (Y ∧ Z))

Commutativity refers to the commuting diagrams:

shnX ∧ shm Y
τshn X,shm Y //

ξn,mX,Y
��

shm Y ∧ shn Y

ξm,nY,X

��
shn+m(X ∧ Y )

shn+m(τX,Y )

// shn+m(Y ∧X) χn,m
// shm+n(Y ∧X)

As a special case of the above, or by direct verification from the definitions, we obtain that the square

(5.16)

(Sn ∧X) ∧ (Sm ∧ Y )
∼= //

λ
(n)
X ∧λ

(m)
Y

��

Sn+m ∧ (X ∧ Y )

λ
(n+m)
X∧Y

��
shnX ∧ shm Y

ξX,Y

// shn+m(X ∧ Y )

commutes. There is yet another commuting diagram, saying that the map ξ itself is in a sense associative:

shk(shnX) ∧ shl(shm Y )
ξshn X,∧mY // shk+l(shnX ∧ shm Y )

shk+l ξX,Y // shk+l(shn+m(X ∧ Y ))

shn+kX ∧ shm+l Y ξX,Y

// shn+k+m+l(X ∧ Y )
1n+χk,m+1l

// shn+m+k+l(X ∧ Y )
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We can use the morphisms ξ1,0
X,Y and ξ0,1

X,Y to express the shift of a smash product X ∧ Y as an

amalgamated union of the spectra (shX) ∧ Y and X ∧ (shY ). By direct verification from the definitions
we see that the diagram

(5.17)

(S1 ∧X) ∧ Y twist //

λX∧Id

��

X ∧ (S1 ∧ Y )
Id∧λY // X ∧ (shY )

ξ0,1
X,Y

��
(shX) ∧ Y

ξ1,0
X,Y

// sh(X ∧ Y )

commutes. Moreover, up to the associativity isomorphism, the composite morphism from the initial to the
terminal vertex agrees with the morphism λX∧Y : S1 ∧ (X ∧ Y ) −→ sh(X ∧ Y ).

Proposition 5.18. For every pair of symmetric spectra X and Y the square (5.17) is a pushout.

Proof. We fix Y and prove the proposition for successively more general spectra X. Let us suppose
first that X = Σ∞K is the suspension spectrum of a based space (or simplicial set) K. Then λΣ∞K :
S1∧Σ∞K −→ sh(Σ∞K) is an isomorphism, hence so is the left vertical map λΣ∞K∧Y . Moreover, smashing
with the suspension spectrum Σ∞K is isomorphic to smashing with the space K, which is done levelwise
and commutes with shifting. So for X = Σ∞K the right vertical map ξ0,1

Σ∞K,Y is also an isomorphism. Since
both vertical maps are isomorphisms, the square is a pushout.

Now we prove that the proposition holds for the induced spectrum .X if it holds for X. Since the
induction functor . is isomorphic to smashing with the free spectrum F1, the two upper spectra (S1∧.X)∧Y
and (.X)∧(shY ) are isomorphic to .(S1∧X∧Y ) respectively .(X∧(shY )). We exploit the splitting (3.19)
of sh(.A) as A ∨ .(shA) for A = X and A = X ∧ Y and distribute smash product over wedge to rewrite
the two lower corners of the square (5.17) as

(sh(.X)) ∧ Y ∼= (X ∧ Y ) ∨ .((shX) ∧ Y )

respectively

sh((.X) ∧ Y ) ∼= (X ∧ Y ) ∨ .(sh(X ∧ Y )) .

Making all these substitutions in the square (5.17) for .X we arrive at the isomorphic commutative square:

.(S1 ∧X ∧ Y )
.((X∧λX)◦twist) //

.(λX∧Y )

��

.(X ∧ (shY ))

.ξ0,1
X,Y

��
(X ∧ Y ) ∨ .((shX) ∧ Y )

Id∨.ξ1,0
X,Y

// (X ∧ Y ) ∨ .(sh(X ∧ Y ))

The two summands of X∧Y in the lower row map across by the identity and the vertical maps have images
in the summands complementary to the two copies of X ∧ Y . The rest of the square is obtained from the
square (5.17) for X by applying induction .. Since . is a left adjoint it preserves pushouts, which proves
that the last square is a pushout.

Now we have shown that the square (5.17) is a pushout when X is a suspension spectrum, and that
the proposition for X implies the proposition for .X. Since F0K ∼= Σ∞K and F1+mK ∼= .FmK, induction
on m proves the proposition whenever X = FmK is a free symmetric spectrum.

All four corners of the square as well as the pushout commute with colimits. Every semifree symmetric
spectrum is a coequalizer of a free symmetric spectrum, compare (3.24), so the proposition follows whenever
X = GmL is a semifree symmmetric spectrum. Since every symmetric spectrum is naturally a coequalizer
of two morphisms between wedges of semifree spectra, compare (3.25), the proposition finally follows for
an arbitrary symmetric spectrum X. �

Example 5.19. We can use Proposition 5.18 to make the smash product more explicit, at least in low
levels. For example, if we evaluate the pushout (5.17) in level 0, we obtain a description of (X ∧ Y )1 as a
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pushout of the maps

X1 ∧ Y0
σ0∧Y0←−−−− X0 ∧ S1 ∧ Y0

∼= X0 ∧ Y0 ∧ S1 X0∧σ0−−−−→ X0 ∧ Y1 .

There are natural composition morphisms

(5.20) ◦ : Hom(Y,Z) ∧ Hom(X,Y ) −→ Hom(X,Z)

which are associative and unital with respect to a unit map S −→ Hom(X,X) adjoint to the identity of X
(which is a vertex in level 0 of the spectrum Hom(X,X)). The composition morphism is obtained, by the
universal property of the smash product, from the bimorphism consisting of the maps

map(Y, shn Z) ∧map(X, shm Y )
shm ∧ Id−−−−−→ map(shm Y, shm(shn Z)) ∧map(X, shm Y )

= map(shm Y, shn+m Z) ∧map(X, shm Y )
◦−−−−→ map(X, shn+m Z)

where the second map is the composition pairing of Example 3.36. We refer to (3.10) for why it is ‘right’ to
identify shm(shn Z) with shn+m Z (note the orders in which m and n occur), so that no shuffle permutation
is needed. If we specialize to X = Y = Z, we recover the multiplication of the endomorphism ring spectrum
as defined in Example 3.41.

If X and Y are symmetric spectra we can also define natural coherent morphisms

XK ∧ Y L −→ (X ∧ Y )K∧L

for pointed spaces (simplicial sets) K and L and morphisms

∧ : map(A,X) ∧map(B, Y ) −→ map(A ∧B,X ∧ Y ) and

∧ : Hom(A,X) ∧Hom(B, Y ) −→ Hom(A ∧B,X ∧ Y )(5.21)

for symmetric spectra A and B. The last morphism is obtained from the bimorphism whose (n,m)-
component is the composite

Hom(A,X)n ∧Hom(B, Y )m = map(A, shnX) ∧map(B, shm Y )
∧−−→ map(A ∧B, shnX ∧ shm Y )

map(A∧B,ξX,Y )−−−−−−−−−−→ map(A ∧B, shn+m(X ∧ Y )) = Hom(A ∧B,X ∧ Y )n+m ,

where the morphism ξX,Y : shnX ∧ shm Y −→ shn+m(X ∧ Y ) was defined in (5.15).
The functors of geometric realization and singular complex (compare Section 3.1) which relate symmet-

ric spectra of spaces respectively simplicial sets are nicely compatible with the smash products for symmetric
spectra. As for the unstable objects themselves, geometric realization is strong symmetric monoidal, i.e.,
commutes with the smash product up to coherent isomorphism. The singular complex is at least lax sym-
metric monoidal, i.e., allows an associative and commutative natural transformation. Here are some more
details. We let Y and Y ′ be symmetric spectra of simplicial sets. Then |Y | is the geometric realization, a
symmetric spectrum of topological spaces, and similarly for |Y ′|. We can consider the composite maps

|Yp| ∧ |Y ′q |
rYp,Y ′q−−−−→ |Yp ∧ Y ′q |

|ip,q|−−−→ |(Y ∧ Y ′)p+q|

where the isomorphism rA,B : |A| ∧ |B| ∼= |A ∧ B| was discussed in (3.2) and ip,q is a component of the
universal bimorphism. As p and q vary the collection of these maps constitute a bimorphism from (|Y |, |Y ′|)
to |Y ∧ Y ′|, which gives rise to a preferred morphism of symmetric spectra of spaces

(5.22) rY,Y ′ : |Y | ∧ |Y ′| −→ |Y ∧ Y ′| .

This morphism is a natural isomorphism, and associative, unital and commutative.
Now we let X and X ′ be two symmetric spectra of topological spaces. Similarly as above, the composite

maps

S(Xp) ∧ S(X ′q) −→ S(Xp ∧X ′q)
S(ip,q)−−−−→ S((X ∧X ′)p+q)
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constitute a bimorphism from (S(X),S(X ′)) to S(X ∧ X ′), which gives rise to a preferred morphism of
symmetric spectra of simplicial sets

(5.23) S(X) ∧ S(X ′) −→ S(X ∧X ′) .
This natural morphism is also associative, unital and commutative, but in general not an isomorphism.

Now we can make precise the idea that symmetric ring spectra are the same as monoid objects in the
symmetric monoidal category of symmetric spectra with respect to the smash product.

Construction 5.24. Let us define an implicit symmetric ring spectrum as a symmetric spectrum R together
with morphisms µ : R ∧ R −→ R and ι : S −→ R which are associative and unital in the sense that the
following diagrams commute:

(R ∧R) ∧R
αR,R,R //

µ∧R
��

R ∧ (R ∧R)
R∧µ // R ∧R

µ

��

S ∧R

NNNNNNNNNNNNN

NNNNNNNNNNNNN
ι∧R // R ∧R

µ

��

R ∧ SR∧ιoo

ppppppppppppp

ppppppppppppp

R ∧R µ
// R R

We say that the implicit symmetric ring spectrum (R,µ, ι) is commutative if the multiplication is unchanged
when composed with the symmetric isomorphism, i.e., if the relation µ ◦ τR,R = µ holds.

Given an implicit symmetric ring spectrum (R,µ, ι) we can make the collection of Σn-spaces Rn into a
symmetric ring spectrum in the sense of the original Definition 1.3 as follows. As unit maps we simply take
the components of ι : S −→ R in levels 0 and 1. We define the multiplication map µn,m : Rn∧Rm −→ Rn+m

as the composite

Rn ∧Rm
in,m−−−→ (R ∧R)n+m

µn+m−−−−→ Rn+m .

Then the associativity condition for µ above directly translates into the associativity condition of Defini-
tion 1.3 for the maps µn,m. Evaluating the two commuting unit triangles in level 0 gives the unit condition
of Definition 1.3. The condition µ(R∧ ι) = IdR in level n+1 composed with in,1 : Rn∧S1 −→ (R∧S)n+1 =
Rn+1 shows that µn,1◦(R∧ι1) equals the structure map σn : Rn∧S1 −→ Rn+1 of the underlying symmetric
spectrum of R. So the conceivably different meaning of ‘underlying symmetric spectrum’ in the sense of
Remark 1.6 (iii) in fact coincides with the underlying spectrum R. We recall from Construction 5.6 that
the (1, n)-component of the universal bimorphism i : (S, R) −→ S ∧R = R is the composite

S1 ∧Rn
twist−−−→ Rn ∧ S1 σn−−−→ Rn+1

χn,1−−−−→ R1+n .

So the condition µ(ι ∧R) = IdR in level 1 + n, composing with the map i1,n : S1 ∧Rn −→ R1+n gives the
centrality condition of Definition 1.3. If the implicit multiplication is commutative, then in the diagram

Rn ∧Rm
µn,m

##

in,m //

twist

��

(R ∧R)n+m
µn+m

**TTTTTTTTTTTTTTTTT

(τR,R)n+m

��
(R ∧R)n+m µn+m

//

χn,m

��

Rn+m

χn,m

��
Rm ∧Rn

µm,n

55im,n
// (R ∧R)m+n µm+n

// Rm+n

the upper right triangle commutes for all n,m ≥ 0. The left square commutes by the definition (5.7) of
the symmetry isomorphism τR,R, and the lower right square because µ is a homomorphism of symmetric
spectra. So the entire diagram commutes, and that means that the explicit multiplication is commutative.

Altogether this proves:
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Theorem 5.25. The construction 5.24 which turns an implicit symmetric ring spectrum into a symmetric
ring spectrum in sense of the original Definition 1.3 is an isomorphism between the category of implicit
symmetric ring spectra and the category of symmetric ring spectra. The functor restricts to an isomorphism
from the category of commutative implicit symmetric ring spectra to the category of commutative symmetric
ring spectra.

Now that we have carefully stated and proved Theorem 5.25 we will start to systematically blur the dis-
tinction between implicit and explicit symmetric ring spectra. Whenever convenient we use the isomorphism
of categories to go back and forth between the two notions without further mentioning.

Example 5.26 (Smash product of symmetric ring spectra). Here is a construction of a new symmetric
ring spectrum from old ones for which the possibility to define ring spectra ‘implicitly’ is crucial. If R and
S are symmetric ring spectra, then the smash product R ∧ S has a natural structure as symmetric ring
spectrum as follows. The unit map is defined from the unit maps of R and S

ιR∧S = ιR ∧ ιS : S = S ∧ S −→ R ∧ S .

The multiplication map of R ∧ S is defined from the multiplications of R and S as the composite

(R ∧ S) ∧ (R ∧ S)
Id∧τS,R∧Id−−−−−−−−→ (R ∧R) ∧ (S ∧ S)

µ∧µ−−−→ R ∧ S ,

where we have suppressed some associativity isomorphisms. It is a good exercise to insert these associativity
isomorphisms and observe how the hexagon condition for associativity and symmetry isomorphisms enters
the verification that the product of R ∧ S is in fact associative.

Example 5.27 (Tensor and symmetric algebra). Another class of examples which can only be given as
implicit symmetric ring spectra are symmetric ring spectra ‘freely generated’ by a symmetric spectrum.
These come in two flavors, an associative and a commutative (and associative) version.

Given a symmetric spectrum X we define the tensor algebra as the symmetric spectrum

TX =
∨
n≥0

X ∧ · · · ∧X︸ ︷︷ ︸
n

with the convention that a 0-fold smash product is the unit object S. The unit morphism ι : S −→ TX
is the inclusion of the wedge summand for n = 0. The multiplication is given by ‘concatenation’, i.e., the
restriction of µ : TX ∧ TX −→ TX to the (n,m) wedge summand is the canonical isomorphism

X∧n ∧X∧m
∼=−→ X∧(n+m)

followed by the inclusion of the wedge summand indexed by n+m. In order to be completely honest here we
should throw in several associativity isomorphisms; strictly speaking already the definition of TX requires
choices of how to associate expressions such as X ∧X ∧X and higher smash powers. However, all of this is
taken care of by the coherence conditions of the associativity (and later the symmetry) isomorphisms, and
we will not belabor this point any further.

Given any symmetric ring spectrum R and a morphism of symmetric spectra f : X −→ R we can define

a new morphism f̂ : TX −→ R which on the nth wedge summand is the composite

X∧n
f∧n−−→ R∧n

µn−−→ R .

Here µn is the iterated multiplication map, which for n = 0 has to be interpreted as the unit morphism

ι : S −→ R. This extension f̂ : TX −→ R is in fact a homomorphism of (implicit) symmetric ring spectra.
Moreover, if g : TX −→ R is any homomorphism of symmetric ring spectra then g = ĝ1 for g1 : X −→ R
the restriction of g to the wedge summand indexed by 1. Another way to say this is that

Homring spectra(TX,R) −→ Sp(X,R) , g 7→ g1

is a natural bijection. In fact, this bijection makes the tensor algebra functor into a left adjoint of the
forgetful functor from symmetric ring spectra to symmetric spectra.
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The construction has a commutative variant. We define the symmetric algebra generated by a symmetric
spectrum X as

PX =
∨
n≥0

(X∧n)/Σn .

Here Σn permutes the smash factors of X∧n using the symmetry isomorphisms (in the way made precise
in Remark 5.12 and Exercise E.I.19), and we take the quotient symmetric spectrum. This symmetric
spectrum has unique unit and multiplication maps such that the quotient morphism TX −→ PX becomes
a homomorphism of symmetric ring spectra. So the unit morphism ι : S −→ PX is again the inclusion of
the wedge summand for n = 0 and the multiplication is the wedge of the morphisms

(X∧n)/Σn ∧ (X∧m)/Σm −→ (X∧(n+m))/Σn+m

induced on quotients by X∧n ∧X∧m ∼= X∧(n+m).

Example 5.28. For two abelian groups A and B, a natural morphism of symmetric spectra

mA,B : HA ∧HB −→ H(A⊗B)

is obtained, by the universal property (5.2), from the bilinear morphism

(HA)n ∧ (HB)m = A[Sn] ∧ B[Sm] −→ (A⊗B)[Sn+m] = (H(A⊗B))n+m

given by (∑
i

ai · xi

)
∧

∑
j

bj · yj

 7−→
∑
i,j

(ai ⊗ bj) · (xi ∧ yj) .

A unit map S −→ HZ is given by the inclusion of generators. With respect to these maps, H becomes a lax
symmetric monoidal functor from the category of abelian groups (under tensor product) to the category of
symmetric spectra (under smash product). As a formal consequence, H turns a ring A into a symmetric
ring spectrum with multiplication map

HA ∧HA mA,A−−−−→ H(A⊗A)
Hµ−−→ HA ,

where µ : A ⊗ A −→ A is the multiplication in A, i.e., µ(a ⊗ b) = ab. This is the ‘implicit’ construction
of an Eilenberg-Mac Lane ring spectrum whose explicit variant appeared in Example 1.14. Similarly, an
A-module structure on B gives rise to an HA-module structure on HB.

The definition of the symmetric spectrum HA makes just as much sense when A is a simplicial abelian
group; thus the Eilenberg-Mac Lane functor makes simplicial rings into symmetric ring spectra, respecting
possible commutativity of the multiplications.

5.4. Skeleta and latching spaces. There is a functorial way to write a symmetric spectrum as a
sequential colimit of spectra which are made from the information below a fixed level. This is somewhat
analogous to the skeleton filtration of a simplicial set, which ultimately arises from filtering the category ∆
of finite ordered sets by cardinality. We thus refer to this as the skeleton filtration of a symmetric spectrum.
The word ‘filtration’ should maybe be set in quotes here because in the context of symmetric spectra the
maps from the skeleta to the symmetric spectrum need not be injective.

Construction 5.29. For every symmetric spectrum X and k ≥ 0 we define the following data by induction
on k:

• a based Σk-space (or Σk-simplicial set) LkX, the k-th latching space of X, equipped with a natural
map of pointed Σk-spaces (resp. Σk-simplicial sets) νk : LkX −→ Xk.

• a symmetric spectrum F kX, the k-skeleton of X, equipped with a natural morphism ik : F kX −→
X,

• a natural morphism jk : F k−1X −→ F kX which satisfies ikjk = ik−1.
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We start with F−1X = ∗, the trivial spectrum. For k ≥ 0 we define the latching space by

(5.30) LkX = (F k−1X)k ,

the k-th level of the (k− 1)-skeleton, and the morphism νk : LkX = (F k−1X)k −→ Xk as the k-level of the
previously constructed morphism ik−1 : F k−1X −→ X. Then we define the k-skeleton F kX as the pushout

(5.31)

GkLkX
Gkνk //

��

GkXk

��
F k−1X jk

// F kX

where the left vertical morphism is adjoint to the identity map of LkX = (F k−1X)k. The morphism
η : GkXk −→ X which is adjoint to the identity of Xk and ik−1 : F k−1X −→ X restrict to the same
morphism onGkLkX. So the universal property of the pushout provides a unique morphism ik : F kX −→ X
which satisfied ikjk = ik−1 and whose restriction to GkXk is η.

We want to be a bit more specific about the pushout above in ‘low levels’. Colimits in general, and
pushouts in particular, are not completely well-defined, but only up to preferred isomorphism. In our
situation, we can – and will – choose the pushout (5.31) so that

(5.32) (F kX)n = Xn for n ≤ k

and so that the morphisms jk+1 : F kX −→ F k+1X and ik : F kX −→ X are the identity maps in level
k and below. This convention is convenient because it will later make some maps equalities which would
otherwise merely be isomorphisms. We note that this convention also forces the structure maps of the
symmetric spectrum F kX to coincide with those of X up to level k.

We have to justify that this choice is possible, and we do this by induction on k. For k = −1 there is
nothing to show, so we may assume k ≥ 0. The semifree spectra GkLkX and GkXk are trivial in level k and
below, so the morphism Gk+1νk+1 : Gk+1Lk+1X −→ Gk+1Xk+1 is an isomorphism in level k and below.
Hence its cobase change jk : F k−1X −→ F kX is an isomorphism in level k− 1 and below. This means that
we can take (F kX)n = (F k−1X)n and (jk)n = Id for n < k. By induction, (F k−1X)n = Xn below level k,
so this justifies our choice (5.32) except in level k. In the pushout square (5.31) the left vertical morphism is
an isomorphism in level k since (GkLkX)k = LkX = (F k−1X)k; so in level k, the right vertical morphism
in (5.31) is an isomorphism Xk = (GkX)k −→ (F kX)k. The composite of this morphism with the k-th
level of ik : F kX −→ X is the identity of Xk, so (ik)k is an isomorphism, and we can choose (F kX)k = Xk

and have (ik)k be the identity morphism. The relation ik = jkik−1 lets us deduce inductively that ik is an
isomorphism below level k.

The sequence of skeleta F kX stabilizes to X in a very strong sense. In every given level m, there is
a point from which on all the spaces (F kX)m are equal to Xm and the morphisms ik and jk are identity
maps in level m. In particular, Xm is the colimit with respect to the morphisms (ik)m, of the sequence of
maps (jk)m, Since colimits in the category of symmetric spectra are created levelwise, we deduce that the
spectrum X is a colimit, with respect to the morphisms ik, of the sequence of morphisms jk.

In low dimensions, latching spaces and skeleta can be described explicitly as follows. The spectrum
F−1X is trivial, so the 0-th latching space L0X is a point and the pushout (5.31) for the 0-skeleton reduces
to an isomorphism F 0X ∼= G0X0

∼= Σ∞X0, the suspension spectrum of level 0. The first latching space
is thus given by L1X = (F 0X)1 = X0 ∧ S1 and the first latching morphism ν1 : L1X −→ X1 equals the
structure map σ0 : X0 ∧ S1 −→ X1.

One step further we obtain the 1-skeleton F 1X as a pushout of the diagram

Σ∞X0 ←−−− G1(X0 ∧ S1)
G1(σ0)−−−−→ G1X1
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where the left morphism is adjoint to the identity of X0 ∧ S1. Taking level 2 of this exhibits the second
latching space L2X as the pushout of the diagram

X0 ∧ S2 act on S2

←−−−−−−− Σ+
2 ∧X0 ∧ S2 Id∧σ0∧Id−−−−−−→ Σ+

2 ∧X1 ∧ S1 .

Thus L2X is the quotient of Σ+
2 ∧X1 ∧ S1 by the equivalence relation generated by

γ ∧ σ0(a ∧ x) ∧ y ∼ (γ(1, 2)) ∧ σ0(a ∧ y) ∧ x

for γ ∈ Σ2, a ∈ X0 and x, y ∈ S1. In Proposition 5.39 below we will recognize the latching spaces as the
spaces in the symmetric spectrum X ∧ S̄, the smash product of X with the truncated sphere spectrum.
This shows that in general LkX is a quotient space (or simplicial set) of Σ+

k ∧Σk−1
Xk−1 ∧ S1.

There are other ways to introduce the skeleton functors: in Exercise E.I.26 we reinterpret the skeleton
functor F k as a left adjoint to a truncation functor from the category of symmetric spectra to a category
of ‘k-truncated symmetric spectra’; in Exercise E.I.22 we show that the k-skeleton F kX can be defined by
truncating the construction (3.25) which expresses X as a coequalizer of semifree spectra; in Exercise E.I.25
we relate F kX to the smash products of X with certain truncated sphere spectra.
� A word of warning: although the functor F k behaves in many ways like a skeleton of a simplicial set,

the morphism ik : F kX −→ X is not generally injective! An example is provided by the truncated
sphere spectrum S̄, which we define now.

Example 5.33. The truncated sphere spectrum S̄ is the symmetric subspectrum of S with levels

(5.34) S̄n =

{
∗ for n = 0

Sn for n ≥ 1.

In other words, S̄ differs from the sphere spectrum S only in one missing point in level 0. Since S̄ is trivial
in level 0, we have F 1S̄ = G1S̄1 = G1S

1; this 1-skeleton of S̄ is too big for the morphism i1 : F 1S̄ −→ S̄ to
be injective. In particular the latching map

ν2 = (i1)2 : (F 1S̄)2 = (G1S̄1)2 = Σ+
2 ∧ S2 −→ S2 = S̄2

is the action map of Σ2 on S2, and is not injective.

Example 5.35. As another example we calculate the skeleton filtration and the latching spaces of a semifree
spectrum GmL, where L is a based Σm-space (or Σm-simplicial set). Since any semifree spectrum is trivial
below its defining level, the symmetric spectrum F k(GmL) is trivial for k < m and the latching space
Lk(GmL) is trivial for k ≤ m.

Now we claim that for k ≥ m the morphism

ik : F k(GmL) −→ GmL

is the identity and that for k > m the latching morphism

νk : Lk(GmL) −→ (GmL)k

is the identity. In this sense the semifree spectrum GmL is ‘purely m-dimensional’. Indeed, for k = m the
latching space Lm(GmL) is trivial and we have (GmL)m = L; so the right vertical morphism in the defining
pushout (5.31) is an isomorphism from GmL to Fm(GmL). Hence the morphism im : Fm(GmL) −→ GmL
is also an isomorphism. For k > m we can now argue inductively: since ik−1 is an isomorphism, so is
its k-th level, the latching morphism νk : Lk(GmL) −→ (GmL)k. Since νk is an isomorphism, so is the
upper horizontal morphism Gkνk in the defining pushout (5.31) for F k+1(GmL). Hence the cobase change
jk+1 : F k(GmL) −→ F k+1(GmL) is an isomorphism. Finally, by the relation ik+1jk+1 = ik, the morphism
ik+1 is an isomorphism since the other two are.

Example 5.36. We identify the latching spaces of twisted smash products. Let K be a pointed Σm-space
(or simplicial set) for some m ≥ 0 and X a symmetric spectrum. The twisted smash product K .m X
is trivial below level m, hence the skeleton F k(K .m X) is trivial for i < m and the latching object
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Lk(K .m X) is trivial for k ≤ m. To describe skeleta and latching objects for larger values we construct a
natural isomorphism of symmetric spectra

(5.37) q : Fm+k(K .m X) −→ K .m (F kX)

which is the identity in level k +m and below. Moreover, the diagrams

Fm+k−1(K .m X)
q //

jm+k

��

K .m (F k−1X)

K.kjk

��
Fm+k(K .m X) q

// K .m (F kX)

and Fm+k(K .m X)

im+k ((QQQQQQQQQQQQQ
q // K .m (F kX)

K.mik

��
K .m X

commute for all k ≥ 0. In particular, the level m+ k component of q for m+ k − 1 is a Σm+k-equivariant
isomorphism

(5.38) q̃ : Lm+k(K .m X)
∼=−−→ Σ+

m+k ∧Σm×Σk (K ∧ LkX) .

For the construction of the morphism (5.37), we recall the convention (5.32), substitute the definition of
twisted smash products and thereby arrive at

(Fm+k(K .m X))n = (K .m X)n = Σ+
n ∧Σm×Σn−m K ∧Xn−m

= Σ+
n ∧Σm×Σn−m K ∧ (F kX)n−m = (K .m (F kX))n ,

whenever n ≤ m+ k (and hence n−m ≤ k); in other words, source and target of q are equal in level m+ k
and below (where both sides are a point when n is less than m).

We construct q by induction on k. For k = −1 there is nothing to show since source and target of q are
both trivial spectra. Since the source of q is defined as a pushout (5.31), it suffices to define morphisms

q1 : Fm+k−1(K .m X) −→ K .m (F kX) and q2 : Gm+k(K .m X)m+k −→ K .m (F kX)

which ‘restrict’ to the same morphism on Gm+kLm+k(K .m X). We define q1 as the composite

Fm+k−1(K .m X)
q−−→ K .m (F kX)

K.mjk−−−−→ K .m (F kX)

where the first map q is from the previous induction step. With this choice of q1, we have automatically
arranged that the square above commutes. We define q2 as the morphism adjoint to the identity of (K .m
(F kX))m+k = (K .m X)m+k. The two ‘restrictions’ of q1 respectively q2 to morphisms Gm+kLm+k(K .m
X) −→ K .m (F kX) are then adjoint to the latching morphism

νm+k : Lm+k(K .m X) −→ (K .m X)m+k = (K .m (F kX))m+k .

Therefore q1 and q2 ‘glue’ to a unique morphism q defined on the pushout Fm+k(K .mX). Naturality of q
in K and X are clear. [q is identity in levels k +m and below; q is an isomorphism]

It remains to show that the triangle above commutes. However, both maps im+k and (K .m ik) ◦ q are
the identity in levels k + m and below by our convention (5.32); since the source is an (m + k)-skeleton,
im+k and (K .m ik) ◦ q have to coincide [ref].

In the next proposition we reinterpret the latching space using the smash product with a truncated
sphere spectrum S̄, compare Example 5.33.

Before we construct this isomorphism we recall a description of the space (X ∧ S̄)k (and hence, a
posteriori, of the latching space LkX) as a coequalizer. We obtain this presentation by making the con-
struction (C) of the smash product of symmetric spectra explicit when the second factor is the truncated
sphere spectrum S̄. If we unravel the definitions and specialize to the appropriate values we obtain (X ∧ S̄)k
as a coequalizer, in the category of pointed Σk-spaces (resp. Σk-simplicial sets), of two maps∨k−2

n=0 Σ+
k ∧Σn×Σ1×Σk−n−1

Xn ∧ S1 ∧ Sk−n−1 ////
∨k−1
n=0 Σ+

k ∧Σn×Σk−n Xn ∧ Sk−n
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(we have already simplified the coequalizer by omitting trivial wedge summands which contain the one
point space S̄0). One of the maps takes the wedge summand indexed by n to the wedge summand indexed
by n+ 1 using the map

σn ∧ Sk−n−1 : Xn ∧ S1 ∧ Sk−n−1 −→ Xn+1 ∧ Sk−n−1

and inducing up. The other map takes the wedge summand indexed by n to the wedge summand indexed
by n using the canonical isomorphism

Xn ∧ S1 ∧ Sk−n−1 ∼=−−→ Xn ∧ Sk−n

and inducing up.

Proposition 5.39. For every symmetric spectrum X and k ≥ 0 there is a unique morphism of based
Σk-spaces (or simplicial sets)

ik : (X ∧ S̄)k −→ LkX

whose composite with the component ik−1,1 : Xk−1∧S1 −→ (X ∧ S̄)k of the universal bimorphism equals the
structure map σk−1 : Xk−1∧S1 −→ LkX of the spectrum F k−1X. Moreover, the map ik is an isomorphism,
natural in X and the composite of ik with the latching map νk : LkX −→ Xk equals the k-th level of the
morphism

X ∧ incl. : X ∧ S̄ −→ X ∧ S = X .

Proof. The map ik−1,1 : Xk−1∧S1 −→ (X ∧ S̄)k is a surjection [ref], so there can be at most one map
ik satisfying ikik−1,1 = σk−1. For the construction of ik we recall the convention (5.32) that the spaces and
structure maps of the skeleton F k−1X agree with those of X up to level k− 1. So for i ≤ k− 1 the iterated
structure maps

Xi ∧ Sk−i = (F k−1X)i ∧ Sk−i
σm−−→ (F k−1X)k = LkX

of the (k − 1)-skeleton are Σi × Σk−i equivariant maps which we can induce up and assemble into a Σk-
equivariant map

k−1∨
i=0

Σ+
k ∧Σi×Σk Xi ∧ Sk−i −→ LkX .

The space (X ∧ S̄)k is a coequalizer of two maps with target the previous wedge; since the map above was
assembled from structure maps of the symmetric spectrum F k−1X, it coequalizes the two maps and so
factors over a unique morphism of Σk-spaces

ik : (X ∧ S̄)k −→ LkX .

Now we verify the relation νkik = (rX ◦ (Id∧incl.))k. After precomposition with ik−1,1, both sides of
the equation become the strucure map σk−1 : Xk−1∧S1 −→ Xk of X. Since ik−1,1 : Xk−1∧S1 −→ (X∧ S̄)k
is a surjection, this proves the relation.

Finally, we show that ik is an isomorphism. We first check the special case X = GmL of a semifree
symmetric spectrum generated by based Σm-space (or simplicial set) L. If k ≤ m, then Lk(GmL) and
(GmL∧ S̄)k ∼= (L.m S̄)k are trivial, so ik is an isomorphism. If k > m then Id∧incl. : GmL∧ S̄ −→ GmL∧S
is an isomorphism in level k since GmL ∧ A ∼= L .m A which in level k depends only on L and An−k. The
latching map νk (by Example 5.35) and the unit isomorphism are also isomorphisms, hence so is ik.

For general X we exploit that every symmetric spectrum can be written as a coequalizer (3.25) of a
map between wedges of semifree spectra. Since the map ik is natural and its source and target commute
with colimits, the special case of semifree spectra implies the general case. �

A generalization of the previous proposition to the ‘generalized latching spaces’ (F iX)m for i < m is
given in Exercise E.I.25.
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Example 5.40. If we specialize the pushout square (5.17) for sh(X ∧ Y ) in the special case Y = S̄ of the
truncated sphere spectrum, we obtain an inductive description of the latching objects. Indeed, since Lk is
isomorphic to to the k-th level of X ∧ S̄, the k-the level of the square (5.17) is the pushout:

Lk(S1 ∧X)
νS

1∧X
k //

LkλX

��

S1 ∧Xk

σk

��
Lk(shX) // L1+kX

In the upper right corner we have used that X ∧ sh S̄ is isomorphic to S1 ∧X.

5.5. Flat symmetric spectra. We recall that a morphism of pointed simplicial sets is a cofibration
if it is a categorical monomorphism, i.e., dimensionwise injective. A morphism of pointed spaces is a
cofibration if it is a retract of a pointed cell complex. These are the cofibrations in the standard Quillen
model structures on pointed simplicial sets respectively pointed spaces.

Definition 5.41. A morphism f : X −→ Y of symmetric spectra is a level cofibration if for every n ≥ 0
the morphism fn : Xn −→ Yn is a cofibration of the underlying pointed spaces or pointed simplicial sets
(depending on the context). A symmetric spectrum A is flat if the functor A∧− preserves level cofibrations.

To motivate the terminology we recall that a module over a commutative ring is called flat if tensoring
with it preserves monomorphisms. Level cofibrations of symmetric spectra of simplicial sets are just the
categorical monomorphisms, i.e., those morphisms which are injective in every spectrum level and every
simplicial dimension. So in the context of simplicial sets, a symmetric spectrum A is flat if and only
if A ∧ − preserves monomorphisms. In the context of symmetric spectra of topological spaces, simply
requiring that A ∧ − preserves monomorphisms is not the right condition, so the analogy with flatness in
algebra is less tight.

We will show in Chapter III that flat symmetric spectra are the cofibrant objects in various ‘flat model
structures’.

Example 5.42. Let L be a pointed Σm-space (or Σm-simplicial set), for some m ≥ 0, whose underlying
pointed space is cofibrant (this is automatic in the context of simplicial sets). Then smashing with the
semifree symmetric spectrum preserves level cofibrations and level acyclic cofibrations. In particular, the
semifree spectrum GmL is flat. As special cases, this applies to free symmetric spectra FnK and suspension
spectra Σ∞K, for every based cofibrant space K (respectively every based simplicial set).

Indeed, if X is another symmetric spectrum then GmL∧X is isomorphic to the twisted smash product
L .m X (see Proposition 5.13) and so it is trivial in levels below m and we have a natural isomorphism

(5.43) (GmL ∧X)m+n
∼= Σ+

m+n ∧Σm×Σn L ∧Xn

for n ≥ 0. If f : X −→ Y is a level cofibration respectively a level acyclic cofibration then Id∧fn :
L∧Xn −→ L∧Yn is a cofibration respectively acyclic cofibration by the pushout product property [ref]. As
a pointed space (simplicial set), the right hand side of (5.43) is a wedge of

(
m+n
m

)
copies of L ∧Xn. Hence

the morphism Id∧f : GmL ∧X −→ GmL ∧ Y is levelwise a cofibration respectively acyclic cofibration.

An example of a non-flat symmetric spectrum is the truncated sphere spectrum S̄, the subspectrum of
the sphere spectrum given by S̄0 = ∗ and S̄n = Sn for n ≥ 1. So the difference between S̄ and S is only
one missing point in level 0, but that point makes a huge difference with respect to flatness. Indeed, in
Example 5.33 we identified the latching map

ν2 : L2S̄ = Σ+
2 ∧ S2 −→ S2 = S̄2

and concluded that ν2 is not injective. Hence S̄ is not flat by the criterion of Proposition 5.47 below.
Some other properties of flat spectra are fairly straightforward from the definition:

Proposition 5.44. (i) A wedge of flat symmetric spectra is flat.
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(ii) For symmetric spectra of simplicial sets, a filtered colimit of flat symmetric spectra is flat.
(iii) The smash product of two flat symmetric spectra is flat.
(iv) If A is a flat symmetric spectrum and K a cofibrant space (respectively simplicial set), then K ∧A is

flat.

Proof. Properties (i) and (ii) follow from the two facts that the smash product commutes with colimits
and that a wedge and (in the case of simplicial sets) a filtered colimit of level cofibrations is a level cofibration.

(iii) Let A and B be flat symmetric spectra. If f : X −→ Y is a level cofibration, then so is B ∧ f :
B ∧X −→ B ∧ Y since B is flat; then A∧B ∧ f : A∧B ∧X −→ A∧B ∧ Y is also a level cofibration since
A is flat (where we have implicitly used the associativity isomorphisms). Thus A ∧B is flat.

(iv) The spectrum K ∧ A is isomorphic to the smash product (Σ∞K) ∧ A. Since A is flat and the
suspension spectrum is flat by Example 5.42, (iv) follows from (iii). �

There are more construction that preserve flatness. As a special case of Proposition III.2.9 below we
shall see that for every flat symmetric spectrum A the morphism λA : S1 ∧A −→ shA is a level cofibration
(even a ‘flat cofibration’) and the shifted spectrum shA is again flat. This implies that all structure maps
σn : An ∧ S1 −→ An+1 are cofibrations.

In [...] below we shall prove that the product A × B of two flat symmetric spectra A and B is again
flat.

A morphism f : X −→ Y of symmetric spectra is a level acyclic cofibration if it is simultaneously a
level cofibration and a level equivalence.

Proposition 5.45. Let A be a symmetric spectrum such that for every k ≥ 0 the latching morphism
νk : LkA −→ Ak is cofibration of underlying pointed spaces (respectively simplicial sets). Then the functor
A ∧ − preserves level cofibrations and level acyclic cofibrations.

Proof. Let f : X −→ Y be a level cofibration (respectively level acyclic cofibration) of symmetric
spectra. We use the skeleton filtration of A by the spectra F kA (see Construction 5.29) and show inductively
that the map Id∧f : F kA ∧ X −→ F kA ∧ Y is a level cofibration (resp. level acyclic cofibration). Since
F kA agrees with A up to level k, the smash product F kA∧X agrees with A∧X up to level k, and similarly
for Y . Since k can be arbitrarily large, this proves the claim.

We can start the induction with k = −1, where there is nothing to show. For the inductive step we use
the pushout square (5.31) which defines F kA. Since smashing is a left adjoint the spectrum F kA ∧X is a
pushout of the upper row in the commutative diagram

(5.46)

F k−1A ∧X
Id∧f

��

LkA .k X
νk.kId //

Id .kf

��

oo Ak .k X

Id .kf

��
F k−1A ∧ Y LkA .k Y

νk.kId
//oo Ak .k Y

and F kA∧Y is a pushout of the lower row; we have used the identification GkL∧X ∼= L.kX provided by
Proposition 5.13. The left vertical morphism is a level cofibration (resp. acyclic cofibration) by induction
hypothesis, and we claim that in addition the pushout product map of the right square in (5.46)

νk .k f : LkA .k Y ∪LkA.kX Ak .k X −→ Ak .k Y

is a level cofibration (resp. acyclic cofibration). It is then a general model category fact (see Lemma A.1.10)
that induced map on pushouts is levelwise a cofibration (resp. acyclic cofibration).

It remains to justify the claim that νk .k f is a level cofibration (resp. acyclic cofibration). There is
nothing to show below level k since both sides are trivial. For n ≥ 0 a we have

(L .k X)k+n = Σ+
k+n ∧Σk×Σn L ∧Xn ,

which non-equivariantly is a wedge of
(
n+k
n

)
copies of L ∧Xn. Since νk : LkA −→ Ak is a cofibration and

fn : Xn −→ Yn is a cofibration (resp. acyclic cofibration), the pushout product property [ref] shows that
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the map

νk ∧ fn : LkA ∧ Yn ∪LkA∧Xn Ak ∧Xn −→ Ak ∧ Yn
is a cofibration (resp. acyclic cofibration). So (νk .k f)k+n is a cofibration (resp. acyclic cofibration). �

Proposition 5.47. The following are equivalent for a symmetric spectrum A:

(i) The symmetric spectrum A is flat.
(ii) For every k ≥ 0 the latching morphism νk : LkA −→ Ak is a cofibration of underlying pointed spaces,

respectively simplicial sets.
(iii) For every k ≥ 0 the morphism jk : F k−1A −→ F kA is a level cofibration of symmetric spectra.
(iv) For every k ≥ −1 the morphism ik : F kA −→ A is a level cofibration of symmetric spectra.

Proof. (i)=⇒(ii) If A is flat, then Id∧i : A ∧ S̄ −→ A ∧ S is a level cofibration because the inclusion
i : S̄ −→ S of the truncated sphere spectrum (5.34) is a level cofibration. By Proposition 5.39 the m-th
level of this morphism is isomorphic to the latching map νk : LkA −→ Ak, which is thus a cofibration.

(ii)=⇒(i) If the latching maps for A are cofibrations, then A∧− preserves level cofibrations by Propo-
sition 5.45, so A is flat.

(ii)=⇒(iii) If the latching map νk : LkA −→ Ak is a cofibration, then the morphism Gkνk : GkLkA −→
GkAk is a level cofibration of symmetric spectra. Cofibrations are stable under pushouts, so the defining
pushout for F kA (5.31) shows that jk : F k−1A −→ F kA is a level cofibration.

The morphism ik : F kA −→ A is the countable composite of the morphisms ji : F i−1A −→ F iA for
i− 1 ≥ k. Cofibrations are closed under countable composition, so (iv) follows from (iii).

Condition (iv) implies condition (ii) because the latching morphism νk : LkA −→ Ak was defined as
the k-th level of the morphism ik−1. �

Corollary 5.48. Let A be a flat symmetric spectrum of spaces. Then for every symmetric spectrum of
spaces C and every k ≥ 0 the morphism jk ∧ C : F k−1A ∧ C −→ F kA ∧ C is levelwise an h-cofibration.

Proof. Since A is flat the latching morphisms νk : LkA −→ Ak are cofibrations by Proposition 5.47.
The class of h-cofibrations contains the cofibrations and is closed under wedges and smash product with
any based space. For every m ≥ 0 the map

(νk .k C)k+m = Σ+
k+m ∧Σk×Σm νk ∧ Cm : Σ+

k+m ∧Σk×Σm LkA ∧ Cm −→ Σ+
k+m ∧Σk×Σm Ak ∧ Cm

is thus an h-cofibration. So the morphism νk .k C : LkA .k C −→ Ak .k C is levelwise an h-cofibration.
Smashing the pushout square (5.31) with the spectrum C gives a pushout square

LkA .k C
νk.kC //

��

Ak .k C

��
F k−1A ∧ C

jk∧C
// F kA ∧ C

(where we have used the natural isomorphism GkAk ∧ C ∼= Ak .k C). The class of h-cofibrations is also
closed under cobase change, so this proves the claum. �

Corollary 5.49. For every flat symmetric spectrum of simplicial sets A the geometric realization |A| is a
flat symmetric spectrum of topological spaces.

Proof. The latching space Lm|A| is homeomorphic to |LmA| in a way compatible with the maps ν
|A|
m

and |νAm| to |Am|. [add this to the section on the filtration] Since geometric realization takes cofibrations of
simplicial sets to cofibrations of spaces, the claim follows from the flatness criterion of Proposition 5.47. �

Now we prove a key result about flat spectra, namely that smashing with them preserves various kinds
of equivalences. We recall that every based simplicial set is cofibrant, hence every symmetric spectrum
of simplicial sets is level cofibrant. So the condition ‘level cofibrant’ in part (i) of the next proposition is
vacuous in the context of simplicial sets. In the context of spaces, part (iv) of Proposition 5.47 in particular
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says that for every flat symmetric spectrum A the morphism ∗ = F−1A −→ A is a level cofibration; in
other words: flat symmetric spectra of spaces are level cofibrant.

Proposition 5.50. Let A be a flat symmetric spectrum. Then the functor A∧− preserves level equivalences
between level cofibrant spectra, π̂∗-isomorphisms and stable equivalences.

Proof. We start with the first claim and let f : X −→ Y be a level equivalence between level cofibrant
symmetric spectra. The morphism f factors as a composite

X
iX−−→ Z(f)

p−−→ Y

where Z(f) = [0, 1]+ ∧ X ∪f Y is the mapping cylinder of f . Since the projection p : Z(f) −→ Y is
a homotopy equivalence and f is a level equivalence, the ‘front inclusion’ iX : X −→ Z(f) is a level
equivalence. Since X and Y are level cofibrant, the front inclusion iX is also a level cofibration, hence a
level acyclic cofibration. Since A is flat the latching morphisms νk : LkA −→ Ak are cofibrations, so A∧ iX
is a level acyclic cofibration by Proposition 5.45. Smashing with any spectrum preserves homotopies, so
A∧p is again a homotopy equivalence, thus a level equivalence. So we conclude that A∧f = (A∧p)◦(A∧iX)
is a level equivalence.

Now we prove a special case of the second and third claim: we let C be a symmetric spectrum with
trivial naive homotopy groups (respectively such that C is stably contractible) and we show that then
A ∧ C also has trivial naive homotopy groups (respectively is stably contractible). We start in the context
of spaces. We first show by induction on k that F kA∧C has trivial homotopy groups (respectively is stably
contractible) for all k ≥ −1. The induction starts for k = −1 using that F−1A, and hence F−1A ∧ C
are trivial spectra. In the inductive step we use the pushout square (5.31) that defines F kA and smash it
with C to obtain another pushout square:

GkLkA ∧ C
Gkνk∧C //

��

GkAk ∧ C

��
F k−1A ∧ C

jk∧C
// F kA ∧ C

As left adjoints, both Gk and −∧C commute with colimits, so the cokernel of the upper horizontal morphism
Gkνk∧C is isomorphic to Gk(Ak/LkA)∧C. Since A is flat, νk : LkA −→ Ak is a cofibration and the quotient
Ak/LkA is cofibrant. The spectrum Gk(Ak/LkA) ∧ C is isomorphic to (Ak/LkA) .k C, so it has trivial
naive homotopy groups by Proposition 3.31 (respectively, it is stably contractible by Proposition 4.31 (vi)).

Since the square above is a pushout, the cokernel of jk ∧C : F k−1A ∧C −→ F kA ∧C is isomorphic to
the cokernel of Gkνk ∧C and hence has trivial naive homotopy groups (respectively is stably contractible).
Since A is flat the morphism jk ∧C is levelwise an h-cofibration by Corollary 5.48. For the second claim we
can now appeal to the long exact homotopy group sequence (2.13) and conclude by the inductive hypothesis
that all naive homotopy groups of the spectrum F kA ∧ C vanish. For the third claim we use [...] and the
inductive hypothesis to deduce that the spectrum F kA ∧ C is stably contractible. The spectrum A ∧ C
is a sequential colimit of the spectra F kA ∧ C over the sequence of morphisms jk ∧ C that are levelwise
h-cofibrations. For the second claim claim we exploit that homotopy groups commute with such colimits
[ref], so the groups π̂∗(A∧C) vanish as the colimit of trivial groups. For the third claim we use [...] instead,
showing that A ∧ C is again stably contractible.

Now we let A and C be symmetric spectra of simplicial sets such that C has trivial naive homotopy
groups (respectively such that C is stably contractible). By the previous case, |A| ∧ |C| then has trivial
naive homotopy groups (respectively is stably contractible). Hence the same holds for the isomorphic
spectrum |A∧C|, and this shows that also A∧C has trivial naive homotopy groups (respectively is stably
contractible).

Now we consider a general π̂∗-isomorphism (respective stable equivalence) f . The mapping cone C(f)
then has trivial naive homotopy groups by the long exact sequence of Proposition 2.12 (respective, C(f)
is stably contractible by the criterion of Proposition 4.29 (ii)). By the above, the spectrum A ∧ C(f) has
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trivial naive homotopy groups (respective is stably contractible). Smash product with A commutes with
the mapping cone construction, so the symmetic spectrum C(A ∧ f) has trivial naive homotopy groups
(respective is stably contractible). This again is equivalence to A∧ f being a π̂∗-isomorphism (respectively
stable equivalence). �

Corollary 5.51. Let A be a flat symmetric spectrum of simplicial sets. For every injective spectrum X the
internal function spectrum Hom(A,X) is injective. If X is an injective Ω-spectrum, then so is Hom(A,X).

Proof. Given a level acyclic cofibration of symmetric spectra i : B −→ B′ and a morphism g : B −→
Hom(A,X), we have to produce an extension ḡ : B′ −→ Hom(A,X) satisfying ḡ ◦ f = g. The latching
morphisms νk : LkA −→ Ak are cofibrations by by Proposition 5.47. So the morphism A∧i : A∧B −→ A∧B′
is again a level acyclic cofibration by Proposition 5.45. Since X is injective, the adjoint G : B ∧A −→ X of
g has an extension Ḡ : B′ ∧A −→ X satisfying Ḡ(f ∧ Id) = G. The adjoint L −→ Hom(A,X) of Ḡ is then
the required extension of g.

Now suppose that X is an injective Ω-spectrum. Then the morphism λ̃X : X −→ Ω(shX) is a level
equivalence between injective spectra, hence a homotopy equivalence. So the morphism

λ̃Hom(A,X) = Hom(A, λ̃X) : Hom(A,X) −→ Ω(sh Hom(A,X)) = Hom(A,Ω(shX))

is a homotopy equivalence. So the symmetric function spectrum Hom(A,X) is again an Ω-spectrum. �

Example 5.52. Here is an example which shows that smashing with an arbitrary symmetric spectrum
does not preserve level equivalences. Let X be the symmetric spectrum with X0 = S0, X1 = CS1 and
Xn = ∗ for n ≥ 2. Here CS1 = [0, 1] ∧ S1 is the cone on S1, where the unit internal [0, 1] is pointed by 0.
The only nontrivial structure map σ0 : X0 ∧ S1 −→ X1 is the cone inclusion S1 −→ CS1. Let Y be the
symmetric spectrum with Y0 = S0 and Yn = ∗ for n ≥ 1. Then the unique morphism f : X −→ Y which
is the identity in level 0 is a level equivalence, but we claim that f ∧ S̄ : X ∧ S̄ −→ Y ∧ S̄ is not a level
equivalence. Indeed, in level 2 we have

(X ∧ S̄)2 = L2X ∼= pushout(S2 act←−− Σ+
2 ∧ S2 i∧S1

−−−→ Σ+
2 ∧ (CS1) ∧ S1)

which is the suspension of the double cone on S1, i.e., a 3-sphere. In contrast,

(Y ∧ S̄)2 = L2Y ∼= pushout(S2 act←−− Σ+
2 ∧ S2 −→ ∗)

is a point, so f ∧ S̄ is not a weak equivalence in level 2. [give an example where π̂∗-isos or stable equivalences
are not preserved]

Construction 5.53 (Flat resolution). Now we construct a functorial ‘flat resolution’, i.e., a functor (−)[ :
Sp −→ Sp with values in flat symmetric spectra and a natural level equivalence rA : A[ −→ A.

We consider the case of symmetric spectra of simplicial sets first. Given a symmetric spectrum A we
construct A[ and the level equivalence rA level by level, starting with A[0 = A0 and r0 = Id. Suppose now
that A[ and r have been constructed up to level n − 1. The definition of the nth latching only involves
the data of a symmetric spectrum in levels strictly smaller than n. So we have a latching object LnA

[ and
the partial morphism r induces a Σn-equivariant map Lnr : LnA

[ −→ LnA. We define A[n as the reduced
mapping cylinder of the composite map

LnA
[ Lnr−−→ LnA

νn−→ An .

This inherits a Σn-action from the actions on LnA
[ and An, and the trivial action on the cylinder coordinate.

The structure map
σn−1 : A[n−1 ∧ S1 −→ A[n = Z(νn ◦ Lnr : LnA

[ −→ An)

is the composite of the map A[n−1 ∧ S1 −→ LnA
[ that comes with the latching object and the inclusion

into the mapping cylinder. The nth level of the morphism r is the projection A[n = Z(νn ◦ Lnr) −→ An of
the mapping cylinder onto the target; this is a homotopy equivalence so in particular a weak equivalence.

After the dust settles we have constructed a symmetric spectrum A[ and a morphism r : A[ −→ A
which is levelwise a simplicial homotopy equivalence, so altogether a level equivalence (but in general not a
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homotopy equivalence of symmetric spectra). The construction is made so that the map νn : LnA
[ −→ A[n

is the mapping cylinder inclusion, thus injective. So by the criterion of Proposition 5.47 the symmetric
spectrum A[ is indeed flat.

In the context of spaces we reduce to the previous construction and define the flat resolution by X[ =
|S(X)[|, which is indeed flat since geometric realization preserves flatness (Corollary 5.49). We use the
composite

X[ = |S(X)[|
|rS(X)|−−−−−−→ |S(X)| −−→ X ,

as the level equivalence rX : X[ −→ X, where the second map is the adjunction counit.

Proposition 5.54. Smashing with a level cofibrant symmetric spectrum preserves level equivalences between
flat symmetric spectra. Smashing with any symmetric spectrum preserves π̂∗-isomorphisms and stable equiv-
alence between flat symmetric spectra.

Proof. We let f : X −→ Y be a level equivalence between flat symmetric spectra and we let A be any
level cofibrant symmetric spectrum. We contemplate the commutative square

(5.55)

A[ ∧X
rA∧X //

A[∧X
��

A ∧X

A∧f
��

A[ ∧ Y rA∧Y
// A ∧ Y

where rA : A[ −→ A is the flat resolution of Construction 5.53. The other three maps apart from A∧ f are
level equivalences by Proposition 5.50, using that flat symmetric spectra are in particular level cofibrant.
Hence A ∧ f is a level equivalence as well.

If A is arbitrary and f : X −→ Y is a π̂∗-isomorphism (respectively stable equivalence) between flat
symmetric spectra, then in the commutative square (5.55) the two horizontal maps are π̂∗-isomorphisms
(and hence also stable equivalences) by Proposition 5.50. Moreover, A[∧f is a π̂∗-isomorphism (respectively
stable equivalence) by Proposition 5.50. So A∧f is a π̂∗-isomorphism (respectively a stable equivalence). �

In (5.15) we defined a natural map ξ1,0
X,Y : (shX) ∧ Y −→ sh(X ∧ Y ) for symmetric spectra X and Y .

This map is not always a π̂∗-isomorphism; for example if X = S is the sphere spectrum, then shX = Σ∞S1

and the map ξS,Y is isomorphic to the map λY : S1 ∧ Y −→ shY , which is a π̂∗-isomorphism if and only if
Y is semistable (by definition). For semistable Y , however, we have:

Proposition 5.56. Let Y be a flat, semistable symmetric spectrum. Then for every level cofibrant sym-
metric spectrum X, the map

ξ1,0
X,Y : (shX) ∧ Y −→ sh(X ∧ Y )

is a π̂∗-isomorphism.

Proof. We start with the special case where both X and Y are flat. Proposition 5.18 provides a
pushout square

S1 ∧X ∧ Y

λX∧Y
��

(X∧λY )◦twist // X ∧ (shY )

ξ0,1
X,Y

��
(shX) ∧ Y

ξ1,0
X,Y

// sh(X ∧ Y ).

Since Y is semistable the morphism λY : S1 ∧ Y −→ shY is a π̂∗-isomorphism. Since Y is flat, this
morphism is also a level cofibration by [...]. Since X is flat, smashing with it preserves π̂∗-isomorphism
between level cofibrant spectra (by Proposition 5.50) and level cofibrations (by definition [...]). Since both
S1∧Y and shY are flat, thus level cofibrant, the upper horizontal morphism in the pushout square is thus a
level cofibration and a π̂∗-isomorphism. But then the lower horizontal morphism is also a level cofibration,
thus π̂∗-isomorphism by the long exact sequences of homotopy groups and the five lemma.
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If X is level cofibrant (but not necessarily flat) we contemplate the commutative square

(shX[) ∧ Y
ξ1,0

X[,Y //

(sh r)∧Y
��

sh(X[ ∧ Y )

sh(r∧Y )

��
(shX) ∧ Y

ξ1,0
X,Y

// sh(X ∧ Y )

where r : X[ −→ X is the flat resolution of Construction 5.53. The upper horizontal map ξX[,Y is a π̂∗-

isomorphism by the above. Since the four spectra X,X[, shX and sh(X[) are level cofibrant and Y is flat,
both vertical maps are level equivalences by Proposition 5.50. Thus the lower map is a π̂∗-isomorphism,
which finishes the proof. �

Proposition 5.57. Let X and Y be two semistable spectra one of which is flat and the other level cofibrant.
Then the smash product X ∧ Y is semistable.

Proof. Suppose that Y is flat and X is level cofibrant. The map λX∧Y : S1 ∧X ∧ Y −→ sh(X ∧ Y )
factors as the composition

S1 ∧X ∧ Y λX∧Y−−−−→ (shX) ∧ Y
ξ1,0
X,Y−−−→ sh(X ∧ Y )

(where we suppress an associativity isomorphism). Since X is semistable and level cofibrant, the map λX
is a π̂∗-isomorphism between level cofibrant symmetric spectra, and hence λX ∧ Id is a π̂∗-isomorphism by
Proposition 5.50. The second map ξ1,0

X,Y is a π̂∗-isomorphism by Proposition 5.56. �

The final result of this section will be an identification (in certain cases) of the naive homotopy groups
of a smash product X ∧Y as a colimit of unstable homotopy groups of the form πk+n+n(Xn∧Yn), compare
Proposition 5.60 below. For this we will have to restrict to semistable symmetric spectra, and we first

We consider the sequence of symmetric spectra

(5.58) Σ∞|X0|
σ̂0−−−→ Ω(Σ∞|X1|)

Ωσ̂1−−−−→ · · · −−→ Ωm(Σ∞|Xm|)
Ωmσ̂m−−−−−→ Ωm+1(Σ∞|Xm+1|) −−→ · · · .

Here σ̂m : Σ∞|Xm| −→ Ω(Σ∞|Xm+1|) is the morphism freely generated by the adjoint structure map
σ̃m : |Xm| −→ Ω|Xm+1| of the spectrum |X|. We let ϕm : Σ∞|Xm| −→ shm |X| be the morphism freely
generated by the identity of |Xm|. Then for every m ≥ 0 the square

Σ∞|Xm|
σ̃m //

ϕm

��

Ω(Σ∞|Xm+1|)

Ωϕm+1

��
shm |X|

λ̃shm |X|

// Ω(shm+1 |X|)

commutes. So the morphisms Ωmϕm : Ωm(Σ∞|Xm|) −→ Ωm shm |X| are compatible morphisms from the
sequence (5.58) to the sequence (4.18) whose mapping telescope is the symmetric spectrum Ω∞sh∞X. By
taking mapping telescopes we obtain a natural morphism

Φ : telm Ωm(Σ∞Xm) −→ telm Ωm shmX = Ω∞sh∞X .

Proposition 5.59. For every semistable symmetric spectrum X the morphism Φ : telm Ωm(Σ∞Xm) −→
Ω∞sh∞X is a level equivalence. Hence the symmetric spectrum telm Ωm(Σ∞Xm) is an Ω-spectrum.

Proof. The key observation is that the n-th level of the morphism Φ, i.e., the map

Φn : (telm Ωm(Σ∞Xm)) = telm Ωm(Xm ∧ Sn) −→ telm ΩmXm+n = (Ω∞sh∞X)n

is isomorphic to the 0-th level of the morphism

Ω∞sh∞(λ
(n)
X ) : Ω∞sh∞(Sn ∧X) −→ Ω∞sh∞(shnX) ,
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where the morphism λ
(n)
X : Sn ∧ X −→ shnX is a certain iteration of the morphisms λ (com-

pare (3.39)).[justify]
Since X is semistable, so are the symmetric spectrum Sn∧X and shnX. So in the commutative square

Sn ∧X

λ∞Sn∧X
��

λ
(n)
X // shnX

λ∞shn X
��

Ω∞sh∞(Sn ∧X)
Ω∞sh∞(λ

(n)
X )

// Ω∞sh∞(shnX)

both vertical morphisms are π̂∗-isomorphisms and the two symmetric spectra in the bottom row are Ω-

spectra (compare Proposition 4.24). Also because X is semistable the morphism λ
(n)
X is a π̂∗-isomorphism.

So the lower horizontal morphism Ω∞sh∞(λ
(n)
X ) is a π̂∗-isomorphism between Ω-spectra, hence a level

equivalence. In particular, the map in level 0 is a weak equivalence of spaces, hence so is the map Φn. �

Now we let X and Y be two semistable symmetric spectrum. We define a natural map

colimn πk+n+n(Xn ∧ Yn) −→ π̂k(X ∧ Y )

that will turn out to be an isomorphism in certain cases. Here the colimit is formed over the composite
maps

πk+n+n(Xn ∧ Yn)
−∧S1∧S1

−−−−−−→ πk+n+n+1+1(Xn ∧ Yn ∧ S1 ∧ S1)

(−1)n·(Xn∧twist∧S1)∗−−−−−−−−−−−−−−−→ πk+n+1+n+1(Xn ∧ S1 ∧ Yn ∧ S1)

(σn∧σn)∗−−−−−−→ πk+n+1+n+1(Xn+1 ∧ Yn+1)

We start from the map

πk+n+n(Xn ∧ Yn)
(in,n)∗−−−−→ πk+n+n(X ∧ Y )n+n −→ π̂k(X ∧ Y ) ;

the first part is the effect of the (n, n)-component of the universal bimorphism for X and Y , and the second
map is the canonical one. The bimorphism property implies that the diagram

Xn ∧ Yn ∧ S1 ∧ S1
in,n∧S1∧S1

//

Xn∧twist∧S1

��

(X ∧ Y )n+n ∧ S1 ∧ S1

σ2

��
Xn ∧ S1 ∧ Yn ∧ S1

σn∧σn
��

(X ∧ Y )n+n+1+1

n+χn,1+1

��
Xn+1 ∧ Yn+1

in+1,n+1

// (X ∧ Y )n+1+n+1

commutes. Since X∧Y is again semistable, the effect of the permutation n+χn,1+1 on the homotopy groups
of (X∧Y )n+1+n+1 becomes the sign (−1)n in the colimit. So as n increases, the maps πk+n+n(Xn∧Yn) −→
π̂k(X ∧ Y ) are compatible with the colimit system.

Proposition 5.60. Let X and Y be semistable symmetric spectra. Suppose also that X or Y is flat and
the other spectrum is level cofibrant. Then the morphism

colimn πk+n+n(Xn ∧ Yn) −→ π̂k(X ∧ Y )

is an isomorphism for every integer k.
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Proof. The square

colimn πk+n+n(Xn ∧ Yn) //

��

π̂k(X ∧ Y )

(λ∞X∧Y )∗

��
π̂k(telm Ωm(Xm ∧ Y )) // π̂k(Ω∞sh∞(X ∧ Y ))

commutes, where the left vertical map is defined by [...]. The lower horizontal map is obtained on mapping
telescopes from the compatible spectrum morphisms

Ωmim,− : Ωm(Xm ∧ Y ) −→ Ωm shm(X ∧ Y ) .

The morphism λ∞X∧Y : X ∧Y −→ Ω∞sh∞(X ∧Y ) is a π̂∗-isomorphisms since X ∧Y is semistable [ref]; The
left vertical map is the composite of the bijections

colimn πk+n+n(Xn ∧ Yn) =cofinal colimm,n πk+m+n(Xm ∧ Yn)

= colimm π̂k+m(Xm ∧ Y )

−→ colimm π̂k(Ωm(Xm ∧ Y ))

−→ π̂k(telm Ωm(Xm ∧ Y )) .

Since the two horizontal maps are isomorphisms, we may show that the lower vertical map is an isomorphism.
This map also occurs in the commutative square

(telm(Ωm(Σ∞Xm))) ∧ Y Φ∧Y //

∼=
��

(telm Ωm shmX) ∧ Y

∼=
��

telm(Ωm(Σ∞Xm) ∧ Y ) //

��

telm((Ωm shmX) ∧ Y )

��
telm Ωm((Σ∞Xm) ∧ Y ) //

∼=
��

telm Ωm((shmX) ∧ Y )

telm Ωm(ξm,0)

��
telm Ωm(Xm ∧ Y ) // telm Ωm shm(X ∧ Y )

Since Y is flat the functor − ∧ Y preserves π̂∗-isomorphisms, so the morphism Φ ∧ Y is a π̂∗-isomorphism.
All vertical maps are also π̂∗-isomorphisms, and that finishes the proof. �

6. Homotopy groups

In this section we introduce and discuss another key concept, the true homotopy groups of a symmetric
spectrum. The true homotopy groups detect stable equivalences, and are thus more important than the
naive homotopy groups; however, but there does not seem to be any way to define the true homotopy groups
directly from explicit invariants of the terms of a symmetric spectrum.

6.1. True homotopy groups. In Proposition 4.39 we introduced a functor Q on the category of
symmetric spectra (in either flavor) that takes values in Ω-spectra and comes equipped with a natural
stable equivalence ηX : X −→ QX.

Definition 6.1. Let X be a symmetric spectrum and k an integer. The k-th true homotopy group of X is
given by

πkX = π̂k(QX) ,

the k-th naive homotopy group of the symmetric spectrum QX.
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The definition of true homotopy groups is rather indirect, and it is not immediately clear if and how
the true homotopy groups of a symmetric spectrum X are determined by the spaces Xn, their homotopy
groups and the rest of the available structure. We will later identify πkX with the group of maps from the
k-dimensional sphere spectrum Sk to X in the stable homotopy category (to be introduced in Chapter II).

One of the key properties of the true homotopy groups is that they detect stable equivalences:

Theorem 6.2. For every morphism f : A −→ B of symmetric spectra the following are equivalent:

(i) the morphism f is a stable equivalence;
(ii) the map πkf : πkA −→ πkB of true homotopy groups is an isomorphism for all integers k.

Moreover, every π̂∗-isomorphism induces an isomorphism of true homotopy groups.

Proof. Proposition 4.39 provides the commutative square

A
f //

ηA

��

B

ηB

��
QA

Qf
// QB

in which the vertical morphisms are stable equivalences and the spectra QA and QB are Ω-spectra. So f
is a stable equivalence if and only if Qf is a stable equivalence.

In general, every level equivalence is a π̂∗-isomorphism and every π̂∗-isomorphism is a stable equivalence.
For morphisms between Ω-spectra, every stable equivalence is a level equivalence by Proposition 4.13, so all
these three classes of equivalences actually coincide. In particular, f is a stable equivalence if and only if
Qf is a π̂∗-isomorphism. The latter means, by definition, that f induces isomorphisms of all true homotopy
groups.

Since every π̂∗-isomorphism is a stable equivalence (by Theorem 4.23), it also induces an isomorphism
of true homotopy groups. �

The true homotopy groups are in general different from the naive homotopy groups; when this hap-
pens, the naive groups can be thought of as ‘pathological’. The two invariants are related by a natural
homomorphism

c = (ηX)∗ : π̂kX −→ πkX ,

the effect of the natural stable equivalence ηX : X −→ QX on naive homotopy groups.
Since the naive homotopy groups are defined in terms of the unstable homotopy groups of the levels of

a spectra, they are often more readily accessible than the true homotopy groups. So it will be important
to have a criterion for when the naive and true homotopy groups coincide (i.e., when the map c is an
isomorphism). It turns out that this happens for the semistable symmetric spectra, i.e., those symmetric
spectrum X for which the morphism λX : S1 ∧X −→ shX is a π̂∗-isomorphism. We will later see that this
property in fact characterizes semistable symmetric spectra, compare Theorem 8.25.

Proposition 6.3. For every semistable symmetric spectrum X and integer k the natural map c : π̂kX −→
πkX from the naive to true homotopy group is an isomorphism. Every stable equivalence between semistable
spectra is a π̂∗-isomorphism.

Proof. We consider the commutative square

π̂kX
c=(ηX)∗ //

π̂k(λ∞X )

��

π̂k(QX)

π̂k(Qλ∞X )

��

πkX

πk(λ∞X )

��
π̂k(Ω∞sh∞X)

c=(ηΩ∞sh∞ X)∗

// π̂k(Q(Ω∞sh∞X)) πk(Ω∞sh∞X)

where the functor Ω∞sh∞ and the natural transformation λ∞X : X −→ Ω∞sh∞X were constructed in (4.18).
If X is semistable, then the morphism λ∞X : X −→ Ω∞sh∞X is a π̂∗-isomorphism (see Proposition 4.24).
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So all vertical maps in the square are isomorphisms. Moreover, Ω∞sh∞X is an Ω-spectrum (also Propo-
sition 4.24), so the stable equivalence ηΩ∞sh∞X is a level equivalence, and the lower horizontal map is an
isomorphism. Hence the upper horizontal map is an isomorphism as well.

Now suppose that f : A −→ B is a stable equivalence between semistable spectra. Then Qf : QA −→
QB is a stable equivalence between Ω-spectra, thus a level equivalence. In particularQf is a π̂∗-isomorphism.
Since A and B are semistable, the morphisms ηA and ηB are also π̂∗-isomorphisms, hence so is f because
we have ηB ◦ f = Qf ◦ ηA. �

In Example 4.26 we considered the stable equivalence λ : F1S
1 −→ S which is adjoint to the identity

in level 1. This morphism is not a π̂∗-isomorphism, but a consequence of Theorem 6.2 is that the stable
equivalence λ also induces isomorphisms of true homotopy groups. Since the sphere spectrum S is semistable,
its naive and true homotopy groups ‘coincide’ and so the homotopy groups of the spectrum F1S

1 are
isomorphic to the stable stems. However, we can also calculate the true homotopy groups π∗(S

n ∧ Fm)
directly with the tools developed so far.

The topological sphere Sk represents the unstable homotopy group πk(X,x) of a based space X. This
has the consequence that natural transformations out of the functor πk are determined by their value on
the ‘fundamental class’ [IdSk ] ∈ πk(Sk,∞). More precisely: suppose that F : T −→ (sets) is a functor
from the category of based spaces to sets that takes homotopy equivalences between cofibrant based spaces
to bijections. Then for every element u ∈ F (Sk) there is a unique natural transformation τ : πk −→ F
such that τSk([IdSk ]) = u. [sketch proof] This fact has an analogue for true homotopy groups of symmetric
spectra, where now the dimension k can be any integer. One difference is that there are now many objects
that we can reasonbly think of as a ‘sphere of dimension k’, namely all the free spectra FnS

k+n.
We define naive and true fundamental classes

(6.4) ι̂nm ∈ π̂n−m(FmS
n) and ιnm ∈ πn−m(FmS

n)

as follows: the naive fundamental class ι̂nm is the class represented by the based map

1 ∧ − : Sn −→ Σ+
m ∧ Sn = (FmS

n)m ,

where 1 denotes the identity permutation in Σm. The true fundamental class is then defined as the image
of ι̂nm under the map from naive to true homotopy groups, i.e.,

ιnm = c(ι̂nm) .

Proposition 6.5. Let G : Sp −→ (sets) be a functor that takes stable equivalences between flat symmetric
spectra to isomorphisms.

(i) For every element u ∈ G(FmS
n) there is a unique natural transformation τ : πn−m −→ G such that

τFmSn(ιnm) = u.
(ii) For every integer k and every natural transformation ψ : π̂k −→ G there is a unique natural transfor-

mation τ : πk −→ G such that τ ◦ c = ψ.

Proof. (i) We start with a preliminary observation. The first claim is that the functor G takes
homotopic morphisms to the same map. Indeed, for every symmetric spectrum X the morphism c :
I+∧X −→ X that maps all of I to a point is a level equivalence, hence a stable equivalence (here I = [0, 1]
in the context of spaces and I = ∆[1] for spectra of simplicial sets). So F (c) is bijective by hypothesis. The
composite with the two end point inclusions i0, i1 : X −→ I+∧X satisfy c ◦ i0 = IdX = c ◦ i1, so we have

F (c) ◦ F (i0) = IdF (X) = F (c) ◦ F (i1) .

Since F (c) is an isomorphism, we deduce F (i0) = F (i1). If H : I+∧ X −→ Y is some homotopy from a
morphism f to a morphism g, Then we have

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) ,



6. HOMOTOPY GROUPS 109

Now we claum that any given true homotopy class x ∈ πn−mX = π̂n−m(QX) can be represented by a
morphism FmS

n −→ QX as follows: since X is an Ω-spectrum, the two maps

[FmS
n, QX]

adjunction−−−−−−−→ [Sn, (QX)m] −→ π̂n−m(QX) = πn−mX

are bijective, and the composite sends the homotopy class of a morphism f : FmS
n −→ QX to f∗(ι̂

n
m).

So given x, there is a morphism f : FmS
n −→ QX, unique up to homotopy, such that f∗(ι̂

n
m) = x. By

naturality we then have

(6.6) f∗(ι
n
m) = f∗(c(ι̂

n
m)) = c(f∗(ι̂

n
m)) = c(x) = (ηX)∗(x) ,

where ηX : X −→ QX is the stable equivalence whose effect on naive homotopy groups defines the map c.
Now we prove the proposition in the special case where G takes all stable equivalences to bijections.

Given x ∈ πn−mX we let f : FnS
m −→ QX be a morphism such that f∗(ι̂

n
m) = x. If τ : πn−m −→ G is

natural, then the relation (6.6) implies

G(ηX)(τX(x)) = τQX((ηX)∗x) = τQX(f∗(ι
n
m)) = G(f)(τFmSn(ιnm)) .

Since G(ηX) is bijective, this shows that the transformation τ is determined by the image of the fundamental
class ιnm.

Conversely, the previous paragraph tells us that we have to define

τX(x) = G(ηX)−1(G(f)(u))

where f : FmS
n −→ QX is a morphism satisfying f∗(ι̂

n
m) = x. The functor G sends homotopic maps to

the same map, so τX : πn−mX −→ G(X) is well-defined.
As the symmetric spectrum X varies, the maps τX form a natural transformation: if ϕ : X −→ Y is a

morphism of symmetric spectra and f : FmS
n −→ QX satisfies f∗(ι

n
m) = x, then (Qϕ) ◦ f : FmS

n −→ QY
satisfies ((Qϕ) ◦ f)∗(ι

n
m) = ϕ∗(x). So we have

G(ϕ) ◦G(ηX)−1 ◦G(f) = G(ηY )−1 ◦G(Qϕ) ◦G(f) = G(ηY )−1 ◦G(Qϕ ◦ f) .

Evaluating both sides on the class u gives G(ϕ)(ψX(x)) = ψY (ϕ∗(x)), i.e., ψ is natural. The map ηFmSn :
FmS

n −→ Q(FmS
n) satisfies (ηFmSn)∗(ι̂

n
m) = c(ι̂nm) = ιnm, so we have

ψFmSn(ιnm) = G(ηFmSn)−1(G(ηFmSn)(u)) = u .

This completes the construction of τ , and hence the proof of the proposition, in the special case where G
takes all stable equivalences to bijections.

Now we treat the general case. We introduce another functor G[ : Sp −→ (sets) as G[(X) = G(X[),
where r : X[ −→ X is the functorial flat resolution of Construction 5.53. The functor G[ takes all stable
equivalences to bijections, so the proposition is true for G[ by the special case above.

The morphism rFmSn : (FmS
n)[ −→ FmS

n is a stable equivalence between flat spectra, so G(rFmSn) :
G[(FmS

n) = G((FmS
n)[) −→ G(FmS

n) is bijective. We let ū ∈ G[(FmS
n) denote the preimage of the

class u ∈ G[(FmSn). Since the proposition holds for G[, there is a natural transformation τ [ : πn−m −→ G[

such that τ [FmSn(ιnm) = ū. The composite transformation

πn−mX
τ[X−−−→ G[(X) = G(X[)

G(rX)−−−−−→ G(X)

then satisfies G(rFmSn)(τ [FmSn(ιnm)) = G(rFmSn)(ū) = u, so it is the desired natural transformation τ :
πn−m −→ G.

If ψ : πn−m −→ G is another transformation that also satisfies ψFmSn(ιnm)) = u, then

G(rFmSn)(ψ(FmSn)[((rFmSn)−1
∗ (ιnm))) = ψFmSn((rFmSn)∗(rFmSn)−1

∗ (ιnm))) = ψFmSn(ιnm) = u ;

so the composite transformation

πn−mX
(rX)−1

∗−−−−−−→ πn−m(X[)
ψ
X[−−−−→ G(X[) = G[(X)
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sends the fundamental class ιnm to ū. By the uniqueness property for the functor G[, the composite must
be equal to τ [. But then

ψX = G(rX) ◦ ψX[ ◦ (rX)−1
∗ = G(rX) ◦ τ [X = τX

where the first equation follows from the naturality ψX◦(rX)∗ = G(rX)◦ψX[ because (rX)∗ : πn−m(X[) −→
πm−nX is invertible.

(ii) We set m = 0 if k ≥ 0 and m = −k if k ≤ 0. By part (i) there is a natural transformation
τ : πk −→ G such that τFmSk+m(ιk+m

m ) = ψ(ι̂k+m
m ). We claim that then τ ◦ c = ψ. For this purpose we

consider the difference δ = τ ◦ c− ψ. We have

δ(ι̂k+m
m ) = τ(c(ι̂k+m

m ))− ψ(ι̂k+m
m ) = τ(ιk+m

m )− ψ(ι̂k+m
m ) = 0 .

For l ≥ 0 we let λ : Fm+lS
k+m+l −→ FmS

k+m be the morphism that extends the map

1 ∧ − : Sk+m+l −→ Σ+
m+l ∧1×Σl S

k+m ∧ Sl = (FmS
k+m)m+l ;

then λ∗(ι̂
k+m+l
m+l ) = ι̂k+m

m , and thus

G(λ)(δ(ι̂k+m+l
m+l )) = δ(λ∗(ι̂

k+m+l
m+l )) = δ(ι̂k+m

m ) = 0 .

Since λ is a stable equivalence between flat symmetric spectra, G(λ) is bijective and so δ(ι̂k+m+l
m+l ) = 0.

Given any class x ∈ π̂kX, we choose a representative Sk+m+l −→ Xm+l for suitable l ≥ 0; the extension
f : Fm+lS

k+m+l −→ X then satisfies f∗(ι̂
k+m+l
m+l ) = x. So we have

δX(x) = δX(f∗(ι̂
k+m+l
m+l )) = G(f)(δFm+lSk+m+l(ι̂k+m+l

m+l )) = 0 .

So the difference δ is identically zero, and thus τ ◦ c = ψ.
To show the uniqueness of the transformation we suppose that τ, τ ′ : πk −→ G are two natural

transformations such that τ ◦ c = τ ′ ◦ c. Then τFmSk+m(ιk+m
m ) = τ ′FmSk+m(ιk+m

m ) because the fundamental

class ιk+m
m is in the image of the map c : π̂k(FmS

k+m) −→ πk(FmS
k+m). So τ = τ ′ by the uniqueness

statement in part (i). �

The true homotopy groups share many of the formal properties of naive homotopy groups: they shift
under suspension and looping, takes wedges to sums, preserve finite products, and turn homotopy cofiber
and fiber sequences to long exact sequences. We now establish these and other properties.

In the context of symmetric spectra of spaces, the suspension and loop functors preserves stable equiv-
alences by Proposition 4.29; so the functors that take a symmetric spectrum of spaces X to the groups
π1+k(S1 ∧ X) respective πk(ΩX) take stable equivalences to isomorphisms. So we can apply Proposi-
tion 6.5 (ii) to the natural transformations c ◦ (S1 ∧−) : π̂kX −→ π1+kX and c ◦α−1 : π̂1+kX −→ πk(ΩX).
The proposition yields natural homomorphisms

S1 ∧ − : πkX −→ π1+k(S1 ∧X) and α−1 : π1+kX −→ πk(ΩX)

that are uniquely determined by the property that the squares

π̂kX
c //

S1∧−
��

πkX

S1∧−
��

π̂1+kX
c //

α−1

��

π1+kX

α−1

��
π̂1+k(S1 ∧X) c

// π1+k(S1 ∧X) π̂k(ΩX)
c

// πk(ΩX)

commute. At this point, the expression ‘α−1’ is just a name for a natural transformation; however, we shall
now show that α−1 is invertible, and then we will denote its inverse by ‘α’.

Proposition 6.7. Let X be a symmetric spectrum X of spaces and k an integer. Then the suspension and
loop homomorphisms

S1 ∧ − : πkX −→ π1+k(S1 ∧X) and α−1 : π1+kX −→ πk(ΩX)
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are isomorphisms of true homotopy groups. Moreover, the triangles

πk(ΩX)
α //

S1∧− ''PPPPPPPPPPPP
π1+kX πkX

πkη &&MMMMMMMMMMM
S1∧− // π1+k(S1 ∧X)

π1+k(S1 ∧ (ΩX))

πkε

77oooooooooooo
πk(Ω(S1 ∧X))

α

66mmmmmmmmmmmm

commute where η : X −→ Ω(S1 ∧ X) and ε : S1 ∧ (ΩX) −→ X are the unit respectively counit of the
adjunction and α denotes the inverse of α−1.

Proof. The natural transformation πk(ε) ◦ (S1 ∧ −) ◦ α−1 from the functor π1+k to itself satisfies

πk(ε) ◦ (S1 ∧ −) ◦ α−1 ◦ c = πk(ε) ◦ (S1 ∧ −) ◦ c ◦ α−1 = πk(ε) ◦ c ◦ (S1 ∧ −) ◦ α−1

= c ◦ π̂k(ε) ◦ (S1 ∧ −) ◦ α−1 = c

where the third equation is the commutativity of the triangle (2.5). By Proposition 6.5 (ii) any natural
transformation πk −→ πk is determined by its precomposition with c : π̂k −→ πk, so we deduce that
πk(ε) ◦ (S1 ∧ −) ◦ α−1 is the identity transformation of the functor π1+kX. The adjunction counit is a
π̂∗-isomorphism by Proposition 2.6, and hence a stable equivalence. So πk(ε) is bijective, α−1 is injective
and S1 ∧ − is surjective.

Similarly, we have

α−1 ◦ (S1 ∧ −) ◦ c = α−1 ◦ c ◦ (S1 ∧ −) = c ◦ α−1 ◦ (S1 ∧ −) = c ◦ π̂k(η) = πk(η) ◦ c
as transformations from π̂k to πk(Ω(S1 ∧ −)), using again (2.5). This implies α−1 ◦ (S1 ∧ −) = πk(η).
The adjunction unit is also a π̂∗-isomorphism by Proposition 2.6, and hence πk(η) is bijective. So α−1 is
surjective and S1 ∧ − is injective. Altogether, both transformations S1 ∧ − and α−1 are bijective.

Finally, composing the relations πk(ε)◦ (S1∧−)◦α−1 = Id and α−1 ◦ (S1∧−) = πk(η) with α from the
appropriate side, we yields the desired relations πk(ε) ◦ (S1 ∧−) = α respectively (S1 ∧−) = α ◦ πk(η). �

In Example 1.11 we discussed a right action of the stable stems πs
∗ (also known as the naive homotopy

groups of the sphere spectrum) on the naive homotopy groups π̂∗X of a symmetric spectrum X. Since
the true homotopy groups X are just the naive homotopy groups of the symmetric spectrum QX, we also
obtain an action of the stable stems on the true homotopy groups π∗X. Moreover, the natural transformation
c : π̂kX −→ πkX is πs

∗-linear because it is induced by a homomorphism of symmetric spectra.

Proposition 6.8. The true homotopy groups π∗(FmS
n) are freely generated as a graded πs

∗-module by the
fundamental class ιnm.

Proof. The spectrum F0S
0 is isomorphic to the sphere spectrum and thus semistable, so

πs
k = π̂kS

c−−→ πkS ∼= πk(F0S
0)

is bijective by Proposition 6.3. Since the map c is πs
∗-linear and takes the unit 1 ∈ π̂0S to ι00, this proves

the claim in the case n = m = 0.
The canonical isomorphism a : S1 ∧ F0S

n −→ F0S
1+n satisfies

a∗(S
1 ∧ ι̂n0 ) = ι̂1+n

0 and a∗(S
1 ∧ ιn0 ) = ι1+n

0 .

Moreover, the composite

πk(F0S
n)

S1∧−−−−−−→ π1+k(S1 ∧ (F0S
n))

a∗−−−→ π1+k(F0S
1+n)

is a πs
∗-linear isomorphism, so induction on n proves the proposition for m = 0 and any n.

We let λ : Fm+1S
n+1 −→ FmS

n be the morphism adjoint to the map

1 ∧ − : Sn+1 −→ Σ+
m+1 ∧ Sn ∧ S1 = (FmS

n)m+1 .

This morphism is a stable equivalence [...], so it induces a πs
∗-linear isomorphism of true homotopy groups.

Moreover, λ∗(ι̂
n+1
m+1) = ι̂nm and λ∗(ι

n+1
m+1) = ιnm. So the proof finishes by induction on m. �
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Given a morphism of symmetric spectra f : X −→ Y , the mapping cone C(f) and homotopy fiber F (f)
were defined in (2.8) respectively (2.14). We can mimick the definitions of the connecting homomorphisms
for naive homotopy groups (compare (2.11) respectively (2.15)) with true homotopy groups. We then
obtain long exact sequences of true homotopy groups as follows. We define a connecting homomorphism
δ : π1+kC(f) −→ πkX as the composite

(6.9) π1+kC(f)
π1+k(p)−−−−−−→ π1+k(S1 ∧X) ∼= πkX ,

where the first map is the effect of the projection p : C(f) −→ S1 ∧X on true homotopy groups, and the
second map is the inverse of the suspension isomorphism S1 ∧ − : πkX −→ π1+k(S1 ∧ X). We define a
connecting homomorphism δ : π1+kY −→ πkF (f) as the composite

(6.10) π1+kY
α−1

−−→ πk(ΩY )
πk(i)−−−−→ πkF (f) ,

where α : πk(ΩY ) −→ π1+kY is the loop isomorphism and i : ΩX −→ F (f) the injection of the loop
spectrum into the homotopy fiber. Since loop and suspension isomorphisms for naive and true homotopy
groups are compatible with the tautological map c : π̂k −→ πk, both connecting homomorphisms are
compatible with the tautological map c : π̂k −→ πk.

Proposition 6.11. Let f : X −→ Y be a morphism of symmetric spectra.

(i) The long sequence of true homotopy groups

· · · −→ πkX
f∗−−−→ πkY

i∗−−→ πkC(f)
δ−−→ πk−1X −→ · · ·

is exact.
(ii) In the simplicial context, suppose also that X and Y are levelwise Kan complexes. Then the long

sequence of true homotopy groups

· · · −→ πkX
f∗−−−→ πkY

δ−−→ πk−1F (f)
p∗−−−→ πk−1X −→ · · ·

is exact.
(iii) Suppose that f is an h-cofibration of symmetric spectra of topological spaces or an injective morphism

of symmetric spectra of simplicial sets. Denote by q : Y −→ Y/X the quotient map. Then the natural
sequence of true homotopy groups

· · · −→ πkX
f∗−−−→ πkY

q∗−−−→ πk(Y/X)
δ−−→ πk−1X −→ · · ·

is exact, where the connecting map δ is the composite of the inverse of the isomorphism πkC(f) −→
πk(Y/X) induced by the level equivalence C(f) −→ Y/X which collapses the cone of X and the
connecting homomorphism πkC(f) −→ πk−1X defined in (6.9).

(iv) Suppose that f is levelwise a Serre fibration of spaces respectively Kan fibration of simplicial sets.
Denote by i : F −→ X the inclusion of the fiber over the basepoint. Then the natural sequence of true
homotopy groups

· · · −→ πkF
i∗−−→ πkX

f∗−−−→ πkY
δ−−→ πk−1F −→ · · ·

is exact, where the connecting map δ is the composite of the connecting homomorphism πkY −→
πk−1F (f) defined in (6.10) and the inverse of the isomorphism πkF (f) −→ πkF induced by the level
equivalence F −→ F (f) which send x ∈ F to (const∗, x).

Proof. (i)
(ii) The stable equivalences ηX : X −→ QX and ηY : Y −→ QY and the morphism Qf : QX −→ QY

satisfy Qf ◦ ηX = ηY ◦ f . By Proposition 4.31 (iii) the morphism η̄ : F (f) −→ F (Qf) induced by ηX and
ηY on homotopy fibers is then again a stable equivalence. Moreover, F (Qf) is an Ω-spectrum since source
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and target of Qf are [ref]. In the commutative square

F (f)
η̄ //

ηF (f)

��

F (Qf)

ηF (Qf)

��
QF (f)

Q(η̄)
// QF (Qf)

the morphism Q(η̄) is then a stable equivalence since the other three maps are. Moreover, the three spectra
QF (f), QF (Qf) and F (Qf) are Ω-spectra, so the stable equivalences Q(η̄) and ηF (Qf) are π̂∗-isomorphisms.
We can thus form the composite

(ηF (Qf))
−1
∗ ◦Q(η̄)∗ : πkF (f) = π̂k(QF (f)) −→ π̂kF (Qf) .

We can now compare the sequence in question with the long homotopy sequence of naive homotopy groups
for Qf : QX −→ QY via the diagram:

πk+1X
f∗ // πk+1Y

δ // πkF (f)
i∗ //

(ηF (Qf))
−1
∗ ◦Q(η̄)∗

��

πkX
f∗ // πkY

π̂k+1QX
(Qf)∗

// π̂k+1QY
δ

// π̂kF (Qf)
i∗

// π̂kQX
(Qf)∗

// π̂kQY

The two middle squares commute [...] The lower row of naive homotopy groups is exact by Proposition 2.17,
applied to Qf : QX −→ QY . Since all vertical maps are bijective, the upper row is exact.

(i) The natural morphism h : S1 ∧ F (f) −→ C(f) defined in (2.16) is a π̂∗-isomorphism (and hence a
stable equivalence) by Proposition 2.17. Hence h induces an isomorphism of true homotopy groups, and so
does the composite h∗ ◦ (S1 ∧ −) : πkF (f) −→ π1+kC(f). We can now compare the sequence in question
with the exact sequence of part (ii). We claim that the diagram the diagram

π1+kX
f∗ //

(−1)·
��

π1+kY
δ //

(−1)·
��

πkF (f)
p∗ //

h∗◦(S1∧−)

��

πkX
f∗ // πkY

π1+kX
f∗

// π1+kY
i∗

// π1+kC(f)
δ

// πkX
f∗

// πkY

commutes. This is clear for the two outer squares. By the uniqueness part of Proposition ?? it suffices
to show this after precomposition with the transformation c : π̂1+kY −→ π1+kY (for the left square)
respectively the transformation c : π̂kF (f) −→ πkF (f) (for the right square). [no: this data depends on
the morphism f !]

The upper row of the commutative diagram is exact by part (ii), and all vertical evaluation maps are
bijective; so the lower row is exact.

(iii) Since f is an h-cofibration (in the topological context) respectively levelwise injective (in the
simplicial context), the collaps morphism C(f) −→ Y/X is a level equivalence, hence stable equivalence.

(iv) If f : X −→ Y is a morphism of symmetric spectra which is levelwise a Serre fibration of spaces
respectively Kan fibration of simplicial sets, the strict fiber F is level equivalent to the homotopy fiber. �

Proposition 2.19 says that naive homotopy groups commute with finite products and arbitrary coprod-
ucts. Now we show that analogous result for true homotopy groups.

Proposition 6.12. (i) For every family of symmetric spectra {Ai}i∈I and every integer k the canonical
map ⊕

i∈I
πkA

i −→ πk

(∨
i∈I

Ai

)
is an isomorphism of abelian groups.
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(ii) For every finite indexing set I, every family {Ai}i∈I of symmetric spectra and every integer k the
canonical map

πk

(∏
i∈I

Ai

)
−→

∏
i∈I

πkA
i

is an isomorphism of abelian groups.
(iii) True homotopy groups commute with filtered colimits over closed embeddings.
(iv) Let fn : Xn −→ Xn+1 be morphisms of symmetric spectra of simplicial sets for n ≥ 0. Then the

natural map
colimn πk(Xn) −→ πk(colimnXn)

is an isomorphism.

Proof. (i) We use the same proof as for naive homotopy groups in Proposition 2.19. In the special
case of two summands A and B Proposition 6.11 (i) provides a long exact true homotopy group sequence
associated to the wedge inclusion iA : A −→ A∨B. Since iA has a retraction, the sequence splits into short
exact sequences

0 −→ πkA
(iA)∗−−−−→ πk(A ∨B)

i∗−−→ πk(C(iA)) −→ 0 .

The mapping cone C(iA) is homotopy equivalent to B and we can replace πk(C(iA)) by πkB and to conclude
that πk(A ∨ B) splits as the sum of πkA and πkB, via the canonical map. The case of a finite indexing
set I now follows by induction, and the general case follows since homotopy groups of symmetric spectra
commute with filtered colimits [more precisely, the image of every compact space in an infinite wedge lands
in a finite wedge].

(ii) For finite indexing sets I the canonical map
∨
I A

i −→
∏
I A

i from the wedge to the product is a
stable equivalence by Corollary 4.25. Hence this map induced isomorphisms of true homotopy groups, and
the claim follows from part (i) and the fact that finite sums of abelian groups are also products.

(iii)
(iv) �

Now we calculate the true homotopy groups in some examples. Most of the time this ‘calculation’
will consist in a reduction of the problem to the calculation of naive homotopy groups of other symmetric
spectra.

Example 6.13. The true homotopy groups of a free symmetric spectrum FmK generated by a based space
(or simplicial set) K in level m are isomorphic to the stable homotopy groups of K, shifted m dimensions.
Indeed, in Example 4.35 we proved that the morphism

ϕm : FmK −→ Ωm(Σ∞K)

is a stable equivalence, where ϕm is adjoint to the adjunction unit K −→ Ωm(K ∧ Sm) = Ωm(Σ∞K)m.
Hence the adjoint

ϕ̂m : Sm ∧ FmK −→ Σ∞K

is a stable equivalence as well (and this actually holds in the context of spaces and simplicial set). So the
composite

πk(FmK)
Sm∧−−−−−−→ πm+k(Sm ∧ FmK)

ϕ̂m∗−−−→ πm+k(Σ∞K) = πs
m+kK

is an isomorphism.
For a suspension spectrum the morphism λΣ∞K : S1 ∧ Σ∞K −→ sh(Σ∞K) is an isomorphism So sus-

pension spectra are in particular semistable. Hence true and naive homotopy groups coincide for suspension
spectra by Proposition 6.3.

As we showed in Example 4.35, the stable equivalence ϕm is equivariant with respect to the two right
actions of the symmetric group Σm (on the ‘free coordinates’ in the source, and via the left action on the
m loop coordinates in the target). Hence the isomorphisms

πm+k(FmK)
ϕm∗−−−→ πm+k(Ωm(Σ∞K))

c←−− π̂m+k(Ωm(Σ∞K))
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are Σm-equivariant. Permuting loop coordinates clearly acts by sign on naive homotopy groups; altogether
this shows that the right Σm-action on the free coordinates of FmK induces the sign action on true homotopy
groups.

6.2. Products on homotopy groups. The true homotopy groups are nicely compatible with the
multiplicative structure given by the smash product, as we explain in this section. We construct a biadditive
pairing of true homotopy groups

· : πkX × πlY −→ πk+l(X ∧ Y )

for pairs of integers k, l, with certain desirable properties which are listed in the next theorem. The theorem
can be summarized in fancy language by saying that the pairing makes the graded true homotopy groups
into a lax symmetric monoidal functor from the category of symmetric spectra (under smash product) to
the category of graded abelian groups (under graded tensor product, with Koszul sign convention for the
symmetry isomorphism). Later we show that if X is (k − 1)-connected, Y is (l− 1)-connected and at least
one of them is flat, then X ∧ Y is (k + l − 1)-connected and the map (6.17) is an isomorphism, compare
Remark II.5.23.

A formal consequence of the compatibility properties is that the true homotopy groups of a symmetric
ring spectrum naturally form a graded ring, which is commutative in the graded sense if the ring spectrum
is, compare Proposition 6.25.

The fundamental class 1 ∈ π0S of the sphere spectrum is defined as the image, under the map c :
π̂0S −→ π0S, of the naive homotopy class represented by the identity of S0 = S0. The class 1 is essentially
the class ι00 of (6.4). More precisely, there is a unique isomorphism F0S

0 ∼= S, the adjoint of the identity of
S0 = S0, and the induces isomorphism from π0(F0S

0) to π0S takes ι00 to 1. We recall from Construction 5.6
that the sphere spectrum is a strict unit for the smash product of symmetric spectra.

Corollary 6.14. Let {Φk}k∈Z be a family of functors Φk : Sp −→ (sets) equipped with natural isomorphisms
Σ : Φk −→ Φ1+k(S1 ∧ −). Suppose that every Φk takes stable equivalences between flat symmetric spectra
to bijections. Then for every element u ∈ Φ0(S) there is a unique collection of natural transformations

τk : πk −→ Φk ,

for k ∈ Z, satisfying τ0
S (1) = u and such that the diagrams

(6.15)

πkX

τkX
��

S1∧− // π1+k(S1 ∧X)

τ1+k

S1∧X
��

Φk(X)
Σ

// Φ1+k(S1 ∧X)

commute for every integer k and every symmetric spectrum X.

Proof. For k ≥ 0 the isomorphism j : F0S
k −→ Sk ∧ S adjoint to the canonical isomorphism Sk ∼=

Sk ∧ S0 = (Sk ∧ S)k satisfies j∗(ι
k
0) = Sk ∧ 1 in πk(Sk ∧ S). Via the isomorphism j, Proposition 6.5 (i)

translates into the statement that for every element v ∈ Φk(Sk∧S) there is a unique natural transformation
τ : πk −→ Φk such that τSk∧S(Sk ∧ 1) = v.

In particular, for every class u ∈ Φ0(S) there is a unique natural transformation τ0 : π0 −→ Φ0 such
that τS(1) = u. To construct τ1+k for k ≥ 0 we proceed by induction on k. As we just noted, there is a

unique natural transformation τ1+k : π1+k −→ Φ1+k such that τ1+k
S1+k∧S(S1+k∧1) = Σ(τkSk∧S(Sk∧1)). Since

the two natural transformations

Σ ◦ τk , τ1+k
S1∧− ◦ (S1 ∧ −) : πkX −→ Φ1+k(S1 ∧X)

agree on the class Sk ∧ 1, they agree altogether by the uniqueness clause above. In other words, the
compatibility diagram (6.15) commutes for k ≥ 0, and there only one family of transformations with that
property.
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For negative k the compatibility condition (6.15) forces us to define τk by downward induction as

τkX = Σ−1 ◦ τ1+k
S1∧X ◦ (S1 ∧ −)

and this definition automatically makes the square (6.15) commute in negative degrees. �

Now we can state and prove the main result of this section, the construction and properties of the
pairing of true homotopy groups.

One of the key properties of the pairing refers to the isomorphisms

(S1 ∧X) ∧ Y a1−−−→ S1 ∧ (X ∧ Y )
a2←−−− X ∧ (S1 ∧ Y )

[recall/define] The two isomorphisms are related by a1 ◦ τX,S1∧Y = (S1 ∧ τX,Y ) ◦ a2.

Theorem 6.16. There is a unique family of natural pairings

(6.17) · : πkX × πlY −→ πk+l(X ∧ Y )

of true homotopy groups for k, l ∈ Z subject to the following two conditions.

(Normalization) We have 1 · 1 = 1 in π0(S ∧ S) = π0S where 1 ∈ π0S is the fundamental class.

(Suspension) The pairing is compatible with the suspensions isomorphisms in the following sense: the maps
induced by the isomorphisms

(S1 ∧X) ∧ Y a1−−−→ S1 ∧ (X ∧ Y )
a2←−−− X ∧ (S1 ∧ Y )

on true homotopy groups satisfy

(6.18) (a1)∗((S
1 ∧ x) · y) = S1 ∧ (x · y) = (−1)k · (a2)∗(x · (S1 ∧ y))

for all integers k, l and true homotopy classes x ∈ πkX and y ∈ πlY .

Moreover, the pairing (6.17) is biadditive and has the following properties, for all symmetric spectra
X,Y and Z, integers k, l, j and true homotopy classes x ∈ πkX, y ∈ πlY and z ∈ πjZ:

(Unitality) We have
x · 1 = x = 1 · x

in πk(X ∧ S) = πkX = πk(S ∧X).

(Commutativity) The map induced by the commutativity isomorphism

τX,Y : X ∧ Y −→ Y ∧X
on true homotopy groups takes x · y to (−1)kl · y · x.

(Associativity) The map induced by the associativity isomorphism

αX,Y,Z : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z)

on true homotopy groups takes (x · y) · z to x · (y · z).

For diagramatically inclined readers we rewrite the various properties of the smash product pairing in
that form. The suspension relation (6.18) can be rephrased as saying that the diagram

πkX × πlY
(S1∧−)×Id

ssgggggggggggggggggggg

·
��

Id×(S1∧−)

++WWWWWWWWWWWWWWWWWWWW

π1+k(S1 ∧X)× πlY

·
��

πk+l(X ∧ Y )

S1∧−
��

πkX × π1+lY

·
��

π1+k+l((S
1 ∧X) ∧ Y )

(a1)∗

// π1+k+l(S
1 ∧ (X ∧ Y )) πk+1+l(X ∧ (S1 ∧ Y ))

(−1)k·(a2)∗

oo
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commutes. The associativity condition is equivalent to the commutativity of the diagram

πkX × πlY × πjZ
Id×· //

·×Id

��

πkX × πl+j(Y ∧ Z)

·
��

πk+l(X ∧ Y )× πjZ ·
// πk+l+j((X ∧ Y ) ∧ Z)

(αX,Y,Z)∗

// πk+l+j(X ∧ (Y ∧ Z))

commutes. The commutativity condition is equivalent to the commutativity, up to the sign (−1)kl, of the
diagram:

πkX × πlY
· //

twist

��

πk+l(X ∧ Y )

(τX,Y )∗

��
πlY × πkX ·

// πl+k(Y ∧X)

Unitality means that the two maps

πkX
·1−−→ πk(X ∧ S) = πkX and πkX

1·−−→ πk(S ∧X) = πkX

are identities.

Now we can give the

Proof of Theorem 6.16. In the next proposition we fix a symmetric spectrum Y and an integer l
and consider families of natural transformations τk : πk −→ πk+l(− ∧ Y ) for k ∈ Z. We call a collection of
such natural transformations stable if the squares

(6.19)

πkX

τXk
��

S1∧− // π1+k(S1 ∧X)

τS
1∧X

1+k

��
πk+l(X ∧ Y )

S1∧−
// π1+k+l(S

1 ∧ (X ∧ Y )) π1+k+l((S
1 ∧X) ∧ Y )

(a1)∗

oo

commute for every integer k and every symmetric spectrum X. Let Y be any symmetric spectrum and
y ∈ πlY a true homotopy class. Then there is a unique stable collection of natural transformations

·y : πk −→ πk+l(− ∧ Y ) ,

for k ∈ Z, such that

1 · y = y in πl(S ∧ Y ) = πlY .

We start with the definition of the pairing. For every symmetric spectrum Y and integer l we can con-
sider the family of functors πk+l(−∧Y ) as k varies. We connect these functors by the natural isomorphisms

πk+l(X ∧ Y )
S1∧−−−−−−→ π1+k+l(S

1 ∧ (X ∧ Y ))
a−1

1−−−−→ π1+k+l((S
1 ∧X) ∧ Y ) .

For every homotopy class y ∈ πlY , Corollary 6.14 provides a unique collection of compatible natural
transformations τl : πk −→ πk+l(− ∧ Y ) characterized by the property τS0 (1) = y in πl(S ∧ Y ) = πlY . For
x ∈ πkX we can then define the pairing by

x · y = τk(x) ∈ πk+l(X ∧ Y ) .

With our choice of connecting isomorphism, the commutativitiy of the diagram (6.15) becomes the relation
(a1)∗((S

1 ∧ x) · y) = S1 ∧ (x · y).
The assignment πkX × πlY −→ πk+l(X ∧ Y ) that sends (x, y) to x · y is natural in X by construction,

but naturality in Y needs justification. If f : Y −→ Y ′ is a morphism of symmetric spectra, then we
have a collection of natural transformations {τk : πk −→ πk+l(− ∧ Y ′)}k∈Z that sends a class x ∈ πkX to



118 I. BASICS

τXk (x) = (X ∧ f)∗(x · y). This collection of transformations is compatible in the sense of diagram (6.15)
because

a1(τS
1∧X

1+k (S1 ∧ x)) = (a1((S1 ∧X) ∧ f))∗((S
1 ∧ x) · y)

=nat ((S1 ∧ (X ∧ f))a1)∗((S
1 ∧ x) · y)

=stable (S1 ∧ (X ∧ f))∗((S
1 ∧ (x · y))

=nat S1 ∧ ((X ∧ f)∗(x · y)) = S1 ∧ τXk (x) .

Moreover, τS0 (1) = (S ∧ f)∗(1 · y) = f∗(y) because S ∧ f = f by the strict unit property. So the natural
transformations have the properties that characterize − · f∗(y). So the uniqueness clause in Corollary 6.14
forces x · f∗(y) = τXk (x) = (X ∧ f)∗(x · y) for all x ∈ πkX. In other words, the pairing x · y is also natural
in Y .

Now we have a well-defined, normalized and natural product. It remains to establish the additional
properties of the pairing. Most of the arguments follow the same pattern: we formulate the respective
relation as the claim that some collection of natural transformations π0 −→ πk(− ∧ Y ) agrees with ·y for
suitable y ∈ πl. Here the spectrum Y , the homotopy class y and the transformations are suitably chosen
for the particular property in question, as summarized in the following table:

property spectrum Y class y transformation

naturality Y ′ f∗(y) (X ∧ f)∗(− · y)
suspension S1 ∧ Y S1 ∧ y (−1)k · (a2)−1

∗ (S1 ∧ (− · y))
right unitality S 1 (rX)−1

∗ (−)
commutativity Y y (−1)kl · (τY,X)∗(y · −)
right additivity Y y + y′ − · y +− · y′
associativity Y ∧ Z y · z (αX,Y,Z)∗((− · y) · z)
uniqueness, I S 1 (τS,Y )∗(1 ∗ −)
uniqueness, II Y y − ∗ y

We then verify that the natural transformations in different dimensions are compatible and that in the
special case of the sphere spectrum the transformation sends 1 ∈ π0S to the desired element y. The
uniqueness clause of Corollary 6.14 then shows that the transformation yields the class x · y in general.

(Suspension property) We consider the collection of natural transformations {τk : πk −→ πk+l(−∧(S1∧
Y ))}k∈Z given by τXk (x) = (−1)k · (a2)−1

∗ (S1∧ (x ·y)). We claim that these transformations are compatible.
Indeed, we have

S1 ∧ τXk (x) = (−1)k · S1 ∧ (a2)−1
∗ (S1 ∧ (x · y))

=nat (−1)k · (S1 ∧ a2)−1
∗ (S1 ∧ (S1 ∧ (x · y)))

= (−1)1+k · (a1a
−1
2 (S1 ∧ a1)−1)∗(S

1 ∧ (S1 ∧ (x · y)))

=nat (−1)1+k · (a1a
−1
2 )∗(S

1 ∧ a−1
1 (S1 ∧ (x · y)))

=susp (−1)1+k · (a1)∗((a
−1
2 )∗(S

1 ∧ (S1 ∧ x) · y))

= (a1)∗(τ
S1∧X
1+k (S1 ∧ x)) .
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The second equation uses that the pentagon

(S1 ∧X) ∧ (S1 ∧ Y )
aX,S

1∧Y
1

sshhhhhhhhhhhhhhhhhhh
aS

1∧X,Y
2

++VVVVVVVVVVVVVVVVVVV

S1 ∧ (X ∧ (S1 ∧ Y ))

S1∧aX,Y2 &&NNNNNNNNNNN
S1 ∧ ((S1 ∧X) ∧ Y )

S1∧aX,Y1xxppppppppppp

S1 ∧ S1 ∧ (X ∧ Y )
twist∧αX,Y

// S1 ∧ S1 ∧ (X ∧ Y )

commutes and that the transposition of the two circles induced multiplication by −1 on homotopy groups.
For the sphere spectrum X = S we have

τS0 (1) = (a2)−1
∗ (S1 ∧ (1 · y)) = S1 ∧ y

bcause 1 · y = y and the isomorphism

S1 ∧ Y = S ∧ (S1 ∧ Y )
a2−−−→ S1 ∧ (S ∧ Y ) = S1 ∧ Y

is the identity. So the natural transformations have the properties that characterize − · (S1 ∧ y) and the
uniqueness clause in Corollary 6.14 forces (−1)k · (a2)−1

∗ (S1∧ (x ·y)) = τXk (x) = x · (S1∧y) for all x ∈ πkX.
(Unitality) The relation 1 · y = y holds by definition of the pairing; the other relation is obtained as

follows. The collection of identity natural transformations {πk −→ πk = πk(− ∧ S)}k∈Z are compatible
because the isomorphism

S1 ∧X = (S1 ∧X) ∧ S a1−−−→ S1 ∧ (X ∧ S) = S1 ∧X
is the identity. Moreover, for X = S the unit 1 ∈ π0S is sent to itself. So the identity natural transformations
have the properties that characterize − · 1 and the uniqueness clause in Corollary 6.14 forces x = x · 1 for
all x ∈ πkX.

(Commutativity) Given any symmetric spectrum Y and any element y ∈ πlY , the natural transforma-
tions {τk : πk −→ πk+l(− ∧ Y )} with τXk (x) = (−1)kl(τY,X)∗(y · x) are compatible:

S1 ∧ τXk (x) = (−1)kl · S1 ∧ (τY,X(y · x))

=nat (−1)kl · (S1 ∧ τY,X)(S1 ∧ (y · x))

=susp (−1)kl(−1)l · ((S1 ∧ τY,X)a2)(y · (S1 ∧ x))

= (−1)(1+k)l · (a1τY,S1∧X))(y · (S1 ∧ x)) = a1(τS
1∧X

1+k (S1 ∧ x))

The fourth equation uses the commutative square:

Y ∧ (S1 ∧X)
a2 //

τY,S1∧X

��

S1 ∧ (Y ∧X)

S1∧τX,Y
��

(S1 ∧X) ∧ Y a1

// S1 ∧ (X ∧ Y )

Moreover, we have τS0 (1) = (τY,S)∗(y ·1) = y ·1 = y by right unitality and because the symmetry isomorphism
τY,S : Y = Y ∧ S −→ S ∧ Y = Y is the identity. So the natural transformations have the properties that
characterize − · y and the uniqueness clause in Corollary 6.14 proves (−1)kl · (τY,X)∗(y · x) = τXk (x) = x · y
for all classes x ∈ πkX.

(Biadditivity) We first establish additivity in the second variable. We fix a symmetric spectrum Y
and true homotopy classes y, y′ ∈ πlY . The natural transformations πk −→ πk+l(− ∧ Y ) which sends
x ∈ π0X to x · y + x · y′ is pointwise the sum of two stable transformations. So x 7→ x · y + x · y′ is also
a stable natural transformation. On the sphere spectrum we have 1 · y + 1 · y′ = y + y′. So the natural
transformations have the properties that characterize − · (y + y′) and the uniqueness clause Corollary 6.14
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proves x · y + x · y′ = x · (y + y′) for all classes x ∈ πkX. Additivity in x can be reduced to additivity in y
by exploiting commutativity:

(x+ x′) · y = (−1)kl · τY,X(y · (x+ x′)) = (−1)kl · τY,X(y · x+ y · x′)

= (−1)kl · τY,X(y · x) + (−1)kl · τY,X(y · x′) = x · y′ + x′ · y
(Associativity) We fix y ∈ πlY and z ∈ πjZ and consider the family of transformations {τk : πk −→

πk+l+j(− ∧ (Y ∧ Z))} given by τXk (x) = (αX,Y,Z)∗((x · y) · z). These transformations are compatible:

S1 ∧ τXk (x) =nat S1 ∧ (αX,Y,Z)∗((x · y) · z)
=nat (S1 ∧ αX,Y,Z)∗(S

1 ∧ ((x · y) · z)) =susp ((S1 ∧ αX,Y,Z)a1)∗((S
1 ∧ (x · y)) · z)

=susp ((S1 ∧ αX,Y,Z)a1(a1 ∧ Z))∗(((S
1 ∧ x) · y) · z)

= (a1αS1∧X,Y,Z)∗(((S
1 ∧ x) · y) · z) = a1(τS

1∧X
1+k (S1 ∧ x)) .

The fifh equation is the commutativity of the diagram:

((S1 ∧X) ∧ Y ) ∧ Z a1∧Z //

αS1∧X,Y,Z

��

(S1 ∧ (X ∧ Y )) ∧ Z a1 // S1 ∧ ((X ∧ Y ) ∧ Z)

S1∧αX,Y,Z
��

(S1 ∧X) ∧ (Y ∧ Z) a1

// S1 ∧ (X ∧ (Y ∧ Z))

We have τS0 (1) = (αS,Y,Z)∗((1 · y) · z)) = y · z because 1 · y = y and the associativity isomorphism

αS,Y,Z : Y ∧ Z = (S ∧ Y ) ∧ Z −→ S ∧ (Y ∧ Z) = Y ∧ Z
is the identity. So the natural transformations have the properties that characterize − · (y · z) and the
uniqueness clause in Corollary 6.14 proves (αX,Y,Z)∗((x · y) · z) = τXk (x) = x · (y · z) for all classes x ∈ πkX.

It remains to show that the normalization and suspension conditions uniquely characterize the homotopy
group pairing. So we consider an arbitrary family of natural pairings

(6.20) ∗ : πkX × πlY −→ πk+l(X ∧ Y )

which are normalized and satisfy the analog of the suspension condition (6.18). In a first step we consider
the family of natural transformations πl −→ πl(S ∧−) = πl(−∧ S) given by sending y ∈ πlY to 1 ∗ y. This
family of natural transformations is stable; indeed, we have

S1 ∧ (1 ∗ y) =susp (a2)∗(1 ∗ (S1 ∧ y)) = 1 ∗ (S1 ∧ y) = (a1)∗(1 ∗ (S1 ∧ y))

using the second suspension condition for ∗ and that both isomorphism

S1 ∧ Y = S ∧ (S1 ∧ Y )
a2−−−→ S1 ∧ (S ∧ Y ) = S1 ∧ Y

S1 ∧ Y = (S1 ∧ Y ) ∧ S a1−−−→ S1 ∧ (Y ∧ S) = S1 ∧ Y
are the identity. For X = S we have 1 ∗ 1 = 1 by normalization. So the natural transformations have the
properties that characterize − · 1 and the uniqueness clause in Corollary 6.14 proves 1 ∗ y = y · 1 = y.

Now we fix y ∈ πlY . The first suspension condition for ∗ is equivalent to the property that the family
of natural transformations πk −→ πk(−∧ Y ) given by sending x to x ∗ y is stable. For X = S we have just
shown that 1 ∗ y = y. So the natural transformations have the properties that characterize − · y and the
uniqueness clause in Corollary 6.14 proves x ∗ y = x · y. �

The construction of the pairing (6.17) was about as abstract as the definition of true homotopy groups.
We now give a more concrete description of the product for classes in the image of the natural map
c : π̂∗X −→ π∗X from naive to true homotopy groups. For semistable spectra this map is bijective, so
then we get a complete description of the true homotopy group pairing. One should beware, though, that
in general the map c : π̂kX −→ πkX need not be surjective; so even though the next proposition is very
helpful for calculating this product in certain situations, it does not in general determine the product on
true homotopy groups.
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Proposition 6.21. Let X and Y be symmetric spectra, and let f : Sk+n −→ Xn and g : Sl+m −→ Ym be
based maps. Define f · g as the composite

(6.22) Sk+n+l+m f∧g−−−−→ Xn ∧ Ym
in,m−−−−→ (X ∧ Y )n+m .

Then the relation
c[f ] · c[g] = (−1)nl · c[f · g]

holds in the group πk+l(X ∧ Y ), where [f ] ∈ π̂kX respectively [g] ∈ π̂lY are the naive homotopy classes
represented by f and g and where c is the map from naive to true homotopy groups.

� In the situation of the previous proposition, one could hope for the stronger statement that the naive
homotopy class (−1)nl · [f · g] in π̂k+l(X ∧ Y ) only depends on the classes [f ] ∈ π̂kX and [g] ∈ π̂lY ,

and that the dot operation passes to a well-defined pairing from π̂kX × π̂lY to π̂k+l(X ∧ Y ). However, this
does not generally work! If the spectra involved are not semistable, then the situation is more subtle, and
we investigate pairings of naive homotopy groups in more detail later.

Proof of Proposition 6.21. For sufficiently large m we consider the map

f ?− : πl+mYm −→ πk+n+l+m(X ∧ Y )n+m , [g] 7−→ (−1)nl · [f · g] .

As m increases, these maps are compatible with the two stabilization systems for the spectra Y and X ∧Y .
So we obtain an induced map

f ?− : π̂lY −→ π̂k+l(X ∧ Y )

on colimits over m. As Y varies, these maps form a natural transformation of functors f ? − : π̂l −→
π̂k+l(X ∧ −). Moreover, the diagram

(6.23)

π̂lY
f?− //

S1∧−
��

π̂k+l(X ∧ Y )

S1∧−
��

π̂1+l(S
1 ∧ Y )

f?−
// π̂k+1+l(X ∧ (S1 ∧ Y ))

(−1)k·a2

// π̂1+k+l(S
1 ∧ (X ∧ Y ))

commutes [justify]. We can apply Proposition 6.5 (ii) to the functor πk+l(X∧−) and the composite natural
transformation

π̂lY
f?−−−−−→ π̂k+l(X ∧ Y )

c−−→ πk+l(X ∧ Y ) .

We obtain a natural transformation τl : πl −→ πk+l(X ∧ −) that is uniquely determined by the property
τl(c(u)) = c(f ? u) for all u ∈ π̂lY .

We claim that the collection of transformations {τl}l∈Z is compatible in the sense of (6.15), where we
connect the target functors πk+l(X ∧ −) by the natural isomorphisms

πk+l(X ∧ −)
S1∧−−−−−−→ π1+k+l(S

1 ∧ (X ∧ −))
(−1)k·a−1

2−−−−−−−−→ πk+1+l(X ∧ (S1 ∧ −)) .

Indeed, we have

a2(τ1+l(S
1 ∧ c(u))) = a2(τ1+l(c(S

1 ∧ u))) =def a2(c(f ? (S1 ∧ u)))

= c(a2(f ? (S1 ∧ u))) = (−1)k · c(S1 ∧ (f ? u))

=(6.23) (−1)k · S1 ∧ c(f ? u) =def (−1)k · S1 ∧ (τl(c(u))) .

We have exploited that the transformation c from naive to true homotopy groups is natural and compatible
with the suspension isomorphisms.

By Proposition 6.5 (ii), two natural transformations from πl to πk+1+l(X ∧ (S1 ∧ −)) agree if they
coincide after precomposition with c : π̂l −→ πl. So the previous relation implies

(a2)∗(τ1+l(S
1 ∧ −)) = (−1)k · S1 ∧ τl

as transformations πlY −→ πk+1+l(X ∧ (S1 ∧Y )). This completes the proof that the collection of transfor-
mations {τl}l∈Z makes the diagrams (6.15) commute.
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Now we evaluate τ0 at the fundamental class 1 ∈ π0S. We obtain

τ0(1) = τ0(c(ι)) = c(f ? ι) = c[f ] ,

because ι ∈ π̂0S is represented by the identity of S0. However, left multiplication by the class c[f ] is another
stable natural transformation c[f ] · − : πlY −→ πl+k(X ∧ Y ); by the uniqueness part of Corollary 6.14, the
two stable transformation coincides. If we spell this out we obtain

c[f ] · c[g] = τl(c[g]) = c(f ? [g]) = (−1)nl · c[f · g] .

�

Example 6.24. In Example 1.11 we discussed an action of the stable stems πs
∗ (also known as the naive

homotopy groups of the sphere spectrum) on the naive homotopy groups π̂∗X of a symmetric spectrum X.
Since the true homotopy groups X are just the naive homotopy groups of the symmetric spectrum QX,
we also obtain an action of the stable stems on the true homotopy groups π∗X. Moreover, the natural
transformation c : π̂kX −→ πkX is πs

∗-linear because it is induced by a homomorphism of symmetric
spectra.

We claim that the action of πs
∗ on π̂∗(QX) coincides with the action of π∗S on π∗X via the true

homotopy groups pairing of Theorem 6.16 under the natural map c : πs
∗ = π̂∗S −→ π∗S. In other words:

the diagram

π̂k(QX)× π̂lS ·
(1.12) //

Id×c
��

π̂k(QX)

πkX × πlS
·

(6.17)
// πkX

commutes.
Indeed, for Y = S the universal bimorphism component in,m : Xn ∧Ym −→ (X ∧Y )n+m is the iterated

structure map σm : Xn ∧ Sm −→ Xn+m, so the pairing f · g as in (6.22) specializes to the construction
in (1.12). We have c = η∗ : π̂k+l(QX) −→ πk+l(QX) = π̂k+l(QQX) by definition of the transformation
c, where η = ηQX : QX −→ QQX is the stable equivalence. So if x ∈ π̂k(QX) = πkX is represented by
f : Sk+n −→ (QX)n, then we get

η∗(x · c[g]) =nat η∗(x) · c[g] = c[f ] · c[g] =6.21 (−1)nl · c[f · g]

=(1.12) c([f ] · [g]) = η∗(x · [g]) .

Since η∗ is an isomorphism we can conclude that x · c[g] = x · [g], as claimed.

As a formal consequences of Theorem 6.16 and Proposition 6.21 we obtain:

Proposition 6.25. Let R be a symmetric ring spectrum with multiplication (in internal form) µ : R∧R −→
R and unit η : S −→ R.

(i) The composite maps

πkR× πlR
·−−→ πk+l(R ∧R)

µ∗−−−→ πk+lR

make the true homotopy groups of R into a graded ring with identity element η∗(1) ∈ π0R. If R is
commutative, then this product on π∗R is graded commutative.

(ii) The true homotopy groups of a right R-module M naturally form a graded right module over the graded
ring π∗R via the composite map

πkM × πlR
·−−→ πk+l(M ∧R)

a∗−−−→ πk+lM ,

where a : M ∧R −→M is the action morphism in internal form.
(iii) Let f : Sk+n −→ Mn and g : Sl+m −→ Rm be unstable representatives for naive homotopy classes

[f ] ∈ π̂kM respectively [g] ∈ π̂lR. Define f · g ∈ πk+l+n+mMn+m as the composite

(6.26) Sk+n+l+m f∧g−−−−→Mn ∧Rm
in,m−−−−→ (M ∧R)n+m

an+m−−−−−→Mn+m .
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Then the relation

c[f ] · c[g] = (−1)nl · c[f · g]

holds in the group πk+lM , where c is the map from naive to true homotopy groups.
(iv) For every R-module M the suspension and induction isomorphisms

S1 ∧ − : πkM −→ π1+k(S1 ∧M) respectively . : πkM −→ π1+k(.M)

are π∗R-linear.
(v) Let f : M −→ N be a homomorphism of right R-modules and let C(f) be the mapping cone of f , en-

dowed with the natural R-action. Then the connecting homomorphism δ : π1+kC(f) −→ πkM defined
in (6.9) is π∗R-linear. Hence the long exact sequence of true homotopy groups of Proposition 6.11 (i)
is π∗R-linear.

Proof. We prove (i) and (ii) together. We have to show that the product of π∗R and the action on
π∗M are associative and unital, and that the product of π∗R is graded commutative if R is commutative.
We show only the associativity property; this should suffice to indicate how these properties are direct
consequences of the properties of the homotopy groups pairing of Theorem 6.16.

We consider homotopy classes x ∈ πkM , y ∈ πlR and z ∈ πjR. Then

x(yz) =def a∗(x · µ∗(y · z)) =nat (a(M ∧ µ))∗(x · (y · z))
= (a(M ∧ µ)αM,R,R)∗((x · y) · z)) = (a(a ∧R))∗((x · y) · z)
=nat a∗(a∗(x · y) · z) =def (xy)z .

The third equation is the associativity property of the homotopy group pairing, and the fourth equation is
the associativity relation

a ◦ (M ∧ µ) ◦ αM,R,R = a ◦ (a ∧R) : (M ∧R) ∧R −→ M

of the action of R on M .
(iii) This part follows from Proposition 6.21 and naturality.
(iv) The R-action on S1 ∧M respectively .M are defined as the composite maps

(S1 ∧M) ∧R a1−→ S1 ∧ (M ∧R)
S1∧α−−−→ S1 ∧M respectively (.M) ∧R b1−→ .(M ∧R)

.α−−→ .M .

So the suspension relation for the dot product gives

(S1 ∧ x)r = αS1∧M ((S1 ∧ x) · r) = ((S1 ∧ α)a1)((S1 ∧ x) · r) = (S1 ∧ α)(S1 ∧ (x · r))
= S1 ∧ α(x · r) = S1 ∧ xr ,

and similarly for induction.
(v) The connecting morphism δ = (S−1 ∧−)p∗ is a composite of two maps. One ingredient is the map

p∗ : π1+kC(f) −→ π1+kM is induced by the R-linear projection p : C(f) −→M , which is thus π∗R-linear.
The other ingredient is the inverse of the suspension isomorphism S1 ∧ − : πkM −→ π1+k(S1 ∧M), which
is π∗R-linear by part (iii). So the connecting morphism is π∗R-linear. �

Of course, there are analogous statements for left modules and bimodules.
For a general symmetric ring spectrum R which is not semistable, the naive homotopy groups π̂∗R

should be regarded as pathological, and then the true homotopy groups are what one really cares about. In
this situation, the naive homotopy groups do not have a preferred structure of graded ring (while the true
homotopy groups do, compare Proposition 6.25). Instead, the natural algebraic structure present in π̂∗R is
that of an algebra over the injection operad. While this is an interesting piece of algebra, it is not relevant
for stable homotopy theory, and so we defer this discussion to the next section and to Exercise E.I.69.

Example 6.27 (Eilenberg-Mac Lane ring spectra). In Example 1.14 we associates to every abelian group A
a semistable symmetric Eilenberg-Mac Lane spectrum HA (even an Ω-spectrum) whose homotopy groups
(naive and true) are concentrated in dimension 0, where they are isomorphic to the group A. We explained
how an additional ring structure on A can be used to make HA into a symmetric ring spectrum. Now we
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do the necessary reality check: for an abelian group A, an isomorphism jA : A −→ π̂0(HA) is given by the
composite A = π0(HA0) −→ π̂0(HA); in other words, jA sends an element a ∈ A to the class represented
by the based map S0 −→ A = (HA)0 which sends the non-basepoint element of S0 to a.

As we explained in Example 5.28, the multiplication of HA is composed of the a special case of the
monoidal transformation mA,B : HA ∧HB −→ H(A⊗B) and the multiplication map A⊗A −→ A of the
ring A. So multiplicativity of the isomorphism jA is a formal consequence of the fact that for all abelian
groups A and B the composite

A⊗B jA⊗jB−−−−→ π0HA⊗ π0HB
·−→ π0(HA ∧HB)

π0(mA,B)−−−−−−→ H(A⊗B)

equals jA⊗B . This in turn is straightforward from the definitions.

Example 6.28 (Monoid ring spectra). Here we will eventually revisit Example 3.43 and a construct natural
isomorphism of graded rings

π∗(RM) ∼= (π∗R)M

for any symmetric ring spectrum R and discrete monoid M .

Example 6.29 (Matrix ring spectra). Here we will eventually revisit Example 3.44 and a construct natural
isomorphism of graded rings

π∗Mk(R) ∼= Mk(π∗R)

for any symmetric ring spectrum R.

Example 6.30 (Opposite ring spectrum). For every symmetric ring spectrum R we can define the opposite
ring spectrum Rop by keeping the same spaces (or simplicial sets), symmetric group actions and unit maps,
but with new multiplication µop

n,m on Rop given by the composite

Rop
n ∧Rop

m = Rn ∧Rm
twist−−−→ Rm ∧Rn

µm,n−−−→ Rm+n
χm,n−−−→ Rn+m = Rop

n+m .

As a consequence of centrality of ι1, the higher unit maps for Rop agree with the higher unit maps for R.
By definition, a symmetric ring spectrum R is commutative if and only if Rop = R. In the internal form,
the multiplication µop is obtained from the multiplication µ : R ∧R −→ R as the composite

R ∧R τR,R−−−→ R ∧R µ−→ R .

For example, we have (HA)op = H(Aop) for the Eilenberg-Mac Lane ring spectra (Example 1.14) of an
ordinary ring A and its opposite, and (RM)op = (Rop)Mop for the monoid ring spectra (Example 3.42) of
a simplicial or topological monoid M and its opposite.

By the centrality of the unit, the underlying symmetric spectra of R and Rop are equal (not just
isomorphic), hence R and Rop have the same (not just isomorphic) naive and true homotopy groups. The
graded commutativity of the external product implies that we have

π∗(R
op) = (π∗R)op

(again equality) as graded rings, where the right hand side is the graded-opposite ring, i.e., the graded
abelian group π∗R with new product x ·op y = (−1)kl · y · x for x ∈ πkR and y ∈ πlR.

Let X be a symmetric spectrum and let x : Sk+n −→ Xn be a based map. We can define a natural
morphism

λx : Sk+n ∧ Y −→ shn(X ∧ Y )

which we call left multiplication by x, where Y is any symmetric spectrum. In level m, the morphism λx is
the composite

(6.31) Sk+n ∧ Ym
x∧Ym−−−−→ Xn ∧ Ym

in,m−−−−→ (X ∧ Y )n+m = (shn(X ∧ Y ))m .

On naive homotopy groups this produces a map x· : π̂lY −→ π̂k+l(X ∧ Y ) as the composite

π̂lY
Sk+n∧−−−−−−→ π̂k+n+l(S

k+n ∧ Y )
(λx)∗−−−−−→ π̂k+n+l(sh

n(X ∧ Y )) = π̂k+l(X ∧ Y ) .
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� The map x· : π̂lY −→ π̂k+l(X∧Y ) depends on the homotopy class of x in the unstable group πk+nXn,
and not just on the stable class [x] in π̂kX. In other words, the maps x· : π̂lY −→ π̂k+l(X ∧ Y ) and

ι(x)· : π̂lY −→ π̂k+l(X ∧ Y ) are typically not the same maps, where ι(x) = σn(x ∧ S1) : Sk+n+1 −→ Xn+1

is the stabilization of x. Here is a specific example:

Example 6.32. We consider the left multiplication maps in the case X = S of the sphere spectrum. The
unit element 1 ∈ π̂0S is represented by the identity IdSn : Sn −→ Sn for every n; however, the maps
IdSn · : π̂lY −→ shn π̂k+l(S ∧ Y ) = shn π̂k+lY are all different (except when Y is semistable). For example,
λIdS0 : S0 ∧ Y −→ sh0 Y = Y is the unique natural isomorphism S0 ∧ Y ∼= Y and IdS0 · : π̂lY −→ π̂lY is

the identity. However, λIdS1 : S1 ∧ Y −→ shY specializes to the map λY : S1 ∧ Y −→ shY . By Lemma 8.6

the map IdS1 · : π̂lY −→ π̂lY is thus given by (−1)k · d, where d ∈M is the shift operator.

Later we will investigate more closely how the map x· : π̂lY −→ shn π̂k+l(X ∧ Y ) changes when we
stabilize x. It will turn out that x· and ι(x)· differ by the action of the injection monoid. This action is
coequalized by the tautological map from naive to true homotopy groups, so after passage to true homotopy
groups, the map x· should only depend on the stable class of x. Indeed, this is the case:

Proposition 6.33. Let X be a symmetric spectrum and x : Sk+n −→ Xn a based map. We denote by
〈x〉 = c[x] the true homotopy class represented by x in πkX. Then for every symmetric spectrum Y the
square

π̂lY
x· //

c

��

π̂k+l(X ∧ Y )

c

��
πlY 〈x〉·

// πk+l(X ∧ Y )

commutes up to the sign (−1)nl.

Proof. Let [y] ∈ π̂lY be represented by the based map y : Sl+m −→ Ym. Then by the very definitions,
x · [y] is represented by the map x · y = in,m(x ∧ y) : Sk+n+l+m −→ (X ∧ Y )n+m. So by Proposition 6.21
we get

c(x · [y]) = c[x · y] = (−1)nl · c[x] · c[y] = (−1)nl · 〈x〉 · c[y] .

�

Now we consider a symmetric ring spectrum R and a based map x : Sk+n −→ Rn. For every left
R-module M we can then form the map λx : Sk+n ∧M −→ shnM defined as the composite

(6.34) Sk+n ∧M λx−−−→ shn(R ∧M)
shn a−−−−→ shnM

where a : R∧M −→M is the action morphism. [abuse of notation...] We refer to λx as the left multiplication
by x. So in level m, the map λx is the composite

Sk+n ∧Mm
x∧Mm−−−−−→ Rn ∧Mm

an,m−−−−→ Mn+m = (shnM)m .

We let x̃ : FnS
k+n −→ R denote the morphism of symmetric spectra which is adjoint to x : Sk+n −→

Rn. With this definition, the induced map x̃∗ : π̂k(FnS
k+n) −→ π̂kR takes the naive fundamental class ι̂k+n

n

(see (6.4)) to the class [x] represented by the map x. By naturality we get the relation

(6.35) x̃∗(ι
k+n
n ) = 〈x〉 ∈ πkR

where ιk+n
n = c(ι̂k+n

n ) ∈ πk(FnS
k+n) is the true fundamental class and 〈x〉 = c[x].

For every left R-module M we can define a morphism of symmetric spectra

(6.36) λ̂x : FnS
k+n ∧M −→ M

as the composite

FnS
k+n ∧M x̃∧M−−−→ R ∧M a−−→ M
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where a is the action of R on M (in external form). Again the name λ̂x stands for ‘left multiplication by x’.
For ordinary modules over an ordinary ring, left multiplication by a product xy agrees with the composite
of left multiplications by y, followed by left multiplication by x. We leave it to Exercise E.I.44 to establish

a suitably analogue which relates the composite of λ̂y and λ̂x to λ̂x·y.
While left multiplication with a ring element on a module is always an additive map, it is typically not

a module homomorphism unless the element which acts is central. This classical fact has an analog for ring
spectra, where the notion of central ring element has to be adapted as follows.

Definition 6.37. Let R be a symmetric ring spectrum and x : K −→ Rn a based map of spaces (or
simplicial sets). The map x is central if the diagram

K ∧Rm
x∧Rm //

twist

��

Rn ∧Rm
µn,m // Rn+m

χn,m

��
Rm ∧K

Rm∧x
// Rm ∧Rn µm,n

// Rm+n

commutes for all m ≥ 0.

We will mostly be interested in central maps whose source is a sphere. The unit maps ιn : Sn −→ Rn
of any symmetric ring spectrum are examples of central maps, compare Remark 1.6. If R is commutative,
then any map to Rn is central.

Proposition 6.38. Let R be a symmetric ring spectrum, M a left R-module and x : Sk+n −→ Rn a based
map. We denote by 〈x〉 = c[x] the true homotopy class in πkR represented by x.

(i) The morphism λ̂x : FnS
k+n∧M −→M realizes left multiplication by the class 〈x〉 in homotopy. More

precisely, the composite

πlM
ιk+n
n ·
∼=

// πk+l(FnS
k+n ∧M)

(λ̂x)∗ // πk+lM

equals left multiplication by 〈x〉, where ιk+n
n ∈ πk(FnS

k+n) is the fundamental class.
(ii) If the map x is central, then the class 〈x〉 is central, in the graded sense, in the graded true homotopy

ring of R; in other words, for every true homotopy class y ∈ πlR the relation

〈x〉 · y = (−1)kl y · 〈x〉

holds in πk+lR.

(iii) If the map x is central, then the morphism of symmetric spectra λ̂x : FnS
k+n ∧ M −→ M is a

homomorphism of left R-modules, where the R-action on the source is the composite

R ∧ FnSk+n ∧M
τ
R,FnSk+n∧M
−−−−−−−−−→ FnS

k+n ∧R ∧M FmS
l+m∧x−−−−−−−−−→ FnS

k+n ∧M .

Proof. Part (i) is a simple calculation:

(λ̂x)∗(ι
k+n
n · y) =def (a(x̃ ∧M))∗(ι

k+n
n · y) =nat a∗(x̃∗(ι

k+n
n ) · y)

=(6.35) a∗(〈x〉 · y) =def 〈x〉 · y .

(ii) As before we let x̃ : FnS
k+n −→ R denote the morphism of symmetric spectra adjoint to the based

map x. Under the adjunction, the centrality property of x translates into the commutative diagram

R ∧ FnSk+n R∧x̃ //

τ
R,FnSk+n

��

R ∧R
µ

))RRRRRRRRRR

R

FnS
k+n ∧R

x̃∧R
// R ∧R

µ

55llllllllll
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Moreover, we have x̃∗(ι
k+n
n ) = 〈x〉, hence we obtain

〈x〉 · y =def µ∗(〈x〉 · y) =nat (µ(x̃ ∧R))∗(ι
k+n
n · y) =com (−1)kl · (µ(x̃ ∧R)τR,FnSk+n)∗(y · ιk+n

n )

= (−1)kl · (µ(R ∧ x̃))∗(y · ιk+n
n ) =nat (−1)kl · µ∗(y · 〈x〉) =def (−1)kl · y · 〈x〉

The third equation is the commutativity property of the homotopy group pairing.
(iii)

�

In fact, part (ii) of Proposition 6.38 does not really need that the map x : Sl+m −→ Rm is central on
the pointset level; it suffices that the centrality diagram of Definition 6.37 commutes up to based homotopy.
There is no converse of this lemma: if R is a semistable symmetric ring spectrum and y ∈ π̂lR a central
naive homotopy class, then in general y cannot be represented by a central map x : Sl+m −→ Rm for any m
(not even so that the centrality diagram commutes up to based homotopy).

Example 6.39 (Killing a homotopy class). We describe a construction that can be used to ‘kill’ the action
of a homotopy class in a ring spectrum on a given module. We consider a symmetric ring spectrum R, a

left R-module M and a central map x : Sk+n −→ Rn. We let M/x = C(λ̂x) denote the mapping cone of

the morphism λ̂x : FnS
k+n ∧M −→ M (see (6.36)). The long exact true homotopy group sequence of a

mapping cone (Proposition 6.11 (i)) is π∗R-linear by Proposition 6.25 (iv). Since the morphism λ̂x realizes
multiplication by 〈x〉 ∈ πkR on true homotopy groups (Proposition 6.38 (i)), this long exact sequence breaks
up into a short exact sequence of π∗R-modules

0 −→ π∗M/〈x〉(π∗−kM) −→ π∗(M/x) −→ {π∗−k−1M}〈x〉 −→ 0

where the first map is induced by the mapping cone inclusion M −→ M/x and {−}〈x〉 denotes the π∗R-
submodule of homotopy classes annihilated by 〈x〉. If 〈x〉 acts injectively on the true homotopy groups of M ,
then we can conclude that the morphism M −→M/x realizes the quotient map π∗M −→ π∗M/〈x〉(π∗−kM)
on true homotopy groups.

Remark 6.40. Example 6.39 allows us to ‘kill’ homotopy classes which are in the image of the map c from
naive to true homotopy groups. For semistable symmetric spectra this is no restriction since the map c is
bijective.

There is a variation of the construction that kills arbitrary true homotopy classes x ∈ πkR for a ring
spectrum R, not necessarily in the image of c : π̂kR −→ πkR. We sketch the construction for k = 0, but it
can be generalized to arbitrary degrees; we hope to get back to this later.

Given any class x ∈ π0R, there is a flat symmetric spectrum Z, a stable equivalence f : Z −→ S and a
morphism g : Z −→ R such that g∗(f

−1
∗ (1)) = x [ref]. Then the map

g̃ : Z ∧M g∧M−−−→ R ∧M a−−→ M

realizes multiplication by x in the following sense. Since Z is flat, the map f ∧M : Z ∧M −→ S∧M = M
is again a stable equivalence, and the composite

πlM
(f∧M)−1

∗−−−−−−−→ πl(Z ∧M)
g̃∗−−−→ πlM

equals left multiplication by x. So we can ’kill’ the class x on M by forming the mapping cone of the map g̃.

Example 6.41 (Killing a regular sequence). We can iteratively kill homotopy classes as in Example 6.39
and thereby kill the action of certain ideals in the homotopy groups of a symmetric ring spectrum. We just
saw that we can only control the homotopy groups of M/x if the homotopy class 〈x〉 which is killed is not
a zero divisor on π∗M . So iterating the construction naturally leads us to consider regular sequences.

Recall that a sequence, finite or countably infinite, of homogeneous elements yi in a graded commutative
ring R∗ is a regular sequence for a graded R∗-module M∗ if y1 acts injectively on M∗ and for all i ≥ 2 the
element yi acts injectively on M∗/M∗ · (y1, . . . , yi−1). A homogeneous ideal I of R∗ is a regular ideal for M∗
if it can be generated by a regular sequence, finite or countably infinite, for M∗.
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To simplify the exposition we now assume that the ring spectrum R we work over is commutative. This
guarantees that any map to R is automatically central.

Proposition 6.42. Let R be a commutative symmetric ring spectrum, M a left R-module and I a homo-
geneous ideal of π∗R. If I is a regular ideal for the module π∗M then there exists an R-module M/I and a
homomorphism q : M −→M/I of R-modules such that the induced homomorphism of true homotopy group

π∗(q) : π∗M −→ π∗(M/I)

is surjective and has kernel equal to I · (π∗M).

Proof. We choose a sequence x1, x2, . . . of homogeneous elements of π∗R which generate the ideal I
and form a regular sequence for π∗M . We construct inductively a sequence of R-modules M i and homo-
morphisms

M = M0 q1−→ M1 q2−→ M2 q3−→ · · ·
such that the composite morphism M −→ M i is surjective on homotopy groups and has kernel equal to
(x1, . . . , xi) · (π∗M).

The induction starts with i = 0, where there is nothing to show. In the ith step we let k be the
dimension of the homotopy class xi. By induction the true homotopy groups of M i−1 realize the π∗R-
module π∗M/(x1, . . . , xi−1) · (π∗M). We realize left multiplication by the class xi by a homomorphism of

R-modules λ̂xi : Z ∧M i−1Z −→ M i−1. If xi is in the image of the tautological map c : π̂kR −→ πkR, we
can choose Z = FnS

k+n and achieve this by the construction of Proposition 6.38 (i); this is always the case
when R is semistable. If xi is not in the image of the tautological map we have to use the more general
construction indicated in Remark 6.40 in the special case k = 0.

Since we have a regular sequence for π∗M the class xi acts injectively on the homotopy of M i−1,

so the mapping cone inclusion qi : M i−1 −→ M i−1/xi = C(λ̂xi) realizes the projection π∗M
i−1 −→

π∗M
i−1/xi · (π∗M i−1). We can thus take M i = M i−1/xi; then the composite morphism M −→ M i is

again surjective on homotopy groups and its kernel is

(x1, . . . , xi−1·)(π∗M) + xi · (π∗M) = (x1, . . . , xi) · (π∗M) .

This finishes the argument if I is generated by a finite regular sequence.
If the generating sequence is countably infinite we define M/I as the mapping telescope (see Exam-

ple 2.21) of the above sequence of R-modules M i. Then the natural map

colimi π∗Mi −→ π∗(M/I)

is an isomorphism [ref], and the left hand side is isomorphic to

colimi (π∗M/(x1, . . . , xi)) · (π∗M) ∼= π∗M/(x1, x2, . . . ) · (π∗M) = π∗M/I · (π∗M) .

�

Let R be a symmetric ring spectrum and x ∈ πkR a zero divisor in the homotopy ring of R. Then we
may not be able realize the module π∗R/(π∗−lR)〈x〉 as the homotopy of an R-module, and Toda brackets
give the first obstructions to such a realization. We will discuss this in more detail in Proposition 2.13 of
Chapter III.

Example 6.43 (Periodic cobordism). We define the (unoriented) periodic cobordism spectrum MOP , a
Z-graded commutative symmetric ring spectrum that behaves like the Laurent series ring spectrum over
MO on a generator of dimension 1. For n ≥ 0 we consider the ‘full Grassmannian’ Gr(2n) of R2n. A point
in Gr(2n) is a sub-vectorspace of R2n of any dimension, and this space is topologized as the disjoint union
of the Grassmannians of k-dimensional subspaces of R2n for k = 0, . . . , 2n. Over the full Grassmannian
Gr(2n) sits a tautological euclidean vector bundle (of non-constant rank!): the total space of this bundle
consist of pairs (U, x) where U is a subspace of R2n and x ∈ U .

We define MOPn as the Thom space of this tautological vector bundle, i.e., the quotient space of
the unit disc bundle by the sphere bundle. The symmetric group Σn acts by isometries on R2n via the
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monomorphism Σn −→ Σ2n sending γ to γ+γ. This action induces an action of Σn on the Grassmannians,
the vector bundles and their Thom spaces via γ · (U, x) = ((γ + γ)(U), (γ + γ)(x)).

The multiplication

(6.44) MOPn ∧MOPm −→ MOPn+m

sends (U, x) ∧ (U ′, x′) to (U + U ′, (x, x′)) where U + U ′ is the image of U ⊕ U ′ under the isometry

Id∧χn,m ∧ Id : R2n ⊕ R2m −→ R2(n+m) , (x, x′)⊕ (y, y′) 7−→ (x, y, x′, y′) ,

where x, x′ ∈ Rn and y, y′ ∈ Rm.
The unit map Sn −→ MOPn sends x ∈ Rn to (∆(Rn),∆(x)) where ∆ : Rn −→ R2n is the diagonal

isometry with ∆(x) = (x, x).
As the name suggests, MOP is a periodic version of the Thom spectrum MO. More precisely, we claim

that MOP is Z-graded commutative symmetric ring spectrum whose piece of degree k is π̂∗-isomorphic to
a k-fold suspension of MO. For every integer k we let Gr[k](2n) be the subspace of Gr(2n) consisting of
subspaces of dimension n+k. So Gr(2n) is the disjoint union of the spaces Gr[k](2n) for k = −n, . . . , n. We

let MOP
[k]
n be the Thom space of the tautological (n+k)-plane bundle over Gr[k](2n), so that MOPn is the

one-point union of the Thom spaces MOP
[k]
n for −n ≤ k ≤ n. We note that the unit map Sn −→ MOPn

has image in the degree 0 summand MOP
[0]
n . The multiplication map (6.44) is ‘graded’ in the sense that its

retriction to MOP
[k]
n ∧MOP

[l]
m has image in MOP

[k+l]
n+m . Together this implies that MOP [k] is a symmetric

subspectrum of MOP and that the periodic spectrum decomposes as

MOP =
∨
k∈Z

MOP [k] .

It remains to relate the spectrum MOP [0] to MO through π̂∗-isomorphisms [...].
Now we explain why MOP [k] is, up to π̂∗-isomorphism, a k-fold suspension of MOP [0]. We observe

that the Grassmannian Gr[1](2) has only one point (the entire space R2), and so MOP
[1]
1 = D(R2)/S(R2)

which is homeomorphic to the 2-sphere S2. So a special case of the multiplication map is

S2 ∧MOP [k]
n
∼= MOP

[1]
1 ∧MOP [k]

n −→ MOP
[1+k]
1+n = (shMOP [1+k])n .

If we let n vary, these maps form a morphism of symmetric spectra

S2 ∧MOP [k] −→ shMOP [1+k] .

Since the map S2 ∧ MOP
[k]
n −→ MOP

[1+k]
1+n is highly connected [prove] this morphism is in fact a π̂∗-

isomorphism.
It remains to relate the spectrum MOP (0) to MO through π̂∗-isomorphisms [...]. Now we explain why

MOP [k] is, up to π̂∗-isomorphism, a k-fold suspension of MOP [0]. We observe that the Grassmannian

Gr[1](2) has only one point (the entire space R2), and so MOP
[1]
1 = D(R2)/S(R2) which is homeomorphic

to the 2-sphere S2. So a special case of the multiplication map is

MOP [1+k]
n

∼= MOP
[−1]
1 ∧MOP [1+k]

n −→ MOP
[k]
1+n .

If we let n vary, these maps form a morphism of unitary spectra

MOP [1+k] −→ shMOP [k] .

Since the map MOP
[1+k]
n −→ MOP

[k]
1+n is highly connected [prove] the previous morphism of unitary

spectra is in fact a π̂∗-isomorphism.

Corollary 6.45. We have 2 = 0 in π0MOP and π0MO and hence all homotopy groups of the Thom
spectrum MO are F2-vector spaces.

Proof. The isomorphism x : S2 ∼= MOP
[1]
1 represents a naive homotopy class in π̂1MOP . The

morphism λ̂x : F1S
2 ∧MOP −→ MOP is a stable equivalence and its effect on true homotopy groups of
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given by multiplication by the true homotopy class 〈x〉 ∈ π1MOP , by Proposition 6.38 (i). Hence the class
〈x〉 is an odd-dimensional unit in the graded commutative homotopy ring π∗MOP . So we have

1 = 〈x〉 · 〈x〉−1 = −〈x〉−1 · 〈x〉−1 = −1

by graded commutativity. Hence 2 = 0 holds in π0MOP , and hence also in π0MO. �

Of course, Thom’s isomorphism between the homotopy groups of MO and the cobordism classes of
smooth closed manifolds provides an easy geometric proof of the fact that πnMO ∼= ΩO

n is an F2−vector
space: for every smooth manifold M , the cylinder M × [0, 1] is a null cobordism of M qM .

We can try to run the above program with other flavors of Thom spectra. For example, we can consider
the Grasmannian G̃r(2n) of oriented subspaces (of any dimension) of R2n, which supports a tautological
oriented euclidean vector bundle. We can define MSOPn as the Thom space of this tautological bundle.
[where is the problem?] In the end we only get a degree-2 periodization of the oriented Thom spectrum
MSO.

The spectrum MOP has a straightforward complex analog MUP which we describe in a coordinate
free fashion as a unitary ring spectrum in Example 7.8 below. The underlying symmetric ring spectrum
of MUP is a degree 2 periodization of the unitary cobordism spectrum MU . Since the units of MUP lie
in even dimensions, we cannot derive any simple homotopical consequence as in the case of MOP . [relate
MUP to Σ∞+ BU [1/β]]

Construction 6.46 (Inverting a selfmap). Let X be a symmetric spectrum and f : X −→ X an endomor-
phism. We can ‘invert f ’ by forming the mapping telescope (see Example 2.21) of the sequence

X
f−−→ X

f−−→ X
f−−→ · · · .

By Lemma 2.23 the mapping telescope is π̂∗-isomorphic to the diagonal of this sequence, which we denote
by f−1X. Explicitly, this diagonal is given in level n by (f−1X)n = Xn, i.e., the n-th level of the original
spectrum with the original Σn-action. The structure map (f−1X)n ∧ S1 −→ (f−1X)n+1 is the composite
around either way in the commutative square

Xn ∧ S1
σn //

fn∧Id

��

Xn+1

fn+1

��
Xn ∧ S1

σn
// Xn+1

Again by Lemma 2.23 the k-th naive homotopy group of f−1X is given by the colimit of the sequence

π̂kX
f∗−−−→ π̂kX

f∗−−−→ π̂kX
f∗−−−→ · · ·

which we denote by f−1
∗ (π̂kX).

Now we generalize this construction to a ‘graded selfmap’, i.e., one which may shift degrees. More
precisely, we start with a symmetric spectrum X and a homomorphism f : Sk ∧X −→ shnX. If we just
wanted a symmetric spectrum whose naive homotopy groups are those of X with ‘the effect of f inverted’,
we could again form a similar mapping telescope above, by iterating the adjoint f̃ : X −→ Ωk shnX.
However, we introduce a different construction with better multiplicative properties. The advantage is that
this construction wil preserve multiplications of ring spectra and actions of ring spectra on module spectra.

For the following construction we start with a symmetric spectrum X and a morphism f : K ∧X −→
shnX. Later we will mainly be interested in the case where K = Sk is a sphere, but the precise form of the
based space (or simplicial set) K is irrelevant for the construction. We define a functor X(f,−) : I −→ Sp
from the category I to symmetric spectra. For p ∈ I we set

X(f,p) = map(K(p), shnpX) ,
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where K(p) is the p-fold smash product of copies of K. The symmetric group Σp = I(p,p) acts on K(p) by
permuting the factors and on shnpX by restriction along the diagonal embedding

∆ : Σp −→ Σnp , ∆(γ) = Idn ·γ
(using the notation of Remark 0.4) which unravels to

∆(γ)(j + (i− 1)k) = j + (γ(i)− 1)

for i ≤ j ≤ n and 1 ≤ i ≤ p. The action of Σp on the whole symmetric spectrum X(f,p) =

map(K(p), shnpX) is then by conjugation.
To make this assignment into a functor on the category I we have to prescribe the effect of the inclusion

ι : p −→ p + 1, and this is where the morphism f enters. We let X(f, ι) : X(f,p) −→ X(f,p + 1) be the
map

map(K(p), shnpX)
map(K(p),shnp f̃)−−−−−−−−−−−−→ map(K(p), shnp(map(K, shnX))) = map(K(p),map(K, shn+npX))

adj. iso−−−−−→ map(K(p+1), shn(1+p)X)
map(K(p+1),∆(χ1,p))−−−−−−−−−−−−−−→ map(K(p+1), shn(1+p)X) .

To see that this indeed extends to a functor we still have to check that for every q ≥ 1 the composite

X(f,p) −→ X(f,p + 1) −→ · · · −→ X(f,p + q)

is Σp × Σq-equivariant, where Σq acts trivially on the source. [justify...]
This finishes the definition of the functor X(f,−) : I −→ Sp. Now we can define f−1X as

(6.47) f−1X = diagX(f,−) ,

the diagonal, in the sense of Construction 8.33, of the I-functor X(f,−).
Let us make the structure of the symmetric spectrum f−1X explicit. In level p we have

(f−1X)p = X(f,p)p = map(K(p), shnpX)p = map(K(p), Xnp+p) .

The symmetric group Σp acts by conjugation, on K(p) by permuting the factors and on Xnp+p by restriction
of the original Σnp+p-action along the embedding

Σp −→ Σnp+p , γ 7−→ ∆n(γ) + γ = (Idn ·γ) + γ .

One should beware that this homomorphism is not the same as the diagonal embedding ∆ : Σp −→ Σ(n+1)p

which sends γ to Idn+1 ·γ. The structure map σp : (f−1X)p ∧ S1 −→ (f−1X)p+1 is the composite

map(K(p), Xnp+p) ∧ S1 assemble−−−−−−−→ map(K(p), Xnp+p ∧ S1)
map(K(p),σnp+p)−−−−−−−−−−−−→ map(K(p), Xnp+p+1)

map(K(p),f̃np+p+1)−−−−−−−−−−−−−→ map(K(p),map(K,Xn+np+p+1)) ∼= map(K(p+1), Xn(1+p)+p+1)

map(K(p+1),∆(χ1,p)+1p+1)−−−−−−−−−−−−−−−−−−→ map(K(p+1), Xn(p+1)+p+1) .

The construction f−1X has the following straightforward functoriality. Suppose f : K ∧X −→ sknX and
g : K ∧ Y −→ shn Y are graded selfmaps and ϕ : X −→ Y a compatible morphism, i.e., such that the
square

K ∧X
f //

K∧ϕ
��

shnX

shϕ

��
K ∧ Y g

// shn Y

commutes. Then the maps

map(K(p), shnp ϕ) : X(f,p) = map(K(p), shnpX) −→ map(K(p), shnp Y ) = Y (g,p)

constitute a natural transformation of I-functors, and so they induce a natural map

ϕ∗ : f−1X −→ g−1Y
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on diagonal symmetric spectra.

Construction 6.48. Our next aim is to identify the naive homotopy groups of the spectrum f−1X with
an algebraic localization of π̂∗X in the case when K = Sk is a sphere. For this purpose we have to explain
how to invert a selfmap of a gradedM-module which is allowed to change degrees and map into an iterated
shift. So we consider a Z-graded M-module W = {Wl}l∈Z. For any integer k the kth degree shift W [k] is
the Z-graded M-module whose degree l component is

W [k]l = Wk+l .

Now we consider graded-shifted self map f : W −→ shnW [k], where theM-shift shn is applied degreewise.
We observe the degree-shift and M-shift commute on the nose, so there is no need for parentheses in
shnW [k]. So f is consists of a Z-indexed collection of M-linear maps fl : Wl −→ shnWk+l.

We define a functor W (f,−) : I −→ (gr. M-mod) from the category I to the category of M-modules
as follows. We set

W (f,p) = shnpW [kp]

with Σp-action restricted from the Σnp-action on the shifted coordinates along the diagonal embedding
∆ : Σp −→ Σnp, multiplied by the k-th power of the sign representation:

γ · (shnp w[kp]) = sgn(γ)k · (∆(γ) · (shnp w))[kp]

= sgn(γ)k−n · shnp ((Idn ·γ) · w) [kp]

The previous definition has signs for two different reasons. The sign sgn(γ)k is put in so that Proposi-
tion 6.50 (i) comes out without any signs; the reason behind this is that Σp really permutes p entities of
degree k. The other sign sgn(∆(γ)) = sgn(γ)n is the sign we put into the definition of the iterated algebraic
shift of M-modules; this sign is needed to make the relation π̂k+m(shmX) = shm(π̂kX) equivariant. The
inclusion ι : p −→ p + 1 is sent to the morphism

W (f,p) = shnpW [kp]
shnp f [kp]−−−−−−→ shnp(shnW [k])[kp] = shn+npW [k + kp]

= shn(1+p)W [k(1 + p)]
(−1)kp∆(χ1,p)·−−−−−−−−−−→ shn(p+1)W [k(p+ 1)] = W (f,p + 1) .

[check functoriality] This finishes the definition of the I-M-module W (f,−).
We define the graded M-module f−1W by

f−1W = colimp∈N W (f,p) = colimp∈N shnpW [kp] .

as the sequential colimit taken over the inclusions ι : p −→ p + 1. If this looks scary, we may want to recall
that the algebraic shift of anM-module modifies theM-action, but has no effect on the underlying abelian
groups or on morphisms. So the underlying abelian group of (f−1W )l is the colimit, in the category of
M-modules, of the sequence

Wl
fl−−−→ Wk+l

(−1)kfk+l−−−−−−−−→ Wk2+l
fk2+l−−−−→ Wk3+l

(−1)kfk3+l−−−−−−−→ · · · .

The gradedM-module f−1W has extra structure, namely a secondM-action which we call the external
M-action. This action comes from the fact that the sequence whose colimit defines f−1W is underlying a
functor from the category I to the category of M-modules. [ref...]

We make three straightforward observations:

(i) The external M-action on f−1W is degreewise tame.
(ii) If the graded M-module W is degreewise tame, then the internal M-action on f−1W is degreewise

tame.
(iii) If theM-action on W is degreewise trivial, then the external and the internalM-action on f−1W are

trivial.
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� Notice the slight twist in the observation (iii) above. If M acts degreewise trivially on W , then it
is not generally the case that M acts degreewise trivially on each W (f,p) = shnpW [kp]. Indeed,

with our definition γ ∈ Σp acts by the sign sgn(γ)k on W (f,p). This sign is +1 if k is even or γ is an
even permutation, but not in general. However, no matter which parity k and sgn(γ) have, since all even
permutations act as the identity, the M-action on the colimit f−1W is trivial.

Through the eyes of naive homotopy groups, Sk ∧X and shnX are degree-shifted versions of X, and
f induces a graded selfmaps on naive and true homotopy groups as the composite

π̂l+nX
Sk∧−−−−−−→ π̂k+l+n(Sk ∧X)

f∗−−−→ π̂k+l+n(shnX) = shn(π̂k+lX)

respectively

πl+nX
Sk∧−−−−−−→ πk+l+n(Sk ∧X)

f∗−−−→ πk+l+n(shnX)
shn!−−−→ πk+lX .

The homomorphism sh1
! = sh! : πk+1(shX) −→ πkX was defined in (E.I.35), and shn! is defined inductively

as the composite

πk+n(shnX) = πk+n(sh(shn−1X))
sh!−−−→ πk+n−1(shn−1X)

shn−1
!−−−−−→ πkX .

Now we are ready to calculate the naive homotopy groups of the symmetric spectrum f−1X from the
naive homotopy groups of X and the effect of the morphisms f , at least when K = Sk is a sphere. For the
identification we need a natural M-linear isomorphism

(6.49) α(k,p) : π̂l map((Sk)(p), Y )
∼=−−→ π̂kp+lY

which generalizes the loop isomorphism α (see (2.4)) for k = p = 1. We define these isomorphisms by
induction on p, starting with α(k,1) as the composite

π̂l map(Sk, Y )
Sk∧−−−−−−→ π̂k+l(S

k ∧map(Sk, Y ))
ev∗−−−→ π̂k+lY

where ev : Sk ∧map(Sk, Y ) −→ Y is the evaluation morphism. For p ≥ 1 we then define α(k,p+1) as the
composite

π̂l map((Sk)(p+1), Y )
adj.−−→ π̂l map((Sk)(p),map(Sk, Y ))

α(k,p)

−−−−→ π̂kp+l map(Sk, Y )
α(k,1)

−−−−→ π̂k+kp+lY .

Warning: for p ≥ 2, α(k,p) differs from the composite

π̂l map((Sk)(p), Y )
(Sk)(p)∧−−−−−−−−−→ π̂kp+l((S

k)(p) ∧map((Sk)(p), Y ))
ev−−→ π̂kp+lY

by a permutation [which] in the source spheres, hence possibly by a sign.

Proposition 6.50. Let X be a symmetric spectrum and f : Sk ∧X −→ shnX a graded selfmap. Suppose
also that X is levelwise Kan when in the context of spaces.

(i) The generalized loop isomorphisms (6.49)

α(k,p) : π̂lX(f,p) = π̂l map((Sk)(p), shnpX) −→ π̂kp+l(sh
npX) = shnp(π̂kp+l−npX)

constitute a natural isomorphism

π̂∗X(f,−)
∼=−−→ (π̂∗X)(f ·,−)

of functors from the category I to graded M-modules.
(ii) The generalized loop isomorphisms (6.49) induce an isomorphism of graded M-modules

diag
(
(f−1
∗ (π̂∗X)

) ∼=−−→ π̂∗(f
−1X) .

(iii) If X is semistable, then so is the symmetric spectrum f−1X and the map π∗X −→ π∗(f
−1X) extends

to a natural isomorphism
f−1
∗ (π∗X) −→ π∗(f

−1X)

to the true homotopy groups of f−1X.
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Proof. (i) We have to check that the isomorphisms α(k,p) are compatible with the Σp-actions and the
maps induced by the inclusions ι : p −→ p + 1. The Σp-action on X(f,p) is combined from the permutation

action on (Sk)(p) and an diagonal action on the np shifted coordinates. If γ ∈ Σp permutes the factors

of (Sk)(p), this is a map of degree sgn(γ)k, so it becomes multiplication by sgn(γ)k under the generalized
loop isomorphism α(k,p), which matches one of the sign that we built into the Σp-action on (π̂∗X)(f ·,p) =
shnp(π̂∗X)[kp]. The equality π̂l+m(shmX) = shm π̂kX is Σm-equivariant, compare (8.14). We also need
that the generalized loop isomorphism is compatible with the shift identification; more precisely, the diagram

π̂l+m(shm map(Sk, Y )) shm π̂l map(Sk, Y )
shm α(k,1)

∗ // shm π̂k+lY

π̂l+m map(Sk, shm Y )
α(k,1)

// π̂k+l+m(shm Y )

commutes by inspection.
Since the composite ev ◦(Sk ∧ f̃) : Sk ∧ Y −→ shn Y equals the original map f , the composite

π̂l+nX
f̃∗−−−→ π̂l+n map(Sk, shn Y )

α(k,1)

−−−−−→ π̂k+l+n(shnX) = shn(π̂k+lX)

equals f∗ : π̂l+nX −→ π̂k+lX by naturality of the suspension isomorphism. In the diagram

π̂l map((Sk)(p), shnpX)
α(k,p)

//

map((Sk)(p),shnp f̃)∗
��

X(f,ι)∗

��

π̂kp+l(sh
npX)

(shnp f̃)∗
��

shnp(π̂kp+l−npX)

(π̂∗X)(f ·,ι)∗

��

shnp(f̃∗)

��
π̂l map((Sk)(p), shnp map(Sk, shnX))

α(k,p)

// π̂kp+l(sh
np map(Sk, shnX)) shnp(π̂kp+l−np map(Sk, shnX))

π̂l map((Sk)(p),map(Sk, shn+npX))

adj.

��

α(k,p)

// π̂kp+l map(Sk, shn+npX)

α(k,1)

��

shn+np(π̂kp+l map(Sk, X))

shn(1+p) α(k,1)

��
π̂l map((Sk)(p+1), shn(p+1)X)

map((Sk)(p+1),∆(χ1,p))∗

��

α(k,p+1)

// π̂k+kp+l(sh
n(1+p)X)

∆(χ1,p)∗

��

shn(1+p) π̂k+kp+lX

∆(χ1,p)·
��

π̂l map((Sk)(p+1), shn(p+1)X)
α(k,p+1)

// π̂k(p+1)+l(sh
n(p+1)X) shn(p+1)(π̂k(p+1)+lX)

the upper two squares commute by naturality of the generalized loop isomorphism. The next square below

commutes by the inductive definition of α(k,p) [check that α(k,1) = shn(1+p) α(k,1)] So the generalized loop
isomorphisms are compatible with the inclusion, and hence constitute a natural isomorphism of functors.

(ii) This is a combination of two previously established M-linear isomorphisms:

diag
(
(f−1
∗ (π̂∗X)

)
= diag (colimp∈N(π̂∗X)(f ·,p)) −→ diag (colimp∈N π̂∗X(f,p))

−→ π̂∗(diagX(f,−)) = π̂∗(f
−1X) .

The first isomorphism is obtained from part (i) by taking colimit over p ∈ N and passing to diagonal actions;
the second isomorphism is Proposition 8.36 applied to the I-spectrum X(f,−).

(iii) If X is semistable, then theM-action on the naive homotopy groups π̂∗X is degreewise trivial. So
both the external and the internal M-action on f−1

∗ (π̂∗X) are trivial [...]. Hence the diagonal M-action
on f−1

∗ (π̂∗X) is also trivial, and so is the M-action on π̂∗(f
−1X) by part (ii). So the symmetric spectrum

f−1X is semistable.
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Since X and f−1X are semistable, the tautological maps from naive to true homotopy groups are
isomorphisms. We claim that the square

(6.51)

π̂l+nX
f∗ //

c

��

π̂k+lX

c

��
πl+nX

f∗

// πk+lX

commutes. Since the tautological map is natural and commutes with the suspension isomorphism, it suffices
the check, by induction on n, that the square

π̂k+l+1(shX)

c

��

sh(π̂k+lX) π̂k+lX

c

��
πk+l+1(shX)

sh!

// πk+lX

commutes. This follows from Proposition ?? since the injection monoid acts trivially on the naive homotopy
groups of X.

Since the diagram (6.51) commutes, the tautological maps assemble into an isomorphism of graded
abelian groups

f−1c : f−1
∗ (π̂∗X) −→ f−1

∗ (π∗X) .

So in the commutative square

f−1
∗ (π̂∗X) //

f−1c

��

π̂∗(f
−1X)

c

��
f−1
∗ (π∗X) // π∗(f−1X)

the lower horizontal map is bijective since the other three maps are. �

Construction 6.52 (Pairing of localizations). In Example 3.48 we defined a spectrum f−1X from a
symmetric spectrumX and a twisted endomorphism f : K∧X −→ shnX. Now we discuss the multiplicative
properties of the localization construction f−1X. We consider three symmetric spectra X,Y and Z and
twisted endomorphisms f : K ∧X −→ shnX, g : K ∧ Y −→ shn Y and h : K ∧Z −→ shn Z. Moreover, we
consider a morphism µ : X ∧ Y −→ Z which is compatible with the twisted endomorphisms in the sense
that the diagram

(K ∧X) ∧ Y a1 //

f∧Y
��

K ∧ (X ∧ Y )

K∧µ
��

X ∧ (K ∧ Y )
a2oo

X∧g
��

(shnX) ∧ Y

ξ

��

K ∧ Z

h

��

X ∧ (shn Y )

ξ

��
shn(X ∧ Y )

shn µ
// shn Z shn(X ∧ Y )

shn µ
oo

commutes. We will mainly be interested in the left multiplication maps arising from a central map x :
Sk −→ Rn in a symmetric ring spectrum R. In that case, we take X = R, let Y = Z = M be a left
R-module and consider the action map a : R ∧M −→ M . Then the left multiplication maps make the
resulting diagram (see (6.54) below) commute.

From the above data we now define Σp × Σq-equivariant action maps

αp,q : X(f,p) ∧ Y (g,q) −→ Z(h,p + q)
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as the composite

map(K(p), shnpX) ∧map(K(p), shnq Y )
∧−−→ map(K(p+q), shnpX ∧ shnq Y )

map(K(p+q),(shn(p+q) µ)ξ)−−−−−−−−−−−−−−−−−−→ map(K(p+q), shn(p+q) Z)

where ξ : shnpX ∧ shnq Y −→ shnp+nq(X ∧ Y ) = shn(p+q)(X ∧ Y ) is the shearing map defined in (5.15).
The maps αp,q are Σp×Σq-equivariant because the diagonal embeddings ∆p : Σp −→ Σnp, ∆q : Σq −→ Σnq
and ∆p+q : Σp+q −→ Σn(p+q) satisfy

∆p(γ)×∆q(τ) = ∆p+q(γ × τ) .

More generally, if α : p −→ p′ and β : q −→ q′ are injective maps, then the square

X(f,p) ∧ Y (g,q)
αp,q //

X(f,α)∧Y (g,β)

��

Z(h,p + q)

Z(h,α+β)

��
X(f,p′) ∧ Y (g,q′)

αp′,q′
// Z(h,p′ + q′)

commutes.[justify]
The action maps are commutative in the sense that the square

X(f,p) ∧ Y (g,q)
αp,q //

τX(f,p),Y (g,q)

��

Z(h,p + q)

Z(h,χp,q)

��
Y (g,q′) ∧X(f,p′)

αq,p
// Z(h,q + p)

commutes for all p, q ≥ 0.[justify]
The action maps are suitably associative, but we do not spell out the precise condition.

Construction 6.53 (Inverting a homotopy class). In Example 3.48 we defined a new symmetric ring
spectrum R[1/x] from a given symmetric ring spectrum R and a central map x : S1 −→ R1. We now
generalize this construction to central maps x : Sk −→ Rn and also analyze it homotopically.

We let M be any left R-module and recall from (6.34) that the central map x gives rise to a homomor-
phism of left R-modules

λx : Sk ∧M −→ shnM

which is natural for R-linear maps in M . In level m the morphism λx is the composite

Sk ∧Mm
x∧Mm−−−−−→ Rn ∧Mm

an,m−−−−→ Mn+m .

So the construction (6.46) for inverting a graded selfmap produces a functor M(λx,−) : I −→ R-mod from
the category I to the category of left R-modules, as well as a diagonal left R-module

M [1/x] = λ−1
x M = diagM(λx,−) .

The left multiplication maps make the diagram

(6.54)

(Sk ∧R) ∧M
a1 //

λx∧M
��

Sk ∧ (R ∧M)

Sk∧a
��

R ∧ (Sk ∧M)
a2oo

R∧λx
��

(shnR) ∧M

ξ

��

Sk ∧M

λx

��

R ∧ (shnM)

ξ

��
shn(R ∧M)

shn a
// shnM shn(R ∧M)

shn a
oo
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commute, which uses the centrality condition. So Construction 6.52 provides a pairing of I-functors

R(λx,−) ∧M(λx,−) −→ M(λx,−+−)

which is suitably associative and unital. On diagonals this provides maps [spell out]

a[1/x] : R[1/x] ∧M [1/x] −→ M [1/x]

which are again associative and cover the localization maps in the sense of a commutative square:

R ∧M a //

��

M

��
R[1/x] ∧M [1/x]

a[1/x]
// M [1/x]

A special case of this is M = R, where the multiplication morphism µ : R ∧ R −→ R provides an
associative and unital multiplication map

µ[1/x] : R[1/x] ∧R[1/x] −→ R[1/x]

which gives the localization R[1/x] the structure of a symmetric ring spectrum, and a[1/x] makes M [1/x]
into a left R[1/x]-module.

For easier reference we make the structure of M [1/x] explicit: In level p we have

M [1/x]p = M(λx,p)p = map((Sk)(p), shmpM)p = map((Sk)(p),Mmp+p) .

The symmetric group Σp acts on (Sk)(p) by permuting the p factors and on Mmp+p by restriction of the
original Σmp+p-action along the embedding

∆′ : Σp −→ Σmp+p , γ 7−→ (Idm ·γ) + γ .

Finally, Σp acts on the mapping space M [1/x]p by conjugation. One should beware that the homomorphism
∆′ is not the same as ∆ : Σp −→ Σ(m+1)p which sends γ to Idm+1 ·γ. The structure map σp : M [1/x]p ∧
S1 −→M [1/x]p+1 is [...]

Example 6.55. As an example of the previous construction we consider R = S, the sphere spectrum, and
x = Id : S1 −→ S1. An S-module is simply a symmetric spectrum, and we have

M(IdS1 ,p) = Ωp shpM .

Since λIdS1 : S1 ∧M −→ shM is precisely the map λM , the inclusion ι : p −→ p + 1 induces

M(IdS1 , ι) = Ωp(λ̃shpM ) = Ωp shpM −→ Ωp+1 shp+1M .

[check...] These are exactly the maps whose sequential colimit is the spectrum Ω∞sh∞M as defined in (4.18).

The next proposition is the key property of the localization construction; it says that for semistable
ring and module spectra, the effect of the localization on the homotopy groups is precisely the algebraic
localization, i.e., inverting the powers of the class 〈x〉 = c[x] ∈ πk−nR.

Proposition 6.56. Let R be a symmetric ring spectrum, x : Sk −→ Rn a central map and M a semistable
left R-module which is levelwise Kan when in the context of spaces.

(i) The underlying symmetric spectrum of the R[1/x]-module M [1/x] is again semistable.
(ii) The central homotopy class 〈x〉 ∈ πk−nR acts bijectively on the true homotopy groups of M [1/x] and

the map

(π∗M)[1/〈x〉] −→ π∗(M [1/x])

induced by the homomorphism j : M −→M [1/x] is an isomorphism of graded (π∗R)[1/〈x〉]-modules.



138 I. BASICS

(iii) Suppose that the symmetric ring spectrum R is itself semistable and levelwise Kan when in the context
of spaces. Then the symmetric ring spectrum R[1/x] is semistable, the image of the homotopy class
〈x〉 is a central unit in πk−n(R[1/x]) and the map

(π∗R)[1/〈x〉] −→ π∗(R[1/x])

induced by the homomorphism j : R −→ R[1/x] is an isomorphism of graded rings.

Proof. All the work has already been done. Indeed, by definition, M [1/x] = λ−1
x M , so part (i) is a

special case of Proposition 6.50 (iii). Moreover, since the morphism λx : Sk ∧M −→ shnM induces left
multiplication by the class 〈x〉 on true homotopy groups [ref], part (iii) of Proposition 6.50 also provides an
isomorphism

(π∗M)[1/〈x〉] = (λX)−1
∗ (π∗M)

∼=−−→ π∗(M [1/x])

which extends the map j∗ : π∗M −→ π∗(M [1/x]).
Part (iii) is just a special case. If R itself is semistable, then so is R[1/x] by part (i) and the central

homotopy class 〈x〉 is a unit by part (ii). The map j∗ : π∗R −→ π∗(R[1/x]) thus extends to a unique
homomorphism of graded rings (π∗R)[1/〈x〉] −→ π∗(R[1/x]) which is bijective by part (ii). �

We note a consequence of Proposition 6.56: if the dimension l −m of x is odd, then 2x2 = 0, so 2 = 0
after inverting x, and hence 2 = 0 holds in the ring π0R. So inverting a central map of odd degree has the
effect that all homotopy groups become F2-vector spectra.

[Exercise: inverting x and x · ι1 produces π̂∗-isomorphic ring spectra; functoriality of localization.
Consider the colimit TX of the system

X −→ X[1/ι1] −→ X[1/ι1][1/ι1] −→ . . .

If X is semistable, this should be a sequence of π̂∗-isomorphisms whose target is a positive Ω-spectra.
The functor is lax symmetric monoidal. Do this with orthogonal spectra to obtain a symmetric monoidal
positive Ω-replacement]

Remark 6.57. Let us consider a symmetric ring spectrum R and a central map x : S1 −→ R1. Then we

can consider an new symmetric ring spectrum R(x) with R
(x)
n = Rn, i.e., we take the same Σn-space (or

simplicial set) in each level. Moreover, the multiplication maps µn,m of R(x) equal the multiplication maps

of R. However, as nth unit map of R(x) we take the composite

Sn
x(n)

−−−−→ R1 ∧ . . . ∧R1
µ1,...,1−−−−−→ Rn .

We can compare the ring spectrum R(x) to the localization R[1/x] as follows. There is a morphism ϕ :
R(x) −→ R[1/x] of symmetric ring spectra which is a π̂∗-isomorphism whenever R is semistable. [what
happens in general?] In that situation, R[1/x] is again semistable by [...], so is R(x).

We define a morphism ϕ : R(x) −→ R[1/x] in level p as the map ϕp : Rp −→ map(Sp, Rp+p) adjoint to
the composite

Rp ∧ Sp
Rp∧ιp−−−−−→ Rp ∧Rp

µp,p−−−−→ Rp+p

where ιp is the original unit map of R; this map is also the itereated structure map σp of the symmetric
spectrum which underlies R. [details...]

Example 6.58. Suppose we are given a morphism h : R −→ S between semistable commutative symmetric
ring spectra and a naive homotopy class y ∈ πkR which becomes a unit in π∗S, and that x : Sk+n −→ Rn
represents y. We claim that then the morphism h ‘weakly factors’ over the morphisms j : R −→ R[1/x] that
inverts x in the sense of Construction 6.53. More precisely, we can consider the composite hnx : Sk+n −→ Sn
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and compare the two localizations via the commutative square

R
h //

j

��

S

j'
��

R[1/x]
h[1/x]

// S[1/hnx]

Since the naive homotopy class [hnx] ∈ πkS was assumed to be a unit, the right vertical morphism is a
π̂∗-isomorphism, hence a stable equivalence, by Proposition 6.56. Now let us assume that in addition the
map

(π̂∗R)[1/[x]] −→ π∗S

induced by h is an isomorphism. Then the lower vertical morphism h[1/x] : R[1/x] −→ S[1/hnx] is also
a π̂∗-isomorphism, again by Proposition 6.56; altogether the symmetric ring spectrum S is π̂∗-isomorphic,
hence stably equivalent, to the localization R[1/x].

Two specific examples of this situation are given by the complex and real topological K-theory spectra,
compare Example 1.20. These are semistable commutative symmetric ring spectra which come in connective
and periodic versions; these version are related by homomorphisms ku −→ KU and ko −→ KO. The Bott
classes u ∈ π2(ku) respectively β ∈ π8(ko) become invertible in π2(KU) respectively β ∈ π8(KO), and the
homotopy ring of the periodic spectra KU and KO are precisely the algebraic localizations at the powers of
u respectively β. So by the previous paragraph, we conclude that KU (respectively KO) can be obtained
be inverting the Bott class in ku (respectively ko), in the sense of Construction 6.53, i.e.,

KU ' ku[1/u] and KO ' ko[1/β] .

Example 6.59 (Complex K-theory from CP∞). As an example we give a model for periodic complex
topological K-theory (compare Example 1.20) starting from the suspension spectrum of CP∞. We start

by defining a commutative symmetric ring spectrum Σ̃∞+ CP∞ whose underlying symmetric spectrum is

π̂∗-isomorphic to the suspension spectrum of CP∞ and that admits a multiplicative map Σ̃∞+ CP∞ −→ ku
to the model for connective K-theory of Example 1.20. In level n we define

(Σ̃∞+ CP∞)n = Sn ∧ P (Sym(Cn))+ .

Here Sym(Cn) is the symmetric algebra, over the complex numbers, generated by the vector space Cn; so
Sym(Cn) is a complex polynomial algebra in n variables. Moreover, P (Sym(Cn)) is the projective space of
the underlying complex vector space of Sym(Cn); so is an infinite dimensional complex projective spaces.
While the spaces Sym(Cn) are all homeomorphic for n ≥ 1, it is important for the multiplicative properties
that we are using different infinite dimensional vector spaces in the various levels.

The symmetric group Σn acts on (Σ̃∞+ CP∞)n by permuting the coordinates of Cn, and then by func-
toriality of the symmetric algebra and projective space constructions. The multiplication map

µn,m : Sn ∧ P (Sym(Cn))+ ∧ Sm ∧ P (Sym(Cm))+ −→ Sn+m ∧ P (Sym(Cn+m))+

is given by

µn,m((x ∧ L) ∧ (y ∧ L′)) = x ∧ y ∧ (L⊗ L′) ,
where x ∈ Sn, y ∈ Sm and L and L′ are complex lines in Sym(Cn) respectively Sym(Cm). Here L ⊗ L′
becomes a line in Sym(Cn+m) via the preferred identification Sym(Cn) ⊗ Sym(Cm) ∼= Sym(Cn+m). We
omit the verification that the multiplication maps are associative and commutative. We define unit maps

ιn : Sn −→ Sn ∧ P (Sym(Cn))+ = (Σ̃∞+ CP∞)n by ιn(x) = x ∧ 〈1〉 ,

where 1 denotes the unit element of the symmetric algebra and 〈1〉 the distinguished ‘line of constants’ in
Sym(Cn), i.e., the line generated by 1. The line of constants 〈1〉 is Σn-invariant and the constants multiply
to constants, so the units maps are indeed unital and ιn is the n-fold product of ι1. This completes the
construction of Σ̃∞+ CP∞ as a commutative symmetric ring spectrum.
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Now we explain why the symmetric spectrum Σ̃∞+ CP∞ is π̂∗-isomorphic to the unreduced suspension

spectrum of infinite dimensional complex projective space. The symmetric spectrum Σ̃∞+ CP∞ is essentially
a suspension spectrum from level 1 on, in the sense that for n ≥ 1 the structure map

σn : (Σ̃∞+ CP∞)n ∧ S1 −→ (Σ̃∞+ CP∞)n+1

is a homotopy equivalence [...]. In level 0, however, the unit map ι0 : S0 −→ (Σ̃∞+ CP∞)0 is a homeomor-
phism since Sym(C0) consists only of the line of constants.

If we take CP∞ = P (Sym(C)) as our model for the infinite dimensional projective space, then as m
varies the iterated structure maps

(Σ∞+ CP∞)1+m = CP∞+ ∧ S1+m ∼= (Σ̃∞+ CP∞)1 ∧ Sm
σm−−−→ (Σ̃∞+ CP∞)1+m

define a level equivalence of symmetric spectra

τ1(Σ∞+ CP∞) −→ Σ̃∞+ CP∞

where τ1 is the truncation above level 0. So the unreduced suspension spectrum of CP∞ and the underlying
symmetric spectrum of Σ̃∞+ CP∞ are related by a chain of two π̂∗-isomorphisms:

Σ∞+ CP∞ ←−− τ1(Σ∞+ CP∞) −→ Σ̃∞+ CP∞ .

One can say a little more. The projective space CP∞ is an Eilenberg-Mac Lane space of type (Z, 2), and

as such admits a model as a commutative topological group. As a symmetric ring spectrum, Σ̃∞+ CP∞ is
stably equivalent to the spherical group ring (see Example 3.42) of any such commutative group model
[exercise...].

A morphism of symmetric ring spectra

(6.60) γ : Σ̃∞+ CP∞ −→ ku

is given in level n by the map

Sn ∧ P (Sym(Cn))+ −→ Λ(Sn,Sym(Cn)) , x ∧ L 7−→ [x;L] .

In other words, for x ∈ Sn and L a line in Sym(Cn), the element x∧L maps to the configuration consisting
of the single point x labeled by L. So the map is an embedding and its image consists of those configurations
in which the sum of all labels has dimension at most 1. In level 1, the morphism γ1 : S1 ∧ CP∞+ −→ ku1

represents the tautological line bundle L in K0(CP∞).

We let e be the idempotent selfmap of (Σ̃∞+ CP∞)1 defined as the composite

S1 ∧ P (Sym(C))+
proj−−→ S1 ι1−−→ S1 ∧ P (Sym(C))+ .

We use the suspension coordinate to form the difference

Id−e : S1 ∧ P (Sym(C))+ −→ S1 ∧ P (Sym(C))+ .

Since e is the identity on the subspace S1 ∧ {〈1〉}+, the restriction of the map Id−e to S1 ∧ {〈1〉}+ is
homotopic to the constant map with value ∞ ∧ 〈1〉. So we can change Id−e to a homotopic selfmap of

(Σ̃∞+ CP∞)1 that sends the entire subspace S1 ∧ {〈1〉}+ to ∞∧ 〈1〉. So this latter map factors over a based
continuous map

ψ : S1 ∧ P (Sym(C)) −→ S1 ∧ P (Sym(C))+ .

where smash product in the source is formed with respect to the basepoint 〈1〉. We identify the 1-dimensional
complex projective space P (C{1, x}) with S2 [how?] and obtain a based map

u : S3 = S1 ∧ S2 ∼= S1 ∧ P (C{1, x}) incl.−−−→ S1 ∧ P (Sym(C))
ψ−−→ S1 ∧ P (Sym(C))+ = (Σ̃∞+ CP∞)1 .

[does the class in π2(Σ̃∞+ CP∞) represented by the map u depend on the choice of homotopy?] The map u
represents a stable homotopy class

[u] ∈ π̂2(Σ̃∞+ CP∞) .
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In fact, the second stable homotopy group of CP∞+ is a sum of a cyclic group of order 2 and an infinite
cyclic group, and the class [u] has infinite order.

We can now invert the map u, in the sense of Construction 6.53, and get a commutative symmetric
ring spectrum

(Σ̃∞+ CP∞)[1/u] ,

which has the homotopy type of the mapping telescope of the sequence

Σ∞+ CP∞ u−−→ Σ∞−2
+ CP∞ u−−→ Σ∞−4

+ CP∞ u−−→ · · ·
The morphism (6.60) extends to a homomorphism of commutative symmetric ring spectra

(6.61) γ[1/u] : (Σ̃∞+ CP∞)[1/u] −→ ku[1/u] ' KU .

It is a theorem of Snaith [ref] that the morphism γ[1/u] is a π∗-isomorphism:

Theorem 6.62. The homomorphism (6.60) of commutative symmetric ring spectra γ : Σ̃∞+ CP∞ −→ ku is
a rational π̂∗-isomorphism and the induced homorphism

γ[1/u] : (Σ̃∞+ CP∞)[1/u] −→ KU

is a π̂∗-isomorphism

Proof. Here is a sketch of the argument, relying on the a stable splitting result, also due to Snaith [78].
First, Snaith constructs an isomorphism in the stable homotopy category between

Σ∞+ BU and
∨
n≥1

MU(n)

and deduces from this an isomorphism

π̂∗(Σ
∞
+ BU)[1/u] ∼= π̂∗MU

in non-negative dimensions. Because the stable homotopy groups of MU are free abelian, the groups
(π̂∗Σ

∞
+ BU)[1/u] are torsion free in non-negative dimensions. The group homomorphism

BU(1)
Bincl.−−−−→ BU

Bdet−−−−→ BU(1)

induce maps of stable homotopy groups

π̂∗(Σ
∞
+ BU(1)) −→ π̂∗(Σ

∞
+ BU) −→ π̂∗(Σ

∞
+ BU(1))

that are compatible with multiplication by the Bott class u. So the localized groups π̂∗(Σ
∞
+ BU(1)))[1/u]

are a direct summand in the torsion-free groups π̂∗(Σ
∞
+ BU)[1/u], hence torsion-free themselves.

Since the stable homotopy groups of the complex K-theory spectrum KU are also torsion free it
suffices to show that the map (6.61) is an isomorphism on rationalized stable homotopy groups. Since
π̂∗KU is a Laurent polynomial ring generated by u it suffices to show that Q ⊗ π̂∗(Σ∞+ BU(1)) is also a
Laurent polynomial ring generated by u. However, rationalized stable homotopy groups are isomorphic
to rational homology groups. Since the cohomology Hopf algebra H∗(CP∞;Z) is polynomial on a 2-
dimensional generator, to dual homology Hopf algebra H∗(CP∞;Z) is a divided power algebra on the
2-dimensional generator (the Hurewicz image of the Bott class u). Rationally a divided power algebra is a
polynomial algebra, and this finishes the proof. �

Example 6.63 (Brown-Peterson, Johnson-Wilson spectra and Morava K-theory). If we apply the method
of ‘killing a regular sequence’ to the Thom spectrum MU we can construct a whole collection of important
spectra. In Example 1.18 we constructed MU as a commutative symmetric ring spectrum, and MU is
semistable because it underlies an orthogonal spectrum (compare Proposition 8.26). As input for the
following construction we need the knowledge of the homotopy ring of MU . The standard way to perform
this calculation is in the following sequence of steps:

• calculate, for each prime p, the mod-p cohomology of the spaces BU(n) and BU ,
• use the Thom isomorphism to calculate the mod-p cohomology of the Thom spectrum MU as a

module over the mod-p Steenrod algebra,
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• use the Adams spectral sequence, which for MU collapses at the E2-term, to calculate the p-
completion of the homotopy groups of MU ,

• and finally assemble the p-local calculations into the integral answer.

When the dust settles, the result is that π∗MU is a polynomial algebra generated by infinitely many
homogeneous elements xi of dimension 2i for i ≥ 1. The details of this calculation can be found in [83]
and [67] [check this; other sources?]. A very different geometric approach to this calculation was described
by Quillen [64], who determines the ring of cobordism classes of stably almost complex manifolds, which
by Thom’s theorem is isomorphic to π∗MU . (Quillen’s argument, however, needs as an input the a priori
knowledge that the homotopy groups of MU are finitely generated in each dimension.)

Now fix a prime number p. Using the close connection between the ring spectrum MU and the theory
of formal groups laws one can make particular choices for the (pn − 1)-th generator xpn−1, the so-called
Hazewinkel generator [these are really p-local...], which is then denoted vn. Killing all polynomial generators
except those of the form xpn−1 produces a semistable MU -module BP with homotopy groups π∗(BP ) =
Z[v1, v2, v3, . . . ] where the degree of vn is 2pn − 2. Localizing at p produces a semistable MU -module BP ,
called the Brown-Peterson spectrum, with homotopy groups

π∗BP ∼= Z(p)[v1, v2, v3, . . . ] .

The original construction of this spectrum by Brown and Peterson was quite different, and we say more
about the history of BP in the ‘History and credits’ section at the end of this chapter.

Now we can keep going and kill more of the polynomial generators vi in the homotopy of BP , and possi-
bly also invert another generator. In this way we can produce various MU -modules BP/I and (BP/I)[v−1

n ]
together with MU -homomorphisms from BP whose underlying stable homotopy types play important roles
in stable homotopy theory. Some examples of spectra which we can obtained in this way are given in the
following table, along with their homotopy groups:

BP 〈n〉 Z(p)[v1, v2, . . . , vn] E(n) Z(p)[v1, v2, . . . , vn, v
−1
n ]

P (n) Fp[vn, vn+1, . . . ] B(n) Fp[v−1
n , vn, vn+1, . . . ]

k(n) Fp[vn] K(n) Fp[vn, v−1
n ]

[discuss uniqueness] The spectrum E(n) is referred to as the Johnson-Wilson spectrum and k(n) respectively
K(n) are the connective and periodic Morava K-theory spectra.

We have so far only constructed the spectra above as MU -modules. The way we have presented the
homotopy groups of the various spectra above does not only give graded modules over the homotopy ring
of MU , but in fact graded commutative algebras. This already hints that the spectra have more structure.
In fact, all the spectra above can be constructed as MU -algebra spectra, so in particular as symmetric ring
spectra. We may or may not get back to this later.

7. Relation to other kinds of spectra

In this section we discuss how symmetric spectra relate to some other kinds of spectra, namely or-
thogonal spectra SpO, unitary spectra SpU, Γ-spaces, simplicial and continuous functors. There are also
the sequential spectra, which we defined in 2.1 (in the topological version; the simplicial version should be
clear). The following diagram of categories and functors provides an overview:

(7.1)

SpU

Φ

��
Γ-spaces/T //

S

��

(continuous functors)
evS

//

S

��

SpO

Ψ

OO

U // SpT

S

��

U // SpNT

S
��

Γ-spaces/sS // (simplicial functors)
evS

// SpsS
U

// SpNsS
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The functors pointing to the right are ‘forgetful’ or evaluation functors; functors pointing down from the
second ‘topological’ row to the third ‘simplicial’ row are given by taking singular complexes. [If X is a
continuous functor, then SX is the simplicial functor whose value on a simplicial set K is the simplicial set
S(X(|K|)); the left adjoint needs some finiteness assumptions] All functors in the diagram have left adjoints.
The lower rectangle commutes up to natural isomorphism. All those symmetric spectra which arise in this
way from Γ-spaces, continuous or simplicial functors, orthogonal or unitary spectra are semistable.

One can also compare symmetric spectra to the category of S-modules in the sense of Elmendorf,
Mandell, May and Kriz [26]. However, the S-modules are of a rather different flavor, and we do not need
them anywhere else in this book, so we refer to the original paper [69] for that comparison. The comparison
between S-modules and symmetric spectra factors through orthogonal spectra, and that comparison is
discussed in Chapter I of [52].

This section differs from the previous sections in several respects. First, we will not use the results in
this section in the remainder of the book [check this]. Also, we deviate from our general strategy to be
self-contained. We will define everything rigorously, but often replace proofs by references to the literature.

7.1. Orthogonal spectra. As the name suggests, orthogonal spectra are a version of symmetric
spectra where symmetric groups are replaced by orthogonal groups. In more detail:

Definition 7.2. An orthogonal spectrum consists of the following data:

• a sequence of pointed spaces Xn for n ≥ 0
• a base-point preserving continuous left action of the orthogonal group O(n) on Xn for each n ≥ 0
• based maps σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the iterated structure map

σm : Xn ∧ Sm −→ Xn+m

(defined as in (1.2)) is O(n)×O(m)-equivariant. The orthogonal group O(m) acts on Sm since this is the
one-point compactification of Rm and O(n)×O(m) acts on the target by restriction, along orthogonal sum,
of the O(n+m)-action.

A morphism f : X −→ Y of orthogonal spectra consists of O(n)-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ IdS1) for
all n ≥ 0. We denote the category of orthogonal spectra by SpO.

An orthogonal ring spectrum R consists of the following data:

• a sequence of pointed spaces Rn for n ≥ 0
• a base-point preserving continuous left action of the orthogonal group O(n) on Rn for each n ≥ 0
• O(n)×O(m)-equivariant multiplication maps µn,m : Rn ∧Rm −→ Rn+m for n,m ≥ 0, and
• O(n)-equivariant unit maps ιn : Sn −→ Rn for all n ≥ 0.

This data is subject to the same associativity and unit conditions as a symmetric ring spectrum (see
Definition 1.3) and a centrality condition for every unit map ιn. In the unit condition, permutations such
as χn,m ∈ Σn+m have to be interpreted as permutation matrices in O(n+m). An orthogonal ring spectrum
R is commutative if for all n,m ≥ 0 the relation χn,m◦µn,m = µm,n◦twist holds as maps Rn∧Rm −→ Rm+n.

A morphism f : R −→ S of orthogonal ring spectra consists of O(n)-equivariant based maps fn :
Rn −→ Sn for n ≥ 0, which are compatible with the multiplication and unit maps (in the same sense as for
symmetric ring spectra).

Orthogonal spectra are ‘symmetric spectra with extra symmetry’ in the sense that every orthogonal
spectrum X has an underlying symmetric spectrum UX. Here (UX)n = Xn and the symmetric group acts
by restriction along the monomorphism Σn −→ O(n) given by permutation matrices. The structure maps
of UX are the structure maps of X.

Many symmetric spectra that we have discussed in this chapter have the ‘extra symmetry’, i.e., they
are underlying orthogonal spectra. Examples are the sphere spectrum, suspension spectra or the various
Thom spectra such as MO and MU arise from orthogonal spectra by forgetting symmetry. Free symmetric
spectra FmK or semifree symmetric spectra GmK do not arise this way (unless m = 0 or K = ∗).
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The symmetric spectra which underly orthogonal spectra always semistable (compare Proposi-
tion 3.16 (vi)) so for orthogonal spectra, the naive and true homotopy groups coincide.

Form ≥ 0 the free orthogonal spectrum FO
m generated in levelm is the orthgonal spectrum corresponding

to the representable functor O(m,−). Explicitly, FO
m is trivial below level m and is otherwise given by

(FO
m )m+n = O(m,m+ n) = O(m+ n)+ ∧1×O(n) S

n .

[Structure maps] By the enriched Yoneda lemma (Proposition 7.43) morphisms from FO
m to an orthogonal

spectrum X are in bijective correspondence with elements of Xm.
A morphism of symmetric spectra FΣ

m −→ U(FO
m ) is given by the adjoint of S0 −→ (FO

m )m = O(m)+ ∧
S0 which sends the non-basepoint of S0 to the neutral element of O(m), smashed with the non-basepoint
of S0. In the special case n = 0 the morphism S ∼= FΣ

0 −→ U(FO
0 ) is in fact an isomorphism.

The naive homotopy groups of the free symmetric spectra FmS
m are ‘too big’ in the sense that the

morphism λ : FmS
m −→ S is not injective on naive homotopy groups as soon as m ≥ 1. Replacing the free

symmetric spectrum by the free orthogonal spectra fixes this, as the following proposition shows.

Proposition 7.3. (i) The morphism of orthogonal spectra λO : Sm ∧ FO
m −→ S adjoint to the identity

of Sm induces an isomorphism of naive homotopy groups.
(ii) The morphism η : FΣ

m −→ U(FO
m ) adjoint to the map S0 −→ O(m)+ = U(FO

m )m which sends the
non-basepoint to the unit element of O(m) is a stable equivalence of symmetric spectra.

Proof. (i) We use the space L(Rm,Rm+n) of linear isometries from Rm to Rm+n. Precomposition with
i : Rm−1 −→ Rm, i(x) = (x, 0) is a locally trivial fiber bundle i∗ : L(Rm,Rm+n) −→ L(Rm−1,Rm+n) with
fiber an n-sphere, so i∗ induces isomorphisms of homotopy groups below dimension n. Since L(R0,Rm+n)
is a one-point space, we conclude by induction that L(Rm,Rm+n) is (n− 1)-connected.

A homeomorphism

(Sm ∧ FO
m )m+n = Sm ∧

(
O(m+ n)+ ∧1×O(n) S

n
) ∼= Sm+n ∧ L(Rm,Rm+n)+

is given by sending x ∧ [A ∧ y] to A · (x ∧ y) ∧ ρ(A) where ρ(A) is the restriction of a linear isometry
A ∈ O(m+n) = L(Rm+n,Rm+n) to Rm. Under this homeomorphisms the (m+n)-th level of the morphism
λO corresponds to the map

Sm+n ∧ L(Rm,Rm+n)+ Id∧i∗−−−−→ Sm+n

which is induced by the unique map L(Rm,Rm+n) −→ ∗. The space L(Rm,Rm+n) is (n− 1)-connected, so
the map λO

m+n induces an isomorphism of homotopy groups below dimension 2n. As n goes to infinity, we

conclude that λO induces an isomorphism on naive homotopy groups.
(ii) Since suspension preserves and detects stable equivalences (Proposition 4.29), it suffices to show

that the morphism Sm ∧ η : Sm ∧FΣ
m −→ Sm ∧U(FO

m ) is a stable equivalence. In the commutative triangle

FΣ
mS

m
Sm∧η //

λ &&LLLLLLLLLL
U(FO

mS
m)

U(λO)wwppppppppppp

S = U(FO
0 )

the right diagonal morphism is a π̂∗-isomorphism by part (i), hence a stable equivalence. The left diagonal
morphism is a stable equivalence by (by Example 4.26). So the morphism Sm ∧ η, and thus η itself, are
stable equivalences. �

By Corollary 7.47 the forgetful functor U : SpO −→ SpT from orthogonal spectra to symmetric spectra
of spaces has a left adjoint P . [since UP is lax symmetric monoidal, it makes flat ring/module/algebra
spectra semistable, preserving symmetries] [exercise: For every strictly fibrant Ω-spectrum X [not yet
defined] the adjunction counit η : U(RX) −→ X is a level equivalence of symmetric spectra, where R is the
right adoint.]
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Proposition 7.4. For every flat symmetric spectrum of spaces A the adjunction unit η : X −→ U(PX) is
a stable equivalence of symmetric spectra.

Proof. We start with the special case of a semifree symmetric spectrum GmL generated in level m by
a cofibrant based Σm-space L. By representability, the prolonged semifree symmetric spectrum P (GkL) is
trivial below dimension m and is otherwise given by

P (GmL)m+n
∼= O(m+ n)+ ∧Σm×O(n) L ∧ Sn ;

this orthogonal spectrum is naturally isomorphic to FO
m ∧Σm L. We choose a based Σm-CW-complex L̄

with free action (away from the basepoint) and an equivariant based map ϕ : L̄ −→ L which is a weak
equivalence of underlying spaces (or simplicial sets); for example, we could take L̄ = EΣ+

m ∧ L. Then the
morphisms Gmϕ : GmL̄ −→ GmL and UP (Gmϕ) : UP (GmL̄) −→ UP (GmL) and are level equivalences by
inspection. In the commutative square

GmL̄ //

Gmϕ

��

UP (GmL̄)

UP (Gmϕ)

��
GmL // UP (GmL)

the two vertical morphisms are thus level equivalences. The upper vertical morphism is obtained from the
stable equivalence (by Proposition 7.3 (ii)) FΣ

m −→ U(FO
m ) by taking smash product with L̄ over Σm. Since

L̄ has a free action, the functor −∧Σm L preserves stable equivalences by Proposition 4.31 (xi) [this in not
quite what that says...]. So the lower horizontal adjunction unit is also a stable equivalence.

For a general flat symmetric spectrum X we use the skeleton filtration introduced in Construction 5.29.
For a flat symmetric spectrum X we show by induction on k that the adjunction unit F kX −→ UP (F kX)
is a stable equivalence, where F kX is the k-skeleton of X. We start with F−1X = ∗, the trivial spectrum,
for which the adjunction unit is an isomorphism.

By definition, the (m−1)-skeleton and the k-skeleton of X are part of a pushout diagram of symmetric
spectra [ref] which implies that the quotient spectrum F kX/F k−1X of the k-skeleton by the (k − 1)-
skeleton is isomorphic to the semifree spectrum Gk(Xk/LkX), where LkX is the k-th latching space. The
prolongation functor P and the forgetful functor U both have right adjoints, so they preserve colimits and
in the commutative diagram

F k−1X

��

jk // F kX

��

// Gk(Xk/LkX)

��
UP (F k−1X)

UP (jk)
// UP (F kX) // UP (Gk(Xk/LkX))

both rows are cofiber sequences of symmetric spectra. The map UP (jk) is levelwise an h-cofibration
since it is a cobase change of the h-cofibration UP (Gkνk)[justify]. The left and right vertical maps are
stable equivalences by induction respectively the special above. So the middle vertical map is a stable
equivalence by the five lemma, applies to the long exact sequences of true homotopy groups (compare
Proposition 6.11 (iii)).

The symmetric spectrumX is the colimit of the skeleta F kX along the morphisms jk : F k−1X −→ F kX,
which are level cofibrations since X is flat (Proposition 5.47 (iii)). The spectrum UPX is thus the colimit
of the spectra UP (F kX). A sequential colimit, over level cofibrations, of stable equivalence is a stable
equivalence by [...] So the adjunction unit η : X −→ UPX is also a stable equivalence for the flat
symmetric spectrum X. �

As a corollary of the previous two propositions we record that for every flat symmetric spectrum of
spaces A the adjunction unit η : A −→ U(PA) is a stable equivalence to a semistable symmetric spectrum.
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7.2. Unitary spectra. Unitary spectra are the complex analogues of orthogonal spectra. As the
name suggests, symmetric or orthogonal groups are replaced by unitary orthogonal groups. There is another
difference, however, coming from the fact that the n-th unitary group U(n) acts naturally on the sphere of
dimension 2n (and not n). This also shows up in the structure maps, which involve a 2-sphere (and not a
circle).

Definition 7.5. A unitary spectrum consists of the following data:

• a sequence of pointed spaces Xn for n ≥ 0
• a base-point preserving continuous left action of the unitary group U(n) on Xn for each n ≥ 0
• based maps σn : Xn ∧ S2 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the iterated structure map

σm : Xn ∧ S2m −→ Xn+m

(defined as in (1.2)) is U(n) × U(m)-equivariant. Here U(m) acts on S2m via the isomorphism with the
one-point compactification of Cm [make the isomorphism explicit in the R-basis {1, i} of C]. The group
U(n)× U(m) acts on the target by restriction, along orthogonal direct sum, of the U(n+m)-action.

A morphism f : X −→ Y of unitary spectra consists of U(n)-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ IdS1) for
all n ≥ 0. We denote the category of unitary spectra by SpU.

Having seen the definition of symmetric ring spectra and orthogonal ring spectra, it should now be
clear what unitary ring spectra and their morphisms are. We omit the details.

There are two functors Ψ : SpO −→ SpU and Φ : SpU −→ SpO relating unitary spectra to orthogonal
spectra that are compatible with multiplicative structures. Given an orthogonal spectrum Y we define a
unitary spectrum Ψ(Y ) by

(7.6) Ψ(Y )n = Y2n

where the unitary group U(n) acts via the restriction along the monomorphism U(n) −→ O(2n) that arises
by identifying Cn with R2n [...]. The structure map σn : Ψ(Y )n ∧ S2 −→ Ψ(Y )n+1 is the iterated structure
map

Y2n ∧ S2 σ2

−−−→ Y2n+2 = Y2(n+1) .

Given a unitary spectrum X we can produce an orthogonal spectrum Φ(X) as follows. We set

(7.7) Φ(X)n = map(Sn, Xn) .

The orthogonal group acts on Sn, on Xn via the complexification map O(n) −→ U(n) and on the mapping
space by conjugation. The structure map σn : Φ(X)n ∧ S1 −→ Φ(X)n+1 is adjoint to the map

map(Sn, Xn) ∧ S1 ∧ Sn+1 ∼= map(Sn, Xn) ∧ Sn ∧ S2

eval∧Id−−−−−→ Xn ∧ S2 σn−−→ Xn+1

where we have used a shuffle isomorphism S1∧Sn+1 ∼= Sn∧S2 [specify]. The composite ΦΨ : SpO −→ SpO

is the analog of the construction X 7→ X[1/ι1] [...]
An example of this is the complex cobordism spectrum MU of Example 1.18 which arises naturally as

a unitary ring spectrum, made into an orthogonal spectrum via the functor Φ. More precisely, the sequence
of based spaces denoted MU in Example 1.18 comes from a unitary spectrum with nth space

MUn = EU(n)+ ∧U(n) S
2n ,

the Thom space of the vector bundle over BU(n) with total space EU(n)×U(n) Cn.

Example 7.8 (Periodic complex cobordism). We define the periodic complex cobordism spectrum MUP ,
a unitary spectrum, as follows. For a complex inner product space V we consider the ‘full Grassmannian’
Gr(V ⊕ V ) of V ⊕ V . A point in Gr(V ⊕ V ) is any complex sub-vectorspace of V ⊕ V , and this space
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is topologized as the disjoint union of the Grassmannians of k-dimensional subspaces of V ⊕ V for k =
0, . . . , 2 dim(V ). Over the full Grassmannian Gr(V ⊕V ) sits a tautological hermitian vector bundle (of non-
constant rank!): the total space of this bundle consist of pairs (U, x) where U is a complex sub-vectorspace
of V ⊕ V and x ∈ U .

We define (MUP )(V ) as the Thom space of this tautological vector bundle, i.e., the quotient space of
the unit disc bundle by the sphere bundle. The multiplication

(7.9) (MUP )(V ) ∧ (MUP )(W ) −→ (MUP )(V ⊕W )

sends (U, x) ∧ (U ′x′) to (U + U ′, (x, x′)) where U + U ′ is the image of U ⊕ U ′ under the isometry
Id∧τ ∧ Id : (V ⊕ V )⊕ (W ⊕W ) ∼= (V ⊕W )⊕ (V ⊕W ). The unit map SV −→ (MUP )(V ) sends v ∈ V to
(∆(V ), (v, v)) where ∆(V ) is the diagonal copy of V in V ⊕ V .

As the name suggests, MUP is a periodic version of the Thom spectrum MU . More precisely, we
claim that MUP is Z-graded unitary ring spectrum whose piece of degree k is π̂∗-isomorphic to a 2k-fold
suspension of MU . For every integer k and complex inner product space V we let Gr(k)(V ⊕ V ) be the
subspace of Gr(V ⊕ V ) consisting of subspaces of dimension dim(V ) + k. So the full Grassmannian is the
disjoint union of the spaces Gr(k)(V ⊕ V ) for k = −dim(V ), . . . ,dim(V ). We let (MUP (k))(V ) be the
Thom space of the tautological (dimV +k)-plane bundle over Gr(k)(V ⊕V ), so that (MUP )(V ) is the one-
point union of the Thom spaces (MUP (k))(V ) for k = −dim(V ), . . . ,dim(V ). We note that the unit map
SV −→ (MUP )(V ) has image in the degree 0 summand (MUP (0))(V ). The multiplication map (7.9) is
‘graded’ in the sense that its retriction to (MUP (k))(V )∧(MUP (l))(W ) has image in (MUP (k+l))(V ⊕W ).
Together this implies that MUP (k) is a unitary subspectrum of MUP and altogether the periodic spectrum
decomposes as

MUP =
∨
k∈Z

MUP (k) .

Now we explain why MUP (k) is, up to π̂∗-isomorphism, a 2k-fold suspension of MUP (0). We observe
that the Grassmannian Gr(−1)(C⊕C) has only one point (the zero subspace of C⊕C), and so MUP (−1)(C)
is a 0-sphere. So a special case of the multiplication map is

MUP (1+k)(V ) ∼= MUP (−1)(C) ∧MUP (1+k)(V ) −→ MUP (k)(C⊕ V ) .

If we let V vary, these maps form a morphism of unitary spectra

MUP (1+k) −→ shCMUP (k) ,

where the right hand side is the shift of a unitary spectrum by the inner product space C. Since the map
MUP (1+k)(V ) −→ MUP (k)(C⊕ V ) is highly connected [prove] the previous morphism of unitary spectra
is in fact a π̂∗-isomorphism.

It remains to relate the spectrum MUP (0) to MU through morphisms of unitary spectra which are
π̂∗-isomorphisms. [...]

If we replace complex inner product spaces by real inner product spaces throughout, we obtain an
commutative orthogonal ring spectrum MOP which is a periodic version of the unoriented Thom spectrum
MO in much the same way.

7.3. Continuous and simplicial functors. We denote by CW the category category of based spaces
which admit the structure of a finite CW-complex. Every such space is in particular a compact Hausdorff
space and the category CW contains the spheres Sn and is closed under smash product. By a continuous
functor we mean a functor F : CW −→ T which is pointed in that it takes one-point spaces to one-point
spaces and continuous in the sense that for all pointed spaces K and L the map

F : T(K,L) −→ T(F (K), F (L))

is continuous with respect to the compact open topology on the mapping spaces. The (continuous !) map

L
l 7→(k 7→k∧l)−−−−−−−−→ T(K,K ∧ L)

F−−−−−→ T(F (K), F (K ∧ L)) .
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then has an adjoint

F (K) ∧ L −→ F (K ∧ L)

which we call the assembly map. The assembly map is natural in K and L, it is unital in the sense that the
composite

F (K) ∼= F (K) ∧ S0 assembly−−−−−→ F (K ∧ S0) ∼= F (K)

is the identity and it is associative in the sense that the diagram

(F (K) ∧ L) ∧M ass.∧Id //

∼=
��

F (K ∧ L) ∧M ass. // F ((K ∧ L) ∧M)

F (∼=)

��
F (K) ∧ (L ∧M)

assembly
// F (K ∧ (L ∧M))

commutes for all K,L and M , where the vertical maps are associativity isomorphisms for the smash product.
As usual, there is also a simplicial version. A simplicial functor is an enriched, pointed functor F :

sSf −→ sS from the category of finite pointed simplicial sets to itself. So F assigns to each pointed
simplicial set K a pointed simplicial set F (K) and to each pair K,L of pointed simplicial sets a morphism
of pointed simplicial sets

F : map(K,L) −→ map(F (K), F (L))

which is associative and unital and such that F (∗) ∼= ∗. The restriction of F to vertices is then a functor
in the usual sense. The same kind of adjunctions as for continuous functors provides a simplicial functor
with an assembly map F (K) ∧ L −→ F (K ∧ L), again unital and associative.

To every continuous (respectively simplicial) functor F we can associate a symmetric spectrum of spaces
(respectively of simplicial sets) F (S) by

F (S)n = F (Sn)

where Σn permutes the coordinates of Sn. The structure map σn : F (Sn)∧ S1 −→ F (Sn+1) is an instance
of the assembly map. In the setting of topological spaces, the action of Σn on F (Sn) even extends to an
action of the orthogonal group O(n), since O(n) acts continuously on Sn. In other words, ‘evaluation at
spheres’ defines forgetful functors

evS : (continuous functors) −→ SpO and evS : (simplicial functors) −→ SpsS .

Similarly, evaluating on the sequence of even spheres S2n, viewed as the one-point compactification of Cn,
provides a forgetful functor

evS : (continuous functors) −→ SpU

to unitary spectra. The composite of this ‘unitary’ evaluation functor with the ‘realification functor’ Φ :
SpU −→ SpO (see (7.7)) is not equal, nor isomorphic, to the ‘orthogonal’ evaluation functor. However,
there is a natural π̂∗-isomorphism of orthogonal spectra

evU
S (F ) −→ Φ(evO

S (F ))

given at level n by the map

F (Sn) −→ map(Sn, F (S2n))

adjoint to the assembly map F (Sn) ∧ Sn −→ F (S2n) [check...].[semistability of F (S) in the simplicial
context]

The functor of ‘evaluation on spheres’ from Γ-spaces or continuous functors to symmetric spectra factors
through orthogonal spectra, so the last claim follows. Hence every symmetric spectrum of spaces which
arises from a Γ-space or continuous functor by evaluation on spheres is semistable.

More generally, we can evaluate a continuous (simplicial) functor F on a symmetric spectrum X and
get a new symmetric spectrum F (X) by defining F (X)n = F (Xn) with structure map the composite

F (Xn) ∧ S1 assembly−−−−−→ F (Xn ∧ S1)
F (σn)−−−−→ F (Xn+1) .
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In the context of topological spaces, the analogous construction can be performed within orthogonal or
unitary spectra, i.e., F (X) is naturally an orthogonal (respectively unitary) spectrum whenever X is. [this
only works if F is defined on all spaces][semistability?]

Some of the symmetric spectra which we described in this chapter are evaluations of continuous (or
simplicial) functors on spheres, for example suspension spectra and Eilenberg-Mac Lane spectra. Free
symmetric spectra FmK or semifree symmetric spectra GmK do not arise this way (they don’t even extend
to orthogonal spectra unless m = 0 or K = ∗) and cobordism spectra like MO and MU don’t either.

Example 7.10 (Connective topological K-theory from a continuous functor). The symmetric spectra rep-
resenting connective and periodic real respectively complex topological K-theory (compare Example 1.20)
do not arise from continuous functors, but a small variation of the previous constructions of the connective
spectra ko and ku does extend to continuous functors. Let us define two continuous functors by

F (X) =
⋃
n≥0

hom(C0(X);Mn) respectively F̂ (X) = hom(C0(X);K) .

Here Mn is the algebra of n × n matrices with real entries, and the union on the left is taken along the
(non-unital) algebra maps

Mn −→ Mn+1 , A 7−→
(
A 0
0 0

)
.

On the right hand side, K is the C∗-algebra of compact operators on the fixed infinite-dimensional, complex
separable Hilbert space H with orthonormal basis {ei}i≥1 [topology]. A natural map F (X) −→ F̂ (X) is
induced by the compatible ∗-morphisms Mn −→ K which is extension by zero on the orthogonal complement
of the basis elements {e1, . . . , en}.

The symmetric spectrum F (S) is a connective positive Ω-spectrum, the morphism F (S) −→ F̂ (S) is a

level equivalence of symmetric spectra (even of orthogonal spectra) and that F̂ (S)n = F̂ (Sn) is homotopy
equivalent to kun [justify]. The symmetric spectrum ku of Example 1.20 has the advantage over F (S) and

F̂ (S) that it comes with a commutative multiplication. [is there a morphism of symmetric spectra relating

ku and F (S) or F̂ (S)?]

We call a continuous of simplicial functor F diagonalizable if there exists a funtor G in two variables
which is reduced and continuous respectively simplicial in each variable seperately, and a natural isomor-
phism F (X) ∼= G(X,X) of functors in one variable.

Lemma 7.11. Let F be a simplicial or continuous functor which is diagonalizable. Then the symmetric
spectrum F (S) has trivial naive homotopy groups. Hence F (S) is stably contractible.

Proof. Suppose F (X) = G(X,X) where G is a functor in two variables which is reduced and simplicial
or continuous in each variable seperately. Then the structure map σn : F (Sn) ∧ S1 −→ F (Sn+1) of the
symmetric spectrum F (S) equals the composite

G(Sn, Sn) ∧ S1 G(Sn,Sn)∧∆−−−−−−−−→ G(Sn, Sn) ∧ S1 ∧ S1 σn,n−−−→ G(Sn+1, Sn+1) .

Since the diagonal map ∆ : S1 −→ S1∧S1 is null-homotopic, the structure map σn is null-homotopy. So the
stabilization map ι : πk+nG(Sn, Sn) −→ πk+n+1G(Sn+1, Sn+1) is trivial, and so is the colimit πkF (S). �

A consequence of the formal properties of the assembly map is that the structure of a triple [def or ref]
on a continuous or simplicial functor T yields a multiplication on the symmetric spectrum T (S). Indeed,
using the assembly map twice and the triple structure map produces multiplication maps

T (K) ∧ T (L) −→ T (K ∧ T (L)) −→ T (T (K ∧ L)) −→ T (K ∧ L) ;

here K and L are pointed spaces. If we apply this to spheres, we get Σp × Σq-equivariant maps

T (Sp) ∧ T (Sq) −→ T (Sp+q)
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which provide the multiplication. The unit maps come from the natural transformation Id −→ T by
evaluating on spheres. In the context of topological spaces, evaluating a triple at spheres as above even
gives an orthogonal ring spectrum.

Here are some examples.

• The identity triple gives the sphere spectrum as a symmetric ring spectrum.
• Let Gr be the reduced free group triple, i.e., it sends a pointed set K to the free group generated

by K modulo the normal subgroup generated by the basepoint. Since Gr(Sn) is weakly equivalent
to ΩSn+1, which in the stable range is equivalent to Sn, the unit maps form a π̂∗-isomorphism
S −→ Gr(S). The same conclusion would hold with the free reduced monoid functor, also known
as the ‘James construction’ J , since J(Sn) is also weakly equivalence to ΩSn+1 as soon as n ≥ 1.

• Let M be a topological monoid and consider the pointed continuous functor K 7→M+ ∧K. The
multiplication and unit of M make this into a triple whose algebras are pointed sets with left
M -action. The associated symmetric ring spectrum is the spherical monoid ring SM .

• Let A be a ring and consider the free reduced A-module triple Ã[K] = A[K]/A[∗]. Then Ã[S] =
HA, the Eilenberg-Mac Lane ring spectrum. We shall see later [ref] that for every symmetric

spectrum of simplicial sets X the symmetric spectrum Ã[X] is π̂∗-isomorphic to the smash product
HA ∧X.

• Let B be a commutative ring and consider the triple X 7→ I(B̃(X)), the augmentation ideal of
the reduced polynomial algebra over B, generated by the pointed set X. The algebras over this
triple are non-unital commutative B-algebras, or augmented commutative B-algebras (which are
equivalent categories). The ring spectrum associated to this triple is denoted DB, and it is closely
related to topological André-Quillen homology for commutative B-algebras. The ring spectrum
DB is rationally equivalent to the Eilenberg-Mac Lane ring spectrum HB, but DB has torsion in
higher homotopy groups.

More generally, if we evaluate a triple T on a symmetric ring spectrum R, then the resulting spectrum T (R)
is naturally a ring spectrum with multiplication maps

T (Rn) ∧ T (Rm) −→ T (Rn ∧Rm)
T (µn,m)−−−−−→ T (Rn+m) .

In the topological context, this evaluation process takes orthogonal ring spectra to orthogonal ring spectra
and has an analog for unitary ring spectra.

7.4. Γ-spaces. Many continuous or simplicial functors arise from so called Γ-spaces, and then the
associated symmetric spectra have special properties. The category Γ is a skeletal category of the category
of finite pointed sets: there is one object n+ = {0, 1, . . . , n} for every non-negative integer n, and morphisms
are the maps of sets which send 0 to 0. A Γ-space is a covariant functor from Γ to the category of spaces
or simplicial sets taking 0+ to a one point space (simplicial set). A morphism of Γ-spaces is a natural
transformation of functors. We follow the established terminology to speak of Γ-spaces even if the values
are simplicial sets.

A Γ-space X can be extended to a continuous (respectively simplicial, depending on the context) functor
by a coend construction. If X is a Γ-space and K a pointed space or simplicial set, the value of the extended
functor on K is given by

(7.12) X(K) =

∫ n+∈Γ

Kn × X(n+) =

∐
n≥0

Kn × X(n+)

 / ∼ ,

where we use that Kn = map(n+,K) is contravariantly functorial in n+. In more detail X(K) is obtained
from the disjoint union of the spaces Kn ×X(n+) by modding out the equivalence relation generated by

(k1, . . . , kn; α∗(x)) ∼ (kα(1), . . . , kα(m); x)
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for all morphisms α : m+ −→ n+ in Γ, all (k1, . . . , kn) ∈ Kn and all x ∈ X(m+). Here kα(i) is to be
interpreted as the basepoinf of K whenever α(i) = 0,. We will not distinguish notationally between the
original Γ-space and its extension. The extended functor is continuous respectively simplicial.

In the simplicial context, the extension of a Γ-space admits the following different (but naturally
isomorphic) description. First, X can be prolonged, by direct limit, to a functor from the category of
pointed sets, not necessarily finite, to pointed simplicial sets. Then if K is a pointed simplicial set we get
a bisimplicial set [k] 7→ X(Kk) by evaluating the (prolonged) Γ-space degreewise. The simplicial set X(K)
defined by the coend above is naturally isomorphic to the diagonal of this bisimplicial set.

Symmetric spectra which arise from Γ-spaces have special properties. First of all, they are always
semistable. For Γ-spaces X with values in T this results from Proposition 3.16 (vi) because the symmetric
spectrum X(S) is underlying an orthogonal spectrum. For Γ-spaces X with values in simplicial sets,
essentially the same argument applies, with the following slight extra twist. We let X be a Γ-spaces of
simplicial sets and K a based simplicial set. If we postcompose the prolonged functor X(−) : sS −→ sS with
geometric realization, we obtain a functor |X(−)| : sS −→ T from based simplicial sets to based spaces.
However, this composite functor has ‘extra functoriality’ that is not directly visible from its definition, and
we now explain.

Geometric realization of simplicial sets is a left adjoint, so it preserves coends. In particular, the space
|X(K)| is a coend of the functor

Γop × Γ −→ T , (n,m) 7−→ |Kn ×X(n+)| .

In the category T of compactly generated weak Hausdorff spaces, geometric realization preserves finite
products. So the space |X(K)| is also a coend of the functor

Γop × Γ −→ T , (n,m) 7−→ |K|n × |X(n+)| .

Such a coend is, by definition, the value of the Γ-space |X| on the topological space |K|. In other words,
we have obtained a natural homeomorphism

(7.13) |X(K)| −→ |X|(|K|) .

If we let K run through the simplicial spheres Sn an isomorphism of symmetric spectra of spaces

|X(S)| ∼= |X|(S) .

In particular, after geometric realization the symmetric spectrum of simplicial sets X(S) admits an extension
to an orthogonal spectrum, hence it is semistable.

Moreover, if K is a finite based simplicial set, we can view it as a functor K : ∆op −→ Γ. Then the
space X(|K|) is homeomorphic to the geometric realization of the simplicial space [k] 7→ X(Kk), i.e., the
composite functor

∆op K−−→ Γ
X−−→ T .

[prove...] From now on we restrict to Γ-spaces of simplicial sets, where the homotopy types of values at
spheres are easier to analyze.

Proposition 7.14. Let X be a Γ-space with values in simplicial sets.

(i) The prolonged functor X(−) preserves weak equivalences of based simplicial sets and level equivalence
of symmetric spectra of simplicial sets.

(ii) The symmetric spectrum X(S) is semistable, connective and flat.
(iii) For every symmetric spectrum of simplicial sets E the assembly map

X(S) ∧ E −→ X(E)

is a π̂∗-isomorphism.
(iv) Let f : E −→ F be a morphism of symmetric spectra of simplicial set. If f is a π̂∗-isomorphism

respectively stable equivalence, then so is X(f) : X(E) −→ X(F ).
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Proof. (i) The second claim is a direct consequence of the first. So we show that for every weak
equivalence f : A −→ B of based simplicial sets the map X(f) : X(A) −→ X(B) is again a weak equivalence.
The geometric realization |f | : |A| −→ |B| is a based homotopy equivalence; we let g : |B| −→ |A| be a
homotopy inverse. There is no reason to assume that g can be chosen as the geometric realization of a
morphism from B to A: However, the ‘extra functoriality’ of the composite functor |X(−)| given by the
natural isomorphism (7.13)

|X(A)| ∼= |X|(|A|)
for provides a continuous map

|X|(g) : |X(B)| −→ |X(A)| .
Since the functor |X|(−) is a continuous functor from based spaces to itself, it preserves the based homotopy
relation. Since g◦|f | and |f |◦g are homotopic to the respective identity maps, the composites |X|(g)◦|X|(|f |)
and |X|(|f |) ◦ |X|(g) are again homotopic to the respective identity maps. So |X|(|f |) is a homotopy
equivalence, hence so is the isomorphic map |X(f)|. This means that X(f) is a weak equivalence of
simplicial sets, as claimed.

(ii) The fact that X(S) is semistable was already shown above, so we only deal with the other properties.
(iii) We first reduce to the special case where the symmetric spectrum E is flat. For this purpose we

choose a level equivalence r : E′ −→ E whose source is a flat symmetric spectrum of simplicial sets (for
example, the flat resolution of Construction 5.53). In the commutative square

X(S) ∧ E′

X(S)∧r
��

assembly // X(E′)

X(r)

��
X(S) ∧ E

assembly
// X(E)

the left vertical map is a level equivalence by Proposition 5.50 because X(S) is flat by part (i). The right
vertical map is a level equivalence by part (i). So the upper assembly map is a π̂∗-isomorphism if and only
if the lower assembly map is a π̂∗-isomorphism. We can thus assume without loss of generality that the
symmetric spectrum E is flat.

Now we first treat a special case, namely where X is the Γ-space Γm given by

Γm(A) = Am ,

the m-fold cartesian product (this Γ-space is in fact representable by the object based set m+). For every
symmetric spectrum E the spectrum Γ(E) is the m-fold cartesian product of copies of E. The assembly
map for this Γ-space fits into a commutative square:

(m+ ∧ S) ∧ E iS∧E
∼

//

∼=
��

Γ(S) ∧ E
assembly // Γm(E)

m+ ∧ E
iE

∼ // Em

The lower morphism iE is the map from the m-fold wedge to the m-fold product of copies of E. This map
is a π̂∗-isomorphism by Proposition 2.19 (iii). As a special case the morphism iS : m+ ∧ S −→ Γm(S) is a
π̂∗-isomorphism. Since E is flat, the morphism iS ∧ E is a π̂∗-isomorphism (by Proposition 5.50). So the
assembly map Γm(S) ∧ E −→ Γm(E) is a π̂∗-isomorphism.

Now we proceed towards the general case. Every Γ-space X has a natural filtration

∗ = X[0] ⊆ X[1] ⊆ . . . ⊆ X[m] ⊆ . . .

by ‘cardinality of support’: for m ≥ 0 and a finite based set A the value X[m](A) is given by

X[m](A) =
⋃

α:m+−→A

image(α∗ : X(m+) −→ X(A)) .
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Equivalently, X[m] is the smallest sub-Γ-space of X that contains X(m+).
Now we suppose that X has finite filtration, i.e., X = X[m] for some m ≥ 0. If X = X[0], then X is

constant with value a one-point simplicial set, so X(S) and X(E) are both trivial symmetric spectra, and
both claims hold. Now we suppose that m ≥ 1. The value

Γm[m−1](A) ⊆ Am

of the sub-Γ-space Γm[m−1] at a based set A is the subset of those m-tuples (a1, . . . , am) where one of the

coordinates ai is the basepoint or ai = aj for some pair i 6= j. The assembly maps for Γm, Γm[m−1] and the

quotient Γ-space Γm/Γm[m−1] fit into a commutative diagram of symmetric spectra:

Γm[m−1](S) ∧ E //

��

Γm(S) ∧ E //

��

(Γm/Γm[m−1])(S) ∧ E

��
Γm[m−1](E) // Γm(E) // (Γm/Γm[m−1])(E)

Since E is flat, the upper left morphism is a level cofibration, and so is the lower left morphism. So both
morphisms become h-cofibrations after geometric realization, and both rows given rise to a long exact
sequence of naive homotopy groups by Corollary 2.13. The assembly map for Γm[m−1] is a π̂∗-isomorphism

by induction and the assembly map for Γm is a π̂∗-isomorphism by the first paragraph. So the five-lemma
lets us conclude that the assembly map for the quotient Γ-space Γm/Γm[m−1] a π̂∗-isomorphism.

We let the symmetric group Σm act on Am by permuting coordinates; this is then an action on Γm by
automorphisms of Γ-spaces. This action is free on the complement of Γm[m−1](A), so the induced action on

the quotient Γm/Γm[m−1](A) is free away from the basepoint. Hence also the action of Σm on the symmetric

spectra Γm/Γm[m−1](S) and on Γm/Γm[m−1](E) is levelwise free (away from the basepoint). So for every based

Σm-simplicial set L the induced map

L∧Σm : L ∧Σm (Γm/Γm[m−1](S) ∧ E) −→ L ∧Σm Γm/Γm[m−1](E)

is a π̂∗-isomorphism. This last map is isomorphic to the assembly map for the Γ-space (L∧Σm Γm/Γm[m−1],

so this proves claim (iii) for Γ-spaces of the form L ∧Σm Γm/Γm[m−1].

Smasing with E preserves colimits, so the natural map from L ∧Σm (Γm/Γm[m−1](S) ∧ E) to (L ∧Σm

Γm/Γm[m−1](S)) ∧ E is an isomorphism. After this identification, the assembly map for the Γ-space L ∧Σm

Γm/(Γm)[m−1] takes the form

L ∧Σm (Γm/Γm[m−1](S) ∧ E)
L∧Σmassembly−−−−−−−−−−→ L ∧Σm (Γm/Γm)[m−1](E)) .

Now we return to a general Γ-space X subject to the condition X = X[m]. We note that the simplicial
subset X[m](A) is precisely the image of the tautological map

X(m+) ∧ Γm(A) −→ X(A) ;

so the condition X = X[m] is equivalent to the property that the tautological morphism of Γ-spaces

X(m+) ∧ Γm −→ X

is an epimorphism. The composite with the quotient morphism X −→ X/X[m−1] factors over an epimor-
phism

X(m+) ∧Σm Γm/Γm[m−1] −→ X/X[m−1] .

This epimorphism is in fact an isomorphism [...]; so claim (iii) holds for the Γ-space X/X[m−1]. The
assembly maps for X, X[m−1] and the quotient Γ-space X/X[m−1] fit into a commutative diagram of
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symmetric spectra:

X[m−1](S) ∧ E //

��

X(S) ∧ E //

��

(X/X[m−1])(S) ∧ E

��
X[m−1](E) // X(E) // (X/X[m−1])(E)

Since E is flat the upper left morphism is a level cofibration, and so is the lower left morphism. So both
morphisms become h-cofibrations after geometric realization, and both rows given rise to a long exact
sequence of naive homotopy groups by Corollary 2.13. The assembly map X[m−1](S) ∧ E −→ X[m−1](E)
is a π̂∗-isomorphism by induction and the assembly map (X/X[m−1])(S) ∧ E −→ (X/X[m−1])(E) is a
π̂∗-isomorphism by the special case above. So the five-lemma lets us conclude that the assembly map
X(S) ∧ E −→ X(E) is also a π̂∗-isomorphism.

An arbitrary Γ-space X is the union of the nested sequence of sub-Γ-spaces X[m]. So X(S) and X(E)
is the union of the symmetric subspectra X[m](S) respectively X[m](E) and X(S) ∧ E is a colimit of the
sequence of symmetric spectra X[m](S) ∧ E. We consider the commutative square

colimm π̂k(X[m](S) ∧ E) //

��

π̂k(X(S) ∧ E)

��
colimm π̂k(X[m](E)) // π̂kX(E)

in which the horizontal maps are the canonical ones and the vertical maps are induced by the assembly
maps. Both the horizontal maps are isomorphisms [...], and the left vertical map is an isomorphism by the
special cases above. So the assembly map X(S) ∧ E −→ X(E) is a π̂∗-isomorphism. �

Moreover, up to π̂∗-isomorphisms, Γ-spaces model all connective spectra (see Theorem 5.8 of [13] [also
reference to [73]?])

Given two finite based sets A and B, we denote by pA : A ∨ B −→ A the ‘projection’ that sends B to
the basepoint and is the identity on A. The map ∇ : 2+ −→ 1+ is defined by ∇(1) = 1 = ∇(2).

Definition 7.15. A Γ-space X is special if the map

(pA∗ , p
B
∗ ) : X(A ∨B) −→ X(A)×X(B)

is a weak equivalence for all pairs of finite based sets A and B. A special Γ-space X is very special if in
addition the map

(p1
∗,∇∗) : X(2+) −→ X(1+)×X(1+)

is a weak equivalence.

Remark 7.16. ‘Special’ can be defined equivalently by requiring the [...] map

X(n+) −→ X(1+)n

to be a weak equivalence for all n ≥ 2. If X is special, then ‘very special’ can be defined equivalently by
requiring the [...] map for every morphism Φ : A ∨B −→ B such that Φ(b) = b for all b ∈ B, the map

(pA∗ ,Φ∗) : X(A ∨B) −→ X(A)×X(B)

is a weak equivalence.
If X is special, then the weak map

X(1+)×X(1+)
∼←−− X(2+)

X(∇)−−−→ X(1+)

induces an abelian monoid structure on π0 (X(1+)). A special Γ-space X is very special if and only if the
monoid π0 (X(1+)) is a group, i.e., if it has additive inverses.

The following two Theorem 7.17 and 7.21 are due to Segal [73], and are probably the most important
results about Γ-spaces.
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Theorem 7.17. Let X be a cofibrant very special Γ-space. Then the symmetric spectrum X(S) is an
Ω-spectrum.

Proof. In a first step we show that the adjoint structure map σ̃0 : X(S0) −→ ΩX(S1) of the symmetric
spectrum X(S) is a weak equivalence. By [...], the space X(S1) is homeomorphic to the geometric realization
of the simplicial space BX : ∆op −→ T defined as the composite

∆op S1

−−−→ Γ
X−−→ T ,

where S1 denotes the based finite simplicial set ∆[1]/∂∆[1]. We define a functor P : ∆ −→∆ be P ([n]) =
[n+ 1] on objects and on morphisms by P (α)(0) = 0 and P (α)(i) = α(i− 1) + 1 for i ≥ 1. Then we define
a new simplicial space EX : ∆op −→ T as EX = BX ◦ P . The morphisms d0 : [n] −→ [n + 1] = P ([n])
form a natural transformation from the identity of ∆ to the functor P . So the morphism d∗0 : (EX)n =
(BX)n+1 −→ (BX)n form a morphism d0 : EX −→ BX of simplicial spaces.

We claim that for every morphism v : [0] −→ [n] in ∆ the square

(EX)n
v∗ //

d∗0
��

(EX)0

d∗0
��

(BX)n
v∗

// (BX)0

is homotopy cartesian. Since (BX)0 = X(S1
0) is a point, this means showing that

(7.18) (d∗0, P (v)∗) : X(S1
n+1) = (EX)n −→ (BX)n × (EX)0 = X(S1

1)×X(S1
n)

is a weak equivalence. If v(0) = 0, then d∗0 : S1
n+1 −→ S1

n and P (v)∗ : S1
n+1 −→ S1

1 are complementary
projections, so the map (7.18) is a weak equivalence because X is special. If v(0) ≥ 1, then P (v)∗ : S1

n+1 −→
S1

1 is a fold map, possibly iterated.
Now we let di : [n − 1] −→ [n] be any face map in ∆. By the above the right square and the outer

rectangle in the commutative diagram

(EX)n
d∗i //

d∗0
��

(EX)m+1

d∗0
��

v∗ // (EX)0

d∗0
��

(BX)n
d∗i

// (BX)m
v∗

// (BX)0

are homotopy cartesian; so the left square is also homotopy cartesian.
By Proposition 7.19, applied to the morphism d0 : EX −→ BX, the square

X(S1
1) = (EX)0

//

��

||EX||

||d0||
��

∗ = (BX)0
// ||BX||

is homotopy cartesian, where || − || is the ‘fat realization’ (i.e., where degeneracies are ignored). Since X is
a cofibrant Γ-space the simplicial spaces EX and BX are proper, and so the natural maps ||EX|| −→ |EX|
and ||BX|| −→ |BX| from the fat to the ordinary realization are weak equivalences. So the square

X(S1
1) //

d∗0

��

|EX|

��
∗ // |BX| = X(S1)
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is also homotopy cartesian. The space |EX| is contractible by [...], so the map σ̃0 : X(S0) −→ ΩX(S1) is
a weak equivalence.

To show that also the higher adjoint structure maps of the spectrum X(S) are weak equivalence we
consider the ‘n-fold shifted’ Γ-space shnX = X(Sn ∧ −); the with value of this Γ-space on a finite based
set given by

(shnX)(A) = X(Sn ∧A)

(where the right hand side is the prolonged functor). Then the Γ-space shnX is again special [...]; on the
other hand, for all n ≥ 1, the underlying space (shnX)(S0) ∼= X(Sn) is connected, so shnX is even very
special. By the first part, the adjoint structure map | shnX(S0)| −→ Ω| shnX(S1)| is a weak equivalence;
but this map is isomorphic to the adjoint structure map

σ̃n : X(Sn) −→ ΩX(Sn+1)

of the symmetric spectrum X(S). So X(S) is a positive Ω-spectrum. �

(’Iff’) The effect of the adjoint structure map on path component

π0X(S0) −→ π0(Ω|X(S1)|)
is a homomorphism of monoids [...] and the target monoid is actually group. If the adjoint structure map
is a weak equivalent, this monoid homomorphism is an isomorphism and π0X(S0) also has inverses, i.e., X
is very special.

Proposition 7.19. (to appendix?) Let f : X −→ Y be a morphism of ∆-spaces such that for every face
map di : [n− 1] −→ [n] in the category ∆ the square

Xn

d∗i //

fn

��

Xn−1

fm

��
Yn

d∗i

// Yn−1

is homotopy cartesian. Then for every m ≥ 0 the square

Xm ×∇m //

fm×∇m

��

||X||

||f ||
��

Ym ×∇m // ||Y ||

is homotopy cartesian.

Proof. In a first step we show by induction on m that the squares

(7.20)

Xm ×∇n

fm×∇m

��

// ||X||(m)

||f ||(m)

��
Ym ×∇m // ||Y ||(m)

is homotopy cartesian, where || − ||(m) is the m-skeleton of the fat realization. For m = 0, both horizontal
maps in the square (7.20) are identities, so there is nothing to show. For m ≥ 1 the m-skeleta are obtained
as the horizontal pushouts in the commutative diagram

Xm ×∇m

��

Xm × ∂∇moo

��

// ||X||(m−1)

��
Ym ×∇m Ym × ∂∇moo // ||Y ||(m−1)
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The left square is homotopy cartesian [clear], and the right square is homotopy cartesian by the inductive
hypothesis [show]. So the glued square (7.20) is homotopy cartesian. In the diagram

X0 = ||X||(0) //

||f ||(0)

��

||X||(1) //

||f ||(1)

��

||X||(2) //

||f ||(2)

��

· · ·

Y0 = ||Y ||(0) // ||Y ||(1) // ||Y ||(2) // · · ·

all squares a homotopy cartesian. Hence [...] the composite square [...] is homotopy cartesian. �

Theorem 7.21. Let X be a cofibrant special Γ-space. The adjoint structure map σ̃0 : X(S0) −→ ΩX(S1)
induces an isomorphism

H∗(X(S0),Z)[π−1] −→ H∗(ΩX(S1),Z)

from the localization of the homology of X(1+) at the multiplicative subset π = π0X(S0) to the homology of
ΩX(S1). Moreover, the symmetric spectrum X(S) is a positive Ω-spectrum.

Proof. Below we define another Γ-space X̂ and a morphism f : X −→ X̂ of Γ-spaces and prove the
following properties.

(a) The map f(1+) : X(1+) −→ X̂(1+) induces an isomorphism

H∗(X(1+),Z)[π−1] −→ H∗(X̂(1+),Z)

from the localization of the homology of X(1+) to the homology of X̂(1+).

(b) The map X(S1) −→ X̂(S1) is a weak equivalence.

(c) The Γ-space X̂ is very special.

In the commutative square

X(1+)
f(1+) //

σ0

��

X̂(1+)

σ0

��
ΩX(S1)

Ωf(S1)

// ΩX̂(S1)

the right vertical map is a weak equivalence because X̂ is very special, and the lower horizontal map is a
weak equivalence by (ii). The square

H∗(X(1+),Z)[π−1]
f(1+)∗ //

(σ0)∗

��

H∗(X̂(1+),Z)

(σ0)∗∼=
��

H∗(ΩX(S1),Z)
(Ωf(S1))∗

∼= // H∗(ΩX̂(S1),Z)

of integral homology rings then commute. Since the other three maps are isomorphisms, so is the map (σ0)∗.
Now we define the Γ-space X. For a based finite set A we consider the simplicial space

[k] 7→ Pk(A) = homotopy pullback(X(∆[1]k ∧A) −→ X(S1
k ∧A) ←−− X(∆[1]k ∧A) .

Here the left copy of ∆[1] is pointed by 0, the right copy of ∆[1] is pointed by 1. As k varies the structure
maps of ∆[1] and S1 and functoriality of homotopy pullback make this into a simplicial space. We set

X̂(A) = |[k] 7→ Pk(A)| .
We let F be any field and denote by H = H∗(X(1+),F) the homology of X(1+) with F-coefficients.

The homology has the structure of a graded F-bialgebra: the diagonal X(1+) −→ X(1+)×X(1+) and the
Kunneth isomorphism define the comultiplication ∆ : H −→ H ⊗H, and the composite

H∗(X̂(1+)× X̂(1+),F)
H∗(p

1
∗,p

2
∗)
−1

−−−−−−−−→ H∗(X̂(2+),F)
H∗(p

1
∗,∇∗)−−−−−−−→ H∗(X̂(1+)× X̂(1+),F)
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and the Kunneth isomorphism define the multiplication µ : H ⊗H −→ H.
Since X̂(1+) is the geometric realization of a simplicial space, the skeleton filtration on the realization

provides a spectral sequence

(7.22) E1
p,q = Hp(Pq,F) =⇒ Hp+q(X̂(1+),F)

converging to the homology of X̂(1+) with coefficients in F. In simplicial degree [k] the structure maps of
the Γ-space X provide a commutative diagram

X(∆[1]k)

∼
��

// X(S1
k)

∼
��

X(∆[1]k)

∼
��

oo

X(1+)k+1 // X(1+)k X(1+)k+1oo

in which the three vertical maps are weak equivalences. So the induced map on homotopy pullbacks is a
weak equivalence. The homotopy pullback of the lower diagram is weakly equivalent to X(1+)k+2. Thus

H∗(Pk(1+),F) ∼= H∗(X(1+)k+2,F) ∼= H⊗(k+2) ,

where the second step is the Kunneth isomorphism. Under this isomorphism, the simplicial structure maps
become the maps in the simplicial bar construction B(H ⊗ H,H,F) for the bialgebra H; here H ⊗ H is
an H-module via the diagonal map. The homology of this bar construction calculates Tor groups, so the
E2-term of the spectral sequence is isomorphic to

E2
p,∗ = TorHp,∗(H ⊗H,F) .

The multiplicative subset π acts trivially (so in particular invertibly) on F, so F is already π-local. So for
every H-module N and every p ≥ 0 the natural map

TorHp,∗(N,F) −→ TorH[π−1]
p,∗ (N [π−1],F)

induced by the localization morphism N −→ N [π−1] is an isomorphism. In the special case where N =
H ⊗ H with diagonal H-action, we can use an antipode c : H[π−1] −→ H[π−1] to ‘untwist’ the diagonal
action on (H ⊗H)[π−1] as follows. The homology algebra H is commutive, so the composite

H
ι−−→ H[π−1]

s7→s−1

−−−−→ H[π−1]

is a homomorphism of graded F-algebras. Since the map takes the set π to itself, it extends uniquely to a
graded F-algebra homomorphism

c : H[π−1] −→ H[π−1] .

The map

H ⊗H −→ H[π−1]⊗H[π−1] , x⊗ y 7−→ x · c(y)⊗ y
is an F-algebra homomorphism and sends the elements of the form ∆(s) = s⊗ s to units, for all s ∈ π. So
the map extends uniquely over an F-algebra homomorphism

Φ : (H ⊗H)[π−1] −→ H[π−1]⊗H[π−1] .

The morphism Φ is an isomorphism [...] Moreover, the composite

H
∆−−→ H ⊗H ι⊗c−−−→ H[π−1]⊗H[π−1]

µ−−→ H[π−1]

factors over the augmentation H −→ F [show]. This means that Φ is H-linear with respect to the diagonal
H-action on the source and the action on the target that is via the right factor only. So Φ is an isomorphism
of H[π−1]-modules to the free H[π−1]-module generated by the underlying graded F-vector space of H[π−1].
We deduce that with respect to the diagonal H[π−1]-action, (H ⊗H)[π−1] is free, hence flat, as an H[π−1]-
module. So the higher Tor groups vanish, the spectral sequence (7.22) collapses at the E2-term, and the
edge homomorphism

(H ⊗H)⊗H F −→ H∗(X̂(1+),F)
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is an isomorphism. Moreover, the isomorphism Φ induces an isomorphism

(H ⊗H)⊗H F ∼= (H ⊗H)[π−1]⊗H[π−1] F ∼= H[π−1]⊗ (H[π−1]⊗H[π−1] F) ∼= H[π−1] .

Combining these two proves chaim (a).

Now we show that the Γ-space X̂ is special. For finite based sets A and B we contemplate the
commutative diagram:

X(∆[1]k ∧ (A ∨B))

∼
��

// X(S1
k ∧ (A ∨B))

∼
��

X(∆[1]k ∧ (A ∨B))

∼
��

oo

X(∆[1]k ∧A)×X(∆[1]k ∧B) // X(S1
k ∧A)×X(S1

k ∧B) X(∆[1]k ∧A)×X(∆[1]k ∧B)oo

The three vertical maps are weak equivalences because X is special. So the induced map

Pk(A ∨B) −→ ho pullback ∼= Pk(A)× Pk(B)

on vertical homotopy pullbacks is a weak equivalence. Since geometric realization commutes with product,
the map

X̂(A ∨B) −→ X̂(A)× X̂(B)

is also a weak equivalence, i.e., the Γ-space X̂ is special.
The proof of claim (b) uses a similar spectral sequence. We exploit that X(S1) is the geometric

realization of the simplicial space [k] 7→ X(S1
k), so its homology comes with a spectral sequence

E1
p,q = Hp(X(S1

k),F) =⇒ Hp+q(X(S1),F) ,

where F is any field. Since X is special the space X(S1
k) is weakly equivalent to X(1+)k. Thus

H∗(S
1
k,F) ∼= H∗(X(1+)k,F) ∼= H⊗k ,

using again the Kunneth isomorphism, and where again H = H∗(X(1+),Z). Under this isomorphism, the
simplicial structure maps become the maps in the simplicial bar construction B(F, H,F). The homology of
this bar construction calculates Tor groups, so the E2-term of the spectral sequence is isomorphic to

E2
p,∗ = TorHp,∗(F,F) .

The same reasoning applies to the special Γ-space X̂, and the morphism f : X −→ X̂ induces a map of the
two spectral sequences

E2
p,∗ = TorHp,∗(F,F) +3

��

H∗(X(S1),F)

f(S1)∗

��
Ê2
p,∗ = TorH[π−1]

p,∗ (F,F) +3 H∗(X̂(S1),F)

calculating the homology of X(S1) respectively of X̂(S1).

Here we have used claim (a) in identifying the homology of X̂(1+) with the localization of H =
H∗(X(1+),F) at the multiplicative subset π. Since π acts invertibly on F, the H-module F is already
π-local, and the induced map of Tor groups is an isomorphism. The spectral sequences are concentrated
in the first quadrant, so we conclude that the induced map f(S1)∗ : H∗(X(S1),F) −→ H∗(X̂(S1),F) is an

isomorphism. Since the Γ-spaces X and X̂ are both special, X(S1) and X̂(S1) are loop spaces (of X(S2)

respectively X̂(S2), and the map f(S1) is a loop map. Since f(S1) is not only a homology isomorphism,
but in fact a weak homotopy equivalence. This concludes the proof of claim (b).
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It remains to show claim (c), i.e., that the special Γ-space X̂ is in fact very special. By part (a) the

homology algebra structure Ĥ = H∗(X̂(1+),F) with coefficients in a field F is defined so that the diagram

Ĥ ⊗ Ĥ
∼=

��

x⊗y 7−→ x⊗xy // Ĥ ⊗ Ĥ
∼=

��
H∗(X̂(1+)× X̂(1+),F)

∼=

H∗(p
1
∗,p

2
∗)
−1

// H∗(X̂(2+),F)
H∗(p

1
∗,∇∗)

// H∗(X̂(1+)× X̂(1+),F)

commutes, where the vertical maps are the Kunneth isomorphisms. By part (i) the homology Ĥ is isomor-

phic, as a bialgebra, to the localization H∗(X(1+),F)[S−1]. In particular, Ĥ has an antipode c : Ĥ −→ Ĥ,
so it is in fact a Hopf algebra. In the presence of an antipode, the homomorphism

Ĥ ⊗ Ĥ −→ Ĥ ⊗ Ĥ , x⊗ y 7−→ x⊗ xy

is invertible, with inverse given by [...] Since the map (p1
∗, p

2
∗) : X(2+) −→ X(1+) × X(1+) is a weak

equivalence we deduce that the map (p1
∗,∇∗) : X(2+) −→ X(1+) × X(1+) is a homology isomorphism.

Since this map is a morphism of H-spaces, it is in fact a weak equivalence. This shows that the Γ-space X̂
is very special. �

In particular, the component map

π0X(1+) −→ π0(ΩX(S1))

is an algebraic group completion (i.e., Grothendieck group) of the abelian monoid π0X(1+).
Now we establish a result that allows us, in many cases, to identity the infinite loop space represented

by a Γ-space that is special (but not necessarily very special). We let X be a special Γ-space and suppose
further that we are given a continuous map

ψ : X(1+) −→ X(2+)

such that p1
∗ ◦ ψ : X(1+) −→ X(1+) is a constant map with value ψ0 and p2

∗ ◦ x̃ is based homotopic to the
identity of X(1+). We define λ as the composite

X(1+)
ψ−−→ X(2+)

∇∗−−−→ X(1+) .

Then λ rigidifies the left translation map of ψ0 (which a priori only makes sense up to homotopy); in
particular, the effect of λ on π0X(1+) is precisely translation by [ψ0] in the abelian monoid structure of
[...]. We define X∞ as the mapping telescope of the sequence

X(1+)
λx−−−→ X(1+)

λx−−−→ X(1+)
λx−−−→ . . .

The map σ : X(1+) −→ ΩX(S1) extends [explain ]to a map

σ̄ : X∞ −→ ΩX(S1) .

Proposition 7.23. Let X be a cofibrant special Γ-space and ψ : X(1+) −→ X(2+) a map as in [...] such
that the path component [ψ0] of ψ0 ∈ X(1+) is cofinal in the abelian monoid π0X(1+). Then the morphism

σ̄ : X∞ −→ ΩX(S1)

is a weak equivalence.

We note that if X is very special, then the translation map λx : X(1+) −→ X(1+) is a weak equivalence
[explain] and so the canonical map X(1+) −→ X∞ is a weak equivalence. So for very special Γ-spaces the
following theorem specializes to [...]
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Example 7.24 (Connective topological K-theory as a Γ-space). We have already seen two models for
topological K-theory spectra, see Examples 1.20 and 7.10. Now we discuss a special Γ-space X whose
associated spectrum X(S) is level equivalent to the symmetric spectrum ku as defined in Example 7.10.

For a finite based set A we let F (A) be the space of tuples (Va), indexed by the non-basepoint elements
of A, of finite dimensional, pairwise orthogonal subspaces of the hermitian vector space C∞. [topology]
The basepoint of F (A) is the tuple where each Va is the zero subspace. For a based map α : A −→ B the
induced map F (α) : F (A) −→ F (B) sends (Va) to (Wb) where

Wb =
⊕
α(a)=b

Va .

We claim that the Γ-space F is special [...].
For a based topological space K the value F (K) of the extended Γ-space on K is given by the coend

formula (7.12). So an element of F (K) is represented by a tuple (k1, . . . , kn) of points of K ‘labelled’ with
pairwise orthogonal vector spaces (V1, . . . , Vn) of C∞ for some n. The topology is such that, informally
speaking, the vector spaces Vi and Vj are summed up whenever two points ki and kj collide and Vi disappears
when ki approaches the basepoint of K.

Since the Γ-space F is special, the symmetric spectrum F (S) is a positive Ω-spectrum by the general
theory. In particular, the space F (S)1 = F (S1) is an infinite loop space. A nice feature of this Γ-space
model for ku is that F (S1) ‘is’ a familiar space, namely the infinite unitary group U . We get a preferred
homeomorphism if we replace S1 (the one-point compactification of R) by S(C), by the homeomorphic
unit sphere in the complex numbers, with basepoint 1. Given a point (λ1, . . . , λn) ∈ (S(C))n and a
tuple (V1, . . . , Vn) of pairwise orthogonal subspaces of C∞ we let ψ(k1, . . . , kn, V1, . . . , Vn) be the unitary
transformation of C∞ that is multiplication by λi on Vi and the identity on the orthogonal complement of⊕n

i=1 Vi. As n varies, these maps are compatible with the equivalence relation and so they assemble into a
continuous map

F (S(C)) =

∫ n+∈Γ

S(C)n ∧ F (n+) −→ U .

This map is bijective because every unitary transformation is diagonalizable with finitely many eigenvalues
in the unit circle and pairwise orthogonal eigenspaces.

A morphism of Γ-spaces dim : F −→ HZ is given by the dimension function, i.e., on an object n+ the
map dim : F (n+) −→ HZ(n+) is given by

dim(V1, . . . , Vn) =

n∑
i=1

(dimVi) · i .

Evaluating this morphism on spheres provides a morphism of symmetric spectra dim : ku ' F (S) −→ HZ
which induces an isomorphism on π0.

Now we use Theorem 7.21 about the ‘group completion theorem’ of a specila Γ-spaces to derive Bott
periodicity.

Proposition 7.25. The Γ-space F is cofibrant and special

Since the Γ-space F is cofibrant and special, Theorem 7.21 lets us conclude that the map of graded
rings

(σ̃0)∗ : H∗(F (S0),Z) −→ H∗(ΩF (S1),Z)

induced by the structure map σ̃0 : F (S0) −→ ΩF (S1) is a localization at the multiplicative subset π =
π0F (S0) of H∗(F (S0),Z). The dimension functor identifies the path components of the space

F (S0) =
∐
n≥0

Gr(n,C∞)

with the set of natural numbers, and this is an isomorphism of abelian monoids dim : π0(F (S0)) −→ N.
We let W0 = C · (1, 0, 0. . . . ) be the complex line in C∞ spanned by the first standard basis vector, and we
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let sh : C∞ −→ C∞ be the linear isometry given by

sh(x1, x2, x2, . . . ) = (0, x1, x2, x2, . . . ) .

We define a continous map ψ : F (1+) −→ F (2+) by

ψ(V ) = (W0, shV ) ,

The Γ-space F and the associated symmetric spectra do not have an obvious multiplication, but a
minor variation suffices to upgrade the previous construction to a commutative symmetric ring spectrum.
For n ≥ 0 we let F (n) denote the Γ-space defined in the same way as F , but using pairwise orthogonal
subspaces of (C∞)⊗n instead of C∞. So we have F (1) = F and for n ≥ 2, (C∞)⊗n is non-canonically
isomorphic to C∞. Any choice of unitary isomorphism between (C∞)⊗n and C∞ induces an isomorphism
of Γ-spaces between F (n) and F . The unitary Σn-action on (C∞)⊗n by permuting the tensor factors induces
an action of Σn on F (n) by automorphisms of Γ-spaces.

Now we define a symmetric spectrum of topological spaces ku in level n as

kun = F (n)(Sn) ,

the values of the prolonged Γ-space F (n) at the n-sphere. We let Σn acts diagonally, by permuting the
sphere coordinates and by the action on F (n) from permutation of the tensor powers. Multiplication maps

µn,m : kun ∧ kum = F (n)(Sn) ∧ F (m)(Sm) −→ F (n+m)(Sn+m) = kun+m

are obtained by prolonging the Σn × Σm-equivariant pairing of Γ-spaces

F (n)(A) ∧ F (m)(B) −→ F (n+m)(A ∧B) , (Va) ∧ (Wb) 7−→ (Va ⊗Wb)a∧b .

The multiplication maps µn,m are associative and commutative, so all that is missing to get a commutative
symmetric ring spectrum are the unit maps.

The space ku0 = F (0)(S0) consists of all subspaces (C∞)⊗0 = C, so it has two points, the basepoint 0
and the point C. We let ι0 : S0 −→ ku0 be the unique based bijection; then the unitality condition for
the maps µn,0 and µ0,n holds. We let ι1 : S1 −→ ku1 = F (S1) be the map sending x ∈ S1 to the class of
the pair (x, V0) where V0 is the subspace of C∞ spanned by the first vector (1, 0, 0, . . . ) of the canonical
basis. Under the isomorphism between F (S(C)) and the unitary group U this corresponds to the embedding
S(C) = U(1) −→ U sending λ to the matrix

λ 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

 .

Since the multiplication maps are commutative, the centrality condition for ι1 is automatically satisfied. To
sum up, we have defined a commutative symmetric ring spectrum ku that is a positive Ω-spectrum [justify]
and that in level 1 is homeomorphic to the infinite unitary group. [get periodic KU by inverting an map
S3 −→ ku1 representing the Bott map]

� One should beware that even though Γ-spaces were involved heavily in the construction of ku, this
symmetric spectrum is not itself the evaluation of any Γ-space in spheres.

7.5. Permutative categories.

Definition 7.26. A permutative category is a category C equipped with a functor ⊕ : C × C −→ C and a
natural isomorphism τa,b : a⊕ b −→ b⊕ a such that the following conditions hold:

• the two functors

⊕ ◦ (Id×⊕) , ⊕ ◦ (⊕× Id) : C × C × C −→ C

are equal;
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• there is an object 0 such that the two functors

0⊕− , −⊕ 0 : C −→ C
are the identity functors;

• τa,b = τ−1
b,a

• for every object A the isomorphism

τ0,a : a = 0⊕ a −→ a⊕ 0 = a

is the identity;
• for all objects a, b and c the triangle

a⊕ b⊕ c
τa,b⊕c

))TTTTTTTTTTTT
τa,b⊕c

uujjjjjjjjjjjj

b⊕ a⊕ c
b⊕τa,c

// b⊕ c⊕ a

commutes.

The above definition can be summarizing by saying that a permutative category is a special kind
of symmetric monoidal category, namely one which is ‘strictly’ associative and unital, i.e., associativity
and unit isomorphism are identities. We will give various examples of permutative categories below, after
explaining how to associate to a permutative category a special Γ-spaces and hence, by evluation on spheres,
a symmtric spectrum that is a positive Ω-spectrum).

Remark 7.27. The object 0 that exists by the second property of a permutative category is unique: if 0’ is
another such object, then 0 = 0⊕ 0′ = 0′. For later reference we also recall why the endomorphism monoid
C(0, 0) of the zero object in a permutative category is automatically commutative. The value of the functor
⊕ at the object (0, 0) of C×C in particular provides a monoid homomorphism ⊕ : C(0, 0)×C(0, 0) −→ C(0, 0),
which means that

(a · b)⊕ (c · d) = (a⊕ c) · (b⊕ d)

for all endomorphisms a, b, c and d of 0. Since 0 ⊕ − and − ⊕ 0 are the identity functors, we also have
Id⊕a = a = a⊕ Id, and that forces

a · b = (a⊕ Id) · (Id⊕b) = (a · Id)⊕ (Id ·b)
= a⊕ b = (Id ·a)⊕ (b · Id) = (Id⊕b) · (a⊕ Id)

= b · a
In other words the composition and direct sum operations in the endomorphism monoid of the zero object
coincide and are commutative.

Construction 7.28. We let C be a small permutative category (i.e., the objects of C form a set). For
every finite based set A we define a category C(A) of ‘A-indexed sum diagrams’ in C. An object of C(A) is
a collection X = {XS , ρS,T } consisting of

• an object XS of C for every subset S of A that does not contain the basepoint,
• an isomorphism ρS,T : XS ⊕XT −→ XS∪T for every pair of disjoint subsets S, T of A as above.

This dats is subject to the following conditions:

• X∅ = 0 and ρS,∅ = IdXS : XS ⊕X∅ −→ XS for all S;
• for all mutually disjoint subsets S, T, U of A the following squares commute:

XS ⊕XT

ρS,T //

τXS,XT

��

XS∪T XS ⊕XT ⊕XU

ρS,T⊕XU //

XS⊕ρT,U
��

XS∪T ⊕XU

ρS∪T,U

��
XT ⊕XS ρT,S

// XT∪S XS ⊕XT∪U ρS,T∪U
// XS∪T∪U
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A morphism f : X −→ X ′ in the category C(A) consists of morphism fS : XS −→ X ′S for all subsets S of
A not containing the basepoint such f∅ = Id0 and such that the square

XS ⊕XT

ρS,T //

fS⊕fT
��

XS∪T

fS∪T

��
X ′S ⊕X ′T

ρ′S,T

// X ′S∪T

commutes for every pair of disjoint subsets S and T .
We observe that the definition of morphism is redundant: because the morphisms ρS,T are isomorphisms,

a morphisms is completely determined by its values on one-element subsets of A, and can be chosen freely
there.

Now we let A vary and make the assignment A 7→ C(A) into a functor from the category of finite based
sets to the category of small categories. For a based map α : B −→ A between finite based sets we define
a functor α∗ : C(B) −→ C(A) as follows. An object X = {XS , ρS,T } of C(B) is sent to the object α∗(X) of
C(A) given by

(α∗(X))S = Xα−1(S)

and

(α∗ρ)S,T = ρα−1(S),α−1(T ) ,

Since α is based, α−1(S) does not contain the basepoint if S does not, so this definition makes sense. The
behaviour of α∗ on morphisms is essentially the same: given f : X −→ X ′ we define α∗f : α∗X −→ α∗X

′

at a subset S of A as

(α∗f)S = fα−1(X) .

We omit the straightforward verification that this really defined a functor α∗ : C(B) −→ C(A). Given
another based map β : C −→ B of finite based sets we have (αβ)∗(S) = β∗(α∗S) for all subsets S of A,
and hence

(αβ)∗ = α∗ ◦ β∗ : C(C) −→ C(A) .

So altogether we constructed a covariant functor C : Γ −→ cat from the category of finite based sets to the
category of small categories, i.e., a Γ-category.

The morphism pA : A ∨B −→ A sends B to the basepoint and is the identity on A.

Proposition 7.29. For every small permutative category C the Γ-category C is special in the following
sense:

• if A consists only of the basepoint, then category C(A) is terminal;
• for every pair of finite based sets the functor

(pA∗ , p
B
∗ ) : C(A ∨B) −→ C(A)× C(B)

is an equivalence of categories.

Proof. �

Given a permutative category C, we follow the previous construction of the Γ-category C by the nerve
functor to obtain a Γ-space (of simplicial sets). We can then evaluate on spheres and obtain a symmetric
spectrum of simplicial sets:

Definition 7.30. The K-theory spectrum of a permutative category C is the symmetric spectrum

K(C) = (NC)(S) .
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The nerve construction is a covariant functor from the category of small categories to the category of
simplicial sets that preserves limits. In particular, it preserves products and sends any terminal category to
a constant simplicial set with one vertex. Moreover, the nerve construction sends equivalences of categories
to homotopy equivalences of simplicial sets. So for every permutative category C the composite functor

Γ
C−−→ cat

N−−→ sS

is a special Γ-space in the sense of Definition 7.15. Moreover, the functor

(7.31) C(1+) −→ C , X 7−→ X{1}

is an isomorphism of categories, so the underlying space NC(1+) of the Γ-space NC is isomorphic to the
nerve of the category C.

For any special Γ-space X the underlying space X(1+) has a ‘weak multiplication’ [...]. In the case of a
permutative category, this weak multiplication for the special Γ-space N ◦ C is strict in the following sense.
Indeed, we can pull back the permutative structure on C along the isomorphism (7.31) to a permutative
structure ⊕ : C(1+)×C(1+) −→ C(1+). Since the functor ⊕ is strictly associative and has a strict unit, the
induced map on nerves

N⊕ : NC(1+)×NC(1+) −→ NC(1+)

makes the NC(1+) into a simplicial monoid (where we have used implicitely that the nerve preserves
products).
� The multiplication of the simplicial monoid is honestly associative and unital, but in general not

commutative (because A⊕B and B ⊕A are only isomorphic, but typically not equal).
Then the diagram of categories

C(2+)

(p1
∗,p

2
∗)

∼
xxqqqqqqqqqqq

∇∗

##HHHHHHHHH

C(1+)× C(1+) ⊕
// C(1+)

commutes up to the built-in natural isomorphism (given at an object X of C(2+) by ρ{1},{2} : X{1} ⊕
X{2} −→ X{1,2}). Thus the diagram of simplicial sets

NC(2+)

(Np1
∗,Np

2
∗)

∼
vvnnnnnnnnnnnn

N∇∗

%%KKKKKKKKKK

NC(1+)×NC(1+)
N⊕

// NC(1+)

commutes up to preferred homotopy

Corollary 7.32. For every permutative category C the symmetric spectrum K(C) is a connective positive
Ω-spectrum. If the isomorphism classes of objects in C from a group under the operation induced by ⊕, then
K(C) is an Ω-spectrum.

Example 7.33. (Eilenberg-Mac Lane spectrum, revisited) LetA be an abelian monoid. We denote byA the
‘discrete’ permutative category with object set A and only identity morphism. The functor ⊕ : A×A −→ A
is given on object by the addition in A. The symmetry isomorphism τa,b : a + b −→ b + a is (necessarily)
the identity of a+ b. The axioms of a permutative category are clearly satisfied.

Conversely, if C is any small permutative category that only has identity morphisms, then in particular
the symmetry isomorphism have to be identities. Thus the functor ⊕ makes the object set of C into a
commutative monoid, and C is equal to discrete permutative category of this abelian monoid. In other
words, abelian monoids ‘coincide with’ the permutative category that only have identity morphisms.

We will show now that when the abelian monoid A is a group, then the symmetric spectrum K(A)
associated to the permutative category of A is isomorphic to the Eilenberg-Mac Lane spectrum HA (as
defined in Example 1.14).



166 I. BASICS

Since the only morphisms in A are identities, for finite based set A, every object X of A(A) all the
isomorphisms ρS,T must be identities. In particular, for all subsets S = {s1, . . . , sn} of A (not containing
the basepoint) we must have

XS = X{s1} + · · ·+X{sn}

as elements of A. We observe first that here for all finite based sets A and B the functor

(pA∗ , p
B
∗ ) : A(A ∨B) −→ A(A)×A(B)

is bijective on objects, hence an isomorphism (and not merely an equivalence) of categories.
The category A(A) is again discrete (i.e., the only morphisms are identity morphisms), so its nerve

NA(A) is a constant simplicial sets (i.e., all structure maps are bijective). Moreover, the map

((NA)(A))0 = objects((NA)(A)) ∼= A[A]

is an isomorphism of simplicial sets, where the right hand side is the reduced A-linearization discussed in
Example 1.14. So in summary, the Γ-space N ◦A is isomorphic to the reduced A-linearization. So evaluation
on spheres becomes degreewise reduced A-linearization; this shows that K(A) is isomorphic to HA = A[S],
the symmetric Eilenberg-Mac Lane spectrum.

Example 7.34 (K-theory of finite sets). As before we denote by Fin the category of standard finite sets
whose objects are the sets n = {1, . . . , n} for n ≥ 0 and whose morphisms are all set maps. The sum functor
+ : Fin × Fin −→ Fin is given by by addition on objects and by ‘disjoint union’ on morphisms. More
precisely, for morphisms f : n −→ n′ and g : m −→m′ we define f + g : n + m −→ n′ + m′ by

(f + g)(i) =

{
f(i) if 1 ≤ i ≤ n, and

g(i− n) + n′ if n+ 1 ≤ i ≤ n+m.

The sum functor makes Fin into a permutative category, with respect to the shuffle maps χn,m : n + m −→
m + n as symmetry isomorphism. We let iFin denote the (non-full) subcategory of Fin consisting of all
isomorphisms (bijections). This is again a permutative category, by restriction of The sum functor restricts
to a permutative structure on iFin, so the K-theory construction of Definition 7.30 yield a symmetric
spectrum K(iFin). The simplicial set K(iFin)0 in level 0 is isomorphic to the nerve of the category iFin,
which in turn is isomorphic to the disjoint union, over n ≥ 0, of the classifying spaces BΣn of all symmetric
groups.

The object of iFin(1+) whose value at the set {1} is the object 1 of iFin is a vertex in the simplicial
set K(iFin)0 = NiFin(1+). So it freely generates a morphism of symmetric spectra

S −→ K(iFin) .

A consequence of the Kahn-Priddy-Quillen theorem is that this morphism is an π̂∗-isomorphism. So in this
sense the K-theory of finite sets ‘is’ the sphere spectrum.

Example 7.35 (K-theory of rings). We let R be an associative and unital ring. We denote the Gl(R) the
category whose objects are the natural numbers n ≥ 0 and with morphism sets given by

Gl(n,m) =

{
Gln(R) for n = m, and

∅ for n 6= m.

Composition is is given by multiplication in the general linear groups. A sum functor + : Gl(R)×Gl(R) −→
Gl(R) is given by by addition on objects and by ‘block sum’ of matrices on morphisms, i.e., by

+ : Gln(R)×Glm(R) −→ Gln+m(R) , (A,B) 7−→ A+B =

(
A 0
0 B

)
.

This sum functor makes Gl(R) into a permutative category, with symmetry isomorphism τn,m ∈ Gln+m(R)
given by the permuation matrices of the shuffle permutations χn,m : n + m −→ m + n. The free algebraic
K-theory spectrum of R is the associated symmetric spectrum as in Definition 7.30, i.e.,

Kfree(R) = K(Gl(R)) .
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The adjective ‘free’ refers to the fact that the category Gl(R) is equivalent to the category of finitely
generated free R-modules and isomorphisms (as opposed to all projective modules). The simplicial set
(Kfree(R))0 in level 0 is isomorphic to the nerve of the category Gl(R), which in turn is isomorphic to the
disjoint union, over n ≥ 0, of the classifying spaces BGln(R) of all general linear groups of R.

A variation of this yields the projective algebraic K-theory spectrum of the ring R. We let P(R) denote
the category whose objects are given by pairs (n, P ) where P ∈ Mn(R) is an idempotent n× n matrix. A
morphism from (n, P ) to (n′, P ′) in P(R) is a left R-linear isomorpphism from the image of P to the image
of P ′. A sum functor + : P(R)×P(R) −→ P(R) is given on objects by (n, P ) + (n′, P ′) = (n+ n′, P +P ′)
where last + is again block sum of matrices. The sum of morphisms in P(R) is given by direct sum of
isomorphisms, using the preferred identification of the image of P + P ′ with the direct sum of the images
of P and P ′. This sum functor makes P(R) into a permutative category, one more time with symmetry
isomorphism given by the permuation matrices of the shuffle permutations. The algebraic K-theory spectrum
of R is the associated symmetric spectrum, i.e.,

K(R) = K(P(R)) .

The category Gl(R) embeds fully faithfully into P(R) by sending n to the pair (n,En), where En is
the n × n identity matrix. [on morphisms]. This embedding models the inclusions of the R-free modules
into the projective R-modules (in both cases finitely generated). The induced morphism

Kfree(R) = K(Gl(R)) −→ K(P(R)) = K(R)

is an isomorphism on homotopy groups in positive dimensions (i.e., possibly excluding dimension zero).

Example 7.36 (Picard categories and 1-Postnikov stages). A strict Picard category is a small permutative
cateogory (C,⊕) with the additional properties that

• the underlying category C is a groupoid, i.e., every morphism is an isomorphism;
• the set of isomorphism classes of objects is a group under the operation induced by ⊕.

The K-theory spectrum K(C) of a strict Picard category is then a connective Ω-spectrum by Corollary 7.32.
In particular, the its non-negative naive and true homotopy groups coincide with the homotopy groups of
the 0-th space K(C)0 which is turn isomorphic to the nerve NC of the category C. The components of NC
are the isomorphism classes of objects; since the category C is a category, the fundamental group based at
the zero object is isomorphic to the automorphism group, which is commutative by Remark 7.27. So we
obtain that

π̂kK(C) ∼= πkK(C) ∼=


ob(C)/isomorphism for k = 0,

AutC(0) for k = 1, and

0 else.

We will show later that strict Picard categories model the homotopy category of spectra with homotopy
groups concentrated in dimension 0 and 1. More precisely, the K-theory construction induces a fully faithful
functor

K : Ho(Pic) −→ SHC
from the homotopy category of strict Picard categories to the stable homotopy category whose essential
image consists of those symmetric spectrum X such that πkX = 0 for all k 6= 0, 1.

For the K-theory spectra of Picard categories, the multiplication by the class η ∈ π1S of Hopf map

·η : π0K(C) −→ π1K(C)
(compare Exmaple 1.11) admits the following ‘combinatorial’ description. For every object b of C the map

−⊕ Idb : AutC(0) −→ AutC(b)

is a group isomorphism. So for every object a of C the symmetry automorphism τa,a of a+ a is on the form
η(a) ⊕ Ida+a for a unique element η(a) ∈ AutC(0). The element η(a) only depends on the isomorphism of
a [...] and satisfies η(a ⊕ a′) = η(a) · η(a′). In other word, this construction descends to a homomorphism
of abelian group η : ob(C)/ ∼=−→ AutC(0).
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Proposition 7.37. For every Picard category C the square

ob(C)/iso
η //

∼=
��

AutC(0)

∼=
��

π0K(C) ·η
// π1K(C)

commutes.

[for 1-Postnikov of K(R) take C as the category of finitely generated projective R-modules with mor-
phisms C(P,Q) = IsoR(P,Q)/ ∼ where two isomorphisms are equivalent if the have the same determinant.
Baues, Jibladze and Pirashvili [?] construct all ring spectra with homotopy concentrated in dimensions 0
and 1 from classes in the third Mac Lane cohomology groups]

The 0-th level of the K-theory spectrum of a permutative category C is isomorphic to the nerve of the
category C. In particular, the monoidal product plays no role here, but it does make K(C)0 = NC into a
simplicial monoid. The symmetry isomorphism, however, is not seen at the 0-th level, but it play a crucial
role in the ‘deloopings’, i.e., in the homotopy types of the higher levels of the positive Ω-spectrum K(C).
We illustrate this with a specific example now.

Example 7.38. We let C be the category with object set Z, with the cyclic group C2 = {1,−1} of order 2
as automorphism group of every object, and with no morphisms between different objects. We define a
monoidal product ⊕ : C×C −→ C by addition Z on objects and by group multiplication in C2 on morphisms.
The nerve NC is a disjoint union, indexed by the integers, of copies of the classifying space BC2 = C2[S1].
The structure of simplicial monoid induced by ⊕ is as the product Z × BC2 of the discrete group Z and
the simplicial abelian group BC2.

Now we endow the strict monoidal category (C,⊕) with two different symmetry isomorphism. The
‘trivial’ symmetry isomorphism τ tr

a,b : a + b −→ b + a is the identity morphisms. The ‘natural’ symmetry

isomorphisms τnat
a,b : a+ b −→ b+a is defined as (−1)ab ∈ C2 = C(a+ b, a+ b). We omit the straightforward

verification that both symmetry isomorphisms τ tr and τnat obey the axioms of a permutative category (even
of a Picard category).

We denote by Ctr respectively Cnat the monoidal category (C,⊕) endowed with the trivial respectively
natural symmetry isomorphisms. Then the K-theory spectra K(Ctr) and K(Cnat) have the same 0-th level,
isomorphic to Z×BC2. The first level is a delooping of the 0-th level with respect to the monoid structure
induced by ⊕, so even the 1-levels K(Ctr)1 and K(Cnat)1 are weakly equivalent as simplicial sets, and both
have the homotopy type of BZ × B2C2 ' S1 × C2[S2]. However, the spectra K(Ctr) and K(Cnat) are not
stably equivalent, as we shall now explain.

There is a unique functor r : C −→ Z to the discrete permutative category with object group Z (compare
Example 7.33) that is the identity on objects. This functor is strictly monoidal and symmetric with respect
to both symmetry isomorphisms τ tr and τnat, so it induces morphisms of symmetric spectra

rnat
∗ : K(Cnat) −→ K(Z) = HZ and rtr

∗ : K(Ctr) −→ HZ .

Since r is bijective on isomorphism classes of objects, both morphisms rnat
∗ and rtr

∗ induce bijections on π0.
So far we did not detect the difference that arise from the different symmetries, but this comes now.

We can also map C to the permutative category C̄2 with one object 0 and automorphism group C2 [and
monoidal structure...] Indeed, there is a unique faithful functor j : C −→ C̄2 that takes the automorphism
group of every object of C isomorphically onto the automorphism group of 0 in C̄2. This functor is strictly
monoidal and symmetric with respect to the trivial symmetry isomorphisms τ tr. So j induces a morphism of
symmetric spectra j∗ : K(Ctr) −→ K(C̄2) that provides an isomorphism on π1. So the combined morphism

(rtr
∗ , j∗) : K(Ctr) −→ HZ×K(C̄2)

is a stable equivalence. Since source and target of the map (rtr
∗ , j∗) are Ω-spectra, it is even a level

equivalence. [is this an isomorphism? is Ctr the product of Z and C̄2 as permutative categories?] So the
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K-theory spectrum K(Ctr) associated to the trivial symmetries is a product of HZ and a shifted copy of
HC2.

However, the strict monoidal functor j : C −→ C̄2 is not symmetric with respect to the natural symmetry
isomorphism τnat, so it does not induce a morphism of symmetric spectra from K(Cnat) to K(C̄2). What is
more, the K-theory spectrum K(Cnat) does not even split off a copy of the Eilenberg-Mac Lane spectrum HZ
‘up to stable equivalence’ (i.e., K(Cnat) is indecomposable as an object of the stable homotopy category).
One way to see this is to observe that multiplication by the class η ∈ π1S of the sphere spectrum is a
non-zero (hence surjective) homomorphism

π0K(Cnat) −→ π1K(Cnat) .

[identify the action of η combinatorially in general...] With a little more work one can show that the
difference between the K-theory spectra K(Ctr) and K(Cnat) first manifests itself in the homotopy type
of the second levels. As we saw above, the simplicial set K(Ctr)n is a product of two Eilenberg-Mac Lane
spaces of type (Z, n) and (Z/2, n+ 1) for every n. With the natural symmetry isomorphisms, however, the
the simplicial set K(Cnat)2 is weakly equivalent to the homotopy fiber of any morphism

Z[S2] −→ Z/2[S4]

whose effect in mod-2 cohomology is non-zero; since the cohomology group H4(Z[S2],Z/2) is cyclic of
order 2 (generated by the mod-2 reduction of the cup-square of the fundamental class) such a map exists
and is unique up to homotopy.

7.6. Spectra as enriched functors. The Γ-spaces, continuous and simplicial functors are, by their
very definition, categories of functors from some indexing category to based spaces or simplicial sets. In
the latter cases, we only consider ‘enriched’, i.e., continuous respectively simplicial functors. We will now
see how symmetric, sequential, orthogonal and unitary spectra can also be viewed as enriched functors on
suitable topological or simplicial indexing categories. In this picture, most of the comparison functors in
diagram (7.1) are obtained by restriction along functors on the indexing categories.

The original definition of symmetric, sequential, orthogonal and unitary spectra is the most ‘down to
earth’ way to introduce these objects. In a sense, Definitions 1.1, 2.1, 7.2 and 7.5 describes the structure
which the spaces Xn have by ‘generators’ (the actions of the certain groups and the structure maps σn) and
‘relations’ (the equivariance properties for the iterated structure maps). The ‘enriched functor’ viewpoint
encodes all possible natural operations between the spaces in a symmetric, sequential, orthogonal or unitary
spectrum.

Definition 7.39. A T-category, or small based topological category, J consists of

• a set ob J of objects,
• for every pair i, j of objects a compactly generated based space J(i, j)
• and for every triple of objects i, j, k a based continuous composition map

◦ : J(i, j) ∧ J(j, k) −→ J(i, k) .

Moreover, composition should be associative in the sense that for every quadrupel of objects i, j, k, l the
square

J(i, j) ∧ J(j, k) ∧ J(k, l)
◦∧Id //

Id∧◦
��

J(i, k) ∧ J(k, l)

◦
��

J(i, j) ∧ J(j, l) ◦
// J(i, l)

commutes and composition should have two sided units [state unit ‘enriched’].

We emphasize that our convention for the order of the factors in composition is different from the usual
convention where f ◦ g means ‘first g, then f ’.

A T-category can equivalently be defined as a small category whose hom-sets are endowed with (com-
pactly generated weak Hausdorff) topologies and basepoint and such that [...] However, the was we have
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stated the definition above is better adapted to generalizations. For example, if we replace the category
T by the category sS of based simplicial sets throughout Definition 7.39, we arrive at the definition of a
sS-category or small based simplicial category. We note that sS-categories are more special objects than
simplicial objects of based categories because the object set is constant.

Definition 7.40. Let J be a T-category. An enriched functor Y : J −→ T consists of

• a based space Y (a) for every object a of J,
• a based, continuous action map ◦ : Y (a) ∧ J(a, b) −→ Y (b) for every pair of objects a, b

such that Ida ∈ J(a, a) acts as the identity and the square

Y (a) ∧ J(a, b) ∧ J(b, c)
◦∧Id //

Id∧◦
��

Y (b) ∧ J(b, c)

◦
��

Y (a) ∧ J(a, c) ◦
// Y (c)

commutes for all objects a, b, c. A morphism f : Y −→ Z of enriched functors consists of based, continuous
maps f(a) : Y (a) −→ Z(a) for every object a such that the square

Y (a) ∧ J(a, b)
f(a)∧Id //

◦
��

Z(a) ∧ J(a, b)

◦
��

Y (b)
f(b)

// Z(b)

commutes for all objects a and b of J.

The data of an enriched functor Y : J −→ T is the same as specifying a functor, in the usual sense,
which is based and continuous [...]. Again, we stated the definition in the way we did because it generalizes
easily to the simplicial context (and others): given a sS-category J, an enriched functor Y : J −→ sS is
defined just as in 7.40, but with T replaces by the category of based simplicial sets sS throughout.

Ordinary category theory can be subsumed under this branch of enriched category theory as follows.
Every category C in the ordinary sense gives rise to a T-category C+ by adding disjoint basepoints to the
morphisms sets and endowing them with the discrete topology and extending composition by [...] We can
also turn C into a Σ-category by adding disjoint basepoint and viewing the morphisms sets a constant
simplicial sets. Then enriched functors from C+ to T (respectively to Σ) are in bijective correspondence
[isomorphism of categories] with functors, in the classical sense, from C to T (respectively Σ).

Now we introduce the indexing categories N, Σ, and O which parametrize sequential, symmetric
respectively orthogonal spectra. There is also a T-category U which parametrizes unitary spectra in much
the same way, but we leave that part of the story to Exercise E.I.49. We focus on the case of topological
spaces and define three topological categories. Sequential and symmetric spectra also exists with values in
simplicial sets, and we will briefly say how this setting has to be dealt with.

The objects of N, Σ and O are the natural numbers 0, 1, 2, . . . . The based spaces of morphisms from
n to m are given, respectively, by

N(n,m) = Sm−n ,

Σ(n,m) = Σ+
m ∧1×Σm−n Sm−n ,

O(n,m) = O(m)+ ∧1×O(m−n) S
m−n .

(7.41)

Here negative dimensional spheres have to be interpreted as a point, i.e., the respective hom-space has just
one point if n > m. The unit element in N(n, n) = S0 is the non-base point; the unit element in Σ(n, n)
respectively O(n, n) is [1 ∧ z], where 1 denotes the neutral element of the group Σn respectively O(n) and
z ∈ S0 the non-basepoint.
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In the sequential indexing category, the composition map ◦ : N(n,m)∧N(m, k) −→ N(n, k) is the pre-
ferred identification Sm−n∧Sk−m ∼= Sk−n. In the case of the symmetric indexing category, the composition
map is defined by ◦ : Σ(m, k) ∧Σ(n,m) −→ Σ(n, k) is defined by

[τ ∧ z] ◦ [γ ∧ y] = [τ(γ + 1) ∧ (y ∧ z)]

where τ ∈ Σk, γ ∈ Σm, z ∈ Sk−m and y ∈ Sm−n. In the case of the orthogonal indexing category O,
composition is given by the same formula, just that τ , γ and τ(γ + 1) now belong to orthogonal groups.

Now we make precise in which way the various spectra categories ‘are’ enriched functors; the precise
statements are the isomorphisms of categories in the next Proposition 7.42. Given a sequential (respectively
symmetric, orthogonal or unitary) spectrum X we define an enriched functor e(X) from N (respectively Σ
or O) to T as follows. On objects we set X(n) = Xn; the action map is defined in the sequential case by

N(n,m) ∧Xn = Sm−n ∧Xn −→ Xm , z ∧ x 7→ σm−n(x ∧ z)

and in the symmetric cases by

Σ(n,m) ∧Xn = (Σ+
n ∧1×Σm−n S

m−n) ∧Xn −→ Xm , [τ ∧ z] ∧ x 7−→ τ∗(σ
m−n(x ∧ z)) .

In the orthogonal context the same formula works, but then τ is an element of O(n). It is straightforward
to check that these assignments indeed define enriched functors, and that it extends to morphisms.

Proposition 7.42. The assignments

e : TN −→ SpN
T , e : TΣ −→ SpT and e : TO −→ SpO

and their analogues in the simplicial context

e : sSN −→ SpN
sS , e : sSΣ −→ SpsS ,

are isomorphisms of categories.

Proof. We treat only one case in detail, namely the one of symmetric spectra of spaces. All other
cases are very similar, and we omit the details. To show that e : TΣ −→ SpT is an isomorphism, we simply
define the inverse isomorphism. Given an enriched functor Y : Σ −→ T we define a symmetric spectrum
uY by (uY )n = Y (n) with Σn-action given by the composite

Σn × Y (n) −→ Σ(n, n) ∧ Y (n)
◦−−→ Y (n) .

[this is not a left! action] The structure map σn : Y (n) ∧ S1 −→ Y (n+ 1) is the adjoint of the composite

Y (n) ∧ S1 ∼= S1 ∧ Y (n)
1∧−−−−→ (Σ+

n+1 ∧1×Σ1
S1) ∧ Y (n) = Σ(n, n+ 1) ∧ Y (n)

◦−−→ Y (n+ 1) .

[σn is Σn-equivariant, hence so are all iterated structure maps] With this definition, the iterated structure
map σm : Y (n) ∧ Sm −→ Y (n+m) comes out as the adjoint of the composite

Sm
1∧−−−−→ Σ+

n+m ∧1×Σm Sm = Σ(n, n+m)
◦−−→ T(Y (n), Y (n+m))

(this uses the functoriality of Y ). The map 1 ∧ − : Sm −→ Σ(n, n+m) is Σm-equivariant with respect to
the permutation action on Sm and the action on Σ(n, n + m) by γ · [τ ∧ z] = [(1 + γ)τ ∧ z]. Then map
Y : Σ(n, n + m) −→ T(Y (n), Y (n + m)) is Σm-equivariant by functoriality of Y . Hence altogether the
iterated structure map σm is Σn × Σm-equivariant. [on morphisms]

It is now straightforward to check that u(eX) = X and e(uY ) = Y on objects and morphisms, so we
have an isomorphism of categories. �

More generally we have an enriched category ΣR for every symmetric ring spectrum R such that
enriched functors ΣR −→ T are R-modules. We leave the details to Exercise E.I.50.
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7.7. Change of index category. For every object j of a T-category J there is a enriched repre-
sentable functor Fj defined by Fj = J(j,−) which action of J given by composition. It comes with a special
element Idj ∈ Fj(j). The classical Yoneda lemma about natural transformations out of representable
functors has an enriched analog: [mapping spaces/objects]

Proposition 7.43 (Enriched Yoneda lemma). For every T-category J, every object j of J and every
enriched functor Y : J −→ T the assignment

mapTJ(Fj , Y ) −→ Y (j) , τ 7→ τj(Idj)

is a homeomorphism.

Corollary 7.44. For every every object j ∈ J the functor T −→ TJ which sends a based space K to the
enriched functor K ∧ Fj is left adjoint to evaluation at j.

For every enriched functor Y and every object i of J there is map κi : Fi ∧ Y (i) −→ Y which is adjoint
[...]. Thus the value of κi at an object j is given by the map J(i, j) ∧ Fi −→ Yj which is adjoint to the
structure map Y : J(i, j) −→ T(Y (i), Y (j)). As i varies the squares

commute, which means that the maps κi assemble into a natural map F• ∧J Y• −→ Y from the coend.

Corollary 7.45. For every enriched functor Y the natural map

κ : F• ∧J Y• = coequalizer

( ∨
j,k Fk ∧ J(j, k) ∧ Y (j)

F∧Id //
Id∧Y

//
∨
i Fi ∧ Y (i)

)
−→ Y

is an isomorphism of continuous functors.
This really means that for every object j ∈ J the map

J(−, j) ∧J Y −→ Y (j)

is a homeomorphism. Also, for every G : Jop −→ T and every object j ∈ J the map

G ∧J Fj −→ Gj

is a homeomorphism [follows from previous by replacing J by Jop]

[Limits, colimits, ends, coends, realization objectwise]
Any enriched functor α : J −→ J′ of indexing T-categories induces a restriction functor

α∗ : TJ′ −→ TJ , Y 7→ Y ◦ α

by precomposition with α. The forgetful functors in diagram (7.1) arise in this way from the following
continuous functors of index categories:

N −→ Σ −→ O
S−−→ T .

The first two functors are the identity on objects; on morphisms they are given by changing the groups
involved (trivial versus symmetric versus orthogonal) along the injections {1} −→ Σn −→ O(n). The third
functor is the orthogonal sphere spectrum; it sends the object n of O to the n-sphere Sn and is given on
morphisms by [...]. [how about U?]

We call α fully faithful if the map of spaces α : J(i, j) −→ J′(α(i), α(j)) is a homeomorphism for all
objects i, j of J. Since there are bijective continuous maps which are not homeomorphisms ‘fully faithful’
as an enriched functor is a stronger condition than demanding that the underlying ordinary functor is fully
faithful.

Proposition 7.46. For every enriched functor α : J −→ J′ of T-categories the restriction functor α∗ :
TJ′ −→ TJ has left adjoint α∗ and a right adjoint α! called left Kan extension respectively right Kan
extension along α.

If α is fully faithful then the unit X −→ α∗(α∗X) of the adjunction (α∗, α
∗) and the counit α∗(α!X) −→

X of the adjunction (α∗, α!) are isomorphisms for every enriched functor X : J −→ T.
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Proof. We construct the left Kan extension α∗X of an enriched functor X : J −→ T and leave the
rest to references. We set

α∗X = FJ′

• ∧J X = coequalizer

( ∨
j,k F

J′

k ∧ J(j, k) ∧Xj
F∧Id //
Id∧X

//
∨
i F

J′

i ∧Xi

)
.

�

Since the evaluation functors evS : (continuous functors) −→ SpO, evS : (simplicial functors) −→ SpsS

and the forgetful functors SpO −→ SpT −→ SpN
T and SpsS −→ SpN

sS occuring in the diagram (7.1) can be
obtained by restriction of enriched functors along morphisms of indexing categories, Proposition 7.46 has
the following corollary:

Corollary 7.47. The evaluation functors

evS : (continuous functors) −→ SpO and evS : (simplicial functors) −→ SpsS

and the forgetful functors

SpO U−−→ SpT
U−−→ SpN

T and SpsS
U−−→ SpN

sS

have left and right adjoints.

8. Naive versus true homotopy groups

8.1. M-action on homotopy groups. The naive homotopy groups of a symmetric spectrum do not
take the action of the symmetric groups into account; this has the effect that there is extra structure on
π̂k which we will discuss now. In order to understand the relationship between π̂∗-isomorphisms and stable
equivalences, it is useful to exploit all the algebraic structure available on the naive homotopy groups of a
symmetric spectrum. This extra structure is an action of the injection monoid M, the monoid of injective
self-maps of the set of natural numbers under composition. The M-modules that come up, however, have
a special property which we call tameness, see Definition 8.1. Tameness has strong algebraic consequences
and severely restricts the kinds of M-modules which can arise as homotopy groups of symmetric spectra.

Definition 8.1. The injection monoid is the monoid M of injective self-maps of the set ω = {1, 2, 3, . . . }
of natural numbers under composition. An M-module is a left module over the monoid ring ZM. An
M-module W tame if for every element x ∈ W there exists a number n ≥ 0 with the following property:
for every element f ∈M which fixes the set n = {1, . . . , n} elementwise we have fx = x.

As we shall soon see, the homotopy groups of a symmetric spectrum have a natural tame M-action.
An example of anM-module which is not tame is the free module of rank 1. Tameness has many algebraic
consequences which we discuss in the next section.

Construction 8.2. We define an action of the injection monoid M on the naive homotopy groups of a
symmetric spectrum X. Let f ∈M be an injective selfmap of ω and suppose that a naive homotopy class
[x] ∈ π̂kX is represented by an unstable homotopy class x ∈ πk+nXn, where we take n large enough so that
k + n ≥ 2. We set m = max{f(1), . . . , f(n)} and choose a permutation γ ∈ Σm which agrees with f on
{1, . . . , n}. Then we define f · [x] ∈ π̂kX as the class of

sgn(γ) · γ∗(ιm−n(x)) ∈ πk+mXm .

In other words: we apply the stabilization map (1.7) (m− n) times to the class of x, apply the action of γ
induced by its action on Xm and multiply by the sign of γ.

We have to justify that this definition is independent of the choice of the permutation γ and the
representative x. Suppose γ′ ∈ Σm is another permutation which agrees with f on {1, . . . , n}. Then γ−1γ′

is a permutation in Σm which fixes the numbers 1, . . . , n, so it is of the form γ−1γ′ = 1n + τ for some
τ ∈ Σm−n, where 1n is the unit of Σn. It suffices to show that for such permutations the induced action on
πk+mXm satisfies the relation

(8.3) (1n + τ)∗(ι
m−n(x)) = sgn(τ) · (ιm−n(x))
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for all x ∈ πk+nXn. To justify this we let α : Sk+n −→ Xn represent x. Since the iterated structure map
σm−n : Xn ∧ Sm−n −→ Xm is Σn × Σm−n-equivariant, we have a commutative diagram:

Sk+m
α∧Id //

Id∧τ
��

Xn ∧ Sm−n
σm−n //

Id∧τ
��

Xm

1n+τ

��
Sk+m

α∧Id
// Xn ∧ Sm−n

σm−n
// Xm

The composite through the upper right corner represents (1n + τ)∗(ι
m−n(x)). Since the effect on homo-

topy groups of precomposing with a coordinate permutation of the sphere is multiplication by the sign of
the permutation, the composite through the lower left corner represents sgn(τ) · (ιm−n(x)). This proves
formula (8.3) and shows that the definition of f · [x] is independent of the permutation chosen permutation.

Now we replace the representative x by ι(x) ∈ πk+n+1Xn+1 and show that we end up with the same
naive homotopy class. If m and γ ∈ Σm are chosen as above, then l = max{f(1), . . . , f(n), f(n+ 1)} ≥ m.
We define a permutation in Σl as γ̄ = (γ + 1l−m)(1n + τ), where τ ∈ Σl−n is chosen so that (1n + τ)
interchanges n+ 1 and (γ + 1l−m)−1(f(n+ 1)) and fixes all other elements. This γ̄ then agrees with f on
{1, . . . , n, n+ 1}, so we may use it for the representative ι(x); then we get

sgn(γ̄) · γ̄∗(ιl−(n+1)(ι(x))) = sgn(γ) sgn(τ) · (γ + 1l−m)∗(1n + τ)∗(ι
l−n(x))

= sgn(γ) · (γ + 1l−m)∗(ι
l−n(x)) = ιl−m

(
sgn(γ) · γ∗(ιm−n(x))

)
in πk+lXl, where the second equation is an instance of (8.3). Thus sgn(γ̄) · γ̄∗(ιl−(n+1)(ι(x))) and sgn(γ) ·
γ∗(ι

m−n(x)) represent the same class in π̂kX. This shows that the action of an injection f ∈ M on π̂k is
independent of all choices. [action is associative, unital, additive]

A straightforward but important observation is:

Proposition 8.4. The action of the injection monoidM on the naive homotopy groups π̂kX of a symmetric
spectrum X is tame.

Proof. We can argue directly from the definition: every element [x] ∈ π̂kX in the colimit is represented
by a class x ∈ πk+nXn for some n ≥ 0; then for every element f ∈M which fixes the numbers 1, . . . , n, we
have f · [x] = [x]. �

In Exercise E.I.59 we show that the injection monoid M gives essentially all natural operations on
the homotopy groups of symmetric spectra. More precisely, we identify the ring of natural operations
π̂0X −→ π̂0X with a completion of the monoid ring ofM, so that an arbitrary operation is a sum, possibly
infinite, of operations by elements from M.

Example 8.5. To illustrate the action of the injection monoidM on the homotopy groups of a symmetric
spectrum X we make it explicit for the injection d : ω −→ ω given by d(i) = 1 + i, which we refer to as the
shift operator. For every n ≥ 1, the map d and the cycle (1, 2, . . . , n, n + 1) of Σn+1 agree on {1, . . . , n},
so d acts on π̂kX as the colimit of the system

πkX0
ι //

ι

��

πk+1X1
ι //

−(1,2)·ι
��

πk+2X2
ι //

(1,2,3)·ι
��

· · · ι // πk+nXn
ι //

(−1)n(1,2,...,n,n+1)·ι
��

πk+1X1 ι
// πk+2X2 ι

// πk+3X3 ι
// · · ·

ι
// πk+n+1Xn+1 ι

//

(at least for k ≥ 0; for negative values of k only a later portion of the system makes sense). The action
of the shift operator d on a tame M-module has strong consequences for the whole action of M (compare
Lemma 8.8 (iii)).

The next proposition explains how the shift operator d is realized ‘geometrically’ by the natural mor-
phisms λX : S1 ∧X −→ shX and λ̃X : X −→ Ω shX.
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Lemma 8.6. For every symmetric spectrum X the effect on naive homotopy groups of the morphism
λX : S1 ∧X −→ shX coincides with the action of the shift operator d ∈M in the sense that the square

π̂kX
d· //

S1∧− ∼=
��

sh(π̂kX)

π̂1+k(S1 ∧X)
π̂1+k(λX)

// π̂1+k(shX)

commutes up to the sign (−1)k. In the context of spaces, or if X is levelwise Kan, the squares

π̂kX
d· //

π̂k(λ̃X)

��

sh(π̂kX)

π̂k(Ω shX)
α

∼= // π̂1+k(shX)

and π̂k(Ωn shnX)

π̂k(Ωnλ̃shn X)

��

∼=
αn // shn(π̂kX)

shn d·
��

π̂k(Ωn+1 shn+1X)
∼=

αn+1

// shn+1(π̂kX)

also commute up to the sign (−1)k.

Proof. The level n component λn : S1 ∧Xn −→ (shX)n = X1+n is the composite

S1 ∧Xn

∼=−−−−−→
twist

Xn ∧ S1 σn−−−→ Xn+1
(1,...,n,n+1)−−−−−−−−→ X1+n .

So the square

πk+nXn

S1∧−
��

ι∗ // πk+n+1Xn+1

(1,...,n,n+1)∗

��
π1+k+n(S1 ∧Xn)

π1+k+n(λX)
// π1+k+nX1+n

does not in general commute since both ways around the square differ by the coordinate permutation of
S1+k+n which moves the first coordinate past the other ones. So the square commutes up to the sign of
this permutation, which is (−1)k+n. As n increases, the maps (−1)n(1, . . . , n, n + 1)∗ ◦ ι∗ : πk+nXn −→
πk+1+nX1+n stabilize to the left multiplication of the shift operator d, see Example 8.5, which completes
the proof for the first square.

For the second square we exploit the adjunction relations between loop and suspension. More precisely,
we have the relation λX = ε ◦ (S1 ∧ λ̃X) where ε : S1 ∧ ΩX −→ X is the adjunction counit. We deduce

π̂1+k(λx) ◦ (S1 ∧ −) = π̂1+k(ε) ◦ π̂1+k(S1 ∧ λ̃X) ◦ (S1 ∧ −)

= π̂1+k(ε) ◦ (S1 ∧ −) ◦ π̂k(λ̃X) = α ◦ π̂k(λ̃X)

as maps from π̂kX to π̂1+k(shX). The second and third equalities are naturality of the suspension isomor-
phism respectively Proposition 2.6. Since the first square commutes (up to the specified sign), so does the
second.

The last square can be broken up into three parts as follows:

shn(π̂kX)

shn d·

��

π̂k+n(shnX)

d·
xxqqqqqqqqqqqqqqq

π̂k+n(λ̃shn X)
&&MMMMMMMMMMMMMM

π̂k(Ωn shnX)

π̂k(Ωnλ̃shn X)

��

∼=
αnoo

shn+1(π̂kX) π̂k+n+1(shn+1X) π̂k+n(Ω shn+1X)
∼=
α

oo π̂k(Ωn+1 shn+1X)
∼=
αn

oo

The left and right parts commute by the naturality of the equality π̂k+1(shA) = sh(π̂kA) respectively the
loop isomorphism; the middle triangle commutes up to the sign (−1)k by the previous paragraph (for X
replaced by shnX). �
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8.2. Algebraic properties of tame M-modules. In this section we discuss some algebraic prop-
erties of tameM-modules. It turns out that tameness is a rather restrictive condition. We introduce some
useful notation and terminology. For an injective map f : ω −→ ω we write |f | for the smallest number
i ≥ 0 such that f(i+ 1) 6= i+ 1. So in particular, f restricts to the identity on {1, . . . , |f |}. An element x
of an M-module W has filtration n if for every f ∈ M with |f | ≥ n we have fx = x. We denote by W (n)

the subgroup of W of elements of filtration n; for example, W (0) is the set of elements fixed by all f ∈M.
We say that x has filtration exactly n if it lies in W (n) but not in W (n−1). By definition, an M-module W
is tame if and only if every element has a finite filtration, i.e., if the groups W (n) exhaust W .

The following lemmas collect some elementary observations, first for arbitraryM-modules and then for
tame M-modules.

Lemma 8.7. Let W be any M-module.

(i) If two elements f and g of M coincide on n = {1, . . . , n}, then fx = gx for all x ∈W of filtration n.
(ii) For n ≥ 0 and f ∈M set m = max{f(n)}. Then f ·W (n) ⊆W (m).
(iii) If x ∈W has filtration exactly n with n ≥ 1, then dx has filtration exactly n+ 1, where d ∈ M is the

shift operator.
(iv) Every homomorphism from the injection monoid M to a group is trivial.
(v) Let V ⊆W be an M-submodule such that the action of M on V and W/V is trivial. Then the action

of M on W is also trivial.

Proof. (i) We can choose a bijection γ ∈ M which agrees with f and g on n, and then γ−1f and
γ−1g fix n elementwise. So for x of filtration n we have (γ−1f)x = x = (γ−1g)x. Multiplying by γ gives
fx = gx.

(ii) If g ∈M satisfies |g| ≥ m, then gf and f agree on n. So for all x ∈W (n) we have gfx = fx by (i),
which proves that fx ∈W (m).

(iii) We have d ·W (n) ⊆W (n+1) by part (ii). To prove that d increases the exact filtration we consider
x ∈W (n) with n ≥ 1 and show that dx ∈W (n) implies x ∈W (n−1).

For f ∈ M with |f | = n − 1 we define g ∈ M by g(1) = 1 and g(i) = f(i − 1) + 1 for i ≥ 2.
Then we have gd = df and |g| = n. We let h be the cycle h = (f(n) + 1, f(n), . . . , 2, 1) so that we have
|hd| = f(n) = max{f(n)}. Then fx ∈W (f(n)) by part (ii) and so

fx = (hd)(fx) = h(g(dx)) = (hd)x = x .

Altogether this proves that x ∈W (n−1).
(iv) Given any injection f ∈M we define another injection g ∈M by

g(i) =

{
i if i is odd, and

2 · g(i/2) if i is even.

Let s, t ∈ M be given by t(i) = 2i respectively s(i) = 2i − 1; then the relations gt = tf and gs = s hold
in M.

Let ϕ : M −→ G a homomorphism of monoids whose target G is a group. Then we have ϕ(s) =
ϕ(gs) = ϕ(g)ϕ(s), so ϕ(g) = 1. Morover, ϕ(t) = ϕ(g)ϕ(t) = ϕ(gt) = ϕ(tf) = ϕ(t)ϕ(f), so ϕ(f) = 1. Hence
ϕ is the trivial homomorphism.

(v) Since the M-action is trivial on V and W/V , every f ∈ M determines an additive map δf :
W/V −→ V such that x− fx = δf (x+V ) for all x ∈W . These maps satisfy δfg(x) = δf (x) + δg(x) and so
f 7→ δf is a homomorphism from the injection monoid to the abelian group of additive maps from W/V to
V . By part (iv) such a homomorphism is trivial, so δf = 0 for all f ∈M, i.e., M acts trivially on W . �

Lemma 8.8. Let W be a tame M-module.

(i) Every element of M acts injectively on W .
(ii) If the filtration of elements of W is bounded, then W is a trivial M-module.
(iii) If the shift operator d acts surjectively on W , then W is a trivial M-module.
(iv) If W is finitely generated as an abelian group, then W is a trivial M-module.
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Proof. (i) Consider f ∈ M and x ∈ W (n) with fx = 0. Since f is injective, we can choose h ∈ M
with |hf | ≥ n. Then x = (hf)x = h(fx) = 0, so f acts injectively.

(ii) Lemma 8.7 (iii) implies that if W = W (n) for some n ≥ 0, then n = 0, so the M-action is trivial.
(iii) Suppose M does not act trivially, so that W (0) 6= W . Let n be the smallest positive integer such

that W (0) 6= W (n). Then by part (iii) of Lemma 8.7, any x ∈ W (n) −W (0) is not in the image of d, so d
does not act surjectively.

(iv) The union of the nested sequence of subgroups W (0) ⊆ W (1) ⊆ W (2) ⊆ · · · is W . Since finitely
generated abelian groups are Noetherian, we have W (n) = W for all large enough n. By part (ii), the
monoid M must act trivially. �

Parts (i), (iii) and (iv) of Lemma 8.8 can fail for non-tame M-modules: we can let f ∈ M act on the
abelian group Z as the identity if the image of f : ω −→ ω has finite complement, and we let f acts as 0 if
its image has infinite complement.

Example 8.9. We introduce some important tame M-modules Pn for n ≥ 0. We denote by In the set of
ordered n-tuples of pairwise distinct elements of ω (or equivalently the set of injective maps from {1, . . . , n}
to ω). The monoid M acts from the left on this set by componentwise evaluation, i.e., f(x1, . . . , xn) =
(f(x1), . . . , f(xn)). We note that I0 has only one element, the empty tuple; for n ≥ 1, the set In is countably
infinite. The action of M on the set In is tame: the filtration of a tuple (x1, . . . , xn) is the maximum of
the components.

The module Pn = ZIn is the free abelian group with basis the set In of ordered n-tuples of pairwise
distinct elements of ω (or equivalently the set of injective maps from n to ω). The monoidM acts from the
left by additive extension of the action on the basis In. Since I0 has only one element, P0 is isomorphic to
Z with trivial M-action. For n ≥ 1, the basis is countably infinite and the M-action is non-trivial. The
module Pn is tame: the filtration of a basis element (x1, . . . , xn) is the maximum of the components. So

the filtration subgroup P(m)
n is generated by the n-tuples all of whose components are less than or equal to

m. An equivalent way of saying this is that P(m)
n is the free abelian group generated by all injections from

n to m; in particular, P(m)
n is trivial for m < n.

The module Pn represents the functor of taking elements of filtration n: for every M-module W , the
map

HomM-mod(Pn,W ) −→ W (n) , ϕ 7→ ϕ(1, . . . , n)

is bijective.

8.3. Examples. We discuss several classes of symmetric spectra with a view towards the M-action
on the stable homotopy groups.

Example 8.10 (Eilenberg-Mac Lane spectra). Every tameM-module W can be realized as the homotopy
group of a symmetric spectrum. For this purpose we modify the construction of the symmetric Eilenberg-
Mac Lane spectrum of an abelian group. We define a symmetric spectrum HW of simplicial sets by

(HW )n = W (n) ⊗ Z[Sn] ,

where W (n) is the filtration n subgroup of W and Z[Sn] refers to the simplicial abelian group freely generated
by the simplicial set Sn = S1∧. . .∧S1, divided by the subgroup generated by the basepoint. The symmetric
group Σn takes W (n) to itself and we let it act diagonally on (HW )n, i.e., on Sn by permuting the smash
factors. If M acts trivially on W , then this is just the ordinary Eilenberg-Mac Lane spectrum introduced
in Example 1.14. Note that HW is an Ω-spectrum if and only if the M-action on W is trivial.

Since (HW )n is an Eilenberg-Mac Lane space of type (W (n), n) the homotopy groups of the symmetric
spectrum HW are concentrated in dimension zero where we have π̂0HW ∼=

⋃
n≥0W

(n) = W asM-modules.

Example 8.11 (Loop and suspension). The loop ΩX and suspension S1∧X of a symmetric spectrum X are
defined by applying the functors Ω respectively S1 ∧− levelwise, where the structure maps do not interact
with the new loop or suspension coordinates, compare Section 2.1. We already saw in Proposition 2.6
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that loop and suspension simply shift the homotopy groups, and we shall now prove that the M-action is
unchanged in this process.

For every symmetric spectrum X the map S1 ∧ − : πk+nXn −→ π1+k+n(S1 ∧ Xn) is Σn-equivariant
and compatible with the stabilization maps as n increases. So the induced map S1 ∧ − : π̂kX −→
π̂1+k(S1 ∧ X) on colimits is M-linear, and hence, by Proposition 2.6 an isomorphism of M-modules.
Also by Proposition 2.6 the loop isomorphism α : π̂k(ΩX) −→ π̂1+kX is the composite of the suspension
isomorphism S1 ∧− : π̂k(ΩX) −→ π̂1+k(S1 ∧ (ΩX)), which isM-linear by the above, and the map induced
by the adjunction counit ε : S1 ∧ (ΩX) −→ X, which is M-linear. Hence the loop isomorphism α is
M-linear.

Example 8.12 (Shift). The shift is another construction for symmetric spectra which reindexes the homo-
topy groups, but unlike the suspension, this construction changes the M-action in a systematic way. The
shift of a symmetric spectrum X was defined in Example 3.9 by (shX)n = X1+n with action of Σn via
the monomorphism (1 +−) : Σn −→ Σ1+n. The structure maps of shX are the reindexed structure maps
for X.

If we view Σn as the subgroup of M of maps which fix all numbers bigger than n, then the homomor-
phism (1 + −) : Σn −→ Σ1+n has a natural extension to a shift homomorphism sh : M −→ M given by
(sh f)(1) = 1 and (sh f)(1 + i) = 1 +f(i) for i ≥ 1. The image of the shift homomorphism is the submonoid
of those g ∈ M with g(1) = 1. If W is an M-module, we denote by shW the shift of W , the M-module
with the same underlying abelian group, but with M-action by restriction along the shift homomorphism.
In other words, we set

f · shx = sh((sh f) · x) .

Here we denote by shx an element x of W when we think of it as an element of shW . Since | sh f | = 1+ |f |,
shifting an M-module shifts the filtration subgroups, i.e., we have (shW )(n) = W (1+n) for all n ≥ 0. Thus
the M-module shW is tame if and only if W is.

For any symmetric spectrum X, integer k and large enough n we have

π(k+1)+n(shX)n = πk+(1+n)X1+n ,

and the maps in the colimit system for π̂k+1(shX) are the same as the maps in the colimit system for π̂kX.
Thus we get π̂k+1(shX) = π̂kX as abelian groups. However, the action of a permutation on πk+1+n(shX)n
is shifted by the homomorphism 1 +−, so we have

(8.13) π̂k+1(shX) = sh(π̂kX)

as M-modules.
If we iterate the shift construction, there are symmetries around that we want to keep track of. Indeed,

on the m-fold shift shmW of an M-module W there is also a Σm-action left via the ‘inclusion’ of Σm into
M by extension by the indentity. However, in order to make the iteration of the formula (8.13) equivariant,
we twisted this Σm-action by the sign action. So in other words, we let shmW denote same underlying
abelian group as W , but with Σm ×M-action by

(σ, f) · shm x = sgn(σ) · shm((σ + f) · x) .

Here we denote by shm x an element x of W when we think of it as an element of shmW . Another way to
rephrase this is to say that shmW equals the restriction of scalars of W along the ring homomorphism

Z[Σm ×M] −→ ZM

given on the preferred basis Σm ×M by (σ, f) 7→ sgn(σ) · (σ + f). We have 1m + f = shm f , sos far as the
M-action is concerned, shmW is simply the m-fold shift of W .

Now we recall that for any symmetric spectrum X the iterated shift shmX has a left Σm-action on the
shifted coordinates. We claim that the relation

(8.14) π̂k+m(shmX) = shm(π̂kX)
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holds as Σm ×M-modules. Indeed, as far as theM action is concerned, this is simply the m-fold iteration
of (8.13). For the Σm-action we recall construction 8.2 of the M-action: If [x] ∈ πkX is represented by
[x] ∈ πk+nXn, we can assume that n ≥ m. Then, by definition,

σ · [x] = [sgn(γ) · (γ + 1m−n)∗(x)] .

The sign sgn(γ + 1n−m) which appear on the right hand side is compensated by the sign that we built into
the Σm-action on shmW ; hence (8.14) holds Σm ×M-equivariantly.

Example 8.15 (Twisted smash products). So we consider a symmetric spectrum X and a based Σm-space
(or any pointed Σm-simplicial set) L, for some m ≥ 0, and describe the homotopy groups of a twisted
smash product L.mX (see Example 3.27) as a functor of the homotopy groups of L∧X, using all available
structure. This is essentially a reinterpretation of the additive isomorphism (3.30) paying close attention
to the action on the injection monoid. Since L .m X is isomorphic to GmL ∧ X this gives a description
of the naive homotopy groups of smash products with semifree spectra. Since free and semifree symmetric
spectra are special cases of twisted smash products, this will specialize to formulas for the naive homotopy
groups of free and semifree symmetric spectra.

We start from the Σm-equivariant morphism ηL,X : L ∧ X −→ shm(L .m X) of symmetric spectra
which was defined in (3.28) in level n as the map

[1 ∧ −] : L ∧Xn −→ Σ+
m+n ∧Σm×Σn L ∧Xn = (L .m X)m+n = shm((L .m X))n .

The induced map on naive homotopy groups

(ηL,X)∗ : π̂k+m(L ∧X) −→ π̂k+m(shm(L .m X)) = shm(π̂k(L .m X))

is Σm × M-linear, where the target is the m-fold algebraic shift, compare (8.12), of the M-module
π̂k(L .m X) that we want to calculate. The Σm × M-action on the target is obtained from the origi-
nal M-action on π̂k(L .m X) by restriction of scalars along the ring homomorphism Z[Σm ×M] −→ ZM
defined on the preferred basis by

(σ, f) 7−→ sgn(σ) · (σ + f) .

We denote by ZM〈m〉 the monoid ring ofM with its usual left multiplication action, but with a right action
by the monoid Σm ×M via restriction along the above ring homomorphism Z[Σm ×M] −→ ZM. Then
the Σm ×M-linear map (ηL,X)∗ is adjoint to the M-linear map

η̂∗ : ZM〈m〉 ⊗Σm×M π̂k+m(L ∧X) −→ π̂k(L .m X)(8.16)

f ⊗ x 7−→ f · (ηL,X)∗(x) .

Proposition 8.17. For every m ≥ 0, every based Σm-space (or Σm-simplicial set) L and every symmetric
spectrum X the map (8.16)

η̂∗ : ZM〈m〉 ⊗Σm×M π̂k+m(L ∧X) −→ π̂k(L .m X)

is an isomorphism of M-modules.

We remark that as a right Σm ×M-module, ZM〈m〉 is free of countably infinite rank. One possible
basis is given by the ‘(m,∞)-shuffles’, i.e., by those bijections f ∈ M which satisfy f(i) < f(i + 1) for all
i 6= m. In other words, all bijective f which keep the sets m = {1, . . . ,m} and {m+ 1,m+ 2, . . . } in their
natural order. So Proposition 8.17 in particular implies that the underlying abelian group of π̂k(L .m X)
is a countably infinite sum of copies of the underlying abelian group of π̂k+m(L ∧X), i.e., this proposition
refines the additive calculation of (3.30).

Proof. We denote by Om the set of order preserving injections f : m −→ ω and observe that the
composite ⊕

f∈Om

π̂k+m(L ∧X) −→ ZM〈m〉 ⊗Σm×M π̂k+m(L ∧X)
η̂∗−−−→ π̂k(L .m X)

is the bijection (3.30), where the first map sends a class x ∈ π̂k+m(L ∧ X) in the summand indexed by

f ∈ Om to f̃ ⊗x ∈ ZM〈m〉⊗Σm×M π̂k+m(L∧X) where f̃ ∈M is the unique (m,∞)-shuffle which restricts
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to f on m. Since the (m,∞)-shuffles form a right Σm ×M-basis of ZM〈m〉, the first map, and hence the
map η̂∗, is bijective. �

Example 8.18 (Free and semifree symmetric spectra). We saw in Example 3.20 that the zeroth stable
homotopy group of the free symmetric spectrum F1S

1 is free abelian of countably infinite rank. We now
refine this calculation to an isomorphism of M-modules π̂0(FmS

m) ∼= Pm, see (8.20) below; here Pm is
the tame M-module which represents taking filtration m elements, see Example 8.9. So while the groups
π̂0(FmS

m) are all additively isomorphic for different positive m, the M-action distinguishes them. In
particular, there cannot be a chain of π̂∗-isomorphisms between FmS

m and FnS
n for n 6= m.

The calculation of the M-action on free and semifree symmetric spectra is a special case of the very
general formula (8.16) for the naive homotopy groups of a twisted smash product. Let L be a pointed space
(or simplicial set) with a left action by the symmetric group Σm, for some m ≥ 0. Recall that GmL denotes
the semifree symmetric spectrum generated by L in level m, defined in Example 3.23, which is also equal
to the twisted smash product L .m S of L with the sphere spectrum. The functor Gm is left adjoint to
evaluating a symmetric spectrum at level m, viewed as a functor with values in pointed Σm-spaces. The
Σm-equivariant homomorphism ηL,S : Σ∞L = L ∧ S −→ shm(GmL) induces a Σm ×M-linear map

(ηL,X)∗ : πs
k+mL = π̂k+m(Σ∞L) −→ π̂k+m(shm(GmL)) = shm(π̂k(GmL))

on naive homotopy groups, where the target is the m-fold algebraic shift, compare (8.12), of theM-module
π̂k(GmL). Adjoint to this is the morphism of M-modules

η̂∗ : ZM〈m〉 ⊗Σm×M π̂k+m(L ∧ S) −→ π̂k(GmL) , f ⊗ x 7−→ f · (ηL,X)∗(x) .

which is an isomorphism by Proposition 8.17 for X = S.
Since the M-action on πs

k+mL = π̂k+m(L ∧ S) is trivial [justify] we get

ZM〈m〉 ⊗Σm×M π̂k+m(L ∧ S) ∼= (ZM〈m〉 ⊗1×M Z)⊗Σm πs
k+mL .

The tame M-module Pm has a compatible right Σm-action which is given on the basis by permuting the
components of an m-tuple, i.e., (x1, . . . , xm)γ = (xγ(1), . . . , xγ(m)). The map

ZM〈m〉 ⊗1×M Z −→ Pm , f ⊗ 1 7−→ (f(1), . . . , f(m))

is an isomorphism of M-Σm-bimodules; so combining all these isomorphisms we finally get a natural
isomorphism of M-modules

(8.19) Pm ⊗Σm (πs
k+mL)(sgn)

∼=−−→ π̂k(GmL) , f ⊗ x 7−→ f · (ηL,X)∗(x) .

On the left of the tensor symbol, the group Σm acts by what is induced on stable homotopy groups by the
action on L, twisted by sign.

Free symmetric spectra are special cases of semifree symmetric spectra. For a pointed space K (without
any group action) we have FmK ∼= Gm(Σ+

m ∧K) and πs
k+m(Σ+

m ∧K) ∼= ZΣm ⊗ πs
k+mK as Σm-modules.

So (8.19) specializes to a natural isomorphism of M-modules

(8.20) Pm ⊗ πs
k+mK

∼= π̂k(FmK) .

Here πs
k+mK is the (k +m)th stable homotopy group of K; the monoid M acts only on Pm.

Example 8.21 (Induction). The shift functor has a left adjoint induction functor . given by (.X)0 = ∗
and

(.X)1+n = Σ+
1+n ∧1×Σn Xn

for n ≥ 0. Here Σn acts from the right on Σ1+n via the monomorphism (1 + −) : Σn −→ Σ1+n. The
structure map (Σ+

1+n ∧Σn Xn) ∧ S1 −→ Σ+
1+n+1 ∧Σn+1

Xn+1 is induced by (−+ 1) : Σ1+n −→ Σ1+n+1 (the
‘inclusion’) and the structure map of X.
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The effect of induction on naive homotopy groups is given as a special case of the general formula (8.16)
for the homotopy groups of a twisted smash product. Indeed, since .X = S0 .1 X, that formula specializes
to a natural isomorphism of M-modules

(8.22) ZM〈1〉 ⊗M π̂k+1X ∼= π̂k(.X) .

Here ZM〈1〉 denotes the monoid ring of M with its usual left action, but with right action through the
shift homomorphism sh :M−→M given by (sh f)(1) = 1 and (sh f)(i) = f(i− 1) + 1 for i ≥ 2. As a right
M-module, ZM〈1〉 is free of countably infinite rank (one possible basis is given by the transpositions (1, n)
for n ≥ 1). So the isomorphism (8.22) in particular implies that the underlying abelian group of π̂k(.X)
is a countably infinite sum of copies of the underlying abelian group of π̂k+1X, a fact which we already
observed in Example 3.17.

The functor ZM〈1〉 ⊗M − is left adjoint to HomZM(ZM〈1〉,−), which is a fancy way of writing the
algebraic shift functor W 7→ shW . Under the isomorphism (8.22) and the identification (8.13), the adjunc-
tion between shift and induction as functors of symmetric spectra corresponds exactly to the adjunction
between W 7→ shW and ZM〈1〉 ⊗ZM − as functors of tame M-modules.

Example 8.23 (Infinite products). Finite products of symmetric spectra are π̂∗-isomorphic to finite wedges,
so stable homotopy groups commute with finite products. But homotopy groups do not in general commute
with infinite products. This should not be surprising because stable homotopy groups involves a sequential
colimit, and these generally do not preserve infinite products.

There are even two different ways in which commutation with products can fail. First we note that an
infinite product of a family {Wi}i∈I of tame M-modules is only tame if almost all the modules Wi have
trivialM-action. Indeed, if there are infinitely many Wi with non-trivialM-action, then by Lemma 8.8 (ii)
the product

∏
i∈IWi contains tuples of elements whose filtrations are not bounded. We define the tame

product of the family {Wi}i∈I by
tame∏
i∈I

Wi =
⋃
n≥0

(∏
i∈I

W
(n)
i

)
,

which is the largest tame submodule of the product and thus the categorical product in the category of
tame M-modules.

Now we consider a family {Xi}i∈I of symmetric spectra. Since the monoid M acts tamely on the
homotopy groups of any symmetric spectrum, the natural map from the homotopy groups of the product
spectrum to the product of the homotopy groups always lands in the tame product. But in general, this
natural map

(8.24) π̂k

(∏
i∈I

Xi

)
−→

tame∏
i∈I

π̂kXi

need not be an isomorphism.
In Remark 2.20 we exhibited a countable family of symmetric spectra with trivial naive homotopy groups

whose product has non-trivial (even infinitely generated) naive homotopy groups. Now we modify that
example slightly and consider the symmetric spectra (F1S

1)≤i obtained by truncating the free symmetric
spectrum F1S

1 above level i, i.e.,

((F1S
1)≤i)n =

{
(F1S

1)n for n ≤ i,
∗ for n ≥ i+ 1

with structure maps as a quotient spectrum of F1S
1. Then (F1S

1)≤i has trivial naive homotopy groups for
all i. The 0-th homotopy group of the product

∏
i≥1(F1S

1)≤i is the colimit of the sequence of maps∏
i≥n

P(n)
1 −→

∏
i≥n+1

P(n+1)
1
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which first projects away from the factor indexed by i = n and then takes a product of inclusions P(n)
1 −→

P(n+1)
1 . The colimit is the quotient of the tame product

∏tame
i≥1 P1 by the sum

⊕
i≥1 P1; so π̂0 of the

product is non-zero and even has a non-trivial M-action. [check whether this is stably contractible; is the
product of semistable spectra again semistable; is the product of π̂∗-isos between semistable spectra]

We now return to the important class of semistable symmetric spectra and collect various equiva-
lent characterizations of this class of symmetric spectra. Many symmetric spectra which arise naturally
are semistable, compare Example 8.27. We recall from Definition 3.14 that a symmetric spectrum X is
semistable if the morphism λX : S1 ∧X −→ shX is a π̂∗-isomorphism. The morphism λ̃X : X −→ Ω(shX)
is adjoint to λX . In Section 4.2 we used a spectrum Ω∞sh∞X as a tool for showing that π̂∗-isomorphisms are
stable equivalences. The spectrum Ω∞sh∞X was defined as the mapping telescope of a sequence of spectra
Ωn shnX, see (4.18). This construction comes with a canonical natural morphism λ∞X : X −→ Ω∞sh∞X.
For a description of the naive homotopy groups of Ω∞sh∞X as a functor of π̂∗X see Exercise E.I.54.

Theorem 8.25. For every symmetric spectrum X the following conditions are equivalent.

(i) The symmetric spectrum X is semistable.
(ii) The shift operator d acts bijectively on all naive homotopy groups of X.
(iii) The injection monoid M acts trivially on all naive homotopy groups of X.
(iv) The map c : π̂kX −→ πkX from naive to true homotopy groups is an isomorphism for all integers k.
(v) There exists a π̂∗-isomorphism from X to an Ω-spectrum.

In the context of spaces, or if X is levelwise Kan, then conditions (i)–(v) are furthermore equivalent to the
following conditions:

(vi) The morphism λ̃X : X −→ Ω(shX) is a π̂∗-isomorphism.
(vii) The morphism λ∞X : X −→ Ω∞sh∞X is a π̂∗-isomorphism.
(viii) The symmetric spectrum Ω∞sh∞X is an Ω-spectrum.

(ix) The symmetric spectrum Ω∞sh∞X is semistable.

In the context of simplicial sets, then conditions (i)–(v) are furthermore equivalent to the condition:

(x) There exists a π̂∗-isomorphism from X to an injective Ω-spectrum.

Proof. The equivalence of conditions (i) and (ii) follows from the first commutative square of
Lemma 8.6. The equivalence of conditions (ii) and (iii) is a general algebraic property of tameM-modules,
see Lemma 8.8 (iii). Condition (i) implies condition (iv) by Proposition 6.3. If condition (iv) holds, then the
morphism ηX : X −→ QX is a π̂∗-isomorphism to an Ω-spectrum, so condition (v) holds. Every Ω-spectrum
is semistable, so if condition (v) holds, then X is π̂∗-isomorphic to a semistable symmetric spectrum, hence
itsself semistable (compare Proposition 3.15 (ii)). This shows that conditions (i) through (v) are equivalent.

Now we assume that we are in the context of spaces, or that X is levelwise Kan. The equivalence of
conditions (i) and (vi) is then the content of Proposition 3.15 (iii). If X is semistable, then the morphism
λ∞X : X −→ Ω∞sh∞X is a π̂∗-isomorphism with semistably target, by Proposition 4.24. So conditions (vii)
and (viii) hold. Every Ω-spectrum is semistable, so condition (viii) implies condition (ix).

(ix) ⇒ (i): If Ω∞sh∞X is semistable, then by definition the injection monoid M acts trivially on all
naive homotopy groups of Ω∞sh∞X. The map λ∞X : X −→ Ω∞sh∞X induces anM-linear monomorphism
on naive homotopy groups. So M also acts trivially on π̂∗X, and thus X is semistable. �

Proposition 8.26. A symmetric spectrum X is semistable if it satisfies one of the following conditions.

(i) For every k ∈ Z there is an n ≥ 0 such that the canonical map πk+nXn −→ π̂kX is surjective.
(ii) The naive homotopy groups of X are dimensionwise finitely generated as abelian groups.

Proof. We show that in both cases the injection monoids acts trivially on the naive homotopy groups
of X; so X is semistable by Theorem 8.25.

(i) Under the assumption every element of π̂kX has filtration n. But tame M-modules with bounded
filtration necessarily have trivial M-action by Lemma 8.8 (ii).

(ii) If π̂kX is finitely generated as an abelian group, then tameness forces the M-action to be trivial
on π̂kX (Lemma 8.8 (iv)). �
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Example 8.27. An important special case where condition (i) in Proposition 8.26 above holds is when the
homotopy groups of a symmetric spectrum X stabilize, i.e., for each k ∈ Z there exists an n ≥ 0 such that
from the group πk+nXn on, all maps in the sequence (1.7) defining π̂kX are isomorphisms.

Examples of symmetric spectra with stabilizing homotopy groups include all suspension spectra, Ω-
spectra, or Ω-spectra from some point Xn on. So it includes Eilenberg-Mac Lane spectra HA associated
to an abelian group (see Example 1.14) as well as spectra of topological K-theory (Example 1.20) and
algebraic K-theory (Example 3.50). So all these kinds of symmetric spectra are semistable.

Remark 8.28. By definition, a symmetric spectrum X is semistable if λX : S1 ∧ X −→ shX is a π̂∗-
isomorphism. So for semistable X the morphism λX is also a stable equivalence. The converse is not true:
in Exercise E.I.57 we discuss a symmetric spectrum X which is not semistable, but such that S1 ∧X and
shX are stably contractible and hence λX is a stable equivalence.

Lemma 8.29. For every symmetric spectrum A the morphism c : π̂kA −→ πkA from the naive to the
true homotopy groups coequalizes the action of the injection monoid M, i.e., we have c(fx) = c(x) for all
f ∈M and x ∈ π̂kA.

Proof. The spectrum QA is an Ω-spectrum, hence semistable, so the injection monoidM acts trivially
on its naive homotopy groups (compare Theorem 8.25). So we have

c(fx) = f · (cx) = c(x) .

in πkX = π̂k(QX) by the naturality of the M-action. �

Example 8.30. We collect some examples of symmetric spectra which are not semistable. Example 8.18
identifies the homotopy groups of free and semifree symmetric spectra as

π̂k(FmK) ∼= Pm ⊗ πs
k+mK respectively π̂k(GmL) ∼= Pm ⊗Σm (πs

k+mL)(sgn) .

Since Pm is free of countably infinite rank as a right Σm-module, the free or semifree symmetric spectra
generated in positive levelm are never semistable unlessK respectively L has trivial stable homotopy groups.
For a semifree symmetric spectrum generated in positive level m we have sh(Gm) ∼= Gm−1(shL)∨(S1∧GmL)
by (3.26), and the morphism λGmL : S1 ∧GmL −→ sh(GmL) is the inclusion of a wedge summand.

If W is a tame M-module with non-trivial M-action, then π̂0HW ∼= W as M-modules and so the
generalized Eilenberg-Mac Lane spectrum HW as defined in Example 8.10 is not semistable.

Example 8.23 shows that an infinite product of symmetric spectra with trivial homotopy groups can
have homotopy groups with non-trivial M-action. In particular, infinite products of semistable symmetric
spectra need not be semistable. As we already discussed in Example 3.17, if X has at least one non-trivial
homotopy group, then the induced spectrum .X is not semistable. We can now also deduce this from the
formula (8.22) for the naive homotopy groups of .X in terms of the naive homotopy groups of X. This
formula shows that Mc acts non-trivially on π̂k(.X) whenever π̂k+1X is nonzero.

The ‘trivial M-action’ criterion is often handy for showing that semistability is preserved by certain
constructions. Here are some examples of this.

Example 8.31. If f : X −→ Y is any morphism of symmetric spectra, then the homotopy groups of the
spectra X, Y and the mapping cone C(f) = [0, 1]+ ∧X ∪f Y are related by a long exact sequence of naive
homotopy groups as in Proposition I.2.12. This is even an exact sequence ofM-modules; indeed,M-lineariy
is clear for the two maps induced by homomorphisms of symmetric spectra. The connecting homomorphism
is M-linear because the M-action does not change under loop and suspension isomorphisms. Trivial tame
M-modules are closed under taking submodules, quotient modules and extensions (Lemma 8.7 (iv)); so if
two out of three graded M-modules π̂∗X, π̂∗Y and π̂∗C(f) have trivial M-action, then so does the third.
Thus the mapping cone of any morphism between semistable symmetric spectra is semistable.

Example 8.32. Let F : J −→ Sp be a functor from a small category J to the category of symmetric
spectra. If F (j) is semistable for each object j of J , then the homotopy colimit of F over J is semistable.



184 I. BASICS

Indeed, the homotopy colimit is the geometric realization of the simplicial replacement q∗F in the
sense of Bousfield and Kan [12, Ch. XII, 5.1], a simplicial object of symmetric spectra. The spectrum of
n-simplices of q∗F is a wedge, indexed over the n-simplices of the nerve of J , of spectra which occur as
values of F . The geometric realization |q∗F | is the sequential colimit, over h-cofibrations, of the realizations
of the skeleta sknq∗F in the simplicial direction, so it suffices to show that each of these is semistable.
The skeleton inclusion realizes to an h-cofibration | skn−1q∗F | −→ | sknq∗F | whose quotient symmetric
spectrum is a wedge, indexed over the non-degenerate n-simplices of the nerve of J , of n-fold suspensions
of spectra which occur as values of F . So the quotient spectra are semistable, and so by induction the
symmetric spectra | sknq∗F | are semistable.

We revisit the diagonal construction first discussed in Example 2.21. More previsely, we’ll investigate
a generalization.

Construction 8.33 (Diagonal of an I-spectrum). We recall the category I: it has an object n = {1, . . . , n}
for every non-negative integer n, including 0 = ∅. Morphisms in I are all injective maps.

Suppose we are given a functor H : I −→ Sp from the category I to the category of symmetric spectra.
We define a new symmetric spectrum diagH, the diagonal of H. The levels of the diagonal are given by

(diagH)n = H(n)n ,

i.e., we take the n-th level of the symmetric spectrum H(n) with the diagonal Σn-action. The structure
map (diagH)n ∧ S1 −→ (diagH)n+1 is the composite around either way in the commutative square

H(n)n ∧ S1
σnn //

H(ι)n∧Id

��

H(n)n+1

H(ι)n+1

��
H(n + 1)n ∧ S1

σn+1
n

// H(n + 1)n+1

where ι : n −→ n + 1 is the inclusion. This constructions generalizes the diagonal of a sequence of
symmetric spectra as discussed in Example 2.21. Indeed, given a sequence (Xi, f i) we can define a I-
spectrum by H(n) = Xn and α : n −→ m induces fm−1 · · · fn : Xn −→ Xm. Then the diagonal diagiX

i

as defined in Example 2.21 equals the diagonal diagH as defined here.

[From I-functors to tame M-modules.] Let F : I −→ C be a functor from the category I to a category
C which has filtered colimits. We construct a natural tame left action by the injection monoid M on the
colimit of F , formed over the subcategory N of inclusions. [... spell out]

Example 8.34 (From symmetric spectra to I-functors.). One can break the construction of theM-action
on the naive homotopy groups of a symmetric spectrum up into two steps and pass through the intermediate
category of I-functors.

Given a symmetric spectrum X and an integer k we assign an I-functor πkX to the symmetric spectrum
X. On objects, this I-functor is given by

(πkX)(n) = πk+nXn

if k + n ≥ 2 and (πkX)(n) = 0 for k + n < 2. If α : n −→ m is an injective map and k + n ≥ 2, then
α∗ : (πkX)(n) −→ (πkX)(m) is given as follows. We choose a permutation γ ∈ Σm such that γ(i) = α(i)
for all i = 1, . . . , n and set

α∗(x) = sgn(γ) · γ(ιm−n(x))

where ι : πk+nXn −→ πk+n+1Xn+1 is the stabilization map (1.7). Justify that this definition is independent
of the choice of permutation γ and really defines a functor on the category I.

We will now identify the naive homotopy groups of the diagonal with the sequential colimit of the
naive homotopy groups of the symmetric spectra H(n). The action of the injection monoid comes with
an extra twist as follows. For every integer k we can consider the I-functor n 7→ π̂kH(n). As n varies
over the subcategory N of inclusions, we can take the colimit colimn∈N π̂kH(n) in the category of tame
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M-modules. Such colimits are created on underlying abelian groups (and even on underlying sets), so may
as well take the colimit of the sequence of underlying abelian groups and endow it with the tameM-action
inherited from the tame M-actions of π̂kH(n) for varying n. We refer to this as the internal M-action on
the sequential colimit.

However, as explained above, this colimit comes with another externalM-action, because it came from
a functor defined on the category I. The external action is by homomorphisms ofM-modules; so altogether
the group colimn∈N π̂kH(n) comes with a naturalM×M-action. In the following proposition we consider
the diagonalM-action, i.e., the restriction along the diagonal homomorphismM−→M×M, and denote
it by ‘diag’.

By the very definition of the structure maps of diagH, the square

πk+nH(n)n //

σn

��

π̂kH(n)

π̂kH(ι)

��
πk+n+1H(n + 1)n+1

// π̂kH(n + 1)

commutes, where the horizontal maps are the canonical maps to the colimit. So in the colimit over n ∈ N,
ther horizontal maps conspire into a natural morphism of abelian groups

(8.35) π̂k(diagH) = colimn πk+nH(n)n −→ colimn∈N π̂kH(n) .

Proposition 8.36. For any I-symmetric spectrum H : I −→ Sp the map (8.35)

π̂k(diagH) −→ diag (colimn∈N π̂kH(n))

is an isomorphism of M-modules.

Proof. The group colimn∈N π̂kH(n) is obtained from the N × N-functor (n,m) 7→ πk+mH(n)m by
first taking colimit over m and then over n. Since the diagonal N is cofinal in N × N, the colimit over the
diagonal of any such functor maps isomorphically to the colimit over N×N. In the case at hand, this show
that the map (8.35) is an isomorphism of abelian groups. The fact that the map is also M-linear with
respect to the diagonal M-action on the target is straightforward from the definitions. �

In Example 4.26 we considered the stable equivalence λ : F1S
1 −→ S which is adjoint to the identity

in level 1. This morphism is not a π̂∗-isomorphism, but a consequence of Theorem 6.2 is that the stable
equivalence λ also induces isomorphisms of true homotopy groups. Since the sphere spectrum S is semistable,
its naive and true homotopy groups ‘coincide’ and so the homotopy groups of the spectrum F1S

1 are
isomorphic to the stable stems. However, we can also calculate the true homotopy groups π∗(FmS

n)
directly with the tools developed so far.

Remark 8.37. In addition to the properties of Proposition ??, we also know (by Proposition 2.6) that the
left Σn-action on the sphere coordinates of FmS

n induces the sign action on naive homotopy groups, so in
particular on the naive fundamental class. By naturality, the induced action on true fundamental class is
then also by sign.

By Example 6.13 the right action by a permutation σ ∈ Σm on the free coordinates of FmS
n takes ιnm

to sgn(σ) · ιnm. We emphasize that the right action by a permutation σ ∈ Σm on the free coordinates of
FmS

n does not generally multiply the naive fundametal class ιnm by a sign. In fact, we have an isomorphism
of M-modules π̂n−m(FmS

n) ∼= Pm which takes the fundamental class ιnm to the basis element (1, . . . ,m).
This isomorphism is not only left M-linear, but also equivariant for the right Σm-action. Hence the naive
homotopy group π̂n−m(FmS

n) is actually free as a right ZΣm-module.

8.4. A spectral sequence for true homotopy groups. For semistable spectra the naive and true
homotopy groups agree via the natural homomorphism c : π̂∗X −→ π∗X. If X is not semistable, then
there must be at least one dimension k for which the injection monoidM acts non-trivially on π̂kX; since c
factors over the M-coinvariants (compare Lemma 8.29), the map c : π̂kX −→ πkX is then not injective.
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For spectra which are not semistable it would thus be interesting to describe the true homotopy groups in
terms of the naive homotopy groups, which are often more readily computable from an explicit presentation
of the symmetric spectrum. The bad news is that the true homotopy groups are not a functor of the classical
homotopy groups, not even if one takes the M-action into account [give an example as exercise]. But the
next best thing is true: the naive and true homotopy groups are only a spectral sequence apart from each
other.

In this section we construct a spectral sequence (see Theorem 8.41)

E2
p,q = Hp(M, π̂qX) =⇒ πp+qX

which converges strongly to the true homotopy groups of a symmetric spectrum X and whose E2-term is
given by the homology of the naive homotopy groups, viewed as modules over the injection monoid M.
The homology groups above are defined as Tor groups over the monoid ring of M, i.e., Hp(M,W ) =

TorZMp (Z,W ). We refer to this spectral sequence as the naive-to-true spectral sequence.
We will see below that the naive-to-true spectral sequence collapses in many cases, for example for

semistable symmetric spectra (Example 8.45) and for free symmetric spectra (Example 8.46), and it always
collapses rationally (Example 8.49). The naive-to-true spectral sequence typically does not collapse for
semifree symmetric spectra, see Example 8.47.

We need to develop more homological algebra of tame M-modules. We recall from Example 8.9
that In denotes the set of ordered n-tuples of pairwise distinct elements of ω (or equivalently the set of
injective maps from {1, . . . , n} to ω). This is a tame M-set with action by componentwise evaluation, i.e.,
f(x1, . . . , xn) = (f(x1), . . . , f(xn)).

Lemma 8.38. The classifying space BM of the injection monoid M is contractible. More generally, the
simplicial set EM×M In is weakly contractible.

Proof. The classifying space BM is the geometric realization of the nerve of the category BM with
one object whose monoid of endomorphisms isM. Let t ∈M be given by t(i) = 2i. We define an injective
endomorphism ct :M−→M as follows. For f ∈M and i ∈ ω we set

ct(f)(i) =

{
i if i is odd, and

2 · f(i/2) if i is even.

Even though t is not bijective, the endomorphism ct behaves like conjugation by t in the sense that the
formula ct(f) · t = t · f holds. Thus t provides a natural transformation from the identity functor of BM
to B(ct). On the other hand, if s ∈ M is given by s(i) = 2i − 1, then ct(f) · s = s for all f ∈ M, so s
provides a natural transformation from the constant functor of BM with values 1 ∈ M to B(ct). Thus
via the homotopies induced by t and s, the identity of BM is homotopic to a constant map, so BM is
contractible.

The simplicial set EM×M Inis isomorphic to the nerve of the translation category T (M, In) whose
objects are the elements of In and whose morphism from x to y are those monoid elements f which satisfy
fx = y. We consider the functor n + − : BM −→ T (M, In) which sends the unique object of BM to
the element (1, 2, . . . , n) of In and whose behavior on morphisms is given by f 7→ n + f . This functor
sends the monoid M isomorphically onto the endomorphism monoid of (1, 2, . . . , n) in T (M, In), which
means that n + − is fully faithful as a functor. For every element x ∈ In there exists a bijection σ ∈ M
such that σ · (1, . . . , n) = x, so every object of T (M, In) is isomorphic to the object (1, . . . , n). Thus the
functor n + − : BM −→ T (M, In) is an equivalence of categories, so it induces a weak equivalence of
nerves. Altogether, EM×M In is weakly equivalent to the classifying space BM, which we showed is
weakly contractible. �

In the following proposition, we let ZM〈1〉 denote the monoid ring ofM with its usual left action, but
with right action through the shift homomorphism sh :M−→M given by (sh f)(1) = 1 and (sh f)(1+i) =
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1 + f(1) for i ≥ 1. The relation (sh f)d = df implies that for every M-module W the map

ZM〈1〉 ⊗MW −→ W , f ⊗ x 7−→ fdx

[name it?] is well-defined.

Proposition 8.39. (i) Then for every n ≥ 0 the map

κ : P1+n −→ ZM〈1〉 ⊗M Pn

which sends the generator (1, . . . , 1+n) to the element 1⊗(1, . . . , n) of filtration 1+n in ZM〈1〉⊗MPn
is an isomorphism of M-modules.

(ii) For every M-module W , the homomorphism

ZM〈1〉 ⊗MW −→ W , f ⊗ x 7−→ fdx

[name it?] induces isomorphisms

H∗(M,ZM〈1〉 ⊗MW ) ∼= H∗(M,W )

on all homology groups.
(iii) For every n ≥ 0 and every abelian group A, the homology groups Hp(M,Pn ⊗ A) vanish in positive

dimensions.
(iv) For every n ≥ 0 and every Σn-module B we have a natural isomorphism

H∗(M,Pn ⊗Σn B) ∼= H∗(Σn;B) .

Proof. (i) For any n-tuple (x1, . . . , xn) of pairwise distinct natural numbers we can choose g ∈ M
with g(i) = xi for 1 ≤ i ≤ n. Because of

f ⊗ (x1, . . . , xn) = f ⊗ g(1, . . . , n) = f(1 + g) · (1⊗ (1, . . . , n))

the element 1⊗ (1, . . . , n) generates ZM〈1〉⊗MPn, so the map κ is surjective. The map ZM〈1〉⊗MPn −→
P1+n which sends f⊗(x1, . . . , xn) to (f(1), f(x1 +1), . . . , f(xn+1)) is right inverse to κ since the composite
sends the generator (1, . . . , 1 + n) to itself. So κ is also injective.

(ii) The M-bimodule ZM〈1〉 is free as a left and right module separately. So if P∗ is a resolution of
W by projective left M-modules, then ZM〈1〉 ⊗M P∗ is a a resolution of ZM〈1〉 ⊗MW by projective left
M-modules. Thus we get isomorphisms

TorZM∗ (Z,ZM〈1〉 ⊗MW ) = H∗(Z⊗M (ZM〈1〉 ⊗MW ))

∼= H∗((Z⊗M ZM〈1〉)⊗MW ) ∼= TorZM∗ (Z,W )

since Z⊗M ZM〈1〉 is again the trivial right M-module Z.
(iii) The groups TorZMp (Z, A) are isomorphic to the singular homology groups with coefficients in A

of the classifying space BM of the monoid M. This classifying space is contractible by Lemma 8.38, so
the groups TorZMp (Z, A) vanish for p ≥ 1, which proves the case n = 0. For n ≥ 1 we use induction and
parts (i) and (ii).

(iv) Since Pn is free as a right Σn-module, the functor Pn ⊗Σn − is exact. The functor takes the free
Σn-module of rank 1 to Pn, so by part (ii) it takes projective Σn-modules to tame M-modules which are
acyclic for the functor Z⊗M −.

Thus if P• −→ B is a projective resolution of B by Σn-modules, then Pn ⊗Σn P• is a resolution of
Pn ⊗Σn B which can be used to calculate the desired Tor groups. Thus we have isomorphisms

TorZM∗ (Z,Pn ⊗Σn B) = H∗(Z⊗M Pn ⊗Σn P•)
∼= H∗(Z⊗Σn P•) = H∗(Σn;B) . �

To construct the spectral sequence from naive to true homotopy groups we use the cotripleobtained
from the adjunction between free symmetric spectra and evaluation. We denote this cotriple by

PX =
∨
n≥0

FnXn ;
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it comes with an adjunction counit

ε : PX −→ X

which takes the n-th summand to X by the adjoint of the identity of Xn.

Proposition 8.40. For every symmetric spectrum X the following properties hold.

(i) The map π̂∗ε : π̂∗(PX) −→ π̂∗X induced by the adjunction counit on naive homotopy groups is
surjective.

(ii) For every p ≥ 1 and all integers q the homology group Hp(M, π̂q(PX)) is trivial.
(iii) The map c̄ : Z⊗M (π̂∗(PX)) −→ π∗(PX) induced by c : π̂∗(PX) −→ π∗(PX) is bijective.

Proof. (i) In every level n ≥ 0 the map εn : (PX)n −→ Xn is a split surjection as a map of based
spaces (or simplicial sets), so it induces a split epimorphism on πk+n(−). So the induced map on naive
homotopy groups is also surjective.

(ii) We have

π̂k(PX) ∼=
⊕
n

π̂k(FnXn) ∼=
⊕
n

Pn ⊗ πs
k+nXn .

as M-modules, compare (8.20). The M-homology of the right hand side vanishes in positive dimensions
by Proposition 8.39 (iii).

Part (iii) follows from the stable equivalence FnK −→ Ωn(Σ∞K) with semistable target and the
isomorphism (8.20). �

Now we are ready to construct the spectral sequence that attempts to calculate the true homotopy
groups of a symmetric spectrum from its naive homotopy groups as an M-module.

Theorem 8.41 (Naive-to-true spectral sequence). There is a strongly convergent, natural half-plane spectral
sequence

E2
p,q = Hp(M, π̂qX) =⇒ πp+qX

with dr-differential of bidegree (−r, r − 1). The E2-term is given by the homology of the monoid M with
coefficients in the M-module π̂∗X. The edge homomorphism

E2
0,q = H0(M, π̂qX) = Z⊗M π̂qX −→ πqX

is induced by the natural transformation c : π̂qX −→ πqX.

Proof. It suffices to work in the context of symmetric spectra of spaces. We define symmetric spectra
Xn and Pn inductively, starting with X0 = X. In each step we set Pn = P (Xn) and we let fn = ε :
Pn = P (Xn) −→ Xn be the adjunction counit. Then we define Xn+1 = F (fn) as the homotopy fibre of
fn, denote by in : Xn+1 −→ Pn the inclusion, and iterate the construction. Then by parts (i) and (ii) of
Proposition 8.40 the homotopy groups of the sequence of symmetric spectra

· · · −→ Pn+1
infn+1−−−−→ Pn −→ · · · −→ P0

f0−→ X0 = X

form a resolution

(8.42) · · · −→ π̂kPn+1
(infn+1)∗−−−−−−→ π̂kPn −→ · · · −→ π̂kP0

(f0)∗−−−→ π̂kX −→ 0

of the k-th naive homotopy group π̂kX by tameM-modules which are acyclic for the functor H0(M,−) =
Z⊗M −.

By Proposition 6.11 (ii) the homotopy fiber sequence

Xn+1
in−−→ Pn

fn−−−→ Xn

gives rise to a long exact sequence of true homotopy groups. These homotopy groups thus assemble into
an exact couple with

E1
p,q = πqPp and D1

p,q = πqXp
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and morphisms

j : D1
p+1,q −→ E1

p,q induced by ip : Xp+1 −→ Pp,

k : E1
p,q −→ D1

p,q induced by fp : Pp −→ Xp,

i : D1
p,q −→ D1

p+1,q−1

given by the connecting homomorphism (6.10) δ : πqXp −→ πq−1Xp+1 of the homotopy fiber sequence.
Part (iii) of Proposition 8.40 the natural map c : π̂qPp −→ πqPp from naive to true homotopy groups

factors over an isomorphism

Z⊗M (π̂qPp) ∼= πqPp = E1
p,q ;

under this isomorphism, the differential d1 = jk : E1
p,q −→ E1

p−1,q becomes the map obtained by applying
Z⊗M− to the resolution (8.42) of π̂∗X. Since the naive homotopy groups of the spectra Pp are acyclic for
the functor Z⊗M −, the E2-term calculates the homology groups Hp(M, π̂qX).

It remains to discuss convergence of the spectral sequence. The p-th filtration subgroup F p of the
abutment π∗X is the kernel of the map

ip : π∗X = D1
0,∗ −→ D1

p,∗−p = π∗−p(Xp) .

To prove that the spectral sequence converges to the true homotopy groups of X we show that the filtration
is exhaustive, i.e., πqX =

⋃
p F

p
q .

The map i : πqXp −→ πq−1Xp+1 is induced (up to the suspension isomorphism) by the morphism
of symmetric spectra Xp −→ S1 ∧ Xp+1 [which]. By construction, [...] induces the trivial map on naive
homotopy groups, so the mapping telescope of the sequence

(8.43) X = X0 −→ S1 ∧X1 −→ S2 ∧X2 −→ · · ·

has trivial naive homotopy groups and is thus stably contractible. Thus the true homotopy groups of the
mapping telescope of the sequence (8.43) which are isomorphic to the colimit of homotopy groups, are
trivial. Since each instance of the map i : D1

p,q −→ D1
p+1,q−1 is induced by a connecting homomorphism

Xk −→ S1 ∧ Xk+1 this shows that the kernels of the maps ip exhaust all of π∗X. The spectral sequence
is concentrated in a half-plane and has exiting differentials (in the sense of Boardman [7, II.6]), so it is
strongly convergent.

All constructions that go into the naive-to-true spectral sequence are functorial and all maps involved
are natural. So the naive-to-true spectral sequence is natural in X. �

The abutment πp+qX of the naive-to-true spectral sequence comes with an exhaustive natural filtration

F 0
q ⊆ F 1

q ⊆ · · · ⊆ F pq ⊆ · · ·

such that E∞p,q is isomorphic to F pq /F
p−1
q . We make this filtration more explicit in Exercise E.I.62.

Remark 8.44. An important point about of naive homotopy groups of symmetric spectra is that the
action of the injection monoid M is tame. So one could expect that the E2-term of the naive-to-true
spectral sequence should be given by homological algebra in the abelian category of tame M-modules. In
other words, it may be a little surprising that the E2-term is given by Tor groups over the monoid ring
ZM, which are the absolute derived functors of W 7→ Z ⊗M W (as opposed to some ‘tamely derived’
or relative derived functors). The explanation is the following: while the abelian category of tame M-
modules has no nonzero projective objects, the modules Pn play a role analogous to projective generators.
Proposition 8.39 (which ultimately is a consequence of the contractibility of the classifying space BM) says

that the particular Tor groups TorZM∗ (Z,Pn) vanish in positive dimension (even though Pn is not flat as

a left M-module). So to calculate TorZM∗ (Z,W ) for tame M-modules we can use resolutions by sum of
modules of the form Pn, as opposed to projective resolutions.

Example 8.45 (Semistable spectra). When X is a semistable symmetric spectrum, the injection monoid
acts trivially on the naive homotopy groups of X, so H0(M, π̂kX) is isomorphic to π̂kX. and the higher
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homology groups vanish by part (ii) of Proposition 8.39. Thus E2
p,q = 0 for p 6= 0 in the naive-to-true

spectral sequence and the edge homomorphism

π̂∗X −→ π∗X

is an isomorphism. We recover the fact that the natural map c : π̂kX −→ πkX is an isomorphism for
semistable X.

Example 8.46 (Free spectra). For the free symmetric spectrum generated by a pointed space (or simplicial
set) K in level m, (8.20) provides an isomorphism of M-modules

π̂k(FmK) ∼= Pm ⊗ πs
k+mK .

The higher Tor groups for suchM-modules vanish by part (ii) of Proposition 8.39. Thus E2
p,q = 0 for p 6= 0

in the naive-to-true spectral sequence and the edge homomorphism

Z⊗M π̂∗(FmK) −→ π∗(FmK)

is an isomorphism. The left hand side is isomorphic to Z⊗MPm⊗πs
k+mK

∼= πs
k+mK, the (k+m)th stable

homotopy group of K.
We can also use Example 4.35 instead of the spectral sequence of Theorem 8.41 to calculate the true

homotopy groups of the free spectrum FmK. Indeed, there we introduced a stable equivalence from FmK
to Ωm(Σ∞K). The spectrum Ωm(Σ∞K) is semistable, so its naive and true homotopy groups coincide.

Example 8.47 (Semifree spectra). For semifree symmetric spectra (see Example 3.23) the naive-to-true
spectral sequence typically does not degenerate. If L is a cofibrant based Σm-space (or simplicial set),
then we know from Example 4.36 that the semifree spectrum GmL is stably equivalent to the semistable
homotopy orbit spectrum (Ωm(Σ∞L))hΣm . So the true homotopy groups of GmL, which are the abutment
of the naive-to-true spectral sequence, are isomorphic to the naive homotopy groups of the homotopy orbit
spectrum (Ωm(Σ∞L))hΣm .

The isomorphism (8.19) and Proposition 8.39 (iii) allows us to rewrite the E2-term of the spectral
sequence as

Hq(M, π̂q(GmL)) ∼= Hq(M,Pm ⊗Σm (πs
q+mL)(sgn)) ∼= Hq(Σm, (π

s
q+mL)(sgn)) .

The homotopy orbit spectral sequence [ref]

E2
p,q = Hp(Σm, π̂q(Ω

m(Σ∞L))) =⇒ π̂p+q(Ω
m(Σ∞L))hΣm

has isomorphic E2-term and isomorphic abutment, which makes it very likely that it is in fact isomorphic
to the naive-to-true spectral sequence for GmL.

As a specific example we consider the semifree symmetric spectrum G2S
2, where S2 is a Σ2-space by

coordinate permutations. We first identify the stable equivalence type of G2S
2. The spectrum G2S

2 is
isomorphic to the quotient spectrum of Σ2 permuting the smash factors of (F1S

1)∧2. Since the Σ2-action
on (F1S

1)∧2 is free [not yet shown], the map

EΣ+
2 ∧Σ2 (F1S

1)∧2 −→ (F1S
1)∧2/Σ2 = G2S

2

which collapses EΣ2 to a point is a level equivalence. On the other hand, the stable equivalence λ(2) :
(F1S

1)∧2 −→ S is Σ2-equivariant, so it induces a stable equivalence

EΣ+
2 ∧Σ2

(F1S
1)(2) −→ EΣ+

2 ∧Σ2
S = Σ∞BΣ+

2

on homotopy orbit spectra. Altogether we conclude that G2S
2 is stably equivalent to Σ∞BΣ+

2 .
The naive-to-true spectral sequence for G2S

2 has as E2-term the Tor groups of π̂∗(G2S
2). According

to (8.19) these homotopy groups are isomorphic to P2 ⊗Σ2 (πs
∗+2S

2)(sgn). The sign representation cancels
the sign action induced by the coordinate flip of S2, so we have an isomorphism ofM-modules π̂q(G2S

2) ∼=
P2 ⊗Σ2

πs
qS

0, this time with trivial action on the stable homotopy groups of spheres. Using part (iii) of

Proposition 8.39, the naive-to-true spectral sequence for G2S
2 takes the form

E2
p,q
∼= Hp(Σ2;πs

qS
0) =⇒ πs

p+q(BΣ+
2 ) .
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This spectral sequence has non-trivial differentials and it seems likely that it coincides with the Atiyah-
Hirzebruch spectral sequence for the stable homotopy of the space BΣ+

2 .

Example 8.48 (Eilenberg-Mac Lane spectra). In Example 8.10 we associated an Eilenberg-Mac Lane spec-
trum HW to every tame M-module W . The homotopy groups of HW are concentrated in dimension 0,
where we get the M-module W back. So the naive-to-true spectral sequence for HW collapses onto the
axis q = 0 to isomorphisms

πp(HW ) ∼= Hp(M,W ) .

In particular, the true homotopy groups of HW need not be concentrated in dimension 0. One can show
that HW is in fact stably equivalent to the product of the Eilenberg-Mac Lane spectra associated to the
groups Hp(M,W ), shifted up p dimensions. [make exercise]

Here is an example which shows that for non-trivial W the Eilenberg-Mac Lane spectrum HW can be
stably contractible: we let W be the kernel of a surjection Pn −→ Z. Proposition 8.39 and the long exact
sequence of Tor groups show that the groups Hp(M,W ) vanish for all p ≥ 0. Thus the true homotopy
groups of HW are trivial, i.e., HW is stably contractible.

Example 8.49 (Rational collapse). We claim that for every tame M-module W and all p ≥ 1, we have
Q ⊗ Hp(M,W ) = 0. So the spectral sequence of Theorem 8.41 always collapses rationally and the edge
homomorphism is a rational isomorphism

Q⊗M π̂∗X −→ Q⊗ π∗X .

In particular, for every symmetric spectrum X the tautological map c : π̂∗X −→ π∗X is rationally surjective.
The rational vanishing of higher Tor groups is special for tame M-modules.

To prove the claim we consider a monomorphism i : V −→ W of tame M-modules and show that the
kernel of the map Z ⊗M i : Z ⊗M V −→ Z ⊗M W is a torsion group. The inclusions W (n) −→ W induce
an isomorphism

colimn Z⊗Σn W
(n) ∼=−−→ Z⊗MW .

For every n ≥ 0, the kernel of Z ⊗Σn i
(n) : Z ⊗Σn V

(n) −→ Z ⊗Σn W
(n) is annihilated by the order of the

group Σn. Since the kernel of Z ⊗M i is the colimit of the kernels of the maps Z ⊗Σn i
(n), it is torsion.

Thus the functor Q⊗M− is exact on short exact sequences of tameM-modules and the higher Tor groups
vanish as claimed.

Example 8.50 (Connective spectra). Let A be a symmetric spectrum which is ‘naively (k− 1)-connected’
for some integer k in the sense that the naive homotopy groups below dimension k are trivial. Then the
homology group Hp(M, π̂qA) is trivial whenever p + q < k, and so the true homotopy groups also vanish
below dimension k, by the naive-to-true spectral sequence. Moreover, the edge homomorphism of the
spectral sequence is an isomorphism

Z⊗M π̂kA ∼= πkA

for the k-th true homotopy group of A.
Somewhat more generally, we can deduce that, roughly speaking, the true homotopy groups up to

certain dimension only depend on the naive homotopy groups up to that dimension (as long as induced
by a morphism). More precisely: let f : A −→ B be a morphism of symmetric spectrum which induces
an isomorphism on π̂k for k < n and an epimorphism on π̂n. Then f also induces an isomorphism on πk
for k < n and an epimorphism on πn. Indeed, under this hypothesis the mapping cone C(f) is naively
n-connected (by the long exact sequence of naive homotopy groups, Proposition 2.12) and thus the true
homotopy groups of C(f) vanish in dimensions n and below (by the above). So the long exact sequence of
true homotopy groups (Proposition 6.11) shows the claim about f .

8.5. Detection functors. By a detection functor we mean an endofunctor D : Sp −→ Sp on the
category of symmetric spectra with values in semistable spectra and such that D is related by a chain
of natural stable equivalences to the identity functor. For any such detection functor and symmetric
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spectrum X, the naive homotopy groups of DX are then naturally isomorphic to the true homotopy groups
of X,

πkX ∼= π̂k(DX) .

Thus a morphism f : X −→ Y is a stable equivalence if and only if the morphism Df : DX −→ DY is
a π̂∗-isomorphism. In this sense the naive homotopy groups of DX ‘detect’ stable equivalences, hence the
name. We have already seen one detection functor, namely the functor Q of Proposition 4.39 which takes
values in Ω-spectra and comes with a natural stable equivalence ηX : A −→ QA.

Now we can define the orthogonal detection functor P. This detection functor is essentially the composite
of the forgetful functor U : SpO −→ SpT and its left adjoint prolongation functor P ; however, we can
only expect a good homotopical behaviour of P on flat spectra, so we have to combine this with some flat
resolution. For definiteness, we use the flat resolution X[ of Construction 5.53 and define P as the composite
functor

PX = UP (X[) .

Since PX is underlying an orthogonal spectrum, it is semistable by Proposition 3.16 (vi). The two natural
morphisms

X
rX←−−− X[ η

X[−−−−→ UP (X[) = PX
are stable equivalences: the resolution morphism rX : X[ −→ X is a level equivalence by construction and
the morphism ηX[ : X[ −→ UP (X[) is a stable equivalence by Proposition 7.4, since X[ is flat. So the
functor P is a detection functor. In particular, a morphism f : X −→ Y of symmetric spectra of spaces is
a stable equivalence if and only if the morphism Pf : PX −→ PY is a π̂∗-isomorphism.

The orthogonal detection functor P above works on symmetric spectra of spaces. A slight modification
yields a detection functor for symmetric spectra of simplicial set: we set

P′Y = S(UP (|Y [|))

for a symmetric spectrum Y of simplicial sets. Since the flat resolution for symmetric spectra of spaces was
defined by X[ = |S(X)[|, the only difference between P and P′ is in the place where singular complex and
geometric realization are taken. So for every symmetric spectrum of spaces X, we have P′(SX) = S(PX),
by definition. The symmetric spectrum P′Y is also semistable and the chain of natural stable equivalences

Y
rY←−−− Y [

ηY−−−→ S(|Y [|)
S(η|Y [|)−−−−−−→ S(UP (|Y [|) = P′Y

relates Y to P′Y .

Now we discuss a third detection functor D, due to Shipley. As before, we denote by I the category
with objects the sets n = {1, . . . , n} for n ≥ 0 (where 0 = ∅) and with morphisms all injective maps. For
a symmetric spectrum of simplicial sets X we define a functor DX : I −→ SpT from the category I to
symmetric spectra of spaces. On objects, the functor is given by

(DX)(n) = Ωn(Σ∞|Xn|) .

A permutation γ ∈ Σn = I(n,n) acts by conjugation, using the given action on Xn and permutation of the
loop coordinates. The inclusion ι : n −→ n + m induces the morphism

ι∗ : (DX)(n) = Ωn(Σ∞|Xn|)
Ωn(σ̃m)−−−−−→ Ωn+m(Σ∞|Xn+m|) = (DX)(n + m) .

In more detail: the adjoint σ̃m : |Xn| −→ Ωm|Xn+m| of the iterated structure map of the spectrum |X|
freely generates a morphism of symmetric spectra σ̃m : Σ∞|Xn| −→ Ωm(Σ∞|Xn+m|), and ι∗ is given by
the n-fold loop of this morphism.

If α : n −→ n + m is an arbitrary injective map, then we choose a permutation γ ∈ Σn+m such that
γ(i) = α(i) for all i = 1, . . . , n and define α∗ : (DX)(n) −→ (DX)(n + m) as the composite

(DX)(n)
ι∗−−→ (DX)(n + m)

γ∗−−−→ (DX)(n + m) .
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If γ̄ ∈ Σn+m is another permutation that agrees with α on n, then γ−1γ̄ fixes the set n elementwise, so
γ−1γ̄ = 1n+τ for a unique permutation τ ∈ Σm. Since (1n+τ)∗◦ι∗ = ι∗, the definition of α∗ is independent
of the choice of permutation. Functoriality in α is then straightforward.

We observe that in spectrum level 0, the functor DX is given by

(DX)(n)0 = Ωn|Xn| ∼= map(Sn, |Xn|) = (Ω•|X|)(n) ,

where the I-space Ω•|X| was defined in Example 3.52. This last homeomorphism is natural in n, so the
I-spectrum DX is a spectrum level extensions of the I-space Ω•|X|.

Definition 8.51. Given a symmetric spectrum of simplicial sets X, the symmetric spectrum DX is given
by

DX = hocolimI DX ,

the homotopy colimit [reference] of the functor DX.

For a symmetric spectrum of spaces Y we define the detection functor by first taking singular complex,
i.e., we set DY = D(SY ). We hope that using the same symbol for two different (but closely related)
detection functors causes no trouble.

The symmetric spectrum DX is semistable. Indeed, for every n ≥ 0 the symmetric spectrum
Ωn(Σ∞|Xn|) is underlying an orthogonal spectrum, and for every injection α, the morphism α∗ : n −→
n + m preserves the orthogonal group actions. Hence the homotopy colimit DX is underlying an orthogonal
spectrum, and so it is semistable by Proposition 3.16 (vi).

The underlying sequence of the I-symmetric spectrum DX, i.e., the restriction to the subcategory N ⊂ I
of inclusions, was already considered in [...], where we compared the mapping telescope of this sequence to
the symmetric spectrum Ω∞sh∞X. A natural map

telm Ωm(Σ∞|Xm|) = telm (DX)(m) −→ hocolimI DX
from the mapping telescope of the underlying sequence to the homotopy colimit over the entire category I
is given by [...]

Proposition 8.52. For every semistable symmetric spectrum X the morphism

telm Ωm(Σ∞|Xm|) = telm(DX)(m) −→ hocolimI DX
is a level equivalence. So the symmetric spectrum DX is an Ω-spectrum.

We combine Proposition 4.24, 5.59 and 8.52 and obtain:

Corollary 8.53. For every semistable symmetric spectrum X the two morphisms

X
λ∞X−−−→ Ω∞sh∞X

ΦX←−−− telm Ωm(Σ∞|Xm|) −→ DX
are π̂∗-isomorphisms, hence stable equivalences. Moreover, the symmetric spectra Ω∞sh∞X,
telm Ωm(Σ∞|Xm|) and DX are Ω-spectra.

If X is not semistable, then we cannot control the stable homotopy type of the symmetric spectra
Ω∞sh∞X and telm Ωm(Σ∞|Xm|). The symmetric spectrum DX, however, is always stably equivalent
to X. We obtain a chain of four natural stable equivalences

X −→ Ω∞sh∞(QX) ←− telm Ωm(Σ∞|(QX)m|)
ΦQX−−−→ D(QX)

DηX←−−− DX
as follows. The left morphism is the composite of the stable equivalence η : X −→ QX whose target is an Ω-
spectrum (compare Proposition 4.39) with λ∞QX : QX −→ Ω∞sh∞(QX). By using a different intermediate
functor, this chain can actually be reduced to a chain of just two natural stable equivalences between the
identity functor and the detection functor D [ref].

[we need that D preserves stable equivalence]

Proposition 8.54. Let X be a symmetric spectrum of simplicial sets. If f : A −→ B is a level equivalence,
then so is Df : DA −→ DB.
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Proof. Since f is a level equivalence, the natural transformation Df : DA −→ DB of functors I −→ Sp
is a level equivalence at every object n of I. Since homotopy colimits of symmetric spectra a formed levelwise,
the induced map on homotopy colimits Df : DA −→ DB is also a level equivalence [need that DX is levelwise
and objectwise cofibrant space...] �

Theorem 8.55. The following are equivalent for a morphism f : A −→ B of symmetric spectra.

(i) f : A −→ B is a stable equivalence.
(ii) The morphism Df : DA −→ DB is a π̂∗-isomorphism.
(iii) The morphism D2f : D2A −→ D2B is a level equivalence.

Exercises

Exercise E.I.1. The definition of a symmetric spectrum contains some redundancy. Show that the equiv-
ariance condition for the iterated structure map is already satisfied if for every n ≥ 0 the following two
conditions hold:

(i) the structure map σn : Xn∧S1 −→ Xn+1 is Σn-equivariant where Σn acts on the target by restriction
from Σn+1 to the subgroup Σn.

(ii) the composite

Xn ∧ S2 σn ∧ Id−−−−→ Xn+1 ∧ S1 σn+1−−−→ Xn+2

is Σ2-equivariant.

Exercise E.I.2. Let X be a symmetric spectrum such that for infinitely many n the action of Σn on Xn

is trivial. Show that all naive homotopy groups of X are trivial. (Hint: identify the quotient space of the
Σ2-action on S2.) What can be said if infinitely many of the alternating groups act trivially?

Exercise E.I.3. Find a family {Xi}i∈I of symmetric spectra for which the natural map

π0

(∏
i∈I

Xi

)
−→

∏
i∈I

π0(Xi)

is not surjective.

Exercise E.I.4. We recall that the m-th stable homotopy group πs
mK of a based space (or simplicial set)

is defined as the m-th maive homotopy groups π̂m(Σ∞K), i.e., as the colimit of the sequence of abelian
groups

πmK
−∧S1

−−−−→ πm+1(K ∧ S1)
−∧S1

−−−−→ πm+2(K ∧ S2)
−∧S1

−−−−→ · · · .

Show that the naive homotopy group π̂kX of a symmetric spectrum X can also be calculated from the
system of stable as opposed to unstable homotopy groups of the individual spaces Xn. where we stabilize
from the left. Smashing with the identity of S1 from the left provides a map S1∧− : πs

mK −→ πs
1+m(S1∧K)

which is a special case of the suspension isomorphism [ref] for the suspension spectrum of K.

Exercise E.I.5 (Coordinate free symmetric spectra). There is an equivalent definition of symmetric spectra
which is, in a certain sense, ‘coordinate free’. If A is a finite set we denote by RA the set of functions from
A to R with pointwise structure as a R-vector space. We let SA denote the one-point compactification of
RA, a sphere of dimension equal to the cardinality of A. A coordinate free symmetric spectrum consists of
the following data:

• a based space X(A) for every finite set A
• a based continuous map α∗ : X(A) ∧ SB\α(A) −→ X(B) for every injective map α : A −→ B of

finite sets, where B\α(A) is the complement of the image of α.

This data is subject to the following conditions:
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• (Unitality) For every finite set A, the composite

X(A) ∼= X(A) ∧ S∅ (IdA)∗−−−−→ X(A)

is the identity.
• (Associativity) For every pair of composable injections α : A −→ B and β : B −→ C the diagram

X(A) ∧ SB\α(A) ∧ SC\β(B)
Id∧β!

//

α∗∧Id

��

X(A) ∧ SC\β(α(A))

(βα)∗

��
X(B) ∧ SC\β(B)

β∗

// X(C)

commutes. In the top vertical map we use the homeomorphism β! : SB\α(A)∧SC\β(B) ∼= SC\β(α(A))

which is one-point compactified from the linear isomorphism RB\α(A) × RC\β(B) ∼= RC\β(α(A))

which uses β on the basis elements indexed by B\α(A) and the identity on the basis elements
indexed by C\β(B).

A coordinate free symmetric spectrum X gives rise to a symmetric spectrum by remembering only the
values on the ‘standard’ finite sets n = {1, . . . , n}. In other words, we take Xn = X(n) as the nth level of
the underlying symmetric spectrum. A permutation γ ∈ Σn acts on Xn as the composite

X(n) ∼= X(n) ∧ S∅ γ∗−→ X(n) .

We define the structure map σn : Xn ∧ S1 −→ Xn+1 as the map

X(n) ∧ S1 ∼= X(n) ∧ S{n+1} ι∗−−→ X(n + 1)

where ι : n −→ n + 1 is the inclusion, and the homeomorphism S{n+1} ∼= S1 arises from the linear
isomorphism R{n+1} ∼= R1 respecting the preferred bases.

(i) Show that the above construction indeed defines a symmetric spectrum in the sense of Definition 1.1.
(ii) Show that this ‘forgetful’ functor from coordinate free symmetric spectra to symmetric spectra is an

equivalence of categories.
(iii) Work out how symmetric ring spectra are formulated in this language.

Exercise E.I.6. For an abelian group A we define a symmetric spectrum KA of simplicial sets as follows.
We set KAn = A[∆[n]/∂∆[n]], the A-linearization of the simplicial n-simplex modulo its boundary. The
symmetric group acts on KAn by multiplication by sign. The structure map

σn : A[∆[n]/∂∆[n]] ∧ S1 −→ A[∆[n+ 1]/∂∆[n+ 1]]

is the ‘A-linear extension’ of the map (∆[n]/∂∆[n]) ∧ S1 −→ A[∆[n + 1]/∂∆[n + 1]] that sends the ith
generating (n+ 1)-simplex of the source to (−1)i times the generating (n+ 1)-simplex of the target.

Show that the above really defines a symmetric spectrum and calculate the naive homotopy groups of
KA in terms of the group A. For which A is KA an Ω-spectrum?

Exercise E.I.7. For any m ≥ 0 and any symmetric spectrum Z the m-fold shift shm Z has a natural
Σm-action as explained in Example 3.9. Show that the functor

shm : Sp −→ Σm-Sp

has a left adjoint 4m : Sp −→ Σm-Sp. Construct natural isomorphisms

4m(Σ+
m ∧X) ∼= .(· · · (.︸ ︷︷ ︸

m

X) · ··) and 4m(L ∧X) ∼= L .m X

where X is a (non-equivariant) symmetric spectrum and L any based Σm-space (or Σm-simplicial set).
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Exercise E.I.8. As we discussed in Example 3.17, the shift functor for symmetric spectra has a left adjoint
induction functor .. Show that the shift functor also has a right adjoint. If we denote the right adjoint by
‘hs’, construct a natural splitting

.1+m(L,hsZ) ∼= .m(shL,Z)× hs(.1+m(L,Z))

where L is any based Σ1+m-space (or simplicial set) and Z any symmetric spectrum.

Exercise E.I.9. In this exercise we show that the shift of a twisted smash product decomposes into two
pieces which are themselves twisted smash products. For a symmetric spectrum X we define two natural
morphisms

ζL,X : (shL) .m X −→ sh(L .1+m X) and ξL′,X : L′ .m shX −→ sh(L′ .m X)

as follows, where L is a based Σ1+m-space and L′ is a based Σm-space (or simplicial set). In level m + n
the morphism ζL,X is given by

((shL) .m X)m+n = Σ+
m+n ∧Σm×Σn (shL) ∧Xn −→ Σ+

1+m+n ∧Σ1+m×Σn L ∧Xn = sh(L .1+m X)m+n

obtained by smashing the monomorphism 1 + − : Σm+n −→ Σ1+m+n with the identity of L and Xn. We
define the morphism ξL′,X by specifying a Σm-equivariant morphism ξ̄L′,X : L′∧shX −→ shm(sh(L′ .m X))
as follows. In level n we take the composite is given by

(L′ ∧ shX)n = L′ ∧X1+n
[1∧−]−−−→ Σ+

m+1+n ∧Σm×Σ1+n L
′ ∧X1+n = (L′ .m X)m+1+n

χm,1+1n−−−−−−→ (L′ .m X)1+m+n = (shm(sh(L′ .m X)))n .

By the adjunction type isomorphism (3.29), there is thus a unique morphism ξL′,X : L′ .m shX −→
sh(L′ .m X) such that (shm ξL′,X) ◦ ηL′,shX = ξ̄L′,X .

Show that for every pointed Σ1+m-space (or simplicial set) L and symmetric spectrum X the morphism

ζL,X ∨ ξL,X : (shL) .m X ∨ L .1+m (shX) −→ sh(L .1+m X)

is an isomorphism.
Show that the morphism λL.1+mX : S1 ∧ (L .1+m X) −→ sh(L .1+m X) equals the composite

S1 ∧ (L .1+m X) ∼= L .1+m (S1 ∧X)
L.1+mλX−−−−−−→ L .1+m (shX)

ξL,X−−−→ sh(L .1+m X) .

Show that the map

λG1+mL ∨ ξ : (S1 ∧G1+mL) ∨ Gm(shL) −→ sh(G1+mL)

is an isomorphism

Exercise E.I.10. Let R be a symmetric ring spectrum. Define mapping spaces (simplicial sets) and
function symmetric spectra of homomorphisms between two given R-modules. Check that for all k ≥ 0 the
endomorphism ring spectrum HomR(k+∧R, k+∧R) of the R-module k+∧R is isomorphic, as a symmetric
ring spectrum, to the matrix ring spectrum Mk(R) (see Example 3.44).

Exercise E.I.11. We let L be a based Σm-space or a based Σm-simplicial set and we let X and Z be two
symmetric spectra in the appropriate context of spaces or simplicial sets. We discussed various adjunction
bijections involving the semifree symmetric spectrum GmL, the twisted smash product L .m X and the
equivariant function spectrum .m(L,Z). The purpose of this exercise is to promote the bijections of
morphism sets to isomorphisms of mapping spaces or even symmetric function spectra.
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(i) Construct natural homeomorphisms of spaces respectively isomorphisms of simplicial sets

map(GmL,Hom(X,Z))

��
mapΣm(L ∧X, shm Z) // Σm-T(L,map(X, shm Z))

map(L .m X,Z)

OO

// map(X, .m(L,Z))

OO

(ii) Construct natural isomorphisms of symmetric spectra

Hom(GmL,Hom(X,Z))

��
HomΣm(L ∧X, shm Z) // .m(L,Hom(X,Z))

Hom(L .m X,Z)

OO

// Hom(X, .m(L,Z))

OO

Exercise E.I.12. In Example 3.23 we saw that every symmetric spectrum is naturally a coequalizer of
semifree symmetric spectra. This fact has a dual version: every symmetric spectrum X is naturally an
equalizer made up of co-semifree symmetric spectra PmL (see Example 4.2). Show that the diagram

X //
∏
m≥0 PmXm

σ̃ //
I

//
∏
n≥0 Pn(ΩXn+1)

is an equalizer diagram. Here the upper morphism is the product of the morphisms Pmσ̃m : PmXm −→
Pm(ΩXm+1); the lower map is the product of the morphisms Pm+1Xm+1 −→ Pm(ΩXm+1) which are adjoint
to the identity of (Pm+1Xm+1)m = ΩXm+1. [Morphisms to X are the same as morphisms to the equalizer]

Exercise E.I.13. In (4.18) we defined a functor Ω∞sh∞ : Sp −→ Sp; for a symmetric spectrum X,
Ω∞sh∞X is a certain mapping telescope of the spectra Ωm shmX. Let f : A −→ B be a π̂∗-isomorphism
of symmetric spectra of spaces. Show that then the morphism Ω∞sh∞ f : Ω∞sh∞A −→ Ω∞sh∞B is a
level equivalence.

Exercise E.I.14. We recall that a commutative square of space or simplicial sets

V
α //

ϕ

��

W

ψ

��
X

β
// Y

is called homotopy cartesian if for some (hence any) factorization of the morphism ψ as the composite of
a weak equivalence w : W −→ Z followed by a Serre respectively Kan fibration Z −→ Y the induced
morphism

V
(ϕ,wα)−−−−→ X ×Y Z

is a weak equivalence. The definition is in fact symmetric in the sense that the square is homotopy cartesian
if and only if the square obtained by interchanging X and W (and the morphisms) is homotopy cartesian. So
if the square is homotopy cartesian and ψ (respectively β) is a weak equivalence, then so is ϕ (respectively α).
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Consider a pullback square of symmetric spectra of simplicial sets

A
i //

f

��

B

g

��
C

j
// D

in which the morphism g is levelwise a Kan fibration. Show that for every injective Ω-spectrum X the
commutative square of simplicial sets

map(D,X)
map(g,X) //

map(j,X)

��

map(B,X)

map(i,X)

��
map(C,X)

map(f,X)
// map(A,X)

is homotopy cartesian.

Exercise E.I.15. This exercise elaborates on the term ‘bimorphism’ which we used in the first way to
introduce the smash product of symmetric spectra. Let X,Y and Z be symmetric spectra.

(i) Let bp,q : Xp∧Yq −→ Zp+q be a collection of Σp×Σq-equivariant maps. Show that the commutativity of
the left part of (5.1) is equivalent to the condition that for every p ≥ 0 the maps bp,q : Xp∧Yq −→ Zp+q
form a morphism bp.• : Xp∧Y −→ shp Z of symmetric spectra as q varies. Show that the commutativity
of the right part of (5.1) is equivalent to the condition that for every q ≥ 0 the composite maps

Yq ∧Xp
twist−−−→ Xp ∧ Yq

bp,q−−→ Zp+q
χp,q−−−→ Zq+p

form a morphism Yq ∧X −→ shq Z of symmetric spectra as p varies.
(ii) Let b = {bp,q : Xp ∧ Yq −→ Zp+q} be a bimorphism. Define b̄p : Xp −→ map(Y, shp Z) as the adjoint

of the morphism of symmetric spectra bp.• : Xp ∧ Y −→ shp Z (compare part (i)). Show that as p
varies, the maps b̄p form a morphism of symmetric spectra b̄ : X −→ Hom(Y,Z). Show then that the
assignment

Bimor((X,Y ), Z) −→ Sp(X,Hom(Y,Z)) , b 7→ b̄

is bijective and natural in all three variables.

Exercise E.I.16. The way Hovey, Shipley and Smith introduce the smash product in their original pa-
per [36] is quite different from our exposition, and this exercise makes the link. Thus the paper [36] has the
solutions to this exercise. A symmetric sequence consists of pointed spaces (or simplicial set) Xn, for n ≥ 0,
with based, continuous (respectively simplicial) Σn-action on Xn. Morphisms f : X −→ Y are sequences
of equivariant based maps fn : Xn −→ Yn. The tensor product X ⊗ Y of two symmetric sequences X and
Y is the symmetric sequence with nth term

(X ⊗ Y )n =
∨

p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq .

(i) Make the tensor product into a closed symmetric monoidal product on the category of symmetric
sequences.

(ii) Show that the sequence of spheres S = {Sn}n≥0 forms a commutative monoid in the category of
symmetric sequences. Show that the category of symmetric spectra is isomorphic to the category of
right S-modules in the monoidal category of symmetric sequences.

(iii) Given a commutative monoid R in the monoidal category of symmetric sequences and two right
R-modules M and N , show that the coequalizer M ∧R N of the two morphisms

αM ⊗ Id, Id⊗(αN ◦ τR,N ) : M ⊗R⊗N −→ M ⊗N
is naturally a right R-module. Show that the smash product over R is a closed symmetric monoidal
product on the category of right R-modules.
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(iv) Show that the smash product over S corresponds to the smash product of symmetric spectra under
the isomorphism of categories of part (ii).

Exercise E.I.17. LetX be a flat symmetric spectrum and Y a symmetric spectrum such that Y0 is cofibrant
and all structure morphisms σn : Yn ∧ S1 −→ Yn+1 are cofibrations. Show that then the morphism

ξ1,0
X,Y : (shX) ∧ Y −→ sh(X ∧ Y )

defined in (5.15) is a level cofibration.
Hint: the special case Y = S̄ featured in the proof of Proposition ??.

Exercise E.I.18. Show that the morphism of symmetric spectra

∧ : Hom(A,X) ∧Hom(B, Y ) −→ Hom(A ∧B,X ∧ Y )

defined in (5.21) is adjoint to the composite

Hom(A,X) ∧Hom(B, Y ) ∧A ∧B
Id∧τHom(B,Y )∧A−−−−−−−−−−−→

Hom(A,X) ∧A ∧Hom(B, Y ) ∧B ev∧ ev−−−−→ X ∧ Y
where the morphisms Hom(A,X) ∧ A −→ X and Hom(B, Y ) ∧ B −→ Y are the evaluation maps, adjoint
to the identity morphism.

Exercise E.I.19. Let C be a symmetric monoidal category with monoidal product �, associativity iso-
morphism α and symmetric isomorphism τ . For every object X of C and every natural number n ≥ 1 we
define X(n) inductively by X(1) = X and X(n) = X(n−1)�X. For n ≥ 2 and 1 ≤ i ≤ n − 1 we define
an automorphism ti of X(n) as follows. For n = 2 we take t1 = τX,X , the symmetry automorphism of

X(2) = X�X. For n ≥ 3 and i < n − 1 we take ti as the automorphism ti�X of X(n) = X(n−1)�X.
Finally, for n ≥ 3 we take tn−1 as the composite automorphism of X(n) = (X(n−2)�X)�X

(X(n−2)�X)�X
α
X(n−2),X,X−−−−−−−−−→ X(n−2)�(X�X)

X(n−2)�τX,X−−−−−−−−−−→ X(n−2)�(X�X)
α−1

X(n−2),X,X−−−−−−−−−→ (X(n−2)�X)�X .

Show that we obtain an action of the symmetric group Σn on X(n) if we let the transposition (i, i+ 1) act
as ti.

Exercise E.I.20. Define a notion of ‘commuting homomorphisms’ between symmetric ring spectra such
that homomorphism of symmetric ring spectra R∧S −→ T are in natural bijection with pairs of commuting
homomorphisms (R −→ T, S −→ T ). Deduce that the smash product is the categorical coproduct for
commutative symmetric ring spectra.

Exercise E.I.21. In this exercise we discuss an operator on symmetric spectra which has formal properties
very similar to differentiation of functions. We define a functor

∂ : Sp −→ Sp
by

∂X = cokernel(λX : S1 ∧X −→ shX)

where the map λX was defined in (3.12). Show that the functor ∂ has the following properties.

(i) The ‘derivative’ is additive in the sense that ∂ commutes with colimits and satisfies ∂(K∧X) ∼= K∧∂X
for a pointed space (or simplicial set) K.

(ii) For the smash product of two symmetric spectra X and Y we have the ‘Leibniz rule’ in the form of a
natural isomorphism

∂(X ∧ Y ) ∼= (∂X) ∧ Y ∨ X ∧ (∂X) .

(iii) For the semifree symmetric spectrum generated by a pointed Σm-space (or simplicial set) L we have
∂(GmL) = Gm−1(shL) where shL is the restriction of L along the homomorphism 1 +− : Σm−1 −→
Σm.
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(iv) For every pointed Σm-space (or simplicial set) L and every symmetric spectrum X, the twisted smash
product ‘differentiates’ according to the rule

∂(L .m X) ∼= (shL) .m−1 X ∨ L .m (∂X) .

In particular, induction ‘differentiates’ as

∂(.X) ∼= X ∨ .(∂X) .

Show that ∂(.X) is stably equivalent to .(shX). Show that sh(.X) is stably equivalent to X ∨X ∨
.(∂X).

(v) The free symmetric spectrum FnS
0 ‘differentiates’ formally like the function xn: there is an isomor-

phism

∂(Fn) ∼= Fn−1 ∧Σn−1
Σ+
n

which is equivariant for the right Σm-action on the free coordinates. So non-equivariantly, ∂(Fn) is a
wedge of n copies of Fn−1.

(vi) The n-fold iterated derivative ∂(n)X has a natural action of the symmetric group Σn in such a way
that its 0th level admits a natural isomorphism of Σn-spaces

(∂(n)X)0
∼= cokernel(νn : LnX −→ Xn) .

(vii) There is an analogue of the Taylor expansion f(x) =
∑
n≥0 f

(n)(0)/n! ·xn, but only ‘up to extensions’
in the following sense: the graded symmetric spectrum associated to the filtration of X by the spectra
FnX (see Construction 5.29) is isomorphic to∨

n≥0

(∂(n)X)0 ∧Σn (F1S
0)∧n .

(viii) Suppose that X is flat. Then ∂X is flat and X is semistable if and only if all naive homotopy groups
of ∂X are trivial.

Exercise E.I.22. Show that the k-skeleton F kX of a symmetric spectrum X is a coequalizer of the two
morphisms

(E.I.23)
∨

0≤n≤k−1Gn+1(Σ+
n+1 ∧Σn×1 Xn ∧ S1)

σ //
I

//
∨

0≤n≤kGnXn .

Here the upper map σ takes the nth wedge summand to the (n+ 1)st wedge summand by the adjoint of

σn : Xn ∧ S1 −→ Xn+1 = (Gn+1Xn+1)n+1 .

The other map I takes the nth wedge summand to the nth wedge summand by the adjoint of the wedge
summand inclusion

Xn ∧ S1 −→ Σ+
n+1 ∧Σn×Σ1 (Xn ∧ S1) = (GnXn)n+1

indexed by the identity of Σn+1.
(Hint: note that the coequalizer (E.I.23) differs from the coequalizer (3.25) for X only by upper bounds

on the wedge indices.)

Exercise E.I.24. In this exercise we characterize the latching space by the functor that it represents. Since
(F k−1X)k−1 = Xk−1, the structure map of the (k − 1)-skeleton is a morphism

σn−1 : Xk−1 ∧ S1 = (F k−1X)k−1 ∧ S1 −→ (F k−1X)k = LkX

whose composite with the latching morphism νk : LkX −→ Xk equals the structure map σk−1 : Xk−1 ∧
S1 −→ Xk of the spectrum X. Moreover, for every n = 0, . . . , k− 1 the composite of σk−1 : Xk−1 ∧ S1 −→
LkX with σk−n−1 ∧ Id : Xk ∧ Sk−n −→ Xk−1 ∧ S1 is Σn × Σk−n-equivariant.
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(i) Show that σ̃k−1 is the universal example of a map with the above properties: for every symmetric
spectrum X and based Σk-space (or simplicial set) Z the map

mapΣk(LkX,Z) −→ map(Xk−1 ∧ S1, Z)

given by precomposition with σk−1 : Xk−1 ∧ S1 −→ LkX is a bijection from the space of based
Σk-maps LkX −→ Z onto the subspace of those maps f : Xk−1 ∧ S1 −→ Z such that the composite

f ◦ (σk−n−1 ∧ Id) : Xn ∧ Sk−n −→ Z

is Σn × Σk−n-equivariant for all n = 0, . . . , k − 1. For example, the latching map νk : LkX −→ Xk

corresponds, under this bijection, to the structure map σk−1 : Xk−1 ∧ S1 −→ Xk of the spectrum X.
(ii) Describe the functor which the Σm-space (F iX)m represents in a way which generalizes (i).

Exercise E.I.25. Let S[k] denote the symmetric subspectrum of the sphere spectrum obtained by truncating
below level k, i.e.,

(S[k])n =

{
∗ for n < k

Sn for n ≥ k.

For example we have S[0] = S and S[1] = S̄.

(i) Show that for every symmetric spectrum X and all k ≥ 0 the inclusion S[k] −→ S induces a π̂∗-
isomorphism S[k] ∧X −→ S ∧X ∼= X.

(ii) In Proposition 5.39 we identified the latching space LmX = (Fm−1X)m of a symmetric spectrum X
with the m-th level of the spectrum X ∧ S̄. Generalize this by constructing a natural Σm-equivariant
isomorphism between (F iX)m and (X ∧ S[m−i])m for i ≤ m.

Exercise E.I.26. A k-truncated symmetric spectrum is a sequence of pointed spaces (or simplicial sets)
Xn for 0 ≤ n ≤ k, a basepoint preserving continuous left action of the symmetric group Σn on Xn for
each 0 ≤ n ≤ k and based structure maps σn : Xn ∧ S1 −→ Xn+1 for 0 ≤ n ≤ k − 1. This data
is subject to the same equivariance condition as for symmetric spectrum on the iterated structure maps
σm : Xn ∧ Sm −→ Xn+m, but only where it makes sense, i.e., as long as n + m ≤ k. A morphism
f : X −→ Y of k-truncated symmetric spectra consists of Σn-equivariant based maps fn : Xn −→ Yn for
0 ≤ n ≤ k which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ IdS1) for
all 0 ≤ n ≤ k− 1. The category of k-truncated symmetric spectra is denoted by Sp≤k. There is a forgetful
functor τ≤k : Sp −→ Sp≤k which forgets all information above level k, and which we call truncation at level
k.

(i) Show that the truncation functor τ≤k has both a left and right adjoint.
(ii) Let l : Sp≤k −→ Sp be a left adjoint to the truncation functor τ≤k. Show that the k-th skeleton F kX

of a symmetric spectrum X is isomorphic to l(τ≤kX) in such a way that the morphism ik : F kX −→ X
corresponds to the adjunction counit.

(iii) We define (the object function of) a functor rk : Sp≤k −→ Sp as follows. For a k-truncated symmetric
spectrum X we set

(rkX)n =

{
∗ for n > k,

Xn for n ≤ k.

The symmetric groups actions and structure maps of rkX are those of X wherever this makes sense.
Show that rk is a right adjoint of the truncation functor τ≤k.

(iv) Show that the commutative square

rk(τ≤kX) //

��

rk−1(τ≤k−1X)

��
PkXk

// rk−1(τ≤k−1(PkXk))

is a pullback for every symmetric spectrum X.
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Exercise E.I.27. Let X and Y be symmetric spectra; define the homotopy smash product X ∧h Y as
the homotopy colimit (as opposed to colimit...). Show that this is homotopy invariant in the context of
simplicial sets, or if both factors are levelwise cofibrant when in the context of spaces. Show that whenever
one factor is flat and the other one level cofibrant, then X ∧h Y −→ X ∧ Y is a stable equivalence [even
more?]

Exercise E.I.28. Let X be a flat symmetric spectrum and Y level cofibrant. Show that X ∧ Y is stably
equivalent to

hocolim(n,m)∈I×I Ωn+m(Σ∞(Xn ∧ Ym))

When is X ∧ Y π̂∗-isomorphic to this homotopy colimit? How about more than two smash factors?

Exercise E.I.29. Symmetric spectra can be smashed together, and they can be smashed with a based
space or simplicial set. We have also defined two isomorphisms

(K ∧X) ∧ Y a1−−−→ K ∧ (X ∧ Y )
a2←−−− X ∧ (K ∧ Y )

that intertwine these different types of smash product constructions, where K is a based space (or simplicial
set) and X and Y are symmetric spectra. Show that these isomorphisms satisfy the ‘mixed’ coherence
condition, i.e., the following diagrams commute:

((K ∧X) ∧ Y ) ∧ Z
aK,X,Y1 ∧Z

sshhhhhhhhhhhhhhhhhhh
αK∧X,Y,Z

++WWWWWWWWWWWWWWWWWWW

(K ∧ (X ∧ Y )) ∧ Z

aK,X∧Y,Z1 &&NNNNNNNNNNN
(K ∧X) ∧ (Y ∧ Z)

aK,X,Y∧Z1wwppppppppppp

K ∧ ((X ∧ Y ) ∧ Z)
K∧αX,Y,Z

// K ∧ (X ∧ (Y ∧ Z)))

(K ∧X) ∧ Y a1 //

τK∧X,Y
��

K ∧ (X ∧ Y )

K∧τX,Y
��

Y ∧ (K ∧X)
a2

// K ∧ (Y ∧X)

Exercise E.I.30. Recall that for symmetric spectra of simplicial set A and B, the spectra of spaces |A∧B|
and |A| ∧ |B| are naturally isomorphic. The singular complex, however, does not commute with smash
product. There is a natural and lax monoidal map S(X) ∧ S(Y ) −→ S(X ∧ Y ), compare (5.23).

Show that for all symmetric spectra of spaces X and Y such that X is flat and Y is level cofibrant, the
composite

S(X)[ ∧ S(Y )
r∧Id−−−→ S(X) ∧ S(Y ) −→ S(X ∧ Y )

is a level equivalence, where r : S(X)[ −→ S(X) is the flat resolution.

Exercise E.I.31. We have shown in Proposition 4.28 that for every symmetric spectrum X the morphism

λ̂X : S1 ∧ .X −→ X is a stable equivalence. So we can define a natural induction isomorphism

. : π1+kX −→ πk(.X) by . x = S−1 ∧ (λ̂X)−1
∗ (x) .

In other words, . is defined so that the triangle

π1+kX
. // πk(.X)

S1∧−yysssssssss

π1+k(S1 ∧ .X)

(λ̂X)∗

eeKKKKKKKKKK

of isomorphisms commutes, starting at any of the vertices.
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(i) Show that for every symmetric spectrum X of spaces and integer k the composite

πk(.X)
πk(λ̄X)−−−−−→ πk(ΩX)

α−−→ π1+kX

is the negative of the inverse of the induction isomorphism . : πk+1X −→ πk(.X). Here the morphism
λ̄A : .A −→ ΩA was defined in (4.27) and the loop isomorphism α was discussed in Proposition 6.7.

(ii) Show that the diagram

π1+kX
S1∧− // πk(S1 ∧X)

.
xxppppppppppp

π1+k(.(S1 ∧X))

(λ̂′X)∗

eeLLLLLLLLLL

of isomorphisms commutes up to the sign −1, starting at any of the vertices, where λ̂′X : .(S1 ∧
X) −→ X is the stable equivalence adjoint to λX : S1 ∧ X −→ shX. (The induction isomorphism
. : π1+kX −→ πk(.X) and the suspension isomorphism satisfy the following relations:

(E.I.32) λ̂X(S1 ∧ (.x)) = x = −λ̂′X(.(S1 ∧ x)) .

Indeed, the first relation holds by definition of the induction isomorphism ., the second was just
shown. The sign is to be expected somewhere because the suspension and induction operators have
degree 1; so when they change places, a sign is supposed to come up. More formally, the proof of this

exercise shows that when comparing λ̂X(∼= (.(S1 ∧ x))) and λ̂′X(.(S1 ∧ x)), a twist isomorphism of
S1 ∧S1 comes up, so these two expressions differ by a sign. At which of the two sides the sign occures
is a matter of convention.)

(iii) The effect of the isomorphism b2 : Sn ∧ .X −→ .(Sn ∧X) on true homotopy groups is given by

(b2)∗(S
n ∧ .x) = (−1)n · .(Sn ∧ x) .

[definition of b2]
(iv) The maps induced by the isomorphisms

(.X) ∧ Y b1−−→ .(X ∧ Y )
b2←−− X ∧ (.Y )

on true homotopy groups satisfy

(E.I.33) (b1)∗((.x) · y) = .(x · y) = (−1)k · (b2)∗(x · (.y))

for all integers k, l and true homotopy classes x ∈ πkX and y ∈ πlY .

Exercise E.I.34. The shift construction for symmetric spectra preserves naive homotopy groups, but
it does not in general preserve stable equivalences, see Example 4.34. Hence we cannot expect the true
homotopy groups of shX to be a functor in the true homotopy groups of X. However, some things can be
saif about the stable homotopy type of shX.

We define a natural shift morphism

(E.I.35) sh! : πk+1(shX) −→ πkX by sh!(x) = (−1)k+1 · ε∗(.x) ,

where the induction isomorphism . is as in Exercise E.I.31 and ε : .(shX) −→ X is the adjunction counit,
see Example 3.17.

(i) Show that the shift homomorphism is an isomorphisms whenever X is semistable.
(ii) Show that the composite

πkX
S1∧−−−−−−→ π1+k(S1 ∧X)

(−1)k(λX)∗−−−−−−−−−→ πk+1(shX)

is a section to the shift homomorphism sh! : πk+1(shX) −→ πkX, which is thus a split epimorphism..
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(iii) Show that the map
sh!⊕i∗ : πk+1(shX) −→ πkX ⊕ πk+1C(λX)

is an isomorphism where i : shX −→ C(λX) is the mapping cone inclusion of the morphism λX :
S1 ∧X −→ shX.

(iv) Show that the map

shX
(sh(ηX),i)−−−−−−−−→ sh(QX)× C(λX)

is a stable equivalence.

Exercise E.I.36. The naive and true fundamental classes ι̂nm ∈ π̂n−m(FmS
n) respectively ιnm ∈

πn−m(FmS
n) were defined in (6.4).

(i) Show that the canonical isomorphism

a : S1 ∧ FmSn ∼= FmS
1+n

satisfies
a∗(S

1 ∧ ι̂nm) = ι̂1+n
m and a∗(S

1 ∧ ιnm) = ι1+n
m .

(ii) Let λ : Fm+1S
1 −→ Fm be the morphism adjoint to the map

1 ∧ − : S1 −→ Σm+1 ∧ S1 = (Fm)m+1 .

Show that λ∗(ι̂
1
m+1) = ι̂m and λ∗(ι

1
m+1) = ιm.

(iii) Let b : .Fm −→ F1+m be the isomorphism [...] Show that b∗(.ι̂m) = ι̂1+m and b∗(.ιm) = ι1+m.
(iv) Let b : FpS

n ∧ FqSm −→ Fp+qS
n+m be the morphism (in fact an isomorphism) corresponding to the

unique bimorphism whose (p, q)-component is

(FmS
n)m ∧ (FpS

q)p = (Σ+
m ∧ Sn) ∧ (Σ+

p ∧ Sq)
(σ∧x)∧(τ∧y) 7→ (σ+τ)∧x∧y−−−−−−−−−−−−−−−−−−→ Σ+

m+p ∧ Sn+q = (Fm+pS
n+q)m+p .

Show that b∗(ι̂
n
m · ι̂qp) = ι̂n+q

m+p and b∗(ι
n
m · ιqp) = ιn+q

m+p. [check the sign...]

Exercise E.I.37. Let X be a symmetric spectrum and x ∈ π0X a true homotopy class. Then there exists
a flat symmetric spectrum Z, a stable equivalence f : Z −→ S and a morphism g : Z −→ X such that
x = g∗(f

−1
∗ (1)).

Exercise E.I.38 (Variations on true homotopy groups). Let C be a class of symmetric spectra and define
a ‘homotopy group relative to C’ by

πCkA = NatC→set(Sp(A,−)|C , π̂k) .

(In this generality, the ‘collection’ of natural transformations need not form a set, but that will be the case

of interest below.) For B ⊂ C we get a homomorphism πCk −→ πB
′

k by restricting a natural transformation
to the smaller category.

(i) Let B ⊂ C be two classes of symmetric spectra such that there is a functor F : C −→ C with values in
B′ and a natural π̂∗-isomorphism X −→ FX. Show that the restriction homomorphism πCk −→ πBk is
an isomorphism.

(ii) Show that the true homotopy group πkA is naturally isomorphic to the homotopy group relative any
of the following classes of symmetric spectra: (a) Ω-spectra; (b) flat fibrant Ω-spectra; (c) injective
Ω-spectra; (d) positive Ω-spectra; (e) flat fibrant positive Ω-spectra; (f) injective positive Ω-spectra;
(g) flat fibrant semistable spectra; (h) injective semistable spectra. Can you think of other classes of
symmetric spectra that can be used here?

(iii) Suppose that the class C contains a symmetric spectrum which is not semistable. Show that then πCkA
is not naturally isomorphic to the true homotopy group functor.

(iv) Let C be the class of symmetric spectra X such that for all n ≥ 0 the alternating group An acts trivially
on Xn. Show that every spectrum in C is semistable and that the restriction map πkA −→ πCkA extends
to an isomorphism Q⊗ πkA ∼= πCkA.
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Exercise E.I.39. The true homotopy groups of a symmetric spectrum A of simplicial sets were defined
in 6.1 via the geometric realization. This exercise shows that instead we could have defined πkA as a group
of natural transformations, analogous to Definition 6.1, but within the category of semistable symmetric
spectra of simplicial sets.

We define a group πsS
k A by

πsS
k A = NatSpss

sS→set(Sp(A,−), π̂k) ,

the set of natural transformations, of functors from semistable symmetric spectra of simplicial sets to sets,
from the restriction of the representable functor to the restriction of k-th naive homotopy group functor.
Construct a natural isomorphism of abelian groups between πsS

k A and πk|A|.

Exercise E.I.40. We let b : (K ∧ Sn) ∧ Fm+n −→ K ∧ Fm be the morphism adjoint to the map

[− ∧ 1 ∧ −] : K ∧ Sn −→ K ∧ Σ+
m+n ∧1×Σn S

n = (K ∧ Fm)m+n .

(i) For which permutation σ ∈ Σm+1 is the composite

S1 ∧ F1+m
·σ−−→ S1 ∧ Fm+1

b−−→ Fm

equal to the morphism λ : S1 ∧ F1+m −→ Fm?
(ii) Show that the map b is a stable equivalence.
(iii) As a special case for K = Sp we obtain a stable equivalence b : Sp+n ∧ Fm+n −→ Sp ∧ Fm. The

true homotopy group πp−m(Sp+n ∧ Fm+n) is freely generated by the fundamental class ιp+nm+n, and

πp−m(Sp ∧ Fm) is freely generated ιpm, so we must have b∗(ι
p+n
m+n) = ±ιpm. Determine the correct sign

as a function of m,n and p.

Exercise E.I.41. For n ≥ 1, let F : Spn −→ (sets) be a functor of n variables to the category of sets which
takes stable equivalences between flat symmetric spectra in each variable to bijections. Then evaluation at
(1, . . . , 1) ∈ (π0S)n is a bijection from the set of natural transformations

π0X
1 × · · · × π0X

n −→ F (X1, . . . , Xn)

to F (S, . . . ,S).

Exercise E.I.42. In Examples 1.20. and 6.58 we introduced the commutative symmetric ring spectra KU
and KO of periodic complex and real topological K-theory.

(i) Show that every graded π∗KU -module is realizable as the homotopy of a KU -module spectrum.
(ii) Show that the only cyclic graded π∗KO-modules which are realizable as the homotopy of a KO-

module spectrum are the free module, the trivial module and Z/n ⊗ π∗KO for n an odd integer.
(Hint: produce enough nonzero Toda brackets and use Proposition 2.13)

(iii) Recall from Example 6.39 how to ‘mod out’ a homotopy class x of a symmetric ring spectrum R
on an R-module M , producing an R-module M/x. Calculate the homotopy groups of KO/2 as a
π∗KO-module and show that the double suspension of KO/ξ is stably equivalent, as a KO-module
spectrum, to KO/2. [can we show that ηβn and η2βn are in the Hurewicz image in ko∗, using bracket
manipulations?]

Exercise E.I.43. The construction f−1X that inverts a ‘graded selfmap’ f : Sk ∧ X −→ shnX of a
symmetric spectrum X (see Construction 6.46) has some naturality and functoriality properties that we
work out in this exercise.

(i) Consider another symmetric spectrum Y and a graded selfmap g : Sl ∧ Y −→ shm Y . Construct a
pairing of symmetric spectra

M(f,p) ∧N(g,p) −→ (M ∧N)(f · g,p) ,

where f · g is the graded endomorphism of M ∧N defined as the composite

Sk+l ∧ (M ∧N) ∼= (Sk ∧M) ∧ (Sl ∧N)
f∧g−−−−→ shnM ∧ shmN

ξ−−→ shn+m(M ∧N)

which is the identity for p = 0. Show that this pairing is suitably associative, commutative and unital.
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(ii) Consider a second graded selfmap f ′ : Sl∧X −→ shmX ofX. Define the composite f◦f ′ : Sk+l∧X −→
shn+mX of f and f ′ the composite

Sk+l ∧X Sk∧f ′−−−−−→ Sk ∧ shmX = shm(Sk ∧X)
shm f−−−−−→ shm(shnX) = shn+mX .

Construct a morphism of I-functors f∗ : M(f ′,−) −→M(f ◦f ′,−) which is the identity on the object
0 of I and which is associative in the sense that such that for a third graded selfmap f ′′ the composite

M(f ′′,−)
f ′∗−−−→ M(f ′ ◦ f ′′,−)

f∗−−−→ M(f ◦ f ′ ◦ f ′′,−)

equals (f ◦ f ′)∗.
Exercise E.I.44. [right to left...] Let R be a symmetric ring spectrum and x : Sk+n −→ Rn and
y : Sl+m −→ Rm based continuous maps. As in [...] we define the product x · y as the composite

Sk+l+n+m k×χl,n×m−−−−−−−→ Sk+n+l+m x∧y−−−−→ Rn ∧Rm
µn,m−−−−→ Rn+m .

Given any right R-module M , in (6.36) we defined a homomorphism

ρx : M ∧ FnSk+n −→ M ,

which should be thought of a ‘right multiplication by x’. This exercise shows that right multiplication by
the product x · y is essentially the composite of ρx followed by ρy.

More precisely, show that square

(M ∧ FnSk+n) ∧ FmSl+m
ρx∧FmSl+m//

∼=
��

M ∧ FmSl+m

ρy

��
M ∧ Fn+mS

k+l+n+m
ρx·y

// M

commutes. [specify the isomorphism]

Exercise E.I.45 (Coordinate free orthogonal spectra). There is a more natural notion where we use vector
spaces with inner product to index the spaces in an orthogonal spectrum. In the following, an inner product
space is a finite dimensional real vector space with a euclidian scalar product. Given two real inner product
spaces V and W we define a based space O(V,W ) as follows. First we consider the vector bundle ξ(V,W )
over the space L(V,W ) of linear isometric embedding from V to W whose fiber over ϕ : V −→ W is
W − ϕ(V ), the orthogonal complement of the image of ϕ. Then O(V,W ) is the Thom space of the bundle
ξ(V,W ). If we are given another inner product space U , there is a bundle map [make explicit]

ξ(U, V )× ξ(V,W ) −→ ξ(U,W )

which covers the composition map L(U, V )× L(V,W ) −→ L(U,W ).

A coordinate free orthogonal spectrum X consists of the following data:

• a pointed space X(V ) for each inner product space V , and
• a based continuous map

X(V ) ∧O(V,W ) −→ X(W )

for each pair V,W of inner product spaces.

This data should satisfy two conditions:

• the element (IdV , 0) in O(V, V ) acts as the identity on X(V ) for every inner product space V ;
• the square

X(U) ∧O(U, V ) ∧O(V,W )
◦∧Id //

Id∧◦
��

X(V ) ∧O(V,W )

◦
��

X(U) ∧O(U,W ) ◦
// X(W )
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commutes for every triple of inner product spaces U, V and W .

A morphism f : X −→ Y of coordinate free orthogonal spectra consists of based maps f(V ) : X(V ) −→
Y (V ) for all V which are compatible with the structure maps in the sense that for every pair of inner product
spaces V and W the square

X(V ) ∧O(V,W ) //

��

X(W )

��
Y (V ) ∧O(V,W ) // Y (W )

commutes.
(i) prove an equivalence of categories.
A coordinate free orthogonal spectrum X gives rise to a coordinate free symmetric spectrum UX

(see Exercise E.I.5) by forgetting symmetry. For a finite set A the space (UX)A is X(RA), the value of
X at the inner product space RA which has A as orthonormal basis. [define the structure maps α∗ :
(UX)A ∧ SB−α(A) −→ (UX)B ]

Exercise E.I.46 (Coordinate free unitary spectra). Give a coordinate free description of unitary spectra,
analogous to the coordinate free description of orthogonal spectra in Exercise E.I.45. Find coordinate
free descriptions of the functors Ψ : SpO −→ SpU and Φ : SpU −→ SpO originally defined in (7.6)
respectively (7.7).

Exercise E.I.47. Recall from (7.41) the T-category (or sS-category) Σ that parameterizes symmetric
spectra.

(i) We define a functor + : Σ ×Σ −→ Σ on objects by addition of natural numbers and on morphisms
by

[τ ∧ z] + [γ ∧ y] = [(τ + γ) ∧ (1 + χn,m̄ + 1)∗(z ∧ y)] ∈ Σ(n+ n̄,m+ m̄)

for [τ ∧ z] ∈ Σ(n,m) and [γ ∧ y] ∈ Σ(n̄, m̄). Show that ‘+’ is strictly associative and unital, i.e.,
a strict monoidal product on the category Σ. Define a symmetry isomorphism to make this into a
symmetric monoidal product. Show that under the correspondence between symmetric spectra and
based continuous functors Σ −→ T, shifting of spectra corresponds to precomposition with the functor
1 +− : Σ −→ Σ.

(ii) Show that the isomorphism of categories of Proposition 7.42 between symmetric spectra and enriched
functors from Σ can be extended to an isomorphism between the categories of symmetric ring spectra
and strong monoidal functors from Σ to T such that it takes commutative symmetric ring spectra
isomorphically onto the full subcategory of symmetric monoidal functors.

(iii) Show that the smash product of symmetric spectra corresponds, in the picture of enriched functors,
to the enriched Kan extension along + : Σ×Σ −→ Σ of an ‘external’ smash product.

(iv) Present an enriched functor X : Σ −→ T as an enriched coend,

X ∼=
∫
n∈Σ

Xn ∧ Fn .

This leads to a presentation of a symmetric spectrum X as a coequalizer∨
m≥n≥0 Xn ∧Σ(n,m) ∧ Fm

act∧Id //
Id∧coact

//
∨
n≥0 Xn ∧ Fn // X

Exercise E.I.48. Recall from (7.41) the T-category O that parameterizes orthogonal spectra.

(i) We define a functor + : O ×O −→ O on objects by addition of natural numbers and on morphisms
by

[τ ∧ z] + [γ ∧ y] = [(τ + γ) ∧ (1 + χn,m̄ + 1)∗(z ∧ y)] ∈ O(n+ n̄,m+ m̄)

for [τ ∧ z] ∈ O(n,m) and [γ ∧ y] ∈ O(n̄, m̄). Show that ‘+’ is strictly associative and unital, i.e.,
a strict monoidal product on the category O. Define a symmetry isomorphism to make this into a
symmetric monoidal product.
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(ii) Show that the isomorphism of categories of Proposition 7.42 between orthogonal spectra and enriched
functors from O can be extended to an isomorphism between the categories of orthogonal ring spectra
and strong monoidal functors from O to T such that it takes commutative orthogonal ring spectra
isomorphically onto the full subcategory of symmetric monoidal functors.

Exercise E.I.49. Formulate unitary spectra as continuous functors from a topological category U and
state and solve the analogue of Exercise E.I.48 in the unitary context.

Exercise E.I.50. Let R be a symmetric ring spectrum. Define a T-category (or sS-category) ΣR, with
objects the natural number, such that enriched functors from ΣR are ‘the same’ (in the sense of an iso-
morphism of categories) as R-modules. In the case where R is commutative, define a symmetric monoidal
product on ΣR which is given by addition on objects. Do the same for orthogonal and unitary ring spectra.

Exercise E.I.51. Let f : B −→ A be a homomorphism of abelian groups. We let Pf to be the category
whose objects are the elements of A, and with morphism sets

Pf(a, a′) = {b ∈ B | a+ f(b) = a′} .
Composition is addition in B. We define a functor ⊕ : Pf × Pf −→ Pf on objects by addition in A,
and on morphisms by addition in B. Show that Pf is a strict Picard category with respect to the identity
symmetry isomorphisms. Describe the homotopy groups of the K-theory spectrum K(Pf) in terms of the
morphism f . Construct a natural π̂∗-isomorphism between K(Pf) and the mapping cone of the morphism
Hf : HB −→ HA between Eilenberg-Mac Lane spectra.

Exercise E.I.52. One can break the construction of the M-action on the naive homotopy groups of a
symmetric spectrum up into two steps and pass through the intermediate category of I-functors. As before,
the category I has an object n = {1, . . . , n} for every non-negative integer n, including 0 = ∅. Morphisms
in I all injective maps. An I-functor is a covariant functor from the category I to the category of abelian
groups.

(i) (From symmetric spectra to I-functors.) Given a symmetric spectrum X and an integer k we assign
an I-functor πkX to the symmetric spectrum X. On objects, this I-functor is given by

(πkX)(n) = πk+nXn

if k + n ≥ 2 and (πkX)(n) = 0 for k + n < 2. If α : n −→ m is an injective map and k + n ≥ 2,
then α∗ : (πkX)(n) −→ (πkX)(m) is given as follows. We choose a permutation γ ∈ Σm such that
γ(i) = α(i) for all i = 1, . . . , n and set

α∗(x) = sgn(γ) · γ(ιm−n(x))

where ι : πk+nXn −→ πk+n+1Xn+1 is the stabilization map (1.7). Justify that this definition is
independent of the choice of permutation γ and really defines a functor on the category I.

(ii) (From I-functors to tameM-modules.) Let F be any I-functor F ; construct a natural tame left action
by the injection monoid M on the colimit of F , formed over the subcategory N of inclusions, in such
a way that for the I-functor πkX coming from a symmetric spectrum X as in (i) , this yields the
M-action on the stable homotopy group π̂kX.

(iii) In Example 3.52 we associated an I-space Ω•X to every symmetric spectrum X. Construct an iso-
morphism of I-functors π̂k(Ω•X) ∼= (πkX). [k + n ≥ 2?]

(iv) Show that every I-functor arises as the I-functor π0 of a symmetric spectrum. (Hint: revisit and
generalize the construction of the Eilenberg-Mac Lane spectrum a second time; Examples 1.14, 4.33
and 8.10 should become special cases.)

(v) Show that the tameM-set In which represents the functor of taking filtration n (see Example 8.9) is
isomorphic, as an M-set, to the colimit of the representable, set-valued, I-functor I(n,−).

Exercise E.I.53. Let W be an M-module. Show that the assignment n 7→ W (n) extends to an I-
functor W (•) in such a way that W 7→W (•) is right adjoint to the functor which assigns to an I-functor F
the M-module F (ω). The counit of the adjunction (W (•))(ω) −→W is injective with image the subgroup
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of elements of finite filtration, which is also the largest tame submodule of W . The assignment W 7→
(W (•))(ω) =

⋃
nW

(n) is right adjoint to the inclusion of tame M-modules into all M-modules. The

restriction of W 7→W (•) to tame M-modules is fully faithful.

Exercise E.I.54. Let W be an M-module.

(i) Show that the map d· : W −→ shW given by the left multiplication by the shift operator d isM-linear
with respect to the shifted M-action on the target.

(ii) Denote by sh∞W the colimit of the sequence

W
d·−−→ shW

sh d·−−−−→ sh2W
shd ·−−−−→ · · ·

of M-modules and homomorphisms. We denote the colimit of this sequence by sh∞W . For a sym-
metric spectrum X, construct a natural isomorphism of M-modules

π̂k(Ω∞sh∞X) ∼= sh∞(π̂kX) .

(iii) Show that the Σm-actions on shmW and the morphisms shm d extend to a functor sh• from the
category T to the category of tameM-modules. Conclude that the colimit sh∞W over the subcategory
N has another ‘external’ tame M-action which commutes with the ‘internal’ M-action.

Exercise E.I.55. We now give a construction which associates to an I-functor with Σm-action F (i.e.,
a covariant functor F : I −→ ZΣm-mod) a new I-functor .mF and give a formula for the M-module
(.mF )(ω).

Given F : I −→ ZΣm-mod we define a new I-functor .mF by (.mF )(k) = 0 for k < m and

(E.I.56) (.mF )(m + n) = ZΣm+n ⊗Σm×Σn F (n) .

We define .mF on morphisms α : m + n −→ m + k in I as follows. We choose a permutation γ ∈ Σm+k

which agrees with α on m + n and define

α∗ : (.mF )(m + n) = ZΣm+n ⊗Σm×Σn F (n) −→ ZΣm+k ⊗Σm×Σk F (k) = (.mF )(m + k)

by α∗(τ ⊗ x) = γ(τ + 1k−n)⊗ ι∗(x) where ι : n −→ k is the inclusion.

(i) Check that this defines a functor.
(ii) We recall that a homomorphism of monoids + : Σm ×M −→M is given by

(γ + f)(i) =

{
γ(i) for 1 ≤ i ≤ m, and

f(i−m) +m for m+ 1 ≤ i.

As before we denote by ZM〈m〉 the monoid ring ofM with its usual left multiplication action, but with
action by the monoid Σm ×M via restriction along the homomorphism × : Σm ×M −→M. Since
F takes values in Σm-modules, the colimit F (ω) not only has an action of M, but also a compatible
left action by the group Σm. So we can form

ZM〈m〉 ⊗Σm×M F (ω)

which is a left M-module via the left multiplication action of ZM on itself. Show that for every
I-functor with Σm-action F the natural map

ZM〈m〉 ⊗Σm×M F (ω) −→ (.mF )(ω)

f ⊗ [x] 7−→ f · [1⊗ x]

is an isomorphism of M-modules.
Relate this to the I-functor of stable homotopy groups of a twisted smash product. [where is the

sign?]
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Exercise E.I.57. Let W be a tame M-module and let HW denote the associated Eilenberg-Mac Lane
spectrum as in Example 8.10. Construct natural π̂∗-isomorhisms

S1 ∧H(shW ) −→ sh(HW ) and

S1 ∧ .(HW ) −→ H(ZM〈1〉 ⊗MW ) .

Exercise E.I.58. We dconsider the tame M-module

W = P3 ⊗Σ3 Q±

where Q± is the sign representation of the symmetric group Σ3. Since theM-action on W is non-trivial, the
associated Eilenberg-Mac Lane spectrum HW (see Example 8.10) is not semistable and so the morphism
λHW : S1∧HW −→ sh(HW ) is not a π̂∗-isomorphism. Show that nevertheless λHW is a stable equivalence
because both S1 ∧HW and sh(HW ) are stably contractible.

Exercise E.I.59. We show that the injection monoid M gives essentially all natural operations on the
homotopy groups of symmetric spectra. More precisely, we now identify the ring of natural operations
π̂0X −→ π̂0X with a completion of the monoid ring ZM. Any functor G : A −→ C from a small category
A has an endomorphism monoid End(G); the elements of End(G) are the natural self-transformation from
the functor G to itself and composition of transformations gives the product.

(i) An I-set is a functor from the category I of standard finite sets and injections to the category of sets.
Show that the endomorphism monoid of the ‘colimit over inclusions’ functor

(I-sets) −→ (sets) , F 7→ colimn∈N F (n)

is isomorphic to the injection monoid M.
(ii) We denote by In the left ideal of the monoid ring ZM which is additively generated by all differences

of the form f −g for all f, g ∈M such that f and g agree on n. Define a multiplication on the abelian
group

Z[[M]] = lim
n

ZM/In

such that the natural map ZM−→ Z[[M]] is a ring homomorphism. (Warning: In is not a right ideal
for n ≥ 1, so the individual terms ZM/In do not inherit multiplications.)

(iii) We consider the endomorphism ring End(colimN) of the ‘colimit over inclusions’ functor

(I-functors) −→ (abelian groups) , F (ω) = F 7→ colimn∈N F (n) .

Addition in this ring is given by pointwise addition. Show that End(colimN) is isomorphic to the
completed monoid ring Z[[M]].

(iv) Let W be a tameM-module. Show that the action of the monoid ring ZM on W extends to an action
of the completed monoid ring Z[[M]] which is discrete in the sense that the action map

Z[[M]]×W −→ W

is continuous with respect to the discrete topology on W and the filtration topology on Z[[M]]. Show
that conversely, if W is discrete module over Z[[M]], then its underlying M-module is tame. Show
that this establishes an isomorphism between the category of tame M-modules and the category of
discrete Z[[M]]-modules.

(v) Since π̂0X is a tame M-module for every symmetric spectrum X, part (iv) provides a natural action
of the completed monoid ring Z[[M]] on π̂0X. As X varies, this is a homomorphism of rings

Z[[M]] −→ End(π̂0)

to the endomorphism ring of the naive homotopy group functor π̂0 : Sp −→ (abelian groups). Show
that this map is an isomorphism.
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Exercise E.I.60. Show that for every I-functor F there are natural isomorphisms of abelian groups

colimI
p F

∼= Hp(M, F (ω)) .

for all p ≥ 0, where ‘colimI
p’ is the pth left derived functor of the colimit functor from I-functors to abelian

groups.

Exercise E.I.61. Let H : I −→ Sp be an I-symmetric spectrum.

(i) The underlying sequential spectra of the mapping telescope telnH(n) of the sequence of symmetric
spectra H(n) taken over the inclusions in N and the diagonal diagH are naturally π̂∗-isomorphic.

(ii) If the externalM-action on the sequential colimit colimn∈N π̂kH(n) is trivial, then mapping telescope
telnH(n) and the diagonal diagH are naturally stably equivalent as symmetric spectra.

Exercise E.I.62. The true homotopy group πkX of a symmetric spectrum X is the abutment of the
naive-to-true spectral sequence (see Theorem 8.41); as such it comes with an exhaustive natural filtration

Π0 ⊆ Π1 ⊆ · · · ⊆ Πi ⊆ Πi+1

such that the subquotient Πp/Πp−1 is isomorphic to the E∞p,k−p-term of the naive-to-true spectral sequence.

(i) Show that the fltration group Π0 equals the image of the tautological map c : π̂qX −→ πqX from
naive to true homotopy groups.

(ii) Prove the following characterization of the filtration groups. A true homotopy class x ∈ πnX belongs
to Πi if and only if the following holds: for every chain

X = Y0
f0−→ Y1

f1−→ · · ·Yi
fi−→ Yi

of i+1 composable morphisms of symmetric spectra each of which is trivial on naive homotopy groups,
we have πn(fi ◦ · · · ◦ f0)(x) = 0.

Exercise E.I.63. In (E.I.35) we have defined the shift homomorphism sh! : πk+1(shX) −→ πkX which is
compatible with the tautological map from naive to true homotopy groups and has the map (−1)k(λX)∗(S

1∧
−) : πkX −→ πk+1(shX) as a section, by Proposition ??.

(i) Show that the diagram

π̂kX
sh(d·−) //

c

��

sh(π̂kX) π̂k+1(shX)

c

��
πkX

(−1)k(λX)∗(S
1∧−)

// πk+1(shX)

commutes. There is a certain danger to misinterpretation: The tautological map c : π̂kY −→ πkY
coequalizes the action of the injection monoid, so one could be led to think that for a naive homotopy
class y ∈ π̂kX the true homotopy class c(sh y) equals c(sh(dy)) and hence cy. However, the element
sh(dy) is in general not the same as d(sh y) and not even of the form f(sh y) for any monoid element
f ∈M.

(ii) Show that there is no natural transformation τ : πkX −→ πk+1(shX) such that the square

π̂kX

c

��

π̂k+1(shX)

c

��
πkX τ

// πk+1(shX)

commutes.

The relations enjoyed by this construction are part of an action of the injection operad, see Exer-
cise E.I.69 for details.



212 I. BASICS

Exercise E.I.64 (Products on naive homotopy groups). In this exercise we discuss pairings of the naive
homotopy groups of two symmetric spectra. Before we start, we repeat an earlier warning, namely that
there is no preferred pairing of naive homotopy groups from π̂kX×π̂lY to π̂k+l(X∧Y ) for general symmetric
spectra X and Y !

Given two symmetric spectra X and Y and two homotopy classes x ∈ πk+nXn and y ∈ πl+mYm we
denote by x · y the homotopy class in πk+l+n+m(X ∧ Y )n+m given by the composite

(E.I.65) Sk+n+l+m x∧y−−−−→ Xn ∧ Ym
in,m−−−−→ (X ∧ Y )n+m

multiplied by an appropriate sign [...], where in,m is a component of the universal bimorphism.

(i) Show that the stable class of x · y in π̂k+l(X ∧ Y ) only depends on the stable class of y in π̂lY . Give
an example showing that replacing x by ι(x) ∈ πk+n+1Xn+1 can change the product, i.e., x · y and
ι(x) · y may represent different classes in π̂k+l(X ∧ Y ).

(ii) Let ϕ : 2 × ω −→ ω be an injective map. We consider naive homotopy classes in π̂kX and π̂lY
represented by unstable homotopy classes x ∈ πk+nXn respectively y ∈ πl+mYm. We choose an
injection f ∈ M such that ϕ(1, i) = f(i) for i = 1, . . . , n and ϕ(2, j) = f(n + j) for j = 1, . . . ,m.
Then we define ϕ∗([x], [y]) in π̂k+l(X ∧ Y ) as

(E.I.66) (−1)ln · f · [x · y] ;

in other words, we take the stable class represented by the composite

Sk+n+l+m x∧y−−−−→ Xn ∧ Ym
in,m−−−−→ (X ∧ Y )n+m

where in.m is a component of the universal bimorphism, multiply by the sign (−1)ln and act by the
monoid element f . Show that the definition (E.I.66) of the pairing

ϕ∗ : π̂kX × π̂lY −→ π̂k+l(X ∧ Y )

is independent of all choices and biadditive.
(iii) Let g, h1, h2 be elements of the injection monoid M. Show the relations

g · ϕ∗(x, y) = (gϕ)∗(x, y) and ϕ∗(h1 · x, h2 · y) = (ϕ(h1 + h2))∗(x, y)

hold in π̂k+l(X ∧Y ) for all naive homotopy classes x ∈ π̂kX and y ∈ π̂lY . Here h1 +h2 is the selfmap
of 2× ω given by (h1 + h2)(α, i) = (α, hα(i)) .

(iv) Show that for Y = S the composite

π̂kX × πs
l

ϕ∗−−−→ π̂k+l(X ∧ S) = π̂k+lX

agrees with the action of the stable homotopy groups of spheres as defined in Example 1.11.
(v) Show that the diagram

π̂kX × π̂lY
ϕ∗ //

twist

��

π̂k+l(X ∧ Y )

(−1)kl·π̂k+l(τX,Y )

��
π̂lY × π̂kX

(ϕτ)∗

// π̂l+k(Y ∧X)

commutes, where τ is the involution of 2 × ω which interchanges the two copies of ω, i.e., τ(α, i) =
(3− α, i).

(vi) Show that the square

π̂kX × π̂lY
ϕ∗ //

c×c
��

π̂k+l(X ∧ Y )

c

��
πkX × πlY ·

// π̂k+l(X ∧ Y )

commutes.
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Exercise E.I.67. Let R be a symmetric ring spectrum. Show that there is a natural structure of a
graded ring on the graded subgroup (π̂∗R)(0) of M-fixed elements in the homotopy groups of R. If R is
commutative, then the product on (π̂∗R)(0) is graded-commutative. The homotopy groups of every right
R-module naturally form a graded right module over the graded ring (π̂∗R)(0).

If R is semistable, then (π̂∗R)(0) = π̂∗R and this should generalize the product on true homotopy groups
as define in Proposition 6.25.

Exercise E.I.68. In this exercise we introduce and study the injection operad. Readers familiar with the
linear isometries operad and the theory of S-modules in the sense of Elmendorf, Kriz, Mandell and May [26]
will notice similarity between the injection operad and the linear isometries operad. Indeed, the operadM
can be viewed as a ‘discrete analog’ of the linear isometries operad.

The injection operad M is defined by letting M(n) be the set of injections from the set ω × n into ω,
for n ≥ 0. Note that for n = 0 the source is the empty set, so M(0) has exactly one element, and M(1) is
the monoid M. The symmetric groups permute the second coordinates in ω × n. The operad structure is
via disjoint union and composition, i.e., M is a suboperad of the endomorphism operad of the set ω in the
symmetric monoidal category of sets under disjoint union. More precisely, the operad structure morphism

γ : M(n)×M(i1)× · · · ×M(in) −→ M(i1 + · · ·+ in)

sends (ϕ, f1, . . . , fn) to ϕ ◦ (f1 + · · ·+ fn).

(i) Show that the collection {M(n)}n≥0 is an operad with respect to the structure maps γ defined above.
(ii) For all n,m ≥ 1 the map

a : M(2)×M2 (M(n)×M(m)) −→ M(n+m)

given by ϕ(ψ, λ) 7→ ϕ ◦ (ψ + λ) is an isomorphism of M-Mn+m-bisets.
(iii) The injection operad of sets has similar formal properties as the linear isometries operad. Show that

the operadic composition map

γ : M(1)×M(n) −→ M(n)

is a free and transitive action of the monoid M on the set M(n) for n ≥ 1. Show that the injection
operad has ‘Hopkins’ property’ that the map

M(2)×M(1)×M(1)×M(i)×M(j)
γ×Id //

Id×γ2
//M(2)×M(i)×M(j)

γ //M(i+ j)

is a split coequalizer for all i, j ≥ 1.
(iv) Show that although the monoid M×M does not act transitively on the set M(2), the orbit set

M(2)/M(1)×M(1) =M(2)/M(1)2 has only one element.

Exercise E.I.69. As we have seen in Proposition 6.25 the true homotopy groups of any symmetric ring
spectrum form a graded ring. However, the naive homotopy groups of a symmetric ring spectrum R do
in general not form a graded ring in any natural way (unless R is semistable, when the naive and true
homotopy groups coincide). As we mentioned in [...] the problem is that the smash product pairing

πk+nRn × πl+mRm −→ πk+n+l+mRn+m

induced by the multiplication Rn ∧Rm −→ Rn+m is generally not compatible with the stabilization in the
left factor and so does not usually induce a map π̂kR × π̂lR −→ π̂k+lR on colimits. In this exercise we
reveal the natural structure on the naive homotopy groups of a symmetric ring spectrum, namely a graded
algebra structure over the injection operad. For semistable symmetric spectra, the naive and true homotopy
groups are isomorphic. By part (iii) of this exercise, in that case the action of the injection operad reduces
to the multiplication on the homotopy groups.

(i) Let X1, . . . , Xn be symmetric spectra and ϕ ∈ M(n) an injection from n× ω to ω. Define a natural
map

ϕ∗ : π̂k1
X1 × · · · × π̂knXn −→ πk1+···+kn(X1 ∧ . . . Xn)

so that for n = 1 we recover the action of the injection monoid M =M(1).
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(ii) Find out what relations the operations ϕ∗ satisfy as n and ϕ vary.
(iii) Let R be a symmetric ring spectrum. For every n ≥ 1, every ϕ ∈M(n) and all integers ki, we obtain

a multilinear internal pairing of the naive homotopy groups of R as the composite

ϕ∗ : π̂k1
R× · · · × π̂knR

ϕ∗−−−→ π̂k1+···+kn(R ∧ . . . ∧R)
µ(n)

−−−−→ π̂k1+···+knR ,

where µ(n) : R∧n −→ R is the iterated multiplication. Show that these maps make the naive homotopy
groups π̂∗R into a graded (non-symmetric) algebra over the (non-symmetric) operad M.

(iv) Show that if the multiplication of R is commutative, then the algebra structure of part (i) makes π̂∗R
into a graded algebra over the operad M, i.e., the symmetry property also holds.

(v) Suppose A is an algebra over the injection operad in the monoidal category of abelian groups under
tensor product. Show that if the action of the injection monoid M = M(1) on A is trivial, then all
injections ϕ ∈ M(n) induced the same map A⊗n −→ A. Conclude that the full subcategory of those
M-algebras for which M =M(1) acts trivially is equivalent to the category of rings.

Exercise E.I.70. We define a binary product � for M-modules V,W by

V�W = ZM(2)⊗M×M V ⊗W
[explain...] As in Exercise E.I.68, there are strong similarities between the �-product ofM-spectra and the
smash product of L-spectra defined in [26, I.5].

(i) Show that the �-product is coherently associative and symmetric on the category of M-modules.
Show that when restricted to tameM-modules, then the trivialM-module Z is a coherent unit object
for the �-product.

(ii) Given two symmetric spectra X and Y , construct a natural map of M-modules

· : (π̂kX)�(π̂lY ) −→ π̂k+l(X ∧ Y )

which constitutes a lax symmetric monodal transformation.
(iii) Suppose that at least on of the symmetric spectra X and Y is flat, and the other one level cofibrant.

Suppse that X is naively (k − 1)-connected and Y is naively (l − 1)-connected. Show that then the
smash product X ∧ Y is naively (k + l − 1)-connected and the map

π̂k+l(X ∧ Y ) ∼= (π̂kX)�(π̂lY )

constructed in part (ii) is an isomorphism of M-modules.
(iv) In Example 8.10 we associated to every tame M-module W an Eilenberg-Mac Lane spectrum HW

and anM-linear isomorphism jW : W ∼= π̂0(HW ). Show that this isomorphism is multiplicative, i.e.,
that for every pair of tame M-modules W and V the composite map

W�V
jW�jV−−−−−→ π̂0HW�π̂0HV

·−→ π̂0(HW ∧HV )
π̂0(mW,V )−−−−−−→ H(W�V )

equals jW⊗V . (Note that if M acts trivially on W and V , then this specializes to Example 6.27.)

Exercise E.I.71. Let X be a symmetric spectrum such that all structure maps σn : Xn ∧ S1 −→ Xn+1

are cofibrations. Show that X is semistable if and only if the adjunction counit GUX −→ X is a stable
equivalence. Here U is the forgetful functor to sequential spectra and G its left adjoint.

Exercise E.I.72. Let X and Y be semistable symmetric spectra and let ϕ : X −→ Y be a π̂∗-isomorphism
of the underlying sequential spectra (so ϕ need not respect the symmetric group actions). Show that X
and Y are stably equivalent as symmetric spectra (by a chain of stable equivalences).

History, credits and further reading

I now summarize the history of symmetric spectra and symmetric ring spectra, and the genesis of the
examples which were discussed above, to the best of my knowledge. My point with respect to the examples
is not when certain spectra first appeared as homotopy types or ring spectra ‘up to homotopy’, but rather
when a ‘highly structured’ multiplication was first noticed in one form or another. Additions, corrections
and further references are welcome.
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Symmetric spectra and symmetric ring spectra were first introduced under this name in the article [36]
by Hovey, Shipley and Smith. However, these mathematical concepts had been used before, in particular in
several papers related to topological Hochschild homology and algebraic K-theory. For example, symmetric
ring spectra appeared as strictly associative ring spectra in [31, Def. 6.1] and as FSPs defined on spheres
in [33, 2.7].

There is a key observation, however, which is due to Jeff Smith and which was essential for the devel-
opment of symmetric spectra and related spectra categories. Smith noticed that symmetric ring spectra
are the monoids in a category of symmetric spectra which has a smash product and a compatible stable
model structure. Smith gave the first talks on this subject in 1993. In the fall of 1995, Hovey, Shipley
and Smith started a collaboration in which many remaining issues and in particular the model structures
were worked out. The results first appeared in a joint preprint on the Hopf algebraic topology server
(at hopf.math.purdue.edu), the K-theory preprint server (at www.math.uiuc.edu/K-theory/) and the
ArXiv (under math.AT/9801077) in January 1998. This preprint version has a section about symmetric
spectra based on topological spaces which did not make it into the published version [36] because the referee
requested that the paper be shortened.

Several of the examples which we gave in Section 1.1 had been around with enough symmetries before
symmetric spectra were formally introduced. For example, Bökstedt and Waldhausen introduced functors
with smash product, or FSPs for short, in [8], from which symmetric ring spectra are obtained by restricting
to spheres. Eilenberg-Mac Lane spectra (Example 1.14) and monoid ring spectra (Example 3.42) arise in
this way from FSPs and seem to have first appeared in [8] Matrix ring spectra (Example 3.44) were also
treated as FSP in [8] [first published reference ?].

Cobordism spectra first appeared as highly structured ring spectra in the form of as ‘I∗-prefunctors’
in [56]. I∗-prefunctors are the same as [commutative ?] orthogonal ring spectra, and the underlying
symmetric ring spectra are what we present in Example 1.16.

The model for the connective complex topological K-theory spectrum ku in Example 1.20 is essentially
taken from [???]

Free and semifree symmetric spectra, suspensions, loop and shifts of symmetric spectra were first
discussed in the original paper [36] of Hovey, Shipley and Smith.

The particular method for inverting a homotopy elements in a symmetric ring spectrum described in
Examples 3.47, 3.48 and 6.53 seems to be new. The construction of Example 3.49 for adjoining roots of
unity to a symmetric ring spectrum is due to Schwänzl, Vogt and Waldhausen [68]. They originally wrote
up the construction in the context of S-modules, but their argument only needs that one can form monoid
rings and invert homotopy elements within the given framework of commutative ring spectra. So as soon
as these constructions are available, their argument carries over to symmetric ring spectra.

Waldhausen notes on p. 330 of [88] that the iterated S·-construction defines a (sequential) spectrum
which is an Ω-spectrum from level 1 upwards. Waldhausen’s construction predates symmetric spectra,
and it was later noticed by Hesselholt [28, Appendix] that iterating the S·-construction in fact has all
the symmetries needed to form a symmetric spectrum. Moreover, bi-exact pairings of input data yields
multiplications of associated K-theory spectra. Our treatment of the algebraic K-theory spectrum on
Example 3.50 follows very closely the Appendix of [28].

Our treatment of stable equivalences is the same as in the original paper [36] of Hovey, Shipley and
Smith, expanded by a few more details and examples. The arguments of Propositions 4.8 and 4.9 to reduce
the lifting property to a set of morphisms with bounded cardinality is taken from [36, Lemma 5.1.4 (6)] and
ultimately goes back to Bousfield, who used it in [10] to establish a ‘local’ model structure for simplicial
sets with respect to a homology theory.

The smash product of symmetric spectra was defined by Hovey, Shipley and Smith in their original
paper [36]. However, their exposition of the smash product differs substantially from ours. Hovey, Shipley
and Smith use the category of symmetric sequences (sequences of pointed spaces Xn, for n ≥ 0, with Σn-
action on Xn) as an intermediate step towards symmetric spectra and in the construction of the smash
product, compare Exercise E.I.16. I chose to present the smash product of symmetric spectra in a different
way because I want to highlight its property as the universal target for bimorphisms.



216 I. BASICS

The M-action on the homotopy groups of symmetric spectra was first studied systematically by the
author in [70]. Some results related to the M-action on homotopy groups are already contained, mostly
implicitly, in the papers [36] and [75]. The definition of semistable symmetric spectra and the character-
izations [???] of Theorem 8.25 appear in Section of [36]; the criterion of trivial M-action on homotopy
groups (Theorem 8.25 (i)) first appears in [70].

The definition of true homotopy groups that we use is new; because of its abstractness I am afraid
that it may not be to everybody’s taste. The more traditional approach, adopted for example in [36], has
been to choose a stably fibrant replacement functor, i.e., a functor X 7→ X f with values in Ω-spectra and
a natural stable equivalence X −→ X f; the ‘true’ (or ‘derived’) homotopy groups were then defined as the
naive (or ‘classical’) homotopy groups of the fibrant replacement X f. I decided to work with the present
definition of true homotopy groups because I wanted an intrinsic approach independent of any choices.

The idea to construct various spectra from the Thom spectrum MU by killing a regular sequence and
possibly inverting an element (see Example 6.63) is taken from Chapter V of [26] where this process is
carried out in the world of S-modules. This strategy had previously been adapted to symmetric spectra in
Weiner’s Diplomarbeit [89].

The original construction of the Brown-Peterson spectrum in the paper [14] by Brown and Peterson
was quite different. They constructed a spectrum whose mod-p homology realizes a certain polynomial
subalgebra of the dual Steenrod algebra. Later Quillen gave a construction of the spectrum BP using the
theory of formal groups, and Quillen’s approach is still at the heart of most current applications of BP .
Quillen used p-typical formal groups to produce an idempotent endomorphism e : MU(p) −→ MU(p) of
the p-localization of MU in the stable homotopy category (see Section II) which is even a homomorphism
of homotopy ring spectra (see Section II.3 below). The ‘image’ of this idempotent is isomorphic, in the
stable homotopy category, to the spectrum BP , and Quillen’s construction produces it as a homotopy ring
spectrum. Part II of Adams’ notes [2] are a good exposition of Quillen’s results in this area. [original
paper?]

I learned the model of the periodic complex cobordism spectrum MUP given in Example 7.8 from
Morten Brun, who adapted a construction of Strickland [82, Appendix] from ‘complex S-modules’ to
unitary spectra.

The category of Γ-spaces was introduced by Segal [73], who showed that it has a homotopy category
equivalent to the usual homotopy category of connective spectra. The category we denote Γ is really
equivalent to the opposite of Segal’s category Γ, so that covariant functors from Γ are ‘the same’ as
contravariant from Γ. Bousfield and Friedlander [13] considered a bigger category of Γ-spaces in which the
ones introduced by Segal appeared as the special Γ-spaces. Their category admits a closed simplicial model
category structure with a notion of stable weak equivalences giving rise again to the homotopy category of
connective spectra. The proof that a prolonged Γ-space of simplicial sets preserves weak equivalences of
simplicial sets first appears (with a different proof) as Proposition 4.9 in [13]. Lydakis [47] showed that
Γ-spaces admit internal function objects and a symmetric monoidal smash product with good homotopical
properties. The spectra that arise from Γ-spaces have more special properties than the ones we have
mentioned above. For example, the colimit systems for the stable homotopy groups stabilize in a uniform
way. More specifically, for every Γ-space X with values in simplicial sets, the simplicial set X(Sn) is always
(n− 1)-connected [13] and the structure map X(Sn) ∧ S1 −→ X(Sn+1) is 2n-connected [47, Prop. 5.21].

After the discovery of smash products and compatible model structures for Γ-spaces and symmetric
spectra it became obvious that variations of this theme are possible. Simplicial functors were first used for
the purposes of describing stable homotopy types by Bökstedt and Waldhausen when they introduced ‘FSPs’
in [8]. Various model structures and the smash product of simplicial functors were systematically studied
by Lydakis in [48]. The paper [53] contains a systematic study of ‘diagram spectra’, their model structures
and smash products, which includes symmetric spectra, Γ-spaces and simplicial functors. Here orthogonal
spectra and continuous functors (defined on finite CW-complexes) make their first explicit appearance. The
category of S-modules is very different in flavor from the categories diagram spectra, and it is defined and
studied in the monograph [26].



CHAPTER II

The stable homotopy category

[intro to the chapter]

1. The stable homotopy category

Now we introduce the stable homotopy category. For this purpose we choose for each symmetric
spectrum of simplicial sets Y a stable equivalence pY : Y −→ ωY with target an injective Ω-spectrum,
which is possible by combining Propositions I.4.39 and I.4.10. We insist that if Y is already an injective
Ω-spectrum, then ωY = Y and pY is the identity. This is not really necessary, but will simplify some
arguments. The following definition depends on these choices, but only very slighty, as we explain in
Remark 1.2 below.

Definition 1.1. The stable homotopy category SHC has as objects all symmetric spectra of simplicial sets.
For two such spectra, the morphisms from X to Y in SHC are given by [X,ωY ], the set of homotopy classes
of spectrum morphisms from X to the chosen injective Ω-spectrum ωY . If f : X −→ ωY is a homomorphism
of symmetric spectra we denote by [f ] : X −→ Y its homotopy class, considered as a morphism in SHC.

Composition in the stable homotopy category is defined as follows. Let f : X −→ ωY and g : Y −→ ωZ
be morphism of symmetric spectra which represent morphism from X to Y respectively from Y to Z in SHC.
Then there is a morphism ḡ : ωY −→ ωZ, of symmetric spectra, unique up to homotopy, such that ḡ ◦ pY
is homotopic to g. The composite of [f ] ∈ SHC(X,Y ) and [g] ∈ SHC(Y,Z) is then defined by

[g] ◦ [f ] = [ḡ ◦ f ] ∈ SHC(X,Z) .

There are a few things to check so that Definition 1.1 makes sense. To see that composition in the
stable homotopy category is associative we consider four symmetric spectra X,Y, Z and W and three
homomorphisms f : X −→ ωY , g : Y −→ ωZ and h : Z −→ ωW of symmetric spectra. We also pick
homomorphisms ḡ : ωY −→ ωZ and h̄ : ωZ −→ ωW such that ḡ ◦ pY ' g and h̄ ◦ pZ ' h. Then we have

([h][g])[f ] = [h̄ ◦ g][f ] = [(h̄ ◦ ḡ) ◦ f ] = [h̄ ◦ (ḡ ◦ f)] = [h][ḡ ◦ f ] = [h]([g][f ])

where the second equality uses that (h̄◦ ḡ)◦pY is homotopic to h̄◦g. It is straightforward to check that [pX ],
the homotopy class of the chosen stable equivalence pX : X −→ ωX, is a two-sided unit for composition,
so pX represents the identity of X in SHC.

Remark 1.2. The definition of the stable homotopy category depends on the unspecified choices of stable
equivalences pX : X −→ ωX with targets injective Ω-spectra. However, if p′X : X −→ ω′X is another
such choice, then there is a unique homotopy class of morphisms of symmetric spectra κ : ωX −→ ω′X
such that κ ◦ pX is homotopic to p′X . By symmetry and uniqueness, κ is a homotopy equivalence. So if we
use p′X instead of pX in the definition of the stable homotopy category, the resulting morphism sets are in
canonical bijection. Altogether, the stable homotopy category is independent of the choices up to preferred
isomorphism of categories which is the identity on objects. This strong uniqueness property is also reflected
in the universal property of the stable homotopy category, see Theorem 1.6 below.

Remark 1.3. The choice pY : Y −→ ωY of stable equivalence to an injective Ω-spectrum can in fact be
made functorially at the pointset level (and not just up to homotopy), since the level equivalent injective
replacement Y 7→ Y inj of Proposition I.4.10 and the stably equivalent Ω-spectrum replacement Q of Propo-
sition I.4.39 are both functorial. However, if we want this extra functoriality, we cannot simultaneously
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arrange things so that ωY = Y if Y is already an injective Ω-spectrum. Since pointset level functoriality of
ω is irrelevant for the current discussion, and so we continue without it.

In Chapter III we will show that the stable equivalences can be complemented by various useful choices
of cofibrations and fibrations, thus arriving at different stable model category structures for symmetric
spectra. For one particular choice (the injective stable model structure), every symmetric spectrum is
cofibrant and the fibrant objects are precisely the injective Ω-spectra. Moreover, the ‘concrete’ homotopy
relation using homotopies defined on ∆[1]+ ∧ A coincides with the model category theoretic homotopy
relation using abstract cylinder objects. Thus the stable homotopy category as introduced above turns out
to be the homotopy category, in the sense of model category theory, with respect to the injective stable
model structure.

The stable homotopy category comes with a functor γ : Sp −→ SHC from the category of symmetric
spectra of simplicial sets which is the identity on objects. For a morphism ϕ : X −→ Y of symmetric
spectra we set

γ(ϕ) = [pY ◦ ϕ] in SHC(X,Y ) ,

where pY : Y −→ ωY is the chosen stable equivalence. Note that we have γ(pY ) = [pY ] since pωY = Id by
convention. Thus for every morphism f : X −→ ωY of symmetric spectra we have the relation γ(pY )◦ [f ] =
γ(f) as morphisms from X to ωY in the stable homotopy category. Since γ(pY ) = [pY ] is an isomorphism
with inverse [IdωY ], this can also be rewritten as

(1.4) [f ] = γ(pY )−1 ◦ γ(f) ∈ SHC(X,Y ) .

In other words, every morphism in the stable homotopy category can be written as a ‘fraction’, i.e., the
composite of a morphism of symmetric spectra with the inverse of a stable equivalence.

We also note that for morphisms α : W −→ X and f : X −→ ωY we have the relation

(1.5) [f ] ◦ γ(α) = [fα] ∈ SHC(W,ωY ) .

Indeed, if f̄ : ωX −→ ωY is such that f̄pX is homotopic to f , then f̄pXα is homotopic to fα and so

[f ] ◦ γ(α) = [f ] ◦ [pX ◦ α] = [f̄ ◦ pX ◦ α] = [fα] .

We now show that γ is indeed a functor; even better: γ is the universal functor that takes stable
equivalences to isomorphisms.

Theorem 1.6. The functor γ : Sp −→ SHC is a localization of the category of symmetric spectra at the
class of stable equivalences. More precisely, we have

(i) The assignment γ : Sp −→ SHC is a functor which takes stable equivalences to isomorphisms. More-
over, a morphism ϕ of symmetric spectra is a stable equivalence if and only if γ(ϕ) is an isomorphism
in the stable homotopy category.

(ii) For every functor F : Sp −→ C which takes stable equivalences to isomorphisms, there exists a unique
functor F̄ : SHC −→ C such that F̄ γ = ε.

(iii) Let τ : F −→ G be a natural transformation between functors F,G : Sp −→ C which takes stable
equivalences to isomorphisms. Then there exists a unique natural transformation τ̄ : F̄ −→ Ḡ between
the induced functors F̄ , Ḡ : SHC −→ C such that τ̄ γ = τ . If τ is a natural isomorphism, so is τ̄ .

Proof. (i) First we check functoriality. Since the homotopy class of pY is the identity of Y in SHC,
γ preserves identities. For composable morphism of symmetric spectra ϕ : X −→ Y and ψ : Y −→ Z we
have

γ(ψ)γ(ϕ) = [pZ ◦ ψ]γ(ϕ) = [pZ ◦ (ψϕ)] = γ(ψϕ)

by (1.5). So γ is indeed functorial.
Now we show that a morphism ϕ : X −→ Y of symmetric spectra is a stable equivalence if and only

if γ(ϕ) is an isomorphism in the stable homotopy category. By definition, the morphism ϕ is a stable
equivalence if and only if the map [ϕ,W ] is bijective for every injective Ω-spectrum W . If Z runs through
the class of all symmetric spectra, then ωZ runs through the class of all injective Ω-spectra. So ϕ : X −→ Y
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is a stable equivalence if and only if the map [ϕ, ωZ] is bijective for every symmetric spectrum Z. The
relation (1.5) shows that the square

SHC(Y,Z)
SHC(γ(ϕ),Z) // SHC(X,Z)

[Y, ωZ]
[ϕ,ωZ]

// [X,ωZ]

commutes. So ϕ is a stable equivalence if and only if SHC(γ(ϕ), Z) is bijective for every symmetric spectrum
Z. By the Yoneda lemma, this happens if and only if γ(ϕ) is an isomorphism.

(ii) We consider a functor F̄ : SHC −→ C and prove the uniqueness property by showing that F̄ is
completely determined by the composite functor F̄ ◦ γ : Sp −→ C. This is clear on objects since γ is the
identity on objects. If f : X −→ ωY is a morphism of symmetric spectra which represents a morphism
[f ] : X −→ Y in SHC, then we can apply F̄ to the equation (1.4) and obtain

F̄ ([f ]) = F̄ (γ(pY )−1 ◦ γ(f)) = (F̄ ◦ γ)(pY )−1 ◦ (F̄ ◦ γ)(f) .

Thus also the behavior of F̄ on morphisms is determined by the composite F̄ ◦ γ.
Now we tackle the existence property. Given a functor F : Sp −→ C which takes stable equivalences

to isomorphisms we set F̄ (X) = F (X) on objects. Given a homomorphism f : X −→ ωY , the uniqueness
argument tells us that we have to define the value of F̄ on [f ] by

(1.7) F̄ ([f ]) = F (pY )−1 ◦ F (f) .

We have to check that this is well-defined and functorial.
To see that the assignment (1.7) is well-defined we have to show that the C-morphism F (f) only depends

on the homotopy class of f : X −→ ωY . Indeed, the morphism c : ∆[1]+∧X −→ X that maps all of ∆[1] to
a point is a level equivalence, hence a stable equivalence. So by hypothesis, F (c) : F (∆[1]+∧X) −→ F (X)
is an isomorphism in C. The composite with the two end point inclusions i0, i1 : X −→ ∆[1]+∧X satisfy
c ◦ i0 = IdX = c ◦ i1, so we have

F (c) ◦ F (i0) = IdF (X) = F (c) ◦ F (i1) .

Since F (c) is an isomorphism, we deduce F (i0) = F (i1).
Now suppose that f, f ′ : X −→ ωY are homotopic morphisms via some homotopyH : ∆[1]+∧X −→ ωY .

Then we have

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) ,

which proves that the formula (1.7) is well-defined.
By the various definitions we have

F̄ (IdX) = F̄ ([pX ]) = F (pX)−1 ◦ F (pX) = IdF (X)

so F̄ is unital. For associativity we consider two homomorphisms f : X −→ ωY and g : Y −→ ωZ as well
as a homomorphism ḡ : ωY −→ ωZ such that ḡ ◦ pY is homotopic to g. Then we have

F̄ ([g] ◦ [f ]) = F̄ ([ḡ ◦ f ]) = F (pZ)−1 ◦ F (ḡ ◦ f)

= F (pZ)−1 ◦ F (ḡ ◦ pY ) ◦ F (pY )−1 ◦ F (f)

= (F (pZ)−1 ◦ F (g)) ◦ (F (pY )−1 ◦ F (f)) = F̄ (g) ◦ F̄ (f)

where we used functoriality of F and homotopy invariance of F . Thus F̄ is a functor.
Finally, we have to check the relation F̄ ◦ γ = F . On objects this holds by definition. For a homomor-

phism ϕ : X −→ Y of symmetric spectra we have

F̄ (γ(ϕ)) = F̄ ([pY ◦ ϕ]) = F (pY )−1 ◦ F (pY ◦ ϕ) = F (ϕ) ,

which finishes the proof.
(iii) �



220 II. THE STABLE HOMOTOPY CATEGORY

A fancier way to rephrase Theorem 1.6 is as follows: for every category C, precomposition with the
functor γ : Sp −→ SHC is an isomorphism of categories

Hom(γ, C) : Hom(SHC, C) −→ Homst.eq.(Sp, C) ,

where ‘Hom’ denotes the (big) category of functors and natural transformations, and the superscript ‘st.eq.’
denotes the full subcategory consisting of those functors which take stable equivalences to isomorphisms.

Example 1.8 (Homotopy groups). By [...] there are stable equivalences of symmetric spectra that do
not induced isomorphisms on all naive homotopy groups. So the k-th naive homotopy group functor
π̂k : Sp −→ Ab does not descend to the stable homotopy category. However, the k-th true homotopy group
functor πk : Sp −→ Ab does take stable equivalences to isomorphisms, so it factors uniquely through the
localization functor γ : Sp −→ SHC, by the universal property. We allow ourselves an abuse of notation
and also write πk : SHC −→ Ab for the induced functor which is defined on the stable homotopy category.

The true homotopy groups then detect isomorphisms in the stable homotopy category:

Proposition 1.9. Let f : X −→ Y be a morphism in the stable homotopy category. Then f is an
isomorphism in SHC if and only the induced map πkf : πkX −→ πkY on true homotopy groups is an
isomorphism for every integer k.

Proof. Suppose first that f = γ(α) for some morphism α of symmetric spectra. Then f is an
isomorphism in SHC if and only if α is a stable equivalence (by Theorem 1.6 (i)) and that is the case if and
only if the maps πkα are all isomorphisms (by Theorem I.6.2). Since the composite of the true homotopy
group functor πk : SHC −→ Ab with the localization functor γ : Sp −→ SHC is the true homotopy
group functor on the category of symmetric spectra, this proves the claim whenever f is in the image of γ.
An arbitrary morphism in SHC is of the form f = γ(p)−1 ◦ γ(α) for a morphism of symmetric spectra
α : X −→ Z and a stable equivalence p : Y −→ Z. Since γ(p) is an isomorphism, f is an isomorphism if
and only if γ(α) is, and we are reduced to the special case considered first. �

The stable homotopy category does not have general limits and colimits, but it has coproducts and
products of arbitrary size:

Proposition 1.10. (i) The stable homotopy category has coproducts and the functor γ : Sp −→ SHC
preserves coproducts.

(ii) The stable homotopy category has products. The functor γ : Sp −→ SHC preserves finite products.
(iii) For every finite family of symmetric spectra the canonical morphism in the stable homotopy category

from the coproduct to the product is an isomorphism.

Proof. (i) We show that γ preserves arbitrary coproducts. Since every object of SHC is in the image
of γ, this in particular shows that coproducts exist in the stable homotopy category.

Let {Xi}i∈I be a family of symmetric spectra. Let αj : Xj −→
∨
i∈I X

i denote the inclusion of the jth
wedge summand. We then have to show that for every symmetric spectrum Y the map

SHC(
∨
i∈I

Xi, Y ) −→
∏
i∈I
SHC(Xi, Y ) , [f ] 7−→

(
[f ] ◦ γ(αi)

)
i∈I

is a bijection. By definition of morphisms in SHC this amounts to verifying that the map

[
∨
i∈I

Xi, ωY ] −→
∏
i∈I

[Xi, ωY ] , [f ] 7−→
(
[fαi]

)
i∈I

between sets of homotopy classes of morphisms is a bijection, where we used (1.5). This last claim is clear
since a morphism out of a wedge corresponds bijectively to a familiy of morphisms from each summand,
and similarly for homotopies.

(ii) We start by constructing products in the stable homotopy category, which are in general not given
by the product as symmetra spectra. Let {Y i}i∈I be a family of symmetric spectra with chosen stable
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equivalences pY i : Y i −→ ω(Y i). We form the product of the injective Ω-spectra ω(Y i); for each index
j ∈ I this symmetric spectrum comes with a projection

πj :
∏
i∈I

ω(Y i) −→ ω(Yj)

which represent a morphism [πj ] in SHC from
∏
i∈I ω(Y i) to Yj . We claim that these morphisms make∏

i∈I ω(Y i) into a product, in the stable homotopy category, of the family {Y i}i∈I .
To see this we have to show that for every symmetric spectrum X the map

SHC(X,
∏
i∈I

ω(Y i)) −→
∏
i∈I
SHC(X,Y i) , [f ] 7−→

(
[πi] ◦ [f ]

)
i∈I

is a bijection. Since ω(Y i) is an injective Ω-spectrum for all i ∈ I, so is the product. So by our convention,
ω
(∏

i∈I ω(Y i)
)

=
∏
i∈I ω(Y i) and the morphism p∏

i∈I ω(Y i) is the identity. By definition of morphisms in

SHC we thus have to verifying that the map

[X,
∏
i∈I

ω(Y i)] −→
∏
i∈I

[X,ω(Y i)] , [f ] 7−→
(
[πi ◦ f ]

)
i∈I

between sets of homotopy classes of morphisms is a bijection, where we used (1.5). This is again clear since
a morphism to a product corresponds bijectively to a familiy of morphisms to each factor, and similarly for
homotopies.

It remains to show that γ preserves finite products. For ease of notation we treat the case of two factors
Y and Y ′; the general case then follows by induction on the number of factors. Since ωY and ωY ′ are
injective Ω-spectra, so is their product. There is thus a morphism ψ : ω (Y × Y ′) −→ (ωY )× (ωY ′), unique
up to homotopy, such that ψ ◦ pY×Y ′ : Y ×Y ′ −→ (ωY )× (ωY ′) is homotopic to pY × pY ′ . The morphisms
pY × pY ′ : Y × Y ′ −→ (ωY )× (ωY ′) (by Proposition I.4.31 (ii)) and pY×Y ′ are stable equivalences, hence
so is ψ. As a stable equivalence between injective Ω-spectra, ψ is thus a homotopy equivalence. The map

SHC(X,Y × Y ′) −→ SHC(X,Y )× SHC(X,Y ′) , [f ] 7−→
(
[πY ] ◦ [f ], [πY ′ ] ◦ [f ]

)
equals the composite

[X,ω(Y × Y ′)] [X,ψ]−−−→ [X, (ωY )× (ωY ′)]
([X,πωY ],[X,πωY ′ ])−−−−−−−−−−−−→ [X,ωY ]× [X,ωY ′]

The first map is a bijection since ψ is a homotopy equivalence. The second map is a bijection since a
morphism to a product corresponds bijectively to a pair of morphisms to each factor, and similarly for
homotopies.

(iii) It suffices to consider two factors. The canonical morphism κ : X ∨ Y −→ X × Y of symmetric
spectra is a stable equivalence by Corollary I.4.25, and so the morphism γ(κ) : γ(X∨Y ) −→ γ(X×Y ) is an
isomorphism is the stable homotopy category. Since γ preserves coproducts and finite product, γ(κ) is the
canonical morphism, in the stable homotopy category, from a coproduct of γ(X) and γ(Y ) to a product.
This proves the claim since every object in SHC is in the image of γ. �

The next thing we show is that the stable homotopy category is additive, i.e., there is a natural com-
mutative groups structure on the homomorphism sets such that composition is biadditive. This definition
makes it sound as if ‘additive category’ is extra structure on a category (namely the addition on morphism
sets), but in fact, ‘additive category’ is really a property of a category (namely having finite sums which
are isomorphic to products). So we present the construction of the addition on hom-sets in this generality;
in Remark 1.14 below we make the addition on the stable homotopy category a bit more explicit.

Construction 1.11. (change product and coproducts for later consistency) Let C be a category
which has finite products and a zero object. Suppose further that ‘finite products are coproducts’; more
precisely, assume that for every pair of objects A and B the morphisms i1 = (Id, 0) : A −→ A × B and
i2 = (0, Id) : B −→ A × B make A × B into a co-product of A and B, where ‘0’ is the unique morphism
which factors through a zero object. In other words, we demand that for every object X the map

C(A×B,X) −→ C(A,X)× C(B,X) , f 7→ (fi1, fi2)
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is a bijection.
In this situation we can define a binary operation on the morphism set C(A,X) for every pair of objects

A and X. Given morphisms a, b : A −→ X we let a⊥b : A × A −→ X be the unique morphism such that
(a⊥b)i1 = a and (a⊥b)i2 = b. Then we define a+ b : A −→ X as (a⊥b)∆ where ∆ = (Id, Id) : A −→ A×A
is the diagonal morphism.

Proposition 1.12. Let C be a category which has finite products and a zero object, and in which ‘finite
products are coproducts’ in the sense of Construction 1.11.

(i) For every pair of objects A and X of C the binary operation + makes the set C(A,X) of morphisms
into an abelian monoid with the zero morphism as neutral element. Moreover, the monoid structure
is natural for all morphisms in both variables, or, equivalently, composition is biadditive.

(ii) If, moreover, the shearing morphism i1⊥∆ : A × A −→ A × A is an isomorphism, then the abelian
monoid C(A,X) has additive inverse, i.e., is an abelian group, for every object X.

(iii) Let F : C −→ (abelian monoids) be a functor that preserves zero objects and finite products. Then for
all objects A and X of C and every element a ∈ F (A) the evaluation map

C(A,X) −→ F (X) , f 7−→ F (f)(a)

is a monoid homomorphism.

Proof. (i) The proof is lengthy, but quite formal. For the associativity of ‘+’ we consider three
morphisms a, b, c : A −→ X. Then a+ (b+ c) respectively (a+ b) + c are the two outer composites around
the diagram

A
∆

vvmmmmmmmmm
∆

((QQQQQQQQQ

A×A
Id×∆ ��

A×A
∆×Id��

A× (A×A)

a⊥(b⊥c) ((PPPPPPPPP
(A×A)×A

(a⊥b)⊥cvvnnnnnnnnn

X

If we fill in the canonical associativity isomorphism A × (A × A) ∼= (A × A) × A then the upper part of
the diagram commutes because the diagonal morphism is coassociative. The lower triangle then commutes
since the two morphisms a⊥(b⊥c), (a⊥b)⊥c : A× (A× A) −→ X have the same ‘restrictions’, namely a, b
respectively c.

The commutativity is a consequence of two elementary facts: first, b⊥a = (a⊥b)τ where τ : A×A −→
A × A is the automorphism which interchanges the two factors; this follows from τi1 = i2 and τi2 = i1.
Second, the diagonal morphism is cocommutative, i.e., τ∆ = ∆ : A −→ A×A. Altogether we get

a+ b = (a⊥b)∆ = (a⊥b)τ∆ = (b⊥a)∆ = b+ a .

As before we denote by 0 ∈ C(A,X) the unique morphism which factors through a zero object. Then we
have a⊥0 = ap1 in C(A × A,X) where p1 : A × A −→ A is the projection onto the first factor. Hence
a+ 0 = (a⊥0)∆ = ap1∆ = a; by commutativity we also have 0 + a = a.

Now we verify naturality of the addition on C(A,X) in A and X. To check (a + b)c = ac + bc for
a, b : A −→ X and c : A′ −→ A we consider the commutative diagram

A′

∆

��

c // A
∆ //

∆

��

A×A

a⊥b
��

A′ ×A′

ac⊥bc

33
c×c // A×A a⊥b // X
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in which the composite through the upper right corner is (a+ b)c. We have (a⊥b)(c× c)i1 = (a⊥b)(c, 0) =
ac = (ac⊥bc)i1 and similarly for i2 instead i1. So (a⊥b)(c × c) = ac⊥bc since both sides have the same
‘restrictions’ to the two factors of A′ × A′. Since the composite through the lower left corner is ac + bc,
we have shown (a + b)c = ac + bc. Naturality in X is even easier. For a morphism d : X −→ Y we have
d(a⊥b) = da⊥db : A × A −→ Y since both sides have the same ‘restrictions’ da respectively db to the two
factors of A×A. Thus d(a+ b) = da+ db by the definition of ‘+’.

(ii) An arbitrary abelian monoid M has additive inverses if and only if the map

M2 −→ M2 , (a, b) 7−→ (a, a+ b)

is bijective. Indeed, the inverse of a ∈ A is the second component of the preimage of (a, 0). For the abelian
monoid C(A,X) the square

C(A×A,X)
(i1⊥∆)∗ //

(i∗1 ,i
∗
2) ∼=

��

C(A×A,X)

(i∗1 ,i
∗
2)∼=

��
C(A,X)2

(a,b)7→(a,a+b)
// C(A,X)2

commutes by definition and both vertical maps are bijective. Since i1⊥∆ is an isomorphism, the upper
map is bijective, hence so is the lower map, and so the monoid C(A,X) has inverses.

(iii) We start by showing that the images of the three morphisms i1, i2,∆ : A −→ A × A under the
functor F satisfy

F (∆) = F (i1) + F (i2)

where the sum is pointwise addition of functions F (A) −→ F (A × A). Indeed, this relation holds af-
ter precomposition with the two maps F (p1), F (p2) : F (A × A) −→ F (A), and that suffices because
(F (p1), F (p2)) : F (A×A) −→ F (A)× F (A) is bijective by hypothesis on F . So we get

F (f + g) = F (f⊥g) ◦ F (∆) = F (f⊥g) ◦ (F (i1) + F (i2))

= F (f⊥g) ◦ F (i1) + F (f⊥g) ◦ F (i2) = F (f) + F (g) .

�

Corollary 1.13. The stable homotopy category SHC is an additive category.

Proof. We apply Proposition 1.12 to the stable homotopy category. Finite coproducts and products
exist and are isomorphic by Proposition 1.10. So we have to verify that for every symmetric spectrum A
the morphism i1⊥∆ : A × A −→ A × A is an isomorphism in the stable homotopy category. For every
integer k the composite map

πkA⊕ πkA −→ πk(A×A)
πk(i1⊥∆)−−−−−−→ πk(A×A) −→ πkA× πkA

sends (a, b) to (a + b, b) where the first and last maps are the canonical ones. The composite map is an
isomorphism since πkA is a group, i.e., has additive inverses. Since canonical maps are isomorphisms, so is
the middle map; thus i1⊥∆ induces isomorphisms of true homotopy groups. and is thus a stable equivalence.
Since homotopy groups detect isomorphisms in the stable homotopy category, (see Proposition 1.9) i1⊥∆
is an isomorphism. �

Remark 1.14. As we have just seen, the stable homotopy category is additive. However, the binary
operation ‘+’ on the morphism sets in SHC was defined in a rather abstract fashion, and we want to make
it more explicit.

We let X be an injective Ω-spectrum. The wedge inclusion ι : X∨X −→ X×X (which is the canonical
morphism in Sp from coproduct to product) is a stable equivalence (see Proposition I.4.31 (ii)). Thus the
induced map

[ι,X] : [X ×X,X] −→ [X ∨X,X]

on homotopy classes of morphisms is a bijection. So there exists a morphism m : X × X −→ X, unique
up to homotopy, such that mι : X ∨ X −→ X equals the fold map (which is the identity on each wedge
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summand). Given any other symmetric spectrum A and two morphisms f, g : A −→ X we define a new
morphism f+g : A −→ X as f+g = m(f, g). This construction is well-defined on homotopy classes and we
claim that induced construction on the set [A,X] of homotopy classes of morphisms from A to X coincides
with the operation ‘+’ defined in Construction 1.11 in the case of the stable homotopy category.

Indeed, if A and B are symmetric spectra, then morphisms from A to B in the stable homotopy
category are defined as [A,ωB], the set of homotopy classes of morphisms from A to the chosen stably
equivalent replacement. Given morphisms of symmetric spectra f, g : A −→ ωB, then the composite
m(f × g) : A×A −→ ωB satisfies

(m(f × g)) ◦ i1 = m(f, 0) ' f

and (m(f × g)) ◦ i2 is similarly homotopic to g. So the homotopy class [m(f × g)] ∈ [A × A,ωB] equals
[f ]⊥[g], and thus

[f ] + [g] = ([f ]⊥[g])∆ = [m(f × g)∆] = [m(f, g)] .

The operation which sends a pair of morphisms f, g : A −→ X to m(f, g) is not associative nor
commutative on the pointset level, but by Proposition 1.12 the induced operation ‘+’ on the set [A,X] of
homotopy classes of morphisms is an abelian group structure. An equivalent way of saying this is that the
morphism m is associative, commutative and unital up to homotopy, and has a homotopy inverse.

The additivity of the stable homotopy category is a fundamental result which deserves two different
proofs.

Second proof of Corollary 1.13. If X is an injective Ω-spectrum then the morphism λ̃X : X −→
Ω(shX) (see (4.16) in Chapter I) is a level equivalence between injective Ω-spectra. By Proposition I.4.6,
λ∗X is the a homotopy equivalence, so it induces a homotopy equivalence

map(A, λ̃X) : map(A,X) −→ map(A,Ω(shX)) ∼= Ω map(A, shX)

on mapping spaces. Since the target is the simplicial loop space, the loop addition defines a group structure
on the set of components π0 map(A,Ω(shX)) which we pull back along the bijection induced by map(A, λ̃X)
to a natural group structure on π0 map(A,X). Now we show that the natural bijection

[A,X] ∼= π0 map(A,X)

takes the operation ‘+’ to the loop product in the components of the mapping space map(A,X) and we show
simultaneously that the product on the right hand side is abelian. For this we consider the commutative
diagram

[A,X]2
∼= //

+

��

(π0 map(A,X))
2

loop product

��

[A×A,X]

(i∗0 ,i
∗
1)∼=

OO

∼= //

[∆,X]

��

π0 map(A×A,X)

(i∗0 ,i
∗
1) ∼=

OO

π0 map(∆,X)

��
[A,X] ∼=

// π0 map(A,X)

of sets in which all horizontal and the left upper vertical map are bijections. The left vertical composite
defines ‘+’. The right vertical composite coincides with the loop product in π0 map(A,X) since it is a

homomorphism which sends (f, ∗) and (∗, f) to f . Since the group multiplication (π0 map(A,X))
2 −→

π0 map(A,X) is a homomorphism of groups, the group π0 map(A,X), and thus [A,X], is abelian. �

Now we discuss some examples in which we can identify morphisms in the stable homotopy category
with other possibly more familiar expressions. We start by identifying morphisms in SHC out of the free
spectra FmS

n.
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Example 1.15. For every symmetric spectrum X and all m,n ≥ 0 the evaluation map

(1.16) evX : SHC(FmSn, X) −→ πn−mX , evX(α : FmS
n −→ X) = α∗(ι

n
m)

is an isomorphism of abelian groups. Here ιnm ∈ πn−m(FmS
n) is the true fundamental class, defined in (6.4)

of Chapter I.
Indeed, since true homotopy groups commute with products, the evaluation map is additive by Propo-

sition 1.12 (iii). By Proposition I.6.5 there is a unique natural transformation τ : πn−m −→ SHC(FmSn,−)
such that τFmSn(ιnm) = IdFmSn . Then the composite ev ◦τ is a natural self-transformation of the functor
πn−m that satisfies evFmSn(τFmSn(ιnm)) = evFmSn(IdFmSn) = ιnm; so ev ◦τ is the identity transformation by
the uniqueness clause of Proposition I.6.5. The other composite satisfies

τX(evX(α)) = τX(α∗(ι
n
m)) = SHC(FmSn, α)(τFmSn(ιnm)) = SHC(FmSn, α)(IdFmSn) = α .

So the transformation τ is inverse to the evaluation map.

Example 1.17. Let K be a based simplicial set and X an Ω-spectrum. We claim that then the map

[K,X0]sS ∼= [Σ∞K,X]Sp
γ−−→ SHC(Σ∞K,X)

given by the localization functor γ : Sp −→ SHC is bijective. Every stable equivalence between Ω-spectra
is a level equivalence (see Proposition I.4.13), so both sides of the map take stable equivalences in X to
bijections. We can thus assume that X is an injective Ω-spectrum, in which case the map γ : [Σ∞K,X] −→
SHC(Σ∞, X) is the identity by definition of morphisms in SHC.

There are also plenty of examples which are not quite Ω-spectra, but as least positive Ω-spectra. For
positive Ω-spectra X and any based simplicial set K the map

[K,ΩX1]sS ∼= [Σ∞K,Ω(shX)]Sp
γ−−−−→∼= SHC(Σ∞K,Ω(shX))

SHC(Σ∞K,λ̃X)←−−−−−−−−−−∼=
SHC(Σ∞K,X)

is bijective because the spectrum Ω(shX) is then an Ω-spectrum (from level 0 on) and λ̃X : X −→ Ω(shX)
is a stable equivalence. By essentially the same argument the set SHC(Σ∞K,X) is in bijection with the
homotopy set [K,ΩnXn]sS whenever X is an ‘Ω-spectrum from level n on’.

Example 1.18. We specialize the previous Example 1.17 Eilenberg-Mac Lane spectra and pin down an
isomorphism between the k-th reduced cohomology group of a based simplicial set K and the group
SHC(Σ∞K, shk(HA)).

For every abelian group A, the Eilenberg-Mac Lane spectrum HA was introduced in Example I.1.14.
The symmetric spectrum HA is an Ω-spectrum, hence so is its k-th shift shk(HA). So for every based
simplicial set K, Example 1.17 specializes to a bijection

[K,A[Sk]]sS = [K, (shk(HA))0]sS ∼= SHC(Σ∞K, shk(HA)) , [f ] 7−→ γ(f̂) ,

where f̂ : Σ∞K −→ shk(HA) is the morphism of symmetric spctra freely generated by a map of based
simplicial sets f : K −→ A[Sk].

The pointed simplicial set A[Sk] is an Eilenberg-Mac Lane space of type (A, k), so it represents co-
homology of simplicial sets. More precisely, A[Sk] has a fundamental class ι ∈ Hk(A[Sk], A) in the k-th
cohomology group with coefficients in A. This fundamental class is uniquely characterized by the property
that the cap product map

Hk(A[Sk],Z) −→ A , x 7−→ x ∩ ι
is inverse to the composite

A
l−−→ πk(A[Sk], 0)

Hurewicz−−−−−−→ Hk(A[Sk],Z)

of the isomorphism l and the Hurewicz homomorphism. [here l(a) is the ‘left multiplication’ map, i.e., the
homotopy class of the map Sk −→ A[Sk] sending x to ax. The composite sends a to a · ιSk ]

The representability property then says that for every simplicial set K the evaluation map

[K,A[Sk]]unbased
sS −→ Hk(K,A) , [f ] 7→ f∗(ι)



226 II. THE STABLE HOMOTOPY CATEGORY

at the fundamental class is bijective. If K is based, then this bijection restricts to a bijection

[K,A[Sk]]sS −→ H̃k(K,A) , [f ] 7→ f∗(ι) .

We can thus get a composite bijection

SHC(Σ∞K, shk(HA))
∼=←−−−−−−

γ(f̂)← [[f ]
[K,A[Sk]]sS

∼=−−−−−−→
[f ] 7→f∗(ι)

H̃k(K,A) .

Example 1.19. As another example we consider the periodic complex K-theory spectrum KU , compare
Examples 1.20 and 6.58 of Chapter I. This is a positive Ω-spectrum, and as such, the map

[K+,Ω(KU)1] −→ SHC(Σ∞K+,KU)

discussed in Example 1.17 is bijective. As we discussed in I.1.20, the space (KU)1 is weakly equivalent
to the infinite unitary group U . The loop space Ω(KU1) is thus weakly equivalent to ΩU , which by Bott
periodicity is weakly equivalent to Z×BU . So if K is finite, and hence the realization |K| a compact space,
then the set of unbased homotopy classes of maps from K to Ω(KU)1 is in bijection with the Grothendieck
group of complex vector bundles over the realization of K. Altogether this produces a natural bijection

SHC(Σ∞K+,KU) ∼= K0(|K|) .
[unfortunate notation...] The analogous arguments apply to real topological K-theory; the conclusion is a
natural isomorphism

SHC(Σ∞K+,KO) ∼= KO0(|K|)
to the Grothendieck group of complex vector bundles over the realization of K.

Example 1.20. If K is a based simplicial set and X any symmetric spectrum, we define a natural map to
SHC(Σ∞K,X) from the set

colimm [K ∧ Sm, Xm]sS

where the colimit is formed over the maps

[K ∧ Sm, Xm]sS
−∧S1

−−−−−→ [K ∧ Sm+1, Xm ∧ S1]sS
(σm)∗−−−−→ [K ∧ Sm+1, Xm+1]sS .

The map will turn out to be bijective whenever K is finite and X is semistable and levelwise Kan.
The map from the colimit to SHC(Σ∞K,X) is defined as follows. Every based map of simplicial sets

f : K ∧ Sm −→ Xm freely generates a morphism of symmetric spectra f̂ : Fm(K ∧ Sm) −→ X. The
morphism λm : Fm(K ∧ Sm) −→ Σ∞K freely generated by the identity of K ∧ Sm = (Σ∞K)m is a stable
equivalence, so it becomes an isomorphism in the stable homotopy category. So we can define

[K ∧ Sm, Xm]sS −→ SHC(Σ∞K,X) by [f ] 7−→ γ(f̂) ◦ γ(λm)−1 .

The diagram of morphisms of symmetric spectra

Fm+1(K ∧ Sm+1)

∼
λm+1

ssggggggggg

∼

��

̂σm◦(f∧S1)

++VVVVVVVVVV

Σ∞K X

Fm(K ∧ Sm)

∼
λm

kkWWWWWWWWWW
f̂

33hhhhhhhhhh

commutes, where the middle vertical map is freely generated by the identity of K ∧ Sm+1 = (Fm(K ∧
Sm))m+1. So as m increases the maps to SHC(Σ∞K,X) are compatible and assemble into a well-defined
natural map

(1.21) colimm [K ∧ Sm, Xm]sS −→ SHC(Σ∞K,X) .

Now assume that the simplicial set K is finite and the symmetric spectrum X is semistable and levelwise
Kan. We show that then the map (1.21) is bijective. Since X is levelwise Kan, the simplicial mapping space
map(K,Xm) is Kan for all m ≥ 0, and the source of the map (1.21) is naturally isomorphic to

colimm [Sm,map(K,Xm)]sS ∼= colimm πm map(|K|, |Xm|)| = π̂0 map(|K|, |X|) .
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Since K is finite, the functor map(|K|,−) preserves π̂∗-isomorphisms (see Proposition I.2.19 (v)), so the
source of the map (1.21) takes π̂∗-isomorphisms between symmetric spectra that are levelwise Kan to
bijections. The same is true for the target of (1.21) (since π̂∗-isomorphisms are stable equivalences, hence
isomorphisms in SHC). Since X is semistable, it is π̂∗-isomorphic to an Ω-spectrum (see Theorem I.8.25),
so we can assume that X is an Ω-spectrum. For Ω-spectra, however, colimit that is the source of (1.21) is
formed over bijections, so we are reduced to Example 1.17.

Example 1.22. An important example of a semistable symmetric spectrum is the sphere spectrum, and
we can apply the previous example to S and its shifts. Unfortunately, the simplicial spheres are not Kan,
but we can remedy this by replacing S be the level equivalent spectrum S(S), the singular complex of the
topological sphere spectrum. This spectrum and its shifts are levelwise Kan and semistable, so for every
finite based simplicial set K, the bijection (1.21) specializes to a bijection

colimm [K ∧ Sm,S(Sk+m)]sS ∼= SHC(Σ∞K, shk S(S)) .

The adjunction between singular complex and geometric realization identifies the previous colimit with the
colimit

colimm [|K| ∧ Sm, Sk+m]T = πks (|K|) ,
the k-th stable cohomotopy group of the geometric realization of K. Moreover, the morphism Σ∞Sk −→
shk S(S)) whose m-th level is the weak equivalence Sk+m −→ S(Sk+m) that is adjoint to the homeomor-
phism (3.3) of Chapter I between |Sk+m| and Sk+m. As a level equivalence, this morphism induces a
bijection on SHC(Σ∞K,−), so altogether we constructed a bijection

SHC(Σ∞K,Σ∞Sk) ∼= πks (|K|)
that is natural in K.

2. Triangulated structure

We have seen that the stable homotopy category is an additive category with products and coproducts.
In this section we make the stable homotopy category into a triangulated category. First we recall the
definition.

Let T be a category equipped with an endofunctor Σ : T −→ T . A triangle in T (with respect to the
functor Σ) is a triple (f, g, h) of composable morphisms in T such that the target of h is equal to Σ applied
to the source of f . We will often display a triangle in the form

A
f−−→ B

g−−→ C
h−−→ ΣA .

A morphism from a triangle (f, g, h) to a triangle (f ′, g′, h′) is a triple of morphisms a : A −→ A′, b : B −→
B′ and c : C −→ C ′ in T such that the diagram

A
f //

a

��

B
g //

b

��

C

c

��

h // ΣA

Σa

��
A′

f ′
// B′

g′
// C ′

h′
// ΣA′

commutes. A morphism of triangles is an isomorphism (i.e., has an inverse morphism) if and only all three
components are isomorphisms in T .

Definition 2.1. A triangulated category is an additive category T equipped with a self-equivalence
Σ : T −→ T and a collection of triangles, called distinguished triangles, which satisfy the following axioms
(T0) – (T4).

We refer to the equivalence Σ of a triangulated category as the suspension, since that is what it will
be in our main example. In algebraic contexts, this equivalence is often denoted X 7→ X[1] and called the
‘shift’.
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(T0) The class of distinguished triangles is closed under isomorphism.

(T1) For every object X the triangle 0 −→ X
Id−−→ X −→ 0 is distinguished.

(T2) [Rotation] If a triangle (f, g, h) is distinguished, then so is the triangle (g, h,−Σf).
(T3) [Completion of triangles] Given distinguished triangles (f, g, h) and (f ′, g′, h′) morphisms (a, b)

satisfying bf = f ′a, there exists a morphism c making the following diagram commute:

A
f //

a

��

B
g //

b

��

C

c

��

h // ΣA

Σa

��
A′

f ′
// B′

g′
// C ′

h′
// ΣA′

(T4) [Octahedral axiom] For every pair of composable morphisms f : A −→ B and f ′ : B −→ D there
is a commutative diagram

A
f // B

f ′

��

g // C

x

��

h // ΣA

A
f ′f

// D
g′′

//

g′

��

E
h′′

//

y

��

ΣA

Σf

��
F

h′

��

F

(Σg)◦h′
��

h′
// ΣB

ΣB
Σg

// ΣC

such that the triangles (f, g, h), (f ′, g′, h′), (f ′f, g′′, h′′) and (x, y, (Σg) ◦ h′) are distinguished.

The above formulation of the axioms appears to be weaker, at first sight, than the original axioms of
Verdier [85, II.1]; however, we show in Proposition 2.10 below that the weaker axioms imply the stronger
properties: part (iii) establishes an ‘if and only if’ in the rotation axiom (T2), and part (iv) is the octahedral
axiom in its original form.

Now we define the triangulated structure for the stable homotopy category. The suspension functor in
the stable homotopy category is essentially given by suspension of symmetric spectra. In more detail, we
recall from Proposition I.4.29 that the functor S1 ∧ − preserves stable equivalences of symmetric spectra,
and so the composite functor γ ◦ (S1 ∧−) : Sp −→ SHC takes stable equivalences to isomorphisms. By the
universal property of the functor γ : Sp −→ SHC (see Theorem 1.6 (ii)), there is a unique functor

Σ : SHC −→ SHC
that satisfies Σ ◦ γ = γ ◦ (S1 ∧ −). Then Σ is given on objects by ΣX = S1 ∧ X, and we claim that the
behavior on morphisms is as follows. If f : X −→ ωY represents a morphism [f ] from X to Y in SHC, then

Σ[f ] = [κ ◦ (S1 ∧ f)] ∈ SHC(ΣX,ΣY ),

where κ : S1∧ωY −→ ω(S1∧Y ) is any morphism (uniquely determined up to homotopy) whose composite
with the stable equivalence S1 ∧ pY : S1 ∧ Y −→ S1 ∧ ωY is homotopic to the chosen stable equivalence
pS1∧Y : S1 ∧ Y −→ ω(S1 ∧ Y ). Indeed, we have

[κ ◦ (S1 ∧ f)] = γ(pS1∧Y )−1 ◦ γ(κ) ◦ γ(S1 ∧ f) = γ(S1 ∧ pY )−1 ◦ γ(S1 ∧ f)

= Σ(γ(pY ))−1 ◦ Σ(γ(f)) = Σ(γ(pY )−1γ(f)) = Σ[f ]

where we used the relation (1.4) twice, as well as γ(pS1∧Y ) = γ(κ ◦ (S1 ∧ pY )).

Proposition 2.2. The suspension functor Σ : SHC −→ SHC is a self-equivalence of the stable homotopy
category.
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Proof. The induction functor . (see Example I.3.17) preserves stable equivalences of symmetric spec-
tra (Proposition I.4.14). The universal property of the localization functor γ : Sp −→ SHC thus provides
a unique functor

Σ−1 : SHC −→ SHC
that satisfies Σ−1 ◦γ = γ ◦.. The two composite constructions .(S1∧A) and S1∧.A are isomorphic to each

other, and they come with a natural stable equivalence λ̂A : S1 ∧ .A −→ A (compare Proposition I.4.28).

The isomorphism .(S1 ∧A) ∼= S1 ∧ .A and the stable equivalence λ̂A descend to natural isomorphisms

Σ−1(ΣA) ∼= Σ(Σ−1A) ∼= A

of endofunctors on the stable homotopy category (by part (iii) of the universal property of Proposition 1.6).
So Σ−1 is a quasi-inverse to the suspension functor Σ, which is thus an equivalence of categories. �

Now we define the distinguished triangles in the stable homotopy category. Given any monomorphism
j : A −→ B of symmetric spectra of simplicial sets, we define the connecting morphism δ(j) : B/A −→ ΣA
in SHC as

(2.3) δ(j) = γ(p) ◦ γ(0 ∪ q)−1 : B/A −→ ΣA .

Here C(j) is the mapping cone of the morphism j (compare (2.8) of Chapter I), and p : C(j) −→ S1∧A the
projection that sends the image of B to the basepoint and is the projection ∆[1] −→ S1, smashed with the
identity of A, on the cone. Moreover, q : B −→ B/A is the quotient morphism and 0 ∪ q : C(j) −→ B/A
is the level equivalence that collapses ∆[1] ∧ A. Since the mapping cone is functorial and the morphisms
p : C(j) −→ S1∧A and 0∪q : C(j) −→ B/A are natural as morphisms of symmetric spectra, the connecting
morphism (2.3) is natural in the stable homotopy category, i.e., for every commutative square of symmetric
spectra on the left

A
j //

α

��

B

β

��

B/A
δ(j) //

γ(β/α)

��

ΣA

Σγ(α)

��
A′

j′
// B′ B′/A′

δ(j′)

// ΣA′

such that j and j′ are monomorphisms, the square on the right commutes in SHC.
The elementary distinguished triangle associated to the monomorphism j : A −→ B is the sequence

A
γ(j)−−−−→ B

γ(q)−−−−→ B/A
δ(j)−−−−→ ΣA .

A distinguished triangle is any triangle in the stable homotopy category which is isomorphic to an elementary
distinguished triangle, i.e., such that there is a monomorphism j : A −→ B of symmetric spectra and
isomorphisms a : X −→ A, b : Y −→ b and c : Z −→ B/A in SHC that make the diagram

X
f //

a

��

Y
g //

b

��

Z

c

��

h // ΣX

Σa

��
A

γ(j)
// B

γ(q)
// B/A

δ(j)
// ΣX

commutes.

Example 2.4. For every symmetric spectrum A the ‘cone inclusion’ i1 : A −→ ∆[1] ∧ A = CA is a
monomorphism with quotient S1∧A = ΣA, via the quotient morphism p : ∆[1]∧A −→ (∆[1]/∂∆[1])∧A =
ΣA. We claim that the associated connecting morphism δ(i1) : ΣA −→ ΣA is the negative of the identity
of ΣA in the stable homotopy category.

To see this, we use the ‘collapse morphism’ κ : ΣA −→ ΣA ∨ ΣA in SHC defined as the composite

ΣA
γ(0∪p)−1

−−−−−−→ CA ∪A CA
γ(p∪p)−−−−−→ ΣA ∨ ΣA .
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The collapse morphism κ satisfies the relations

(2.5) (0 + Id) ◦ κ = Id , (Id +0) ◦ κ = δ(i1) and (Id + Id) ◦ κ = 0

as endomorphisms of ΣA in SHC. Indeed, we have (0 + Id) ◦ (p∪ p) = 0∪ p and (Id +0) ◦ (p∪ p) = p∪ 0 as
morphisms of symmetric spectra CA ∪A CA −→ ΣA, so

(0 + Id) ◦ κ = (0 + Id) ◦ γ(p ∪ p) ◦ γ(0 ∪ p)−1 = γ(0 ∪ p) ◦ γ(0 ∪ p)−1 = Id

and similarly

(Id +0) ◦ κ = = γ(p ∪ 0) ◦ γ(0 ∪ p)−1 = δ(i1) .

The square

CA ∪A CA
p∪p //

Id∪ Id

��

ΣA ∨ ΣA

Id + Id

��
CA p

// ΣA

commutes in Sp, so the morphism (Id + Id) ◦ κ = (Id + Id) ◦ γ(p ∪ p) ◦ γ(0 ∪ p)−1 factors through the cone
CA, which is a zero object in the stable homotopy category. Thus (Id + Id) ◦ κ = 0.

The first two relations of (2.5) mean that the collapse morphism κ : ΣA −→ ΣA ∨ ΣA equals the
morphism δ(i0)⊥ Id, where the notation is as in the definition of addition in the morphisms sets [...]. So we
have

δ(i1) + Id = ∇ ◦ (δ(i0)⊥ Id) = (Id + Id) ◦ κ = 0 .

In other words, δ(i1) = − IdΣA, i.e., the connecting morphism of the cone inclusions is the negative of the
identity.

Example 2.6. Now we let ϕ : X −→ Y be an arbitrary morphism of symmetric spectra of simplicial
sets. The associated mapping cone inclusion i : Y −→ C(ϕ) is a monomorphism and the projection
p : C(ϕ) −→ S1 ∧X can serve as the associated quotient morphism. We claim that the relation

(2.7) δ(i) = −Σγ(ϕ)

holds as morphisms ΣX −→ ΣY in SHC. Indeed, in the commutative diagram of pushout squares

X
ϕ //

i1
��

Y

i

��

// ∗

��
∆[1] ∧X // C(j)

p
// S1 ∧X

the vertical morphisms i1 and i are monomorphisms, and the morphism p : C(ϕ) −→ S1 ∧ X can serve
as the quotient map associated to the mapping cone inclusions i : Y −→ C(ϕ). So by naturality of the
connecting morphisms we get

δ(i) = δ(i) ◦ IdΣX = Σγ(ϕ) ◦ δ(i1) = −Σγ(ϕ)

using that the connecting morphism δ(i1) is the negative of the identity.

Proposition 2.8. Every morphism α : X −→ Y in SHC can be written as α = γ(s)−1γ(i) with i : X −→ Z
and s : Y −→ Z morphisms of symmetric spectra such that i and s are monomorphisms and s is a stable
equivalence. If f, g : A −→ B are two morphisms of symmetric spectra such that γ(f) = γ(g) in SHC, then
there is an acyclic cofibration s : B −→ B̄ such that sf is homotopic to sg.

Proof. Let f : X −→ ωY represent α and let Z = Z(f + pY ) = ∆[1]+ ∧ (X ∨ Y ) ∪f+pY ωY be the
mapping cylinder of the morphism f + pY : X ∨ Y −→ ωY . The mapping cylinder comes with a ‘front
inclusion’ u : X ∨ Y −→ Z and a ‘projection’ v : Z −→ ωY such that f + pY = vu : X ∨ Y −→ ωY . the
projection is a homotopy equivalence, hence a stable equivalence. Then u is a monomorphism and u = i+s
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for monomorphisms i : X −→ Z and s : Y −→ Z. Since vs = pY and v and pY are stable equivalences, s is
also a stable equivalence. Finally, we have

α = γ(pY )−1γ(f) =
(
γ(pY )−1γ(v)

) (
γ(v)−1γ(f)

)
= γ(s)−1γ(i) ,

where the last equation uses f = vi.
For the second part we start from the relation [pBf ] = γ(f) = γ(g) = [pBg] which provides a homotopy

H : ∆[1]+ ∧A −→ ωB from Hi0 = f to Hi1 = g. We form the pushout

A ∨A
f+g //

i0+i1
��

B

b

��
∆[1]+ ∧A

h1

// P

and factor the morphism H ∪ pB : P −→ ωB as H ∪ pB = qh2 for a monomorphism h2 : P −→ B̄ followed
by a stable equivalence q : B̄ −→ ωB. Then s = h2b : B −→ B̄ is a cofibration, and a stable equivalence
because q and qs = qh2b = (H ∪ pB)b = pB are stable equivalences. Moreover, h2h1 : ∆[1]+ ∧A −→ B̄ is a
homotopy from h2h1i0 = h2bf = sf to h2h1i1 = h2bg = sg. �

Now we can state and prove the main result of this section.

Theorem 2.9. The suspension functor and the class of distinguished triangles make the stable homotopy
category into a triangulated category.

Proof. We have see in Corollary 1.13 that the stable homotopy category is additive and in Proposi-
tion 2.2 that the suspension functor is an autoequivalence. So it remains to prove the axioms (T0) – (T4).
By definition, the class of distinguished triangles is closed under isomorphism, so (T0) holds.

(T1) The unique morphism ∗ −→ X from the trivial spectrum to any other symmetric spectrum X
is a monomorphism with quotient morphism the identity of X. The triangle (0, IdX , 0) is the associated
elementary distinguished triangle.

(T2 – Rotation) We start with a distinguished triangle (f, g, h) and want to show that the tri-
angle (g, h,−Σf) is also distinguished. It suffices to consider the elementary distinguished triangle
(γ(j), γ(q), δ(j)) associated to a monomorphism j : A −→ B. The diagram of triangles in SHC

B
γ(i) // C(j)

γ(p) //

γ(0∪q) ∼=
��

ΣA
δ(i) // ΣB

B
γ(q)

// B/A
δ(j)

// ΣA
−Σγ(j)

// ΣB

commutes by definition of the connecting morphism and the relation (2.7). The upper row is the elementary
distinguished triangle of the cone inclusion i : B −→ C(j), and all vertical maps are isomorphisms, so the
lower triangle is distinguished, as claimed.

(T3 – Completion of triangles) We are given two distinguished triangles (f, g, h) and (f ′, g′, h′) and
two morphisms a and b in SHC satisfying bf = f ′a as in the diagram:

A
f //

a

��

B

b

��

g // C
h //

c

���
�
� ΣA

Σa

��
A′

f ′
// B′

g′
// C ′

h′
// ΣA′

We have to extend this data to a morphism of triangles, i.e., find a morphism c making the entire diagram
commute. If we can solve the problem for isomorphic triangles, then we can also solve it for the original
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triangles. We can thus assume that the triangle (f, g, h) and (f ′, g′, h′) are the elementary distinguished
triangle arising from two monomorphisms j : A −→ B and j′ : A′ −→ B′.

We start with the special case where a = γ(α) and b = γ(β) for morphisms α : A −→ A′ and
β : B −→ B′ of symmetric spectra. Then γ(j′α) = γ(βj), so Proposition 2.8 provides an acyclic cofibration
s : B′ −→ B̄ and a homotopy H : ∆[1]+∧ A −→ B̄ from Hi0 = sj′α to Hi1 = sβj. The following diagram
on the left commutes in Sp, and all four horizontal morphisms are monomorphisms. So the diagram
of elementary distinguished triangles on the right commutes in SHC by the naturality of the connecting
morphisms:

A
j // B A

γ(j) // B
γ(q) // B/A

δ(j) // ΣA

A
i0 //

α

��

∆[1]+∧A ∪i1 B

H∪sβ
��

∼ jp∪B

OO

A
γ(i0) //

γ(α)

��

∆[1]+∧A ∪i1 B

γ(H∪sβ)

��

γ(jp∪B) ∼=

OO

γ(q) // (∆[1]+∧A ∪i1 B)/A

γ((H∪sβ)/α)
��

γ((jp∪B)/A)∼=

OO

δ(i0) // ΣA

Σγ(α)

��
A′

sj′ // B̄ A′
γ(sj′) // B̄

γ(q̄) // B̄/A′
δ(sj′) // ΣA′

A′
j′

// B′

s∼

OO

A′
γ(j′)

// B′

γ(s) ∼=

OO

γ(q′)

// B′/A′

γ(s/A′)∼=

OO

δ(j′)

// ΣA′

The morphism

c = γ(s/A′)−1 ◦ γ((H ∪ sβ)/α) ◦ γ((jp ∪B)/A)−1 : B/A −→ B′/A′

is the desired filler.
In the general case we use Proposition 2.8 to write a = γ(s)−1γ(α) where α : A −→ Ā and s : A′ −→ Ā

are morphisms of symmetric spectra and s is an acyclic cofibration. We choose a pushout:

Ā
j̄ // Ā ∪A′ B′

A′

s '

OO

j′
// B′

s′'

OO

We write γ(s′)b = γ(t)−1γ(β) : A −→ Ā ∪A′ B′ for suitable morphisms of symmetric spectra β : B −→ B̄
and t : Ā ∪A′ B′ −→ B̄ such that t is an acyclic cofibration. We then have

γ(tj̄)γ(α) = γ(tj̄)γ(s)a = γ(ts′)γ(j′)a = γ(ts′)bγ(j) = γ(β)γ(j) ,

so by the special case, applied to the monomorphisms j : A −→ B and tj̄ : Ā −→ B̄ and the morphisms
α : A −→ Ā and β : B −→ B̄, there exists a morphism c : B/A −→ B̄/Ā in the stable homotopy category
making the diagram

A
γ(j) //

γ(α)

��

B
γ(q) //

γ(β)

��

B/A

c
��

δ(j) // ΣA

Σγ(α)

��
Ā

γ(tj̄) // B̄
γ(q̄) // B̄/Ā

δ(tj̄) // ΣĀ

A′
γ(j′)

//

γ(s)

OO

B′
γ(q′)

//

γ(ts′)

OO

B′/A′
δ(j′)

//

γ(ts′/s)

OO

ΣA′

Σγ(s)

OO

commute (the lower part commutes by naturality of connecting morphisms). Since s is a monomorphism and
stable equivalence, so is its cobase change s′ (see Proposition I.4.31 (v)). Similarly, the stable equivalences
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s : A′ −→ Ā and ts′ : B′ −→ B̄ induce a stable equivalence ts′/s : B′/A′ −→ B̄/Ā on quotients and the
composite

B/A
c−−−−→ B̄/Ā

γ(ts′/s)−1

−−−−−−−→ B′/A′

in SHC thus solves the original problem.

(T4 - Octahedral axiom) We start with the special case where f = γ(i) and f ′ = γ(j) for monomor-
phisms i : A −→ B and j : B −→ D. Then the composite ji : A −→ D is a monomorphism with
γ(ji) = f ′f . The diagram

A
γ(i) // B

γ(j)

��

γ(qi) // B/A

γ(j/A)

��

δ(i) // ΣA

A
γ(ji)

// D
γ(qji)

//

γ(qj)

��

D/A
δ(ji)

//

γ(D/i)
��

ΣA

Σγ(i)

��
D/B

δ(j)

��

D/B

δ(j/A)=(Σγ(qi))δ(j)
��

δ(j)
// ΣB

ΣB
Σγ(qi)

// ΣB/A

then commutes by naturality of connecting morphisms. Moreover, the four triangles in question are the
elementary distinguished triangles of the cofibrations i, j, ji and j/A : B/A −→ D/A.

In the general case we write f = γ(s)−1γ(a) for a morphism of symmetric spectra a : A −→ B′ and a
stable equivalence s : B −→ B′. Then a can be factored as a = pi for a monomorphism i : A −→ B̄ and a
stable equivalence p : B̄ −→ B′. Altogether we then have f = ϕ ◦ γ(i) where ϕ = γ(s)−1 ◦ γ(p) : B̄ −→ B is
an isomorphism in SHC. We can apply the same reasoning to the morphism f ′ϕ : B̄ −→ D and write it as
f ′ ◦ ϕ = ψ ◦ γ(j) for a monomorphism j : B̄ −→ D̄ of symmetric spectra and an isomorphism ψ : D̄ −→ D
in SHC. The special case can then be applied to the monomorphisms i : A −→ B̄ and j : B̄ −→ D̄.
The resulting commutative diagram that solves (T4) for (γ(i), γ(j)) can then be translated back into a
commutative diagram that solves (T4) for (f, f ′) by conjugating with the isomorphisms ϕ : B̄ −→ B
and ψ : D̄ −→ D. This completes the proof of the octahedral axiom (T4), and hence the proof of
Theorem 2.9. �

The arguments involved in the verification of the axioms (T0) – (T4) are quite general and can be
axiomatized to produce triangulated categories more generally. We do this in the axiomatic framework of
cofibration categories and show that the homotopy category of any stable cofibration category is triangulated
in a natural way. Besides symmetric spectra, we wil later also apply this to modules spectra over a symmetric
ring spectrum. We also give various exercises that show how more triangulations can be constructed using
the cofibration category framework. [ref to later]

Proposition 2.10. Let T be a triangulated category. Then the following properties hold.

(i) For every distinguished triangle (f, g, h) and every object X of T , the two sequences of abelian groups

T (ΣA,X)
T (h,X)−−−−−→ T (C,X)

T (g,X)−−−−−→ T (B,X)
T (f,X)−−−−−→ T (A,X)

and

T (X,A)
T (X,f)−−−−−→ T (X,B)

T (X,g)−−−−→ T (X,C)
T (X,h)−−−−−→ T (X,ΣA)

are exact.
(ii) Let (a, b, c) be a morphism of distinguished triangles. If two out of the three morphisms are isomor-

phisms, then so is the third.
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(iii) Let (f, g, h) be a triangle such that the triangle (g, h,−Σf) is distinguished. Then the triangle (f, g, h)
is distinguished.

(iv) Let (f1, g1, h1), (f2, g2, h2) and (f3, g3, h3) be three distinguished triangles such that f1 and f2 are
composable and f3 = f2f1. Then there exist morphisms x̄ and ȳ such that (x̄, ȳ, (Σg1) ◦ h2) is a
distinguished triangle and the following diagram commutes:

A
f1 // B

f2

��

g1 // C̄

x̄

���
�
�

h1 // ΣA

A
f3

// D g3

//

g2

��

Ē
h3

//

ȳ

���
�
� ΣA

Σf1

��
F̄

h2

��

F̄

(Σg1)◦h2
��

h2

// ΣB

ΣB
Σg1

// ΣC

(v) For every distinguished triangle (f, g, h) the following three conditions are equivalent:
• The morphism f : A −→ B has a retraction, i.e., there is a morphism r such that rf = IdA.
• The morphism g : B −→ C has a section, i.e., there is a morphism s such that gs = IdC .
• The morphism h : C −→ ΣA is zero.

(vi) Let (f, g, h) be a distinguished triangle and s : C −→ B a morphism such that gs = IdC . Then the
morphisms f : A −→ B and s : C −→ B make B into a coproduct of A and C.

(vii) Let I be a set and let (fi, gi, hi) be a distinguished triangle for every i ∈ I. Then the triangles⊕
I
Ai

⊕fi−−−−→
⊕

I
Bi

⊕gi−−−−→
⊕

I
Ci

κ◦(⊕hi)−−−−−−→ Σ(
⊕

I
Ai)

and ∏
I
Ai

∏
fi−−−−→

∏
I
Bi

∏
gi−−−−→

∏
I
Ci

κ−1◦(
∏
hi)−−−−−−−−−→ Σ(

∏
I
Ai)

are distinguished, whenever the respective coproducts and products exist. Here κ :
⊕

I ΣAi −→
Σ(
⊕

I Ai) and κ : Σ(
∏
I Ai) −→

∏
I ΣAi are the canonical isomorphism.

(viii) Let A⊕B be a coproduct of two objects A and B of T with respect to the morphisms iA : A −→ A⊕B
and iB : B −→ A⊕B. Then the triangle

A
iA−−−→ A⊕B pB−−−→ B

0−−→ ΣA

is distinguished, where pB is the morphism determined by pBiA = 0 and pBiB = IdB.

Proof. We start by showing that for every distinguished triangle (f, g, h) the composite gf is zero.
Indeed, by (T3) applied to the pair (Id, f) there is a (necessarily unique) morphism from any zero object
to C such that the diagram

A
Id // A //

f

��

0

��

// ΣA

A
f

// B g
// C

h
// ΣA

commutes, so gf = 0 (the upper row is distinguished by (T1) and (T2)).
(i) Since gf = 0 the image of T (g,X) is contained in the kernel of T (f,X). Conversely, let ψ : B −→ X

be a morphism in the kernel of T (f,X), i.e., such that ψf = 0. Applying (T3) to the pair (0, ψ) gives a
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morphism ϕ : C −→ X such that the diagram

A
f //

��

B
g //

ψ

��

C

ϕ

��

h // ΣA

��
0 // X

Id
// X // 0

commutes (the lower row is distinguished by (T1)). So the first sequence is exact at T (B,X). Applying
this to the triangle (g, h,−Σf) (which is distinguished by (T2)), we deduce that the first sequence is also
exact at T (X,C).

The argument for the other sequence is similar, but slightly more involved and depends on the assump-
tion that the functor Σ is fully faithful. Since gf = 0, the image of T (X, f) is contained in the kernel of
T (X, g). Conversely, let ψ : X −→ B be a morphism in the kernel of T (X, g), i.e., such that gψ = 0.
Applying (T3) to the pair (ψ, 0) gives a morphism ϕ̄ : ΣX −→ ΣA such that the diagram

X //

ψ

��

0 //

��

ΣX

ϕ̄

��

− Id // ΣX

Σψ

��
B g

// C
h

// ΣA −Σf
// ΣB

commutes (both rows are distinguished by (T1) and (T2)). Since shifting is full, there exists a morphism
ϕ : X −→ A such that ϕ̄ = Σϕ, and hence Σ(fϕ) = (Σf)(Σϕ) = Σψ. Since shifting is faithful we have
fϕ = ψ, so ψ is in the image of T (X, f). Altogether, the first sequence is exact at T (X,B). If we apply
this to the triangle (g, h,−Σf) (which is distinguished by (T2) which we assume), we deduce that the first
sequence is also exact at T (X,C).

(ii) We first treat the case where a and b are isomorphisms. If X is any object of T we have a
commutative diagram

T (X,A)
f∗ //

a∗

��

T (X,B)
g∗ //

b∗

��

T (X,C)
h∗ //

c∗

��

T (X,ΣA)
(−Σf)∗ //

(Σa)∗

��

T (X,ΣB)

(Σb)∗

��
T (X,A′)

f ′∗

// T (X,B′)
g′∗

// T (X,C ′)
h′∗

// T (X,ΣA′)
(−Σ(f ′))∗

// T (X,ΣB′)

where we write f∗ for T (X, f), etc. The top row is exact by part (i) applied to the distinguished triangles
(f, g, h) and (g, h,−Σf). Similarly, the bottom row is exact. Since a and b (and hence Σa and Σb) are
isomorphisms, all vertical maps except possibly the middle one are isomorphisms of abelian groups. So the
five lemma says that c∗ is an isomorphism. Since this holds for all objects X, the morphism c : C −→ C ′

is an isomorphism.
If b and c are isomorphisms, we apply the previous argument to the triple (b, c,Σa). This is a morphism

from the distinguished (by (T2)) triangle (g, h,−Σf) to the distinguished triangle (g′, h′,−Σf ′). By the
above, Σa is an isomorphism, hence so is a since shifting is an equivalence of categories. The third case is
similar.

(iii) If the triangle (g, h,−Σf) is distinguished, then so is (−Σf,−Σg,−Σh) by two applications of (T2).
Axiom (T4) lets us choose a distinguished triangle

A
f−−→ B

ḡ−−→ C̄
h̄−−→ ΣA
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and by three applications of (T2), the triangle (−Σf,−Σḡ,−Σh̄) is distinguished. By (T3) there is a
morphism c̄ : ΣC −→ ΣC̄ such that the diagram

ΣA
−Σf // ΣB

−Σg // ΣC

c̄

��

−Σh // Σ2A

ΣA −Σf
// ΣB −Σḡ

// ΣC̄ −Σh̄

// Σ2A

commutes. By part (ii), c is an isomorphism. Since suspension is an equivalence of categories, we have
c̄ = Σc for a unique isomorphism c : C −→ C̄. Then (IdA, IdB , c) is an isomorphism from the triangle
(f, g, h) to the distinguished triangle (f, ḡ, h̄). So the triangle (f, g, h) is itself distinguished.

(iv) Axiom (T4) provides a commutative diagram

A
f1 // B

f2

��

g // C

x

��

h // ΣA

A
f3

// D
g′′

//

g′

��

E
h′′

//

y

��

ΣA

Σf1

��
F

h′

��

F

(Σg)◦h′
��

h′
// ΣB

ΣB
Σg

// ΣC

such that the triangles (f1, g, h), (f2, g
′, h′), (f3, g

′′, h′′) and (x, y, (Σg) ◦ h′) are distinguished. By (T3)
there is a morphism ϕ : C̄ −→ C that makes (IdA, IdB , ϕ) a morphism of triangles from (f1, g1, h1) to
(f1, g, h); this morphism is an isomorphism by part (ii). Similarly, there is an morphism ψ : F̄ −→ F such
that (IdB , IdD, ψ) an isomorphism of triangles from (f2, g2, h2) to (f2, g

′, h′). Finally, there is an morphism
ν : Ē −→ E such that (IdA, IdD, ν) an isomorphism of triangles from (f3, g3, h3) to (f3, g

′′, h′′). If we set

x̄ = ν−1xϕ : C̄ −→ Ē and ȳ = ψ−1yν : Ē −→ F̄ ,

then the desired diagram commutes. Moreover, the triple (ϕ, ν, ψ) is an isomorphism from the triangle
(x̄, ȳ, (Σg1)h2) to the triangle (x, y, (Σg)h′). Since the latter triangle is distinguished, so is the former.

(v) By part (i), the composite of two adjacent morphism in any distinguished triangle is zero. So if s
is a section to g, then h = hgs = 0. Similarly, if r is a retraction to f , then h = (−Σr)(−Σf)h = 0 because
the triangle (g, h,−Σf) is distinguished. Conversely, if h = 0, then the sequence

T (C,B)
T (C,g)−−−−→ T (C,C) −−−→ 0

is exact by part (i), and any preimage of the identity of C is a section to g. Similarly, the sequence

T (ΣB,ΣA)
T (−Σf,ΣA)−−−−−−−−→ T (ΣA,ΣA) −−−→ 0

is exact because the triangle (g, h,−Σf) is distinguished. So there is a morphism r̄ : ΣB −→ ΣA such
that −r̄ ◦ Σf = IdΣA. Since Σ is full there is a morphism r : B −→ A such that Σr = −r̄, hence
Σ(rf) = (Σr)(Σf) = IdΣA. Since Σ is faithful, r is a retraction to f .

(vi) Since s is a section to g, the morphism T (g,X) is injective. By part (v) the morphism f has a
retraction, so T (f,X) is surjective. The first exact sequence of part (i) thus becomes a short exact sequence
of abelian groups

0 −→ T (C,X)
T (g,X)−−−−−→ T (B,X)

T (f,X)−−−−−→ T (A,X) −→ 0 .

Because T (s,X) is a section to the first map, the map (T (f,X), T (s,X)) : T (B,X) −→ T (A,X)×T (C,X)
is bijective, i.e., the morphisms f and s make B a coproduct of A and B.
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(vii) We choose a distinguished triangle:⊕
I
Ai

⊕fi−−−→
⊕

I
Bi

g−−−−→ C
h−−−−→ Σ(

⊕
I
Ai) .

We apply axiom (T3) to the canonical morphisms κj : Aj −→
⊕

IAi and κ′j : Bj −→
⊕

IBi and obtain a
morphism ϕj : Cj −→ C such that the diagram

Aj
fj //

κj

��

Bj
gj //

κ′j
��

Cj

ϕj

��

hj // ΣAj

Σκj

��⊕
IAi ⊕fi

// ⊕
IBi g

// C
h

// Σ(
⊕

IAi)

commutes. We claim that then the morphisms ϕi : Ci −→ C make C into a coproduct of the objects Ci.
For this we observe that the diagram

T (Σ(
⊕

IBi), X)
−(Σ⊕fi)∗//

((Σκi)
∗)

��

T (Σ(
⊕

IAi), X)
h∗ //

((Σκ′i)
∗)

��

T (C,X)
g∗ //

(ϕ∗i )

��

T (
⊕

IBi, X)
(⊕fi)∗ //

((κ′i)
∗)

��

T (
⊕

IAi, X)

(κ∗i )

��∏
IT (ΣBi, X)

−
∏

Σf∗i

// ∏
IT (ΣAi, X) ∏

h∗i

// ∏
IT (Ci, X) ∏

g∗i

// ∏
IT (Bi, X) ∏

f∗i

// ∏
IT (Ai, X)

commutes by construction of the morphisms ϕi. The top row is exact by part (i), the bottom row is exact
as a product of exact sequences. The four outer vertical maps are isomorphisms by the universal property
of coproducts, so the middle vertical map is an isomorphism by the 5-lemma. This shows that C is a
coproduct of the Ci’s in way that makes g = ⊕gi :

⊕
IBi −→ C and h = κ ◦ (⊕hi) : C −→ Σ(

⊕
IAi).

The statement about products of triangles can be proved in an analogous fashion. Alternatively, one
can reduce to the first case by exploiting that products in T are coproducts in the opposite category T op,
which is triangulated with respect to the opposite triangulation (compare Exercise E.II.5).

(viii) This the special case of part (vii) for the two exact triangles

A
IdA−−→ A −→ 0 −→ ΣA and 0 −→ B

IdB−−→ B −→ 0

whose sum is the triangle in question, which is thus distinguished. �

Proposition 2.11. Let

A
i //

f

��

B

g

��
C

j
// D

be a pullback square of sequential spectra of spaces or simplicial sets. If j or g is levelwise a Serre fibration
(respectively Kan fibration), then the induced morphism of mapping cones C(i, j) : C(f) −→ C(g) is a
π̂∗-isomorphism.

Now suppose that ϕ : X −→ Y is a morphism of symmetric spectra of simplicial sets that is levelwise a
Kan fibrations. We denote by ι : F −→ X the inclusion of the fiber of ϕ. By Proposition 2.11 the pullback
square

F
ι //

��

X

ϕ

��
∗ // Y

induces a π̂∗-isomorphism of mapping cones l : S1 ∧ F = C(F → ∗) −→ C(ϕ). This π̂∗-isomorphism
becomes an isomorphism γ(l) : ΣF −→ C(ϕ) in the stable homotopy category.
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The next proposition shows that homotopy fiber sequences also give rise to distinguished triangles in
the stable homotopy category. The homotopy fiber F (ϕ) of a morphism ϕ : X −→ Y between symmetric
spectra of spaces was defined in (2.14) of Chapter I; it comes with natural morphisms

ΩY
i−−→ F (ϕ)

p−−→ X
ϕ−−→ Y

such that the composite pi is the trivial map and the composite ϕp is null homotopic. [clash notation wrt
i and p]

Proposition 2.12. Let ϕ : X −→ Y be a morphism of symmetric spectra of simplicial sets.

(i) The sequence

X
γ(ϕ)−−−−→ Y

γ(i)−−−−→ C(ϕ)
γ(p)−−−−→ ΣX

is a distingushed triangle in the stable homotopy category.
(ii) If ϕ is levelwise a Kan fibration, then the triangle

F
γ(ι)−−−−−−→ X

γ(ϕ)−−−−−−→ Y
−γ(l)−1γ(i)−−−−−−−−→ ΣF

is distinguished, where F is the fiber of ϕ and ι : F −→ X is the inclusion.
(iii) If X and Y are levelwise Kan, then the triangle

F (ϕ)
γ(p̄)−−−−−−→ X

γ(ϕ)−−−−−−→ Y
(Σγ(̄i))γ(ε)−1

−−−−−−−−−→ ΣF (ϕ)

is distinguished, where ε : S1 ∧ ΩY −→ Y is the adjunction counit.

Proof. (i) The inclusion i : Y −→ C(ϕ) into the mapping cone is a monomorphism, and the triangle

Y
γ(i)−−−−→ C(ϕ)

γ(p)−−−−→ ΣX
δ(i)−−−→ ΣY

is the associated elementary distinguished triangle. By (2.7) we have δ(i) = −Σγ(ϕ), so by Proposi-
tion 2.10 (iii) the triangle (γ(ϕ), γ(i), γ(p)) is distinguished.

(ii) We have pl = S1 ∧ ι : S1 ∧ F −→ S1 ∧X, so the diagram of triangles

X
γ(ϕ) // Y

−γ(l)−1γ(i) // ΣF

−γ(l) ∼=
��

−Σγ(ι) // ΣX

X
γ(ϕ)

// Y
γ(i)

// C(ϕ)
γ(p)

// ΣX

commutes. The lower triangle is distinguished by part (i), and all vertical morphisms are isomorphisms;
so the upper triangle is distinguished. Proposition 2.10 (iii) let us rotate to the left, so that the triangle
(γ(ι), γ(ϕ),−γ(l)−1γ(i)) is distinguished.

(iii) If X and Y are levelwise Kan, then the morphism p̄ : F (ϕ) −→ X is levelwise a Kan fibration. The
fiber of p̄ is isomorphic to ΩY , via the morphism ī : ΩY −→ F (ϕ). So by part (ii) the triangle

ΩY
γ(̄i)−−−−−−→ F (ϕ)

γ(p̄)−−−−−−→ X
−γ(l〈p̄〉)−1γ(i〈p̄〉)−−−−−−−−−−−→ ΣΩY

is distinguished. Rotating to the right gives the upper disinguished triangle in the diagram

F (ϕ)
γ(p̄) // X

−γ(l〈p̄〉)−1γ(i〈p̄〉)// ΣΩY

∼= −γ(ε)

��

−Σγ(̄i) // ΣF (ϕ)

F (ϕ)
γ(p̄)

// X
γ(ϕ)

// Y
γ(p)

// ΣF (ϕ)

[show the middle square commutes... sign?] �
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3. Derived smash product

The main result of this section is that the pointset level smash product of symmetric spectra (see
Section I.5) descends to a closed symmetric monoidal product on the stable homotopy category. Recall that
γ : Sp −→ SHC denotes the universal functor from symmetric spectra to the stable homotopy category
which inverts stable equivalences (see Theorem 1.6).

Theorem 3.1. The stable homotopy category admits a closed symmetric monoidal product

∧L : SHC × SHC −→ SHC ,

called the derived smash product with the sphere spectrum S as strict unit object. Moreover, there is a natural
transformation ψA,B : γ(A) ∧L γ(B) −→ γ(A ∧ B) which makes the localization functor γ : Sp −→ SHC
into a lax symmetric monoidal functor and which is an isomorphism whenever A or B is flat.

Before we go into the actual construction of the derived smash product we want to make some comments
on what is important here. The construction of the derived smash product is really a largely formal
consequence of the following facts which we have already established:

• there is a symmetric monoidal smash product for symmetric spectra,
• the smash product is homotopically well-behaved whenever at least one factor is flat,
• every symmetric spectrum is stably equivalent (even level equivalent) to a flat symmetric spectrum.

To make the construction of the derived smash product more transparent we first define it on the full

subcategory SHC[ of the stable homotopy category whose objects are the flat symmetric spectra. On this
subcategory we can define ∧L on objects by the pointset level smash product, and there is a canonical way

to extend ∧L to morphisms in SHC[. Since there are no choices involved, the coherence properties are then
fairly formal.

Every symmetric spectrum is level equivalent, thus isomorphic in SHC, to a flat symmetric spectrum

(compare Construction I.5.53), and so the inclusion SHC[ −→ SHC is an equivalence of categories. A
choice of inverse equivalence (which amounts to choices of ‘flat resolutions’) gives us an extension of the

derived smash product from the category SHC[ to all of SHC, with all necessary coherence for free.
We denote by Sp[ the full subcategory of SpsS consisting of flat symmetric spectra; since this category

is closed under smash product and contains the sphere spectrum, it is symmetric monoidal by restriction

of all the structure from the larger category of symmetric spectra. We denote by γ[ : Sp[ −→ SHC[ the
restriction of the localization functor to flat symmetric spectra.
� We want to point out a potentially confusing issue: instead of the full subcategory SHC[ of the stable

homotopy category SHC we could also consider the localization of the full subcategory Sp[ of Sp at
the class of stable equivalences between flat symmetric spectra, which we denote by (st. eq.)−1Sp[ for the
moment. The inclusion Sp[ −→ Sp passes to a functor

(st. eq.)−1Sp[ −→ (st. eq.)−1Sp = SHC

whose image lands in SHC[. The resulting functor (st. eq.)−1Sp[ −→ SHC[ is the identity on objects, but it
is not a priori clear that this is an isomorphism of categories. Conceivably, two flat symmetric spectra could
be related by a zigzag of stable equivalences, but not by a zigzag of stable equivalences through flat spectra.

However, the next proposition takes care of this and ensures that the functor (st. eq.)−1Sp[ −→ SHC[ is
full (it is in fact also faithful, hence an isomorphism of categories).

As we saw in (1.13), every morphism from X to Y in the stable homotopy category allows a presentation
as a ‘left fraction’

[f ] = γ(pY )−1 ◦ γ(f) .

We now explain that we can similarly express morphisms in SHC as ‘right fractions’ (with more terms)
with the special property that all intermediate symmetric spectra are flat.
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Proposition 3.2. For every morphism a : X −→ Y in the stable homotopy category there exist flat
symmetric spectra A, B and C and morphisms of symmetric spectra

X
f←−− A

g−−→ B
f ′←−− C

g′−−→ Y

such that f and f ′ are stable equivalences and

a = γ(g′) ◦ γ(f ′)−1 ◦ γ(g) ◦ γ(f)−1 .

Proof. Suppose that a = [α] for a morphism of symmetric spectra α : X −→ ωY . The flat resolution
functor (see Construction I.5.53) provides a commutative diagram of symmetric spectra

X[

rX

��

α[ // (ωY )[

rωY

��

Y [

rY

��

(pY )[oo

X α
// ωY YpY

oo

in which X[, (ωY )[ and Y [ are flat and the three vertical morphisms are level equivalences, hence stable
equivalences. Moreover, (pY )[ is a stable equivalence because the other three morphisms in the right square
are. The desired factorization then is

a = γ(pY )−1 ◦ γ(f)

= (γ(rωY ) ◦ γ((pY )[) ◦ γ(rY )−1)−1 ◦ (γ(rωY ) ◦ γ(f [) ◦ γ(rX)−1)

= γ(rY ) ◦ γ((pY )[)−1 ◦ γ(f [) ◦ γ(rX)−1 . �

Remark 3.3. The last proposition is not optimal and one can get away with a shorter zigzag of morphisms.
In fact, with a little more work one can represent any morphism in SHC as a = γ(g) ◦ γ(f)−1 for a stable
equivalence f : Z −→ X and a morphism g : Z −→ Y where Z is flat. We refer to Exercise E.II.3 for
details.

Proposition 3.4. Consider two functors

F,G : (SHC[)n −→ C
of n variables for some n ≥ 1. Then for every natural transformation τ : F ◦ (γ[)n −→ G◦ (γ[)n of functors
(Sp[)n −→ C there is a unique natural transformation τ̄ : F −→ G such that τ̄ ◦ (γ[)n = τ . If τ is a natural
isomorphism, so is τ̄ .

Proof. Since the functor γ[ : Sp[ −→ SHC[ is the identity on objects, there can be at most one natural
transformation τ̄ : F −→ G such that τ̄ ◦ (γ[)n = τ ; more precisely, at every n-tupel of flat symmetric
spectra X1, X2, . . . , Xn the C-morphism τ̄X1,...,Xn : F (X1, . . . , Xn) −→ G(X1, . . . , Xn) has to be equal to
τX1,...,Xn .

The substance of the proposition is in the proof that naturality of τ implies naturality of τ̄ . To show
naturality of τ̄ as a transformation of n variables it suffices to show naturality in each variable separately,
while the other n − 1 variables are fixed. We show naturality in the first variable. So we consider flat

symmetric spectra X2, . . . , Xn−1, Y and Y ′ and a morphism a : Y −→ Y ′ in SHC[. If a is of the form
a = γ(ϕ) for some morphism of symmetric spectra ϕ : Y −→ Y ′, then the naturality square

F (Y,X2, . . . , Xn)
τ̄Y,X2,...,Xn //

F (γ(ϕ),Id,...,Id)

��

G(Y,X2, . . . , Xn)

G(γ(ϕ),Id,...,Id)

��
F (Y ′, X2, . . . , Xn)

τ̄Y,X2,...,Xn

// G(Y ′, X2, . . . , Xn)

commutes since τ̄ = τ objectwise and τ is natural. If τ̄ is natural for a particular morphism a in the first
variable and a is invertible, then τ̄ is also natural for the inverse a−1 in the first variable.
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By Proposition 3.2 an arbitrary morphism a from Y to Y ′ in SHC[ can be written as a composite of
morphisms of the form γ(g) and γ(f)−1 for suitable morphisms between flat symmetric spectra such that f
is a stable equivalence. By the above, τ̄ is natural for both γ(g) and γ(f)−1, so τ̄ is natural for an arbitrary
morphism in the first variable, hence natural in general.

If τ is a natural isomorphism, then we apply the previous argument to the inverse transformation τ−1

and obtain a natural transformation τ−1 satisfying τ−1 ◦ (γ[)n = τ−1. Both composites of τ−1 with τ̄

restrict to identity transformations along (γ[)n, so by the uniqueness, the transformations τ−1 and τ̄ are
inverse to each other. �

Now we can construct the (restricted) derived smash product on the category SHC[, see the following

proposition. We leave it as Exercise E.II.9 to show that there is only one functor ∧L : SHC[ × SHC[ −→
SHC[ which satisfies ∧L ◦ (γ[×γ[) = γ[ ◦∧ and there is only one way to extend this functor to a symmetric

monoidal structure on SHC[ for which γ[ : Sp[ −→ SHC[ is strong symmetric monoidal. In other words,

on the subcategory SHC[, the derived smash product to be constructed now is very canonical.

Proposition 3.5. There is a functor

∧L : SHC[ × SHC[ −→ SHC[

on the stable homotopy category of flat symmetric spectra that satisfies

∧L ◦ (γ[ × γ[) = γ[ ◦ ∧

as functors Sp[ ×Sp[ −→ SHC[. Moreover, the sphere spectrum is a strict unit for ∧L and the functor ∧L
can be extended to a symmetric monoidal structure on the category SHC[ in such a way that the functor

γ[ : Sp[ −→ SHC[ is strict symmetric monoidal.

Proof. We start with some preparations. If X is a flat symmetric spectrum, then smashing with X
preserves stable equivalences (Proposition I.5.50), and so the composite functor γ ◦ (X ∧ −) : Sp −→ SHC
takes stable equivalences to isomorphisms. By the universal property of the functor γ (see Theorem 1.6 (ii))
there is a unique functor

lX : SHC −→ SHC
satisfying (lX) ◦ γ = γ ◦ (X ∧ −). On objects, this functor is then given by lX(Y ) = X ∧ Y , the pointset
level smash product of symmetric spectra, and the proof of Theorem 1.6 (ii) reveals how to extend this
definition to morphisms. If Y is another flat symmetric spectrum, then by the same argument there is a
unique functor rY : SHC −→ SHC satisfying (rY ) ◦ γ = γ ◦ (− ∧ Y ).

We show that these two constructions have a certain compatibility in the range where both are defined.
More precisely, suppose we are given four flat symmetric spectra X,X ′, Y and Y ′ and morphisms a : X −→
X ′ and b : Y −→ Y ′ in SHC[, then we claim the relation

(3.6) (rY ′)(a) ◦ (lX)(b) = (lX ′)(b) ◦ (rY )(a)

as morphisms from X ∧ Y to X ′ ∧ Y ′ in SHC[. We will see below that this relations is exactly what is
needed to combine the various individual functors into a two-variable functor.

To prove relation (3.6) we go through a sequence of four steps. In Step 1 we suppose that a = γ(α)
and b = γ(β) are images of morphisms of symmetric spectra α : X −→ X ′ and β : Y −→ Y ′ under the
localization functor. Then we have

(rY ′)(a) ◦ (lX)(b) = (rY ′)(γ(α)) ◦ (lX)(γ(β)) = γ(α ∧ Y ′) ◦ γ(X ∧ β) = γ(α ∧ β)

= γ(X ′ ∧ β) ◦ γ(α ∧ Y ) = (lX ′)(γ(β)) ◦ (rY )(γ(α)) = (lX ′)(b) ◦ (rY )(a) .

Step 2: if the relation (3.6) holds for a pair of morphisms (a, b) in the stable homotopy category and a
(respectively b) is an isomorphism, then the relation also holds for the pair (a−1, b) (respectively (a, b−1)).
For example, in the first case we simply take the equation (3.6) for (a, b), composite it from the left with
(rY ′)(a)−1 and from the right with (rY )(a)−1 and obtain the relation for (a−1, b).
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Step 3: clearly, if a : X −→ X ′ and a′ : X ′ −→ X ′′ are composable morphisms in the stable homotopy
category and the relation (3.6) holds for the pairs (a, b) and (a′, b), then it also holds for the pair (a′ ◦ a, b),
and similarly for composable morphisms in the second variable.

Step 4: by Proposition 3.2 the morphism a and b can be written as a composite of morphisms of
the form γ(g) and γ(f)−1 for suitable morphisms between flat symmetric spectra such that f is a stable
equivalence. So steps 1-3 combine to prove the general case.

Now we are ready to define the derived smash product on the stable homotopy category of flat symmetric
spectra. The requirement ∧L ◦ (γ[ × γ[) = γ[ ◦ ∧ forces us to define the derived smash product on pairs of

objects by the pointset level smash product. For morphisms a : X −→ X ′ and b : Y −→ Y ′ in SHC[ we
define a ∧L b : X ∧L Y −→ X ′ ∧L Y ′ as the common value of the the equation (3.6). To see that this is

indeed a functor we consider further morphisms a′ : X ′ −→ X ′′ and b′ : Y ′ −→ Y ′′ in SHC[ and calculate

(a′a) ∧L (b′b) = (rY ′′)(a′a) ◦ (lX)(b′b)

= (rY ′′)(a′) ◦ (rY ′′)(a) ◦ (lX)(b′b)

= (rY ′′)(a′) ◦ (lX ′)(b′b) ◦ (rY )(a)

= (rY ′′)(a′) ◦ (lX ′)(b′) ◦ (lX ′)(b) ◦ (rY )(a)

= (a′ ∧L b′) ◦ (a ∧L b)

It is clear that the derived smash product preserves identity morphisms.
For morphisms ϕ : X −→ X ′ and ψ : Y −→ Y ′ between flat symmetric spectra we have

γ(ϕ) ∧L γ(ψ) = (rY ′)(γ(ϕ)) ◦ (lX)(γ(ψ)) = γ(ϕ ∧ Y ′) ◦ γ(X ∧ ψ)(3.7)

= γ((ϕ ∧ Y ′) ◦ (X ∧ ψ)) = γ(ϕ ∧ ψ) ,

so we have the equality ∧L ◦ (γ[ × γ[) = γ[ ◦ ∧ as functors.
The sphere spectrum S is flat and a strict unit for the smash product of symmetric spectra. So we have

(lS) ◦ γ = γ ◦ (S ∧ −) = γ as functors Sp −→ SHC. So lS must be the identity functor, i.e., the sphere
spectrum is a strict left unit for ∧L. The sphere spectrum is a strict right unit by the same argument.

Now we define coherence isomorphisms for the functor ∧L which make it into a symmetric monoidal

structure on the category SHC[. To obtain the derived associativity isomorphism we apply Proposition 3.4
to the functors

∧L ◦ (∧L × Id) , ∧L ◦ (Id×∧L) : SHC[ × SHC[ × SHC[ −→ SHC[ .

The pointset level associativity isomorphism αX,Y,Z : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z) restricts to a natural

isomorphism between the functors ∧L ◦ (∧L × Id) ◦ (γ[)3 and ∧L ◦ (Id×∧L) ◦ (γ[)3, so there is a unique
natural isomorphism ᾱ : ∧L ◦ (∧L × Id) −→ ∧L ◦ (Id×∧L), which we define to be the derived associativity
isomorphism. The construction of the derived symmetry isomorphism is similar: the pointset level symmetry
isomorphism τX,Y : X ∧ Y −→ Y ∧X restricts to a natural isomorphism between the functors ∧L ◦ (γ[)2

and ∧L ◦ T ◦ (γ[)2, where T : SHC[ × SHC[ −→ SHC[ × SHC[ is the automorphism that interchanges the
two factors. So there is a unique natural isomorphism τ̄ : ∧L −→ ∧L ◦T satisfying τ̄ ◦ (γ[)2 = τ , the derived
symmetry isomorphism.

The various coherence conditions at the level of the stable homotopy category SHC[ are now a direct
consequence of the corresponding coherence conditions at the level of symmetric spectra and the uniqueness
statement in Proposition 3.4. We treat one case in detail and omit the other cases, which are very similar.

The two composites around the diagram

(3.8)

(X ∧L Y ) ∧L Z
ᾱX,Y,Z //

τ̄X,Y ∧LId

��

X ∧L (Y ∧L Z)
τ̄X,Y∧LZ // (Y ∧L Z) ∧L X

ᾱY,Z,X

��
(Y ∧L X) ∧L Z

ᾱY,X,Z
// Y ∧L (X ∧L Z)

Id∧Lτ̄X,Z
// Y ∧L (Z ∧L X)
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are two natural transformations from the functor

∧L ◦ (∧L × Id) : SHC[ × SHC[ × SHC[ −→ SHC[

to the functor ∧L ◦ (Id×∧L) ◦ C where C is the automorphism of SHC[ × SHC[ × SHC[ which cycli-
cally permutes the factors. After composition with (γ[)3 the two natural transformations become equal
since the corresponding diagram for the smash product in Sp commutes. So the uniqueness statement in
Proposition 3.4 guarantees that the diagram (3.8) commutes, and we have verified the coherence between
associativity and symmetry isomorphisms.

There is one final claim which we have to check, namely that the identity transformation makes the

functor γ[ : Sp[ −→ SHC[ into a strong symmetric monoidal functor. However, when we unravel what this
means, we see that all conditions hold by construction. Indeed, if X and Y are flat symmetric spectra, then
γ(X) ∧L γ(Y ) and γ(X ∧ Y ) are the same object (namely the smash product X ∧ Y ) and for morphism
ϕ : X −→ X ′ and ψ : Y −→ Y ′ of symmetric spectra the two morphisms γ(ϕ) ∧L γ(ψ) and γ(ϕ ∧ ψ) are
equal, see (3.7) above. �

Now we can extend the derived smash product from the category SHC[ to the entire stable homotopy
category and prove Theorem 3.1.

Proof of Theorem 3.1. For every symmetric spectrum X we choose a flat resolution, i.e., a flat
symmetric spectrum X[ and a level equivalence X[ −→ X. We insist, however, that X[ = X and r = Id
if X is already flat. For example, for non-flat spectra we can take the flat resolution constructed in I.5.53.
This provides a functor [sic!]

(−)[ : SHC −→ SHC[

whose restriction to SHC[ is the identity. Moreover, applying the localization functor γ to the resolution
morphisms r : X[ −→ X provides an isomorphism γ(r) : X[ −→ X which is natural on the level of the
stable homotopy category. Hence the functor (−)[ is an equivalence of categories.

We define the derived smash product on the stable homotopy category as the composite

SHC × SHC (−)[×(−)[−−−−−−−→ SHC[ × SHC[ ∧L−−−−→ SHC[ incl.−−−−→ SHC .
[fill in details] We have to show that the monoidal structure given by the smash product is closed. For
symmetric spectra Y and Z we define the derived function spectrum by

F (Y, Z) = Hom(Y, ωZ) ,

the internal symmetric function spectrum (see Example I.3.38) from Y to the chosen injective Ω-spectrum
ωZ for Z. This spectrum comes with an evaluation morphism

ε̄Y,Z : F (Y,Z) ∧ Y = Hom(Y, ωZ) ∧ Y −→ ωZ

of symmetric spectra which is adjoint to the identity of Hom(Y, ωZ); so ε̄Y,Z is the morphism corresponding
to the bimorphism from (Hom(Y, ωZ), Y ) to ωZ with (p, q)-component

map(Y, shp(ωZ)) ∧ Yq −→ (ωZ)p+q , f ∧ y 7→ fq(y) .

We define a morphism εY,Z : F (Y,Z) ∧L Y −→ Z in the stable homotopy category as the composite

(3.9) F (Y,Z) ∧L Y
ψF (Y,Z),Y−−−−−−−→ F (Y, Z) ∧ Y [ε̄Y,Z ]−−−−−→ Z

where the second morphism is the the homotopy class of ε̄Y,Z . We also call εY,Z an evaluation morphism,
possibly with adjective ‘derived’ if we need to distinguish it from ε̄Y,Z .

To see that the monoidal structure given by the derived smash product is closed we have to show that
for every triple of objects X,Y and Z of the stable homotopy category the map

(3.10) SHC(X,F (Y,Z)) −→ SHC(X ∧L Y,Z) , α 7→ εY,Z ◦ (α ∧L Y )

is bijective. In order to show this, we first make a reduction argument. The symmetric spectrum F (Y,Z)
is already a contravariant functor in Y (but not in Z) on the pointset level, and the map is natural in Y .
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Moreover, the functor F (−, Z) = Hom(−, ωZ) takes stable equivalences to level equivalences, and thus to
isomorphism in SHC, since ωZ is an injective Ω-spectrum (compare Proposition I.4.29). So we may replace
Y by any stably equivalent object and can thus assume without loss of generality that Y is flat.

If Y is flat then by Corollary I.5.51 the function spectrum Hom(Y, ωZ) is an injective Ω-spectrum. We
have a commutative diagram

SHC(X,F (Y,Z))
α 7→εY,Z◦(α∧LY ) // SHC(X ∧L Y,Z) [X ∧L Y, ωZ]

��
[X,Hom(Y, ωZ)]

adjunction
// [X ∧ Y, ωZ]

in which all other maps are bijections (some even identities), which proves that (3.10) is bijective. �

It is a formal consequence of the representability property (3.10) of the derived function spectrum that
F (Y,Z) is naturally a functor in the second variable. A morphism ζ : Z −→ Z ′ gives rise to a map

SHC(X ∧L Y, ζ) : SHC(X ∧L Y,Z) −→ SHC(X ∧L Y,Z ′)
which is natural in X and Y . Combining this with the adjunction bijections (3.10) gives a map

SHC(X,F (Y,Z)) −→ SHC(X,F (Y,Z ′)) ,

still natural in X. By the Yoneda lemma, this transformation is induced by a unique morphism from F (Y,Z)
to F (Y, Z ′) in the stable homotopy category, which we define to be F (Y, ζ). By the very construction,
F (Y,−) is right adjoint to −∧L Y with respect to the bijection (3.10). A similar representability arguments
shows that altogether we obtain a functor

F : SHCop × SHC −→ SHC .
In Section 5.3 we proved various relations between the pointset level smash product and other con-

structions with symmetric spectra. We see now that many of these relation descend to the stable homotopy
category and have analogues for the derived smash product. For a Σm-simplicial set L and a Σn-simplicial
set L′ we have a natural isomorphism between semifree symmetric spectrum

(3.11) Gm+n(Σ+
m+n ∧Σm×Σn L ∧ L′) ∼= GmL ∧L GnL′ .

Since semifree symmetric spectra are flat, the derived smash product is given by the pointset level smash
product. Thus the isomorphism is obtained from the corresponding pointset level isomorphism (3.11)
of Chapter I by applying the localization functor γ : Sp −→ SHC. As a special case we can consider
smash products of free symmetric spectra. If K and K ′ are pointed simplicial sets then we have FmK =
Gm(Σ+

m∧K) and FnK
′ = Gn(Σ+

n ∧K ′), so the isomorphism (5.14) specializes to an associative, commutative
and unital isomorphism

Fm+n(K ∧K ′) ∼= FmK ∧L FnK ′ .
As the even more special case for m = n = 0 we obtain a natural isomorphism of suspension spectra

(Σ∞K) ∧L (Σ∞L) ∼= Σ∞(K ∧ L)

for all pairs of pointed simplicial sets K and L.
The pointset level composition morphisms (compare I.(5.20))

◦ : Hom(Y,Z) ∧ Hom(X,Y ) −→ Hom(X,Z)

‘pass’ to the stable homotopy category and admit a derived version. Indeed, the composite

(F (Y, Z) ∧L F (X,Y )) ∧L X ᾱ−−→ F (Y, Z) ∧L (F (X,Y ) ∧L X)
Id∧εX,Y−−−−−→ F (Y,Z) ∧L Y εY,Z−−−→ Z

has an adjoint

(3.12) ◦ : F (Y, Z) ∧L F (X,Y ) −→ F (X,Z) .

We omit the verification that this ‘derived composition map’ is associative and unital.
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The special case X = S of the adjunction bijection (3.10) yields a natural isomorphism between
SHC(S, F (Y, Z)) and SHC(S ∧L Y, Z) = SHC(Y,Z). The former group is in turn isomorphic, via eval-
uation at the fundamental class 1 ∈ π0S, to π0F (Y, Z) (see Example 1.15). Combining this gives a natural
isomorphism

π0F (Y,Z) ∼= SHC(Y,Z) .

[can we define this iso directly?] The ‘derived composition map’ (3.12) becomes composition in the category
SHC when we apply the 0th homotopy group functor; in more detail, the diagram

π0F (Y,Z) × π0F (X,Y )
· //

∼=
��

π0

(
F (Y,Z) ∧L F (X,Y )

) π0(◦) // π0F (X,Z)

∼=
��

SHC(Y,Z) × SHC(X,Y ) ◦
// SHC(X,Z)

commutes. [is the product · already defined ?] [justify: uniqueness property of product...]

Another useful fact about the derived smash product and its adjoint derived function spectrum is
a compatibility with the triangulated structure. In fact, if we fix an symmetric spectrum X then the
functors X ∧L−, −∧LX, F (X,−) and F (−, X) are all exact functors on the stable homotopy category, as
Proposition 3.19 below shows.

Definition 3.13. Let T and T ′ be triangulated categories. An exact functor is a pair (F, τ) consisting of
a functor F : T −→ T ′ and a natural isomorphism τ : F ◦ Σ ∼= Σ ◦ F such that for every distinguished
triangle (f, g, h) in T the triangle

FA
Ff−−−→ FB

Fg−−−→ FC
τA◦Fh−−−−→ Σ(FA)

is distinguished in T ′.

When the natural isomorphism τ : FΣ ∼= ΣF is understood, we often refer to the functor F as an
exact functor. One should keep in mind, though, that ‘exact’ is not just a property of a functor, but extra
structure.

A functor F : A −→ A′ between additive categories is additive if it satisfies the following equivalent
conditions:

• the functor F preserves coproducts;
• the functor F preserves products;
• for all objects A and Z of A the map A(A,Z) −→ A′(FA,FZ) is a group homomorphism.

Zero objects are characterized by the property that the identity morphism equals the zero morphism. An
additive functor preserves identity morphisms and zero morphisms, so an additive functor takes zero objects
to zero objects.

Proposition 3.14. Every exact functor between triangulated categories is additive.

Proof. We let A and B be objects of T and A⊕B a coproduct with respect to morphisms iA : A −→
A⊕B and iB : B −→ A⊕B. By Proposition 2.10 (vii) the triangle

A
iA−−−→ A⊕B pB−−−→ B

0−−→ ΣA

is distinguished, where pB is determined by pBiA = 0 and pBiB = IdB . Since F is exact the triangle

FA
F (iA)−−−−−→ F (A⊕B)

F (pB)−−−−−→ FB
τA◦F0−−−−−→ Σ(FA)

is distinguished in T ′. Since the morphism F (iB) : FB −→ F (A⊕B) is a section to F (pB), the object F (A⊕
B) is a biproduct of FA and FB with respect to the morphisms F (iA) and F (iB) (by Proposition 2.10 (vi)).
So F preserves coproducts, and is thus an additive functor. �
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A useful fact is that adjoints of exact functors are again exact, in a specific way that we now explain.
We let F : T −→ T ′ be a functor between triangulated categories, with right adjoint G. Given a natural
transformation of functors τ : F ◦ Σ −→ Σ ◦ F we define a natural transformation τ̂ : Σ ◦ G −→ G ◦ Σ at
an object X of T ′ as the adjoint of the composite

F (Σ(GX))
τGX−−−→ Σ(FGX)

ΣεX−−−→ ΣX ,

where ε : FG −→ IdT ′ is the counit of the adjunction. More explicitly, τ̂X is the composite

(3.15) Σ(GX)
ηΣ(GX)−−−−−→ GF (Σ(GX))

G(τGX)−−−−−→ G(Σ(FGX))
G(ΣεX)−−−−−→ G(ΣX) ,

where η : IdT −→ GF is the unit of the adjunction.

Proposition 3.16. Let

T
F // T ′
G

oo

be a pair of adjoint functors between triangulated categories, with adjunction unit η : IdT −→ GF and
counit ε : FG −→ IdT ′ .

(i) The assignment (3.15)

(τ : F ◦ Σ −→ Σ ◦ F ) 7−→ (τ̂ : Σ ◦G −→ G ◦ Σ)

from the class of natural transformations F ◦ Σ −→ Σ ◦ F to the class of natural transformations
Σ ◦G −→ G ◦ Σ is bijective.

(ii) A transformation τ : F ◦ Σ −→ Σ ◦ F is a natural isomorphism if and only if the transformation
τ̂ : Σ ◦G −→ G ◦ Σ is a natural isomorphism.

(iii) The pair (F, τ) is an exact functor if and only if the pair (G, τ̂−1) is an exact functor.

Proof. (i) Given a natural transformation ψ : Σ ◦ G −→ G ◦ Σ we define a natural transformation
ψ̄ : F ◦ Σ −→ Σ ◦ F at an object A of T as the adjoint of the composite

ΣA
ΣηA−−−→ Σ(GFA)

ψFA−−−→ G(Σ(FA)) .

We omit the verfication that this construction is inverse to τ 7→ τ̂ .
(ii) For every object A of T and every object X of T ′ the diagram

T ′(FA,X)

∼=
��

Σ // T ′(Σ(FA),ΣX)
T ′(τA,ΣX) // T ′(F (ΣA),ΣX)

∼=
��

T (A,GX)
Σ

// T (ΣA,Σ(GX))
T (ΣA,τ̂X)

// T (ΣA,G(ΣX)

commutes by the definition of τ̂ , where the two vertical maps are the adjunction bijections. Both suspension
functors are fully faithful and all maps, except possibly T ′(τA,ΣX) and T (ΣA, τ̂X), are bijective. So
T ′(τA,ΣX) is bijective if and only if T (ΣA, τ̂X) is bijective. So if τ is a natural isomorphism, then T (ΣA, τ̂X)
is bijective for all A and X of T . Since every object of T is isomorphic to a suspension, τ̂X is an isomorphism
for all objects X. The converse is analogous.

(iii) We assume that (F, τ) is exact and show that then (G, τ̂−1) is exact; the other implication is
similar. So we let (f, g, h) be a distinguished triangle in T ′. We choose a distinguished triangle

GA
Gf−−−→ GB

g′−−→ C ′
h′−−→ Σ(GA)
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in T . Then the upper triangle in the diagram

FGA
FGf //

εA

��

FGB
Fg′ //

εB

��

FC ′

ϕ

��

τGA◦Fh′ // Σ(FGA)

ΣεA

��
A

f
// B g

// C
h

// ΣA

is distinguished by hypothesis on F . By axiom (T3) there is a morphism ϕ : FC ′ −→ C such that (εA, εB , ϕ)
is a morphism of triangles. We let ϕ̂ : C ′ −→ GC be the adjoint of ϕ. The relation g ◦ εB = ϕ ◦Fg′ is then
adjoint to the relation Gg = ϕ̂ ◦ g′. Similarly, the relation h ◦ϕ = ΣεA ◦ τGA ◦Fh′ is adjoint to the relation
Gh ◦ ϕ̂ = τ̂A ◦ h′ (because τ̂A was defined as the adjoint of (ΣεA) ◦ τGA). In other words, the diagram of
triangles in T

(3.17)

GA
Gf // GB

g′ // C ′

ϕ̂

��

h′ // Σ(GA)

GA
Gf

// GB
Gg

// GC
τ̂−1
A ◦Gh

// Σ(GA)

commutes. For every object X of T , the sequence of abelian groups

T (X,GA)
T (X,Gf)−−−−−−→ T (X,GB)

T (X,Gg)−−−−−−→ T (X,GC)
T (X,τ̂−1

A ◦Gh)
−−−−−−−−−→ T (X,ΣGA)

T (X,−ΣGf)−−−−−−−−→ T (X,ΣGB)

is isomorphic, by the adjunction, to the sequence

T (FX,A)
T (FX,f)−−−−−−→ T (FX,B)

T (FX,g)−−−−−−→ T (FX,C)
T (FX,τ̂A◦h)−−−−−−−−→ T (FX,ΣA)

T (FX,−Σf)−−−−−−−−→ T (FX,ΣB) .

The latter is exact by Proposition 2.10 (i), hence so is the former. So even though we do not yet know
whether the lower triangle in the diagram (3.17) is distinguished, both triangles are taking to exact sequences
by T (X,−). This is enough for the argument used in the proof of Proposition 2.10 (ii); so the argument of
that proof shows that the morphism ϕ̂ is then an isomorphism. Since the triangle (Gf, g′, h′) is distinguished,
so is the isomorphic triangle (Gf,Gg, τ̂−1

A ◦Gh). This completes the proof that the pair (G, τ̂−1) is an exact
functor. �

For symmetric spectra A and Y the associativity isomorphism (S1 ∧A) ∧ Y ∼= S1 ∧ (A ∧ Y ) gives rise,
by applying the localization functor γ : Sp −→ SHC to a natural isomorphism [on flat spectra; derive...]

(3.18) κA,Y : (ΣA) ∧L Y −→ Σ(A ∧L Y )

in the stable homotopy category. The composite

(ΣF (Y,A)) ∧L Y
κF (Y,A),Y−−−−−−→ Σ(F (Y,A) ∧L Y )

ΣεY,A−−−−−→ ΣA

has an adjoint ψA,Y : ΣF (Y,A) −→ F (Y,ΣA) which is an isomorphism by Proposition 3.16. Moreover, the
composite

(Σ(F (ΣA, Y )) ∧L A
κF (ΣA,Y ),Y−−−−−−−→ F (ΣA, Y ) ∧L (ΣA)

εΣA,Y−−−−−→ Y

has an adjoint ψ̄A,Y : Σ(F (ΣA, Y )) −→ F (A, Y ) which is an isomorphism.
A contravariant functor F from T to T ′ is exact when equipped with a natural isomorphism ψ : FA ∼=

Σ(FΣA) such that such that for every distinguished triangle (f, g, h) in T the triangle

F (ΣA)
Fh−−−→ FC

Fg−−−→ FB
ψA◦Ff−−−−−→ ΣF (ΣA)

is distinguished in T ′. This can be said differently. There is a way to make the opposite of a triangulated
category into a triangulated category, compare Example E.II.5. Then a contravariant exact functor F is
the same as an exact functor from T op with respect to the opposite triangulation.
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Proposition 3.19. Let Y be a symmetric spectrum of simplicial sets and

A
f−−→ B

g−−→ C
h−−→ ΣA

a distinguished triangle in the stable homotopy category. Then the three triangles

A ∧L Y f∧LY−−−−−→ B ∧L Y g∧LY−−−−−→ C ∧L Y κA,Y ◦(h∧LY )−−−−−−−−−→ Σ(A ∧L Y )

F (Y,A)
F (Y,f)−−−−−−→ F (Y,B)

F (Y,g)−−−−−→ F (Y,C)
ψ−1
Y,A◦F (Y,h)
−−−−−−−−→ ΣF (Y,A)

F (ΣA, Y )
F (h,Y )−−−−−→ F (C, Y )

F (g,Y )−−−−−−→ F (B, Y )
ψ̄−1
A,Y ◦F (f,Y )
−−−−−−−−−→ ΣF (ΣA, Y )

are distinguished. In other words, the pairs (−∧L Y, κ−,Y ), (F (Y,−), ψ−1
Y,−) and (F (−, Y ), ψ̄−1

−,Y ) are exact
functors of triangulated categories.

Proof. It suffices to consider the elementary distinguished triangle (γ(j), γ(q), δ(j)) associated a
monomorphism j : A −→ B of symmetric spectra of simplicial sets.

For the first claim we can assume without loss of generality that Y is flat (since every object of SHC
is isomorphic to a flat spectrum). Then the derived smash product with Y is represented by the pointset
level smash product. Since Y is flat, the morphism j ∧ Y : A ∧ Y −→ B ∧ Y is again a monomorphism;
since smashing with Y preserves colimits, the morphism q ∧ Y : B ∧ Y −→ (B/A) ∧ Y can serve as the
associated quotient morphism. We claim that the composite morphism

(B/A) ∧L Y δ(j)∧LY−−−−−−−→ (ΣA) ∧L Y κA,Y−−−−→ Σ(Y ∧L A)

coincides with the connecting morphism δ(j∧Y ) : (B/A)∧Y −→ Σ(A∧Y ) in the stable homotopy category.
Indeed, the diagram

C(j) ∧ Y
∼

(0∪q)∧Y
ttiiiiiiiii

p∧Y //

∼=

��

(S1 ∧A) ∧ Y

∼=

��

(B/A) ∧ Y

C(j ∧ Y )

∼
0∪(q∧Y )

jjUUUUUUUUU

p∧Y
// S1 ∧ (A ∧ Y )

commutes on in the category of symmetric spectra, where the isomorphism C(j) ∧ Y −→ C(j ∧ Y ) uses
that smashing with Y commutes with pushouts. Applying the localization functor γ to this commutative
diagram yields the relation κA,Y ◦ (δ(j)∧L Y ) = δ(j ∧ Y ). This shows that the triangle (γ(j)∧L Y, γ(q)∧L
Y, κA,Y ◦(δ(j)∧LY )) is the elementary distinguished triangle of the monomorphism j∧Y : A∧Y −→ B∧Y ,
and hence distinguished.

Proposition 3.16 makes the second case a formal consequence of the first since the functor F (Y,−) is
right adjoint to − ∧L Y .

In the third case we argue as follows. We can replace Y by any isomorphic spectrum and thereby assume
that Y is an injective Ω-spectrum. Since Y is injective, the morphism map(j, Y ) : map(B, Y ) −→ map(A, Y )
is a Kan fibration by Proposition I.4.4 (i). Since Hom(A, Y )n = map(A, shn Y ) and all shifts of Y are again
injective, the morphism Hom(j, Y ) : Hom(B, Y ) −→ Hom(A, Y ) is levelweise a Kan fibration. Moreover,
the spectrum Hom(B/A, Y ) is isomorphic to the fiber of Hom(j, Y ) with Hom(q, Y ) : Hom(B/A, Y ) −→
Hom(B, Y ) corresponding to the inclusion of the fiber. Proposition 2.12 (ii) applies to Hom(j, Y ) and shows
that the triangle

Hom(B/A, Y )
γ(Hom(q,Y ))−−−−−−−−−→ Hom(B, Y )

γ(Hom(j,Y ))−−−−−−−−−→ Hom(A, Y )
−γ(l)−1γ(i)−−−−−−−−→ Σ Hom(B/A, Y )

is distinguished. The morphism S1 ∧ Hom(S1 ∧ A, Y ) −→ Hom(A, Y ) is a stable equivalence, and it
represents the isomorphism ψ̄A,Y : Σ Hom(ΣA, Y ) −→ Hom(A, Y ) in SHC. So we can replace the spectrum
Hom(A, Y ) by Σ Hom(ΣA, Y ) and deduce that the triangle

Hom(B/A, Y )
γ(Hom(q,Y ))−−−−−−−−−→ Hom(B, Y )

γ(Hom(j,Y ))−−−−−−−−−→ Σ Hom(ΣA, Y )
−Σ?−−−→ Σ Hom(B/A, Y )
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is distinguished. Rotating to the left gives the desired distinguished triangle

F (ΣA, Y )
F (δ(j),Y )−−−−−−→ F (B/A, Y )

F (γ(q),Y )−−−−−−−−→ F (B, Y )
ψ̄−1
A,Y ◦F (γ(j),Y )
−−−−−−−−−−−→ ΣF (ΣA, Y ) . �

The functor Y ∧L− is isomorphic to the functor −∧L Y , by the derived symmetric isomorphism. So we
can also make smash product with Y in the first variable into an exact functor, where we use the natural
isomorphism κ̄Y,A : Y ∧L (ΣA) −→ Σ(Y ∧L A) defined as the composite

(3.20) Y ∧L (ΣA)
τ̄Y,ΣA−−−−→ (ΣA) ∧L Y κA,Y−−−→ Σ(A ∧L Y )

Σ(τ̄A,Y )−−−−−→ Σ(Y ∧L A) .

Then for every distinguished triangle (f, g, h) the triangle

Y ∧L A Y ∧Lf−−−−−→ Y ∧L B Y ∧Lg−−−−−→ Y ∧L C κ̄Y,A◦(Y ∧Lh)−−−−−−−−−→ Σ(Y ∧L A)

is isomorphic to the triangle (f ∧L Y, g ∧L Y, κA,Y ◦ (h ∧L Y )), and hence distinguished.

4. Grading

The spheres Sn represent the unstable homotopy groups and are related by the homeomorphisms
Sm ∧ Sn ∼= Sm+n which are one-point compactification of the ‘canonical’ linear isomorphism

Rm × Rn −→ Rm+n , ((x1, . . . , xm), (y1, . . . , yn)) 7→ (x1, . . . , xm, y1, . . . , yn) .

These homeomorphisms are obviously associative and unital. In the stable homotopy category, all objects
can be desuspended. So we have ‘stable spheres’ Sn for all integers n which represent stable homotopy
groups, compare Example 1.15. However, the symmetric spectra Sn can not be chosen so that Sm ∧ Sn
and Sm+n are isomorphic as symmetric spectra for all m,n ∈ Z. However, when we pass to the stable
homotopy category we can consistently choose such isomorphisms. We want these isomorphisms in SHC to
have suitable associativity properties, which is a bit less obvious than in the case of spaces.

In more detail we proceed as follows. For an integer n we define the n-dimensional sphere spectrum Sn
by

(4.1) Sn =


Σ∞Sn for n ≥ 1,

S for n = 0, and

F−n for n ≤ −1.

[explain Fk without an argument] If m and n are both positive or both negative, then the smash product
Sn ∧ Sm is isomorphic, as a symmetric spectrum, to Sn+m, but if n and m have opposite signs, the spectra
Sn ∧ Sm and Sn+m are not isomorphic in Sp. However, the next proposition shows that in the stable
homotopy category, we can consistently choose such isomorphisms for all integers n and m. The next
proposition in particular shows that the sphere spectra Sn are invertible for all integers n, i.e., they have
inverses in SHC (up to isomorphism) for the derived smash product. We shall see in Proposition 7.10 that
conversely, every invertible object of the stable homotopy category is isomorphic to Sn for an integer n.

Let us recall the definition of the fundamental classes ιn ∈ πnSn from (6.4) of Chapter I. For n ≥ 0 the
identity of the sphere Sn is a based map Sn −→ (Σ∞Sn)0 whose homotopy class is the naive fundamental
class ι̂n ∈ π̂nSn (we used the notation ι̂n0 earlier). For n < 0 the identity permutation of Σ−n specifies a
point in Σ+

−n = (F−n)−n whose homotopy class represents the naive fundamental class ιn ∈ π̂nSn. The true
fundamental class is the image of this naive fundamental class ι̂n ∈ π̂nSn under the map c : π̂nSn −→ πnSn.
By Example 1.15 the evaluation map

SHC(Sn, X) −→ πnX , α 7−→ (πnα)(ιn)

is an isomorphism of abelian groups for every symmetric spectrum X.
Since the spectrum S1+n represents the homotopy group functor π1+n, there is a unique morphism

(4.2) βn : S1+n −→ S1 ∧ Sn
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in the stable homotopy category such that π1+n(βn) : π1+nS1+n −→ π1+n(S1 ∧ Sn) takes the fundamental
class ι1+n of S1+n to S1 ∧ ιn, the suspension of the previous fundamental class. For every symmetric
spectrum X, the diagram

SHC(Sn, X)
Σ //

∼=
��

SHC(S1 ∧ Sn, S1 ∧X)
β∗n //

∼= **TTTTTTTTTTTTTTTT
SHC(S1+n, S1 ∧X)

∼=
��

πnX
S1∧−

// π1+n(S1 ∧X)

commutes; the vertical maps are evaluation at the fundamental class ιn, at S1∧ ιn and at ι1+n respectively.
Since the suspension functor is fully faithful and evaluation at ιn and ι1+n and the suspension homomor-
phism are isomorphisms, the map β∗n : SHC(S1 ∧ Sn, S1 ∧ X) −→ SHC(S1+n, S1 ∧ X) is bijective. Since
every object in the stable homotopy category is isomorphic to a suspension, the morphism βn is thus an
isomorphism.

In Theorem I.6.16 we constructed a natural pairing of true homotopy groups, which in the special case
of sphere spectra is a biadditive map

· : πmSm × πnSn −→ πm+n(Sm ∧ Sn) .

The sphere spectra are flat, so the pointset smash product which appears in the target is also the derived
smash product. Since the spectrum Sm+n represents the homotopy group functor πm+n, there is a unique
morphism

(4.3) αm,n : Sm+n −→ Sm ∧L Sn

in the stable homotopy category such that (αm+n)∗ : πm+nSm+n −→ πm+n(Sm∧Sn) takes the fundamental
class of Sm+n to ιm · ιn.

Proposition 4.4. For all m,n ∈ Z the morphism αm,n : Sm+n −→ Sm ∧L Sn is an isomorphism in the
stable homotopy category. Moreover, these isomorphisms satisfy the following properties:

• (Normalization) The morphisms αm,0 and α0,n are identities;
• (Associativity) The square

Sl+m+n
αl,m+n //

αl+m,n

��

Sl ∧L Sm+n

Sl∧Lαm,n
��

Sl+m ∧L Sn
αl,m∧LSn

// (Sl ∧L Sm) ∧L Sn
ᾱSl,Sm,Sn

// Sl ∧L (Sm ∧L Sn)

commutes in the stable homotopy category for all integers l,m and n.
• (Commutativity) The square

Sm+n
(−1)mn //

αm,n

��

Sn+m

αn,m

��
Sm ∧L Sn τ̄Sm,Sn

// Sn ∧L Sm

commutes in the stable homotopy category for all integers m and n.

Proof. The sources of the associativity and commutativity squares are sphere spectra; since these
represent homotopy groups, the diagrams commute if we can show that the fundamental classes have the
same image both ways around the squares. But this amounts to the associativity respectively commutativity
properties of the smash product pairing and the defining properties of the morphisms αm,n.

Now we argue that the morphism αm,n are isomorphisms. Since S1 = Σ∞S1 we have a natural
isomorphism S1 ∧L X = (Σ∞S1) ∧L X ∼= S1 ∧X [ref]. In the special case X = Sn, the composite of this
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isomorphism with α1,n : S1+n −→ S1 ∧L Sn equals the morphism βn : S1+n −→ S1 ∧ Sn since both have the
same effect on the fundamental class ι1+n. So α1,n is an isomorphism in SHC since the other two morphisms
are. The commutativity property then implies that αm,1 is also an isomorphism. The associativity property
for m = 1 then shows that αl+1,n is an isomorphism if and only if αl,1+n is. Since α0,n is an isomorphism
for all integers n, an induction on the absolute values of m shows that αm,n is an isomorphism for all m
and n. �

Remark 4.5. One cannot define associative stable equivalences Sm ∧ Sn −→ Sm+n in the category of
symmetric spectra for arbitrary m and n. For example, A(1,−1, 1) is a problem. In SHC we can add a
sign to compensate for the twist permutation of S2.

We now define graded homomorphism groups in the stable homotopy category by

[X,Y ]n = SHC(Sn ∧X,Y )

for n ∈ Z. We recall that all the sphere spectra Sn are flat, so the pointset level smash product with Sn is
the derived smash product. Since the sphere spectrum S0 = S is a strict unit for the derived smash product
we have [X,Y ]0 = SHC(X,Y ), the homomorphism group from X to Y in the stable homotopy category.
We can also define a graded composition

◦ : [Y, Z]m ⊗ [X,Y ]n −→ [X,Z]m+n(4.6)

f ⊗ g 7−→ f ◦ (Sm ∧ g) ◦ (αm,n ∧X)

which is unital and associative by Proposition 4.4 and the associativity of composition (strictly speaking
we also have to throw in the associativity isomorphism ᾱSm,Sn,X : (Sm ∧ Sn) ∧X ∼= Sm ∧ (Sn ∧X), but the
notation is already complicated enough). [compare S1 ∧L X with ΣX = S1 ∧ X] There is also a graded
extension of the smash product pairing

∧ : [X,Y ]n ⊗ [X ′, Y ′]n′ −→ [X ∧L X ′, Y ∧L Y ′]n+n′(4.7)

that takes g ⊗ g′ to the composite

Sn+n′ ∧L X ∧L X ′
αn,n′∧X∧X

′

−−−−−−−−→ Sn ∧L Sn
′
∧L X ∧X ′

Sn∧τ̄Sn′ ,X∧X
′

−−−−−−−−−→ Sn ∧L X ∧L Sn
′
∧X ′ g∧Lg′−−−−→ Y ∧L Y ′ .

This pairing is also unital and associative by Proposition 4.4. It is also commutative in the sense of the
relation

g′ ∧ g = (−1)nn
′
· τY,Y ′ ◦ (g ∧ g′) ◦ τX′,X .

The composition and smash product pairing commute in the following sense:

Proposition 4.8. For morphisms f ∈ [Y, Z]m, f ′ ∈ [Y ′, Z ′]m′ , g ∈ [X,Y ]n and g′ ∈ [X ′, Y ′]n′ the relation

(f ∧ f ′) ◦ (g ∧ g′) = (−1)m
′·n · (f ◦ g) ∧ (f ′ ◦ g′)

holds in [X ∧L X ′, Z ∧L Z ′]m+m′+n+n′ .

Proof. We start by considering two special cases of the relations, namely

(g ∧ Z ′) ◦ (X ∧ f ′) = g ∧ f ′ = (−1)m
′·n · (Y ∧ f ′) ◦ (g ∧ Y ′) .

The second relation is obtained as:

(Y ∧ f ′) ◦ (g ∧ Y ′) = (Y ∧ f ′) ◦ (τSm′ ,Y ∧ Y
′) ◦ (Sm

′
∧ g ∧ Y ′) ◦ (αm′,n ∧X ∧ Y ′)

= (Y ∧ f ′) ◦ (g ∧ Sm
′
∧ Y ′) ◦ (τSm′ ,Sn∧X ∧ Y

′) ◦ (αm′,n ∧X ∧ Y ′)
= (g ∧ f ′) ◦ (Sn ∧ τSm′ ,X ∧ Y

′) ◦ (τSm′ ,Sn ∧X ∧ Y
′) ◦ (αm′,n ∧X ∧ Y ′)

= (−1)m
′·n(g ∧ f ′) ◦ (Sn ∧ τSm′ ,X ∧ Y

′) ◦ (αn,m′ ∧X ∧ Y ′)

= (−1)m
′·n(g ∧ f ′) .
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The signs comes from the commutativity relation in Proposition 4.4. The proof of the first relation is very
similar, but slightly easier because no spheres move past each other, so no sign occurs. The general case is
then a combination of the special cases:

(f ∧ f ′) ◦ (g ∧ g′) = (f ∧ Z ′) ◦ (Y ∧ f ′) ◦ (g ∧ Y ′) ◦ (X ∧ g′)

= (−1)m
′·n · (f ∧ Z ′) ◦ (g ∧ Z ′) ◦ (X ∧ f ′) ◦ (X ∧ g′)

= (−1)m
′·n · ((f ◦ g) ∧ Z ′) ◦ (X ∧ (f ′ ◦ g′))

= (−1)m
′·n · (f ◦ g) ∧ (f ′ ◦ g′) �

The graded homomorphism groups act on the graded homotopy groups through maps

[X,Y ]n ⊗ πmX −→ πn+mY

g ⊗ x 7−→ g∗(x) = (πn+mg)(ιn · x) .

Here ιn ∈ πnSn is the fundamental class. This action is strictly associative and unital.
We can trade suspension in the source or target of [X,Y ]n for a change in grading. More precisely, we

define isomorphisms

(4.9) ν∗ : [X,Y ]n+1 = [Sn+1 ∧X,Y ]
∼=−−→ [Sn ∧ ΣX,Y ] = [ΣX,Y ]n

where ν : Sn∧ΣX −→ Sn+1∧X is the isomorphism that satisfies ν∗(ιn ·(S1∧x)) = ιn+1 ·x for all homotopy
classes x of X. Similarly, we define an isomorphism

[X,Y ]n = [Sn ∧X,Y ]
Σ−−→ [Σ(Sn ∧X),ΣY ]

ν̄∗−−−→ [S1+n ∧X,ΣY ] = [X,ΣY ]1+n

where ν̄ : S1+n ∧ X −→ Σ(Sn ∧ X) is the isomorphism that satisfies ν̄∗(ι1+n · x) = S1 ∧ (ιn · x) for all
homotopy classes x of X. We then have the relations

(4.10) (ν∗g)∗(S
1 ∧ x) = g∗(x) and (ν̄∗g)∗(x) = S1 ∧ g∗(x)

in π∗Y .

Proposition 4.11. For morphisms f ∈ [Y,Z]m, f ′ ∈ [Y ′, Z ′]m′ and homotopy classes y ∈ πnY and
y′ ∈ πn′Y ′ the relation

(4.12) (f ∧ f ′)∗(y · y′) = (−1)m
′·n · f∗(y) · f ′∗(y′)

holds in πm+m′+n+n′(Z ∧L Z ′).

Proof. The proof is straightforward:

(f ∧ f ′)∗(y · y′) = πm+m′+n+n′((f ∧ f ′) ◦ (Sm ∧ τSm′ ,Y ∧ Y
′) ◦ (αm,m′ ∧ Y ∧ Y ′))(ιm+m′ · y · y′)

= πm+m′+n+n′((f ∧ f ′) ◦ (Sm ∧ τSm′ ,Y ∧ Y
′))(ιm · ιm′ · y · y′)

= (−1)m
′·n · πm+m′+n+n′(f ∧ f ′)(ιm · y · ιm′ · y′)

= (−1)m
′·n · (πm+nf)(ιm · y) · (πm′+n′f ′)(ιm′ · y′)

= (−1)m
′·n · f∗(y) · f ′∗(y′) �

In the special case X = X̄ = S, the graded smash product pairing (4.7) specializes to a pairing

∧ : [S, Y ]n ⊗ [S, Y ′]n′ −→ [S, Y ∧L Y ′]n+n′

that takes g ⊗ g′ to the composite

Sn+n′ αn,n′−−−→ Sn ∧L Sn
′ g∧Lg′−−−−→ Y ∧L Y ′ .

We can turn this into a pairing

(4.13) · : πnY × πn′Y
′ −→ πn+n′(Y ∧L Y ′)
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to the true homotopy groups of the derived smash product by composing with the evaluation isomorphism
[S, Y ]n = SHC(Sn, Y ) ∼= πnY at the fundamental class, and similarly for [S, Y ′]n′ and [S, Y ∧L Y ′]n+n′ .
This pairing is the ‘derived version’ of the homotopy group pairing of Theorem I.6.16, i.e., for the derived
smash product (as opposed to the actual smash product). More precisely, the triangle

πn+n′(Y ∧L Y ′)

πn+n′ (ψY,Y ′ )

��
πnY ⊗ πn′Y

′

· ,,ZZZZZZZZZZZZZ

· 22dddddddddddd

πn+n′(Y ∧ Y ′)

commutes for all integers m,n, where the lower product is as in Theorem I.6.16, the upper product is (4.13)
and the vertical map is induced by the transformation ψX,Y : X ∧L Y −→ X ∧ Y that comes with the
derived smash product (compare Theorem 3.1). Indeed, after spelling out all definitions, this comes down
to the relation

(ψY,Y ′)∗((g ∧L g′)∗(ιn · ιn′)) = g∗(ιn) · g′∗(ιn′)
for morphisms g : Sn −→ Y and g′ : Sn′ −→ Y ′ in SHC. It suffices to show this when g = γ(a) and

g′ = γ(a′) for morphisms of symmetric spectra a : Sn −→ Y and a′ : Sn′ −→ Y ′. In this case the desired
relation follows from the fact that ψY,Y ′ ◦ (γ(a) ∧L γ(a′)) = γ(a ∧ a′), by naturality of ψ and the fact that

ψSn,Sn′ : Sn ∧L Sn′ −→ Sn ∧ Sn′ is the identity because Sn and Sn′ are flat.

[iso πmF (X,Y ) ∼= [X,Y ]m] Also, for all integers m and n the following commutes:

πmF (Y,Z) ⊗ πnF (X,Y )
· //

∼=
��

πm+n

(
F (Y,Z) ∧L F (X,Y )

) πm+n(◦)// πm+nF (X,Z)

∼=
��

[Y, Z]m ⊗ [X,Y ]n ◦
// [X,Z]m+n

4.1. Homotopy ring spectra. Now that we constructed the derived smash product we can consider
monoid objects in the stable homotopy category with respect to the derived smash product. For us a homo-
topy ring spectrum or ring spectrum up to homotopy is a symmetric spectrum E together with morphisms
µ : E ∧L E −→ E and ι : S −→ E in the stable homotopy category which are associative and unital in the
sense that the following diagrams commute:

(E ∧L E) ∧L E
ᾱE,E,E //

µ∧LE
��

E ∧L (E ∧L E)
E∧Lµ // E ∧L E

µ

��

S ∧L E

MMMMMMMMMMMM

MMMMMMMMMMMM
ι∧LE // E ∧L E

µ

��

E ∧L S
E∧Lιoo

qqqqqqqqqqqq

qqqqqqqqqqqq

E ∧L E µ
// E E

A homotopy ring spectrum (E,µ, ι) is homotopy commutative if the multiplication is unchanged when
composed with the derived symmetry isomorphism, i.e., if the relation µ ◦ τ̄E,E = µ holds in the stable
homotopy category.

A (left) homotopy module over a homotopy ring spectrum is a symmetric spectrum M together with a
morphism a : E ∧LM −→M in the stable homotopy category which is associative and unital in the sense
that the following diagrams commute:

(E ∧L E) ∧LM
ᾱE,E,E //

µ∧LM
��

E ∧L (E ∧LM)
E∧La // E ∧LM

a

��

S ∧LM

NNNNNNNNNNNN

NNNNNNNNNNNN
ι∧LM // E ∧LM

a

��
E ∧LM a

// M M

The definition of the derived smash product was such that the universal functor γ : Sp −→ SHC is lax
symmetric monoidal (with respect to the universal transformation ψ : ∧L ◦ (γ × γ) −→ γ ◦ ∧). A formal
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consequence is that γ takes symmetric ring spectra to homotopy ring spectra. Indeed, if (R,µ : R ∧R −→
R, ι : S −→ R) is a symmetric ring spectrum, then R becomes a ring spectrum up to homotopy with respect
to the multiplication map

γ(R) ∧L γ(R)
ψR,R−−−→ γ(R ∧R)

γ(µ)−−−→ γ(R)

and the unit map γ(ι) : S −→ R.
Suppose that (E,µ, ι) is a homotopy ring spectrum. The derived smash product of morphisms can

be used to make the graded abelian group [S, E]∗ into a graded ring. The unit is given by the unit map
ι : S −→ E which is an element of [S, E]0, and the multiplication is the composite

[S, E]m ⊗ [S, E]n
∧−−→ [S, E ∧L E]m+n

µ∗−−−→ [S, E]m+n .

If the homotopy ring spectrum comes from a symmetric ring spectrum R then evaluation at the fundamental
classes is an isomorphism of graded rings [S, R]∗ ∼= π∗R. If the homotopy ring spectrum E is commutative,
then this multiplication is graded commutative.

Remark 4.14 (Obstructions to rigidifying a homotopy ring spectrum). As we just explained, every sym-
metric ring spectrum gives rise to a homotopy ring spectrum, but the converse is far from being true. More
precisely, given a ring spectrum up to homotopy E one can ask if there is a symmetric ring spectrum R
such that γ(R) is isomorphic to E as a homotopy ring spectrum. There is an infinite sequence of coherence
obstructions for the associativity to get a positive answer, and we’ll exhibit the first obstruction now. By
replacing E by an isomorphic object in SHC, if necessary, we may assume that the symmetric spectrum E
is flat and a flat fibrant Ω-spectrum. The pointset level smash product E ∧ E is then also flat, and so the
map

[E ∧ E,E] −→ SHC(E ∧ E,E)

induced by the localization functor γ : Sp −→ SHC is bijective [ref]. Hence the multiplication map
µ : E ∧LE −→ E in the stable homotopy category is of the form µ = γ(µ̄) for a morphism µ̄ : E ∧E −→ E
of symmetric spectra which is unique up to homotopy.

As above, the map [E ∧ E ∧ E,E] −→ SHC(E ∧ E ∧ E,E) induced by the localization functor is also
bijective. Since the multiplication µ is homotopy associative, the two morphisms of symmetric spectra

µ̄ ◦ (µ̄ ∧ Id) , µ̄ ◦ (Id∧µ̄) : E ∧ E ∧ E −→ E

are thus homotopic. Let us choose a homotopy

H : I+ ∧ E ∧ E ∧ E −→ E

from µ̄ ◦ (µ̄ ∧ Id) to µ̄ ◦ (Id∧µ̄). If we consider product of four factors we arrive at a pentagon condition
that we visualize as follows:

((ab)c)d

µ̄(H∧Id)

uukkkkkkkkkkkkkkk
H(µ̄∧Id∧ Id)

))SSSSSSSSSSSSSSS

(a(bc))d

H(Id∧µ̄∧Id) ##HHHHHHHHH
(ab)(cd)

H(Id∧ Id∧µ̄){{vvvvvvvvv

a((bc)d)
µ̄(Id∧H)

// a(b(cd))

Here each vertex of the pentagon represents a morphism of symmetric spectra from E ∧ E ∧ E ∧ E (four
factors) to E obtained by composing smash products of µ̄ and identity maps. The way we put parentheses
should make clear which morphism is intended; for example, the leftmost corner (a(bc))d represents the
composite of first the morphism Id∧µ̄ ∧ Id corresponding to the inner pair of parenthesis, then µ̄ ∧ Id
corresponding to the other pair of parenthesis, and then µ̄. [associativity isomorphism for smash...]
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In this symbolic notation the homotopy H goes from (ab)c to a(bc). Each of the five edges represents
a morphism of symmetric spectra from I+ ∧ E ∧ E ∧ E ∧ E to E obtained by composing smash products
of the homotopy H, the morphism µ̄ and identity maps.

So altogether the chosen spectrum morphisms µ̄ and H provide a morphism of symmetric spectra

Ω : P+ ∧ E ∧ E ∧ E ∧ E −→ E

where P is a simplicial pentagon, i.e., five copies of the simplicial 1-simplex cyclically glued together at their
vertices. We claim that the homotopy class of this morphism Ω is the first obstruction to rigidifying the
given homotopy ring spectrum into a symmetric ring spectrum. Indeed, if E is isomorphic, as a homotopy
ring spectrum, to γ(R) for a symmetric ring spectrum R, then by the model category arguments of [...] we
can assume that R itself is flat and a flat fibrant Ω-spectrum. Then the multiplication of R can serve as
the morphism µ̄. Since µ̄ is strictly associative, we can choose H as the constant homotopy. But then the
obstruction morphism Ω is also constant on the pentagon P , so its homotopy class is trivial. (We should
remember here that the construction of the morphism Ω involved some choices, and in fact the homotopy
class of Ω is only well-defined up to some indeterminacy that we don’t want to discuss here. The true
obstruction thus lies in the factor group of [P+ ∧E ∧E ∧E ∧E,E] by a suitable indeterminacy subgroup.)

The pentagon condition is not the end of the story. The vanishing of the pentagon obstruction means
that µ̄ and H can be chosen in such a way that the morphism Ω extends over the cone of the spectrum P+∧
E∧E∧E∧E. A choice of extension determines the next in the sequence of obstructions, and so on. Pursuing
this line of investigation systematically leads to the notion of an A∞-ring spectrum, a concept whose space
level analog is due to Stasheff.

The question of when a homotopy commutative homotopy ring spectrum is represented by a commu-
tative symmetric ring spectrum is even more subtle. We hope to get back to this later, and discuss some of
the obstruction theories available to tackle such ‘rigidification’ questions.

A specific example is the mod-p Moore spectrum S/p (see Section 6.3 of this chapter) for a prime p.
The mod-2 Moore spectrum has no multiplication map in the stable homotopy category (compare Exer-
cise E.II.29) and the mod-3 Moore spectrum has a product which however is not homotopy associative
(compare Exercise E.II.30). For p ≥ 5, the Moore spectrum S/p has a homotopy associative and homotopy
commutative multiplication in the stable homotopy category, [ref] but there is no symmetric ring spectrum
whose underlying spectrum is a mod-p Moore spectrum. We hope to get back to this.

Remark 4.15. If we specialize the derived composition pairing (3.12) to X = Y = Z, we see that the
derived function spectrum F (X,X) is a homotopy ring spectrum. However, these particular ‘endomorphism’
homotopy ring spectra always arise from symmetric ring spectra. Indeed, if we replace X by a stably
equivalent symmetric spectrum, then F (X,X) changes to an isomorphic homotopy ring spectrum. So we
can assume that X is an injective Ω-spectrum. For such X we have F (X,X) = γ(Hom(X,X)) as homotopy
ring spectra, where Hom(X,X) is the symmetric endomorphism ring spectrum as defined in Example I.3.41.

5. Generators

Definition 5.1. Let T be a triangulated category which has infinite sums. An object G of a triangulated
category T is called compact (sometimes called finite or small ) if for every family {Xi}i∈I of objects the
canonical map ⊕

i∈I
[G, Xi] −→ [G,

⊕
i∈I

Xi]

is an isomorphism.
A set G of objects of T is called a weak generating set if the following condition holds: if X is an object

such that the groups [ΣkG,X] are trivial for all k ∈ Z and all G ∈ G, then X is a zero object. An individual
object G is a weak generator if the set {G} is a weak generating set.

So weak generating sets detect whether objects are trivial. But they also detect isomorphisms: let G
be a weak generating set and f : A −→ B a morphism such that the map [ΣkG, f ] : [ΣkG,A] −→ [ΣkG,B]
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is bijective for all integers k and all G ∈ G. We choose distinguished triangle

A
f−−→ B −→ C −→ ΣA ;

applying [ΣkG,−] for varying k results in a long exact sequence, so the groups [ΣkG,C] vanish for all
integers k and all G in G. Since G is a weak generating set, C is a zero object, and so f : A −→ B is an
isomorphism.

Proposition 5.2. The sphere spectrum S is compact and a weak generator of the stable homotopy category.

Proof. If X is a symmetric spectrum for which the graded abelian group [S, X]∗ is trivial, then
the true homotopy groups of X are trivial by Example 1.15. Thus X is stably equivalent to the trivial
spectrum, hence a zero object in SHC. This proves that the sphere spectrum is a weak generator of the
stable homotopy category.

According to Proposition 1.10 (i), the coproduct in SHC of a family {Xi}i∈I of symmetric spectra is
given by the wedge. We have a commutative square⊕

i∈I [S, Xi] //

��

[S,
⊕

i∈I X
i]

��⊕
i∈Iπ0(Xi) // π0

(∨
i∈I X

i
)

in which the vertical maps are evaluation at the fundamental class, which are isomorphisms by the above.
The lower horizontal map is an isomorphism by Proposition I.6.12 (i), hence so is the upper horizontal map,
which shows that the sphere spectrum is compact. �

Now we want to show that the sphere spectrum also generates the stable homotopy category in another
sense, namely that every triangulated subcategory of SHC that contains S and is closed under sums is
already the entire stable homotopy category. This is really a special case of a general fact about triangulated
categories, Proposition 5.17 below. For the proof we need the notion of homotopy colimits in triangulated
categories.

Definition 5.3 (Homotopy colimit). Let T be a triangulated category with infinite sums. We consider a
countably infinite sequence

X0
f0−−→ X1

f1−−→ X2 · · ·
of morphisms in T . A homotopy colimit of the sequence consists of an object X̄ together with morphisms
ϕn : Xn −→ X̄ satisfying ϕn+1fn = ϕn such that there exists a distinguished triangle⊕

n≥0

Xn
1−f−−−→

⊕
n≥0

Xn

⊕
ϕn−−−−→ X̄ −→ Σ(

⊕
n≥0

Xn) .

Here we denote by 1− f :
⊕

n≥0Xn −→
⊕

n≥0Xn the morphism whose restriction to the ith summand is

the difference of the canonical morphism Xi −→
⊕

n≥0Xn and the composition of fi : Xi −→ Xi+1 with

the canonical morphism Xi+1 −→
⊕

n≥0Xn.

� Triangulated categories typically do not have limits or colimits (except for sums and products),
and the homotopy colimit just introduced is not a colimit in the triangulated category. In fact, the

homotopy colimit is less functorial and canonical than a categorical colimit since it does not enjoy the
universal property of a colimit. We will see in Exercise E.II.6 below that the homotopy colimit is unique
up to isomorphism; however, in contrast to ordinary colimits there is usually no preferred isomorphism
between two homotopy colimits.

We now see how to calculate maps from and to a homotopy colimit, in the latter case from compact
objects.
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Definition 5.4. Let T be a triangulated category. A covariant functor E from T to the category of abelian
groups is called homological if it takes sums in T to sums of abelian groups and if for every distinguished
triangle (f, g, h) in T the sequence of abelian groups

E(A)
E(f)−−−→ E(B)

E(g)−−−→ E(C)
E(h)−−−→ E(ΣA)

is exact. A contravariant functor E from T to the category of abelian groups is called cohomological if
it takes sums in T to products of abelian groups and if for every distinguished triangle (f, g, h) in T the
sequence of abelian groups

E(ΣA)
E(h)−−−→ E(C)

E(g)−−−→ E(B)
E(f)−−−→ E(A)

is exact.

Since distinguished triangles can be rotated, the 4-term exact sequence produced by a homological or
cohomological functor can be extended indefinitely in both directions resulting in a long exact sequence.

Example 5.5. Examples of homological and cohomological functors are given by (certain) representable
functors. Let Y be any object of a triangulated category T . The covariant represented functor T (Y,−)
takes distinguished triangles to exact sequences. If in addition Y is compact, then T (Y,−) takes sums to
sums, hence it is homological. The functor πk, the k-th homotopy group, is a homological functor from the
triangulated stable homotopy category.

The covariant represented functor T (−, Y ) takes distinguished triangles to exact sequences and sums
to product, without further hypothesis on Y . So T (−, Y ) is cohomological.

Lemma 5.6. Let T be a triangulated category, fn : Xn −→ Xn+1 a sequence of composable morphisms and
(X̄, ϕn) a homotopy colimit of the sequence {fn}.

(i) For every homological functor E : T −→ Ab the natural map

colimn E(Xn) −→ E(X̄)

induced from the compatible morphisms E(ϕn) : E(Xn) −→ E(X̄) is an isomorphism. In particular,
for every compact object Y of T the map

colimn [Y,Xn] −→ [Y, X̄]

induced by [Y, ϕn] is an isomorphism.
(ii) For every cohomological functor E : T op −→ Ab the short sequence of abelian groups

(5.7) 0 −→ lim1
nE(ΣXn) −→ E(X̄) −→ limnE(Xn) −→ 0

is exact, where the right map arises from the system of compatible homomorphisms E(ϕn) : E(X̄) −→
E(Xn). In particular, for every object Y of T the short sequence of abelian groups

(5.8) 0 −→ lim1
n [ΣXn, Y ] −→ [X̄, Y ] −→ limn[Xn, Y ] −→ 0

is exact.

Proof. (i) By definition the homological functor E takes sums to sums. So applying E to the defining
triangle of the homotopy colimit gives an exact sequence⊕

n≥0

E(Xn)
1−E(f)−−−−−→

⊕
n≥0

E(Xn)
⊕
E(ϕn)−−−−−−→ E(X̄) −−−→

⊕
n≥0

E(ΣXn)
1−E(f)−−−−−→

⊕
n≥0

E(ΣXn) .

The map 1−E(f) is always injective and its cokernel is a colimit of the sequence of maps E(fn) : E(Xn) −→
E(Xn+1), which proves the claim.

(ii) We apply E to the defining triangle of the homotopy colimit and use that E takes sums to products.
We get an exact sequence∏

n
E(ΣXn)

1−E(f)−−−−−→
∏

n
E(ΣXn) −−−→ E(X̄)

∏
E(ϕn)−−−−−−→

∏
n
E(Xn)

1−E(f)−−−−−→
∏

n
E(Xn) .
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Kernel respectively cokernel of the selfmap 1 − E(f) of the product
∏
nE(Xn) are the limit respectively

derived limit of the sequence of maps E(fn) : E(Xn+1) −→ E(Xn), which proves that (5.8) is exact. �

Remark 5.9. The short exact sequence (5.8) is often called the Milnor exact sequence. The surjectivity of
the second map in the Milnor sequence says that the data (X̄, ϕn) is a weak colimit, i.e., it has ‘half’ of the
universal property of a categorical colimit: given morphisms gn : Xn −→ Y in the triangulated category
T which are compatible in the sense that we have gn+1fn = gn, then the tuple {gn}n is an element in the
limit of the groups [Xn, Y ]. So by surjectivity there is a morphism g : X̄ −→ Y restricting to gn on each
Xn. However, when the lim1 term is non-trivial, there is more than one such morphism g. So the lim1 term
measures to what extent the homotopy colimit lacks the uniqueness part of the universal property. In [...]
we give an example of a Milnor sequence with non-trivial lim1 term.

The k-th homotopy group is a homological functor from the triangulated stable homotopy category, so
as a special case of part (i) of the previous lemma we get:

Corollary 5.10. Let fn : Xn −→ Xn+1 be a sequence of composable morphisms in the stable homotopy
category and (X̄, ϕn) a homotopy colimit of the sequence {fn}. Then the natural map

colimn πk(Xn) −→ πkX̄

induced from the morphisms πk(ϕn) : πk(Xn) −→ πkX̄ is an isomorphism.

We now relate the abstract notion of homotopy colimit in the triangulated stable homotopy category
to sequential colimits of symmetric spectra: the following lemma says that a homotopy colimit in SHC
can essentially be calculated as the colimit, in the category of symmetric spectra, over arbitrary choices of
morphisms which represent the given homotopy classes.

Proposition 5.11. Let fn : Xn −→ Xn+1 be morphisms of symmetric spectra of simplicial sets for n ≥ 0.
Then every colimit, in the category of symmetric spectra, of the sequence of morphisms fn is a homotopy
colimit in the stable homotopy category of the sequence of morphisms γ(fn).

Proof. Let ⊕
n≥0

Xn
Id−γ(f)−−−−−→

⊕
n≥0

Xn
⊕ϕn−−−→ X̄ −→ Σ

⊕
n≥0

Xn


be a distinguished triangle in the stable homotopy category, so that (X̄, ϕn) is a homotopy colimit of the
sequence {γ(fn)}. We let κn : Xn −→ colimmXm denote the canonical morphisms to a colimit in the
category of symmetric spectra. Then the map

⊕
n γ(κn) :

⊕
nXn −→ colimmXm in SHC becomes zero

when composed with 1−f , so there is a morphism ψ : X̄ −→ colimmXm in SHC such that ψ ◦ϕn = γ(κn).
For every integer k the triangle

πk(colimmXm)

πk(ψ)

��
colimn πk(Xn)

33ffffff

++XXXXXXXXXX

πkX̄

commutes where the diagonal maps are induced on πk by the morphisms κn : Xn −→ colimnXn respectively
ϕn : Xn −→ X̄. The upper diagonal map is an isomorphism by part (iv) of Proposition I.6.12 and the lower
diagonal map is an isomorphism by Corollary 5.10. So ψ : colimmXm −→ X̄ is an isomorphism in SHC,
and hence colimmXm is also a homotopy colimit. �

Now we show that in the stable homotopy category every symmetric spectrum is a homotopy colimit of
desuspended suspension spectra. For a symmetric spectrum X and m ≥ 0 we denote by λm : Fm+1(Xm ∧
S1) −→ FmXm the morphism that is freely generated by the map 1∧− : Xm ∧ S1 −→ Σ+

m+1 ∧Xm ∧ S1 =
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(FmXm)m+1. Then λm is a stable equivalence, so its image in the stable homotopy category is invertible
and we can form the composite

FmXm
γ(λm)−1

−−−−−−−→ Fm+1(Xm ∧ S1)
γ(Fm+1σm)−−−−−−−−−→ Fm+1Xm+1

that we denote by jm : FmXm −→ Fm+1Xm+1. For every m ≥ 0, the identity of Xm is adjoint to a
morphism of symmetric spectra

im : FmXm −→ X .

Since the square of morphisms of symmetric spectra

Fm+1(Xm ∧ S1)
Fm+1σm //

λm '
��

Fm+1Xm+1

im+1

��
FmXm im

// X

commutes, the relation γ(im+1) ◦ jm = γ(im) holds as morphism from FmXm to X in SHC. For any choice
of homotopy colimit of the sequence jm : FmXm −→ Fm+1Xm+1, there is thus a morphism

j : hocolimm FmXm −→ X

in the stable homotopy category (not necessarily unique) such that j ◦ ϕm = γ(im).

Proposition 5.12. For every semistable symmetric spectrum X the map

j : hocolimm FmXm −→ X

is an isomorphism in the stable homotopy category.

Proof. We fix an integer k and a natural number m with k + m ≥ 0. We define a map αm :
πk+mXm −→ πk(FmXm) from the unstable homotopy group of the simplicial set Xm to the true homotopy
groups as the composite

πk+mXm
1∧−−−−→ πk+m((FmXm)m)

can.−−→ π̂k(FmXm)
c−−→ πk(FmXm) .

In more detail: the first map is the effect on πk+m of the based map 1∧− : Xm −→ Σ+
m∧Xm = (FmXm)m,

the second map is the canonical map from an unstable homotopy group of a level to the naive homotopy
group of a spectrum and the third is the tautological map from naive to true homotopy groups. We claim
that the diagrams

(5.13)

πk+m−1Xm−1

αm−1

��

ι // πk+mXm

αm

��

can. // π̂kX

c

��
πk(Fm−1Xm−1)

πk(jm−1)
// πk(FmXm)

πk(im)
// πkX
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commute. Indeed, the left square decomposes into subdiagrams

πk+m−1Xm−1

ι

**

αm−1

��

1∧−
��

−∧S1
// πk+m(Xm−1 ∧ S1)

1∧−

��

σm−1

// πk+mXm

1∧−

��

αm

��

πk+m−1(Fm−1Xm−1)m−1

ι
��

πk+m(Fm−1Xm−1)m

can.
��

πk+m(Fm(Xm−1 ∧ S1))m Fmσm−1

//

can.
��

(λm−1)m

oo πk+m(FmXm)m

can.
��

π̂k(Fm−1Xm−1)

c
��

π̂k(Fm(Xm−1 ∧ S1))
Fmσm−1

//
λm−1

oo

c
��

π̂k(FmXm)

c
��

πk(Fm−1Xm−1)

jm−1

33πk(Fm(Xm−1 ∧ S1))
Fmσm−1 //

∼=

λm−1oo πk(FmXm)

Here the upper left square commutes by the definition of the morphism λm−1, and all other parts commute
by naturality. The right square of (5.13) can also be decomposed into subdiagrams:

πk+mXm

αm

��

UUUUUUUUUUUUU

UUUUUUUUUUUUU
1∧−

��
πk+m(FmXm)m

(im)m

//

can.
��

πk+mXm

can.
��

π̂k(FmXm)
im

//

c
��

π̂kX

c
��

πk(FmXm)
im

// πkX

Here again, the squares commute by naturality and the triangle by definition of the morphism im.
Since the left part of diagram (5.13) commutes, the maps αm assemble into a homomorphism

α∞ = colimm αm : π̂kX = colimm πk+mXm −→ colimm πk(FmXm) .

We claim that α∞ is an isomorphism [...π̂kX ∼= colimm π
s
k+mXm and πs

k+mXm
∼= πk(FmXm)...]

Since the right part of diagram (5.13) commutes, the composite

π̂kX
α∞−−−→ colimm πk(FmXm)

∼=−−→ πk(hocolimm FmXm)
πk(j)−−−−→ πkX

coincides with the tautological map c : π̂kX −→ πkX. We have assumed that X is semistable, so c is
an isomorphism for all integers k. Since α∞ is an isomorphism by the above, and the second map is an
isomorphism by Corollary 5.10, the map πk(j) is an isomorphism for all integers k. So the morphism j is
an isomorphism in the stable homotopy category, and this finishes the proof. �

Now we return to some more general theory of triangulated categories.

Proposition 5.14. Let T be a triangulated category with infinite sums and let C be a set of compact objects
of T . Let 〈C〉+ denote the smallest class of objects of T which contains C and is closed under sums (possibly
infinite) and ‘extensions to the right’ in the following sense: if

A −→ B −→ C −→ ΣA

is a distinguished triangle such that A and B belong to the class, then so does C. Then for every cohomo-
logical functor E : T op −→ Ab there exists an object R in the class 〈C〉+ and an element u ∈ E(R) such



5. GENERATORS 261

that for every object G of C the evaluation map

evu : [G,R] −→ E(G) , f 7→ E(f)(u)

is bijective.

Proof. By induction on n we construct objects Rn in 〈C〉+, morphisms in : Rn −→ Rn+1 and elements
un ∈ E(Rn) such that E(in)(un+1) = un. We start with

R0 =
⊕
G∈C

⊕
x∈E(G)

G .

Since E is cohomological the canonical map

E(R0) −→
∏
G∈C

∏
x∈E(G)

E(G)

is bijective; so there is a tautological element u0 ∈ E(R0) that restricts to x ∈ E(G) on the summand
indexed by x. We note that R0 belongs to 〈C〉+ and evu0

: [G,R0] −→ E(G) is surjective for all G ∈ C.
In the inductive step we suppose that the pair (Rn, un) has already been constructed. We let In(G)

denote the kernel of the evaluation morphism evun : [G,Rn] −→ E(G) and consider

Cn =
⊕
G∈C

⊕
x∈In(G)

G ,

which comes with a tautological morphism τ : Cn −→ Rn which is given by x on the summand indexed by
x. We choose a distinguished triangle

Cn
τ−−→ Rn

in−−→ Rn+1 −→ ΣCn .

Since E is cohomological the sequence

E(ΣCn) −→ E(Rn+1)
E(in)−−−−−→ E(Rn)

E(τ)−−−−→ E(Cn)

is exact. Under the isomorphism E(Cn) ∼=
∏
G∈C

∏
x∈In(G)E(G) the map E(τ) takes un ∈ E(Rn) to

the family {evun(x)} which is zero by definition. So there exists an element un+1 ∈ E(Rn+1) satisfying
E(in)(un+1) = un.

Now we choose a homotopy colimit (R, {ϕn : Rn −→ R}n), in the sense of Definition 5.3, of the
sequence of morphisms in : Rn −→ Rn+1. Since all the objects Rn are in 〈C〉+, so is R. The short exact
sequence (5.7) shows that we can choose an element u ∈ E(R) satisfying E(ϕn)(u) = un in E(Rn) for all
n ≥ 0. We claim that for any such pair (R, u) the evaluation map evu : [G,R] −→ E(G) is bijective.

Since E(ϕ0)(u) = u0 in E(R0), the composite [G,R0] −→ [G,R]
evu−−→ E(G) is evaluation at u0, which is

surjective. Hence evu : [G,R] −→ R(G) is also surjective. To show that evu is injective we let α : G −→ R be
an element in its kernel, i.e., such that E(α)(u) = 0. Since G is compact, the functor [G,−] is homological;
we apply Lemma 5.6 (i) and conclude that there is an n ≥ 0 and a morphism α′ : G −→ Rn such that
α = ϕnα

′. Then E(α′)(un) = E(α′)(E(ϕn)(u)) = E(α)(u) = 0. So α′ lies in In(G) and indexes one of the
summands of Cn. So α′ factors through the tautological morphism τ : Cn −→ Rn as α′ = τα′′, and hence

α = ϕnα
′ = ϕn+1inτα

′′ = 0

since the morphisms in and τ are adjacent in a distinguished triangle, and so have trivial composite. Hence
evu : [G,R] −→ E(G) is also injective, which finishes the proof. �

Now we show that for compact objects, the two meanings of ‘generator’ for a triangulated category
coincide. We need another definition first.

Definition 5.15. A non-empty full subcategory S of a triangulated category T is a triangulated subcategory
if the following conditions holds: given a distinguished triangle

A −→ B −→ C −→ ΣA
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in T such that two of the objects A, B and C belong to S, then so does the third object. A full triangulated
subcategory of a triangulated category is localizing if it is also closed under sums (indexed by arbitrary
sets).

[triangulated subcategory contains all zero objects, and is closed under suspension, desuspension and
isomorphism]

[next paragraphs out of place] For a set of not necessarily compact objects the two conditions are not
generally equivalent; for arbitrary objects, condition (ii) in the next proposition implies condition (i), but
not necessarily the other way around. In the special case of the stable homotopy category and the set
G = {S}, the next proposition specializes to Proposition 5.16.

As we just saw, the sphere spectrum S is a compact weak generator of the stable homotopy category.
But it also generates the stable homotopy category in the sense that the whole stable homotopy category
is the smallest localizing subcategory containing S.

Proposition 5.16. Every localizing subcategory of the stable homotopy category which contains the sphere
spectrum S is all of SHC.

Proposition 5.17. Let T be a triangulated category with infinite sums and let G be a set of compact objects
of T . Then the following conditions are equivalent.

(i) G is a weak generating set.
(ii) Every localizing subcategory of T which contains G is all of T .

Proof. Let us first assume that G is a weak generating set and let X be a localizing subcategory of T
which contains G. We let X be any object of T .

We apply Proposition 5.14 to the set C = {ΣkG}k∈Z,G∈G of all positive and negative suspensions of
objects in G. Since a localizing subcategory is closed under suspensions and desuspensions, the set C is
contained in X , and hence so is the class 〈C〉+. Proposition 5.14 applied to the representable functor [−, X]
provides a morphism u : R −→ X such that [ΣkG, u] : [ΣkG,R] −→ [ΣkG,X] is bijective for all k ∈ Z and
G ∈ G. Since G weakly generates, u must be an isomorphism. Since R is contained in 〈C〉+ ⊂ X , so is X.
So the localizing subcategory X contains all objects of T .

Now we assume condition (ii) and show that G is then a weak generating set. This implication does not
need the assumption that the object in G are compact. We let X be an object of T such that the graded
abelian group [G,X]∗ is trivial for every G ∈ G. We let X be the class of all those objects A of T for which
the graded abelian group [A,X]∗ is trivial. Then X is a localizing subcategory of T and contains G, hence
it contains all objects, in particular the object X itself. Thus the group [X,X] is trivial, so X must be a
zero object. �

Definition 5.18. A triangulated category is compactly generated if it has sums and a weak generating set
consisting of compact objects.

By Proposition 5.17 we could replace the condition ‘weak generators’ by ‘generators’ for the triangulated
category (as long as we insist of compact objects). The stable homotopy category is our main example of a
compactly generated triangulated category, where we can take the sphere spectrum S as a single compact
generator. More generally we will show in Chapter IV that the triangulated derived category of a symmetric
ring spectrum is compactly generated, where the free module of rank one can be taken as a single compact
generator.

Proposition 5.19 (Brown representability). Every cohomological functor defined on a compactly generated
triangulated category is representable.

Proof. Let T be compactly generated and let G be a set of compact generators. Given a cohomological
functor E : T op −→ Ab we apply Proposition 5.14 with C = {ΣkG}k∈Z,G∈G the set of all positive and
negative suspensions of all objects in G. We obtain an object R of T and an element u ∈ E(R) such that
evu : [ΣkG,R] −→ E(ΣkG) is bijective for all integers k and G ∈ G.
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We let X be the class of all objects X of T for which the evaluation morphism evu : [X,R] −→ E(X)
is bijective. Since [−, R] and E are both cohomological functors, the class X is localizing. By the above, it
also contains the set of generators. Proposition 5.17 shows that X = T , so the pair (R, u) represents the
functor E. �

Example 5.20. The representability result given by Proposition 5.19 can sometimes be used to construct
spectra with prescribed homotopy groups. One example of this is the Brown-Comenetz dual (of the sphere
spectrum). The construction uses the contravariant endofunctor of abelian groups

A 7−→ A∨ = Ab(A,Q/Z)

which is sometimes called the Pontryagin dual of A. There is a natural evaluation homomorphism

A −→ (A∨)∨ , a 7−→ (ϕ 7→ ϕ(a))

which injects A into its double dual. If A is finite, then the evaluation is an isomorphism; in that case A is
also isomorphic to its (single) dual A∨, but this isomorphism is not natural. The group Q/Z is injective as
an abelian group, i.e., the Pontryagin duality functor Ab(−,Q/Z) is exact.

We consider the contravariant functor

E : SHCop −→ Ab , X 7−→ E(X) = (π0X)∨ .

For every family {Xi}i∈I of symmetric spectra the natural map⊕
i∈I

πn(Xi) −→ πn

(∨
i∈I

Xi

)
is an isomorphism by Proposition I.6.12 (i), and Pontryagin duality takes sums to products, so the functor
E takes sums to products. Every distinguished triangle (f, g, h) in the stable homotopy category gives rise
to a long exact sequence of homotopy groups

π0A
π0f−−→ π0B

π0g−−→ π0C
π0h−−→ π0(ΣA) .

[ref] Since Pontryagin duality is exact, we get an exact sequence

(π0A)∨
(π0f)∨←−−−− (π0B)∨

(π0g)
∨

←−−−− (π0C)∨
(π0h)∨←−−−− (π0(ΣA))∨ .

So E is a cohomological functor. The Brown-Comenetz dual IS is a representing spectrum for this coho-
mological functor; it comes with a universal element u ∈ (π0IS)∨, i.e., a homomorphism u : π0IS −→ Q/Z.
We can calculate the homotopy groups of IS as follows. For any integer k we compose the action of the
stable homotopy groups of spheres with the universal homomorphism to a homomorphism of abelian groups

πkIS ⊗ π−kS
·−→ π0IS

u−−→ Q/Z .

This map is a perfect pairing in the sense that its adjoint

û : πkIS −→ Ab(π−kS,Q/Z) = (π−kS)∨

is an isomorphism. Indeed, we have a commutative square

SHC(Sk, IS)
evu //

evιk

��

(π0Sk)∨

(Sk∧−)∨

��
πkIS

û
// (π−kS)∨

in which the right vertical morphism is dual to the suspension isomorphism Sk ∧ − : π−kS −→ π0Sk. The
other three maps in the square are isomorphisms, hence so is û. Since the stable homotopy groups of spheres
are finite except in dimension zero (compare Theorem I.1.9), and thus self-dual (in a non-canonical way),
one could say that the homotopy groups of the Brown-Comenetz dual IS are the stable homotopy groups of
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spheres ‘turned upside down’. There are non-trivial stable homotopy groups of spheres in arbitrarily high
dimensions, so the spectrum IS has non-trivial homotopy groups in arbitrarily low dimensions.

A symmetric spectrum X is n-connected if the true homotopy groups πkX are trivial for k ≤ n.
The spectrum X is connective if it is (−1)-connected, i.e., its true homotopy groups vanish in negative
dimensions.

Proposition 5.21. For an integer n, let 〈Sn〉+ denote the smallest class of symmetric spectra which contains
the n-dimensional sphere spectrum Sn and is closed under sums (possibly infinite) and ‘extensions to the
right’ in the following sense: if

A −→ B −→ C −→ ΣA

is a distinguished triangle such that A and B belong to the class, then so does C. Then 〈Sn〉+ equals the
class of (n− 1)-connected spectra.

Proof. Since the sphere spectrum S is connective and suspensions shifts homotopy groups, the sphere
spectrum Sn is (n−1)-connected. The class of (n−1)-connected spectra is closed under sums (since homotopy
groups commute with sums) and extensions to the right (by the long exact sequence of homotopy groups
associated to a distinguished triangle), so every spectrum in the class 〈Sn〉+ is (n− 1)-connected.

For the converse we let X be any (n − 1)-connected symmetric spectrum. We let C = {Sk}k≥n be
the set of sphere spectra of dimension at least n. Every class closed under extensions to the right is in
particular closed under suspensions, so we in fact have 〈C〉+ = 〈Sn〉+. We apply Proposition 5.14 to the
representable functor [−, X]. We obtain a symmetric spectrum R belonging to the class 〈Sn〉+ and a
morphism u : R −→ X such that [Sk, u] : [Sk, R] −→ [Sk, X] is bijective for all k ≥ n. Since Sk represents
the k-th homotopy group this means that u induces isomorphisms of homotopy groups in dimensions n and
above. Since R (by the previous paragraph) and X are (n − 1)-connected, the morphism u also induces
isomorphisms of homotopy groups below dimension n, so u is an isomorphism in the stable homotopy
category. Thus X belongs to 〈C〉+, which finishes the proof. �

In the special case n = −1 Proposition 5.21 says that a symmetric spectrum is connective if and only
it belongs to 〈S〉+, the smallest class of objects of the stable homotopy category which contains the sphere
spectrum S and is closed under sums and extensions to the right. Exercise E.II.10 is devoted to showing
that a symmetric spectrum is connective if and only if it is stably equivalent to a symmetric spectrum of
the form A(S) for a Γ-space A.

The previous characterization of connective (i.e., (−1)-connected) spectra as being generated by the
sphere spectrum S under sums and extensions to the right can be useful for reducing claims about connective
spectra to the special case of the sphere spectrum. The following result is an example where we use this
strategy in the proof.

Proposition 5.22. Let X and Y be symmetric spectra such that X is (k − 1)-connected and Y is (l − 1)-
connected. Then the derived smash product X ∧L Y is (k + l − 1)-connected and the pairing (4.13)

· : πkX ⊗ πlY −→ πk+l(X ∧L Y )

is an isomorphism of abelian groups.

Proof. We fix an (l− 1)-connected spectrum Y and let X be the class of all (k− 1)-connected spectra
X for which the theorem is true.

The class X contains the sphere spectrum Sk: for i < k the group πi+l(Sk ∧L Y ) is isomorphic to πiY ,
hence trivial for i < k, so Sk ∧L Y is (k + l − 1)-connected. Moreover the composite map

πkSk ⊗ πlY
·−−−−→ πk+l(Sk ∧L Y )

(Sk∧−)−1

−−−−−−→∼=
πlY

sends ιk ⊗ y to y. Since πkSk is freely generated, as an abelian group, by the fundamental class ιk, this
composite is an isomorphism. Hence the product map is an isomorphism for X = Sk.
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The class X is also closed under sums since both sides of the map commute with sums in X. Finally,
X is closed under extensions to the right. Indeed, suppose that

A −→ B −→ C −→ ΣA

is a distinguished triangle such that A and B belong to X . Then the triangle

A ∧L Y f∧LId−−−−−→ B ∧L Y g∧LId−−−−−→ C ∧L Y κA,Y ◦(h∧LId)−−−−−−−−−→ Σ(A ∧L Y )

is distinguished by Proposition 3.19. The associated long exact sequence of homotopy groups shows that
C ∧L Y is (k+ l− 1)-connected because both B ∧L Y and Σ(A ∧L Y ) are. In the critical dimension we get
a commutative diagram

πkA⊗ πlY
πkf⊗Id //

·
��

πkB ⊗ πlY
πkg⊗Id //

·
��

πkC ⊗ πlY //

·
��

0

πk+l(A ∧L Y )
πk+l(f∧Id)

// πk+l(B ∧L Y )
πk+l(g∧Id)

// πk+l(C ∧L Y ) // 0

The upper row is exact since A is (k − 1)-connected, thus πk(ΣA) ∼= πk−1A = 0, and tensoring with πlY
is right exact. The lower row is exact since πk+l(Σ(A ∧L Y )) is isomorphic to πk+l(A ∧L (ΣY )), which is
trivial since ΣY is l-connected and A belongs to X . Since both rows are exact and the left and middle
vertical map are isomorphisms, the right vertical map is an isomorphism and thus C ∈ X . Proposition 5.21
now applies and shows that every (k − 1)-connected spectrum belongs to the class X , which is what we
claimed. �

Remark 5.23. The previous theorem about the lowest potentially non-trivial homotopy group of a smash
product immediately implies a similar result for the pointset level smash product whenever at least one
factor is flat. Indeed, if X and Y are symmetric spectra at least one of which is flat, then by Theorem 3.1
the natural map ψX,Y : X ∧L Y −→ X ∧ Y from the derived to the pointset level smash product is an
isomorphism in SHC. So if X is (k− 1)-connected and Y is (l− 1)-connected and one of them is flat, then
X ∧ Y is (k + l − 1)-connected and the pairing

· : πkX ⊗ πlY −→ πk+l(X ∧ Y )

of Theorem I.6.16 is an isomorphism of abelian groups.

Proposition 5.24. Let X be a coconnective symmetric spectrum, i.e., the homotopy group πnX is trivial
for all n ≥ 1, and let A be a connective spectrum. Then the map

π0 : SHC(A,X) −→ HomAb(π0A, π0X)

is an isomorphism of abelian groups.

Proof. We consider the class X of all connective spectra A such that for all coconnective X the map
π0 : SHC(A,X) −→ HomAb(π0A, π0X) is an isomorphism. The map

π0 : SHC(S, X) −→ HomAb(π0S, π0X)

is an isomorphism of abelian groups because π0S is free abelian of rank 1, generated by the unit 1 ∈ π0S.
So the sphere spectrum S belongs to X .
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Now consider a family {Ai}i∈I of objects from X . We have a commutative square

SHC(
⊕

I A
i, X)

π0 //

∼=

��

HomAb(π0

(⊕
I A

i
)
, π0X)

∼=
��

HomAb(
⊕

I π0(Ai), π0X)

∼=
��∏

I SHC(Ai, X) ∏
Iπ0

// ∏
I HomAb(π0(Ai), π0X)

in which the vertical maps are isomorphisms by the universal property of sums and because homotopy
groups commute with sums. The lower horizontal map is an isomorphism by the assumption on the objects
Ai, hence the upper map is an isomorphism; this proves that the class X is closed under sums.

Now consider a distinguished triangle

A −→ B −→ C −→ ΣA

such that A and B belong to X . We consider the commutative diagram

0 // SHC(C,X) //

π0

��

SHC(B,X) //

π0 ∼=
��

SHC(A,X)

π0 ∼=
��

0 // HomAb(π0C, π0X) // HomAb(π0B, π0X) // HomAb(π0A, π0X)

The upper row is exact since Σ−1X is coconnective, thus π0(Σ−1X) = 0 and so the group SHC(ΣA,X) ∼=
SHC(A,Σ−1X) ∼= HomAb(π0A, π0(Σ−1X)) is trivial. The lower row is exact since π0A −→ π0B −→
π0C −→ π−1A = 0 is. Since the vertical maps for B and A are isomorphisms, so is the one for C.
Thus C also belongs to X which means that the class X is closed under extensions to the right. So by
Proposition 5.21 the class X contains all connective spectra. �

Theorem 5.25 (Uniqueness of Eilenberg-Mac Lane spectra). (i) Let X be a connective symmetric spec-
trum and A an abelian group. Then the map

π0 : SHC(X,HA) −→ HomAb(π0X,A)

is an isomorphism of abelian groups.
(ii) Let X be a symmetric spectrum whose homotopy groups are trivial in dimensions different from 0. Then

there is a unique morphism in the stable homotopy category from the Eilenberg-Mac Lane spectrum
H(π0X) to X which induces the isomorphism π0(Hπ0X) ∼= π0X on homotopy.

(iii) The restriction of the functor π0 : SHC −→ Ab to the full subcategory of spectra with homotopy
concentrated in dimension 0 is an equivalence of categories.

Proof. (i) Since Eilenberg-Mac Lane spectra are coconnective this is a special case of Proposition 5.24.
(ii) Part (i) gives a morphism f : X −→ HA, unique in the stable homotopy category, which induces

induces the isomorphism π0(Hπ0X) ∼= π0X. Since source and target of f have no homotopy in dimensions
other than 0, f is an isomorphism in SHC.

(iii) The restriction of π0 to the full subcategory of spectra with homotopy concentrated in dimension 0 is
fully faithful by (i) and essentially surjective since every abelian group has an Eilenberg-Mac Lane spectrum.

�

Remark 5.26. In the theory of triangulated categories, the notion of a t-structure formalizes the behavior
of ‘connective’ and ‘co-connective’ objects. What we have shown can be summarized in this language as
saying that in the situation of the classes of connective and co-connective spectra provide a t-structure on
the stable homotopy category. Moreover, the objects with homotopy groups concentrated in dimension 0
form the so-called heart of the t-structure. So Theorem 5.25 can be rephrased in a fancy way as saying that
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the functor π0 is an equivalence of abelian categories from the heart of this t-structure to the category of
abelian groups.

Lemma 5.27. Let n be an integer and f : X −→ Y and g : Y −→ Z composable morphisms in the stable
homotopy category such that X is (n− 1)-connected, Z is (n+ 1)-coconnected and

0 −→ πkX
πkf−−−−→ πkY

πkg−−−−→ πkZ −→ 0

is exact for all k ∈ Z. Then there is a unique morphism h : Z −→ ΣX such that (f, g, h) is a distinguished
triangle.

Proof. Since Z is (n+1)-coconnected, the exactness of the above sequence implies that πkf is bijective
for k > n. Similarly, πkg is bijective for k < n.

We choose a distinguished triangle

X
f−−→ Y

g′−−→ Z ′
h′−−→ ΣX

which extends f . We contemplate the long exact sequence of homotopy groups of this triangle: since πkf is
bijective for k > n and injective for k = n, the spectrum Z ′ has trivial homotopy groups above dimension
n. Since X is (n− 1)-connected, the map πkg

′ : πkY −→ πkZ
′ is an isomorphism for k < n and passes to

an isomorphism from the cokernel of πnf : πnX −→ πnY to πnZ
′.

The composite of gf : X −→ Z is trivial in SHC by Proposition 5.24 (or rather its n-fold shifted version).
So there exists a morphism ϕ : Z ′ −→ Z satisfying ϕg′ = g. By the assumptions on the homotopy groups
of Z and the above calculation of the homotopy groups of Z ′, the morphism ϕ induces an isomorphism of
all homotopy groups. So ϕ is an isomorphism in the stable homotopy category and we can replace Z ′ by
the isomorphic spectrum Z to obtain a distinguished triangle of the desired form with h = h′ϕ−1.

For the uniqueness statement we let h̄ : Z −→ ΣX be another morphism which extends (f, g) to a
distinguished triangle. Axiom (T3) of the triangulated category allows us to choose an endomorphism
ϕ : Z −→ Z which makes the diagram

X
f // Y

g // Z
h //

ϕ

��

ΣX

X
f

// Y g
// Z

h̄

// ΣX

commute. We have (IdZ −ϕ)g = 0, so there exists a morphism ψ : ΣX −→ Z such that ψh = (Id−ϕ) by
exactness of (f, g, h). Since ΣX is n-connected and Z is (n+ 1)-coconnected, the morphism ψ is trivial by
Proposition 5.24 (or rather its n-fold shifted version). So ϕ equals the identity of Z and thus h̄ = h. �

By an extension of abelian groups we mean a pair of homomorphisms i : A −→ B and j : B −→ C of
abelian groups such that i is injective, j is surjective and the image of i equals the kernel of B. Equivalently,
(i, j) is an extension if the sequence

0 −→ A
i−−→ B

j−−→ C −→ 0

is exact.

Proposition 5.28. (i) For every extension of abelian groups A
i−→ B

j−→ C there is a unique morphism
δi,j : HC −→ Σ(HA) in the stable homotopy category such that the diagram

HA
Hi−−−→ HB

Hj−−−→ HC
δi,j−−−→ Σ(HA)

is a distinguished triangle. This morphism δi,j will be called the Bockstein morphism associated to the
extension (i, j).
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(ii) The Bockstein morphism is natural for morphisms of extensions in the following sense. Given a
commutative diagram of abelian groups

A
i //

α
��

B

β
��

j // C

γ

��
A′

i′
// B′

j′
// C ′

in which both rows are extensions, then the relation

Σ(Hα) ◦ δi,j = δi′,j′ ◦Hγ
holds as morphisms from HC to Σ(HA′) in the stable homotopy category.

(iii) The Bockstein morphism only depends on the Yoneda class of the extensions and the assignment

Ext(C,A) −−→ SHC(HC,Σ(HA)) , [i, j] 7−→ δi,j

is a group isomorphism for all abelian groups A and C.
(iv) The composite of every composable pair of Bockstein operations is zero.

Proof. (i) This is the special case of Lemma 5.27 with n = 0 for the composable morphisms Hi :
HA −→ HB and Hj : HB −→ HC.

(ii) Suppose we are given extensions (i, j) and (i′, j′) and a morphism (α, β, γ) from (i, j) to (i′, j′). Let
δi,j : HC −→ Σ(HA) and δi′,j′ : HC ′ −→ Σ(HA′) be the Bockstein operations as in (i). Axiom (T3) of
the triangulated category lets us choose a morphism ϕ : HC −→ HC ′ which makes the diagram

HA
Hi //

Hα

��

HB
Hj //

Hβ

��

HC
δi,j //

ϕ

��

Σ(HA)

Σ(Hα)

��
HA′

Hi′
// HB

Hj′
// HC

δi′,j′
// Σ(HA)

commute. The relation π0(ϕ) ◦ π0(Hj) = π0(Hj′) ◦ π0(Hβ) = π0(Hγ) ◦ π0(Hj) holds since j′β = γj. Since
Hj is surjective on π0, we deduce that ϕ and Hγ induce the same map π0. Then ϕ = Hγ by Theorem 5.25,
and thus Σ(Hα) ◦ δi,j = δi′,j′ ◦ ϕ = δi′,j′ ◦Hγ, as we claimed.

(iii) Two extensions (i, j) and (i′, j′) represent the same Yoneda class if and only if there is a homo-
morphism f : B −→ B′ (necessarily an isomorphism) satisfying fi = i′ and j′f = j. We can apply (ii) to
the morphism (IdA, f, IdC) from (i, j) to (i′, j′). The naturality statement then boils down to the equation
δi,j = δi′,j′ . So the Bockstein morphism only depends on the Yoneda class of the extensions.

For the additivity of the Bockstein morphism construction we choose an epimorphism ε : F −→ C from
a free abelian group onto C and let K denote the kernel of ε. We let δu : HC −→ Σ(HK) be the Bockstein
homomorphism associated to the extension (incl : K −→ F, ε). This extension has an associated 6-term
exact sequence of Ext groups whose connecting morphism c : Hom(K,A) −→ Ext(C,A) takes α : K −→ A
to the lower extension in the commutative diagram

(5.29)

K
incl //

α
��

F

β
��

ε // C

A
i

// B
j

// C

where the left square is a pushout. So the square of abelian groups

HomAb(K,A)
c //

H

��

Ext(C,A)

[i,j]7→δi,j
��

SHC(HK,HA)
f 7−→ Σf◦δu

// SHC(HC,Σ(HA))
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commutes by naturality of the Bockstein morphism. In this square the other three maps are additive and
the connective morphism c is surjective; so the right vertical map is also additive.

To prove injectivity we consider an extension (i, j) whose Bockstein morphism is zero. Then the
distinguished triangle

HA
Hi−−−→ HB

Hj−−−→ HC
δi,j−−−→ Σ(HA)

splits, i.e., there is a morphism ψ : HC −→ HB in the stable homotopy category such that Hj ◦ψ = IdHC .
This implies that π0(Hj) and thus j : B −→ C is split surjective, so (i, j) represents the zero element in
the group Ext(C,A).

For surjectivity we consider any morphism δ : HC −→ Σ(HA) and embed it in a distinguished triangle

HA
f−−→ Y

g−−→ HC
δ−−→ Σ(HA) .

The long exact sequence of homotopy groups associated to this triangle reduces shows that the homotopy
groups of Y are concentrated in dimension zero and gives an extension

(5.30) A = π0HA
π0f−−−→ π0Y

π0g−−−→ π0HC = C .

Theorem 5.25 (ii) constructs a preferred isomorphism in SHC from the spectrum Y to the Eilenberg-
Mac Lane spectrum H(π0Y ). So we can replace Y in the above distinguished triangle by the isomorphic
object H(π0Y ) in a way which turns f into H(π0f) and g into H(π0g). The uniqueness of Bockstein
morphisms then shows that the original morphism δ is the Bockstein associated to the extension (5.30).

(iv) The reason behind this property is the fact that the category of abelian groups has homological
dimension 1, i.e., there are no non-trivial Ext-groups beyond dimension one. In more detail we argue as
follows. We let

Y
i′−−→ Z

j′−−→ A and A
i−−→ B

j−−→ C

be two ‘composable’ extensions. We wish to show that the composite

HC
δi,j−−−→ Σ(HA)

Σ(δi′,j′ )−−−−−−→ Σ2(HY )

is trivial. We choose an epimorphism ε : F −→ C from a free abelian group and a lift β : F −→ B satisfying
jβ = ε. This data yields a morphism of extensions (5.29) where K denotes the kernel of ε. Since the
kernel K is again a free abelian group, we can choose a lift λ : K −→ Z satisfying j′λ = α and get another
morphism of extensions:

Y
(1,0) // Y ⊕K

(i
′
λ)

��

(0
1) // K

α

��
Y

i′
// Z

j′
// A

By naturality of the Bockstein morphism, the composite Σ(δi′,j′) ◦ δi,j equals the composite Σ(δ(1,0),(0
1)

) ◦
δincl,ε. Since the Bockstein of a split extension is zero, this proves Σ(δi′,j′) ◦ δi,j = 0. �

An important example is the mod-p Bockstein β : HZ/p −→ Σ(HZ/p) associated to the extension

(5.31) Z/p ·p−−→ Z/p2 proj−−−−→ Z/p

where the first map sends n+ pZ to np+ p2Z and the second map sends n+ p2Z to n+ pZ.

6. Homology and cohomology

6.1. Generalized homology and cohomology. In this section we discuss how a symmetric spec-
trum E determines a ‘generalized homology theory’ E∗ and a ‘generalized cohomology theory’ E∗, both for
spaces (or simplicial sets) and spectra. In the special case E = HA of Eilenberg-Mac Lane spectra, this



270 II. THE STABLE HOMOTOPY CATEGORY

yields ‘ordinary’ homology and cohomology groups with coefficients in an abelian group A, which general-
izes singular (co-)homology of spaces and simplicial sets. Then we discuss various isomorphic descriptions
of these spectrum homology and cohomology groups.

Definition 6.1. Let E be a symmetric spectrum. For any other symmetric spectrum X and an integer k,
we define the k-th E-homology group of X as

Ek(X) = πk(E ∧L X) ,

the k-th true homotopy group of the derived smash product of E and X. The k-th E-cohomology group
of X is defined as

Ek(X) = [X,E]−k = [S−k ∧X,E] ,

the group of maps in the stable homotopy category from S−k ∧X to E.

� The notation offers the possibility of confusion since the symbol Ek also refers to the k-th level of
the symmetric spectrum. However, the notation Ek for the generalized E-homology is so standard

and convenient that we use it despite the clash of notation. Moreover, in the role as the k-th E-homology
group, Ek typically comes with an argument in parenthesis, which it usually does not have as the k-th
level of E. We hope that in every case the symbol Ek appears, it is clear from the context whether we
mean the k-th E-homology group or the k-th level of the symmetric spectrum E.

We have defined E-homology and E-cohomology as functors on the stable homotopy category. However,
we can (and will) consider Ek(−) and Ek(−) as functors of symmetric spectra by precomposing with the
localization functor γ : Sp −→ SHC.

If the symmetric spectrum E is flat, then we can dispose of the decoration ‘ L’ on the smash product
in the definition of E-homology. Indeed, in this case the natural map E ∧L X −→ E ∧ X in SHC from
the derived to the pointset level smash product is a stable equivalence [ref], so it induces isomorphisms of
homotopy groups. This yields an isomorphism Ek(X) = πk(E ∧LX) −→ πk(E ∧X) which is natural in X.

As a special case we get the ‘ordinary’ spectrum homology and cohomology with coefficients in an
abelian group A, see Definition 6.21 below. For this we take E = HA to be the Eilenberg-Mac Lane
spectrum of A.

The suspension isomorphisms

Σ : Ek(X) −→ E1+k(ΣX) and Σ : Ek(X) −→ E1+k(ΣX)

are defined as follows. The homological suspension isomorphism is the composite

Ek(X) = πk(E ∧L X)
S1∧−−−−−−→ π1+k(Σ(E ∧L X))

(κ̄−1
E,X)∗

−−−−−→ π1+k(E ∧L (ΣX)) = E1+k(ΣX) ,

where κ̄E,X : E∧L (ΣX) −→ Σ(E∧LX) is the isomorphism defined in (3.20). The cohomological suspension
isomorphism is the morphism

ν∗ : Ek(X) = [X,E]−k −→ [ΣX,E]−k−1 = Ek+1(ΣX)

defined in (4.9).
As the terminology suggests, E-homology is a homological functor and E-homology is a cohomological

functor, in the sense of Definition 5.4. We spell this out in the next proposition:

Proposition 6.2. Let E be a symmetric spectrum and k any integer.

(i) For every distinguished triangle (f, g, h) in the stable homotopy category the sequences

Ek(A)
Ek(f)−−−−→ Ek(B)

Ek(g)−−−−→ Ek(C)
Ek(h)−−−−→ Ek(ΣA)

and

Ek(ΣA)
Ek(h)−−−−→ Ek(C)

Ek(g)−−−−→ Ek(B)
Ek(f)−−−−→ Ek(A)

are exact.
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(ii) For every family {Xi}i∈I of symmetric spectra the natural maps

⊕
i∈I

Ek(Xi) −→ Ek

(⊕
i∈I

Xi

)
and Ek

(∏
i∈I

Xi

)
−→

∏
i∈I

Ek(Xi)

are isomorphisms.

Lemma 5.6 allows us to deduce the behaviour of E-homology and cohomology on homotopy colimits:
If fn : Xn −→ Xn+1 is a composable sequence of morphisms in the stable homotopy category and (X̄, ϕn)
a homotopy colimit of the sequence {fn}, then for every integer k the natural map

(6.3) colimn Ek(Xn) −→ Ek(X̄)

induced from the compatible morphisms Ek(ϕn) : Ek(Xn) −→ Ek(X̄) is an isomorphism. Moreover, we
have a short exact sequence

(6.4) 0 −→ lim1
nE

k−1(Xn) −→ Ek(X̄) −→ limnE
k(Xn) −→ 0

where the right map arises from the system of compatible homomorphisms Ek(ϕn) : Ek(X̄) −→ Ek(Xn)
(and where we used the suspension isomorphism to identify Ek(ΣXn) with Ek−1(Xn)).

In good cases (where ‘good’ in this context means ‘semistable’), the E-homology and E-cohomology
of a symmetric spectrum X can be calculated from the E-homology respectively E-cohomology of the
levels Xn of X. Here we define the generalized (co-)homology of a based simplicial set as the generalized
(co-)homology of its suspension spectrum:

Ek(X) = Ek(Σ∞X) and Ek(X) = Ek(Σ∞X) .

These (co-)homology theories for simplicial sets come with suspension isomorphisms

− ∧ S1 : Ek(X) −→ Ek+1(X ∧ S1) and − ∧S1 : Ek(X) −→ Ek+1(X ∧ S1)

defined as [...]

Proposition 6.5. Let E be a symmetric spectrum, X a semistable symmetric spectrum and k any integer.

(i) The map [...]

colimn Ek+n(Xn) −→ Ek(X)

is an isomorphism, where the colimit is taken over the sequence

Ek+n(Xn)
−∧S1

−−−−−→ Ek+n+1(Xn ∧ S1)
Ek+n+1(σn)−−−−−−−−−→ Ek+n+1(Xn+1) .

(ii) There is a natural short exact sequence

0 −→ lim1
nE

k+n−1(Xn) −→ Ek(X) −→ limnE
k+n(Xn) −→ 0

where the inverse limit and derivd limit are taken over the maps

Ek+n+1(Xn+1)
Ek+n+1(σn)−−−−−−−−−→ Ek+n+1(Xn ∧ S1)

(−∧S1)−1

−−−−−−−−→ Ek+n(Xn) .

Proof. Since X is semistable, then by Proposition 5.12 it is a homotopy colimit in SHC of the sequence
of morphisms

jn = γ(Fn+1Xn+1) ◦ γ(λn)−1 : FnXn −→ Fn+1Xn+1 .

(i) The isomorphism (6.3) specializes to an isomorphism between the colimit of the groups Ek(FnXn)
and Ek(X). We use the suspension isomorphism and the stable equivalence Σn(FnXn) −→ Σ∞X to identify
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the group Ek(FnXn) with Ek+n(Σn(FnXn)) and then with Ek+n(Σ∞Xn) = Ek+n(Xn). The diagram

Ek(FnXn)

Ek(jn)

**

Ek(λn)−1

//

∼=
��

Ek(Fn+1(Xn ∧ S1))
Ek(Fn+1σn)

//

∼=
��

Ek(Fn+1Xn+1)

∼=
��

Ek+n(Xn)
−∧S−1

// Ek+n+1(Xn ∧ S1)
Ek(σn)

// Ek+n+1(Xn+1)

commutes by naturality of this isomorphism and [...], and the result follows, and allows us to identity the
colimit of the groups Ek(FnXn) along the maps Ek(jn) with the colimit of the proposition.

(ii) So the Milnor sequence (6.4) becomes a short exact sequence

0 −→ lim1
nE

k−1(FnXn) −→ Ek(X) −→ limnE
k(FnXn) −→ 0 .

We use the suspension isomorphism and the stable equivalence Σn(FnXn) −→ Σ∞X to identify the group
Ek(FnXn) with Ek+n(Σn(FnXn)) and then with Ek+n(Σ∞Xn) = Ek+n(Xn). The result then follows from
the commutativity of the diagram

Ek(Fn+1Xn+1)

Ek(jn)

**

Ek(Fn+1σn)

//

∼=
��

Ek(Fn+1(Xn ∧ S1))
Ek(λn)−1

//

∼=
��

Ek(FnXn)

∼=
��

Ek+n+1(Xn+1)
Ek(σn)

// Ek+n+1(Xn ∧ S1)
−∧S−1

// Ek+n(Xn)

commutes by naturality of this isomorphism and [...], and the result follows, and allows us to identify the
limit and derived limit of the system of groups Ek(FnXn) along the maps Ek(jn) with the limit and derived
limit of the proposition. �

Now we discuss pairings and products on generalized homology and cohomology groups. For this
we assume that E is a homotopy ring spectrum in the sense of Section 4.1. So E is equipped with a
multiplication morphism µ : E ∧L E −→ E and a unit morphism ι : S −→ E in the stable homotopy
category which are associative and unital (in SHC). As we explained in [...] the homotopy groups of a
homotopy ring spectrum form a graded ring π∗E = [S, E]∗.

Construction 6.6. We let E be a homotopy ring spectrum, X and Y symmetric spectra and k and l
integers. Then we define exterior products

(6.7) × : Ek(X)⊗ El(Y ) −→ Ek+l(X ∧L Y )

in E-homology and

(6.8) × : Ek(X)⊗ El(Y ) −→ Ek+l(X ∧L Y )

in E-cohomology as follows. The E-homology product (6.7) is the composite

Ek(X)⊗ El(Y ) = πk(E ∧L X)⊗ πl(E ∧L Y )
·−−−−→ πk+l(E ∧L X ∧L E ∧L Y )

(E∧τ̄X,E∧Y )∗−−−−−−−−−→ πk+l(E ∧L E ∧L X ∧L Y )
(µ∧X∧Y )∗−−−−−−−→ πk+l(E ∧L X ∧L Y ) = Ek+l(X ∧L Y ) .

For cohomology classes f ∈ Ek(X) and g ∈ El(Y ), the exterior product (6.8) is the composite

[X,E]−k ⊗ [Y,E]−l
−∧−−−−−→ [X ∧L Y, E ∧L E]−k−l

[X∧LY,µ]−−−−−−→ [X ∧L Y, E]−(k+l) .
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Both exterior products are associative and unital, and they are commutative whenver E is homotopy
commutative. More precisely, this means that the relations

(6.9) x× y = (−1)kl · (τY,X)∗(y × x) and f × g = (−1)kl · (τX,Y )∗(g × f)

hold in the respective E-homology or E-cohomology group.
The behaviour of exterior product with respect to suspension isomorphisms is as follows. In E-homology

we have

(6.10) (κX,Y )∗((Σx)× y) = Σ(x× y) = (−1)k · (κ̄X,Y )∗(x× (Σy))

in E1+k+l(Σ(X ∧L Y )), where κX,Y : (ΣX) ∧L Y −→ Σ(X ∧L Y ) and κ̄X,Y : X ∧L (ΣY ) −→ Σ(X ∧L Y )
are the isomorphisms defined (3.18) respectively (3.20). In E-cohomology we similarly have

(6.11) (κX,Y )∗(Σ(f × g)) = (Σf)× g and (κ̄X,Y )∗(Σ(f × g)) = (−1)k · f × (Σg) .

In the special case where Y = S is the sphere spectrum we have El(S) = πlE and X ∧L S = X; so the
exterior product (6.7) specializes to a map

(6.12) × : Ek(X)⊗ πlE −→ Ek+l(X) .

These products make the E-homology of X into a graded right module over the graded ring π∗E. In the
special case where X = S is the sphere spectrum the exterior product (6.8) specializes to a map

× : Ek(S)⊗ El(Y ) −→ Ek+l(Y ) .

These products make the E-cohomology of Y into a graded left module over the graded ring E∗(S). This
graded ring is isomorphic to the homotopy ring π∗E, with grading reversed.

Construction 6.13. The Kronecker pairing is a pairing between E-homology and E-cohomology which
exists whenever E is a homotopy ring spectrum (see Section 4.1), for example one arising from a symmetric
ring spectrum. Then the Kronecker pairing is a map

(6.14) 〈−,−〉 : Ek(X) ⊗ Ek+m(X ∧L Y ) −→ Em(Y )

defined as follows. Given a cohomology class f ∈ Ek(X) and a homology class w ∈ Ek+m(X ∧L Y ) =
πk+m(E ∧L X ∧L Y ) we define

〈f, w〉 = ((E × f) ∧ Y )∗(w) ∈ πm(E ∧ Y ) = Em(Y ) ,

where E × f = IdE ×f ∈ Ek(E ∧X) = [E ∧X,E]−k and (E × f) ∧ Y ∈ [E ∧L X ∧L Y, E ∧L Y ]−k.

We call a cohomology class f ∈ Ek(X) central if the relation

f × E = τ̄∗X,E(E × f)

holds in the group Ek(E ∧X). Explicitly, this means that the diagram

S−k ∧ E ∧L X
τ̄S−k,E∧X //

S−k∧τ̄E,X
��

E ∧L S−k ∧X
E∧f // E ∧L E

µ

��
S−k ∧X ∧L E

f∧E
// E ∧L E µ

// E

commutes in the stable homotopy category. For example, the unit ι : S −→ E is central as a cohomology
class ι ∈ E0(S). If E is homotopy commutative, then every cohomology class is central.

Proposition 6.15. The Kronecker pairing has the following properties.

(i) For a morphism ϕ : X −→ X ′ in SHC, f ′ ∈ Ek(X ′) and w ∈ Ek+m(X ∧L Y ) the relation

〈ϕ∗(f ′), w〉 = 〈f ′ ◦ ϕ,w〉 = 〈f ′, (ϕ ∧ Y )∗(w), 〉

holds in Em(Y ).
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(ii) For a morphism ψ : Y −→ Y ′ in SHC, f ∈ Ek(X) and w ∈ Ek+m(X ∧L Y ) the relation

ψ∗〈f, w〉 = 〈f, (X ∧ ψ)∗(w)〉
holds in Em(Y ′).

(iii) For f ∈ Ek(X) and w ∈ Ek+m(X ∧L Y ) the relation

〈Σf, (κX,Y )−1
∗ (Σw)〉 = 〈f, w〉

holds in Em(Y ), where κX,Y : (ΣX) ∧L Y −→ Σ(X ∧L Y ) is the isomorphism (3.18).
(iv) For all E-cohomology classes f ∈ Ek(X), g ∈ El(Y ) and E-homology classes w ∈ Ek+l+m(X ∧L Y ∧L

Z) the relation

〈f × g, w〉 = (−1)kl · 〈g, 〈f, w〉〉
holds in Em(Z).

(v) For all E-homology class w ∈ Ek+m(X ∧L Y ) and z ∈ El(Z) and all central E-cohomology classes
f ∈ Ek(X), the relation

〈f, w × z〉 = 〈f, w〉 × z
holds in Em+l(Y ∧L Z).

(vi) Suppose that E is homotopy commutative. Then for all classes x ∈ Ek(X), g ∈ El(Y ) and w ∈
El+m(Y ∧L Z) we have

x× 〈g, w〉 = (−1)kl · 〈g, (τ̄X,Y ∧ Z)∗(x× w)〉
in the group Ek+m(X ∧ Z).

Proof. To simplify notation we write ∧ for ∧L throughout the proof. Parts (i) and (ii) are straight-
forward from the definition.

(iii) The relation

(E × (Σf)) ∧ Y (6.11) = (κ̄∗E,X(Σ(E × f))) ∧ Y = (Σ(E × f)) ◦ κ̄E,X) ∧ Y
= (Σ(E × f) ∧ Y ) ◦ (κ̄E,X ∧ Y )

??? = Σ((E × f) ∧ Y ) ◦ κE∧X,Y ◦ (κ̄E,X ∧ Y )

= Σ((E × f) ∧ Y ) ◦ κ̄E,X∧Y ◦ (E ∧ κX,Y )

holds in the group [Σ(E ∧X ∧ Y ), E ∧ Y ]−k−1. The fifth equation uses that the square of isomorphisms

E ∧ (ΣX) ∧ Y
κ̄E,X∧Y //

E∧κX,Y
��

Σ(E ∧X) ∧ Y

κE∧X,Y

��
E ∧ Σ(X ∧ Y )

κ̄E,X∧Y
// Σ(E ∧X ∧ Y )

commutes. So we deduce

〈Σf, (κX,Y )−1
∗ (Σw)〉 = ((E × (Σf)) ∧ Y )∗((κX,Y )−1

∗ (Σw))

= (Σ((E × f) ∧ Y ) ◦ κ̄E,X∧Y ◦ (E ∧ κX,Y ))∗((κX,Y )−1
∗ (Σw))

= (Σ((E × f) ∧ Y ) ◦ κ̄E,X∧Y )∗(Σw)

= (Σ((E × f) ∧ Y ))∗(S
1 ∧ w)

(4.10) = ((E × f) ∧ Y )∗(w) = 〈f, w〉 ,

where Σw denotes the E-homology suspension and S1 ∧ w the homotopy suspension of the class w in
Ek+m(X ∧ Y ) = πk+m(E ∧X ∧ Y ).

(iv) We have

E × (f × g) = (E × f)× g = µ ◦ ((E × f) ∧ g)

= (−1)kl · µ ◦ (E ∧ g) ◦ ((E × f) ∧ Y ) = (−1)kl · (E × g) ◦ ((E × f) ∧ Y ) ,
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in Ek+l(E ∧L X ∧L Y ), where the third equality is Proposition 4.8. Hence

〈f × g, w〉 = ((E × (f × g)) ∧ Z)∗(w)

= (−1)kl · (((E × g) ∧ Z) ◦ ((E × f) ∧ Y ∧ Z))∗(w))

= (−1)kl · ((E × g) ∧ Z)∗〈w, f〉 = 〈g, 〈f, w〉〉 .

(v) We have

(E × f) ◦ (µ ∧X) ◦ (E ∧ τ̄X,E) = µ ◦ (E ∧ f) ◦ (µ ∧X) ◦ (E ∧ τ̄X,E)

= µ ◦ (µ ∧ E) ◦ (E ∧ E ∧ f) ◦ (E ∧ τ̄X,E)

= µ ◦ (E ∧ µ) ◦ (E ∧ E ∧ f) ◦ (E ∧ τ̄X,E)

= µ ◦ (E ∧ (µ ◦ (E ∧ f) ◦ τ̄X,E))

= µ ◦ (E ∧ (µ ◦ (f ∧ E))) = µ ◦ (E ∧ µ) ◦ (E ∧ f ∧ E)

= µ ◦ (µ ∧ E) ◦ (E ∧ f ∧ E) = µ ◦ ((E × f) ∧ E)

in Ek(E ∧LX ∧LE) = [E ∧LX ∧LE,E]−k, where the fourth relation is the centrality of f . [where is S−k?]

E × f × E = (E ∧ τX,E)∗(E × E × f)

〈f, w × z〉 = ((E × f) ∧ Y ∧ Z)∗(w × z)
= ((E × f) ∧ Y ∧ Z) ◦ (µ ∧X ∧ Y ∧ Z) ◦ (E ∧ τ̄X∧Y,E ∧ Z))∗(w · z)
= (((E × f) ◦ (µ ∧X) ◦ (E ∧ τ̄X,E)) ∧ Y ∧ Z)∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((((E × E × f) ∧ Y ) ◦ (E ∧ τ̄X,E ∧ Y ) ◦ (E ∧X ∧ τ̄Y,E)) ∧ Z)∗(w · z)
= (((E × E × f) ◦ (E ∧ τ̄X,E)) ∧ Y ∧ Z)∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((E × f × E) ∧ Y ∧ Z)∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((((E × f × E) ∧ Y ) ◦ (E ∧X ∧ τ̄Y,E)) ∧ Z)∗(w · z))
= (((E × f × E) ∧ Y ) ◦ (E ∧X ∧ τ̄Y,E))∗(w) · z
= ((µ ∧ Y ∧ Z) ◦ ((E × f) ∧ E ∧ Y ∧ Z))∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z) ◦ ((E × f) ∧ Y ∧ E ∧ Z))∗(w · z)
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z))∗(((E × f) ∧ Y )∗(w) · z)
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z))∗(〈f, w〉 · z)
= ((E × f) ∧ Y )∗(w)× z
= 〈f, w〉 × z

〈f, w × z〉 = ((E × f) ∧ Y ∧ Z)∗(w × z)
= ((E × f) ∧ Y ∧ Z) ◦ (µ ∧X ∧ Y ∧ Z) ◦ (E ∧ τ̄X∧Y,E ∧ Z))∗(w · z)
= (((E × f) ◦ (µ ∧X) ◦ (E ∧ τ̄X,E)) ∧ Y ∧ Z)∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((µ ◦ ((E × f) ∧ E)) ∧ Y ∧ Z)∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((µ ∧ Y ∧ Z) ◦ ((E × f) ∧ E ∧ Y ∧ Z))∗((E ∧X ∧ τ̄Y,E ∧ Z)∗(w · z))
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z) ◦ ((E × f) ∧ Y ∧ E ∧ Z))∗(w · z)
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z))∗(((E × f) ∧ Y )∗(w) · z)
= ((µ ∧ Y ∧ Z) ◦ (E ∧ τ̄Y,E ∧ Z))∗(〈f, w〉 · z)
= 〈f, w〉 × z
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(vi) We have

x× 〈g, w〉 (6.9) = (−1)lm · (τ̄Z,X)∗(〈g, w〉 × x)

(v) = (−1)lm · (τ̄Z,X)∗(〈g, w × x〉)

(ii) = (−1)lm · 〈g, (Y ∧ τ̄Z,X)∗(w × x)〉

= (−1)lm · 〈g, ((τ̄X,Y ∧ Z) ◦ τ̄Y ∧Z,X)∗(w × x)〉

(6.9) = (−1)kl · 〈g, (τ̄X,Y ∧ Z)∗(x× w)〉 �

For Y = S we have Em(S) = πmE and the Kronecker pairing (6.14) specializes to pairing

(6.16) 〈−,−〉 : Ek(X) ⊗ Ek+m(X) −→ πmE .

Explicitly, for a cohomology class f ∈ Ek(X) a homology class x ∈ Ek+m(X) = πk+m(E ∧L X) we have

〈f, x〉 = (E × f)∗(x) ∈ πm(E) .

The relations of Proposition 6.15 specialise to the following relations.

Proposition 6.17. The Kronecker pairing (6.16) has the following properties.

(i) For a morphism ϕ : X −→ X ′ in SHC, f ′ ∈ Ek(X ′) and x ∈ Ek+m(X) the relation

〈ϕ∗(f ′), x〉 = 〈f ′ ◦ ϕ, x〉 = 〈f ′, ϕ∗(x)〉

holds in πmE.
(ii) For f ∈ Ek(X) and x ∈ Ek+m(X) the relation

〈Σf, Σx〉 = 〈f, x〉

holds in πmE.
(iii) For all E-cohomology classes f ∈ Ek(X), g ∈ El(Y ) and E-homology classes x ∈ Ek+m(X), y ∈

El+n(Y ) such that f is central, the relation

(6.18) 〈f × g, x× y〉 = (−1)(k+m)l · 〈f, x〉 · 〈g, y〉

holds in the group πm+nE.

Proof. Parts (i) and (ii) are special cases of (i) and (ii) of Proposition 6.15. For part (iii) we combine
parts (iv), (v) and (vi) of Proposition 6.15 and obtain

〈f × g, x× y〉 = (−1)kl · 〈g, 〈f, x× y〉〉 = (−1)kl · 〈g, 〈f, x〉 × y〉 = (−1)kl+lm · 〈f, x〉 · 〈g, y〉 . �

In the special case X = Y = S of the sphere spectrum, the Kronecker pairing with the unit 1 ∈ π0E =
E0(S) is a group homomorphism

〈−, 1〉 : Ek(S) −→ π−kE .

Relation (6.18) specializes to [commutative or x central...]

〈f, 1〉 · 〈g, 1〉 = 〈f × g, 1〉 ,

so the maps 〈−, 1〉 form an isomorphism of graded rings from E∗(S), under exterior product with reversed
grading, to π∗E.

In the special case Y = S the unit map ι : S −→ E is central as an element in E0(S). In this case
we have 〈ι, y〉 = y and f × ι = f , and the relation (6.18) says that for all f ∈ Ek(X), x ∈ Ek+m(X) and
y ∈ πnE the relation

〈f, x× y〉 = 〈f, x〉 × y
holds in the group πm+nE.

We can adjoin the Kronecker pairing to a map

(6.19) E0(X) −→ Homπ∗E(E∗(X), π∗E) , f 7−→ 〈f,−〉 .
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Here Homπ∗E refers to the group of homomorphisms of graded right π∗E-modules, where π∗E acts on
E∗(X) by exterior product as in (6.12). The above relation precisely says that for fixed f the map 〈f,−〉 :
E∗(X) −→ π∗E is indeed right π∗E-linear.

Proposition 6.20. Let E be a homotopy ring spectrum and X be symmetric spectrum.

(i) If the E-homology E∗(X) is projective as a graded left π∗E-module, then for every symmetric spectrum
Y the map

SHC(X,E ∧L Y ) −→ Homπ∗E(E∗(X), E∗(Y )) , f 7−→ (E · f)∗

is an isomorphism. In particular, the adjoint Kronecker pairing (6.19) is an isomorphism from the
E-cohomology of X to the π∗E-dual of the E-homology of X.

(ii) If E∗(X) is flat as a graded right π∗E-module or if E∗(Y ) is flat as a graded left π∗E-module then the
map

E∗(X)⊗π∗E E∗(Y ) −→ E∗(X ∧L Y )

induced by the extorior product is an isomorphism.

Proof. (i) We prove this claim by comparing both sides of the map (6.19) to the set of morphisms of
homotopy E-modules (compare Section 4.1) from E ∧LX to E ∧L Y . A morphism between two homotopy
E-modules is a morphism ϕ : M −→ N in the stable homotopy category such that the following square
commutes

M ∧L E
ϕ∧E //

a

��

N ∧L E
a

��
M ϕ

// N

If a morphism ϕ is an isomorphism in the underlying stable homotopy category, then the inverse ϕ−1 is
also a morphism of E-modules.

For every symmetric spectrum X the derived smash product E ∧L X becomes a homotopy E-module
via the action map

E ∧L X ∧L E X∧µ−−−−→ E ∧L X .

We claim that the functor which sends a symmetric spectrum X to the E-module E ∧LX is left adjoint to
the forgetful functor. More precisely, for every homotopy E-module N the map

Hommod-E(E ∧L X,N) −→ SHC(X,N) , f 7−→ f ◦ (X ∧ ι)

is bijective, where ι : S −→ E is the unit of E. So we call E ∧L X the free E-module generated by X.
As a special case of this adjunction we obtain that the group SHC(X,E ∧L Y ) is naturally isomorphic

to the group of E-module homomorphisms from E ∧L X to E ∧L Y . The map in question factors as the
composite

SHC(X,E ∧L Y ) −→ Hommod-E(E ∧L X,E ∧L Y )
π∗−→ Homπ∗E(E∗(X), E∗(Y ))

where the first map is the adjunction bijection and the second map takes the effect of a morphism on
homotopy groups. So it remains to show that the second map is bijective whenever E∗(X) is projective as
a π∗E-module. We prove more generally that for any pair of homotopy E-modules M and N such that
π∗M is projective as a graded right π∗E-module the map

π∗ : Hommod-E(M,N) −→ Homπ∗E(π∗M,π∗N)

is bijective. The special case M = E ∧L X and N = E ∧L Y finishes the proof.
We start with the special case where π∗M is free, and not just projective, as a graded π∗E-module. [bet-

ter: free of rank one; stable under suspension; wedges] We choose a π∗E-basis B = {xi}i∈I of homogeneous
elements in π∗M . Every element xi is a homotopy class, so is represented by a morphism x̄i : S|xi| −→ M
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in the stable homotopy category. We adjoint this to a morphism of E-modules x̃i : S|xi| ∧ E −→ M and
form the map

κ :
∨
i∈I

S|xi| ∧ E −→ M

whose i-th summand is x̃i. On homotopy groups, the map κ sends the preferred π∗E-basis of the source to
the chosen basis B on the right, so it is a π∗-isomorphism, hence stable equivalence. In other words, M is
isomorphic, as an E-module to the wedge of free E-modules

∨
i∈I S|xi| ∧ E. By naturality we can assume

that M equals this wedge of free modules. In that case, we have have a commutative square

HomE-mod(
∨
i∈I S|xi| ∧ E,N)

π∗ //

��

Homπ∗E(π∗(
∨
i∈I S|xi| ∧ E), π∗N)

evB

��∏
i∈I SHC(S|xi|, N) //

∏
i∈I π|xi|N

The left vertical map is bijective by the universal property of the wedge and the free-forgetful adjunction.
The right vertical map is evaluation at the preferred π∗E-basis, hence bijective. The lower horizontal map
is evaluation at the fundamental classes, hence bijective.

Now we treat the general case, i.e., we suppose that π∗M is projective as a graded right module over
π∗E. So there is a graded free π∗E-module and and π∗E-linear maps

π∗M
i−−→ F

q−−→ π∗M

such that qi is the identity of π∗M . As in the first part we can realize F by a homotopy E-module G,
so we can assume without loss of generality that F = π∗G. Then by the first part there is a morphism
p : G −→M such that π∗p = q : π∗G −→ π∗M .

Claim: there is a morphism s : M −→ G of homotopy E-modules such that ps is the identity of M .
By the claim, M is a retract of the homotopy E-module G. The class of E-modules for which the map

[...] is bijective is stable under retracts, and contains G by the above. So the map [...] is bijective for M
It remains to prove the claim. By the first part, the idempotent π∗E-linear self map iq : π∗G −→ π∗G

is realizable by a homomorphism of E-modules ε : G −→ G.
Claim: The map

Hom(p,N) : Hommod-E(M,N) −→ Hommod-E(G,N)

is injective and its image is equal to the image of the endomorphism Hom(ε,N) of Hommod-E(G,N).
When X is fixed, both sides of the map are homological functors in Y ; for the right hand side this

uses that E∗(X) is projective, so that the functor Homπ∗E(E∗(X),−) an exact functor on graded left π∗E-
modules. The transformation is an isomorphism for Y = S the sphere spectrum, by part (i). The map is
thus an isomorphism for all symmetric spectra Y by [...]

(ii) We consider the case where E∗(X) is flat, the other case is analogous. The functor Ek(X ∧L −) is
homological as the composite of an exact functor X ∧L − and a homological functor Ek(−). The functor
(E∗(X)⊗π∗E E∗(−))k takes wedges to sums, and it takes triangles to exact sequences because Since E∗(X)
is flat and hence E∗(X)⊗π∗E − an exact functor on graded left π∗E-modules. In the case Y = S both sides
of the map reduce to E∗(X). So the map in question is a natural transformation between exact functors on
SHC that is an isomorphism for the sphere spectrum. The map is thus an isomorphism for all symmetric
spectra Y by [...] �

6.2. Ordinary homology and cohomology. The ‘ordinary’ homology and cohomology groups of
a symmetric spectrum are the homology and cohomology groups with respect to the Eilenberg-Mac Lane
spectrum HA of an abelian group A. In this section we look more closely at this special case.

Definition 6.21. Let A be an abelian group, k an integer and X a symmetric spectrum. The k-th homology
group of X with coefficients in A is defined as

Hk(X,A) = (HA)k(X) = πk(HA ∧X) .



6. HOMOLOGY AND COHOMOLOGY 279

The k-th cohomology group of the symmetric spectrum X with coefficients in A is defined as

Hk(X,A) = HAk(X) = SHC(S−k ∧X,HA) ,

the group of morphisms of degree −k from X to the Eilenberg-Mac Lane spectrum of A in the stable
homotopy category.

Since the Eilenberg-Mac Lane spectrum HA is flat [ref], deriving the smash product is not necessary
(compare the remark above); so we have taken the liberty to use the pointset level smash product, and not
the derived smash product, in the definition of ordinary homology groups.

In Exercise E.II.13 we show that for semistable symmetric spectra X the (co-)homology of X with co-
efficients in an abelian groups can be calculate from a chain complex associated to the symmetric spectrum.

If the symmetric spectrum X is semistable, then its A-(co-)homology groups can be calculated from
the (co-)homology groups of the simplicial sets Xn. Indeed, if we specialize Proposition 6.5 to E = HA

and combine with the isomorphism H∗(Σ
∞K,A) ∼= H̃∗(K,A) we obtain that the natural map

colimn H̃k+n(Xn, A) −→ Hk(X,A)

is an isomorphism, where the colimit is formed over the system of maps

H̃k+n(Xn, A)
−∧ι−−→ H̃k+n+1(Xn ∧ S1, A)

(σn)∗−−−→ H̃k+n+1(Xn+1, A)

with the first map being the suspension isomorphism.
Now we identify the cohomology of suspension spectra with the reduced cohomology of simplicial sets.

We let K be a based simplicial set, A and abelian group and k ≥ 0. The simplicial set (HA)k = A[Sk] is an
Eilenberg-Mac Lane space of type (A, k), and as such represents cohomology. So every reduced cohomology

class in H̃k(K,A) is of the form f∗(ιA,k) for a based map f : K −→ A[Sk], unique up to based homotopy,

where ιA,k is the fundamental class in H̃k(A[Sk], A). We let

f̂ : S−k ∧ Σ∞K −→ HA

be the morphism of symmetric spectra that is freely generated by f : K −→ A[Sk] (using that S−k∧Σ∞K =

Fk∧Σ∞K is isomorphic to the free symmetric spectrum FkK). Then the homotopy class of f̂ only depends
on the cohomology class f∗(ιA,k) so we can define a map

(6.22) H̃k(K,A) −→ SHC(S−k ∧ Σ∞K,HA) = Hk(Σ∞K,A) by f∗(ιA,n) 7−→ γ(f̂) .

Proposition 6.23. For every based simplicial set K, every abelian group A and all k ≥ 0 the map (6.22)
from the reduced cohomology of K to the cohomology of the suspension spectrum Σ∞K is an isomorphism.
Moreover, the cohomology group Hk(Σ∞K,A) is trivial for negative k.

[also for homology]

Proof. The cohomology group Hk(Σ∞K,A) = SHC(S−k ∧Σ∞K,HA) is naturally isomorphic to the

group SHC(Σ∞K, shk(HA)) in such a way that the map

[K,A[Sk]] −→ SHC(S−k ∧ Σ∞K,HA) , [f ] 7−→ γ(f̂)

corresponds to the map

[K,A[Sk]] −→ SHC(Σ∞K, shk(HA)) , [f ] 7−→ γ(f̂)

that we recognized as bijective in Example 1.18. So the first map, and hence also (6.22), is bijective. �

Again for semistable symmetric spectra X the cohomology groups can be related to the cohomology
groups of the simplicial sets which make up X. Indeed, as a special case of Proposition 6.5 (ii) for the
Eilenberg-Mac Lane spectrum HA we obtain a natural short exact sequence

0 −→ lim1
n H̃

k+n−1(Xn, A) −→ Hk(X,A) −→ limn H̃
k+n(Xn, A) −→ 0
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where the limit is taken over the inverse system of reduced cohomology groups

H̃k+n+1(Xn+1, A)
(σn)∗−−−→ H̃k+n+1(Xn ∧ S1, A) ∼= H̃k+n(Xn, A)

and the derived limit is taken of the analogous sequence with dimensions shifted by 1.
We consider a short exact sequence of abelian groups

0 −→ A
i−−→ B

j−−→ C −→ 0 .

Then the triangle

HA
Hi−−−→ HB

Hj−−−→ HC
δi,j−−−→ Σ(HA)

is distinguished, where δi,j is the associated Bockstein morphism (see Proposition 5.28 (i)). By Proposi-
tion 3.19 the triangle

HA ∧X Hi∧X−−−−−→ HB ∧X Hj∧X−−−−−→ HC ∧X κHA,X(δi,j∧X)−−−−−−−−−−→ Σ(HA ∧X)

is then again distinguished. Passing to homotopy groups gives a long exact sequence of homology groups
[ref: gradings]

· · · −→ Hk(X,A)
Hk(X,i)−−−−−→ Hk(X,B)

Hk(X,j)−−−−−→ Hk(X,C)
δ−−→ Hk−1(X,A) −→ · · · .

By mapping X into the distinguished triangle (compare Proposition 2.10 (i)) we obtain a long exact sequence
of cohomology groups

· · · −→ Hk(X,A)
Hk(X,i)−−−−−→ Hk(X,B)

Hk(X,j)−−−−−→ Hk(X,C)
δ−−→ Hk+1(X,A) −→ · · · .

The ‘ordinary’ spectrum homology Hk(X,A) admits another interpretation as the homotopy groups of
the ‘linearization’ of X.

We let A be an abelian group and K and L based simplicial sets. The assembly map

A[K] ∧ L −→ A[K ∧ L]

is given by ‘reparenthesising’, i.e., by sending (
∑
aiki) ∧ l to

∑
ai(ki ∧ l).

Definition 6.24. For a symmetric spectrum of simplicial sets X and an abelian group A the A-
linearization A[X] is obtained by applying the A-linearization functor to X levelwise and dimensionswise.
More precisely, A[X] is the symmetric spectrum given in level n by A[X]n = A[Xn], the dimensionwise
reduced A-linearization of Xn. The Σn-action is induced by the action on Xn and the structure map is the
composite

A[Xn] ∧ S1 assembly−−−−−→ A[Xn ∧ S1]
A[σn]−−−→ A[Xn+1] .

If B is a ring and A is a B-module, then the linearization A[X] is naturally an HB-module spectrum
[...].

As an example of linearization which we have already seen, the Eilenberg-Mac Lane spectrum HA of
Example I.1.14 equals (the underlying symmetric spectrum of) the linearization A[S] of the sphere spectrum.
The assembly maps assemble into an assembly map of symmetric spectra. Indeed, for n,m ≥ 0 the maps

(HA)n ∧Xm = A[Sn] ∧Xm
assembly−−−−−→ A[Sn ∧Xm] −→ A[Xn+m]

form a bimorphism from the pair (HA,X) to the linearization A[X]. So the universal property of the smash
product provides a corresponding assembly morphism of symmetric spectra

HA ∧X −→ A[X] .

This assembly map is a π̂∗-isomorphism by Proposition I.7.14 (iii), thus a stable equivalence. The A-
homology of X can then be calculated as the true homotopy groups of the linearization A[X], i.e., the
assembly map induces an isomorphism

Hk(X,A) = πk(HA ∧X)
∼=−−→ πkA[X] .
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The composite

X = S ∧X ι∧X−−−→ HZ ∧X assembly−−−−−→ Z[X]

is the morphism given by the inclusion of generators. So under the assembly isomorphism between Hk(X,Z)
and πkZ[X] the Hurewicz homomorphism π∗X −→ H∗(X,Z) becomes the effect on homotopy groups of
the ‘inclusion of generators’.

Let us specialize the results of the previous Section 6.1 on pairings in generalized (co)homology theories
to ordinary (co)homology, i.e., for E = HA, the symmetric Eilenberg-Mac Lane ring spectrum of an ordinary
ring A. In Construction 6.6 we defined exterior products in generalized E-homology and E-cohomology.
If we specialize to E = HA, the Eilenberg-Mac Lane spectrum of a ring A, we obtain exterior products in
ordinary homology and cohomology:

× : Hk(X,A)⊗Hl(Y,A) −→ Hk+l(X ∧L Y,A)

× : Hk(X,A)⊗H l(Y,A) −→ Hk+l(X ∧L Y,A) .

Because of the associativity property of the exterior products, both pairings factor over the tensor products
over the ring A. For E = HA, part (ii) of Proposition 6.20 then specializes to:

Proposition 6.25 (Künneth theorem). Let A be a commutative ring and let X and Y be symmetric spectra.
Suppose that for each k ∈ Z the homology Hk(X,A) is flat as an A-module. Then for every n ∈ Z the map

(6.26)
⊕
k+l=n

Hk(X,A) ⊗A Hl(Y,A) −→ Hn(X ∧L Y,A)

given by exterior product is an isomorphism.

For an Eilenberg-Mac Lane spectrum the Kronecker pairing (6.16) then specializes to a map

〈−,−〉 : Hk(X,A) ⊗ Hk(X,A) −→ A ,

where we set m = 0 and used the preferred isomorphism between π0HA and A. (Since the homotopy groups
of HA are concentrated in dimension zero, the cap product is uninteresting for m 6= 0.) The relation (6.18)
between Kronecker pairing and exterior product becomes

a · 〈f, x〉 = 〈f, a · x〉 and 〈f, x〉 · a = 〈f, x · a〉

in the ring A for f ∈ Hk(X,A), x ∈ Hk(X,A) and a ∈ A. So the adjoint of the Kronecker pairing is a right
A-linear map

(6.27) Hk(X,A) −→ Hommod-A(Hk(X,A), A) , f 7−→ 〈f,−〉 .

[Exercise: for (co)homology of spaces, pair becomes evaluation of a cocycle on a cycle]
As a special case of Proposition 6.20 (i) we obtain the following proposition. Note that the projectivity

hypothesis on Hk(X,A) is automatically satisfied when every right A-module is projective, for example,
when A is a field. When A = Z is the ring of integers, then following proposition also follows from the
universal coefficient theorem for cohomology [ref].

Proposition 6.28. Let A be a ring and X symmetric spectrum such that all homology modules Hk(X,A)
of X with coefficients in A are projective as right A-modules. Then the adjoint Kronecker pairing (6.27) is
an isomorphism from the cohomology Hk(X,A) to the A-dual of Hk(X,A).

In (6.18) we established a compatibility between the Kronecker pairing and the exterior product in
generalized (co)homology. When we specialize this to ordinary homology and cohomology, this becomes
the relation

(6.29) 〈f × g, x× y〉 = (−1)kl · 〈f, x〉 · 〈g, y〉

in A, for symmetric spectra X and Y and all cohomology classes f ∈ Hk(X,A), g ∈ H l(Y,A) and homology
classes x ∈ Hk(X,A), y ∈ Hl(Y,A).
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There are various relations between homotopy and homology groups of spectra. The Hurewicz and
Whitehead theorems for singular homology of spaces immediately imply Hurewicz and Whitehead theorems
for spectrum homology. The only caveat is that the Whitehead theorem only applies to spectra whose
homotopy groups are bounded below. The unit morphism S −→ HZ can be smashed with a symmetric
spectrum to yield a morphism X = S ∧ X −→ HZ ∧ X. The Hurewicz homomorphism is the natural
morphism of abelian groups

h : πkX −→ Hk(X,Z)

induced by this morphism on homotopy groups. This is closely related to the classical Hurewicz homo-
morphism for topological spaces: if X is semistable, then the source of the Hurewicz homomorphism is
isomorphic to the colimit of the homotopy groups πk+nXn, whereas the target group is isomorphic to the
colimit of the reduced homology groups Hk+n(Xn,Z) [...]. Exercise E.II.15 shows the Hurewicz homomor-
phism which we just defined corresponds to the map induced by the classical Hurewicz homomorphisms for
the spaces Xn by suitable passage to colimits.

Proposition 6.30. (i) (Stable Hurewicz theorem) Let X be a (k − 1)-connected symmetric spectrum
for some integer k. Then the homology groups of X are trivial below dimension k and the Hurewicz
homomorphism πkX −→ Hk(X,Z) is an isomorphism.

(ii) (Stable Whitehead theorem) Let f : X −→ Y be a morphism between symmetric spectrum whose ho-
motopy groups are bounded below. Then f is a stable equivalence if and only if it induces isomorphisms
on all integral homology groups.

(iii) Let A be a uniquely divisible abelian group (i.e., a Q-vector space). Then the smash product pairing

A⊗ πkX = π0(HA)⊗ πkX
·−−→ πk(HA ∧X) = Hk(X,A)

is an isomorphism for every integer k. In particular, the Hurewicz homomorphism induces an isomor-
phisms

Q⊗ πkX ∼= Q⊗Hk(X,Z) ∼= Hk(X,Q)

for all symmetric spectra X and integers k.

Proof. (i) This is a special case of Proposition 5.22, or rather its corollary Remark 5.23. Since the
Eilenberg-Mac Lane spectrum HZ is flat and (−1)-connected, the natural map

· : π0HZ ⊗ πkX −→ πk(HZ ∧X)

is an isomorphism of abelian groups. The group π0(HZ) is isomorphic to Z and the Hurewicz map is given
by 1 · − : πkX −→ πk(HZ ∧X), so it is an isomorphism.

(ii) One direction does not need the hypothesis that X and Y are bounded below: if f : X −→ Y is a
stable equivalence, then so is HZ ∧ f : HZ ∧X −→ HZ ∧ Y since the Eilenberg-Mac Lane spectrum is flat
[ref].

Suppose conversely that f is an integral homology isomorphism. Then [level cofibrant] the mapping
cone C(f) has trivial integral homology by the long exact sequence of homology groups [ref]. Since the
homotopy groups of X and Y are bounded below, so are the homotopy groups of the cone, by the long
exact sequence of homotopy groups [ref]. So if C(f) had a non-trivial homotopy group, there would be a
minimal one, and by part (i) there would also be a non-trivial homology group in that minimal dimension.
This would contract what we concluded before, so all homotopy groups of the mapping cone C(f) vanish,
and so f is a stable equivalence, one more time by the long exact sequence of homotopy groups.

(iii) We let X be the smallest class of symmetric spectra X for which that map A⊗πkX −→ Hk(X,A) is
an isomorphism for every integer k. This class is closed under stable equivalences, thus under isomorphism
in the stable homotopy category. The sphere spectrum S belongs to X by Serre’s calculation of homotopy
groups of spheres modulo torsion. Both sides of the map commute with sums, so the class X is closed under
sums in SHC. Finally, both sides of the map take distinguished triangles in the stable homotopy category
to long exact sequences, so the class X is closed under extensions by the 5-lemma. In other words, X is a
localizing subcategory of the stable homotopy category which contains the sphere spectrum, so it contains
all symmetric spectra by Proposition 5.16 �
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Example 6.31. The hypothesis in the Whitehead theorem (Proposition 6.30 (ii)) that homotopy groups
are bounded below is essential. In general, H∗(−;Z)-isomorphisms need not be stable equivalences. As an
example we let S/p denote the mod-p Moore spectrum, for a prime number p. This spectrum is a mapping
of the degree p map of the sphere spectrum, i.e., can be defined as the third term in a distinguished triangle

S ·p−−→ S j−−→ S/p δ−−→ S1 .

Alternatively, S/p could be defined as Σ−1Σ∞M(p), the desuspension of a mod-p Moore space M(p) =
S1 ∪p D2. The mod-p Moore spectrum is characterized up to stable equivalence by the property that it
is connective, its integral spectrum homology is concentrated in dimension 0, and H0(S/p,Z) is cyclic of
order p.

Since S/p is the mapping cone of the degree p map on the sphere spectrum, every generalized homology
theory E∗ gives rise to a long exact sequence of homology groups

· · · −→ Ek(S)
×p−−−→ Ek(S)

j∗−−→ Ek(S/p) δ−−→ Ek−1(S)
×p−−−→ Ek−1(S)

j∗−−→ · · ·

which splits up into short exact sequences

(6.32) 0 −→ Z/p⊗ Ek(S) −→ Ek(S/p) −→ pEk−1(S) −→ 0

(pA denotes the subgroup of an abelian group A consisting of those elements a which satisfy pa = 0).
In particular, this applies to periodic complex topological K-theory KU∗ (compare Example I.1.20).

The coefficients of complex K-theory are 2-periodic and KUk(S) = πkKU is a free abelian group of rank
one when k is even and trivial when k is odd. So for KU -theory, the short exact sequence (6.32) shows that

KUk(S/p) ∼=

{
Z/p if k is even, and

0 if k is odd.

Adams showed that for every odd prime p there exists a morphism

v1 : Σ2p−2S/p −→ S/p

in the stable homotopy category which induces an isomorphism in KU -homology. This implies that every
iterated composition of (suspended copies of) the map v1 induces an isomorphism in KU -homology, hence
every such composite is stably essential. A map with this property is called a periodic self-map. The Moore
space at the prime 2 also admits a periodic self-map, but the period and some other details are different
from the situation at odd primes.

We define a spectrum v−1
1 S/p by ‘inverting the self-map v1’, i.e., as the homotopy colimit of the sequence

of symmetric spectra

S/p Σ−2p+2v1−−−−−−→ S−2p+2/p
Σ−4p+4v1−−−−−−→ S−4p+4/p

Σ−6p+6v1−−−−−−→ · · · .

Every spectrum in this sequence is essentially a suspension spectrum, shifted down finitely many dimensions,
but the telescope is no longer a shift of any suspension spectrum. The homology of a homotopy colimit is
the colimit of the homologies, i.e., the natural map

colimn Ek(S(−2p+2)n/p) −→ Ek(v−1
1 S/p)

is an isomorphism for every generalized homology theory E. The Adams map v1 and any desuspension
of it induces the trivial map in spectrum homology simply because the homology of source and target are
concentrated in different dimensions; so the integral spectrum homology of the mapping telescope v−1

1 S/p
is trivial. On the other hand, the Adams map induces an isomorphicm in KU -homology, so the map
S/p −→ v−1

1 S/p from the initial term to the homotopy colimit induces an isomorphism

KU∗(S/p) −→ KU∗(v
−1
1 S/p) .

In particular, the spectrum v−1
1 S/p has non-trivial KU -homology.
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To sum up, v−1
1 S/p has trivial spectrum homology, but it is not stably contractible. We conclude that

v−1
1 S/p must have non-trivial homotopy groups in arbitrarily low dimensions. The homotopy groups of this

mapping telescope were determined by Miller [59, Cor. 4.12], who showed that

πn
(
v−1

1 S/p
)

=

{
Z/p for n ≡ −1, 0 (modulo 2p− 2),
0 else.

This calculation requires much more sophisticated tools than we have available.

6.3. Moore spectra.

Definition 6.33. A Moore spectrum is a connective symmetric spectrum X for which the homology groups
Hk(X,Z) are trivial for k 6= 0. Given an abelian group A, a Moore spectrum for A is a Moore spectrum X
endowed with an isomorphism between H0(X,Z) and A.

When no confusion can arise we suppress the isomorphism and abuse notation by writing H0(X,Z) = A
(instead of using the isomorphism which is part of the data of a Moore spectrum). We often write SA for a
Moore spectrum for A; however, we emphasize that SA is not functorial in the abelian groups. In general,
the construction of Moore spectra is not even functorial in the stable homotopy category, although it is
when we stay away from 2-torsion. We discuss the functoriality (or rather the lack thereof) of Moore spectra
in Theorem 6.43 below.

Remark 6.34. The spectrum homology group Hk(X,Z) was defined as πk(HZ ∧X), so if X is a Moore
spectrum then the spectrum HZ ∧ X has trivial homotopy groups in all nonzero dimensions. By Theo-
rem 5.25 (ii) we deduce that HZ∧X is then stably equivalent to the Eilenberg-Mac Lane spectrum H(π0X).
We conclude that X is a Moore spectrum if and only if it is connective and HZ∧X and the stably equivalent
linearization Z[X] are stably equivalent to H(π0X).

If the homotopy groups of X are bounded below, then by the Hurewicz theorem (Proposition 6.30) the
first non-trivial homotopy group of X is isomorphic to the first non-trivial integral homology group. So
the condition that a Moore spectrum is connective can be weakened to the requirement that the homotopy
groups are bounded below. However, some condition of this kind is necessary if we want Moore spectra to
be determined by the 0th homology groups. In fact, there exist spectra X with non-trivial homotopy groups
in arbitrary low dimensions such that the homology group Hk(X,Z) is trivial for all integers k. An example
is mod-n topological K-theory for any n ≥ 2, which is the symmetric spectrum SZ/n ∧KU where SZ/n is
a flat mod-n Moore spectrum and KU is the symmetric ring spectrum representing complex topological
K-theory from Example I.??. Compare Example 6.31.

Example 6.35. The sphere spectrum S is a Moore spectrum for the group Z of integers. The ‘sphere
spectrum with m inverted’ S[1/m] of Example I.3.47 is a Moore spectrum for the group Z[1/m] of integers
with m inverted. The symmetric spectrum underlying the ring spectrum S[1/2, i] of Example I.3.49 is a
Moore spectrum for the abelian group underlying the Gaussian integers with 2 inverted.

Example 6.36. If A is any uniquely divisible abelian group (i.e., a vector space over the rational numbers),
then the Eilenberg-Mac Lane spectrum HA is also a Moore spectrum for the group A. Indeed, HA is
connective, so H0(HA,Z) ∼= π0HA = A by the Hurewicz Theorem (Proposition 6.30 (i)). The group
Hk(HA,Z) is isomorphic to Hk(HZ, A) (induced by the symmetry isomorphism τ : HA∧HZ ∼= HZ∧HA)
which by Proposition 6.30 (iii) is isomorphic to A⊗ πkHZ and thus trivial for k 6= 0.

Example 6.37. Suppose K is a Moore space for the abelian group A of dimension n, i.e., the reduced
integral homology of K is concentrated in dimension n where we have H̃n(K,Z) ∼= A. Then the spectrum
Ωn(Σ∞K) is a Moore spectrum for the group A. Indeed, suspension spectra are connective, and looping
shifts homotopy groups, so Ωn(Σ∞K) is connective. A chain of isomorphisms

Hk(Ωn(Σ∞K),Z) ∼= Hk+n(Sn ∧ Ωn(Σ∞K),Z) ∼= Hk+n(Σ∞K,Z) ∼= H̃k+n(K,Z)

is given by the suspension isomorphism for homology, the fact that the adjunction counit Sn ∧ Ωn(Σ∞K)
is a stable equivalence [ref] and the isomorphism [...]. So the spectrum homology of Ωn(Σ∞K) is indeed
concentrated in dimension 0, where it is isomorphic to A.



6. HOMOLOGY AND COHOMOLOGY 285

Example 6.38. Let A be a subring of the ring Q of rational numbers. Then we can write down a
commutative symmetric ring spectrum which is a Moore spectrum for A. First we introduce a more general
construction based on a pair (K, f) consisting of a base space (or simplicial set) K and a based map
f : S1 −→ K. From this data we define a commutative symmetric ring spectrum S(K, f) with levels

S(K, f)n = K∧n

with Σn permuting the smash factors. The multiplication map µn,m : K∧n ∧ K∧m −→ K∧(n+m) is the
canonical isomorphism. The unit map ι0 : S0 −→ K∧0 is the identity and the unit map ι1 : S1 −→ K
is the given map f . We have already seen special cases of this construction: S(S1, Id) = S is the sphere
spectrum, and if ϕm : S1 −→ S1 is a map of degree m, then S(S1, ϕm) = S[1/m] is the ‘sphere spectrum
with m inverted’ as defined in Example I.3.47. The functor S from the category of based space under S1

to commutative symmetric ring spectra is left adjoint to the ‘evaluation’ or forgetful functor which sends a
commutative symmetric ring spectrum R to the pair (R1, ι1).

We return to the situation of a subring A of Q. We choose a Moore space M for A, i.e., a CW-complex
(respectively simplicial set) whose reduced integral homology is concentrated in dimension 1, where it is
isomorphic to A. We also choose a based map ι : S1 −→ M which sends the fundamental homology class
of the circle to the class in H̃1(M ;Z) ∼= A which corresponds to the unit element of the ring A. We claim
that then the commutative symmetric ring spectrum S(M, ι) is a Moore spectrum for the ring A.

For n ≥ 1 the structure map

S(M, ι)n ∧ S1 = M∧n ∧ S1 σn−−−→ M∧n+1 = S(M, ι)n+1

is a homology isomorphism by the Künneth theorem for space level singular homology and since A⊗ A is
isomorphic to A. Since source and target of σn are simply connected CW-complexes, the structure map is a
weak equivalence. As a consequence, the shifted spectrum sh(S(M, ι)) is level equivalent to the suspension
spectrum of M . So S(M, ι) is stably equivalent to Ω(Σ∞M), and thus a Moore spectrum by Example 6.37.
This also shows that the symmetric spectrum S(M, ι) is semistable, which is not generally the case for
S(X, f).

Construction 6.39. Now we give a construction of a Moore spectrum for a given group A in terms of the
triangulated structure of the stable homotopy category. This construction also allows us to calculate the
homotopy groups of Moore spectra and the groups of maps out of Moore spectra.

We choose a free presentation of A, i.e., a short exact sequence

0 −→ Z[I]
d−−→ Z[J ]

e−−→ A −→ 0

where I and J are indexing sets. We have

π0(
⊕
I

S) ∼=
⊕
I

π0S ∼= Z[I]

and similarly for the sum of sphere spectra indexed by the set J . Since S represents the functor π0 we
can realize the map d : Z[I] −→ Z[J ] by a morphism d̄ :

⊕
I S −→

⊕
J S, i.e., π0(d̄) equals d under the

isomorphisms. Now we choose a distinguished triangle

(6.40)
⊕
I

S d̄−−→
⊕
J

S −−→ SA −−→
⊕
I

ΣS .

We claim that SA is a Moore spectrum for the group A.
We first describe the homotopy groups of SA in terms of A and the stable homotopy groups of spheres.

The long exact homotopy sequence of this triangle contains the exact sequence

πn(
⊕
I

S)
πnd̄−−→ πn(

⊕
J

S) −−→ πnSA −−→ πn−1(
⊕
I

S) −−→ πn−1(
⊕
J

S) .

Using that homotopy groups preserve sums we can rewrite this as an exact sequence

Z[I]⊗ πnS
d⊗πnS−−−−→ Z[J ]⊗ πnS −−−→ πnSA −−−→ Z[I]⊗ πn−1S

d⊗πn−1S−−−−−−→ Z[J ]⊗ πn−1S .
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Since we started from a free resolution of A, cokernel respectively kernel of the morphism d⊗ πnS are the
groups A⊗πnS respectively Tor(A, πnS). So the long exact homotopy sequence decomposes into short exact
sequences

(6.41) 0 −→ A⊗ πs
n −−→ πnSA −−→ Tor(A, πs

n−1) −→ 0 .

This shows in particular that SA is connective and gives an isomorphism between π0SA and A. The long
exact homology sequence of the triangle (6.40) and the vanishing of the homology of S in positive dimensions
show that Hk(SA,Z) is trivial for k ≥ 1 (for k = 1 this also uses that H0(d̄,Z) is injective). So SA is indeed
a Moore spectrum for the group A.

With a similar argument we can calculate the morphisms from SA to any other object X of the stable
homotopy category. We apply [−, X] to the distinguished triangle (6.40) and use the isomorphisms

[
⊕
I

S, X] ∼=
∏

I
π0X ∼= Hom(Z[I], π0X)

and similarly for J instead of I and for morphisms of degree 1. We obtain an exact sequence

Hom(Z[I], π0X)
Hom(d,π0X)←−−−−−−−− Hom(Z[J ], π0X)←− [SA,X]←− Hom(Z[I], π1X)

Hom(d,π1X)←−−−−−−−− Hom(Z[J ], π1X) .

Since kernel respectively cokernel of the morphism Hom(d, πnX) are the groups Hom(A, π0X) respectively
Ext(A, π0X), the long exact homotopy sequence decomposes into short exact sequences

(6.42) 0 −→ Ext(A, π1X) −−→ SHC(SA,X)
π0−→ Hom(A, π0X) −→ 0 .

Theorem 6.43. Let X and Y be two Moore spectra. Then every homomorphism f : H0(Y,Z) −→ H0(X,Z)
can be realized by a morphism f̄ : Y −→ X in the stable homotopy category. If f is an isomorphism, then
so is f̄ . In particular, Moore spectra for a given group are unique up to isomorphism in the stable homotopy
category.

Moreover, when restricted to Moore spectra for 2-divisible groups, the functor π0 becomes an equivalence
of categories. In particular, Moore spectra for 2-divisible groups can be chosen functorially in the stable
homotopy category.

Proof. In a first step we let Y = SA be a Moore spectrum of the special kind constructed in 6.39.
Then the realizability of f is simply the surjectivity of the exact sequence (6.42), using that the zeroth
homotopy and homology groups of a Moore spectrum are naturally isomorphic.

If f is an isomorphism and f̄ : Y −→ X realizes f , then it induces an isomorphism on H0(−,Z), and
thus on all integral homology groups (since X and Y are Moore spectra). Since X and Y are connective,
f̄ is an isomorphism in the stable homotopy category by the Whitehead theorem (Proposition 6.30).

The first step applied to Y = S(π0X) shows in particular that every Moore spectrum X is isomorphic
in the stable homotopy category to S(π0X). We may thus assume without loss of generality that X = SA
and Y = SB are both of the form constructed in 6.39.

The stable 0-stem πs
0 is free abelian, hence flat, and πs

1
∼= Z/2 generated by the Hopf map η. So for n = 1

the short exact sequence (6.41) reduces to an isomorphism B ⊗ Z/2 ∼= π1(SB). The exact sequence (6.42)
then becomes a short exact sequence

0 −→ Ext(A,B ⊗ Z/2) −−→ SHC(SA,SB)
π0−→ Hom(A,B) −→ 0 .

So if B is 2-divisible, then π0 : SHC(SA,SB) −→ Hom(A,B) is bijective, i.e., π0 is fully faithful on this
class of Moore spectra. �

Remark 6.44 (Limited functoriality of Moore spectra). There are certain similarities between Eilenberg-
Mac Lane and Moore spectra; for example, both are defined by the property that a certain homology theory
(homotopy respectively integral homology) is concentrated in dimension zero, and both exist for every
abelian group and are unique up to isomorphism in the stable homotopy category. We want to emphasize
however, that the functoriality properties of these two kinds of spectra are very different.

Eilenberg-Mac Lane spectra have models which are functorial in the group on the point set level, i.e.,
as functors to the category of symmetric spectra. We have given such a construction in Example I.1.14,



6. HOMOLOGY AND COHOMOLOGY 287

and that model also takes rings to symmetric ring spectra. One can also deduce this from the fact the
Eilenberg-Mac Lane functor H with values in symmetric spectra is a symmetric monoidal functor with
respect to smash product of spectra and tensor product of abelian groups (compare Example I.5.28).
� For Moore spectra the situation is different. While they exist for every abelian group and we have

given several different constructions, there are no pointset level models which are functorial in the
group A. Even worse, we will see in Example 6.46 below that in general, Moore spectra are not even
functorial in the homotopy category. Theorem 6.43 say that after inverting the prime 2, Moore spectra can
be chosen functorially in the stable homotopy category, but even then, the construction is not compatible
with tensor product respectively smash product. After inverting 2 and 3, Moore spectra can be made
into a symmetric monoidal functor to the stable homotopy category. This implies that away from 6 the
Moore spectrum associated to any ring can be made into a homotopy ring spectrum inducing the given
multiplication on π0. However, Moore spectra of rings can in general not be realized as a symmetric ring
spectrum. Specifically, for no n ≥ 2 can the mod-n Moore spectrum be realized as symmetric ring spectra.
(prove this later) If we invert all primes, i.e., for uniquely divisible abelian groups, all these problems go
away since rationally, Moore and Eilenberg-Mac Lane spectra coincide, see Example 6.36.

Let us simplify the notation a little by writing S/p for the mod-p Moore spectrum S(Z/pZ). We calculate
the mod-p cohomology of S/p. Let us denote by ι : S −→ HZ/p the unit morphism of the ring spectrum
structure, which we can view as a cohomology class in the group H0(S,Fp). Both rows in the diagram

S
·p //

ι

��

S
j //

ι̃

��

S/p

e0

��

δ // ΣS

Σι

��
HZ/p ·p

// HZ/p2 // HZ/p
β

// ΣHZ/p

are distinguished triangles in the stable homotopy category, and the left square commutes. Here β is the
mod-p Bockstein morphism, compare (5.31). So we can choose a morphism e0 : S/p −→ HZ/p which
makes the entire diagram commute. The long exact sequence in mod-p cohomology associated to the upper
distinguished triangle shows that the mod-p cohomology of S/p is concentrated in dimensions 0 and 1,
where they are 1-dimensional generated by e0 ∈ H0(S/p,Z/p) respectively e1 = β(e0) ∈ H1(S/p,Z/p).

Example 6.45. The mod-p Moore spectra (for p a prime) behave quite differently when p = 2 or p is odd.
Let us first discuss the case of odd primes p. Since πs

1
∼= Z/2, the exact sequence (6.41) shows that π1(S/p)

is trivial. So the map π0 : [S/p,S/p] −→ Hom(Z/p,Z/p) is an isomorphism. Thus p times the identity of
S/p is trivial in the stable homotopy category, and all groups of the form [X,S/p] or [S/p,X] for X in the
stable homotopy category are Fp-vector spaces. In particular this holds for the homotopy groups, and so
the exact sequence (6.41)

0 −→ Z/p⊗ πs
n −→ πn(S/p) −→ p{πs

n−1} −→ 0

splits. Here we write pA for {x ∈ A | px = 0} which is isomorphic to the group Tor(Z/p,A).

Example 6.46. Now we discuss the mod-2 Moore spectrum S/2 and what is different compared to mod-p
Moore spectra for odd primes p. Since the stable stems πs

1 and πs
2 are both cyclic of order 2 with generators

η respectively η2, the exact sequence (6.41) specializes to a short exact sequence

(6.47) 0 −→ πs
2 −→ π2(S/2) −→ πs

1 −→ 0 .

Proposition 6.48. The short exact sequence (6.47) does not split, and so the group π2(S/2) is cyclic of
order four, generated by any of the two preimages of η.

Proof. We let η̄ : S2 −→ S/2 be a morphism in the stable homotopy category whose composite with
the connecting morphism δ : S/2 −→ S1 is η and suppose that 2η̄ = 0. Then we could choose an extension
η̃ : S2 ∧S/2 −→ S/2 of η̄ to the mod-2 Moore spectrum. Let C(2, η, 2) be a mapping cone of this extension,
i.e., a spectrum which is part of a distinguished triangle

S2 ∧ S/2 η̃−−→ S/2 j−−→ C(2, η, 2)
δ−→ S3 ∧ S/2 .
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Since the mod-2 cohomology of S/2 respectively its double suspension S2∧S/2 are concentrated in dimensions
0 and 1 respectively 2 and 3, the morphism η̃ must induce the zero map on mod-2 cohomology. The long
exact cohomology sequence of the defining triangle for C(2, η, 2) thus show that H∗(C(2, η, 2),F2) is one-
dimensional in dimensions 0, 1, 3 and 4 and trivial in all other dimensions. Since j : S/2 −→ C(2, η, 2)
(respectively δ : C(2, η, 2) −→ Σ2S/2) are surjective (respectively injective) in mod-2 cohomology, we deduce
that the Bockstein operation β = Sq1 is an isomorphism from dimension 0 to 1 and from dimension 3 to 4.
[draw picture] Since η is detected by the Steenrod operation Sq2 (compare Example 10.11), the composite
operation Sq1 Sq2 Sq1 : H0(C(2, η, 2);F2) −→ H4(C(2, η, 2);F2) would be a non-trivial isomorphism. By
the Adem relations we have Sq1 Sq2 Sq1 = Sq2 Sq2 which factors through the trivial group H2(C(2, η, 2);F2).
We have obtained a contradiction, and so the class 2η̄ must be nonzero, i.e., η̄ ∈ π2(S/2) generates a cyclic
group of order 4. �

Now we calculate the ring of self maps of S/2 in the stable homotopy category. Since the stable 0-stem
πs

0 is infinite cyclic and thus torsion free, the exact sequence (6.41) shows that π1(S/2) ∼= Z/2, generated
by the image of η. The sequence (6.42) thus specializes to a short exact sequence

(6.49) 0 −→ Ext(Z/2,Z/2) −→ SHC(S/2,S/2)
π0−→ Hom(Z/2,Z/2) −→ 0 .

The sequence does not split, because otherwise we would have 2 · IdS/2 = 0 and πn(S/2) would be an
F2-vector space for all n, contradicting the calculation π2(S/2) ∼= Z/4 of the previous proposition. Thus
the endomorphism ring [SZ/2, SZ/2] is isomorphic to Z/4. The exact sequence (6.49) show that 2 IdSZ/2
equals the image of the generator of Ext(Z/2,Z/2) which proves the relation

(6.50) 2 · IdS/2 = jηδ

in the group [S/2,S/2], where j : S −→ S/2 and δ : S/2 −→ S1 and the two morphisms from the defining
triangle for the mod-2 Moore spectrum.

In contrast to the case of odd primes, the exact sequence

0 −→ Z/2⊗ πs
n

j·−−→ πn(S/2)
δ·−−→ 2{πs

n−1} −→ 0

does not generally split (as we already saw for n = 2). The relation (6.50) implies that η-multiplication
completely determines the class of this extension: if x̄ ∈ πn(S/2) is a preimage of a 2-torsion element
x ∈ πs

n−1, then 2x̄ is the image of ηx ∈ πs
n (because 2x̄ = jηδx̄ = jηx). More generally, for any spectrum

X the sequence

0 −→ Z/2⊗ πnX
j·−−→ πn(X;Z/2)

δ·−−→ 2{πn−1X} −→ 0

is short exact but need not split. The extension is determined by the action of η ∈ πs
1 on the homotopy

groups of X in the same way as for X = S above.

Remark 6.51 (Generalized (co)homology with coefficients). Moore spectra can be used to introduce coef-
ficients into generalized homology and cohomology theories. For this we let E be any symmetric spectrum,
A and abelian group and SA a Moore spectrum for A. For any other symmetric spectrum X and an integer
k, we define the k-th E-homology group of X with coeffiencts in A as

Ek(X,A) = (E ∧L SA)k(X) = πk(E ∧L SA ∧L X) .

The k-th E-cohomology group with coeffiencts in A of X is defined as

Ek(X,A) = (E ∧L SA)k(X) = [X,E ∧L SA]−k .
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� The E-homology and E-cohomology with coeffiencts in A has the same functoriality in E and X as
the theory without coefficients has. Functoriality in the group A is more subtle because the asignment

A 7→ SA is not in general functorial, even as a functor to the stable homotopy category. Strictly speaking,
the definition above is not even as well-defined as one usually likes: while the Moore spectrum SA is
determined by A up to isomorphism in the stable homotopy category, there is in general no preferred
isomorphism (however, this is only an issue when A has 2-torsion). So hence E∗(X,A) and E∗(X,A)
are determined by A up to isomorphism, but the isomorphism is generally non-canonical. We refer to
Remark 6.44 for a detailed discusssion of this functoriality (or the lack thereof).

In special cases we get back known theories. For example, when A = Z is the group of integers, then
the sphere spectrum S serves as a Moore spectrum; since the sphere spectrum is a strict unit for the derived
smash product, we have

Ek(X,Z) = πk(E ∧L S ∧L X) = πk(E ∧L X) = Ek(X) .

When E = HZ is the integral Eilenberg-Mac Lane spectrum, then E ∧L SA = HZ ∧L SA has its homo-
topy groups concentrated in dimension 0, so in the stable homotopy category there is a preferred isomor-
phism between HZ ∧L SA and the Eilenberg-Mac Lane spectrum HA [ref]. Hence the homology group
(HZ)k(X,A) = πk(HZ ∧L SA ∧L X) is naturally isomorphic to Hk(X,A) = πk(HA ∧L X), the ordinary
homology with coefficients in A.

The distinguished triangle

S ·n−−→ S j−−→ S/n δ−−→ ΣS
involving the mod-n Moore spectrum gives rise to a long exact sequence

· · · −→ Ek(X)
·n−−→ Ek(X) −→ Ek(X,Z/n) −→ Ek−1(X) −→ · · ·

and similarly for E-cohomology.
Whenever A is a subring of the ring of rational numbers, the effect of introducing coefficients is easy

to describe: the map [...]

A⊗ Ek(X) −→ Ek(X,A)

is an isomorphism.

7. Finite spectra

7.1. The Spanier-Whitehead category. In Proposition 5.2 we saw that the symmetric sphere
spectrum S is a compact object in the stable homotopy category as well as a weak generator. We will now
identify the full subcategory of all compact objects in the stable homotopy category with a more ‘concrete’
category defined from the homotopy category of finite CW-complexes by ‘inverting the suspension functor’.
This category is known as the Spanier-Whitehead category, and historically it predates the stable homotopy
category.

The Freudenthal suspension theorem asserts that for every n-connected pointed space Y and every
pointed CW-complex X whose dimension is less than 2n (numbers right ?), the suspension map

Σ : [X,Y ] −→ [ΣX,ΣY ]

is bijective. So when defining the stable homotopy classes of maps

{X,Y } = colimn [ΣnX,ΣnY ] ,

the colimit system actually stabilizes whenever X is a finite-dimensional CW-complex. A natural idea is
thus to define a category in which these stable values live, and this is the so-called Spanier-Whitehead
category.

Definition 7.1. The Spanier-Whitehead category SW has a objects the pairs (K,n) where K is a pointed
space which admits the structure of a finite CW-complex and n ∈ Z is an integer. Morphisms in SW are
defined by

SW((K,n), (L,m)) = colimk [K ∧ Sn+k, L ∧ Sm+k] .
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The colimit is taken over the suspension maps and ranges over large enough values of k for which both n+k
and m+ k are non-negative. Composition is defined by composition of representatives, suitably suspended
so that composition is possible.

[is this historically correct, or was SW without the formal dimension?]
By Freudenthal’s suspension theorem, the colimit is attained at a finite stage. We often identify a

finite CW-complex X with the object (X, 0) of the Spanier-Whitehead category. With this convention the
morphism set

SW(Sn,K) = colimk [Sn+k,K ∧ Sk]∗ = colimk πn+k(K ∧ Sk)

agrees with the n-th homotopy group of the suspension spectrum Σ∞K, i.e., the n-th stable homotopy
group πs

nK of K.
Tautologically, the identity map of K ∧ Sn+m represents an isomorphism between (K ∧ Sn,m) and

(K,n + m) in SW, so suspension becomes invertible in SW. In fact, SW is in a certain precise sense the
universal example of this [...].

The Spanier-Whitehead category is naturally endowed with the structure of a triangulated category as
follows. The shift functor is simply given by reindexing, i.e., Σ(K,n) = (K, 1 +n). The Spanier-Whitehead
category is additive because in it every objects is isomorphic to a double suspension, so the morphism-sets
in SW are all abelian groups.

The distinguished triangles arise from homotopy cofiber sequences: for every based map f : K −→ L
between finite CW-complexes and every integer n the diagram

(K,n)
f−−→ (L, n)

i−−→ (C(f), n)
p−−→ (ΣK,n) ∼= (K, 1 + n)

is a distinguished triangle (where C(f) is the mapping cone), and a general triangle is distinguished if and
only if it is isomorphic to one of these.

We will not verify the axioms of a triangulated category for SW, but this can be found in Chapter 1,
§ 2 of [54]. Alternatively, one could check that distinguished triangle in SW go to distinguished triangle
in SHC and then use the fact that Σ∞ is fully faithful to deduce the axioms of a triangulated category for
SW from those for SHC.

The following theorem says that the stable homotopy category contains the Spanier-Whitehead category
as a full subcategory. For every pointed space K we have a suspension spectrum Σ∞K as in Example 1.13.
We apply the singular complex functor S levelwise (compare Section I.1) to obtain a symmetric spectrum
of simplicial sets and then use the localization functor γ : Sp −→ SHC to get into the stable homotopy
category. We also have to compensate the formal dimension attached to an object in the Spanier-Whitehead
category by shifting in the triangulated structure of the stable homotopy category, so altogether we define
a functor

Σ∞ : SW −→ SHC
on objects by

Σ∞(K,n) = γ(S(Σ∞K)) ∧L Sn .
To define this functor on morphisms we define an isomorphism in SHC between Σ∞(K ∧ S1, n) and
ΣΣ∞(K,n).

γ(S(Σ∞(K ∧ S1))) ∧L Sn ∼= (S1 ∧ γ(S(Σ∞K))) ∧L Sn
Id∧Lα1,n−−−−−−→ S1 ∧

(
γ(S(Σ∞K)) ∧L Sn

)
[define the remaining iso] Using these isomorphisms we get natural maps

[K ∧ Sn+k, L ∧ Sm+k] −→ SHC(γ(S(Σ∞K)) ∧L Sn+k, γ(S(Σ∞L)) ∧L Sm+k)

−∧LS−k−−−−−→ SHC(γ(S(Σ∞K)) ∧L Sn, γ(S(Σ∞L)) ∧L Sm)

where we have implicitly used the derived associativity isomorphisms and the isomorphism αn+k,−k :
Sn+k ∧L S−k ∼= Sn. These maps are compatible as k increases [associativity of α’s ?], so the induce a
well defined map

Σ∞ : SW((K,n), (L,m)) −→ SHC(Σ∞(K,n),Σ∞(L,m)) ,
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which we take as the effect of the functor Σ∞ on morphisms. The following theorem and the characterization
of compact objects in Theorem 7.4 says that the Spanier-Whitehead category ‘is’ (up to equivalence of
triangulated categories which preserves the smash products) the full subcategory of compact objects in
SHC.

Theorem 7.2. The functor

Σ∞ : SW −→ SHC
is fully faithful and exact.

Proof. [specify the isomorphism Σ∞(K, 1 + n) ∼= S1 ∧ Σ∞(K,n); prove exactness].
Essentially by construction of Σ∞ there are natural isomorphisms Σ∞(K,n + m) ∼= Σ∞(K,n) ∧L Sm.

For showing that the map on morphism sets

Σ∞ : SW((K,n), (L,m)) −→ SHC(Σ∞(K,n),Σ∞(L,m))

is bijective we can thus assume n = m = 0.[...] Every finite CW-complex is homotopy equivalent, thus
isomorphic in SW, to the geometric realization of a finite simplicial set, so we can assume that K = |K ′|
and L = |L′| for finite pointed simplicial sets K ′ and L′. Then the spectrum Σ∞(|K ′|, 0) = S(Σ∞|K ′|) is
level equivalent to the suspension spectrum Σ∞K ′, and similarly for L′. So in the special case the claim
boils down to the statement that the map

{|K ′|, |L′|} = colimk [|K ′| ∧ Sk, |L′| ∧ Sk] −→ SHC(Σ∞K ′,Σ∞L′)
[which map?] is an isomorphism. This, however, was already shown in Example 1.20. �

The Spanier-Whitehead category has a symmetric monoidal smash product which is defined by (K,n)∧
(L,m) = (K ∧ L, n + m) on objects, and with unit object (S0, 0). Moreover, the embedding Σ∞ of the
Spanier-Whitehead category into SHC is compatible with smash products, i.e., it can be made into a strong
symmetric monoidal functor. We leave the details as Exercise E.II.12.

Remark 7.3. There is an important conceptual difference in the construction of the Spanier-Whitehead
and the stable homotopy category. The difference is in which order the processes of ‘inverting suspension’
and ‘passage to homotopy classes’ are taken. [...] There is no known construction of the stable homotopy
category where the two processes are taken in the other order.

Now we can explain why we restrict to finite CW-complexes when defining the Spanier-Whitehead
category. The definition of morphisms in SW make sense for arbitrary pointed spaces, but the natural map

{X,Y } = colimk[ΣkX,ΣkY ] −→ SHC(Σ∞X,Σ∞Y )

is not generally a bijection. For example, the identity map of QS0 is adjoint to a morphism Σ∞QS0 −→
Σ∞S0 in the stable homotopy category which is not in the image of {QS0, S0}. An injective Ω-spectrum X
is isomorphic to Σ∞(K,n) for some finite pointed simplicial set K and integer n if and only if it is compact
as an object of the triangulated category SHC.

We recall that an object X of a triangulated category with infinite sums is called compact (sometimes
called small or finite ) if for every family {Yi}i∈I of objects the natural map⊕

i∈I
[X,Yi] −→ [X,

⊕
i∈I

Yi]

is an isomorphism. We saw in Proposition 5.2 that the sphere spectrum is compact as an object of the
stable homotopy category. We will now characterize the compact objects of the stable homotopy category,
which are often referred to as ‘finite spectra’.

One of the characterizations below refers to the contravariant Spanier-Whitehead dual defined by DX =
F (X,S), the derived function spectrum with sphere spectrum in the second variable. For every spectrum
X there is an evaluation morphism εX,S : DX ∧LX = F (X,S)∧LX −→ S, adjoint to the identity, see (3.9).
If Y is another spectrum, there is a natural morphism Y ∧L DX −→ F (X,Y ) which is adjoint to the
morphism Y ∧ εX,S : Y ∧L DX ∧L X −→ Y ∧L S = Y .
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A symmetric spectrum X is bounded below if there is an integer k such that all homotopy groups below
dimension k are trivial.

Theorem 7.4. For a symmetric spectrum X the following five conditions are equivalent. Spectra which
satisfy these equivalent conditions are called finite spectra.

(i) X is isomorphic to (Σ∞K) ∧L Sn for a finite pointed simplicial set K and an integer n;
(ii) X is strongly dualizable, i.e., for every object Y of SHC the morphism Y ∧L DX −→ F (X,Y ) is an

isomorphism;
(iii) X is a compact object of the triangulated category SHC;
(iv) X is bounded below and its integral homology H∗(X,Z) is totally finitely generated;
(v) X belongs to the thick subcategory generated by the sphere spectrum.

[can we add: X −→ DDX is an isomorphism?]

Proof. (i)=⇒(ii) induction on number of non-degenerate simplices of K
(ii)=⇒(iii) For every symmetric spectrum X and every family {Yi}i∈I of spectra we have a commutative

diagram ⊕
i∈I(Yi ∧L DX)

∼= //

��

(
⊕

i∈IYi) ∧L DX

��⊕
i∈IF (X,Yi) // F (X,

⊕
i∈IYi)

in SHC in which the upper horizontal map is an isomorphism since the derived smash product is a left
adjoint. If X is strongly dualizable, then the two vertical morphism are isomorphism, hence so is the lower
horizontal map. If we take the 0th homotopy group of the lower morphism, exploit that π0 commutes with
sums, and use π0F (X,Z) ∼= SHC(X,Z), we see that X is compact.

(iii)=⇒(iv) The canonical morphism
⊕

n∈ZHZ[n] −→
∏
n∈ZHZ[n] is a π∗-isomorphism, thus an iso-

morphism in SHC. If X is compact, the composite map⊕
n∈Z

[X,HZ[n]] −→ [X,
⊕
n∈Z

HZ[n]]
∼=−→ [X,

∏
n∈Z

HZ[n]]
∼=−→

∏
n∈Z

[X,HZ[n]]

is thus an isomorphism. This means that the group [X,HZ[n]] ∼= Hn(X,Z) is trivial for almost all integers
n, i.e., the integral cohomology of X is concentrated in finitely many dimensions. By the universal coefficient
theorems, the integral homology is then also concentrated in finitely many dimensions.

We show next that Hn(X,Z) is finitely generated for every integer n. We consider a family {Ai}i∈I of
abelian groups and form the sum of the associated Eilenberg-Mac Lane spectra, which is stably equivalent
(even isomorphic as a symmetric spectrum) to the Eilenberg-Mac Lane spectrum of the sum. Since X is
compact, the map⊕

i∈I
Hn(X,Ai) ∼=

⊕
i∈I

[X,HAi]
n −→ [X,

⊕
i∈I

HAi]
n ∼=−→ [X, H(

⊕
i∈I

Ai)]
n ∼=−→ Hn(X,

⊕
i∈I

Ai)

is an isomorphism. We have a commutative diagram⊕
i∈I H

n(X,Ai) //

��

Hn(X,
⊕

i∈I Ai)

��⊕
i∈I Hom(Hn(X,Z), Ai) // Hom(Hn(X,Z),

⊕
i∈I Ai)

in which the lower map is the canonical one. The upper map is an isomorphism and the two horizontal
maps are surjective by the universal coefficient theorem. So the lower map is also surjective. Since this
holds for all families {Ai}i∈I of abelian groups the homology group Hn(X,Z) must be finitely generated.
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The last thing we have to verify is that X is bounded below. By Theorem 8.1 below X is a homotopy
colimit of its connective covers, i.e., there is a distinguished triangle

⊕
n≥0

X〈−n〉 1−shift−−−−→
⊕
n≥0

X〈−n〉 ⊕q−n−−−→ X −→ Σ

⊕
n≥0

X〈−n〉


Since X is compact, Lemma 5.6 (ii) shows that the group [X,X] a colimit of the sequence of groups
[X,X〈−n〉] which implies that the identity morphism of X in the stable homotopy category factors through
the spectrum X〈−n〉 for some n ≥ 0. So X is a retract of a bounded below spectrum, hence it is itself
bounded below.

(iv)=⇒(v) Build X from spheres. Use induction on width of homology.
(v)=⇒(i) We exploit that the functor Σ∞ : SW −→ SHC is fully faithful, compare Theorem 7.2, and

deduce from this that the essential image of the functor Σ∞ is closed under extensions in the stable homotopy
category. This is special case of the following more general fact, which we state as Proposition 7.5 below. The
essential image of the functor Σ∞ is thus a full triangulated subcategory of the stable homotopy category.
Moreover, this essential image containes the sphere spectrum since that is isomorphic to the suspension
spectrum of S0. [closed under retracts] So the essential image of Σ∞ contains the thick subcategory
generated by the sphere spectrum. �

The essential image of a functor is the class of all objects which are isomorphic to an object in the
image of the functor.

Proposition 7.5. Let F : S −→ T be a fully faithful and exact functor between triangulated category. Then
the essential image of F is closed under extensions in T .

Proof. Suppose that

A
f−→ B

g−→ C
h−→ ΣA

is a distinguished triangle in T with A and B in the essential image of F . So there exist objects A′ and B′

of S and isomorphisms α : FA′ −→ A and β : FB′ −→ B in T . Since F is full, there exists a morphism
f ′ : A′ −→ B′ in S such that F (f ′) = β−1fα. We choose a distinguished triangle

A′
f ′−→ B′

g′−→ C ′
h′−→ ΣA′

in S. The image of this triangle is distinguished in T , so the axiom (T3) of a triangulated category provides
a morphism γ : FC ′ −→ C which makes the diagram

FA′
F (f ′) //

α

��

FB′
F (g′) //

β

��

FC ′

γ

��

τ◦F (h′) // Σ(FA′)

Σ(α)

��
A

f
// B g

// C
h

// ΣA

commute, and γ is then an isomorphism since α and β are. Since F commutes with suspensions and
desuspensions (up to natural isomorphism), the essential image of F is closed under suspensions and desus-
pensions. Since triangles can be rotated, this also shows that if A and C are in the essential image of F ,
then so is B, and if B and C are in the essential image of F , then so is A. �

Remark 7.6. Let E be any symmetric spectrum. We can now explain how the E-homology of the dual
X tries to be the E-cohomology of X. We have a morphism

DX ∧L E ∧L X DX∧τ̄E,X−−−−−−−→ DX ∧L X ∧L E εX,S∧E−−−−−−→ S ∧L E = E

where εX,S : DX ∧L X = F (X,S) ∧L X −→ S is the evaluation morphism (3.9) adjoint to the identity.
Adjoining we obtain

DX ∧L E = F (X,S) ∧L E −→ F (X,E) ;
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taking k-th homotopy group and applying the isomorphism πkF (X,E) ∼= SHC(X,Sk ∧L E) we obtain a
natural map

(7.7) Ek(DX) = πk(E ∧L DX) −→ πkF (X,E) ∼= Ek(X) .

By Theorem 7.4 (ii), the morphism DX ∧L E −→ F (X,E) is an isomorphism in SHC for finite spectra X.
Hence (7.7) is an isomorphism for finite spectra X, compare Remark 7.8 below.

Remark 7.8 (Spanier-Whitehead duality). The contravariant duality functor D = F (−,S) preserves com-
pact objects and restricts to a contravariant self-equivalence of SHCc. Since the Spanier-Whitehead category
is equivalent to the category SHCc, the duality should be describable only in terms of finite CW-complexes.
This is in fact possible as follows. [...] This duality on SW is called Spanier-Whitehead duality; historically,
it was one of the origins for the stable homotopy theory. [classical definition for finite CW-complexes; prove
that SW-duality is the restriction of ‘S-duality’ D = F (−,S) to compact objects; S-dual for manifolds via
Thom space of normal bundle]

We draw some consequences of the characterization of compact objects.

Proposition 7.9. The full subcategory SHCc of finite spectra is closed in the stable homotopy category under
derived smash product, derived function spectra and duality. The duality functor restricts to a contravariant
self-equivalence of SHCc.

Proof. To show that the restriction of the duality to SHCc is an self-equivalence it remains to show
that every finite spectrum X is dualizable, i.e., the double duality morphism X −→ DDX, adjoint to
the identity of DX, is an isomorphism. However, the class of spectra X for which this morphism is an
isomorphism is closed under extensions and retract, and it contains the sphere spectrum S. Since the thick
subcategory generated by S coincides with the class of compact spectra, X −→ DDX is an isomorphism
for all compact X. �

An object X in a symmetric monoidal category is called invertible of there exists another object Y such
that X ∧ Y is isomorphic to the unit object. In the stable homotopy category we have Sn ∧L S−n ∼= S, so
Sn is invertible for all integers n. We can now show that SHC has no other invertible objects.

Proposition 7.10. Every invertible object in the stable homotopy category is isomorphic to a sphere spec-
trum Sn for some integer n.

Proof. Suppose X is invertible. Then X ∧L− is an autoequivalence of the stable homotopy category,
and thus it preserves all categorical properties. Since the sphere spectrum S is compact, so is its image
X ∼= X∧LS. By Theorem 7.4, the spectrum X is bounded below and has totally finitely generated homology.
Since X ∧L Y ∼= S the Künneth and universal coefficient theorems imply that the integral homology of X is
concentrated in a single dimension n, where it is free abelian of rank one. Since X is also bounded below,
X is isomorphic to Sn in the stable homotopy category. �

Remark 7.11. The Freyd generating hypothesis is a prominent open problem about the stable homotopy
category. The question is whether the sphere spectrum is a (strong) categorical generator of the homotopy
category of finite spectra. This means the following: given a morphism f : X −→ Y between finite spectra
such that the induced map π∗f on homotopy groups is trivial, is f then necessarily the trivial morphism ?

This notion of generator which asks whether the sphere spectrum detects morphisms should be con-
trasted with the fact that the sphere spectrum is a weak generator, i.e., detects isomorphisms in the stable
homotopy category (not necessarily finite), see Proposition 5.2.

The restriction to finite spectra is clearly necessary in the generating hypothesis: the mod-p Bockstein
morphism β : HZ/p −→ Σ(HZ/p) (see (5.31)) between mod-p Eilenberg-Mac Lane spectra is non-trivial,
but induces the trivial map on stable homotopy groups for dimensional reasons.

Remark 7.12. The nilpotence theorem gives a criterion for when a (shifted) selfmap f : X ∧L Sn −→ X
is nilpotent, i.e., some iterate of f becomes trivial. [expand...]
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8. Connective covers and Postnikov sections

We denote by SHC≥n the full subcategory of the stable homotopy category with objects the (n − 1)-
connected spectra. We recall from Proposition 5.21 that the (n−1)-connected spectra coincide with 〈Sn〉+,
the smallest class of symmetric spectra which contains the n-dimensional sphere spectrum and is closed
under sums (possibly infinite) and ‘extensions to the right’.

The next theorem uses homotopy colimits, which were defined in Definition 5.3 for general triangulated
categories, and we gave a more explicit construction in the stable homotopy category in Proposition 5.11.

Theorem 8.1. Let n be any integer. The inclusion of the full subcategory of (n − 1)-connected spectra
into SHC has a right adjoint 〈n〉 : SHC −→ SHC≥n. The adjunction counit qn : X〈n〉 −→ X is called
the (n − 1)-connected cover of the symmetric spectrum X. There is a unique natural transformation in :
X〈n〉 −→ X〈n − 1〉 satisfying qn−1 ◦ in = qn. Moreover, the morphisms qn : X〈n〉 −→ X express every
symmetric spectrum X as the homotopy colimit of the sequence of morphisms in as n goes to −∞.

Before we prove the theorem we spell out explicitly the main properties of this cover:

• the spectrum X〈n〉 is (n − 1)-connected and for every (n − 1)-connected symmetric spectrum A
the map [A, qn] : [A,X〈n〉] −→ [A,X] is an isomorphism.

• by taking A = Sk for k ≥ n and using that Sk represents the homotopy group functor πk we see
that qn induces isomorphisms of homotopy groups in dimensions n and above.

• The (n− 1)-connected cover qn : X〈n〉 −→ X is a natural transformation,

The above conditions which refer to homotopy groups also characterizes the (n−1)-connected cover. Indeed,
if f : A −→ X is any morphism of symmetric spectra which induces isomorphisms of homotopy groups in
dimensions n and above and such that A is (n−1)-connected, then by the above there is a unique morphism

f̃ : A −→ X〈n〉 in the stable homotopy category satisfying qnf̃ = f , and f̃ is necessarily a π∗-isomorphism,
thus an isomorphism in SHC.

Proof of Theorem 8.1. We let C = {Sk}k≥n be the set of sphere spectra of dimensions at least n.
For a given symmetric spectrum X we apply Proposition 5.14 to the representable functor [−, X]. We obtain
a spectrumX〈n〉 belonging to 〈C〉+ and a morphism qn : X〈n〉 −→ X which induces isomorphisms on [Sk,−]
for all k ≥ n, i.e., isomorphisms on homotopy groups in dimensions n and above. Since 〈C〉+ = 〈Sn〉+ equals
the class of (n− 1)-connected spectra, X〈n〉 is (n− 1)-connected.

Now we claim that for every (n− 1)-connected spectrum A the map [A, qn] : [A,X〈n〉] −→ [A,X] is an
isomorphism. We let Z be any symmetric spectrum such that the homotopy groups πkZ are trivial for all
k ≥ n. We consider the class X of symmetric spectra A with the property that the groups SHC(ΣkA,Z)
are trivial for all k ≥ n. The class X is closed under sums and contains the n-dimensional sphere spectrum
Sn. For a distinguished triangle

A −→ B −→ C −→ ΣA

such that A and B belong to X we apply [Σk(−), Z] and get an exact sequence

[Σk+1A,Z] −→ [ΣkC,Z] −→ [ΣkB,Z] −→ [ΣkA,Z] .

For k ≥ n the first and third group are trivial, hence so is the second, This shows that X is also closed
under extensions to the right, so altogether we have 〈Sn〉+ ⊂ X . By Proposition 5.21 we then know that
[ΣkA,Z] = 0 for every connective spectrum A and k ≥ n.

We choose a distinguished triangle

X〈n〉 qn−−−→ X −→ Z −→ Σ(X〈n〉) .
Since πk(p) is bijective for k ≥ n and πn−1(X〈n〉) = 0, the long exact sequence of true homotopy groups
shows that πkZ = 0 for all k ≥ n. By the above we thus have [ΣA,Z] = 0 = [A,Z] for every (n − 1)-
connected spectrum A. The exact sequence

0 = [ΣA,Z] −→ [A,X〈n〉] [A,qn]−−−−→ [A,X] −→ [A,Z] = 0

then shows that [A, p] is an isomorphism.
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So we now know that the restriction of the functor [−, X] to the category SHC≥0 of connective spectra
is representable, namely by the pair (X〈n〉, qn) constructed above. It is then a formal consequence that
these choices of connective covers qn : X〈n〉 −→ X can be made into a right adjoint to the inclusions, in
a unique way such that qn becomes the adjunction counit. We only show how to define 〈n〉 on morphisms
and omit the remaining verifications. If f : X −→ Y is a morphism in SHC, then [−, f ] : [−, X] −→ [−, Y ]
is a natural transformation of functors, which we can restrict to the full subcategory SHC≥n. On this
subcategory, the two functors are represented by X〈n〉 respectively Y 〈n〉, so by the Yoneda lemma there is
a unique morphism Qnf : X〈n〉 −→ Y 〈n〉 which represents the natural transformation.

Since X〈n + 1〉 is n-connected, thus also (n − 1)-connected, the morphism qn+1 : X〈n + 1〉 −→ X
is adjoint to a morphism in+1 : X〈n + 1〉 −→ X〈n〉 which is in then a natural transformation satisfying
qn ◦ in+1 = qn+1.

It remains to show that every object X of the stable homotopy category is the homotopy colimit of its
n-connective covers as n goes to −∞. We let (X−∞, {ϕn : X〈n〉 −→ X−∞}n≤0) be a homotopy colimit, in

the sense of Definition 5.3, of the sequence X〈0〉 i0−→ X〈−1〉 i−1−−→ · · · . Since the morphism qn : X〈n〉 −→ X
are compatible with the sequence, there is a morphism q : X−∞ −→ X, not necessarily uniquely determined,
satisfying qϕn = qn for all n ≤ 0. For every integer k we have a commutative triangle

colimn−→−∞ πkX〈n〉

πk(qn)n ((QQQQQQQQQQQQQ
πk(ϕn)n // πk(X−∞)

πk(q)yyttttttttt

πkX

Since the sphere spectrum is compact, the horizontal map is an isomorphism by Lemma 5.6 (ii). The
left diagonal map is also an isomorphism since πk(qn) is bijective for n ≤ k. Thus the map πk(q) is an
isomorphism for all k ∈ Z, which proves that q : X−∞ −→ X is an isomorphism in the stable homotopy
category. �

[rk: connective cover via Γ-spaces (ΛX)(S) −→ X]

Remark 8.2. In Section III.7 we will return to the topic of connected covers from a different angle, and in
a much more general context. There we consider a connective operad O of symmetric spectra and construct
connective (i.e., (-1)-connected) covers for algebras over the operad. When O is the initial operad, then
its algebras are just symmetric spectra with no extra structure. In that case the general theory gives a
refinement of the functor X 7→ X〈0〉 as constructed here, namely a connective cover functor on the level of
symmetric spectra which descends to 〈0〉 on the level of the stable homotopy category. For more details we
refer to Example III.7.10.

Instead of ‘killing’ all the homotopy groups of a spectrum below a certain dimension, we can also ‘kill’
the homotopy groups above a certain point. This leads to the following notion of ‘Postnikov section’ which
is somewhat dual to that of a connective cover.

Theorem 8.3. Let n be any integer. The inclusion of the full subcategory of (n + 1)-coconnected spectra
into SHC has a left adjoint Pn : SHC −→ SHC≤n. The adjunction unit pn : X −→ PnX is called the n-th
Postnikov section of the symmetric spectrum X. There is a unique natural transformation jn : PnX −→
Pn−1X satisfying jn ◦ pn = pn−1.

There is a unique morphism δ : PnX −→ Σ(X〈n+ 1〉) such that the diagram

(8.4) X〈n+ 1〉 qn+1−−−→ X
pn−−−→ PnX

δ−−→ Σ(X〈n+ 1〉)
is a distinguished triangle in the stable homotopy category.

Moreover, the morphisms pn : X −→ PnX express every symmetric spectrum X as the homotopy limit
of the tower of morphisms jn as n goes to ∞.

We take the time to spell out the properties of Postnikov sections ‘dual’ to certain properties of con-
nective covers:
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• the spectrum PnX is (n+ 1)-coconnected and for every (n+ 1)-coconnected symmetric spectrum
Y the map [pn, Y ] : [PnX,Y ] −→ [X,Y ] is an isomorphism.

• by the long exact homotopy group sequence of the triangle (8.4) the Postnikov section pn induces
isomorphisms of homotopy groups in dimensions n and below.

• The n-th Postnikov section pn : X −→ PnX is a natural transformation,

The above conditions which refer to homotopy groups also characterizes the n-th Postnikov section. Indeed,
if f : X −→ Y is any morphism of symmetric spectra which induces isomorphisms of homotopy groups in
dimensions n and below and such that Y is (n+1)-connected, then by the above there is a unique morphism

f̃ : PnX −→ Y in the stable homotopy category satisfying f̃pn = f , and f̃ is necessarily a π∗-isomorphism,
thus an isomorphism in SHC.

Proof of Theorem 8.3. We define the spectrum PnX and the Postnikov section pn : X −→ PnX
by choosing a distinguished triangle

X〈n+ 1〉 qn+1−−−→ X
pn−−−→ PnX

δ−−→ Σ(X〈n+ 1〉) .

For every (n+1)-coconnected spectrum Y the groups [X〈n+1〉, Y ] and [Σ(X〈n+1〉), Y ] vanish by is trivial
in SHC by Proposition 5.24 (or rather its (n+ 1)-fold shifted version). The exact sequence

[Σ(X〈n+ 1〉), Y ]
[δ,Y ]−−−→ [PnX,Y ]

[pn,Y ]−−−−→ [X,Y ]
[qn+1,Y ]−−−−−→ [X〈n+ 1〉, Y ]

then shows that the map [pn, Y ] : [PnX,Y ] −→ [X,Y ] is an isomorphism. The remaining arguments to
extend Pn to a functor which is left adjoint to the inclusions and such that pn becomes the adjunction unit
are formal, and ‘dual’ to the corresponding arguments for the connective covers in the proof of Theorem 8.1.
The same goes for the construction of the natural transformation jn : Pn −→ Pn−1.

The triangle (8.4) came with the construction of the Postnikov section. Lemma 5.27, applied to the
composable morphisms qn+1 : X〈n+ 1〉 −→ X and pn : X −→ PnX, shows that the connecting morphism
δ is uniquely determined.

For the last claim we let (X∞, {ϕn : X∞ −→ PnX}n≤0) be a homotopy limit, in the sense of [...] of the

tower · · · j2−→ P1X
j1−→ P0X. Since the morphisms pn : X −→ PnX are compatible with the sequence, there

is a morphism p : X −→ X∞, not necessarily uniquely determined, satisfying ϕnp = pn for all n ≤ 0. For
every integer k, the system of homotopy groups πkPnX eventually stabilizes to πkX, so in the short exact
sequence [ref]

0 −→ lim1
n πk(ΣPnX) −→ πk(holimn PnX) −→ limn πk(PnX) −→ 0 .

the lim1-term is trivial and the inverse limit is isomorphic to πkX, via the Postnikov sections pn : X −→
PnX. Thus the morphism p : X −→ X∞ induces isomorphisms of all homotopy groups, so it is an
isomorphism in the stable homotopy category. �

Remark 8.5. For n ≥ m we have

(X〈m〉)〈n〉 ∼= X〈n〉 ∼= (X〈n〉)〈m〉 and Pn(PmX) ∼= PmX ∼= Pm(PnX)

via instances of the maps pk respectively qk. Moreover

Pn(X〈m〉) ∼= (PnX)〈m〉

and this spectrum has its homotopy groups concentrated in dimensions m through n.

[Exercise: [HA,HB]n = 0 for n < 0. Thus X is coconnective if and only if it belongs to 〈HA〉− [check]]
[Exercise:

X〈n+ k〉 ∼= Sn ∧ ((S−n ∧X)〈k〉) and Pn+kX ∼= Sn ∧ Pk(S−n ∧X).

]
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By Proposition 5.24 (or rather its n-fold suspension) there is a unique morphism i : Sn ∧H(πnX) −→
PnX such that the composite

πnX = π0H(πnX)
Sn∧−−−−−→ πn(Sn ∧H(πnX))

πni−−→ πn(PnX)

coincides with the isomorphism induced by the Postnikov section pn : X −→ PnX. Lemma 5.27 provides a
unique morphism kn : Pn−1X −→ Σn+1H(πnX) such that the triangle

(8.6) Sn ∧H(πnX)
i−−→ PnX

jn−−−→ Pn−1X
kn−−→ Sn+1 ∧H(πnX)

is distinguished. The morphism kn is an element of the cohomology group Hn+1(Pn−1X,πnX) and is
called the n-th k-invariant of the spectrum X. We will see below [...] that for rational spectra X (i.e., all
homotopy groups of X are uniquely divisible) all k-invariants are trivial since X decomposes as a product
of suspended Eilenberg-Mac Lane spectra.
� It is tempting to say that ‘the homotopy type of a spectrum is determined by the sequence of homotopy

groups and k-invariants’. However, this statement has to be treated with care. The caveat is that
the cohomology group in which the n-th k-invariant lies depends on the (n− 1)th Postnikov section which
in turn depends on all the previous k-invariants. So for a fixed sequence of groups, there is no universally
defined group which houses the k-invariant of all spectra which have the given groups as homotopy groups.
[inverse limit problem?]

[exercise: the k-invariant can also be defined as the composite

Pn−1X ∼= Pn−1(PnX)
δ−→ Σ((PnX)〈n+ 1〉) ∼= Σn+1H(πnX)

where δ is the connecting morphism of the distinguished triangle (8.4) for the spectrum PnX and n replaced
by n− 1.]

Remark 8.7. For spectra with additional structure one can typically refine the k-invariants and lift them
from the spectrum cohomology group Hn+1(Pn−1X,πnX) to a ‘refined’ cohomology group which depends
on the type of structure under consideration. We indicate a first example of this phenomenon in the case
of homotopy ring spectra. We intend to return to this later, treating in particular the cases of symmetric
ring spectra (where the appropriate home for the k-invariant are topological derivation groups, closely
related to topological Hochschild cohomology) and commutative ring spectra (where the appropriate theory
is topological André-Quillen cohomology).

Suppose R is a homotopy ring spectrum and M a homotopy R-bimodule. By a derivation of R with
coefficients in M we mean a morphism d : R −→M in the stable homotopy category which satisfies

dµ = d ∧L R + R ∧L d
as morphisms from R ∧L R to M in SHC.

Proposition 8.8. Let R be a connective homotopy ring spectrum and n ≥ 0 such that the homotopy
groups of R are trivial above dimension n. Then the spectrum PnR inherits a unique structure of homotopy
ring spectrum such that the Postnikov section pn : R −→ PnR is a morphism of homotopy ring spectra.
Moreover, the Eilenberg-Mac Lane spectrum H(πn+1R) inherits a natural structure of homotopy R-bimodule
over PnR and the k-invariant kn+1 : PnR −→ Σn+2(H(πn+1R)) is a derivation of PnR with coefficients in
Σn+2(H(πn+1R)). [is connectivity necessary?]

Proof. To simplify notation we write P for the Postnikv section PnR, we writeA for the n-th homotopy
group πnR and we write ∧ instead of ∧L during the course of this proof. [...]

It remains to establish the derivation property of the k-invariant. We do this by comparing the defining
distinguished triangle with another distinguished triangle involving P ∧ P .

We choose a distinguished triangle

ΣnHA ∧ ΣnHA
qn∧qn−−−−→ R ∧R g−−→ C −→ Σ(ΣnHA ∧ ΣnHA) .

The spectrum ΣnHA∧ΣnHA is (2n− 1)-connected and R has trivial homotopy groups above dimenion n,
the composite of qn ∧ qn with the multiplication map µ : R ∧ R −→ R is trivial. So there is an extension
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[unique?] µ̄ : C −→ R such that µ̄g = µ. Since the composite pn−1qn : ΣnHA −→ P is trivial, so is the
map

(pn−1qn) ∧ (pn−1qn) = (pn−1 ∧ qn−1)(qn ∧ qn) : ΣnHA ∧ ΣnHA −→ P ∧ P ,

so there is a morphism λ : C −→ P ∧ P such that λg = pn−1 ∧ pn−1.
We claim that µPλ = pn−1µ̄ as maps from C to P in SHC. Indeed, this relation holds after composition

with g : R ∧R, and the defining distinguished triangle for C gives an exact sequence

SHC(Σ(ΣnHA ∧ ΣnHA), P ) −→ SHC(C,P ) −→ SHC(R ∧R,P ) .

The first group is zero [...]
Now we consider the diagram

(P ∧ ΣnHA) ∨ (ΣnHA ∧ P ) //

act

��

C
λ //

µ̄

��

P ∧ P
(P∧k,k∧P ) //

µ

��

Σ((P ∧ ΣnHA) ∨ (ΣnHA ∧ P ))

Σ(act)

��
ΣnHA qn

// R pn−1

// P
k

// Σn+1HA

We claim that: (a) this diagram commutes and (b) the upper triangle is distinguished. [do we need (b)?]
[use (a) to define the action map? would need to show associativity and unitality...] �

Example 8.9. The first k-invariant of the sphere spectrum S is a morphism k1(S) ∈ H2(HZ,Z/2) (where
we identify P0S with HZ and the first stable stem πs

1
∼= π1S with the group Z/2). This k-invariant is

non-zero [justify] and is in fact the pullback of the Steenrod operation Sq2 ∈ H2(HZ/2,Z/2) along the
projection morphism HZ −→ HZ/2.

The second (and first non-trivial) k-invariant of the connective complex K-theory spectrum ku is a
morphism k2(ku) ∈ H2(HZ,Z) (where we identify P0S with HZ and π2ku with Z). This k-invariant is
non-zero [justify] and is in fact equal to β ◦ k1(S) where β : HZ/2 −→ Σ(HZ) is the Bockstein operator

(see Proposition 5.28) associated to the extension Z ·2−→ Z −→ Z/2. The equation k2(ku) = β ◦ k1(S) is a
way of rephrasing the Toda bracket relation u ∈ 〈1, η, 2〉 (modulo 2u) in π2(ku) (compare I.2.5).

For an odd prime p the first non-trivial homotopy group of the localized sphere spectrum S(p) in positive
dimension is a copy of Z/p generated by the class α1 in dimension 2p−3. So the first potentially non-trivial
k-invariant of S(p) is a morphism k2p−3(S(p)) ∈ H2p−2(HZ(p),Z/p). As in the case p = 2, this k-invariant is

non-zero [justify] and is in fact the pullback of the Steenrod operation P 1 ∈ H2p−2(HZ/p,Z/p) along the
projection morphism HZ(p) −→ HZ/p.

The k-invariants k1(S), k2p−3(S(p)) and k2(ku) arise from symmetric ring spectra, so they are in fact
derivations by Proposition 8.8. The only derivations (up to units) in the mod-p Steenrod algebra Ap
are the Milnor elements Qn ∈ H2pn−1(HFp,Fp). We have Q0 = β, the mod-p Bockstein, and the other

classes are inductively defined as commutators Qn+1 = [Qn, P
pn ]. These derivations are all realized as

k-invariants of the suitable symmetric ring spectra, namely the connective Morava K-theory spectra k(n)
(see Example I.6.63), i.e., we have Qn = k2pn−2(k(n)). [check this]

9. Localization and completion

9.1. Localization at a set of primes. The localization of an abelian group at a set of prime numbers
has an analogue in stable homotopy theory, also called ‘localization’. With this tool, and the completion
that we discuss below, one can often study a problem ‘one prime at a time’.

To fix notation and language, we quickly review the localization of abelian groups. For every set S of
prime numbers we define a subring ZS of the ring of natural numbers by

ZS =
{a
b
∈ Q | b has only prime factors in S

}
.

For example, we have

Z∅ = Z , Zall primes = Q and Zall\{p} = Z(p) =
{a
b
| p does not divide b

}
.
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Every subring of Q is of the form ZS for a unique set of primes S: given a subring R ⊂ Q, then R = ZS for
the set S defined by S = {p | 1

p ∈ R}.
For a subring R ⊂ Q, the functor of abelian groups A 7→ R⊗A is exact. Since the multiplication map

R⊗R −→ R is an isomorphism, the functor is idempotent with respect to the natural map

A −→ R⊗A , a 7−→ 1⊗ a .
This construction is called R-localization. An abelian group A is called R-local if the following equivalent
conditions hold:

(i) The group A has the structure of an R-module (necessarily unique).
(ii) The map A −→ R⊗A is bijective.
(iii) For every prime p with 1

p ∈ R, multiplication by p on A is bijective.

Example 9.1. • Every abelian group is Z-local.
• A is Z(p)-local (‘p-local’) if and only if multiplication by q is bijective on A for all primes q 6= p.
• A is Q-local (‘rational’) if and only if A is uniquely divisible, i.e., for all a ∈ A and n ∈ N+ there

is a unique b ∈ A such that a = n · b.
• Any finitely generated abelian group is a finite direct sum copies of Z and Z/qm for various primes
q and m ≥ 1. Such a sum is p-local if and only if only Z/pm’s occur. The p-localization functor
turns every copy of Z into a copy of Z(p), it leaves all summands of the form Z/pm untouched,
and it kills summands of the form Z/qm for primes q 6= p.

Moore spectra were introduced and discussed in Section 6.3. We recall that a Moore spectrum for an
abelian group A is a connective symmetric spectrum SA equipped with an isomorphism H0(SA,Z) ∼= A
such that the integral homology groups of SA in dimensions different from 0 are trivial. The isomorphism
is part of the data, but usually not mentioned explicitly.

Theorem 9.2. Let R be a subring of Q and SR a Moore spectrum for R.

(i) For every symmetric spectrum X and integer k the natural map

R⊗ πkX −→ πk(SR ∧L X)

induced by the homotopy group pairing is an isomorphism. Hence a morphism f : X −→ Y is an
SR-equivalence if and only if the map R⊗ πkf is an isomorphism for all integers k.

(ii) For a symmetric spectrum X the following are equivalent.
(a) All homotopy groups of X are R-local.
(b) For every morphism f : A −→ B of symmetric spectra such that

R⊗ π∗(f) : R⊗ π∗A −→ R⊗ π∗B
is an isomorphism, the induced map SHC(f,X) : SHC(B,X) −→ SHC(A,X) of morphisms in
the stable homotopy category is a bijection.

(c) For every symmetric spectrum C such that R⊗ π∗C is trivial the morphism group SHC(C,X) is
trivial.

(d) The endomorphism ring SHC(X,X) in the stable homotopy category is an R-algebra.

If the homotopy groups of X are bounded below, then conditions (a)-(d) above are also equivalent to the
condition that the integral spectrum homology groups H∗(X,Z) are R-local.

As we shall see in Proposition 9.19 below, R-localization is a special case of E-localization (or Bousfield
localization), namely when we take E as a Moore-spectrum SR. More precisely, part (i) of the Theorem
above says that the Hurewicz map X −→ SR∧LX is an SR-localization. So we could add the condition‘X
is SR-local’ to the above list of equivalent conditions.

A morphism f : A −→ B such that R ⊗ π∗f : R ⊗ π∗A −→ R ⊗ π∗B is an isomorphism is called
an R-equivalence. A spectrum C such that R ⊗ π∗C = 0, or (equivalently) such that SR ∧L X is stably
contractible is called R-acyclic. Instead of ‘SR-localization’, we simply say ‘R-localization’ and write XR

for SR ∧L X. For a prime p we say ‘p-local’ instead of Z(p)-local and write X(p) for the p-localization
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SZ(p) ∧L X. Finally, we use the term ‘rational’ as synonymous for Q-local and denote the rationalization
by XQ.

Remark 9.3. The class of R-local spectra has various closure properties. Direct sums and products of R-
local abelian groups are again R-local. Since homotopy groups take sums to sums and products to product,
any sum or product of R-local spectra is again R-local.

A spectrum X is R-local if and only if the suspension ΣX is R-local. The class of R-local abelian
groups is closed under subgroups, quotient groups and extensions. So if two out of three groups in a long
exact sequence are R-local, so are the remaining groups. Hence in any distinguished triangle

A
f−−→ B

g−−→ C
h−−→ ΣA

if two of the spectra A, B and C are R-local, so is the third.
If X is R-local, then for any other spectrum Y , the smash product X ∧L Y and the function spectra

F (X,Y ) and F (Y,X) are also R-local. Indeed, if q is any prime which is invertible in R, then q · IdX is an
automorphism of X. Now the degree q maps of X ∧L Y , F (X,Y ) and F (Y,X) are obtained from q · IdX by
smashing with Y or taking functions into respectively out of Y . So q acts invertibly on the spectra X ∧L Y ,
F (X,Y ) and F (Y,X), and so all three are R-local.

Example 9.4. • Every symmetric spectrum is Z-local. (This is not to be confused with the class of
HZ-local spectra, compare Remark 9.24).
• If A is an R-local abelian group, then the Eilenberg-Mac Lane spectrum HA is R-local.
• If X is a spectrum and p a prime, we denote by X/p the mapping cone of an endomorphism of X

which represents p · IdX in SHC(X,X). Equivalently, we could define X/p as S/p∧LX, the derived smash
product of a mod-p Moore spectum with X. The homotopy groups of X/p sit in a long exact sequence

· · · −→ πmX
×p−−−→ πmX −→ πm(X/p)

δ−−→ πm−1X
×p−−−→ πm−1X −→ · · ·

which breaks up into short exact sequences

0 −→ Z/p⊗ πmX −→ πm(X/p)
δ−−→ p{πm−1X} −→ 0 .

The groups Z/p⊗ πmX and p{πm−1X} are Fp-vector spaces, so the homotopy group πm(X/p) is killed by
multiplication by p2; hence the spectrum X/p is p-local. As a special case of this, the Moore spectrum S/p
is p-local.
• The connectivity assumption in part (c) of the above theorem is important. Indeed, for the mapping

telescope of the Adams map v : S/p −→ S/p[−2p+ 2] (p an odd prime) we have

H∗(v
−1
1 S/p,Z) = 0 ,

as in Example 6.31. As trivial groups, the integral spectrum homology groups of v−1
1 S/p are in particular

rational. But the homotopy π∗(v
−1
1 S/p) is a nontrivial graded Fp-vector space, so it is not rational.

9.2. Rational stable homotopy theory. We shall now see that the rational stable homotopy cate-
gory, i.e., the full subcategory of SHC consisting of rational spectra, is very easy to describe. As above, an
abelian group is rational if it admits the structure of a Q-vector space (necessarily unique). Equivalently,
A is rational if and only it is uniquely divisible, i.e., for all a ∈ A and n > 0 there is a unique b ∈ A
such that a = n · b. We call a symmetric spectrum rational if all its homotopy groups are rational. By
Theorem 9.2, a spectrum X is rational if and only if it is SQ-local, where SQ is a Moore spectrum for the
group Q. We recall from Example 6.36 that the Eilenberg-Mac Lane spectrum HQ is a possible choice for
the rational Moore spectrum SQ. So the rationalization of X, denoted XQ, is given by HQ∧LX, or by the
Q-linearization Q[X].

Theorem 9.6 below shows that a rational spectrum is completely determined by its homotopy groups:
the homotopy group functor is an equivalence from rational stable homotopy category to graded vector
spaces over Q. In particular, two rational spectra are stably equivalent if and only if the homotopy groups
are abstractly isomorphic. The key ingredient for all this is Serre’s calculation of homotopy groups of
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spheres modulo torsion (Theorem 1.9 of Chapter I). The integral analogue of this is not at all true, i.e., the
homotopy group functor

π∗ : SHC −→ (graded abelian groups)

is very far from being an equivalence for general spectra.
Let V∗ = {Vn}n∈Z be a Z-graded abelian group. We defined the generalized Eilenberg-Mac Lane spec-

trum associated to V∗ as the product of suspended Eilenberg-Mac Lane spectra for the groups Vn,

HV∗ =
∏
n∈Z

Σn(HVn) .

Here the suspension and the product are taken in the stable homotopy category; this particular product
is isomorphic in SHC to the sum of the suspended Eilenberg-Mac Lane spectra. Then there is a natural
isomorphism

(9.5) πk(HV∗) ∼=
∏
n∈Z

πk(Σn(HVn)) ∼= Vk

so that the generalized Eilenberg-Mac Lane spectrumHV∗ realizes the graded abelian group V∗ on homotopy.
Now we can show the main result of this section:

Theorem 9.6. (i) Let V∗ be a Z-graded Q-vector space and A a symmetric spectrum. Then the map

π∗ : [A,HV∗] −→ Homgr.Ab(π∗A, V∗)

(f : A −→ HV∗) 7−→ (π∗f : π∗A −→ π∗(HV∗) ∼= V∗)

is an isomorphism of abelian groups.
(ii) Every rational spectrum is a generalized Eilenberg-Mac Lane spectrum. More precisely, if A is a

symmetric spectrum with rational homotopy groups, then there exists a unique homotopy class of
morphism A −→ H(π∗A) which realizes the isomorphism π∗A ∼= π∗H(π∗A) of (9.5) on homotopy
groups.

(iii) The homotopy group functor

π∗ : SHCQ −→ (graded Q-vector spaces)

is an equivalence from the rational stable homotopy category to the category of graded Q-vector spaces.
An inverse functor is given by the generalized Eilenberg-Mac Lane spectra.

Proof. (i) We start with the special case A = S of the sphere spectrum. Since the sphere spectrum
represents π0 (Example 1.15), the group [S, HV∗] is isomorphic to π0(HV∗). Thus [S, HV∗] is trivial for
n 6= 0 and isomorphic to V0 for n = 0. The right hand side

Homgr.Ab(π∗S, V∗) =
∏
n∈Z

HomAb(πnS, Vn)

is isomorphic to HomAb(π0S, V0) since πnS is a torsion group for n 6= 0 (by Serre’s theorem I.1.9) whereas
Vn is rational. Since π0S is free abelian generated by the fundamental class, the group Homgr.Ab(π∗S, V∗)
is altogether isomorphic to V0, via evaluation at the fundamental class of S. So the claim is true for the
sphere spectrum.

We let X denote the class of symmetric spectra A with the property that the map π∗ : [A,HV∗] −→
Homgr.Ab(π∗A, V∗) is an isomorphism. By the above the sphere spectrum S belongs to X . Moreover, the
class X is closed under sums and extensions in distinguished triangles. The latter needs that every rational
abelian group is injective, i.e., the functor Homgr.Ab(−, V∗) is exact. Since the spectrum S generates the
stable homotopy category (see Proposition 5.16), the class X contains all spectra, which proves (i).

Part (ii) follows by applying part (i) to V∗ = π∗A. (iii) We have already seen that every graded Q-vector
space is isomorphic to an object in the image of the functor π∗ (namely the generalized Eilenberg-Mac Lane
spectrum). So it remains to show that π∗ is fully faithful, i.e., that the map

π∗ : SHCQ(X,Y ) −→ Homgr-Q-vs(π∗X,π∗Y )
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is an isomorphism for all rational spectra X and Y . By (ii) we can assume that Y is a generalized
Eilenberg-Mac Lane spectrum, i.e., Y = HV∗ for a graded Q-vector space V∗. But then part (i) give the
fully-faithfulness. So the functor π∗ is an equivalence of categories. �

Part (ii) of the previous theorem is very particular for rational spectra. A general spectrum is not a
generalized Eilenberg-Mac Lane spectrum. For example, the sphere spectrum S, the mod-p Moore spectrum
SZ/p or the real and complex K-theory spectra KO and KU are not stably equivalent to any generalized
Eilenberg-Mac Lane spectrum.

Remark 9.7. By Proposition 6.30 (iii) the stable Hurewicz homomorphism

πnX −→ Hn(X,Z)

is a rational isomorphism for every spectrum X and every integer n, i.e., it becomes an isomorphism after
tensoring both sides with the group Q of rational numbers.

Now suppose that X is a spectrum whose integral spectrum homology groups H∗(X,Z) are trivial. If
X is not connective, then this need not imply that X is stably trivial, but it does have consequences for
the homotopy groups of X. Since the stable Hurewicz morphism is a rational isomorphism, the rationalized
stable homotopy groups Q⊗π∗X are trivial. This is equivalent to the property that every homotopy element
is torsion, i.e., annihilated by multiplication by some positive natural number.

In Example 6.31 we have seen this phenomenon happen; the mapping telescope v−1S/p of the Adams
map on the mod-p Moore spectrum has trivial spectrum homology, but it is not stably contractible. In
that example, all homotopy groups are Fp-vector spaces, so in particular annihilated by multiplication by p.
[move this earlier ?]

9.3. Completion. We let SQ/Z denote the mapping cone of the unit map S −→ HQ; by [...] this
construction comes with a distinguished triangle

S ι−−→ HQ q−−→ SQ/Z δ−−→ S1 .

Since S and HQ are Moore spectra for the groups Z respectively Q and the unit map ι : S −→ HQ induces
the monomorphism on homology, the mapping cone SQ/Z is a Moore spectrum for the group Q/Z. We
define the profinite completion functor

(−)∧ : SHC −→ SHC
as the derived function spectrum

X∧ = F (SQ/Z,ΣX) .

A natural morphism X −→ X∧ in the stable homotopy category is obtained as the adjoint of the morphism

X ∧L SQ/Z Id∧δ−−−→ X ∧L S1 ∼= ΣX

where δ is the connecting morphism.
For a fixed prime p we similarly define the p-completion of X as

X∧p = F (S/p∞,ΣX) .

where S/p∞ is a Moore spectrum for the group Z/p∞, which can either be defined as the colimit of the
groups Z/pn under multiplication by p maps or, equivalently, as the factor group Z[1/p]/Z or, equivalently,
as the p-power torsion subgroup of Q/Z. The p-adic completion comes with a natural map X −→ X∧p
defined similarly as for the profinite completion.

We add a remark about the uniqueness of the completions constructions. The group Q/Z and the
groups Z/p∞ for any prime p are 2-divisible. So by Theorem 6.43 the corresponding Moore spectra SQ/Z
and S/p∞ are unique up to preferred isomorphism in the stable homotopy category.

Remark 9.8. The p-completion X∧p of every spectrum is p-local. Indeed, the Moore spectrum S/p∞ is con-
nective and has p-local integral homology, so it is p-local. Thus the function spectrum X∧p = F (S/p∞,ΣX)
is p-local, compare Remark 9.3.
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Recall that we denote by X −→ XQ the rationalization of a spectrum, where XQ = HQ ∧X.

Theorem 9.9. Let X be a symmetric spectrum.

(i) The square

X //

��

X∧

��
XQ // (X∧)Q

is homotopy cartesian, where the vertical maps are rationalizations and the horizontal maps are (ob-
tained from) completions.

(ii) The map

X∧ −→
∏

p prime

X∧p

whose p-component is obtained from the morphism SZ/p∞ −→ SQ/Z realizing the inclusion Z/p∞ −→
Q/Z on homology by applying F (−,ΣX) is an isomorphism in SHC.

(iii) The p-completion X∧p is a homotopy limit in SHC of the tower

· · · F (ψ3,ΣX)−−−−−−−−→ F (S/p3,ΣX)
F (ψ2,ΣX)−−−−−−−−→ F (S/p2,ΣX)

F (ψ1,ΣX)−−−−−−−−→ F (S/p,ΣX)

where ψn : S/pn −→ S/pn+1 realizes the map p · − : Z/pn −→ Z/pn+1 on integral homology.
(iv) There is a natural short exact sequence of abelian groups

(9.10) 0 −→ Ext(Z/p∞, πkX) −→ πk(X∧p ) −→ Hom(Z/p∞, πk−1X) −→ 0 .

If we combine parts (i) and (ii) of the previous theorem we obtain a homotopy cartesian square

X //

��

∏
p primeX

∧
p

��

XQ //
(∏

p prime X
∧
p

)
Q

which is called the arithmetic square. This square encodes the way in which a spectrum can be assembled
from rational information and profinite information at each prime. For example on homotopy groups the
square gives rise to a long exact sequence:

· · · −→ πkX −→ Q⊗ πkX ⊕
∏
p

πk(X∧p ) −→ Q⊗

(∏
p

πk(X∧p )

)
−→ πk−1X −→ · · ·

Proof of Theorem 9.9. (i) The triangle

HQ q−−→ SQ/Z δ−−→ S1 −Σι−−−−→ ΣHQ

is a rotation of the defining triangle for SQ/Z, and thus distinguished. The functor F (−, X) and rational-
ization are exact, so we have a commutative diagram of distinguished triangles

F (ΣHQ,ΣX) //

∼=
��

F (S1,ΣX)
F (δ,ΣX) //

��

F (SQ/Z,ΣX)

��

// ΣF (HQ, X)

∼=
��

F (ΣHQ,ΣX)Q // F (S1,ΣX)Q
F (δ,ΣX)Q

// F (SQ/Z,ΣX)Q // ΣF (ΣHQ,ΣX)Q

The derived function spectrum F (ΣHQ,ΣX) is rational since ΣHQ is (compare Remark 9.3), so it is
already rational and so the left and right vertical morphisms are stable equivalences. Thus the square in
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the middle is homotopy cartesian. Via the isomorphism X ∼= F (S1,ΣX) adjoint to X ∧ S1 ∼= ΣX, the
middle square becomes the square in question.

(ii) We start from the algebraic fact that the sum of the inclusions Z/p∞ −→ Q/Z is an isomorphism⊕
p prime

Z/p∞ −→ Q/Z .

So if φp : S/p∞ −→ SQ/Z is a morphism that realizes the inclusion on H0(−,Z), then the map∑
φp :

∨
p prime

S/p∞ −→ SQ/Z

is a stable equivalence. Hence the induced morphism of derived function spectra

X∧ = Hom(SQ/Z,ΣX) −→ Hom(
∨

p prime

S/p∞,ΣX) ∼=
∏

p prime

X∧p

is a stable equivalence.
(iii) We let ψn : S/pn −→ S/pn+1 be a morphism in the stable homotopy category that realizes

multiplication by p · − : Z/pn −→ Z/pn−1 on 0-th homology. Then any homotopy colimit of the sequence

S/p ψ1−−−→ S/p2 ψ2−−−→ S/p3 ψ3−−−→ · · ·

is a Moore spectrum for the group Z/p∞ (because that group is a colimit of the groups Z/pn under
multiplication by p maps). So the spectrum X∧p = F (S/p∞,ΣX) is a homotopy inverse limits [ref] of the
tower of the spectra

· · · F (ψ1,ΣX)−−−−−−−−→ F (S/p3,ΣX)
F (ψ2,ΣX)−−−−−−−−→ F (S/p2,ΣX)

F (ψ1,ΣX)−−−−−−−−→ F (S/p,ΣX) .

(iv) In (6.42) we derived a short exact sequence for morphisms in SHC out of a Moore spectrum for
an arbitrary abelian group. For the abelian group A = Z/p∞ and the spectrum S1−k ∧X this becomes a
short exact sequence

0 −→ Ext(Z/p∞, π1(S1−k ∧X)) −−→ [S/p∞,S1−k ∧X]
π0−→ Hom(Z/p∞, π0(S1−k ∧X)) −→ 0 .

Modulo the identifications πn(S1−k ∧X) ∼= πn−k+1X and [S/p∞,S1−k ∧X] ∼= πkF (S/p∞,ΣX) = πk(X∧p ),
this is the desired exact sequence. �

Remark 9.11. Beause the mod-pn Moore spectra are ‘self-dual’, part (iii) of the previous Theorem 9.9
can be rephrased in terms of the smash products S/pn ∧X instead of the function spectra F (S/pn,ΣX).
Indeed, because of the isomorphism (7.7)

Hk(DX,Z) −→ Hk(X,Z) ,

the suspension Σ(DS/pn) of the Spanier-Whitehead dual of the mod-pn Moore spectrum is also a mod-pn

Moore spectrum. More precisely, we can choose isomorphism

jn : S/pn −→ Σ(DS/pn)

in SHC such that the composite

ρn : S/pn+1 jn+1−−−−→ Σ(DS/pn+1)
ΣDψn−−−−−→ Σ(DS/pn)

j−1
n−−−→ S/pn

realizes the reduction Z/pn+1 −→ Z/pn on homology. Then for every symmetric spectrum X the composite

S/pn ∧X −→ ΣF (S/pn,S) ∧X
ψS/pn,X−−−−−−→ F (S/pn,ΣX)
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is an isomorphism such that the squares

S/pn+1 ∧X

∼=
��

ρn∧X // S/pn ∧X

∼=
��

F (S/pn+1,ΣX)
F (ψn,ΣX)

// F (S/pn,ΣX)

commute in SHC. So the p-completion X∧p is also a homotopy limit of the tower

· · · ρn∧X−−−−−→ S/pn ∧L X ρn−1∧X−−−−−−−→ · · · ρ2∧X−−−−−→ S/p2 ∧L X ρ1∧X−−−−−→ S/p ∧X .

In this form the result very much resembles the algebraic p-completion, where S/pn, smash product and
homotopy limit are replaced, respectively, by Z/pn, tensor product and category limit.

Remark 9.12. For an abelian B, the group Ext(Z/p∞, B) that occurs in the short exact sequence (9.10)
is sometimes called the Ext p-completion of B. In general, there is a natural short exact sequence

(9.13) 0 −→ lim1 Hom(Z/pn, B) −→ Ext(Z/p∞, B) −→ B∧p −→ 0 ,

so in particular, the Ext p-completion surjects onto the algebraic p-completion. Indeed, the short exact
sequence of abelian groups

0 −→
⊕
n≥1

Z/pn 1−sh−−−−→
⊕
n≥1

Z/pn −→ Z/p∞ −→ 0

induces a long exact sequence of Ext groups

0 −→ Hom(Z/p∞, B) −→
∏
n≥1

Hom(Z/pn, B)
1−sh−−−−→

∏
n≥1

Hom(Z/pn, B)

−→ Ext(Z/p∞, B) −→
∏
n≥1

Ext(Z/pn, B)
1−sh−−−−→

∏
n≥1

Ext(Z/pn, B) −→ 0 ,

where we used that Hom(−, B) and Ext(−, B) take sums to products. Kernel and cokernel of the ‘1− sh’
map are the limit respectively derived limit, and we deduce a short exact sequence

0 −→ lim1 Hom(Z/pn, B) −→ Ext(Z/p∞, B) −→ lim Ext(Z/pn, B) −→ 0 .

The group Ext(Z/pn, B) is canonically isomorphic to B/pnB, so the inverse limit on the right hand side is
isomorphic to the p-completion B∧p .

If the homotopy groups of a symmetric spectrum X are finitely generated, then the terms in the short
exact sequence (9.10) for the homotopy groups of the p-completion X∧p simplify as follows. Indeed, if an
abelian group B is finitely generated, then the group Hom(Z/pn, B) is trivial for all sufficiently large n, so the
inverse limit and the derived limit over this sequence both vanish. Hence the map Ext(Z/p∞, B) −→ B∧p
from the Ext p-completion to the p-completion is an isomorphism and the short exact sequences (9.10)
and (9.13) reduces to an isomorphism

πk(X∧p ) ∼= (πkX)∧p
between the homotopy theoretic and the algebraic completions.

9.4. Bousfield localization. In this section we discuss a more general kind of localization, namely
localization at a generalized homology theory, also known as ‘Bousfield localization’. Bousfield localization
is a device to isolate the properties of a spectrum which ‘are seen by’ a fixed spectrum E.

Bousfield localization at a homology theory is a special case of localization in triangulated categories.
So we discuss this more general localization first. We let T be a triangulated category with infinite sums.
We recall that a localizing subcategory of T is a triangulated subcategory C that is closed under arbitrary
sums.

Definition 9.14. Let T be a triangulated category with infinite sums and C a localizing subcategory of T .
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• An object L of T is C-local if the group T (A,L) is trivial for all A in C.
• A morphism f : A −→ B in T is a C-equivalence if the some (hence any) cone of f belongs to C.
• A morphism a : A −→ L in T is a C-localization if a is a C-equivalence whose target L is C-local.

In this generality, localizations need not always exist.

Proposition 9.15. Let T be a triangulated category with infinite sums and C a localizing subcategory of T .

(i) An object X of T is C-local if and only if for every C-equivalence g : B −→ C the induced map

T (g,X) : T (C,X) −→ T (B,X)

is bijective.
(ii) An object X of T is C-local if and only if the suspension ΣX is C-local.
(iii) Let

A −→ B −→ C −→ ΣA .

be a distinguished triangle in T . If two of the objects A,B and C are T -local, so is the third.
(iv) Every product of C-local objects is again C-local.
(v) Every homotopy limit of a tower of C-local objects is C-local.
(vi) Every C-equivalence between C-local objects is an isomorphism.

(vii) Every C-localization a : X −→ L is initial among morphisms in T from X to C-local object.
(viii) Every C-localization a : X −→ L is terminal among C-equivalences out of X.
(ix) If a : X −→ L and a′ : X −→ L′ are C-localizations, then there is a unique morphism f : L −→ L′

such that fa = a′, and f is an isomorphism.

Proof. (i) Let X be an object of T such that for every C-equivalence g the map T (g,X) is bijective.
If C is any object of C, then C is a cone of the zero morphism z : 0 −→ C, so this zero morphism is a
C-equivalence and the induced map

T (z,X) : T (C,X) −→ T (0, X)

is bijective. Hence the group T (C,X) is trivial, and so X is C-local.
Conversely, suppose that X is C-local. Given a C-equivalence g, we choose a distinguished triangle

A
f−−→ B

g−−→ C
h−−→ ΣA .

Then ΣA is a cone of g, so ΣA and A, belong to C (by definition of C-equivalence). By Proposition 2.10 (i)
the sequence of abelian groups

T (ΣA,X)
T (h,X)−−−−−−→ T (C,X)

T (g,X)−−−−−−→ T (B,X)
T (f,X)−−−−−−→ T (A,X)

is exact. If X is C-local, then the groups T (ΣA,X) and T (A,X) vanish, so the map T (g,X) is bijective.
(ii) Since C is a triangulated subcategory of T , and object X belongs to C if and only if ΣX does. If

ΣL is C-local, then for every X in C we have

T (X,L) ∼= T (ΣX,ΣL) = 0 .

So L is C-local. If conversely L is C-local, then for every X in C we have

T (X,ΣL) ∼= T (Σ−1X,L) = 0 .

So ΣL is C-local.
(iii) We start with the case where A and B are C-local. For every object X of T we have an exact

sequence

T (X,ΣA) −→ T (X,C) −→ T (X,B) .

If X belongs to C, then since B and ΣA (by (ii)) are C-local, the two outer groups are trivial, hence so is
the group T (X,C). So C is C-local. The other two cases can be proved similarly, or can be reduced to the
previous case by shifting the triangle and using (ii).
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(iv) Given a family {Li}i∈I of C-local objects and any X in C we consider the canonical map

T (X,
∏
i∈I

Li) −→
∏
i∈I
T (X,Li) .

This map is bijective by the universal property of a product, and the target is trivial by assumption. So
the source is trivial, which means that the product

∏
i∈I Li is C-local.

(v) We consider a tower {fi : Xi −→ Xi−1}i≥1 of morphisms in T such that all Xi are C-local. By
definition the homotopy limit of the tower participates in a distinguished triangle

holimnXn −→
∏
n≥0

Xn
1−f−−−→

∏
n≥0

Xn −→ Σ(holimnXn) .

By part (iv) the product of the Xn is C-local, so the homotopy limit is C-local by part (iii).
(vi) Let f : L −→ L′ be a C-equivalence between C-local objects. By (ii) the two maps

T (f, L) : T (L′, L) −→ T (L,L) and T (f, L′) : T (L′, L′) −→ T (L,L′)

are bijective. So there is a unique morphism g : L′ −→ L such that gf = IdL. The two endomorphisms fg
and IdL′ then have the same image under T (f, L′), so fg = IdL′ . So g is inverse to f .

(vii) If L′ is any C-local object, then T (a, L′) : T (L,L′) −→ T (X,L′) is bijective. So for any morphism
f : X −→ L′ in T there is a unique morphism b : L −→ L′ such that ba = f .

(viii) If f : X −→ Y is a C-equivalence, then T (f, L) : T (Y,L) −→ T (X,L) is bijective. So there is a
unique morphism b : Y −→ L such that bf = a.

(ix) By (v) (or by (vi)) there is a unique morphism f : L −→ L′ satisfying fa = a′. Reversing the roles
of a and a′ gives a unique mrphism g : L′ −→ L such that ga′ = a.

Since L is C-local and a a C-equivalence, the map T (a, L) : T (L,L) −→ T (X,L) is bijective. But gf
and the identity are two endomorphisms of L satisfying (gf)a = ga′ = a = IdL a, so gf = IdL. Reversing
the roles of a and a′ gives fg = IdL′ . �

We recall from Definition 6.1 that a symmetric spectrum E defines a generalized homology theory E∗
via

Ek(X) = πk(E ∧L X) ,

where X is a symmetric spectrum and k an integer.

Definition 9.16. Let E be a symmetric spectrum. A symmetric spectrum X is E-acyclic if E ∧L X is
trivial, or equivalently, if the E-homology groups Ek(X) are trivial for all integers k.

The class of E-acyclic symmetric spectra is a localizing subcategory of the stable homotopy category
[...], so we can talk about localization, in the sense of Definition 9.14, with respect to the class of E-acyclic
spectra.

Definition 9.17. Let E be a symmetric spectrum. A symmetric spectrum L is E-local if for every E-acyclic
symmetric spectrum A the group SHC(A,L) is trivial. A morphism f : A −→ B is an E-equivalence if the
induced map Ek(f) : Ek(A) −→ Ek(B) on E-homology groups is an isomorphism for every integer k. A
morphism a : A −→ L in the stable homotopy category is an E-localization if a is an E-equivalence whose
target L is E-local.

By the very definition of E-homology, f : X −→ Y is an E-equivalence if and only if the morphism
E∧L f : E∧LX −→ E∧LY induces isomorphisms on all true homotopy groups, i.e., if and only if E∧L f is
a stable equivalence. Derived smash product with E commutes with taking mapping cones, so f : X −→ Y
is an E-equivalence if and only if the mapping cone C(f) is E-acyclic. So the E-equivalences in the sense
of the previous definition are precisely the equivalences, in the sense of Definition 9.14 with respect to the
class of E-acyclics.

E-localizations always exist, but we shall defer a construction to a later chapter [ref], where we treat it
as part of an ‘E-local model structure’ for symmetric spectra. In this section we investigate properties of
E-localization and reinterpret it for certain specific E. The E-localization is often referred to as Bousfield
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localization with respect to E because Bousfield was the first to construct E-localizations for arbitrary
spectra.

We will eventually discuss two generalizations of the E-localization above. In [...] we discuss Bousfield
localizations in general triangulated categories, and in [...] we ‘lift’ E-localizations to categories of structured
symmetric spectra, such as ring and module spectra.

Proposition 9.15 applied to the stable homotopy category and the class of E-acyclic spectra specializes
as follows.

Proposition 9.18. Let E be a symmetric spectrum.

(i) A symmetric spectrum X is E-local if and only if for every E-equivalence g : B −→ C the induced
map

SHC(g,X) : SHC(C,X) −→ SHC(B,X)

is bijective.
(ii) A symmetric spectrum X is E-local if and only if the suspension ΣX is E-local.
(iii) Let

A −→ B −→ C −→ ΣA .

be a distinguished triangle in the stable homotopy category. If two of the spectra A,B and C are
E-local, so is the third.

(iv) Every product of E-local spectra in the stable homotopy category is again E-local.
(v) Every homotopy limit of a tower of E-local spectra is E-local.
(vi) Every E-equivalence between E-local spectra is a stable equivalence.

(vii) Every E-localization a : X −→ L is initial among morphisms in the stable homotopy category from X
to E-local spectra.

(viii) Every E-localization a : X −→ L is terminal among E-equivalences out of X.
(ix) If a : X −→ L and a′ : X −→ L′ are E-localizations, then there is a unique morphism f : L −→ L′

such that fa = a′, and f is a stable equivalence.

As we now explain, the localization at a subring of the rationals, and the completion at a prime, are
special cases of E-localizations.

Proposition 9.19. (i) Let R be a subring of the ring of rational numbers. Then the R-localization
X −→ XR = SR ∧L X is a Bousfield localization with respect to the Moore spectrum SR.

(ii) Let p be a prime. The p-completion map X −→ X∧p is a Bousfield localization with respect to the
mod-p Moore spectrum S/p.

Proof. (i)
(ii) We show first that the p-adic completion X∧p is S/p-local. For every S/p-acyclic spectrum A the

distinguished triangles

S/p ∧L A (·p)∧A−−−−→ S/pn+1 ∧L A (·p)∧A−−−−→ S/pn ∧L A (·p)∧A−−−−→ Σ(∧S/p ∧L A)

allow an induction which shows that S/pn∧A is trivial in the stable homotopy category for all n ≥ 0. Since
S/p∞ is a homotopy colimit of the spectra S/pn, the spectrum A ∧ S/p∞ is also trivial. Thus the group
[A,X∧p ] = [A,F (SZ/p∞,ΣX)] ∼= [A ∧ SZ/p∞,ΣX] is trivial, so X∧p is indeed S/p-local.

It remains to show that the completion map X −→ X∧p is is a mod-p equivalence. We can take the
distinguished triangle

S(p)
ι−−→ HQ p−−→ SZ/p∞ δ−−→ S1

(p)

apply the exact functor S/p ∧ F (−,ΣX) and obtain a distinguished triangle

S/p ∧ F (HQ, X) −→ S/p ∧X −→ S/p ∧X∧p −→ Σ(S/p ∧ F (HQ, X)) .

The derived function spectrum F (HQ, X) is rational, so multiplication by p on it is a self-equivalence, and
thus the smash product S/p ∧ F (HQ, X) is trivial on SHC. So the map S/p ∧X −→ S/p ∧X∧p is a stable
equivalence, as claimed. �
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Proposition 9.20. Let E be a symmetric spectrum and suppose that every spectrum X has an E-localization
aX : X −→ LX.

(i) Then there is a unique way to extend the assignment X 7→ LX to an endofunctor L of the stable
homotopy category in such a way that the collection of morphisms a forms a natural transformation
from the identity functor to L.

(ii) For every symmetric spectrum X there is a unique morphism τX : L(ΣX) −→ Σ(LX) such that
τXaΣX = Σ(aX). Moreover, τ is a natural isomorphism and makes L : SHC −→ SHC into an exact
functor.

Proof. (i) We need to define L on morphisms f : X −→ Y . If we want the morphisms aX : X −→ LX
to form a natural transformation, then the relation LF ◦aX = aY ◦ f must hold for the value of the functor
on f . Since aX is an E-equivalence and LY is E-local, the map

SHC(aX , LY ) : SHC(LX,LY ) −→ SHC(X,Y )

is bijective, so there is a unique morphism Lf : LX −→ LY satisfying Lf ◦ aX = aY ◦ f . So there is only
one way to define Lf , and it remains to check that we obtain a functor.

If f = IdX is an identity morphism, then L IdX ◦aX = aX , so L IdX = IdLX by the uniqueness clause.
If g : Y −→ Z is another morphism, then

Lg ◦ Lf ◦ aX = Lg ◦ aY ◦ f = aZ ◦ g ◦ f = L(gf) ◦ aX .

By uniqueness, again, this forces Lg ◦ Lf = L(gf), so we have ideed constructed a functor. Moreover, the
morphisms aX : X −→ LX form a natural transformation by construction.

(ii) This is a special case of the fact that adjoints of exact functors are again exact, compare Proposi-
tion 3.16. Indeed, by Proposition 9.18 the full subcategory of E-local spectra is a triangulated subcategory
of the stable homotopy category, and so the inclusion of E-local spectra into SHC is an exact functor,
with respect to the identity transformation of the suspension functor Σ. The localization functor L is left
adjoint to the inclusion, with aX : X −→ LX the unit of the adjunction. The counit of the adjunction is
the identity, so the transformation τ : L ◦ Σ −→ Σ ◦ L that corresponds to the identity transformation of
Σ under the recipe of Proposition 3.16 (i) is precisely the adjoint of ΣaX : ΣX −→ Σ(LX). This adjoint
τX : L(ΣX) −→ Σ(LX) in turn is the unique morphism such that τXaΣX = Σ(aX). Part (ii) of Proposi-
tion 3.16 then shows that τ is natural and part (iii) of the same proposition shows that the pair (L, τ) is
exact. �

Example 9.21. Localization preserves homotopy ring and module structures. More precisely, if S is a
homotopy ring spectrum and a : S −→ LS an E-localization, then LS has a unique structure of homotopy
ring spectrum such that a is a morphism of homotopy ring spectra. The multiplication of LS is commutative
if the original multiplication of S is. Similarly, if M is a homotopy S-module and b : M −→ LM an S-
localization, then LM has a unique structure of homotopy LS-module such that b is a morphism of homotopy
modules over S (where S acts on LM by restriction of scalars along a : S −→ LS.) We show this for the
ring case; the module case is similar.

Since a : S −→ LS is an E-equivalence, so is a ∧ a : S ∧L S −→ LS ∧L LS. Since LS is E-local,
there is a unique morphism µ̄ : LS ∧L LS −→ LS satisfying µ̄(a ∧ a) = aµ, where µ : S ∧L S −→ S is the
multiplication of S. When composed with the E-equivalence a ∧ a ∧ a : LS ∧L LS ∧L LS −→ S ∧L S ∧L S,
the two morphisms µ̄(µ̄ ∧ LS), µ̄(LS ∧ µ̄) : LS ∧L LS ∧L LS −→ LS restrict to aµ(µ ∧ S) respectively
aµ(S ∧ µ). Since S is homotopy associative, these two composite coincide. Since L is local, we must have
µ̄(µ̄ ∧ LS) = µ̄(LS ∧ µ̄), i.e., the multiplication of LS is homotopy associative. Left and right unitality are
proved in a similar way. The localization map a is compatible with the multiplications by construction, and
with unit morphisms [...] So a is indeed a homomorphism of homotopy ring spectra.

If R is a symmetric ring spectrum, then as an object of the stable homotopy category, R is naturally a
homotopy ring spectrum. By the above, any E-localization of R is again a homotopy ring spectrum, but it
is not clear at this point whether the E-localization can be ‘rigidified’ to a symmetric ring spectrum. This
is true, and will be shown (much more generally) in Chapter III below, using model category techniques.
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Example 9.22. Let S be a homotopy ring spectrum. We claim that then every left or right homotopy
S-module M is S-local as a spectrum. Indeed, suppose that A is S-acyclic and let f : A −→ M be any
morphism in the stable homotopy category. Then f equals the composite

A = S ∧L A η∧A−−−→ S ∧L A S∧f−−−→ S ∧LM α−−→ M ,

where η : S −→ S is the unit morphism and α : S ∧L M −→ M is the left action of S on M . Since A is
acyclic the spectrum S ∧L A is trivial, and so f is trivial. Consequently, the group SHC(A,M) is trivial
and M is S-local, as claimed.

While every S-module is S-local, there are typically also S-local spectra that do not admit the structure
of a homotopy S-module [example].

There is a situation, though, when the S-local spectra coincide with the homotopy S-modules, namely
when S is ‘smash idempotent’, i.e., when the multiplication map µ : S ∧L S −→ S is a stable equivalence.
More precisely, in this situation every S-local spectrum admits a unique structure of homotopy S-module.
Indeed, if S is homotopy idempotent, then also the morphism S ∧ η : S −→ S ∧L S is a stable equivalence,
hence for every spectrum X the morphism η ∧L X : X −→ S ∧L X is an S-equivalence. Since the target
S ∧L X is a (free) S-module, it is S-local by the above, and so η ∧L X : X −→ S ∧L X is an S-localization
for every spectrum X. So if X is already S-local, there is a unique morphism α : S ∧L X −→ X such that
α(η ∧X) = IdX . [associativity]

We make another observation: if S is homotopy idempotent, then the unit morphism η : S −→ S is
an S-equivalence with S-local target, hence S is necessarily the localization of the sphere spectrum. A
localization is called smashing if the localized sphere spectrum (which is always a homotopy ring spectrum
as in Example 9.21) is homotopy idempotent. Examples of smashing localizations are localizations at a set
of primes (see Section 9.1) and localizations at the Johnson-Wilson spectra E(n) (for a prime which is fixed
implicitly and some n ≥ 1).

Example 9.23. Suppose the spectrum E is such that the class of E-acyclics is generated by a set G of
finite spectra. Then we can construct E-localizations with the methods of Section 5.

Indeed, let C be a set of finite, E-acyclic spectra such that the localizing subcategory generated by C
coincides with the class of all E-acyclics. By adding suspensions and desuspensions, if necessary, we can
assume that C is closed (up to isomorphism) under suspensions and desuspensions. Given any symmetric
spectrum X we can apply Proposition 5.14 to the stable homotopy category and the represented cohomo-
logical functor E = SHC(−, X). The Proposition provides a spectrum R in the class 〈C〉+ and a morphism
u ∈ SHC(R,X) such that for every object G of C the map

SHC(G, u) : SHC(G,R) −→ SHC(G,X)

is bijective. We choose a distinguished triangle

R
u−−→ X

a−−→ L −→ ΣR .

Then the group SHC(G,L) is trivial for all G ∈ C. Since C generates the class of E-acyclics, the group
SHC(A,L) is trivial for all E-acyclic spectra A. In other words, the spectrum L is E-local.

On the other hand, the spectrum R is in the class 〈C〉+ of objects obtained from C by taking sums
and extensions to the right. So R is E-acyclic, and hence a : X −→ L is an E-equivalence. Altogether
constructs an E-localization for any given spectrum X.

Unfortunately, the class of acyclic spectra with respect to a given generalized homology theory is
not generally generated by a set of finite spectra. So we cannot always construct E-localizations as in
Example 9.23. [telescope conjecture]

Remark 9.24. By the Whitehead theorem 6.30 (ii), every connective spectrum which is HZ-acyclic is
already stably contractible. However, there are non-trivial spectra (necessarily non-connective) which are
HZ-acyclic, for example v−1

1 S/p, the mapping telesope of the Adams map of the mod-p Moore spectrum,
(compare Example 6.31). Since the mapping telescope is HZ-acyclic but not stably contractible, it is not
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HZ-local. So the Bousfield class of HZ is strictly smaller than the maximal Bousfield class of the sphere
spectrum, 〈HZ〉 < 〈S〉.

On the other hand we claim that every connective spectrum is HZ-local. We argue in various steps:
for every abelian group A, the Eilenberg-Mac Lane spectrum HA is a module spectrum over HZ, hence
HZ-local by Example 9.22. Local spectra are stable under suspensions, so every spectrum of the form
ΣnHA is HZ-local.

Suppose X is k-connected for some integer k. Then the Postnikov section PkX is trivial, hence HZ-local.
For n > k there is a distinguished triangle (8.6)

Sn ∧H(πnX)
i−−→ PnX

jn−−−→ Pn−1X
kn−−→ Sn+1 ∧H(πnX)

hence all Postnikov sections PnX are HZ-local by induction. Since X is the homotopy limit of the Postnikov
sections PnX (see Theorem 8.3), X is HZ-local by Proposition 9.18 (iv).

Remark 9.25 (Bousfield class). Let E and F be two symmetric spectra. We say that E has Bousfield
class smaller or equal to F if every F -acyclic spectrum is also E-acyclic. In this situation, we also say that
the Bousfield class of F is greater or equal to that of E, and we use the notation 〈E〉 ≤ 〈F 〉 or 〈F 〉 ≥ 〈E〉.
So we may interpret 〈E〉 as the class of all E-acyclic spectra, and then ≤ is the reverse inclusion. More
acyclics implies fewer local spectra, so if 〈E〉 ≤ 〈F 〉, then every E-local spectrum is also F -local.

If the Bousfield class of E is smaller or equal to that of F , and the Bousfield class of F is smaller
or equal to that of E, we say that E and F have the same Bousfield class and write 〈E〉 = 〈F 〉. Of
course, this simply means that E and F have the same acyclics, and also the same local spectra. Thus any
E-localization is also an F -localization and conversely.

Some properties of Bousfield classes which follow straight from the definition are the following. The
trivial spectrum has the smallest Bousfield class and the sphere spectrum has the largest Bousfield class, in
symbols

〈∗〉 ≤ 〈E〉 ≤ 〈S〉
for all spectra E. Moreover, 〈E〉 = 〈ΣE〉, i.e., the Bousfield class is invariant under suspension. A spectrum
E has Bousfield class smaller or equal (respectively greater or equal) to the sum (respectively the smash
product) of E with any other spectrum:

〈E ∧L F 〉 ≤ 〈E〉 ≤ 〈E ∨ F 〉 .
Given a distinguished triangle

E
f−−→ F

g−−→ G
h−−→ ΣE

in the stable homotopy category, then any of the three spectra E, F and G has smaller Bousfield class than
the sum of the other two:

〈E〉 ≤ 〈F ∨G〉 , 〈F 〉 ≤ 〈G ∨ E〉 and 〈G〉 ≤ 〈E ∨ F 〉 .
[the collection of Bousfield classes forms a set]

A little less obvious is the following property of Bousfield classes.

Proposition 9.26. Let f : ΣnE −→ E be a nilpotent degree n endomorphism of a spectrum E. Then E
and any mapping cone C(f) of f have the same Bousfield class.

Proof. We need to show that every E-acyclic spectrum if C(f)-acyclic and conversely. Suppose first
that a spectrum X is E-acyvlic. The distinguished triangle

ΣnE
f−−→ E −→ C(f) −→ Σn+1E

implies the relation
〈C(f)〉 ≤ 〈E ∨ ΣnE〉 = 〈E〉

among Bousfield classes.
Suppose conversely that X is acyclic for the mapping cone C(f). We show by induction on m that

then X is acyclic for the mapping cone C(fm) of the m-th power of f . For m = 1 this was assumed, so
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we can take m ≥ 2. The octahedral axiom (TR3) applied to the composable morphisms Σn(fm−1) and f
yields a distinguished triangle

ΣnC(fm−1) −→ C(fm) −→ C(f) −→ Σn+1C(fm−1) .

By induction, the smash products C(fm−1) ∧L X and C(f) ∧L X are stably contractible, hence so is
C(fm) ∧L X.

By assumption the endomorphism f is nilpotent, i.e., fm = 0 for some m ≥ 1. Then the cone C(fm)
is isomorphic in the stable homotopy category to the sum E ⊕ Σmn+1E. By the previous paragraph,
C(fm) ∧L X is stably contractible, hence so is its direct summand E ∧L X. In other words, the spectrum
X is E-acyclic. �

9.5. Localization with respect to topological K-theory. We cannot refrain from giving some
idea of what Bousfield localization with respect to a non-connective spectrum can look like. So we recall
some result about localization with respect to topological K-theory. However, we will need some facts
whose proofs are beyond the scope of this book, so this section is much less self-contained than the rest of
the book.

Since we have isomorphisms KU ∼= KO∧LC(η) and KT ∼= KO∧C(η2) and the stable homotopy class
of the Hopf map η satisfies η4 = 0, a special case of Proposition 9.26 is that the complex, self-conjugate
and real topological K-theory spectra KU , KT respectively KO have the same Bousfield class. We call a
spectrum X K-local if it is local with respect to KU (or equivalently local with respect to KT or KO).

In Example 6.31 we discussed the Adams maps, certain graded selfmaps v1 : ΣqS/p −→ S/p of the
mod-p Moore spectra, where q = 8 for p = 2 and q = 2p− 2 for odd primes p. [for p = 2 this should better
be called v4

1 ] These selfmaps induce an isomorphism in complex topological K-theory (and hence also in
KO and KT -theory). In particular, the map v1 is periodic in the sense that all iterates vn1 are non-trivial
in the stable homotopy category. We recall that the mod-p homotopy groups of a spectrum X are defined
by

πk(X,Z/p) = πk(S/p ∧L X) .

Smashing with the Adams map and taking homotopy group gives an operator on mod-p homotopy groups

v1 : πk(X,Z/p) ∼= πk+q(Σ
qS/p ∧L X)

πk+q(v1∧X)−−−−−−−−→ πk+q(S/p ∧L X) = πk+q(X,Z/p)

which is called v1-multiplication. The mod-p homotopy groups are called v1-periodic if v1-multiplication is
an isomorphism for all integers k.

Theorem 9.27. A spectrum X is K-local if and only if for every prime p the mod-p homotopy groups
πk(X,Z/p) are v1-periodic. The K-localization functor is smashing in the sense that the morphism X −→
LKS(p) ∧L X is a K-localization for every p-local spectrum.

So to complete the picture of K-localization we should describe the localized sphere spectrum in a more
explicit way. [...]

10. The Steenrod algebra

In this section we identify the graded maps between Eilenberg-Mac Lane spectra with stable operations
in singular cohomology. Especially important are the operations in mod-p cohomology, which give rise to
the mod-p Steenrod algebra.

For us, the reduced cohomology H̃n(X,A) of a based simplicial set X with coefficients in an abelian
group A is the relative cohomology Hn(X, {x}, A), relative to the simplicial subset consisting only of the
basepoint x and its degeneracies. Of course, the difference between reduced and unreduced cohomology is
very minor: the restriction map

H̃n(X,A) = Hn(X, {x}, A) −→ Hn(X, ∅, A) = Hn(X,A)

is an isomorphism for n 6= 0; for n = 0, this map is a split monomorphism whose complementary summand
is a copy of the coefficient group A.
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Definition 10.1. Let A and B be abelian groups and n,m natural numbers. A reduced cohomology
operation of type (A,n,B,m) is a natural transformation

τ : H̃n(−, A) −→ H̃m(−, B)

of set valued functors on the category of based simplicial sets.

Note that we do not demand that the individual maps τX : H̃n(X,A) −→ H̃m(X,B) are additive.
However, in Exercise E.II.19 below we show that reduced cohomology operations are automatically additive
on suspensions. In any case, two reduced cohomology operations of the same type can be added pointwise,
so the set of all reduced cohomology operations of a fixed type forms an abelian group, which we denote
Oper(A,n,B,m). We could just as well replace simplicial sets by topological spaces and would arrive at an
equivalent definition of reduced cohomology operations, provided we restrict to CW-complexes.

Remark 10.2. Unreduced cohomology operations are natural transformations

τ : Hn(−, A) −→ Hm(−, B)

of unreduced cohomology functors. There is only a minor difference between reduced and (non-reduced)
cohomology operations. Since the one-point space has trivial cohomology in positive dimensions, this is
only a condition for n = 0, and for n ≥ 1 every cohomology operation is reduced. The set of reduced
cohomology operations of a fixed type forms a subgroup of the group of all cohomology operations.

We recall from Example I.1.14 that the A-linearization A[Sn] of the n-sphere is an Eilenberg-Mac Lane
space of type (A,n), and as such it represents cohomology with coefficients in A. More precisely, there is a

fundamental class ιn,A ∈ H̃n(A[Sn], A) such that for every based simplicial set X the evaluation map

[X,A[Sn]] −→ H̃n(X,A) , [f ] 7−→ f∗(ιn,A)

is bijective, where the left hand side denotes based homotopy classes of based morphisms (we recall here
that A[Sn] is a Kan complex, so these homotopy classes are the ‘right thing’ to consider). Since the reduced

cohomology functor H̃n(−, A) is representable, the following is an instance of the Yoneda lemma:

Lemma 10.3. The map

Oper(A,n,B,m) −→ H̃m(A[Sn], B)

which takes a reduced cohomology operation τ : H̃n(−, A) −→ H̃m(−, B) to the image of the fundamental

class τ(ιn,A) ∈ H̃m(A[Sn], B) is an isomorphism from the group of reduced cohomology operations of type
(A,n,B,m) and the m-th rduced cohomology group of A[Sn] with coefficients in B.

Example 10.4. (i) The simplicial set A[Sn] is (n − 1)-connected, so the group H̃m(A[Sn], B) is trivial
for m < n. Hence there are no non-trivial reduced cohomology operations of type (A,n,B,m) for
m < n.

(ii) A homomorphism of coefficient groups f : A −→ B induces a reduced cohomology operation of type
(A,n,B, n) for every n. Since a A[Sn] is (n − 1)-connected and Hn(A[Sn],Z) ∼= πn(A, ∗) ∼= A, the
universal coefficient theorem for cohomology yields an isomorphism

Hn(A[Sn], B) ∼= Hom(A,B) ,

which shows that the cohomology operations of type (A,n,B, n) all arise from coefficient homomor-
phisms.

(iii) The Bockstein homomorphism δ : H̃n(X;A) −→ H̃n+1(X;B) associated to a short exact sequence of
abelian groups

0 −→ B −→ E −→ A −→ 0 .

is a reduced cohomology operation of type (A,n,B, n + 1) for every n which only depends on the
Yoneda class of the extension. This gives a map

Ext(A,B) −→ Oper(A,n,B, n+ 1) .
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The universal coefficient theorem for cohomology yields a short exact sequence

0 −→ Ext(A,B) −→ H̃n+1(A[Sn], B) −→ Hom(H̃n+1(A[Sn],Z), B) −→ 0 ,

so this map is injective. Moreover, for n ≥ 2, the homology group H̃n+1(A[Sn],Z) is trivial (see
e.g. [25, Thm. 20.5]), so in that case every cohomology operation of type (A,n,B, n + 1) is the
Bockstein homomorphism of an abelian group extension.

The group H̃2(A[S1],Z) is not generally trivial, so there are reduced cohomology operations of type

(A, 1, B, 2) which do not come from short exact sequences of abelian groups. Indeed, H̃2(A[S1], B)
classifies equivalence classes of central group extension of A by B, i.e., short exact sequences of groups

0 −→ B −→ E −→ A −→ 1

such that A is contained in the center of E (which need not be abelian). The image of Ext(A,B)
in H2(A[S1], B) corresponds to those extensions (necessarily central) for which E is abelian. Exer-
cise E.II.11 explains how to construct a non-abelian Bockstein operation from such a central extension.
A proof of the correspondence between H2(A[S1];B) and classes of central extensions can be found
in [49, IV Thm. 6.2] (in the special case of trivial coefficient modules).

(iv) Let R be any ring and k ≥ 0. Then the cup product power operation

Hn(X,R) −→ Hkn(X,R) , x 7−→ xk

is a cohomology operation of type (R,n,R, kn). In some cases the cup powers give all operations of a
certain type. For example, the group Hn(F2[S1],F2) is cyclic of order 2, generated by the n-th power
of the fundamental class. So by the representability of cohomology the n-th cup-power operation is the
only non-trivial cohomology operation of type (F2, 1,F2, n). Similarly, since the integral cohomology
algebra of Z[S2] is polynomial on the fundamental class, there is only the trivial operation of type
(Z, 2,Z, n) for odd n, and all cohomology operations of type (Z, 2,Z, 2k) are multiples of the k-th cup
power operation. Rationally, there are no other cohomology operations whatsoever, besides multiples
of cup powers. Indeed, the cohomology algebra H∗(Q[Sn],Q) is polynomial on the fundamental class
for even n, and is an exterior algebra on the fundamental class for odd n.

Now we get to the concept of a stable cohomology operation, which is really a family of compatible
cohomology operations.

Definition 10.5. Let A and B be abelian groups and i a natural number. A stable cohomology operation
of type (A,B) and degree i is a family {τn}n≥0 of reduced cohomology operations of type (A,n,B, i + n)
which are compatible with suspension isomorphisms in the following sense. For every based simplicial set
X and every i ≥ 0 the square

H̃n(X,A)
−∧ι //

τn

��

H̃n+1(X ∧ S1, A)

τn+1

��
H̃i+n(X,B) −∧ι

// H̃i+n+1(X ∧ S1, B)

commutes, where the horizontal maps are given by exterior product with the generator ι ∈ H̃1(S1,Z). We
denote by StOp(A,B, i) the abelian group of stable cohomology operations of type (A,B) and degree i.

Our next task is to identify stable cohomology operations with morphisms in the stable homotopy
category between Eilenberg-Mac Lane spectra. For this purpose we define a map

ev : [HA,HB]i −→ StOp(A,B, i)
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from the latter to the former as follows. Let f : HA −→ Si ∧L HB be a morphism of degree i. For every
n ≥ 0 we consider the diagram

H̃n(X,A)
∼= //

ev(f)n

��

Hn(Σ∞X,A) = [Σ∞X,HA]n

f◦
��

H̃i+n(X,B) ∼=
// Hi+n(Σ∞X,B) = [Σ∞X,HB]i+n

of cohomology groups. Here the horizontal maps are the isomorphisms of [...] and the right vertical map
is the graded composition with the morphism f . There is thus a unique map ev(f)n making the square
commute. For fixed f , the map ev(f)n is clearly natural in the space X, hence a cohomology operation.
We claim that as n varies, the sequence {ev(f)n}n≥0 forms a stable cohomology operation [...]

Theorem 10.6. For all abelian groups A and B the map

ev : [HA,HB]i −→ StOp(A,B, i)

is an isomorphism of groups.

Proof. The group SHC(HA,HB)i is, by definition, the cohomology group Hi(HA,B) of the
Eilenberg-Mac Lane spectrum HA. Since the Eilenberg-Mac Lane spectrum HB is semistable, [...] Propo-
sition 6.5 (ii) provides a short exact sequence

0 −→ lim1
n H̃

i+n−1(A[Sn], B) −→ Hi(HA,B) −→ limn H̃
i+n(A[Sn], B) −→ 0

Since the simplicial set A[Sn] is (n−1)-connected, so the suspension homomorphism −∧S1 : πk(A[Sn]) −→
πk+1(A[Sn]∧S1) is an isomorphism for k ≤ 2n−2, by Freudenthal’s suspension theorem. Hence the structure
map σn : A[Sn] ∧ S1 −→ A[Sn+1] is (2n − 1)-connected, so it induces an isomorphism of all cohomology
groups below dimension 2n− 1. For a fixed integer i, almost all of the maps in the inverse system of groups
Hi+n−1(A[Sn], B) are thus isomorphisms, so the derived limit above vanishes.

On the other hand, the map

StOp(A,B, i) −→ limn H̃
i+n(A[Sn], B) , τ 7−→ τn(ιA,n)

is bijective. Indeed, by Lemma 10.3 a family τ = {τn}n≥0 of unreduced cohomology operations corresponds

bijectively to the family τn(ιn,A) ∈ H̃i+n(A[Si], B) of unreduced cohomology classes. Moreover, the stability
condition for the family {τn}n≥0 corresponds to the condition to be an element in the inverse limit. �

If τ = {τn}n≥0 is a stable cohomology operation of type (A,B, i) and λ = {λn}n≥0 is a stable coho-
mology operation of type (B,C, j), then they compose to yield a stable cohomology operation

λ ◦ τ = {λi+n ◦ τn}n≥0

of type (A,C) and degree j+ i. On the other hand, graded morphisms between Eilenberg-Mac Lane spectra
can be composed as in (4.6), specializing to a map

[HB,HC]j ⊗ [HA,HB]i −→ [HA,HC]j+i .

The two kinds of composition coincide, i.e., we have

ev(g ◦ f) = ev(g) ◦ ev(f) .

[proof?]

Example 10.7. (a) By Example 10.4 (i) there are no stable cohomology operations of negative degree.
If f : A −→ B is a homomorphism of coefficient groups, then the associated cohomology operations
of type (A,m,B,m) for every m ≥ 0 form a stable cohomology operation, and so the group all stable
cohomology operations of type (A,B) of degree 0 is naturally isomorphic to Hom(A,B),

StOp(A,B, 0) ∼= Hom(A,B) .
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This is consistent with Theorem 10.6 since the morphism from HA to HB in the stable homotopy
category also biject with the group of homomorphisms from A to B (by Theorem 5.25 (i)).

(b) The Bockstein homomorphisms δ : H̃n(X,A) −→ H̃n+1(X,B) in reduced cohomology associated to a
short exact sequence of abelian groups

0 −→ B −→ E −→ A −→ 0

form a stable cohomology operation of type (A,B) and degree 1 (for varying n ≥ 0). For n ≥ 2, the
homology group Hn+1(A[Sn],Z) is trivial (see e.g. [25, Thm. 20.5]), so the universal coefficient theorem
implies that this construction gives all stable operations of type (A,B) and degree 1,

StOp(A,B, 1) ∼= Ext(A,B) .

Again, this is consistent with Theorem 10.6, since the morphism from HA to Σ(HB) in the stable
homotopy category also biject with the Ext group (by Proposition 5.28 (iii)).

(c) If R is a ring, then the cup product power operation x 7−→ xk is usually not additive, and whenever it
fails to be so, then as an operation of type (R,n,R, kn) it does not extend to a stable operation of degree
(k − 1)n (by part (b) of Exercise E.II.19). However, if p is a prime number and R is an Fp-algebra,
then the p-th power operation x 7−→ xp is additive. And indeed, as we recall in 10.8 and 10.10 below,
the p-th cup power

Hi(X,Fp) −→ Hpi(X,Fp) , x 7−→ xp

extends to a stable mod-p cohomology operation of degree 2i(p − 1) whenever p = 2 or i is even. For
p = 2 this stable operation is denoted Sqi and is called the i-th Steenrod divided square operation. For
odd p this stable operation is called the i-th divided power operation and is denoted P i.

Now we specialize to the most useful kind of stable cohomology operations: For a prime p, the mod-p
Steenrod algebra Ap is the graded Fp-algebra of mod-p stable cohomology operations; in other words, in
degree n we have

(Ap)n = StOp(Fp,Fp, n)

and the product structure is by composition of operations.
The mod-p Steenrod algebra has an explicit description in terms of generators and relations, which we

now review. There are various sources available where the construction of the mod-p cohomology operations
and the relations between them are discussed in detail, and we will not reprove these facts. The explicit
results take a slightly different form for the prime 2 and for odd primes, and read as follows.

10.8. The 2-primary Steenrod algebra. The i-th Steenrod square, for i ≥ 0, is a stable mod-2 coho-
mology operation Sqi of degree i with the following properties:

(i) The operation Sq0 is the identity and Sq1 coincides with the mod-2 Bockstein operation.
(ii) (Unstability condition) For every simplicial set X and cohomology class x ∈ Hn(X,F2) we have

Sqi(x) = x ∪ x if i = n and Sqi(x) = 0 for i > n.
(iii) (Cartan formula) For x, y ∈ H∗(X,F2) and i ≥ 0 we have

Sqi(x ∪ y) =

i∑
a=0

Sqa x ∪ Sqi−a y .

(iv) (Adem relations) The Steenrod squaring operations satisfy the following relations

Sqa Sqb =

[a/2]∑
j=0

(
b− j − 1

a− 2j

)
Sqa+b−j Sqj

for all a < 2b.

The stable operation Sqi is in fact already uniquely determined by the property that Sqi(x) = x ∪ x
for all classes x of degree i.
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With respect to binomial coefficients
(
n
m

)
for integers n and m, possibly negative, we recall that(

n

m

)
=


n·(n−1)···(n−m+1)

m·(m−1)···1 if m ≥ 1,

1 if m = 0,
0 if m < 0.

With these conventions, the formula

(1 + t)n =

∞∑
i=0

(
n

i

)
· ti

holds for all integers n, positive or negative, in the power series ring Z[[t]].

Example 10.9. The first Adem relations are:

Sq1 Sq1 = 0 Sq2 Sq2 = Sq3 Sq1

Sq1 Sq2 = Sq3 Sq2 Sq3 = Sq5 + Sq4 Sq1

Sq1 Sq3 = 0 Sq3 Sq2 = 0

One can see that some of the relations are redundant. For example, the vanishing of Sq3 Sq2 can be deduced
from the previous relations. For all integers n we have

Sq1 Sqn =

(
n− 1

1

)
Sqn+1 =

{
Sqn+1 if n is even,
0 if n is odd.

For all integers n ≥ 2 we have

Sq2 Sqn =

(
n− 1

2

)
Sqn+2 +

(
n− 2

0

)
Sqn+1 Sq1

=

{
Sqn+1 Sq1 if n ≡ 1, 2 mod 4,

Sqn+2 + Sqn+1 Sq1 if n ≡ 0, 3 mod 4.

10.10. The odd-primary Steenrod algebra Let p be an odd prime. There is a unique sequence of
stable mod-p cohomology operations P i of degree 2i(p − 1), for i ≥ 0, such that the following properties
(i)-(iii) below hold. The operation P i is called the i-th Steenrod power operation.

(i) The operation P 0 is the identity operation.
(ii) (Unstability condition) For every simplicial set X and cohomology class x ∈ Hn(X,Fp) we have

P i(x) = xp if n = 2i and P i(x) = 0 if 2i > n.
(iii) (Cartan formula) Let X be a simplicial set and x, y ∈ H∗(X;Fp) cohomology classes. Then we have

P i(x) =
∑
a+b=i

P a(x) ∪ P b(x) .

Moreover, these operations enjoy the following properties:

(iv) (Adem relations) The power operations P i satisfy the relations

P aP b =

[a/p]∑
j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j

for all 0 < a < pb. Moreover, the power operations and the mod-p Bockstein β satisfy the relations

P aβP b =

[a/p]∑
j=0

(−1)a+j

(
(p− 1)(b− j)

a− pj

)
βP a+b−jP j

+

[(a−1)/p]∑
j=0

(−1)a+j−1

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j

for all 0 < a ≤ pb.
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The Steenrod operations and Adem relations provide a complete description of the mod-p Steenrod
algebra. Indeed, the Steenrod operations Sqi’s generate the mod-2 Steenrod algebra, the reduced power
opertations P i and the Bockstein operation β generate the mod-p Steenrod algebra for odd p, and in each
case the Adem relations form a complete set of relations between these operations. More precisely, we can
consider the free graded F2-algebra generated by symbols Sqi of degree i for i ≥ 0, subject to the relation
Sq0 = 1 and the Adem relations. This algebra maps to the Steenrod algebra of stable mod-2 cohomology
operations by sending the symbol Sqi to the operation Sqi. The resulting map

F2〈Sqi〉/(Sq0 = 1, Adem relations) −→ A2

is an isomorphism of graded F2-algebras, and similarly for odd primes p.
� We want to emphasize that the unstability conditions of the Steenrod squaring operations Sqi and

the reduced power operations P i are special for the cohomology of simplicial sets (or spaces), and
they do not generally hold for the cohomology of spectra. The relations between Sqi(x) and the cup square
respectively P i(x) and the p-th cup power don’t even make sense in the context of spectra, since there is
no natural product structure on the mod-p cohomology groups of spectra. The unstability relations would
make sense for spectra, but the class Sqi(x) respectively P i(x) can be non-trivial for spectrum cohomology
classes of arbitrily large i.

Here is a (tautological) example: we let ι ∈ H0(HFp,Fp) = SHC(HFp, HFp) denote the fundamental
class, i.e., the identity morphism of the Eilenberg-Mac Lane spectrum HFp. Then

Sqi(ι) ∈ Hi(HFp,Fp) respectively P i(ι) ∈ H2i(p−1)(HFp,Fp)

equal the non-zero operations Sqi respectively P i, hence they are non-zero as cohomology classes of the
spectrum HFp.

10.1. Examples and applications. An important problem in homotopy theory is to find ways of
telling when a continuous map f : X −→ Y is null-homotopic. A map which is not null-homotopic is called
essential.

Sometimes a map can be shown to be essential by checking that it induces a non-trivial map on
cohomology with suitable coefficients. If this does not help, then one can use the mapping cone: Suppose
that a map f : X −→ Y between topological spaces or simplicial sets is trivial in cohomology with coefficients
in an abelian group A. Then the long exact cohomology sequence yields an epimorphism

H∗(C(f), A)
i∗−−→ H∗(Y,A) ,

where C(f) = ∗ ∪X×0 X × [0, 1] ∪X×1 Y is the unreduced mapping cone of f and i : Y −→ C(f) is the
inclusion.

If f is null-homotopic, then a choice of null-homotopy provides a section σ : C(f) −→ Y to the map i.
On cohomology, this induces a map of graded abelian groups σ∗ : H∗(Y,A) −→ H∗(C(f), A) which is a
section to the map i∗. Since the section σ∗ is induced by a map σ, it also respects all additional structure
which is natural for maps of space or simplicial sets. For example, if A is a ring, then σ∗ is compatible with
the cup-product. In some cases, the original map f can be seen to be essential because there is no section
to i∗ which is multiplicative with respect to the cup-product. The prime example of this kind for reasoning
is the following proof that the Hopf maps η : S3 −→ S2, ν : S7 −→ S4 and σ : S15 −→ S7 are essential.
The mapping cones of the three Hopf maps are isomorphic to the projective planes CP2, HP2 and OP2 over
the complex numbers, the quaternions and the Cayley octaves respectively. The integral cohomology rings
of these spaces are all of the from Z[x]/x3 where the dimension of the generator is 2, 4 or 8 respectively.
Hence if i : CP1 −→ CP2 is the inclusion, then there is no multiplicative section to the map

i∗ : H∗(CP2;Z) −→ H∗(CP1;Z) ,

and so the Hopf map η is essential. The same argument with HP2 and OP2 shows that the Hopf maps ν
and σ are essential.

However, this book is mainly concerned with stable homotopy theory, and the cup-product is useless for
telling whether a map is stably essential, i.e., whether or not it becomes null-homotopic after some number
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of suspensions. This is because the cup-product is trivial on the reduced cohomology of any suspension. So
if f : X −→ Y is a map of spaces which is trivial in reduced cohomology with coefficients in a ring A, then
we have C(Σf) ∼= ΣC(f), and the map

H∗(ΣC(f), A) ∼= H∗(C(Σf), A)
i∗−→ H∗(ΣY,A)

always has a multiplicative section.
In general, the more highly structured and calculable homotopy functors we find, the better chances

we have to show that such a section cannot exist. For detecting stably essential maps, stable cohomology
operations are a good tool, since they don’t change after suspension. In more detail, let f : X −→ Y
be a based map of spaces (or simplicial sets) which becomes null-homotopic after n suspensions. Then
the mapping cone C(Σnf) is homotopy equivalent to the wedge of Σn+1X and ΣnY . Taking cones and
suspension commute, so the mapping cone C(Σnf) is homeomorphic to ΣnC(f) and we conclude that the

cohomology H̃∗(ΣnC(f),Fp) is the direct sum, as a module over the mod-p Steenrod algebra Ap, of the
mod-p cohomology groups of Σn+1X and ΣnY . Since the Steenrod algebra consists of stable operations,
suspension amounts to reindexing the cohomology of a space, including the Ap-action. In other words, if a
map f : X −→ Y becomes null-homotopic after some number of suspensions, then not only is f trivial on
reduced mod-p cohomology, in addition the map

i∗ : H̃∗(C(f),Fp)
i∗−→ H̃∗(Y,Fp)

has a section which is Ap-linear. We apply this strategy to the Hopf maps.

Example 10.11 (The Hopf maps are stably essential). The mapping cones of the Hopf maps η, ν and σ are
isomorphic to the projective planes CP2,HP2 and OP2 over the complex numbers, the quaternions and the
Cayley octaves respectively. The mod-2 cohomology algebras of these spaces are all of the from F2[x]/x3

where the dimension of the generator is 2, 4 or 8 respectively. Hence we have the relation

Sq2(x2) = x2
2 6= 0 ∈ H4(CP2,F2) ,

and similarly the classes Sq4(x4) ∈ H8(HP2,F2) and Sq8(x8) ∈ H16(OP2,F2) are non-zero. So the mod-2
cohomology groups of the mapping cones of η, ν and σ do not split as modules over the mod-2 Steenrod-
algebra. Hence by the previous paragraph, these maps are stably essential. This, finally, finishes the proof
proof that the first stable stem πs

1 is cyclic of order two, generated by the class of the Hopf map η (as was
already claimed in Example I.1.8).

Example 10.12 (The degree 2 map of the mod-2 Moore space is stably essential). Let p be a prime and
let

M(p) = S1 ∪p D2

denote the mod-p Moore space of dimension 2, obtained by attaching a 2-cell to the circle along the degree
p map S1 −→ S1. Denote by ×p : ΣM(p) −→ ΣM(p) the smash product of M(p) with the degree p map of
the circle. The degree p map induces multiplication by p in cohomology with any kind of coefficients, but
the cohomology of M(p), with any kind of coefficients, is annihilated by p. So ×p induces the trivial map
in cohomology, and we may ask whether this map is null-homotopic. The answer is different for the prime
2 and the odd primes. [p odd...]

In contrast to this, for the prime 2 the degree 2 map of ΣM(2) is stably essential; note that another
name for M(2) is RP2. Since the degree 2 map of ΣM(2) is obtained by smashing the M(2) with the degree
2 map of S1, its mapping cone of C(×2) is isomorphic to the smash product of two copies of the Moore
space,

C(×2) ∼= M(2) ∧M(2)

in such a way that the inclusion ΣM(2) −→ C(×2) corresponds to the smash product of the inclusion
i : S1 −→ M(2) with M(2). Now the mod-2 cohomology of M(2) has an F2-basis given by a class

x ∈ H̃1(M(2);F2) and x2 = Sq1(x) ∈ H̃2(M(2);F2). By the Künneth theorem the cohomology of the
smash product M(2) ∧ M(2) is four dimensional with basis given by the classes x ⊗ x in dimension 2,
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Sq1(x) ⊗ x and Sq1(x) ⊗ x in dimension 3, and Sq1(x) ⊗ Sq1(x) in dimension 4. Also by the Künneth
theorem, the map

(i ∧M(2))∗ : H̃∗(M(2) ∧M(2),F2) −→ H̃1(S1 ∧M(2), 2F2)

is given by

(i ∧M(2))∗(x⊗ x) = Σx , and (i ∧M(2))∗(x⊗ Sq1(x)) = Σ Sq1(x) ,

and it vanishes on the classes Sq1(x)⊗ x and Sq1(x)⊗ Sq1(x). All cup products are trivial in the reduced
cohomology of S1 ∧M(2), but in the cohomology of M(2) ∧M(2), the cup-square of the two-dimensional
class x⊗ x is non-trivial. This shows that there is no section to (i ∧M(2))∗ which is compatible with the
cup-product, so the degree 2 map on M(2) is essential.

However, after a single suspension, the cup products of both sides are trivial, so this argument does
not give any hint as to whether the suspension of the degree 2 map on M(2) is null-homotopic or not.
However, we can calculate the action of the Steenrod-squares in the cohomology of M(2)∧M(2). Note that
the operation Sq2(x) acts trivially on the cohomology of S1 ∧M(2) for dimensional reasons. On the other
hand, the Cartan-formula gives

Sq2(x⊗ x) = Sq2(x)⊗ x+ Sq1(x)⊗ Sq1(x) + x⊗ Sq2(x) = Sq1(x)⊗ Sq1(x) 6= 0

in H̃4(M(2) ∧M(2),F2). So there does not exist a section to (i ∧M(2))∗ which is compatible with the
action of the Steenrod-algebra. Hence we conclude that the degree 2 map of the mod-2 Moore space is
stably essential.

Construction 10.13. The Adem relations can be used to show that certain composites of Hopf maps are
stably essential. We need the following observation: suppose that

α : Sm −→ Sk and β : Sn −→ Sm

are continuous based maps between spheres. Suppose that the composite αβ : Sn −→ Sk is null-homotopic,
and let

H : [0, 1] ∧ Sn −→ Sk

be a null-homotopy, i.e., a based map such that H(1,−) = αβ. The maps H and α glue to a map

H ∪ α : C(β) = ([0, 1] ∧ Sn) ∪β CSm −→ Sk

from the mapping cone of β. We let C(α, β,H) be the mapping cone of H ∪ α : C(β) −→ Sk. This space
has a preferred CW-structure with 4 cells in dimensions 0, k, m + 1 and n + 2. Moreover, it contains the
mapping cone of α as its (m + 1)-skeleton, and the quotient of C(α, β,H) by its k-skeleton (which is the
sphere Sk) is homoemorphic to the suspension of the mapping cone of β.

Example 10.14. Now we show how Construction 10.13 and the Adem relation Sq2 Sq2 = Sq3 Sq1 can be
used to show that the composite η2 is stably essential. Suppose that for some n the composite

Sn+2 η−−→ Sn+1 η−−→ Sn

is null-homotopic. After choosing a null-homotopy H we can form the space C(η, η,H) with cells in
dimension 0, n, n + 2 and n + 4. The reduced mod-2 cohomology of this space is one-dimensional in
dimensions n, n+ 2 and n+ 4, and trivial in all other dimensions. Since the (n+ 2)-cell is attached to the
n-cell by η, the Steenrod operation Sq2 is an isomorphism from Hn(C(η, η,H);F2) to Hn+2(C(η, η,H);F2),
and similarly from there to Hn+4(C(η, η,H);F2). But since the group Hn+1(C(η, η,H);F2) vanishes, we
get that

Sq2 Sq2 = Sq3 Sq1 : Hn(C(η, η,H);F2) −→ Hn+4(C(η, η,H);F2)

is trivial, a contradiction. Hence no suspension of η2 is ever null-homotopic.
The same kind of reasoning yields other non-triviality results for certain composites of Hopf maps,

using that 2, η, ν and σ are detected in mod-2 cohomology by the Steenrod operations Sq1, Sq2, Sq4 and
Sq8, respectively. In the following table we list some Adem relations along with the composite which are
non-trivial by the above argument.
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relation stably essential product

Sq1 Sq4 = Sq4 Sq1 + Sq2 Sq3 2ν
Sq1 Sq8 = Sq8 Sq1 + Sq2 Sq7 2σ
Sq2 Sq2 = Sq3 Sq1 ηη
Sq2 Sq8 = Sq9 Sq1 + Sq8 Sq2 + Sq4 Sq6 ησ
Sq4 Sq4 = Sq7 Sq1 + Sq6 Sq2 νν
Sq8 Sq8 = Sq15 Sq1 + Sq14 Sq2 + Sq12 Sq4 σσ

The product of Hopf maps 2η, ην and νσ do not occur in the table, and in fact they are stably
null-homotopic.

10.2. Hopf algebra structure. We will now define a map of graded Fp-vector spaces

∆ : Ap −→ Ap ⊗Ap

which makes the mod-p Steenrod algebra into a Hopf algebra.
The multiplication map µ : HFp ∧HFp −→ HFp induces a map

µ∗ : Ap = H∗(HFp,Fp) −→ H∗(HFp ∧HFp,Fp)

in mod-p cohomology. By the cohomological Künneth theorem [ref] the exterior product map

× : Ap ⊗Ap = H∗(HFp,Fp)⊗H∗(HFp,Fp) −→ H∗(HFp ∧HFp,Fp)

is an isomorphism since the Steenrod algebra has finite type. So we can define the diagonal ∆(f) as the
unique class in the tensor product Ap ⊗ Ap which is taken to µ∗(f) by the exterior product map. An
augmentation ε : A0

p −→ π0(HFp) = Fp is given by evaluation at the unit 1 ∈ π0(HFp), i.e.,

ε(f) = f∗(1) = 〈f, 1〉 .

Now we show that the exterior product map (6.8) is Ap-linear with respect to a certain action of the
Steenrod algebra on the source through the diagonal map. In other words, for two graded Ap-modules M∗

and N∗ we define define the action map

◦ : Ap ⊗ (M∗ ⊗N∗) −→ M∗ ⊗N∗

as the composite

Ap ⊗ (M∗ ⊗N∗) ∆⊗M∗⊗N∗−−−−−−−−→ Ap ⊗Ap ⊗M∗ ⊗N∗

Ap⊗τAp,M∗⊗N
∗

−−−−−−−−−−−→ Ap ⊗M∗ ⊗Ap ⊗N∗
◦⊗◦−−−−→ M∗ ⊗N∗

where the second map involves the symmetric isomorphism with the graded sign. More explicitly, if ∆(f) =∑
f ′i ⊗ f ′′i , then

(10.15) f ◦ (x⊗ y) =
∑

(−1)|f
′′
i ||x| · (f ′i ◦ x)⊗ (f ′′i ◦ y) .

� We have not yet shown that the diagonal morphism of the Steenrod algebra is a homomorphism of
graded rings. So we do not yet know that the action of Ap on M∗ ⊗N∗ is associative. However, the

homomorphism property of the diagonal will be shown in Theorem 10.17 below.

Proposition 10.16. For all symmetric spectra X and Y the exterior product map (6.8)

× : H∗(X,Fp)⊗H∗(Y,Fp) −→ H∗(X ∧L Y,Fp)

is Ap-linear, with respect to the action of the Steenrod algebra on the source through the diagonal map.
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Proof. We write the diagonal of a given cohomology class f ∈ Anp as ∆(f) =
∑
f ′i⊗f ′′i for homogenous

classes f ′i , f
′′
i ∈ Ap. Then f ◦ µ = µ∗(f) =

∑
f ′i × f ′′i , by definition of the diagonal. For all cohomology

classes x ∈ Hk(X,Fp) and y ∈ H l(Y,Fp) we then have

f ◦ (x× y) = f ◦ µ ◦ (x ∧ y) =
∑

(f ′i × f ′′i ) ◦ (x ∧ y)

=
∑

µ ◦ (f ′i ∧ f ′′i ) ◦ (x ∧ y)

=
∑

(−1)|f
′′
i ||x| · µ ◦ ((f ′i ◦ x) ∧ (f ′′i ◦ y))

=
∑

(−1)|f
′′
i ||x| · (f ′i ◦ x)× (f ′′i ◦ y) = (−×−)

(
f ◦ (x⊗ y)

)
.

in Hn+k+l(X ∧L Y,Fp), where the fourth equation is Proposition 4.8. This is the desired Ap-linearity. �

Theorem 10.17. The diagonal map ∆ makes the mod-p Steenrod algebra into a graded cocommutative
Hopf algebra.

Proof. The map ∆ is Fp-linear since the action pairing and the Künneth map are Fp-linear. The
diagonal is co-associative and co-commutative because the multiplication of the ring spectrum HFp is
associative and commutative and because the exterior product map is associative and commutative. For
homogeneous cohomology classes f, g ∈ A∗p we have

(ε⊗Ap)(f ⊗ g) = (f ◦ ι)× g = (ι ∧HFp)∗(f × g)

in H∗(HFp,Fp), and hence

(ε⊗Ap) ◦∆ = (ι ∧HFp)∗ ◦ (−×−) ◦∆ = (ι ∧HFp)∗ ◦ µ∗ = (µ ◦ (ι ∧HFp))∗ = Id .

This shows that the diagonal is co-unital.
We now show that the diagonal ∆ is a homomorphism of graded rings, where the multiplication on

Ap ⊗Ap is defined as the bilinear extension of

(f ⊗ f ′) ◦ (g ⊗ g′) = (−1)|f
′||g| · (f ◦ g)⊗ (f ′ ◦ g′) .

This means that for homogeneous classes f, g ∈ Ap we have ∆(f) ◦ ∆(g) = f ◦ ∆(g) in A∗p ⊗ A∗p, where
the right hand side is the action of Ap on the tensor product of two modules as defined in (10.15). For
X = Y = HFp, Proposition 10.17 specializes to

(−×−)(∆(f) ◦∆(g)) = (−×−)(f ◦∆(g)) = f ◦ ((−×−)(∆(g)))

= f ◦ µ∗(g) = µ∗(f ◦ g) = (−×−)(∆(f ◦ g)) .

Since the exterior product map is an isomorphism, this proves the desired relation. [antipode is automatic
since Ap is graded connected] �

Example 10.18 (Diagonal of Steenrod operations). Theorem 10.6 provides an isomorphism between the
mod-p Steenrod algebra Ap and the algebra of stable mod-p cohomology operations. We denote an element
of Akp by the same symbol as its image in StOp(Fp,Fp, k). This way we view the Steenrod operations as
classes

Sqi ∈ Ai2 respectively P i ∈ A2i(p−1)
p .

The Cartan formula for the action of the Steenrod operations then propagates to an external Cartan formula
for mod-p cohomology of symmetric spectra. We claim that for all symmetric spectra X and Y , all mod-p
cohomology classes x ∈ Hn(X,Fp) and y ∈ Hm(Y,Fp) and all i ≥ 0 we have

Sqi(x× y) =

i∑
a=0

Sqa x× Sqb y
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in Hn+m+i(X ∧L Y,F2) if p = 2, respectively

P i(x× y) =

i∑
a=0

P a(x)× P i−a(y)

in Hn+m+2i(p−1)(X ∧L Y,Fp) if p is odd. Indeed, if X and Y are suspension spectra of pointed simplicial
sets, then the relation reduces to the Cartan formulas for the Steenrod operations. Since elements in Ap
are determined by their actions on the cohomology of all suspension spectra, the relation holds in general.
� Spectra, as opposed to spaces or simplicial sets, have no diagonal maps; so there is no cup product in

spectrum cohomology, hence also no internal Cartan formula.

The Cartan formula for the Steenrod operations is equivalent to an identification of the Hopf algebra
diagonal on the classes Sqi and P i.

Proposition 10.19. The diagonals on the Steenrod operations are given by

∆(Sqi) =

i∑
a=0

Sqa⊗Sqi−a respectively ∆(P i) =
i∑

a=0

P a ⊗ P i−a .

For all primes, the diagonal on the mod-p Bockstein operation is given by

∆(β) = β ⊗ 1 + 1⊗ β .

Proof. We have µ = 1× 1 in H0(H ∧H,Fp). For p = 2 this yields

(−×−)(∆(Sqi)) = Sqi ◦µ = Sqi ◦(1× 1)

=

i∑
a=0

Sqa(1)× Sqi−a(1) =

i∑
a=0

Sqa×Sqi−a

Since the exterior product map × : Ap⊗Ap −→ H∗(H ∧H,Fp) is an isomorphism, this proves the formula

for ∆(Sqi). The argument for ∆(P i) is analogous.
By [...] the Bockstein morphism β : HFp −→ Σ(HFp) is a derivation. So we have

(−×−)(∆(β)) = β ◦ µ = µ ◦ (β ∧HFp) + µ ◦ (HFp ∧ β) = β × 1 + 1× β
Again this calculates the diagonal on β because the exterior product map is an isomorphism. �

Suppose that H is a graded Hopf algebra over a field k which is of finite type, i.e., such that Hn is
finite dimensional for every degree n. Then the dual Hopf algebra H∨ is given in degree n by the vector
space dual of Hn,

(H∨)n = Homk(Hn, k) .

The multiplication (respectively diagonal) of H∨ is, by definition, the map dual to the diagonal (respectively
multiplication) of the original Hopf algebra H, exploiting the canonical isomorphism of the linear dual of a
tensor product with the tensor product of the linear duals. [...]

The mod-p Steenrod algebra is of finite type, so we can consider the dual Steenrod algebra Ap = (Ap)∨
in the sense of the previous paragraph. We now discuss the topological interpretation of this dual Steenrod
algebra as the homotopy groups of the symmetric ring spectrum HFp ∧HFp and an explicit description of
the multiplication and comultiplication in the dual Steenrod algebra Ap.

The Eilenberg-Mac Lane spectrum HFp is a symmetric ring spectrum, and so the smash product HFp∧
HFp of two copies is another symmetric ring spectrum. The homotopy groups of HFp ∧HFp thus form a
graded commutative ring. The homotopy groups π∗(HFp∧HFp) of this ring spectrum coincide, by definition,
with the homology groups H∗(HFp,Fp). For every symmetric spectrum X the Kronecker pairing

〈−,−〉 : Hk(X,Fp) ⊗ Hk(X,Fp) −→ Fp
has an adjoint map

(10.20) Hk(X,Fp) −→ Hom(Hk(X,Fp),Fp) = Hk(X,Fp)∨ , f 7−→ 〈f,−〉 .



10. THE STEENROD ALGEBRA 325

We know from Proposition 6.28 that this adjoint is an isomorphism of Fp-vector spaces. In the special case
X = HFp this becomes a map

(10.21) Akp −→ (πk(HFp ∧HFp))∨ , f 7−→ 〈f,−〉 .

Now we compare the comultiplication of the Steenrod algebra with the multiplication in the homotopy ring
of the ring spectrum HFp ∧HFp.

Proposition 10.22. Under the isomorphism (10.21) given by the Kronecker pairing, the comultiplication
of the Steenrod algebra A∗p coincides with the multiplication in the ring π∗(HFp ∧HFp).

Proof. The claim is essentially a formal consequence of the compatibility (6.29) between Kronecker
pairing and exterior products. The product of two classes x, y ∈ π∗(HFp ∧ HFp) = H∗(HFp,Fp) is the
image of the extorior product x × y ∈ H∗(HFp ∧ HFp,Fp) under the map induced by the multiplication
µ : HFp ∧HFp −→ HFp on mod-p homology. The defining property of the diagonal ∆(f) of a cohomology
class f ∈ H∗(HFp,Fp) is that the exterior product map takes it to µ∗(f) ∈ H∗(HFp ∧HFp,Fp). In other
words, if ∆(f) =

∑
i f
′
i ⊗ f ′′i then µ∗(f) =

∑
i f
′
i × f ′′i . We obtain the relations

〈f, x · y〉 = 〈f, µ∗(x× y)〉 = 〈µ∗(f), x× y〉 =
∑
i

〈f ′i × f ′′i , x× y〉

=
∑
i

(−1)k|f
′′
i | · 〈f ′i , x〉 · 〈f ′′i , y〉 = 〈

∑
i

f ′i ⊗ f ′′i , x⊗ y〉 = 〈∆(f), x⊗ y〉 ,

where the second equality is naturality of the Kronecker pairing and the fourth equality is the compatibility
between the exterior product and Kronecker pairing. The fifth equation is the definition of the induced
pairing between two tensor copies of π∗(HFp ∧ HFp) and of Ap. Altogether, this equation says that the
product on π∗(HFp ∧HFp) and the diagonal on Ap are dual to each other. �

Example 10.23 (Dual Steenrod algebra). As we just showed the product of π∗(HFp ∧ HFp) is dual to
the comultiplication in the Steenrod algebra Ap. We can also define a comultiplication on π∗(HFp ∧HFp)
by dualizing the composition product in Steenrod algebra Ap. In other words, for x ∈ πk(HFp ∧HFp) =
Hk(HFp,Fp) we define ∆(x) ∈ H∗(HFp,Fp)⊗H∗(HFp,Fp) as the unique class such that the relation

〈f ⊗ g, ∆(x)〉 = 〈f ◦ g, x〉

holds for all homogeneous cohomology classes f, g ∈ A∗p whose degrees add up to k. Here the pairing on
the left hand side is defined by [...] With this comultiplication, the graded Fp-algebra π∗(HFp ∧HFp) then
becomes a commutative Hopf algebra, isomorphic, via (10.21), to the Hopf algebra dual of the Steenrod
algebra Ap.

We describe the structure of the dual Steenrod algebra H∗(HFp,Fp) = π∗(HFp ∧HFp) explicitly. The
first space (HFp)1 = Fp[S1] of the spectrum HFp is an Eilenberg-Mac Lane space of type (Fp, 1), and its
mod-p homology gives rise to a set of multiplicative generators of π∗(HFp ∧ HFp), and thus of the dual
Steenrod algebra. Indeed, the tautological morphism of symmetric spectra

i1 : S−1 ∧ Fp[S1] = F1Fp[S1] −→ HFp
(freely generated by the identity of Fp[S1] = (HFp)1) induces a map of homology groups

(10.24) H̃k+1(Fp[S1],Fp) ∼= Hk(S−1 ∧ Fp[S1],Fp)
(i1)∗−−−−→ Hk(HFp,Fp) .

The mod-p homology of Fp[S1] is also the mod-p group homology of the cyclic group of order p, which is
one-dimensional in every non-negative degree.

For p = 2 and i ≥ 0 we define an element

ξi ∈ H2i−1(HF2,F2) = π2i−1(HF2 ∧HF2)

as the image of the non-trivial element of H2i(F2[S1],F2) under the map (10.24). For odd primes p we
denote by b = β(ι) in H2(Fp[S1],Fp) the Bockstein of the fundamental class. We let x2n ∈ H2n(Fp[S1],Fp)
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and x2n+1 ∈ H2n+1(Fp[S1],Fp) the homology classes dual to the cohomology generators bn respectively
ι · bn. For i ≥ 0 we then define

ξi ∈ H2pi−2(HFp,Fp) = π2pi−2(HFp∧HFp) respectively τi ∈ H2pi−1(HFp,Fp) = π2pi−1(HFp∧HFp)

as the image of x2pi−1 ∈ H2pi−1(Fp[S1],Fp) respectively the image of x2pi ∈ H2pi(Fp[S1],Fp) under the
map (10.24). We have ξ0 = 1, the unit of the multiplication in the graded ring π∗(HFp ∧HFp).

The following calculation of the dual Steenrod algebra in Theorem 10.25 is due to Milnor [60].

Theorem 10.25. The dual mod-2 Steenrod is a polynomial algebra on the classes ξi for i ≥ 1:

π∗(HF2 ∧HF2) = F2[ξ1, ξ2, . . . ] .

The diagonal is determined by

∆(ξi) =

i∑
j=0

ξ2j

i−j ⊗ ξj ,

where ξ0 = 1. For odd primes p the dual mod-p Steenrod is a tensor product of an exterior algebra on the
classes τi for i ≥ 0 with a polynomial algebra on the classes ξi for i ≥ 1:

π∗(HFp ∧HFp) = Λ(τ0, τ1, . . . )⊗ Fp[ξ1, ξ2, . . . ] .
The diagonal is determined by

∆(τi) = τi ⊗ 1 +

i∑
j=0

ξp
j

i−j ⊗ τj and ∆(ξi) =

i∑
j=0

ξp
j

i−j ⊗ ξj ,

where ξ0 = 1.

As in any graded connected Hopf algebra, the antipode c is determined by the rest of the data. In the
case of the dual Steenrod algebra, it is determined inductively on the Milnor generators by the formula

c(ξn) = ξ̄n =

n−1∑
i=0

ξ2i

n−i · c(ξi) .

For example, we have

c(ξ1) = ξ1 , c(ξ2) = ξ2 + ξ3
1 and c(ξ3) = ξ3 + ξ2

2 · c(ξ1) + ξ4
1 · c(ξ2) = ξ3 + ξ1ξ

2
2 + ξ4

1ξ2 + ξ7
1 .

Under the Hopf algebra isomorphism 10.21, every homotopy class of HFp∧HFp corresponds to a linear
form on the Steenrod algebra. For the generators ξi and τi, these forms are given as follows. For p = 2 we
have

〈Sq2i−1

Sq2i−2

· · · Sq2 Sq1, ξi〉 = 1

and ξi pairs to 0 with all other admissible monomials of degree 2i − 1. Since the admissible monomials
form a vector space basis of the Steenrod algebra, this determines the form 〈−, ξi〉. Conversely 〈Sqi, ξi1〉 = 1
and Sqi pairs to 0 with all other monomials of degree i in the ξn’s. We derive these and other formulas in
Exercise E.II.23. [p odd]

Since the classes ξi, plus the classes τi in the odd-primary case, are multiplicative generators of the
dual Steenrod algebra and the product of π∗(HFp ∧HFp) is dual to the coproduct of the Steenrod algebra,
this determines the pairing in general by the formula

〈f, x · y〉 = 〈∆(f), x⊗ y〉 =
∑

(−1)|y||f
′
i |〈f ′i , x〉 · 〈f ′′i , y〉 ,

where ∆(f) =
∑
i f
′
i ⊗ f ′′i .

Milnor’s description of the dual Steenrod algebra gives rise to another basis of the Steenrod algebra,
different from the Serre-Cartan basis of admissible monomials. Indeed, the Milnor basis is simply the basis
of Ap dual to the monomial basis of π∗(HFp ∧HFp) [spell out for odd p].

For p = 2 the elements of the Milnor basis dual to ξi11 · · · ξinn is denoted Sqi1,...,in (which must be

distinguished from the product Sqi1 · · · Sqin). This notation is consistent since Sqi,0,...,0 = Sqi. The first
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difference between the Serre-Cartan and the Milnor basis occurs as soon as there is room for it, i.e., in
dimension 3, where

Sq3 = Sq3,0 and Sq2 Sq1 = Sq3,0 + Sq0,1 .

Remark 10.26. Milnor’s explicit description of the dual Steenrod algebra can be used to calculate the
homotopy rings of some related ring spectra as well: Exercise E.II.27 is devoted to showing that the
reduction morphism π : HZ −→ HFp induces isomorphisms of graded F2-algebras

π∗(HZ ∧HF2) ∼= F2[ξ2
1 , ξ2, ξ3, . . . ] and π∗(HF2 ∧HZ) ∼= F2[ξ̄2

1 , ξ̄2, ξ̄3, . . . ]

in the 2-primary case and

π∗(HZ ∧HFp) ∼= Fp[ξi | i ≥ 1]⊗ Λ(τi | i ≥ 1) and π∗(HFp ∧HZ) ∼= Fp[ξ̄i | i ≥ 1]⊗ Λ(τ̄i | i ≥ 1)

for odd primes, where ξ̄i = c(ξi) is the antipode of the Milnor generator ξi.
Exercise E.II.28 explains that the ‘reduction morphism’ π : ko −→ HF2 induces isomorphisms of graded

F2-algebras

π∗(ko ∧HF2) ∼= F2[ξ4
1 , ξ

2
2 , ξ3, ξ4 . . . ] and π∗(HF2 ∧ ko) ∼= F2[ξ̄4

1 , ξ̄
2
2 , ξ̄3, ξ̄2 . . . ] .

Example 10.27. For odd primes, the classes τi in the homotopy ring π∗(HFp ∧HFp) satisfy the relation
τ2
i = 0, so Toda brackets of exterior generators are defined [ref]. For p = 3 we have

〈τ0, τ0, τ0〉 = {ξ1}

in A4. [show ! Do we have ξi+1 ∈ 〈τi, τi, τi〉?] For p ≥ 5, the Toda bracket 〈τi, τi, τi〉 consists only of 0
for dimensional reasons [check]. However, there are non-trivial higher Toda brackets (which we have not
defined) such as ξ1 ∈ 〈τ0, τ0, . . . , τ0〉 (p-fold bracket).

Remark 10.28. We can consider a ‘Steenrod algebra’ A(A) for every abelian group A, generalizing the
mod-p Steenrod algebra as Ap = A(Fp). We can define A(A) either as the graded ring of stable cohomology
operations with coefficients in A, or equivalently as the graded endomorphism ring SHC(HA,HA)∗ of the
Eilenberg-Mac Lane spectrum in the stable homotopy category. If A is a ring, then sending an element
a ∈ A to the map λa : A −→ A given by left multiplication by a gives a ring homomorphism

A −→ Hom(A,A) ∼= A(A)0 .

If A is commutative, then the image of λ is central in the graded ring A(A)∗ so in this case A(A)∗ becomes
an A-algebra.

If A is a field, then cohomology with coefficients in A admits a Künneth isomorphism, so we can define
a diagonal on A(A)∗ just as in the special case Fp [finite type?], making it into a graded Hopf algebra. For
fields of characteristic 0, this structure is rather boring: if A is any uniquely divisible abelian group, then
there are no nontrivial morphisms from HA to itself of non-zero degree. So in that case A(A)n is trivial
for n 6= 0, and A(A)0 = Hom(A,A).

For fields k of positive characteristic p, the structure of the ‘Steenrod algebra’ A(k) is an extension of
the mod-p Steenrod algebra. [spell out]

Since the components of a stable cohomology operation are always additive (part (b) of Exercise E.II.19),

the reduced cohomology H̃∗(X,A) of a pointed simplicial set X with coefficients in an abelian group A is
tautologically a graded left module over the Steenrod-algebra A(A)∗ via

τ · x = τi(x) ∈ H̃n+i(X;A)

for τ = {τi}i≥0 ∈ A(A)n and x ∈ H̃i(X;A). So cohomology with coefficients in A can be viewed as a
functor

H̃∗(−;A) : Ho∗(sS) −→ A(A)∗-mod .

Moreover, the suspension isomorphism

Σ : H̃∗(X;A)[1] −→ H̃∗(ΣX;A)
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is an isomorphism of graded A(A)∗-modules, by the compatibility condition in the definition of a stable
cohomology operation. Here the square brackets [1] denote the shift of a graded module.

The algebra A(A) also acts on the spectrum cohomology with coefficients in A by graded composition.
For a based simplicial set, the suspension isomorphism

H̃∗(X;A) −→ H∗(Σ∞X;A)

is an isomorphism of graded A(A)∗-modules,

10.3. The Adams spectral sequence. We conclude this section with a brief discussion with the
Adams spectral sequence based on mod-p homology. This spectral sequence is a very useful tool for the
calculation of the homotopy groups of many spectra, as we indicate below.

Construction 10.29. Let p be a prime number and X a symmetric spectrum. For ease of notation we
abbreviate the Eilenberg-Mac Mane spectrum HFp to H for the course of this construction. Since H = HFp
is a symmetric ring spectrum, the functor H ∧− is a triple on the category of symmetric spectra. Like any
triple, it gives rise to an augmented cosimplicial object H•X for every symmetric spectrum X.

In more detail, we define the symmetric spectrum of n-cosimplices by

H(n)X = H ∧ . . . ∧H︸ ︷︷ ︸
n+1

∧X .

For i = 0, . . . , n the coface morphism di : H(n−1)X −→ H(n)X is given by inserting the unit morphism
ι : S −→ H into the ith slot (counting from i = 0). For i = 0, . . . , n the codegeneracy morphism si :
H(n+1)X −→ H(n)X is given by using multiplication µ : H ∧H −→ H on the ith and (i+ 1)st factor.

The cosimplicial symmetric spectrum gives rise to a spectral sequence

Es,t1 = πt−s(H
(s+1)X) =⇒ πt−s TotH•X .

which converges (conditionally ?) to the homotopy groups of the totalization of the cosimplicial spectrum
[ref]. We will now identify the E2-term of this spectral sequence as a homological invariant of the mod-p
homology of X and investigate the relationship between the abutment and the homotopy groups of X.

Proposition 10.30. (i) The E2-term of the spectral sequence is naturally isomorphic to the Ext-groups
of comodules over the dual Steenrod algebra, from Fp to the t-fold shift of the mod-p homology of X,

Es,t2
∼= ExtsAp-comod(Fp, H∗(X,Fp)[t]) .

(ii) Under some assumptions on the symmetric spectrum X, the natural map X −→ Tot(H•X) is a p-adic
completion. In this case the Adams spectral sequence converges [how?] to the homotopy groups of the
p-completion X∧p of X.

Proof. (i) By an iterated application of the Künnth theorem (Proposition 6.25) the group
πt−s(H

(s+1)X) = Ht−s(H ∧ . . . ∧H ∧X,Fp) is naturally isomorphic to the tensor product

Ap ⊗ · · · ⊗ Ap ⊗H∗(X,Fp)
(there are s factors of H respectively of the dual Steenrod algebra), via the exterior product map.[generalizes

m] So the bigraded abelian group Es,t1 is isomorphic to the cobar complex of the A-comodule H∗(X,Fp),
and the d1-differential corresponds to the cobar differential. For every comodule M , the homology of the
cobar complex C(A,M) calculates the Ext-groups ExtsA(Fp,M [t]), which proves (i). �

Definition 10.31. Let p be prime and X a (connective, finite type ?) symmetric spectrum. By Proposi-
tion 10.30 the cosimplicial spectrum H•X gives rise to a spectral sequence (how convergent?)

Es,t2 = Exts,tAp-comod(Fp, H∗(X,Fp)) =⇒ πt−s
(
X∧p
)

which is called the Adams spectral sequence for the spectrum X.

[Describe the filtration on homotopy groups. If R is a semistable symmetric ring spectrum then the
Adams spectral sequence is a spectral sequence of algebras]
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Example 10.32 (Primitives in the dual Steenrod algebra). For any Hopf algebra H (only coaugmented
coalgebra?) over a field k and any comodule M over H, the first Ext-group Ext1

H-comod(k, k) from the
ground field to itself is isomorphic to the k-vector space

Prim(H) = {x ∈ H |∆(x) = x⊗ 1 + 1⊗ x}

of primitive elements in H. This group is canonically isomorphic to the dual vector space of the indecom-
posables Q(H∨) of the dual algebra H∨. Indeed, a natural k-linear map

Prim(H∨) ∼= Q(H)∨

is defined as follows. A linear form ψ : H −→ k, can be restricted to the augmentation ideal I = ker(ε :
H −→ k). If ψ is primitive as an element of the dual Hopf algebra H∨, then for all pairs of elements x, y ∈ I
in the augmentation ideal we have

〈ψ, xy〉 = 〈∆(ψ), x⊗ y〉 = 〈ψ ⊗ 1 + 1⊗ ψ, x⊗ y〉 = 〈ψ, x〉 · 〈1, y〉 + 〈1, x〉 · 〈ψ, y〉 = 0 .

So ψ vanishes on I2 and factors over a unique linear map Q(H) = I/I2 −→ k. Conversely, every linear form
on I/I2 can be extended to a linear map on H by taking 1 to 0; the fact that the original form vanishes on
I2 then implies that the extension is a primitive element of H. In other words, x is primitive in the dual
coalgebra if and only if its restriction to the square of the augmentation ideal of H vanishes. Hence the
map

We conclude that to calculate the 1-line of the Adams spectral sequence, we should determine the
primitive elements in the dual Steenrod algebra, or, equivalently, the vector space of indecomposables in
the Steenrod algebra:

Proposition 10.33. The graded vector space QA2 of indecomposables in the mod-2 Steenrod algebra is

trivial in dimensions not a power of 2, and (QA2)2i is 1-dimensional, generated by the image of Sq2i for
all i ≥ 0.

The graded vector space Prim(A2) of primitive elements in the dual mod-2 Steenrod algebra is trivial in

dimensions not a power of 2, and 1-dimensional in dimension 2i, generated by ξ2i

1 , for all i ≥ 0.
For an odd prime p, the graded vector space QAp of indecomposables in the mod-p Steenrod algebra is

trivial in dimensions different from 1 and 2pi(p− 1). In the remaining dimensions, the indecomposable are

1-dimensional generated by the images of β respectively P p
i

for i ≥ 0.
The graded vector space Prim(Ap) of primitive elements in the dual mod-p Steenrod algebra is trivial in

dimensions different from 1 and 2pi(p− 1), and 1-dimensional in the other dimensions, generated by

τ0 ∈ Prim(Ap)1 and ξp
i

1 ∈ Prim(Ap)2pi(p−1) .

Proof. Let us start to determine the indecomposables of the mod-p Steenrod algebra. Since every
element in A2 (respectively Ap for p odd) is a sum of products of Steenrod operations (respectively of the

Bockstein β and the operations P i), we only have to find out which of the operations Sqi (respectively β
and P i) are decomposable.

We start with the case p = 2. Let n be a positive integer which is not a power of 2. So we can write
n = 2i(2k + 1) with i ≥ 0 and k ≥ 1. We have the Adem relation

Sq2i Sqn−2i =

2i−1∑
j=0

(
n− 2i − j − 1

2i

)
Sqn−j Sqj .

The summand indexed by j = 0 contributes the term
(
n−2i−1

2i

)
Sqn. We claim that the binomial coefficient(

n−2i−1
2i

)
=
(

2i+1k−1
2i

)
is odd. This implies that

Sqn = Sq2i Sqn−2i +

2i−1∑
j=1

(
n− 2i − j − 1

2i

)
Sqn−j Sqj ,
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so we conclude that Sqn is decomposable in the mod-2 Steenrod algebra if n is not a power of 2. To evaluate

the binomial coefficient we use that
(

2i+1k−1
2i

)
is the coefficient of t2

i

in the polynomial (1 + t)2i+1k−1. In
characteristic 2, that polynomial evaluates to

(1 + t)2i+1k−1 = ((1 + t)2i+1

)k · (1 + t)−1 = (1 + t2
i+1

)k · (1 + t+ t2 + · · · ) .

Since (1 + t2
i+1

)k is congruent to 1 modulo t2
i+1, the coefficient of t2

i

in (1 + t)2i+1k−1 is indeed congruent
to 1 mod 2. Hence we have shown that the decomposables QA2 are generated by the residue classes of

the operations Sq2i ; in particular, the indecompsables of A2 are trivial in all dimensions not a power of 2.
Since the indecomposables of A2 are vector space dual to the primitives in A2, this also shows that the
primitives vanish in dimensions which are not a power of 2.

[p odd]

We still need to show that the elements Sq2i respectively β and P p
i

are not decomposable. If any of
these were decomposable, then the the indecomposable of Ap would be entirely trivial in the respective
dimension, and hence the primitives in Ap would be trivial in the same dimension. So it suffices to find
non-trivial primitive class in dimensions 2i when p = 2 and in dimensions 1 and 2pi(p− 1) when p is odd.

Evidently, the class ξ1 ∈ (A2)1 is primitive when p = 2 and τ0 ∈ (Ap)1 and ξ1 ∈ (Ap)2(p−1) are
primitive. Moreover, if x is primitive, then in characteristic p we have

∆(xp) = ∆(x)p = (x⊗ 1 + 1⊗ x)p = xp ⊗ 1 + 1⊗ xp .

So in characteristic p, the p-th power of a primitive class is again primitive. So ξp
i

1 is primitive for all i ≥ 1.
So we have found all primitive elements, and thus also calculated the indecomposables in Ap. �

Remark 10.34 (Hopf invariant one problem). The degree 2 map of S1 and the Hopf maps η : S3 −→ S2,
ν : S7 −→ S4 and σ : S15 −→ S8 have the property that the cohomology of their respective mapping cones is
a truncated polynomial algebra, compare Example 10.11. Now we can show that if a map f : S2n−1 −→ Sn

has a mapping cone with truncated polynomial cohomology, then n must be a power of 2.
Indeed, let Cf = Sn∪fD2n denote the mapping cone of f . We may suppose n ≥ 2, and then the integral

cohomology of Cf is free abelian of rank 1 in dimensions 0, n and 2n, and trivial in all other dimensions.
We let xn ∈ Hn(Cf,Z) a generator of this infinite cyclic group and assume that x2 ∈ H2n(Cf,Z) a also a
generator. By the universal coefficient theorem, the mod-2 cohomology is 1-dimensional in dimensions 0,
n and 2n, and trivial in all other dimensions. Moreover, the reduction of x generates Hn(Cf,F2) and its
square generates H2n(Cf,F2). So we have

Sqn(x) = x2 6= 0 .

However, if n is not a power of 2, then the operation Sqn is decomposable. Since the mod-2 cohomology
groups of C(x) are all trivial in dimensions n+ 1 through 2n− 1, we must have Sqn(x) = 0; we reached a
contradiction, so n must be power of 2.

The question for which i there is a map f : S2i+1−1 −→ S2i whose mapping cone Cf has truncated
polynomial mod-2 cohomology was known as the Hopf invariant one problem. The answer, first obtained
by Adams [...], is that i = 0, 1, 2 and 3 are the only possible values, and the the odd multiples of the maps 2
and the three Hopf maps are the only maps which qualify.

Now we have determined the primitive elements in the dual mod-p Steenrod algebra, and hence we can
describe the 1-line of the Adams spectral sequence for the sphere spectrum. For p = 2 we denote by

hi = [ξ2i

1 ] ∈ Ext1,2i(F2,F2)

the Ext class corresponding to the primitive element ξ2i

1 . For odd primes p we denote by

a = [τ0] ∈ Ext1,1 and hi+1 = [ξp
i

1 ] ∈ Ext1,piq .

the Ext class corresponding to the primitive elements τ0 and ξp
i

1 .

Ext0,0
A (Fp,Fp) = Fp
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and Ext0,t
A (Fp,Fp) = 0 for t 6= 0.

Ext1,∗
A (Fp,Fp) = Prim(Ap) =

{
F2{ξ2i

1 | i ≥ 1} p = 2

Fp{τ0, ξp
i

1 | i ≥ 1} p > 2.

Example 10.35. We discuss the Adams spectral sequence for the sphere spectrum

Es,t2 = Exts,tA (Fp,Fp) =⇒ (πt−sS)
∧
p

and justify the table given in Example 1.11 of Chapter I for the homotopy groups spheres up to dimension 8.
We start with the prime p = 2, where the following chart displays the relevant portion of the spectral
sequence.

0 2 4 6 8 10 12 14
0

2

4

6

8

•

•h0

•

•

•

•

•

•

•

•

•������
h1

•������

h2
1

•������

h3
1 = h2

0h2

•h0h2

•
h2

•h2
2

•
h3

•

•

•

•������

•������

•c0

•������

•〈h1, h0, h
3
0h3〉

•������

•������

•
〈h2, h

3
0, h0h3〉

•

•
h2

3

•

•
d0

•

•

•�����

•
h4

•

•

•

•����

•####

•

•

//////////

WW

**************

TT

**************

TT

We explain how to interpret this chart (and similar pictures later on) and how to derived conclusions
about the stable homotopy groups of spheres from it.

It is customary to draw Adams spectral sequences in Adams indexing which means that the homological
degree, usually denoted s, is drawn vertically, and the difference t − s of the degrees is drawn vertically.
The number t− s is referred to as the topological degree. So the slot with coordinated (p, q) represents the
group Extp,p+q. This way of drawing an Adams spectral sequence makes it easy to visualize which groups
contribute to the nth stable stem, since these all lie on the vertical line of topological degree t− s = n. We
have chosen to display this particular portion of the spectral sequence because two phenomena occur for
the first time in topological degree t− s = 15: in bidegree (15, 5) sits the first Ext group whose dimension
is larger than 1 and the first non-zero differentials originate in topological degree t − s = 15, namely
d2(h4) = h0h

2
3, compare the discussion below.

We have calculated the Ext groups in homological degrees 0 and 1. Clearly E0,∗
2 = Ext0,∗(F2,F2) is

one-dimensional with basis 1 ∈ E0,0
2 . The graded group E1,∗

2 = Ext1,∗(F2,F2) is isomorphic to the primitives
in the dual Steenrod algebra, hence one-dimensional in dimensions a power of 2 and trivial otherwise (see
Proposition 10.33). The standard notation is

hi = [ξ2i

1 ] ∈ Ext1,2i(F2,F2)

for the Ext class corresponding to the primitive element ξ2i

1 .
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Moreover Es,s2 is one-dimensional, generated by hs0, for all s ≥ 0, which means that the vertical line
with t − s = 0 continues indefinitely upwards [justify]; we only labeled a few of these classes in the chart.
The vertical lines represent multiplication by h0 and the diagonal lines represent multiplication by h1. So
for example, the generator in bidegree (t − s, s) = (3, 3) is h3

1 = h2
0h2 and the generator in bidegree (7, 4)

is h3
0h3. There are two non-trivial h2-multiplications in this range (namely on 1 and h2) which are not

represented graphically. We have labeled all generators in the lower left part of the chart, and in the rest
the multiplicative structure yields basis elements.

Remark 10.36. We collect some more facts about the mod-2 Adams spectral sequence for the sphere
spectrum, mostly without proof. In the 2-line of the Adams spectral sequence the relation hi+1hi = 0 holds

for all i ≥ 0: the class hi+1hi is represented in the cobar complex by [ξ2i+1

1 |ξ2i

1 ], which is the coboundary

of [ξ2i

2 ]. This relation and the commutativity is all that happens on the 2-line, so the classes

hihj for i = j or i ≥ j + 2

form a basis of Ext2,∗.
The stable classes of the Hopf maps 2ι, η, ν and σ are all trivial in mod-2 homology, so they have

Adams filtration 1. As we discussed in Example 10.11, these classes are detected by the Steenrod operations
Sq1,Sq2,Sq4 respectively Sq8; dually this means that their images under the map

F 1πsn −→ Ext1,n+1

are non-zero. In other words, the classes h0, h1, h2 and h3 are permanent cycles in the spectral sequence
and detect 2ι, η, ν and σ respectively. The other classes on the 1-line support a non-trivial differential

d2(hi+1) = h0h
2
i

often referred to as the Adams differential. (The formula holds for all i ≥ 1, but both sides are zero for
i < 3.) This differential is a biproduct of Adams’ non-existence theorem for maps of Hopf invariant one [3],

which he solved by exhibiting an explicit decomposition of the Steenrod operation Sq2i in terms of secondary
cohomology operations. The first of the non-zero Adams differentials can also be deduced from the fact that
2σ2 = 0 in the 14-stem (since the product of the stable homotopy groups is graded commutative), whereas
the class h0h

2
3 which detects 2σ2 is non-zero in Ext3,17. This can only happen if h0h

2
3 is the image of some

differential, but there is nothing except the class h4 which could hit h0h
2
3. So we must have d2(h4) = h0h

2
3.

The classes h2
i are called Kervaire invariant classes because h2

i is a permanent cycle in the Adams
spectral sequence if and only if there exists a framed (2i − 2)-manifold with Kervaire invariant 1. Then

Θi ∈ πs2i+1−2

denotes any stable homotopy element of filtration 2 which is detected by h2
i . We have

Θ1 = η2 , Θ2 = ν2 , Θ3 = σ2 , Θ4 = 〈2,Θ3, 2,Θ3〉 ;

the class Θ5 exists, but is more difficult to describe [4]. Whether the remaining classes Θi exist was an open
question for a long time, known as the Kervaire invariant problem. For i ≥ 7 this question was recently
resolved in the negative by Hill, Hopkins and Ravenel [34], i.e., h2

i is not a permanent cycle for i ≥ 7. The
status of Θ6 is still unknown at present.

The 3-line of the mod-2 Adams spectral sequence is also completely known. After dividing out by
commutativity and the relations

hihi+1 = 0 , hih
2
i+2 = 0 , and h2

ihi+2 = h3
i+1

(see Exercise E.II.31), the triple products hihjhk for i, j, k ≥ 0 become linearly independent in the 3-line.
The 3-line has another family of classes which are multiplicatively indecomposable. There are non-zero
classes

ci = 〈hi+1, hi, h
2
i+2〉 ∈ Ext3, 11·2i

for i ≥ 0 which together with triple products of hi’s generate the entire 3-line. Bruner [16] showed that the
classes h2h

2
j are permanent cycles for j ≥ 4 [??]. The class c0 is a permanent cycle and detects ε, the unique
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non-trivial element of filtration 3 in the 8-stem. The class c1 (outside of our chart) is also a permanent
cycle, but for i ≥ 2, the class ci supports a non-trivial d2-differential. There is one more multiplicative
generator on the chart which we have not yet introduced, namely

d0 = 〈h0, h1, h2, c0〉 ∈ Ext4,18

which is the first of an infinite family of classes di in the 4-line. This class d0 is a permanent cycle and
detects a homotopy class of filtration 4 in the 14-stem usually denoted κ.

Using 4-fold Toda brackets, the class κ can be decomposed as

κ ∈ 〈2, η, ν, ε〉 ∩ 〈ν, ε, 2, η〉 ∩ 〈ν, 2ν, ν, 2ν〉 .

Some more systematic information is available for the 4-line and above, but we’ll stop our survey of the
2-primary Adams spectral sequence here. [vanishing line; Adams periodicity]

Now we take a brief look at the mod-p Adams spectral sequence for the stable stemes at an odd prime p.
Here is a chart for p = 3 up to topological degree t− s = 21:

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

•

•a

•

•

•

•

•

•jjjjjjjjjjj

h0

•

•jjjjjjjjjjj •
b0

•jjjjjjjjjjj

•
h1

•

•

• •

•jjjjjjjjjjj •
b20

•

•jjjjjjjjjjj

•

////////

WW

////////

WW

////////

WW

The graded group E1,∗
2 = Ext1,∗(Fp,Fp) is isomorphic to the primitives in the dual Steenrod algebra,

hence one-dimensional in dimensions 1 and 2pi(p − 1) and trivial otherwise (see Proposition 10.33). We
write

a = [τ0] ∈ Ext1,1 and hi = [ξp
i

1 ] ∈ Ext1,piq .

for the Ext classes corresponding to the primitive elements τ0 and ξp
i

1 . The vertical lines represent multi-
plication by a and the diagonal lines of slope 1/2 represent multiplication by h0. The dashed lines of slope
1/3 represent the Massey product operation 〈h0, h0,−〉.

Besides certain products [which are these, besides power of a?], the 2-line contains a non-trivial class

bi ∈ Ext2,qpi+1

for each i ≥ 1 which is represented in the cobar complex by

p−1∑
k=1

1

p

(
p

k

)
[ξp

ik
1 |ξ

pi(p−k)
1 ] .

As the picture for p = 3 indicates, the classes a, h0 and b0 are permanent cycles since there are
no possible targets for differentials. They detect homotopy classes denoted 3ι ∈ πs0, α1 ∈ πs2p−3 and
β1 ∈ πs2p(p−1)−2 respectively. The classes α1 and β1 are the first in infinite families of classes in the p-local

stable stems, called the α-family respectively the β-family.
The Ext class bi admits a decomposition as a ‘long’ Massey product (which we have not defined),

namely as the p-fold bracket

bi ∈ 〈hi, . . . , hi〉 .
The homotopy class β1 has a corresponding decomposition as a p-fold Toda bracket

β1 = 〈α1, . . . , α1〉 .
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The first systematic families of differentials are the Adams differential

d2(hi) = h0bi−1

for i ≥ 1 and the Toda differential

d2p−1(bi+1) = h1b
p
i ,

which imply various other differentials by the derivation property. [vanishing line]

Exercises

Exercise E.II.1. Let us denote by γss : Spss −→ SHC the restriction of the localization functor γ : Sp −→
SHC of Theorem 1.6 to the full subcategory of semistable symmetric spectra of simplicial sets. Show
that γss is a localization of the category of semistable symmetric spectra at the class of π̂∗-isomorphism.
Do the same for the pairs (Ω-spectra, level equivalences) and (injective Ω-spectra, homotopy equivalences).

Exercise E.II.2. Let K be a based simplicial set whose reduced integral homology is concentrated in a
single dimension, where it is free abelian of rank 1. The degree of a based self map τ : K −→ K is the
unique integer deg(τ) such that τ induces multiplication by deg(τ) on reduced integral homology.

Show that for every injective Ω-spectrum X the induced morphism τ∗ : XK −→ XK equals deg(τ) · Id
in the group [XK , XK ]. Show that for every symmetric spectrum A of simplicial sets, the image in the
group SHC(K ∧ A,K ∧ A) of the self map τ ∧ Id of K ∧ A under the localization functor γ : Sp −→ SHC
is multiplication by the degree of τ .

Exercise E.II.3. Let a : X −→ Y be a morphism in the stable homotopy category. Construct a flat
symmetric spectrum Z, a stable equivalence f : Z −→ X and a morphism of symmetric spectra g : Z −→ Y
such that

γ(g) ◦ γ(f)−1 = a .

Exercise E.II.4. Let T be a triangulated category. We call a triangle (f, g, h) in T anti-distinguished
if the triangle (−f,−g,−h) is distinguished in the original triangulation of T . Show that the class of
anti-distingusihed triangles is also a triangulation of T (with respect to the same suspension functor).

Exercise E.II.5. Let T be a triangulated category and Σ−1 : T −→ T a quasi-inverse to the suspension
functor, i.e., a functor endowed with a natural isomorphism ψA : A ∼= Σ(Σ−1A). We call a triangle

A
f−−→ B

g−−→ C
h−−→ Σ−1A

in the opposite category T op op-distinguished if the triangle

Σ−1A
h−−→ C

g−−→ B
ψA◦f−−−−−→ Σ(Σ−1A)

is distinguished in the original triangulation of T . Show that the opposite category T op is a triangulated cat-
egory with respect to the functor Σ−1 : T op −→ T op as suspension functor and the class of op-distinguished
triangles.

Exercise E.II.6. Let T be a triangulated category and fn : Xn −→ Xn+1 a sequence of composable
morphism for n ≥ 0. Let (X̄, ϕn) and (X̄ ′, ϕ′n) be two homotopy colimits of the sequence (Xn, fn). Construct
an isomorphism ψ : X̄ −→ X̄ ′ satisfying ψϕn = ϕ′n and commuting with the connecting morphisms to the
suspension of

⊕
n≥0Xn. To what is extent it the isomorphism ψ unique?

Exercise E.II.7. Let T be a triangulated category with countable sums. Let X be any object of T and
e : X −→ X an idempotent endomorphism. Show that e splits in the following sense: there are objects
eX and (1 − e)X and an isomorphism between X and the sum eX ⊕ (1 − e)X under which e : X −→ X

corresponds to the endomorphism

(
1 0
0 0

)
of eX ⊕ (1− e)X. (Hint: use that homotopy colimits exist in T

and construct eX as the homotopy colimit of the sequence of e’s).
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Exercise E.II.8. Let f : X −→ Y and g : Y −→ Z be morphisms in a triangulated category T such that
the composite gf : X −→ Z zero and the group [ΣX,Z] is trivial. Show that there is at most one morphism
h : Z −→ ΣX such that (f, g, h) is a distinguished triangle.

Exercise E.II.9. In Proposition 3.5 we constructed the symmetric monoidal derived smash product on
the stable homotopy category of flat symmetric spectra and proved some properties. In this exercise we
show that these properties uniquely determine the derived smash product and the coherence isomorphisms

on SHC[.
(i) Show that there is only one functor ∧L : SHC[ × SHC[ −→ SHC[ which satisfies the equality ∧L ◦

(γ[ × γ[) = γ[ ◦ ∧ as functors Sp[ × Sp[ −→ SHC[.
(ii) Show that there is only one way to define unit, associativity and symmetry isomorphisms for ∧L on

SHC[ if we want the functor γ[ : Sp[ −→ SHC[ to be strong symmetric monoidal with respect to the
identity transformation.

Exercise E.II.10. By Proposition 5.21 a symmetric spectrum X is connective if and only if X belongs
to 〈S〉+, the smallest class of objects of the stable homotopy category which contains the sphere spectrum
S and is closed under sums (possibly infinite) and extensions to the right. Show that another equivalent
condition is that X stably equivalent to a symmetric spectrum of the form A(S) for a Γ-space A.

Exercise E.II.11. Given a central group extension

0 −→ B −→ E −→ G −→ 1

with G and B abelian, we define a cohomology operation

H1(X;G) −→ H2(X;B)

generalizing the Bockstein homomorphism for abelian extensions. Suppose f : X1 −→ G is a 1-cocycle,
choose a lift f̄ : X1 −→ E. Show that for every x ∈ X2 the expression

(δf̄)(x) = f̄(d0x) · f̄(d1x)−1 · f̄(d2x)

is contained in the subgroup B of E, and that it defines a 2-cocycle of X with values in B. Then show
that the cohomology class of δf̄ is independent of the choice of lift, and of the choice of cocycle f within
its cohomology class.

Exercise E.II.12. Show that the Spanier-Whitehead category has a symmetric monoidal smash product
which is defined by (X,n) ∧ (Y,m) = (X ∧ Y, n + m) on objects and with unit object (S0, 0). Make the
embedding Σ∞ of the Spanier-Whitehead category into SHC compatible with smash products, i.e., make
it into a strong symmetric monoidal functor.

Exercise E.II.13. For spaces, (co)homology is usually defined from the singular chain complex; in this
exercise we show that also spectrum (co-)homology can be calculated from a functorial chain complex which
is assembled from the singular chain complexes of the individual spaces in the spectrum.

The definition of spectrum homology is very analogous to the definition of singular homology for
topological spaces. We recall that the definition of singular homology can be broken up as a composite of
several functors:

T
S−→ sS

Z[−]−−−→ sAb C−→ (chain complexes)
Hk−−→ Ab .

The first functor associates to a spaces its singular complex, a simplicial set. By taking free abelian groups
in every simplicial dimension, the second step produces a simplicial abelian group. The third functor takes
the alternative sum of face morphisms to turn a simplicial abelian group into a chain complex. The singular
homology, finally, is the homology of this ‘singular chain complex’.

In the context of symmetric spectra of simplicial sets we now a chain functor as the composite

SpsS
Z[−]−−−→ SpsAb

C−→ (tame M-chain complexes)
Z⊗LM−−−−−→ (chain complexes) .

(For symmetric spectra of spaces we also precompose with the ‘levelwise’ singular complex functor S :
SpT −→ SpsS.) The first functor is the ‘free abelian group spectrum’, compare Definition 6.24, which takes
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reduced free abelian groups in every spectrum level and every simplicial dimension. It naturally lands in
a category SpsAb of ‘symmetric spectra of abelian groups’, i.e., abelian group objects in the category of
symmetric spectra. The second functor is a ‘chain functor’ that we define below, which takes values in chain
complexes of tame modules over the injection monoidM. In the third step we take derived tensor product
overM with the trivial rightM-module Z, i.e., we coequalize theM-action in a homologically meaningful
way.

There is one qualitative difference between the chain complex of a space or simplicial set and the chain
complex of a symmetric spectrum: the former is concentrated in non-negative dimensions, whereas the
chain complex of a symmetric spectrum is in general not bounded below.

Let A be a symmetric spectrum of abelian groups. We define the chain complex CA of A as

CA = colimn (NAn)[−n] .

In more detail, NAn is the normalized chain complex of the simplicial abelian group An. Then (NAn)[−n]
is the shifted complex, which is now concentrated in dimensions −n and above. Our convention for the
shift of a complex C is that C[n]k = Ck−n and the differential C[n]k −→ C[n]k−1 is (−1)ndCk−n. The above
colimit is formed over the sequence of chain maps

(NAn)[−n] ∼= (NAn)[−n− 1]⊗N Z̃[S1]
∇−→ (NAn ⊗ Z̃[S1])[−n− 1]

(Nσn)[−n−1]−−−−−−−−−→ (NAn+1)[−(n+ 1)]

[specify the iso] where ∇ is the (normalized) shuffle map [ref].

(i) Show that the complex CA is in fact the colimit, over inclusions, of a functorial, chain complex
valued I-functor. So CA comes with a natural tame action by the injection monoidM, and hence its
homology groups are tame M-modules.

(ii) Construct a natural isomorphism of M-modules

Hk(CA) ∼= π̂kA

for every integer k.
(iii) The chain complex CX of a symmetric spectrum of simplicial sets X is the chain complex Z ⊗LM

C(Z[X]), the derived tensor product, over the monoid ring of the injection monoid M, of the chain
complex of the linearization of X. Given an abelian groups A, construct isomorphisms

Hk(A⊗ CX) ∼= Hk(X,A) and Hk(CX,A) ∼= Hk(X,A) ,

for k ∈ Z, which are natural in X and A.

Exercise E.II.14. Let A be an abelian group and X a symmetric spectrum. Prove universal coefficient
theorems for the (co-)homology of X with coeffiecients in A: construct natural short exact sequences of
abelian groups

0 −→ A⊗Hk(X,Z) −→ Hk(X,A) −→ Tor(A,Hk−1(X,Z)) −→ 0

and

0 −→ Ext(Hk−1(X,Z), A) −→ Hk(X,A) −→ Hom(Hk(X,Z), A) −→ 0

which split (non-naturally).

Exercise E.II.15. We recall that for a pointed space X the Hurewicz homomorphism h : πnX −→
H̃n(X,Z) sends the homotopy class of a based map f : Sn −→ X to the homology class f∗(ιn) where

ιn ∈ H̃n(Sn,Z) is the fundamental class, a chosen generator of the free abelian group H̃n(Sn,Z) [chose the
right one to make it coincide on the nose with inclusion of generators]. Show that the ‘unstable’ Hurewicz
homomorphisms for spaces converge to the ‘stable’ Hurewicz homomorphism for symmetric spectra in the
following sense.
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(i) For every symmetric spectrum of topological spaces X and every integer k and n ≥ 0, the following
square commutes

πk+nXn
ι //

h

��

πk+n+1Xn+1

h

��
H̃k+n(Xn,Z) // H̃k+n+1(Xn+1,Z)

where the lower horizontal map is the one from the colimit system [...].
(ii) Show that the composite map

π̂kX = colimn πk+nXn
colimn h−−−−−→ colimn H̃k+n(Xn,Z) = Ĥk(X,Z)

agrees with the effect of the morphisms X −→ Z[X], by inclusion of generators, on naive homotopy
groups.

Exercise E.II.16. In Proposition 6.17 (iii) we established the relation

〈f × g, x× y〉 = (−1)(k+m)l · 〈f, x〉 · 〈g, y〉
between Kronecker pairing and exterior products for a central cohomology class f . Give an example to
show that centrality is necessary here. (Hint: one could take a homotopy ring spectrum where the non-
commutativity shows up in the graded homotopy ring, and take X = Y = S.)

Exercise E.II.17. If E and X are homotopy ring spectra with multiplications µE : E ∧L E −→ E
respectively µX : X ∧L X −→ X. The E-homology E∗(X) becomes a graded ring if we endow it with the
product

Ek(X)⊗ El(X)
×−−→ Ek+l(X ∧L X)

Ek+l(µX)−−−−−−→ Ek+l(X)

where ‘×’ is the exterior product in E-homology (6.7).
On the other hand, the derived smash product E ∧L X can be given a multiplication as the composite

(E ∧L X) ∧L (E ∧L X)
E∧τX,E∧X−−−−−−−→ E ∧L E ∧L X ∧L X µE∧µX−−−−−→ E ∧L X .

Hence the homotopy groups of E ∧L X inherit a product structure. Show that these two products on
E∗(X) = π∗(E ∧L X) coincide.

Exercise E.II.18. Let A be an abelian group. The n-th level A[Sn] = (HA)n of the Eilenberg-Mac Lane
spectrum HA is an Eilenberg-Mac Lane space of type (A,n) and as such it has a fundamental class

ιA,n ∈ Hn(A[Sn], A)

uniquely characterized by the property that the cap product map

Hn(A[Sn],Z) −→ A , x 7−→ x ∩ ιA,n
is inverse to the composite

A
l−−→ πn(A[Sn], 0)

Hurewicz−−−−−−→ Hn(A[Sn],Z)

of the isomorphism l and the Hurewicz homomorphism. [here l(a) is the ‘left multiplication’ map, i.e., the
homotopy class of the map Sn −→ A[Sn] sending x to ax. The composite sends a to a · ιSn ] The purpose
of this exercise is to exhibit the relations that these fundamendal classes satisfy as A and n vary.

(i) Let A and B be two abelian groups. In Example I.5.28 we defined natural maps

A[Sn] ∧ B[Sm] −→ (A⊗B)[Sn+m]

that together constitute a bimorphism mA,B : (HA,HB) −→ H(A⊗B) of symmetric spectra. We let

mA,n,B,m : A[Sn] × B[Sm] −→ (A⊗B)[Sn+m]

denote the composite with the projection from the cartesian to the smash product. Show the relation

m∗A,n,B,m(ιA⊗B,n+m) = ιA,n × ιB,m in Hn+m(A[Sn]×B[Sm], A⊗B)
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where the product on the right hand side is the exterior product.
(ii) Let B be a ring and denote by

mB,n,m : B[Sn] × B[Sm] −→ B[Sn+m]

denote the composite of the projection from the cartesian to the smash product and the multiplication
map µn,m : (HB)n ∧ (HB)m −→ (HB)n+m of the Eilenberg-Mac Lane ring spectrum HB. Show the
relation

m∗B,n,m(ιB,n+m) = ιB,n × ιB,m in Hn+m(B[Sn]×B[Sm], B)

where the product on the right hand side is the exterior product, followed by the multiplication in the
ring B.

(iii) Let K be a simplicial set. In Example 1.18 we constructed a natural isomorphism

ψK,A,n : Hn(Σ∞+ K,A) ∼= Hn(K,A)

between the cohomology of the unreduced suspension spectrum of K and the cohomology of K (where
we are identifying the reduced cohomology of K+ with the unreduced cohomology of K). Show that
this isomorphism is multiplicative in the sense that the square

Hn(Σ∞+ K,A)×Hm(Σ∞+ L,B)
ψK,A,n×ψL,B,m //

×
��

Hn(K,A)×Hm(L,B)

×
��

Hn+m(Σ∞+ (K × L), A⊗B)
ψK×L,A⊗B,n+m

// Hn+m(K × L,A⊗B)

commutes, where the vertical maps are exterior products.
(iv) Let K and L be simplicial sets and B a ring. Show that the square

Hn(Σ∞+ K,B)×Hm(Σ∞+ L,B)
ψK,B,n×ψL,B,m //

×
��

Hn(K,B)×Hm(L,B)

×
��

Hn+m(Σ∞+ (K × L), B)
ψK×L,B,n+m

// Hn+m(K × L,B)

commutes, where the vertical maps are exterior products.

Exercise E.II.19. (i) If τ is any reduced cohomology operation and X a pointed simplicial set, show
that the value of τ at the suspension ΣX is an additive map.

(ii) Let τ = {τi}i≥0 be a stable cohomology operation of degree n and type (A,B). Show that each
individual cohomology operation τi : Hi(−, A) −→ Hn+i(−, B) is additive.

(iii) Show that composition of stable cohomology operations is bi-additive.

Exercise E.II.20. Let τ be a reduced cohomology operation of type (A,n,B,m) which extends to a stable

cohomology operation of degee m−n. Show that the associated cohomology class τ(ιA,n) in H̃m(A[Sn], B)
is primitive in the sense that

µ∗(τ(ιA,n)) = τ(ιA,n)× 1 + 1× τ(ιA,n)

in H̃m(A[Sn]×A[Sn], B), where µ : A[Sn]×A[Sn] −→ A[Sn] is the addition map of the simplicial abelian
group A[Sn].

Exercise E.II.21. Let R be a commutative ring. The chain level ∪1-product

∪1 : Cn(X,R)⊗ Cm(X,R) −→ Cn+m−1(X,R)

in the cochain complex of a simplicial set X is defined by the formula

(f ∪1 g)(x) =

n−1∑
i=0

(−1)(n−i)(m+1) f(dout
i x)⊗ g(dinn

i x)
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for x ∈ Xn+m−1. Here the i-th outer face dout
i : Xn+m−1 −→ Xn and the i-th inner face dinn

i : Xn+m−1 −→
Xm are induced by the monotone injective maps δout

i : [n] −→ [n + m − 1] and δinn
i : [m] −→ [n + m − 1]

with respective images

Im
(
δout
i

)
= {0, . . . , i} ∪ {i+m, . . . , n+m− 1} and Im(δinn

i ) = {i, . . . , i+m} .

Note that the images of dout
i and dinn

i intersect in exactly two points, namely i and i+m.

(i) Show that the ∪1-product satisfies the coboundary formula

δ(f ∪1 g) = (δf) ∪1 g + (−1)nf ∪1 (δg) − (−1)n+mf ∪ g − (−1)(n+1)(m+1)(g ∪ f) .

(ii) Show that if f ∈ Cn(X,R) is a cocycle and n is even, then the ∪1-square f ∪1 f is a cocycle whose
cohomology class only depends on the class of f . If n is odd, then f ∪1 f is a mod-2 cocycle whose
mod-2 cohomology class only depends on the class of f . In other words, the formula Sq1[f ] = [f ∪1 f ]
defines cohomology operations

Sq1 : Hn(X;R) −→ H2n−1(X;R) if n is even, and

Sq1 : Hn(X;R) −→ H2n−1(X;R/2R) if n is odd.

(iii) Show that Sq1(x) = Sqn−1(x) for every mod-2 cohomology class x of dimension n, i.e., the ∪1-product
is a chain level construction of the Steenrod squaring operation Sqn−1.

Remark: the first definition of the squaring operations Sqi in the paper [79] by Steenrod was in
fact by combinatorial formulas at the cochain level, generalizing the ∪1-square above.

Exercise E.II.22. Show that for every 1-dimensional cohomology class x in the mod-2 cohomology of a
space or simplicial set the following formula holds:

Sqi(xn) =

(
n

i

)
xi+n .

Show that for any sequence i1, . . . , in of positive integers, the product Steenrod operation acts as

Sqi1 · · · Sqin(x) =

{
x2n if (i1, . . . , in) = (2n−1, . . . , 2, 1), and

0 else.

Exercise E.II.23. In this exercise we determine the Kronecker pairing between the Steenrod algebra and
its dual in terms of the generators Sqi ∈ (A2)i respectively ξi ∈ π2i−1(HF2 ∧HF2).

(i) Show the relation

〈Sq2n−1

Sq2n−2

· · · Sq2 Sq1, ξn〉 = 1

and show that ξn caps to 0 with all other products of Steenrod squares whose degrees sum up to 2n−1.
(Hint: recall the definition of the class ξn and the cohomology of F2[S1] including cup product; use
naturality of the cap product.)

(ii) Show the relation

〈Sqn, ξn1 〉 = 1

and show that all other monomials of degree n in the ξi’s caps to 0 with Sqn.
(iii) Show the relation

〈Sqi1 · · · Sqik , ξn1 〉 =
n!

i1! · · · ik!

where n = i1 + · · · ik.

Exercise E.II.24. Expand the Milnor basis elements Sq0,2 and Sq1,2 in the Serre-Cartan basis of the
mod-2 Steenrod algebra. In other words, write Sq0,2 and Sq1,2 as a sum of admissible sequences of Steenrod
squaring operations.

Exercise E.II.25. Let X be a symmetric spectrum.
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(i) Show that the composite map

π∗(HFp ∧HFp)⊗ π∗(HFp ∧X)
·−−−−→ π∗(HFp ∧HFp ∧HFp ∧X)(E.II.26)

π∗(HFp∧µ∧X)−−−−−−−−−−−→ π∗(HFp ∧HFp ∧X)

is an isomorphism.

(ii) We define a map

∆ : H∗(X,Fp) = π∗(HFp ∧X) −→ π∗(HFp ∧HFp)⊗ π∗(HFp ∧X) = Ap∗ ⊗H∗(X,Fp)

as the composite of the map induced on homotopy groups by the morphism

HFp ∧ ι ∧X : HFp ∧X = HFp ∧ S ∧X −→ HFp ∧HFp ∧X

and the inverse of the isomorphism (E.II.26). Show that for every element f ∈ A∗p, every cohomology
class g ∈ H∗(X,Fp) and every homology class x ∈ H∗(X,Fp) of the same degree as f ◦ g the relation

〈f ⊗ g, ∆(x)〉 = 〈f ◦ g, x〉

holds. In other words: under the Kronecker pairing, the morphism ∆ is dual to the action of the
Steenrod algebra A∗p on the mod-p cohomology of X. In particular, for X = HFp this gives an
interpretation of the comultiplication in the dual Steenrod algebra.

(iii) Let x ∈ Hk+l(X,Fp) satisfy

∆(x) =
∑
i

ai ⊗ xi

for suitable ai ∈ Ap∗ and xi ∈ H∗(X,Fp). Let g ∈ H l(X,Fp) = [X,Fp]−l be a mod-p cohomology class.
Show that then the map g∗ : Hk+l(X,Fp) −→ Hk(HFp,Fp) induced by g in mod-p homology satisfies

g∗(x) =
∑
i

(−1)|ai|l · ai · 〈g, xi〉 .

Exercise E.II.27. Let π : HZ −→ HFp denote the morphism of symmetric ring spectra which is induced
by the reduction map Z −→ Fp. Show that π induces a surjection in mod-p cohomology with kernel the
Ap-submodule Ap · β. Show that π induces an injection in mod-p homology whose image is the subalgebra
of the dual Steenrod algebra generated by ξ̄2

1 and ξ̄i for i ≥ 2 when p = 2, and the subalgebra of the dual
Steenrod algebra generated by τ̄i and ξ̄i for i ≥ 1 when p is odd. Here ξ̄i = c(ξi) and τ̄i = c(τi) are the
antipodes of the respective Milnor generators. Show that the morphism

π∗(π ∧HFp) : π∗(HZ ∧HFp) −→ π∗(HFp ∧HFp) = Ap∗
is injective with image the subalgebra of the dual Steenrod algebra generated by ξ2

1 and ξi for i ≥ 2 when
p = 2, and the subalgebra of the dual Steenrod algebra generated by τi and ξi for i ≥ 1 when p is odd.

Exercise E.II.28. Let π : ko −→ HF2 denote the composite of the ‘dimension’ morphism ko −→ HZ and
the ‘reduction’ morphism π : HZ −→ HFp, so that it induces the reduction map π0(ko) ∼= Z −→ F2 on the
0-th homotopy group. Show that π induces a surjection in mod-2 cohomology with kernel the A2-submodule
A2 ·(Sq1,Sq2) generated by Sq1 and Sq2. Show that π induces an injection in mod-2 homology whose image
is the subalgebra of the dual Steenrod algebra generated by ξ̄4

1 , ξ̄2
2 and ξ̄i for i ≥ 3 (where again ξ̄i = c(ξi)

is the antipodes of the Milnor generator). Show that the morphism

π∗(HFp ∧ π) : π∗(ko ∧HF2) −→ π∗(HF2 ∧HF2) = A2
∗

is injective with image the subalgebra of the dual Steenrod algebra generated by ξ4
1 , ξ2

2 and ξi for i ≥ 3.
[cohomology of ku]
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Exercise E.II.29. Let S/2 denote a mod-2 Moore spectrum. Show that the smash product S/2 ∧L S/2 is
indecomposable in the stable homotopy category (Hint: translate Example 10.12 into the stable homotopy
category.) Deduce that the mod-2 Moore spectrum does not admit the structure of a homotopy ring
spectrum.

Exercise E.II.30. Show that the mod-3 Moore spectrum S/3 is not a homotopy ring spectrum because
the multiplication morphism S/3 ∧L S/3 −→ S/3 is not associative in the stable homotopy category. This
can be done in the following two steps.

(i) Show that the unique unit preserving morphism κ : S/3 −→ HZ/3 in SHC is compatible with the
multiplications, i.e., the square

S/3 ∧L S/3 κ∧Lκ //

µ

��

HZ/3 ∧L HZ/3

µ

��
S/3

κ
// HZ/3

commutes in the stable homotopy category.
(ii) Use the Toda bracket relation 〈τ0, τ0, τ0〉 = {ξ1} in H4(HZ/3,F3) to derive a contradiction from the

assumption that the multiplication of S/3 is homotopy associative.

Exercise E.II.31. Use the cobar complex of the dual Steenrod algebra at the prime 2 to deduce the
following multiplicative and Massey product relations among the classes hi and ci in the Ext algebra
Ext∗,∗A2

(F2,F2):

(i) h3
i+1 = h2

ihi+2

(ii) h4
i+1 = 0

(iii) hih
2
i+2 = 0

(iv) h2
ih

2
i+3 = 0

(v) h2i

0 hi = 0 for i ≥ 1

(vi) h2i

0 h
2
i+2 = 0

(vii) hici = hi+2ci = hi+3ci = 0
(viii) h2

i+1 = 〈hi, hi+1, hi〉
(ix) hihi+2 = 〈hi+1, hi, hi+1〉
(x) h3

i−1hi+2 = 〈hi+1, h
3
i−1, hi+1〉

(xi) ci = 〈hi+1, hi, h
2
i+2〉 = 〈hi, h2

i+2, hi+1〉
(xii) 0 ∈ 〈hi+1, hi+2, ci〉

(In (x), we supposedly already have h2i−1
0 hi = 0.) Hint: one can save some work by systematically exploiting

the juggling formulas for Massey products.
Deduce that the products 2η, ην and νσ are trivial in the 2-primary homotopy groups of spheres and

that the Toda bracket relations

η2 ∈ 〈2, η, 2〉 , 2ν ∈ 〈η, 2, η〉 , ν2 ∈ 〈η, ν, η〉 and 8σ ∈ 〈ν, 8, ν〉
hold. What can you conclude about the brackets 〈ν, η, ν〉 and 〈ν, σ, ν〉? Can you express ν3 in terms of η2σ
and ηε?

Exercise E.II.32. It is an algebraic fact that the Ext group Ext3,2i+1+1
A2

(F2,F2) is generated by the class

h0h
2
i and that the class h0h

3
i is non-trivial in Ext4,3·2i+1

A2
(F2,F2) [ref]. Assuming this fact, use the first Adams

differential d2(h4) = h0h
2
3 and the relations of Exercise E.II.31 to deduce the general Adams differential

d2(hi) = h0h
2
i−1

for i ≥ 4 in the 2-primary Adams spectral sequence for the sphere spectrum.

History and credits

The stable homotopy category as we know it today is usually attributed to Boardman, who introduced
it in his thesis [5] including the triangulated structure and the symmetric monoidal (derived !) smash
product. Boardman’s stable homotopy category is obtained from a category of CW-spectra by passing to
homotopy classes of morphisms. Boardman’s construction was widely circulated as mimeographed notes [6],
but he never published these. Accounts of Boardman’s construction appear in [84], [87], and [2, Part III].
Strictly speaking the ‘correct’ stable homotopy category had earlier been introduced by Kan [41] based on
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his notion of semisimplicial spectra. Kan and Whitehead [42] defined a smash product in the homotopy
category of semisimplicial spectra and proved that it is homotopy commutative, but neither they, nor
anyone else, ever addressed the associativity of that smash product. Before Kan and Boardman there had
been various precursors of the stable homotopy category, and I recommend May’s survey article [57] for a
detailed discussion and an extensive list of references to these.

I am not aware of a complete published account that Boardman’s category is really equivalent to the
stable homotopy category as defined in Definition 1.1 using injective Ω-spectra. However, here is a short
guide through the literature which outlines a comparison. In a first step, Boardman’s stable homotopy
category can be compared to Kan’s homotopy category of semisimplicial spectra, which is done in Chapter
IV of Boardman’s unpublished notes [6]. An alternative source is Tierney’s article [84] where he promotes
the geometric realization functor to a functor from Boardman’s category of CW-spectra to Kan’s category
of semisimplicial spectra. Tierney remarks that the singular complex functor from spaces to simplicial set
does not lift to a pointset level functor in the other directions, but Section 3 of [84] then ends with the
words “(. . . ) it is more or less clear – combining various results of Boardman and Kan – that the singular
functor exists at the level of homotopy and provides an inverse to the stable geometric realization, i.e. the
two homotopy theories are equivalent. The equivalence of homotopy theories has also been announced by
Boardman.” I am not aware that the details have been carried out in the published literature.

Kan’s semisimplicial spectra predate model categories, but Brown [15, Thm. 5] showed later that the
π∗-isomorphisms used by Kan are part of a model structure on semisimplicial spectra. In the paper [13]
Bousfield and Friedlander introduce a model structure on a category of ‘sequential spectra’ which are just
like symmetric spectra, but without the symmetric group actions. In Section 2.5 of [13], Bousfield and
Friedlander describe a chain of Quillen equivalences between semisimplicial and sequential spectra, which
then in particular have equivalent homotopy categories. Hovey, Shipley and Smith show in [36, Thm. 4.2.5]
that the forgetful functor is the right adjoint of a Quillen equivalence from symmetric spectra (with the
stable absolute projective model structure in the sense of Chapter III) to the Bousfield-Friedlander stable
model structure of sequential spectra. Since the weak equivalences used for symmetric spectra are the
stable equivalences in the sense of Definition 4.11 we can conclude that altogether that Boardman’s stable
homotopy category is equivalent to the localization of the category of symmetric spectra at the class of
stable equivalences, which coincides with the stable homotopy category in our sense by Theorem 1.6.

A word of warning: the comparison which I just summarized passes through the intermediate homotopy
category of sequential spectra for which no intrinsic way to define a derived smash product has been studied.
As a consequence, it is not clear to me if the combined equivalence takes Boardman’s derived smash product
to the derived smash product as discussed in Section 3. However, I would be surprised if the composite
equivalence were not strongly symmetric monoidal.



CHAPTER III

Model structures

Symmetric spectra support many useful model structures and we will now develop several of these.
We will mainly be interested in two kinds, namely level model structures (with weak equivalences the level
equivalences) and stable model structures (with weak equivalences the stable equivalences). The level model
structures are really an intermediate steps towards the more interesting stable model structures. We will
develop the theory for symmetric spectra of simplicial sets first, and later say how to adapt things to
symmetric spectra of topological spaces.

We have already seen pieces of some of the model structures at work. Our definition of the stable
homotopy category in Section 1 of Chapter II is implicitly relying on the absolute injective stable model
structure in which every object is cofibrant (as long as we use simplicial sets, not topological spaces) and the
fibrant objects are the injective Ω-spectra. However, this model structure does not interact well with the
smash product, so when we constructed the derived smash product in Section 3 of Chapter II we implicitly
worked in the flat model structures. So it should already be clear that it can be useful to play different
model structures off against each other.

Besides the injective and flat model structures there is another useful kind of cofibration/fibration pair
which we will discuss, giving the projective model structures. Moreover, we will later need ‘positive’ versions
of the model structures which discard all homotopical information contained in level 0 of a symmetric
spectrum.

So each of the model structures which we discuss has four kinds of ‘attributes’:

• a kind of space (simplicial set or topological space)
• a kind of cofibration/fibration pair (injective, flat or projective)
• a type of equivalence (level or stable)
• which levels are used (absolute or positive)

Since all of these attributes can be combined, this already makes 2×3×2×2 = 24 different model structures
on the two kinds of symmetric spectra. More variations are possible: one can also take π̂∗-isomorphisms as
weak equivalences, or even isomorphisms in some homology theory (giving model structures which realize
Bousfield localizations), or one could study ‘more positive’ model structures which disregard even more
than the level 0 information. And this is certainly not the end of the story. . .

1. Symmetric spectra in a simplicial category

The projective and flat level model structures on symmetric spectra of spaces or simplicial sets can
be produced by one very general method that we develop in this section. For this purpose we consider a
category C which is pointed, complete, cocomplete and simplicial, by which we mean enriched, tensored
and cotensored over the category of pointed simplicial sets. Our main example will be C = T, the category
of based spaces and C = sS, the category of based simplicial sets. In this situation, the category GC of
G-objects in C is also complete, cocomplete and simplicial for every group G; indeed, limits, colimits, tensors
and cotensors in GC are created in the underlying category C. For consistency with the previous notions of
symmetric spectra we use the smash symbol for the action of a simplicial set on an object of C or GC, and
let the based simplicial sets act on the right.

Definition 1.1. Let C be a pointed simplicial category. A symmetric spectrum in C consists of the following
data:

343
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• a Σn-object Xn in C for n ≥ 0,
• C-morphisms σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0,

where S1 = ∆[1]/∂∆[1] is the ‘small’ simplicial circle. This data is subject to the following condition: for
all n,m ≥ 0, the composite

(1.2) Xn ∧ Sm
σn ∧ Id // Xn+1 ∧ Sm−1

σn+1∧Id // · · ·
σn+m−2∧Id // Xn+m−1 ∧ S1

σn+m−1 // Xn+m

is Σn × Σm-equivariant, where Sn = S1 ∧ . . . ∧ S1 is the n-fold smash product of copies of S1.
A morphism f : X −→ Y of symmetric spectra in C consists of Σn-equivariant morphisms fn : Xn −→

Yn for n ≥ 0, which satisfy fn+1 ◦ σn = σn ◦ (fn ∧ S1) for all n ≥ 0. We denote the category of symmetric
spectra in C by SpC .

Of course, when C = T is the category of based compactly generated weak Hausdorff spaces or C = sS
is the category of based simplicial sets, we recover the definitions of symmetric spectra of spaces respectively
of simplicial sets of Section I.1. As in these special cases, we denote the composite map eqrefeq-general C
symmetric axiom by σm and we refer to the object Xn as the nth level of the symmetric spectrum X. If we
want a ‘level’ model structure on SpC we need to start with compatible model structure on the categories of
Σn-objects in C. We formalize what we mean by ‘compatible model structures’ in the following definition.

Many of the formal construction for symmetric spectra from Chapter I make sense in the more general
context of symmetric spectra in C, and many of the formal properties carry over. We will now quickly go
through these generalizations but omit the proofs which are formally the same as in Chapter I.

Example 1.3 (Shift in SpC). For every symmetric spectrum X in C and every m ≥ 0, the assignment
(shmX)n = Xm+n defines the nth level of a new symmetric spectrum shmX, mth shift of X. The Σn-
action on this object is obtained from the given Σm+n-action by restriction along 1 + − : Σn −→ Σm+n

and the structure maps are reindexed structure maps of X. The symmetric group Σm acts on shmX
by automorphisms through the ‘shifted coordinates’, i.e., by restriction along − + 1 : Σm −→ Σm+n. In

other words: everything works in the same way as in Example I.3.9. We have shk(shmX) = shm+kX as
symmetric spectra with (Σm × Σk)-action.

Example 1.4 (Semifree and free symmetric spectra in C). As for symmetric spectra of spaces or simplicial
sets, there is a class of semifree spectra in C with the same formal properties which are elementary building
blocks for general symmetric spectra in C. We let L be a Σm-object in C and define the semifree symmetric
spectrum generated by L in level m in much the same way as in Example I.3.23. Below level m the spectrum
GmL is trivial, i.e., consists of a zero object of C. In the other levels we set

(GmL)m+n = Σ+
m+n ∧Σm×Σn L ∧ Sn .

The structure morphism σm+n : (GmK)m+n ∧ S1 −→ (GmK)m+n+1 is defined by smashing the ‘inclusion’
− + 1 : Σm+n −→ Σm+n+1 with the identity of L and the preferred isomorphism Sn ∧ S1 ∼= Sn+1. As
before, the semifree functor

Gm : ΣmC −→ SpC
is left adjoint to the forgetful evaluation functor evm : SpC −→ ΣmC, by the essentially same adjunction.

Semifree spectra are again basic building blocks for symmetric spectra in C in the sense that the
diagram (3.25) of Chapter I makes perfect sense in the present more general context and expresses an
arbitrary symmetric spectrum X in C as a coequalizer of wedges of semifree spectra.

In the context of symmetric spectra of spaces and simplicial sets we defined free and semifree spectra
seperately and then discussion how one kind can be obtained from each other. Now we turn this around
and define free symmetric spectra as a special case of semifree ones. More precisely, we define the free
symmetric spectrum generated by a C-object K in level m as

FmK = Gm(Σ+
m ∧K) .
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Example 1.5 (Twisted smash products in C). For symmetric spectra in a based simplicial category C there
are two kinds of twisted smash products. For every Σm-object L in C and symmetric spectrum of simplicial
sets A we define the twisted smash product L .m A as the symmetric spectrum in C which is trivial below
level m and is otherwise given by

(L .m A)m+n = Σ+
m+n ∧Σm×Σn L ∧An .

The structure maps are defined in the same way as for symmetric spectra of spaces or simplicial sets
(compare Example I.3.27). If X is a symmetric spectrum in C and L is a based Σm-simplicial set we define
the ‘right’ twisted smash product X /m L as the symmetric spectrum in C which is trivial below level m
and is otherwise given by

(X /m L)n+m = Σ+
n+m ∧Σn×Σm Xn ∧ L .

The structure maps are hopefully clear.
In the present context the asymmetry between category C and the category sS gives two different

constructions based on different kind of input. In the context of spaces or simplicial sets, the ‘left’ and
‘right’ twisted smash products are isomorphic (which is why so far we have only discussed one of them).
Indeed, if L is a based Σm-space (or simplicial set) and X a symmetric spectrum of spaces (or simplicial
sets), then an isomorphism L .m X ∼= X /m L is given in level m+ n by

Σ+
m+n ∧Σm×Σn L ∧Xn −→ Σ+

n+m ∧Σn×Σm Xn ∧ L
[γ ∧ l ∧ x] 7−→ [γχn,m ∧ x ∧ l] .

As the special case for m = 1 and L = S0 we obtain an induction functor .X = X /1 S
0 which is left

adjoint to the shift functor of Example 1.3. In the special case where C = T or C = sS, this construction is
different from, but naturally isomorphic to, the induction functor from Example I.3.17.

Now we define a ‘action’ of the category SpsS of symmetric spectra of simplicial sets on the category
SpC ; the construction and various formal properties work in much the same way as the internal smash
product for symmetric spectra in Section I.5. In fact, if we take C = sS we recover the smash product of
symmetric spectra of simplicial sets.

Let X and Z be symmetric spectra in C and let A be a symmetric spectrum of simplicial sets. A
bimorphism b : (X,A) −→ Z from the pair (X,A) to Z as a collection of Σp ×Σq-equivariant C-morphisms
or simplicial sets, depending on the context,

bp,q : Xp ∧Aq −→ Zp+q

for p, q ≥ 0, such that the ‘bilinearity diagram’

(1.6)

Xp ∧Aq ∧ S1

Xp∧σq

vvmmmmmmmmmmmmmmm

bp,q∧S1

��

Xp∧twist // Xp ∧ S1 ∧Aq

σp∧Aq

��
Xp ∧Aq+1

bp,q+1
((QQQQQQQQQQQQQQQ
Zp+q ∧ S1

σp+q

��

Xp+1 ∧Aq

bp+1,q

��
Zp+q+1 Zp+1+q

1×χ1,q

oo

commutes in C for all p, q ≥ 0. A smash product of X and A is a pair (X ∧A, i) consisting of a symmetric
spectrum X ∧ A in C and a universal bimorphism i : (X,A) −→ X ∧ A, i.e., a bimorphism such that for
every symmetric spectrum Z in C the map

(1.7) SpC(X ∧A,Z) −→ Bimor((X,A), Z) , f 7−→ fi = {fp+q ◦ ip,q}p,q
is bijective. Again it will be convenient to make the sphere spectrum S into a strict right unit for this
mixed smash product. So we agree that for A = S we choose X ∧ S = X with universal bimorphism
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i : (X,S) −→ X given by the iterated structure map,

ip,q = σq : Xp ∧ Sq −→ Xp+q .

The existence of smash product X ∧ A with X in SpC and A in SpsS is established by the same
construction (C) as in Section I.5. For n ≥ 0 we define the nth level (X ∧ A)n as the coequalizer, in the
category ΣnC, of two maps

αX , αA :
∨

p+1+q=n

Σ+
n ∧Σp×Σ1×Σq Xp ∧ S1 ∧Aq −→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧Aq

defined exactly as before from the structure maps of X and A. The structure map (X ∧ A)n ∧ S1 −→
(X ∧A)n+1 is induced on coequalizers by the wedge of the maps

Σ+
n ∧Σp×Σq Xp ∧Aq ∧ S1 −→ Σ+

n+1 ∧Σp×Σq+1
Xp ∧Aq+1

induced from Id∧σAq : Xp ∧ Aq ∧ S1 −→ Xp ∧ Aq+1. One should check that this indeed passes to a well-
defined map on coequalizers. Equivalently we could have defined the structure map by moving the circle
past Aq, using the structure map of X (instead of that of A) and then shuffling back with the permutation
χ1,q; the definition of (X ∧A)n+1 as a coequalizer precisely ensures that these two possible structure maps
coincide. Morevoer the collection of maps

Xp ∧Aq
x∧y 7→1∧x∧y−−−−−−−−→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧Aq

projection−−−−−−→ (X ∧A)p+q

forms a universal bimorphism.
The arguments of Section I.5 generalize in a straightforward way to show that the smash product X∧A

is a functor in two variables

∧ : SpC × SpsS −→ SpC .
We have agreed above to make the sphere spectrum a strict right unit for this pairing, and the pairing is
coherently associative as before. More precisely, for any symmetric spectrum X in C and all symmetric
spectra of simplicial sets A and B the family{

Xp ∧ Aq ∧Br
ip,q∧Br−−−−−→ (X ∧A)p+q ∧Br

ip+q,r−−−−→ ((X ∧A) ∧B)p+q+r

}
p,q,r≥0

and the family{
Xp ∧ Aq ∧Br

Xp∧iq,r−−−−−→ Xp ∧ (A ∧B)q+r
ip,q+r−−−−→ (X ∧ (A ∧B))p+q+r

}
p,q,r≥0

both have the universal property of a tri morphism out of X, A and B. The uniqueness of representing
objects gives a unique isomorphism of symmetric spectra in C

αX,A,B : (X ∧A) ∧B ∼= X ∧ (A ∧B)

such that (αX,A,B)p,q,r ◦ ip+q,r ◦ (ip,q ∧ Br) = ip,q+r ◦ (Xp ∧ iq,r). The coherence property now takes the
form of a commutative pentagon pentagon

((X ∧A) ∧B) ∧ C
αX,A,B∧C

sshhhhhhhhhhhhhhhhhhh
αX∧A,B,C

++VVVVVVVVVVVVVVVVVVV

(X ∧ (A ∧B)) ∧ C

αX,A∧B,C &&NNNNNNNNNN
(X ∧A) ∧ (B ∧ C)

αX,A,B∧Cxxqqqqqqqqqqq

X ∧ ((A ∧B) ∧ C)
X∧αA,B,C

// X ∧ (A ∧ (B ∧ C))
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where now X is in SpC and A,B and C are objects of SpC . The associativity isomorphism

αX,S,B : X ∧B = (X ∧ S) ∧B −→ X ∧ (S ∧B) = X ∧B and

αX,A,S : X ∧A = (X ∧A) ∧ S −→ X ∧ (A ∧ S) = X ∧A
are the identity morphisms.

We define a bimorphism j : (GmL,A) −→ L .m A as follows. The component of j of bidegree (p, q) is
trivial for p < m and for p = m + n the component jm+n,q : (GmL)m+n ∧ Aq −→ (L .m A)m+n+q is the
(Σm+n × Σq)-equivariant extension of the (Σm × Σn × Σq)-equivariant composite

L ∧ Sn ∧Aq
L∧twist−−−−−→ L ∧Aq ∧ Sn

L∧σq−−−→ L ∧Aq+n
L∧χq,n−−−−−→ L ∧An+q

[1∧−]−−−→ Σ+
m+n+q ∧Σm×Σn+q

L ∧An+q .

The same arguments as in the proof of Proposition I.5.5 show that j : (GmL,A) −→ L .m A is a universal
bimorphism. Hence the pair (L .m A, i) is a smash product of the semifree symmetric spectrum GmL and A.

The pairing between SpC and SpsS is not symmetric in the two smash factors, and there is another
‘right’ twisted smash product X /m L where X is a symmetric spectrum in C and L is a based Σm-
simplicial set. In much the same way as in the previous paragraph we can obtain a universal bimorphism
j : (X,GmL) −→ X /m L, so that the pair (X /m L, j) is a smash product of X and the semifree symmetric
spectrum GmL.

Example 1.8 (Skeleta and latching objects in SpC). Latching objects LkX and the skeleta F kX of a
symmetric spectrum X in C can be defined in much the same ways as in Section I.5.4. We start with
F−1X = ∗, the trivial spectrum consisting of the zero object of C in every level, and we let i−1 : ∗ −→ X
denote the unique morphism. For k ≥ 0 we define the latching object by

(1.9) LkX = (F k−1X)k ,

the k-th level of the (k − 1)-skeleton. The latching object LkX comes equipped with a Σk-action and
an equivariant latching morphism νk : LkX = (F k−1X)k −→ Xk, namely the k-level of the previously
constructed morphism ik−1 : F k−1X −→ X. Then we define the k-skeleton F kX as the pushout

(1.10)

GkLkX
Gkνk //

��

GkXk

��
F k−1X jk

// F kX

where the left vertical morphism is adjoint to the identity map of LkX = (F k−1X)k. The morphism
η : GkXk −→ X (which is adjoint to the identity of Xk) and ik−1 : F k−1X −→ X restrict to the same
morphism onGkLkX. So the universal property of the pushout provides a unique morphism ik : F kX −→ X
which satisfied ikjk = ik−1 and whose restriction to GkXk is η.

As in Construction I.5.29 we insist on some particular choices. Since the left vertical morphism
GkLkX −→ F k−1X in the pushout (1.10) is an isomorphism, we can choose the kth level of F kX as

(1.11) (F kX)k = Xk .

Since the morphism Gkνk is an isomorphism below level k (between zero objects), we can choose insist that
(F kX)n = (F k−1X)n for n ≤ k. By induction, this implies that

(1.12) (F kX)n = (F k−1X)n for n ≤ k.

and that the morphisms jk+1 : F kX −→ F k+1X and ik : F kX −→ X are the identity in level k and below.
Thus the structure maps of the symmetric spectrum F kX also coincide with those of X up to level k.
Again the sequence of skeleta F kX stabilizes to X in the strong sense that in every given level, all maps
are eventually identities. In particular, the spectrum X is a colimit, with respect to the morphisms ik, of
the sequence of morphisms jk.
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Given any morphism f : X −→ Y in SpC we can define a relative skeleton filtration as follows. The
relative m-skeleton of f is the pushout

(1.13) Fm[f ] = X ∪FmX FmY

where FmX is the m-skeleton of X as defined above. The relative m-skeleton comes with a unique morphism
im : Fm[f ] −→ Y which restricts to f : X −→ Y respectively to im : FmY −→ Y . Since LmX =
(Fm−1X)m we have

(Fm−1[f ])m = Xm ∪LmX LmY ,

the mth relative latching object. A morphism jm[f ] : Fm−1[f ] −→ Fm[f ] is obtained from the commutative
diagram

X Fm−1X
Fm−1f //oo

jXm
��

Fm−1Y

jYm
��

X FmX
Fmf

//oo FmY

by taking pushouts. The square

(1.14)

Gm(Xm ∪LmX LmY )
Gm(νmf) //

��

GmYm

��
Fm−1[f ]

jm[f ]
// Fm[f ]

is a pushout [justify] and the original morphism f : X −→ Y factors as the composite of the countable
sequence

X = F−1[f ]
j0[f ]−−−→ F 0[f ]

j1[f ]−−−→ F 1[f ] −→ · · · jm[f ]−−−→ Fm[f ] −→ · · · .
If we fix a level n, then the sequence stabilizes to the identity map of Yn from (Fn[f ])n on; in particular,
the compatible maps jm : Fm[f ] −→ Y exhibit Y as the colimit of the sequence.

[show that LmX ∼= (X ∧ S̄)m]
As in the special case of two symmetric spectra of spaces or simplicial sets we can express the shift of

a smash product X ∧ A as a pushout of the spectra (shX) ∧ A and X ∧ (shA) along S1 ∧X ∧ A, where
now X ∈ SpC and A ∈ SpsS. As in I.(5.17) the square

(1.15)

(S1 ∧X) ∧A
(X∧λA)◦twist //

λX∧A
��

X ∧ (shA)

ξ0,1
X,A

��
(shX) ∧A

ξ1,0
X,A

// sh(X ∧A)

of symmetric spectra in C commutes and the same proof as in Proposition I.5.18 shows that the square is
a pushout. As an Example I.5.40 we can evaluate the special case A = S̄ of the truncated sphere spectrum
at level m and obtain a pushout square in C:

(1.16)

LmX ∧ S1

LmλX

��

νm∧S1

// Xm ∧ S1

σm

��
Lm(shX) // Lm+1X

The following proposition is an immediate application of the relative skeleton filtration. It is the key
ingredient to the lifting properties of the various level model structures on the category SpC that we will
discuss in the next section. We recall that a pair (i : A −→ B, f : X −→ Y ) of morphisms in some category
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has the lifting property if for all morphism ϕ : A −→ X and ψ : B −→ Y such that fϕ = ψi there exists a
lifting, i.e., a morphism λ : B −→ Y such that λi = ϕ and fλ = ψ. Instead of saying that the pair (i, f)
has the lifting property we may equivalently say ‘i has the left lifting property with respect to f ’ or ‘f has
the right lifting property with respect to i’.

Proposition 1.17. Let i : A −→ B and f : X −→ Y be two morphisms of symmetric spectra in C. If the
pair (νmi : Am ∪LmA LmB −→ B, fm : Xm −→ Ym) has the lifting property in the category ΣmC for every
m ≥ 0, then the pair (i, f) has the lifting property in SpC.

Proof. We consider the class f -cof of all morphisms in SpC that have the left lifting property with
respect to f ; this class is closed under cobase change and countable composition. Since the pair (νmi, fm) has
the lifting property in ΣmC, the semifree morphism Gm(νmi) belongs to the class f -cof by adjointness. The
relative skeleton filtration (1.13) shows that i is a countable composite of cobase changes of the morphisms
νmi, so i belongs to the class f -cof. �

Example 1.18 (Mapping spaces in SpC). There is a whole simplicial set, and even a symmetric spectrum
of simplicial sets worth of morphisms between two symmetric spectra X and Y in C. We define the mapping
space as the equalizer, in the category of based simplicial sets, of the diagram

mapC(X,Y ) //
∏
n≥0 map(Xn, Yn)Σn ////

∏
n≥0 map(Xn ∧ S1, Yn+1)Σn .

For C = sS, i.e., symmetric spectra of simplicial sets, this precisely recovers the mapping space as defined
in Example I.3.36; For C = T, i.e., symmetric spectra of spaces, the present mapping space is the singular
complex of the topological mapping space of Example I.3.36.

For a based simplicial set K and symmetric spectra X and Y we have adjunction isomorphisms of
simplicial sets

mapsS(K,mapC(X,Y )) ∼= mapC(K ∧X,Y ) ∼= mapC(X,Y
K) .

We can also define a symmetric ‘function spectrum’ HomC(X,Y ), just as in Example I.3.38: in level n we set
HomC(X,Y )n = mapC(X, sh

n Y ) with Σn-action induced by the action on shn Y as above. The structure
map is defined as in Example I.3.38.

We have associative and unital composition maps

◦ : mapC(Y, Z) ∧ mapC(X,Y ) −→ mapC(X,Z)

of simplicial sets and
◦ : HomC(Y,Z) ∧ HomC(X,Y ) −→ HomC(X,Z)

of symmetric spectra of simplicial sets. In the special case X = Y = Z the unit map S −→ HomC(X,X)
and the composition morphism turn HomC(X,X) into a symmetric ring spectrum.

2. Flat cofibrations

In this section we continue to study symmetric spectra in a based simplicial category C, but we shift
the emphasis to homotopical considerations. We assume that the simplicial category is also endowed with a
model structure and introduce and study the class of flat cofibrations in the category of symmetric spectra
in C. These cofibrations will later be complemented by different types of equivalence and fibrations into
various model structures.

Definition 2.1. Let C be a pointed simplicial model category and let f : X −→ Y be a morphism of
symmetric spectra in C. We call f

• a level equivalence if for all n ≥ 0 the morphism fn : Xn −→ Yn is weak equivalence in the model
category C after forgetting the group action,

• a level cofibration if for all n ≥ 0 the morphism fn : Xn −→ Yn is a cofibration in the model
category C after forgetting the group action,

• a flat cofibration if for all n ≥ 0 the latching morphism νnf : Xn∪LnX LnY −→ Yn is a cofibration
in the model category C after forgetting the group action.



350 III. MODEL STRUCTURES

We will see in Corollary 3.12 below that flat cofibrations are level cofibrations.

Example 2.2. Let f : K −→ L be a morphism of Σm-objects in C. Then the morphism Gmf : GmK −→
GmL of semifree symmetric spectra is a flat cofibration if and only if f is a cofibration in C. Indeed, the same
proof as in Example I.5.35 shows that in the present more general context the kth latching object of the
semifree symmetric spectrum GmK is trivial for k ≤ m and for k > m the map νk : Lk(GmK) −→ (GmK)k
is an isomorphism. This lets us identify the terms in the commutative square of Σk-objects:

Lk(GmK)
Lk(Gmf) //

νk

��

Lk(GmL)

νk

��
(GmK)k

(Gmf)k

// (GmL)k

For k < m all four terms are zero objects. For k = m the two upper objects are trivial and the lower vertical
map is isomorphic to f . For k > m both vertical maps are isomorphisms. So the latching morphism

νk(Gmf) : (GmK)n ∪Lk(GmK) Lk(GmL) −→ (GmL)k

is an isomorphism for k 6= m and isomorphic to f for k = m. This proves the claims.

Let Z be a class of morphisms in a category. We say that Z is closed under cobase change if the
following holds. For every pushout square

(2.3)

A
g //

��

B

��
C

g′
// D

such that g in in Z, the morphism g′ is also in Z. Note that every commutative square (2.3) in which both
vertical morphisms are isomorphism is a pushout. So Z is in particular closed under isomorphisms.

We say that Z is closed under countable composition if the following holds. [we don’t really need
countable compositions... in every level, finite compositions suffice...]

Example 2.4. If every model category the class of cofibrations is closed under cobase change and countable
composition, and so is the class of acyclic cofibrations. If F is a class of morphisms in any category, then
the class F-cof of all morphisms that have the left lifting property with respect to F is closed under under
cobase change and countable composition.

Proposition 2.5. The class of flat cofibrations is the smallest class of morphisms in SpC that is closed
under cobase change and countable composition and contains the semifree morphisms Gni for all n ≥ 0 and
all Σn-morphisms i : L −→ L′ that are cofibrations in C.

Proof. Let us denote by [Gni] the smallest class that is closed under cobase change and countable
composition and contains the semifree morphisms Gni for all Σn-morphisms i that are cofibrations in C.
For every such equivariant cofibration i : L −→ L′ the semifree morphism Gni : GnL −→ GnL

′ is a flat
cofibration by Example 2.2. The class of flat cofibrations is also closed under cobase change and countable
composition [...] so theflat cofibrations contain the class [Gni].

For the reverse inclusion we consider a flat cofibration f : X −→ Y . We use the relative skeleton
filtration Fn[f ] of the morphism f , see 1.13. Since f is a flat cofibration the latching morphism νnf is a
cofibration in C. The pushout square (1.14)

Gn(Xn ∪LnX LnY )
Gn(νnf) //

��

GnYn

��
Fn−1[f ]

jn[f ]
// Fn[f ]
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implies that the skeleton ‘inclusion’ jn[f ] : Fn−1[f ] −→ Fn[f ] belongs to [Gni]. The symmetric spectrum
Y is the colimit of the sequence

X = F−1[f ]
j0[f ]−−−−→ F 0[f ]

j1[f ]−−−−→ F 1[f ]
j2[f ]−−−−→ F 2[f ] · · · jm[f ]−−−−→ Fm[f ] · · · ,

and f is the countable composition of the morphisms jn[f ]. So f belongs to [Gni]. �

Given morphisms f : X −→ Y in SpC and g : A −→ B in SpsS we denote by f�g the pushout product
morphism defined as

f�g = (Y ∧ g) ∪ (f ∧B) : Y ∧A ∪X∧A X ∧B −→ Y ∧B .

Proposition 2.6. (i) Let i : L −→ L′ be a Σn-morphism that is a cofibration in C and let g : A −→ B
be a level cofibration of symmetric spectra of simplicial sets. Then the pushout product morphism
(Gni)�g is a level cofibration of symmetric spectra in C. If in addition i is a weak equivalence or if g
is a level equivalence, then (Gni)�g is a level equivalence.

(ii) Let f : X −→ Y be a level cofibration of symmetric spectra in C and let j : A −→ A′ be a monomor-
phism of based Σm-simplicial sets. Then the pushout product morphism f�(Gmj) is a level cofibration
of symmetric spectra in C. If in addition f is a level equivalence or if j is a weak equivalence, then
f�(Gmj) is a level equivalence.

Proof. We prove part (i); the proof of (ii) is similar. The smash product (GnL) ∧ A is naturally
isomorphic to the twisted smash product L .n A. So in level n+m the pushout product (Gni)�g is given
by

Σ+
n+m ∧Σn×Σm (i�gn) : Σ+

n+m ∧Σn×Σm (L ∧Bn ∪L∧An L′ ∧An) −→ Σ+
n+m ∧Σn×Σm (L′ ∧Bn) .

The morphism i�gn : L ∧Bn ∪L∧An L′ ∧An −→ L′ ∧Bn is a cofibration by the pushout product property
in C. If in addition i or gm is a weak equivalence, then i�gn is a weak equivalence, again by the pushout
product property in C. Inducing from the group Σn × Σm to Σn+m amounts to taking an

(
n+m
m

)
-fold

coproduct, which preserves acyclic cofibrations. So the morphism (Gni)�g is a level cofibration in SpC ,
and it is a level equivalence if i is a weak equivalence or if g is a level equivalence. �

Proposition 2.7. Let X,Y : C −→ D be two functors that preserves pushouts and countable composition
and let ψ : X −→ Y be a natural transformation. Let Z be a class of morphisms in D that is closed under
cobase change and countable composition. Then the class

{g ∈ C | ψB ∪ Y g : XB ∪XA Y A −→ Y B ∈ Z}

is closed under cobase change and countable composition.

Proof. Given any pushout square (2.3) in C the square

XB ∪XA Y A
ψB∪Y g //

��

Y B

��
XD ∪XC Y C

ψD∪Y g′
// Y D

is a pushout in D since the functors X and Y preserve pushouts [expand]. The class Z is closed under
cobase change, so if ψB ∪ Y g belongs to Z, then so does ψD ∪ Y g′. Hence the class in question is closed
under cobase change.

Now we consider a sequence of composable morphism

A0
g0−→ A1

g1−→ A2
g2−→ · · ·

and we let A∞ be a colimit of the sequence and denote by in : An −→ A∞ the canonical map from An to
the colimit. In particular, i0 : A0 −→ A∞ is the countable composition of the morphisms gn.
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In this situation the square

XAn+1 ∪XAn Y An
ψAn+1∪Y gn //

(Xin+1)∪Id

��

Y An+1

��
XA∞ ∪XAn Y An

Id∪(Y gn)
// XA∞ ∪XAn+1

Y An+1

is a pushout and the morphism ψA∞ ∪ Y i0 : XA∞ ∪XA0
Y A0 −→ Y A∞ is isomorphic to the composite of

the sequence

XA∞ ∪XA0 Y A0
Id∪(Y g0)−−−−−−→ XA∞ ∪XA1 Y A1

Id∪(Y g1)−−−−−−→ XA∞ ∪XA2 Y A2
Id∪(Y g2)−−−−−−→ · · · .

So if ψAn+1∪Y gn belongs to Z for all n ≥ 0, then so do the morphisms Id∪(Y gn), and hence the morphism
ψA∞∪Y i0. Altogether this shows that the class of morphisms g with ψB∪Y g ∈ Z is closed under countable
composition. �

Proposition 2.8. Let f be a level cofibration of symmetric spectra in C and let g be a level cofibration of
symmetric spectra of simplicial sets.

(i) If f or g is a flat cofibration then the pushout product morphism f�g is a level cofibration in SpC.
(ii) If f and g are flat cofibrations then the pushout product morphism f�g is a flat cofibration in SpC.

Proof. We exploit that the classes of level cofibrations and flat cofibrations in SpC are closed under
cobase change and countable composition. For flat cofibration this was shown in [...] Level cofibrations
have these closure properties because colimits in SpC are created levelwise after forgetting the symmetric
group actions, and because the cofibrations in the model category C are closed under cobase change and
countable composition.

(i) We treat the case where f is a flat cofibration; the same arguments work with reversed roles when
g is a flat cofibration. If we fix a level cofibration ψ in SpsS, then the class

{f ∈ SpC | f�g is a level cofibration in SpC}
is closed under cobase change and countable composition by Proposition 2.7 applied to the natural trans-
formation − ∧ g : − ∧ A −→ − ∧ B. Proposition 2.6 shows that the semifree morphism Gni generated by
a Σn-morphism i : L −→ L′ that is a C-cofibration belongs to this class; since these semifree morphisms
generate all flat cofibrations under cobase change and countable composition (Proposition 2.5 (i)),

(ii) Again we start with a special case, namely where f = Gni and g = Gmj are semifree morphisms
generated by a Σn-morphisms i : L −→ L′ that is a C-cofibration respectively a monomorphism j : A −→ A′

of based Σm-simplicial sets. In this case f�g = (Gni)�(Gmj) is isomorphic to

Gn+m(Σ+
n+m ∧Σn×Σm i�j) .

The pushout product i�j : L∧A′∪L∧AL′∧A −→ L∧A′ is a C-cofibration by the pushout product property
in C. The morphism Σ+

n+m ∧Σn×Σm i�j is a coproduct of
(
n+m
m

)
copies of i�j, hence a C-cofibration. This

shows that the morphism Gn+m(Σ+
n+m ∧Σn×Σm i�j) is a flat cofibration, and so is (Gni)�(Gmj).

Now we fix a monomorphism j of based Σm-simplicial sets consider the class

{f ∈ SpC | f�(Gmj) is a flat cofibration in SpC} .
This class is closed under cobase change and countable composition by Proposition 2.7 and contains all
semifree morphism Gni with i a Σn-morphisms and C-cofibration; since these semifree morphisms generate
all flat cofibrations under cobase change and countable composition, f�(Gmj) is a flat cofibration for all
flat cofibrations f .

Finally, we fix a flat cofibration f in SpC and consider the class

{g ∈ SpC | f�g is a flat cofibration in SpC} .
As before, this class is closed under cobase change and countable composition by Proposition 2.7 and
contains all semifree morphism Gmj with j a monomorphism of based Σm-simplicial sets; since these



3. LEVEL MODEL STRUCTURES 353

semifree morphisms generate all flat cofibrations under cobase change and countable composition, f�g is a
flat cofibration for all flat cofibrations g. �

Proposition 2.9. Let f : X −→ Y be a morphism of symmetric spectra in C. If f is a flat cofibration,
then so are the morphisms

(sh f) ∪ λY : shX ∪S1∧X (S1 ∧ Y ) −→ shY and sh f : shX −→ shY .

In particular, if Y is a flat symmetric spectrum in C, then the morphism λY : S1 ∧ Y −→ shY is a flat
cofibration and shY is again flat.

Proof. We start by analyzing the morphism (sh f)∪ λY in the special case where f = Gni : GnL −→
GnL

′ is the semifree morphism generated by a morphism i : L −→ L′ of Σn-objects. The shift sh(GnL)
of a semifree symmetric spectra splits naturally as a wedge Gn−1(shL) ∨ (S1 ∧ GnL) and the morphism
λGnL : S1 ∧ GnL −→ sh(GnL) is the inclusion of one of the wedge summands, compare [...]. Hence the
pushout sh(GnL) ∪S1∧GnL (S1 ∧ GnL′) is isomorphic to the wedge Gn−1(shL) ∨ (S1 ∧ GnL′) and the
morphism in question is isomorphic to

Gn−1(sh i) ∨ Id : Gn−1(shL) ∨ (S1 ∧GnL′) −→ Gn−1(shL′) ∨ (S1 ∧GnL′) ∼= sh(GnL
′) .

If i : L −→ L′ is a C-cofibration, then so is sh i : shL −→ shL′. Hence the semifree morphism Gn−1(sh i),
and thus also Gn−1(sh i) ∨ Id, is a flat cofibration.

The suspension functor S1 ∧ − and the shift functor preserve colimits. By Proposition 2.7, applied to
the natural transformation λX : S1 ∧X −→ shX, the class

{f ∈ SpC | (sh f) ∪ λY is a flat cofibration}
is closed under cobase change and countable composition. By the previous paragraph this class contains
the semifree morphisms Gni for all Σn-morphisms i : L −→ L′ that are C-cofibrations. Since these semifree
morphisms generate all flat cofibrations under cobase change and countable composition, (sh f) ∪ λY is a
flat cofibration for all flat cofibrations f .

If f is a flat cofibration, then so is its suspension S1 ∧ f : S1 ∧X −→ S1 ∧ Y . Hence the cobase change
shX −→ shX ∧X ∪S1∧X S1 ∧ Y is again a flat cofibration. Since sh f : shX −→ shY is the composite of
this cobase change and the morphism (sh f) ∪ λY , the shift sh f : shX −→ shY is also a flat cofibration.

The last sentence is the special case where X = ∗ is the trivial spectrum. �

3. Level model structures

In this section we continue to study symmetric spectra in a based simplicial category C, but we shift
the emphasis to homotopical considerations. We assume that the simplicial category is also endowed with
a model structure. Then we can introduce certain notions of equivalences, fibrations and cofibrations in
the category GC of G-objects in C. These notions typically conspire into three model structures: the weak,
strong and mixed equivariant model structure on GC.

For the definitions we recall that the object XG of fixed points of a G-object X is, by definition, the
equalizer in C of the diagram

XG // X //// map(G,X)

where the two maps to be equalized are adjoint to the projection G+ ∧ X −→ X respectively the action
morphism. The fixed point functor GC −→ C, X 7→ XG is right adjoint to the free functor which sends a
C-object Y to G+ ∧ Y .

The homotopy fixed points of a G-object X is the C-object XhG = map(EG,X)G of G-equivariant maps
from the free contractible G-space EG to X. The unique map of simplicial sets EG −→ ∗ is equivariant
and induces a natural map XG = map(∗, X)G −→ map(EG,X)G = XhG from the fixed points to the
homotopy fixed points.

Definition 3.1. Given a simplicial model category C and a group G, a morphism f : X −→ Y in GC is
called a
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• a weak G-equivalence if the underlying morphism in C is weak equivalence;
• a strong G-equivalence if for every subgroup H of G the map of H-fixed points fH : XH −→ Y H

is a weak equivalence in C;
• a weak G-fibration if the underlying morphism in C is fibration;
• a strong G-fibration if for every subgroup H of G the map of H-fixed points fH : XH −→ Y H is

a fibration in C;
• a strict G-fibration if it is a strong fibration and for every subgroup H of G the square

(3.2)

XH //

fH

��

XhH

fhH

��
Y H // Y hH

is homotopy cartesian in the model category C;
• a G-cofibration if it has the left lifting property for all strong G-acyclic fibrations;
• a free G-cofibration if it has the left lifting property for all weak G-acyclic fibrations.

For many simplicial model categories C, the category of G-objects inherits the following equivariant
model structures. The weak equivariant model structure on GC consists of the weak G-equivalences, weak
G-fibrations and free G-cofibrations. The strong equivariant model structure on GC consists of the strong G-
equivalences, strong G-fibrations and G-cofibrations. The mixed equivariant model structure on GC consists
of the weak G-equivalences, strict G-fibrations and G-cofibrations. Often even more variations are possible,
for example one can prescribe a family F of subgroups of G and define F-weak equivalences and F-fibrations
by testing after taking H-fixed points for all H ∈ F .

In [...] we have defined various classes of cofibrations. We recall that a morphism f : X −→ Y of
symmetric spectra in C is a level equivalence (respectively level cofibration) if fn is a weak equivalence
(respectively Σn-cofibration) for all n ≥ 0. The morphisms f is a flat cofibration (respectively projective
cofibration) if the latching morphism νn(f) : Xn ∪LnX LnY −→ Yn is a Σn-cofibration (respectively free
Σn-cofibration) for all n ≥ 0.

Definition 3.3. Let C be a pointed simplicial model category and let f : X −→ Y be a morphism of
symmetric spectra in C. We call f

• a level fibration if for all n ≥ 0, the morphism fn : Xn −→ Yn is a weak Σn-fibration, i.e., a
fibration in the model category C after forgetting the group action.

• a strict fibration if for all n ≥ 0, the morphism fn : Xn −→ Yn is a strict Σn-fibration.

An injective class in a category C is a class F of morphisms with the following property: every morphism
f in C can be factored as f = qi such that q is in F and i has the left lifting property with respect to all
morphisms in F . The obvious examples of injective classes are the fibrations and the acyclic fibrations in
a closed model category.

Proposition 3.4. Suppose we are given an injective class Fn in the category ΣnC for every n ≥ 0. Then
every morphism f in SpC can be factored as f = qi where q and i satisfy the following properties: for every
n ≥ 0 the morphism qn is in Fn and the latching morphism νni has the left lifting property with respect to
all morphisms in Fn.

Proof. Let f : A −→ X be a morphism of symmetric spectra in C. We construct a symmetric
spectrum B and morphisms i : A −→ B and q : B −→ X by induction over the levels. In level 0 we choose
a factorization

A0
i0−−→ B0

q0−−→ X0

of f0 such that q0 belongs to F0 and i0 has the left lifting with respect to the class F0.
Now suppose that the symmetric spectrum B and the morphisms i and q have already been constructed

up to level m− 1. Then we have all the data necessary to define the m-th latching object LmB; moreover,
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the ‘partial morphism’ q : B −→ X provides a Σm-morphism LmB −→ Xm such that the square

LmA //

νm

��

LmB

��
Am

fm

// Xm

commutes. We factor the resulting morphism Am ∪LmA LmB −→ Xm in ΣmC as

Am ∪LmA LmB
νm−−−→ Bm

qm−−−→ Xm

such that qm belongs to Fm and νm has the left lifting with respect to the class Fm. The intermediate
object Bm defines the m-th level of the symmetric spectrum B, and the second morphism qm is the mth
level of the morphism q. The structure morphism σn : Bm−1 ∧ S1 −→ Bm is the composite

Bm−1 ∧ S1 −→ LmB −→ Am ∪LmA LmB
νm−−→ Bm

and the composite of νm with the canonical morphism Am −→ Am ∪LmA LmB is the m-th level of the
morphism i.

At the end of the day we have indeed factored f = qi in the category of symmetric spectra in C
and qm belongs to Fm for all m ≥ 0. Morevoer, the mth latching morphism νmi comes out to be νm :
Am∪LmALmB −→ Bm which has the left lifting property with respect to the class Fm by construction. �

Proposition 3.5. Let f : X −→ Y be a flat cofibration of symmetric spectra in C such that for every m ≥ 0
the latching morphism νmf : Xm ∪LmX LmY −→ Ym is a weak Σm-equivalence. Then the morphism f is a
level equivalence.

Proof. We use the relative skeleton filtration (1.13) of the morphism f : X −→ Y by the intermediate
spectra Fm[f ]. Since the latching morphism νmf is a weak equivalence and cofibration in C, the semifree
morphism Gm(νmf) : Gm(Xm∪LmXLmY ) −→ GmYm is a level cofibration and level equivalence [ref?]. The
morphism jm[f ] : Fm−1[f ] −→ Fm[f ] is a cobase change of Gm(νmf), compare the pushout square (1.14),
so jm[f ] is a level cofibration and level equivalence. In level m the skeleton filtration stabilizes after m
steps, i.e., the map fm is the composite

Xm = (F−1[f ])m
(j0[f ])m−−−−−→ (F 0[f ])m

(j1[f ])m−−−−−→ . . .
(jm−1[f ])m−−−−−−−→ (Fm−1[f ])m

(jm[f ])m−−−−−−→ (Fm[f ])m = Ym .

Since each (jk[f ])m is a weak Σm-equivalence, so is fm. �

Now we can easily establish two level model structures on the category SpC in which the weak equiva-
lences are the level equivalences. We start with the projective level model structure.

Theorem 3.6 (Projective level model structure). Let C be a pointed simplicial category such that for every
n ≥ 0 the category ΣnC admits the weak equivariant model structure. Then the level equivalences, level
fibrations and projective cofibrations define the projective level model structure on the category SpC of
symmetric spectra in C. Moreover, the following properties holds.

(i) A morphism i : A −→ B in SpC is simultaneously a projective cofibration and a level equivalence if
and only if for all n ≥ 0 the latching morphism νni : An ∪LnA LnB −→ Bn is a free Σn-cofibration
and a weak equivalence after forgetting the group action.

(ii) If the model category C is right proper (respectively left proper), then the projective level model structure
on SpC is right proper (respectively left proper).

(iii) If the fibrations in C are detected by a set of morphisms J , then the level fibrations in SpC are detected
by the set of free morphisms

{Fnj | n ≥ 0, j ∈ J} .
(iv) If the acyclic fibrations in C are detected by a set of morphisms I, then the level acyclic fibrations in

SpC are detected by the set of free morphisms

{Fni | n ≥ 0, i ∈ In} .
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(v) The projective level model structure is simplicial and monoidal over the projective level model structure
for symmetric spectra of simplicial sets.

Proof. Limits, colimits, tensors and cotensors are defined levelwise. The 2-out-of-3 property for
level equivalences and the closure properties of the three distinguished classes under retracts are direct
consequences of the corresponding properties in the projective model structures on ΣnC.

The factorization properties are obtained by applying by applying Proposition 3.4 to the two factor-
ization systems (free Σn-cofibrations, weak Σn-acyclic fibrations) and (free Σn-cofibrations which are weak
Σn-equivalences, weak Σn-fibrations). In the second case we need Proposition 3.5 to see that the resulting
projective cofibration (which is in particular a flat cofibration) is also a level equivalence.

It remains to show the lifting axioms. Since free Σm-cofibrations have the left lifting property with
respect to weak Σm-acyclic fibrations, projective cofibrations have the left lifting property with respect to
acyclic level fibrations by Proposition 1.17.

We postpone the proof of the other lifting property and we pause to prove the claim (i) next. Suppose
that i : A −→ B is a projective cofibration and a level equivalence. The second factorization axiom proved
above provides a factorization i = pj where j : A −→ D is a level equivalence such that each latching
morphism νmj is an acyclic cofibration in the weak equivariant model structure on ΣmC, and p : D −→ B
is a level fibration. Since i and j are level equivalences, so is p. So the projective cofibration i has the left
lifting property with respect to the level acyclic fibration p by what we already showed. In particular, a lift
λ : B −→ D in the square

(3.7)

A
j //

i

��

D

p

��
B

λ

>>

B

shows that the morphism i is a retract of the morphism j. In particular, the latching morphism νni is
a retract of the latching morphism νnj, hence also an acyclic cofibration in the weak equivariant model
structure on ΣmC. This proves one direction of claim (i); the other direction follows from Proposition 3.5
because every projective cofibration is in particular a flat cofibration.

Now we prove the remaining half of the lifting properties. We let i : A −→ B be a projective cofibration
that is also a level equivalence. By (i), which has just been shown, each latching morphism νmi is an acyclic
cofibration in the weak equivariant model structure on ΣmC. So i has the left lifting property with respect
to all level fibrations by Proposition 1.17.

(ii) Weak equivalences, fibrations and limits in SpC are all defined or detected levelwise after forgetting
the group actions. Moreover, projective cofibrations are in particular level cofibrations by Corollary 3.12.
So if the model category C is right (left) proper, then so is the projective level model structure.

Properties (iii) and (iv) are straightforward consequences of the fact that the free functor Fm is left
adjoint to evaluation at level m and forgetting the Σm-action.

(v) We have to establish the pushout product property: Let f be a projective cofibration in Sp−Cc
and let g be a projective cofibration in SpsS. Then the pushout product f�g is a projective cofibration in
SpC by Proposition 2.8 (iii). If in addition f or g is a level equivalence, then so is the pushout product f�g
by Proposition 3.15. [simplicial is a special case] �

Another general kind of level model structure is the ‘flat’ level model structure which has the same
weak equivalences as the projective model structure, but more cofibration (and hence fewer fibrations).

Theorem 3.8 (Flat level model structure). Let C be a pointed simplicial category such that for every n ≥ 0
the category ΣnC admits the mixed equivariant model structure. Then the level equivalences, strict fibrations
and flat cofibrations define the flat level model structure on the category SpC of symmetric spectra in C.
Moreover, the following properties holds.
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(i) A morphism j : A −→ B in SpC is simultaneously a flat cofibration and a level equivalence if and only
if for all n ≥ 0 the latching morphism νnj : An ∪LnA LnB −→ Bn is a Σn-cofibration and a weak
equivalence after forgetting the group action.

(ii) If the model category C is right proper (respectively left proper), then the flat level model structure on
SpC is right proper (respectively left proper).

(iii) Suppose that the fibrations in C are detected by a set of morphisms J and the acyclic fibrations in C are
detected by a set of morphisms I. Then the level fibrations in SpC are detected by the set of semifree
morphisms [check...]

{Gn(Σn/H
+ ∧ j) | n ≥ 0, H ≤ Σn, j ∈ J}

together with the set of semifree morphisms [check...]

{Gn(f�i) | n ≥ 0, i ∈ I}

where f : EΣn −→ C(EΣn) is the cone inclusion and for i : A −→ B we denote by f�i is the pushout
product

f�i : C(EΣn)+ ∧A ∪EΣ+
n∧A EΣ+

n ∧B −→ C(EΣn)+ ∧B .

(iv) If the acyclic fibrations in C are detected by a set of morphisms I, then the level equivalences in SpC
which are also strict fibrations are detected by the set of semifree morphisms

{Gn(Σn/H
+ ∧ i) | n ≥ 0, H ≤ Σn, i ∈ I} .

(v) The flat level model structure is simplicial and monoidal over the flat level model structure for sym-
metric spectra of simplicial sets.

Proof. Limits, colimits, tensors and cotensors are defined levelwise. The 2-out-of-3 property for
level equivalences and the closure properties of the three distinguished classes under retracts are direct
consequences of the corresponding properties in the mixed model structures on ΣnC.

The factorization properties are obtained by applying by applying Proposition 3.4 to the two factor-
ization systems (Σn-cofibrations, mixed Σn-acyclic fibrations) and (Σn-cofibrations which are weak Σn-
equivalences, strict Σn-fibrations). In the second case we need Proposition 3.5 to see that the resulting flat
cofibration is also a level equivalence.

It remains to show the lifting axioms. Since Σn-cofibrations have the left lifting property with respect to
mixed Σn-acyclic fibrations, flat cofibrations have the left lifting property with respect to level equivalences
which are also strict fibrations by Proposition 1.17.

We postpone the proof of the other lifting property and we pause to prove the claim (i) next. Suppose
that i : A −→ B is a flat cofibration and a level equivalence. The second factorization axiom proved
above provides a factorization i = pj where j : A −→ D is a level equivalence such that each latching
morphism νmj is an acyclic cofibration in the mixed equivariant model structure on ΣmC, and p : D −→ B
is a strict fibration. Since i and j are level equivalences, so is p. So the flat cofibration i has the left
lifting property with respect to the level equivalence and strict fibration p by what we already showed. In
particular (compare the same step (3.7) in the proof of Proposition 3.6), the morphism i is a retract of the
morphism j and so the latching morphism νni is a retract of the latching morphism νnj. Since νj is an
acyclic cofibration in the weak equivariant model structure on ΣmC, so is its retract νni. This proves one
direction of claim (i); the other direction is given by Proposition 3.5.

Now we prove the remaining half of the lifting properties. We let i : A −→ B be a flat cofibration that
is also a level equivalence. By (i), which has just been shown, each latching morphism νmi is an acyclic
cofibration in the mixed equivariant model structure on ΣmC. So i has the left lifting property with respect
to all strict fibrations by Proposition 1.17.

(ii) Weak equivalences, fibrations and limits in SpC are all defined or detected levelwise after forgetting
the group actions. Moreover, flat cofibrations are in particular level cofibrations by Corollary 3.12 So if the
model category C is right (left) proper, then so is the flat level model structure.

Properties (iii) and (iv) are straightforward consequences of the fact that the free functor Fm is left
adjoint to evaluation at level m and forgetting the Σm-action.
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(v) We have to establish the pushout product property: Let f be a flat cofibration in Sp−Cc and let g be
a flat cofibration in SpsS. Then the pushout product f�g is a flat cofibration in SpC by Proposition 2.8 (ii).
If in addition f or g is a level equivalence, then so is the pushout product f�g by Proposition 3.15. [simplicial
is a special case] �

Besides the projective and flat level model structures, another general class of Σ-model structure arise
from the ‘strong’ equivariant model structures, see Exercise 4.1 for details.

Remark 3.9 (Functorial factorization). If the projective (respectively mixed) model structure on the
category ΣnC has functorial factorizations for all n ≥ 0, then the projective (respectively flat) level model
structure on SpC has functorial factorizations. Indeed, the explicit construction on the factorization in
Proposition 3.4 does not introduce any new choices.

Later we want to obtain stable model structures for certain categories of more structured symmetric
spectra, for example for commutative symmetric ring spectra (or, more generally, algebras over operads).
The projective and flat model structures cannot always be lifted to categories of more structured objects.
However, a small modification solves this problem, namely replacing the ‘absolute’ level (and stable) model
structure by ‘positive’ version as follows. The essence of the positive level model structure is that the
objects in level 0 have no homotopical significance.

Definition 3.10. A morphism f : X −→ Y of symmetric spectra in C is

• a positive level equivalence if fn : Xn −→ Yn is weak equivalence in the model category C for all
n > 0,

• a positive level fibration if fn : Xn −→ Yn is fibration in the model category C for all n > 0,
• a positive strict fibration if fn : Xn −→ Yn is mixed Σn-fibration for all n > 0,
• a positive projective cofibration it is a projective cofibration and the morphism f0 : X0 −→ Y0 is

an isomorphism.
• a positive flat cofibration it is a flat cofibration and the morphism f0 : X0 −→ Y0 is an isomorphism.

A morphism in SpC is then simultaneously a positive level equivalence and positive cofibration if if the
morphism f0 : X0 −→ Y0 is an isomorphism and the latching morphism νn(f) : Xn ∪LnX LnY −→ Yn is a
cofibration and a weak equivalence in the model category ΣnC for all n > 0.

Theorem 3.11 (Positive projective level model structure). Let C be a pointed simplicial category such that
for every n ≥ 0 the category ΣnC admits the weak equivariant model structure. Then the positive level
equivalences, positive level fibrations and positive projective cofibrations define the positive projective level
model structure on the category SpC of symmetric spectra in C. Moreover, the following properties holds.

(i) A morphism j : A −→ B in SpC is simultaneously a positive projective cofibration and a positive level
equivalence if and only j0 : A0 −→ B0 is an isomorphism and for all n > 0 the latching morphism
νn(j) : An∪LnALnB −→ Bn is a free Σn-cofibration and a weak equivalence after forgetting the group
action.

(ii) If the model category C is right proper (respectively left proper), then the projective level model structure
on SpC is right proper (respectively left proper).

(iii) If the fibrations in C are detected by a set of morphisms J , then the level fibrations in SpC are detected
by the set of free morphisms

{Fnj | n > 0, j ∈ J} .
(iv) If the acyclic fibrations in C are detected by a set of morphisms I, then the level acyclic fibrations in

SpC are detected by the set of free morphisms

{Fni | n > 0, i ∈ In} .

(v) The positive projective level model structure is simplicial and monoidal over the absolute projective
level model structure for symmetric spectra of simplicial sets.
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Proof. Most properties follow from the absolute projective level model structure, or are straightfor-
ward, such as the 2-out-of-3 property for level equivalences and the closure properties under retracts.

Since free Σm-cofibrations have the left lifting property with respect to weak Σm-acyclic fibrations, pro-
jective cofibrations have the left lifting property with respect to acyclic level fibrations by Proposition 1.17.

By Proposition 3.13 every projective cofibration i which is also a level equivalence has the property
that all latching morphisms νmi are acyclic cofibrations in the weak equivariant model structure on ΣmC,
and these have the left lifting property with respect to weak Σm-fibrations. So projective cofibrations which
are also level equivalences have the left lifting property with respect to level fibrations by Proposition 1.17.

The factorization properties are obtained by applying by applying Proposition 3.4 to the two factor-
ization systems (free Σn-cofibrations, weak Σn-acyclic fibrations) and (free Σn-cofibrations which are weak
Σn-equivalences, weak Σn-fibrations). In the second case we need Corollary ?? to see that the resulting
projective cofibration is also a level equivalence.

(ii) Weak equivalences, fibrations and limits in SpC are all defined or detected levelwise after forgetting
the group actions. Moreover, projective cofibrations are in particular level cofibrations by Corollary 3.12.
So if the model category C is right (left) proper, then so is the projective level model structure.

Properties (iii) and (iv) are straightforward consequences of the fact that the free functor Fm is left
adjoint to evaluation at level m and forgetting the Σm-action.

(v) The pushout product property for the positive projective level model structure is immediate from
the pushout product property for the absolute projective level model structure (part (v) of Theorem3.6)
and the additional observation that if one of the two morphisms f or g is an isomorphism in level zero,
then the pushout product f�g is an isomorphism in level zero. �

same for positive flat level
==============
[Stuff on projective cofibrations]
Thus we have the implications

projective cofibration =⇒ flat cofibration =⇒ level cofibration ,

and these containments are typically strict.
We remark that in the context of simplicial sets, a Σn-cofibration is just an equivariant morphism which

is injective. Hence a morphism of symmetric spectra of simplicial sets is a level cofibration if and only if it
is levelwise injective, i.e., a categorical monomorphism.

(1) The class of projective cofibrations is the smallest the class of morphisms in SpC that is closed
under cobase change and countable composition by the free morphisms Fni for all n ≥ 0 and all
cofibrations i : K −→ K ′ in C.

(2) If f and g are projective cofibrations then the pushout product morphism f�g is a projective
cofibration in SpC .

(iii) This is the same argument as in (ii) except that the initial special case is where f = Fni and g = Fmj
are free morphisms generated by a cofibration i : L −→ L′ in C respectively a cofibration j : A −→ A′

of based simplicial sets. In this case f�g = (Fni)�(Fmj) is isomorphic to Fn+m(i�j) and morphism
i�j : L ∧ A′ ∪L∧A L′ ∧ A −→ L ∧ A′ is a cofibration by the pushout product property in the simplicial
model category C. Hence the morphism Fn+m(i�j) and thus (Fni)�(Fmj) are projective cofibrations. The
general case then follows as in (ii) using that the free morphisms Fni for cofibrations i generate all projective
cofibrations under cobase change and countable composition.

[make exercise?]

Corollary 3.12. A morphism f of symmetric spectra in C is a flat cofibration if and only if for every
level cofibration g : A −→ B of symmetric spectra of simplicial sets the pushout product map f�g is a level
cofibration in SpC. In particular, every flat cofibration is a level cofibration.

Proof. The ‘only if’ direction is part (i) of Proposition 2.8. The inclusion S̄ −→ S of the truncated
sphere spectrum is a level cofibration of symmetric spectra of simplicial sets and in level m the pushout
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product of f with this inclusion is the latching morphism νmf : Xm ∪LmX LmY −→ Ym. So the pushout
product condition for all level cofibrations implies that f : X −→ Y is a flat cofibration. The pushout
product of f with the level cofibration ∗ −→ S is isomorphic to f . So the pushout product condition for all
level cofibrations implies that f : X −→ Y is a level cofibration. �

============
If f is a projective cofibration, then so are the morphisms

(sh f) ∪ λY : shX ∪S1∧X (S1 ∧ Y ) −→ shY and sh f : shX −→ shY .

In particular, if Y is a projective symmetric spectrum in C, then the morphism λY : S1 ∧ Y −→ shY is a
projective cofibration and shY is again projective.

The class of projective cofibrations that are also level equivalences is the smallest the class of morphisms
in SpC that is closed under cobase change and countable composition and contains the free morphisms Fni
for all n ≥ 0 and all cofibrations i : K −→ K ′ in C that are also weak equivalence.

=================

Proposition 3.13. Let f : X −→ Y be a flat cofibration of symmetric spectra in C. Then the following are
equivalent:

(i) the morphism f is a level equivalence;
(ii) for every m ≥ 0 the latching morphism νmf : Xm ∪LmX LmY −→ Ym is a weak Σm-equivalence.

Proof. (i)=⇒(ii) We show by induction on m that νmf weak Σm-equivalence for all flat cofibrations
f : X −→ Y that are also weak equivalences. The induction starts with m = −1, where there is nothing
to show because L−1X = ∗. In the inductive step we exploit the square (1.16) that describes Lm+1X as a
pushout of the objects Lm(shX), LmX ∧ S1 and Xm ∧ S1. The morphism Lm+1f : Lm+1X −→ Lm+1Y is
thus induced on horizontal pushouts by the commutative diagram:

Lm(shX)

Lm(sh f)

��

LmX ∧ S1
LmλXoo νm∧S1

//

Lmf∧S1

��

Xm ∧ S1

fm∧S1

��
Lm(shY ) LmY ∧ S1

LmλY

oo
νm∧S1

// Ym ∧ S1

The morphism νmf : Xm ∪LmX LmY −→ Ym is a cofibration since f is a flat cofibration, and a weak
equivalence by induction. So its suspension νmf ∧ S1 : Xm ∧ S1 ∪LmX∧S1 LmY ∧ S1 ∼= (Xm ∪LmX LmY )∧
S1 −→ Ym ∧ S1 is an acyclic cofibration. By Proposition 2.9 the shifted morphism sh f : shX −→ shY is
again a flat cofibration. Hence the morphism Lm(sh f) : Lm(shX) −→ Lm(shY ) is a cofibration by [...] and
a weak equivalence by induction (because sh f : shX −→ shY is a flat cofibration and a level equivalence).
The gluing lemma (1.10) So the morphism Lm+1f : Lm+1X −→ Lm+1Y of latching objects is a weak
equivalence. This morphism is also a cofibration by [...], so its cobase change Xm+1 −→ Xm+1 ∪Lm+1X

Lm+1Y is a cofibration and weak equivalence. The composite of this cobase change with the latching
morphism νm+1 : Xm+1∪Lm+1X Lm+1Y −→ Ym+1 is the weak equivalence fm+1. So the latching morphism
νm+1 is a weak equivalence.

(ii)=⇒(i) We use the relative skeleton filtration (1.13) of the morphism f : X −→ Y by the intermediate
spectra Fm[f ]. Since the latching morphism νmf is a weak equivalence and cofibration in C, the semifree
morphism Gm(νmf) : Gm(Xm ∪LmX LmY ) −→ GmYm is a level cofibration and level equivalence. The
morphism jm[f ] : Fm−1[f ] −→ Fm[f ] is a cobase change of Gm(νmf), compare the pushout square (1.14),
so jm[f ] is a level cofibration and level equivalence. Since f is the composite of the countable sequence
jm[f ], f itself is a level cofibration and weak equivalence. �

Now we can prove an analogue of Proposition 2.5 for flat cofibrations that are also level equivalences:

Proposition 3.14. The class of flat cofibrations that are also level equivalences is the smallest class of
morphisms in SpC that is closed under cobase change and countable composition and contains the semifree
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morphisms Gni for all n ≥ 0 and all Σn-morphisms j that are cofibrations and weak equivalences after
forgetting the Σn-action.

Proof. Let us denote by [Gnj] the smallest class that is closed under cobase change and countable com-
position and contains the semifree morphisms Gnj for all Σn-morphisms j : L −→ L′ that are cofibrations
and weak equivalences after forgetting the Σn-action. Such semifree morphisms Gnj are flat cofibrations
by Example 2.2 and level equivalences. Flat cofibrations are in particular level cofibrations, so the class of
flat cofibrations that are level equivalences is also closed under cobase change and countable composition
so the class of flat cofibrations contains the class [Gnj].

For the reverse inclusion we consider a flat cofibration f : X −→ Y that is also a level equivalence.
By Proposition 3.13 each latching morphism νmf is a cofibration and weak equivalence after forgetting the
group action. The relative skeleton filtration shows that f is a countable composite of cobase changes of
the morphisms νmf , so f in the class [Gnj]. �

Proposition 3.15. Let f be a level cofibration in SpC and let g be a level cofibration in SpsS. Suppose
that f or g is a flat cofibration and suppose that f or g is a level equivalence. Then the pushout product
morphism f�g is a level equivalence.

Proof. The first case where f is a flat cofibration and level equivalence and g is a level cofibration is
taken care of by Proposition 3.13. [no longer true]

In the remaining three cases we apply the same argument as in part (i) of Proposition 2.8. We exploit
that the class of morphisms in SpC that are level cofibrations and level equivalence is closed under cobase
change and countable composition. The justification for this is that colimits in SpC are created levelwise
after forgetting the symmetric group actions, and because the acyclic cofibrations in the model category C
are closed under cobase change and countable composition.

Case 2: f is a level cofibration and g is a flat cofibration and level equivalence. We consider the class

{ψ ∈ SpsS | f�ψ is a level cofibration and level equivalence in SpC} .

This class is closed under cobase change and countable composition by Proposition 2.7. By Proposi-
tion 2.6 (ii) this class contains all semifree morphisms Gni, where i is a Σn-cofibration and weak Σn-
equivalence. So by Proposition 3.14 the class contains all flat cofibrations in SpsS that are also level
equivalences.

Case 3: f is a flat cofibration and g is a level cofibration and level equivalence. We consider the class

{ϕ ∈ SpC | ϕ�g is a level cofibration and level equivalence in SpC} .

By Proposition 2.6 this class contains all semifree morphisms Gni, where i is a Σn-cofibration. The class
is closed under cobase change and countable composition by Proposition 2.7. By Proposition 2.5 every flat
cofibration f is in the closure of the class of morphisms Gni as above under cobase change and countable
composition, so f�g is a level cofibration and level equivalence.

Case 4: f is a level cofibration and level equivalence g is a flat cofibration. The argument proceeds as
in the previous case 3, but with the roles of f and g exchanged. �

4. Stable model structures

In this section we specialize the level model structures of the previous section to symmetric spectra of
spaces and simplicial sets. More importantly, we introduce the more important stable model structures on
symmetric spectra of spaces and simplicial sets in which the weak equivalences are the stable equivalences
as defined in Definition II.4.11. These are the most important model structure on symmetric spectra and
the various associated homotopy categories are all equivalent to the stable homotopy category as defined
in Section II.1, compare Corollary 4.14.

For easier reference we specialize the G-equivariant models structures (compare Definition 3.1) and the
level model structures (compare Definition [...]) of the last section to the categories of based spaces and
based simplicial sets.
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Definition 4.1. Let G be a group. A morphism f : X −→ Y of based G-spaces (respectively based
G-simplicial sets) is called a

• a weak G-equivalence if the underlying map of spaces (respectively simplicial sets) is weak equiv-
alence;

• a strong G-equivalence if for every subgroup H of G the map of H-fixed points fH : XH −→ Y H

is a weak equivalence;
• a weak G-fibration if the underlying map is a Serre fibration of spaces (respectively a Kan fibration

of simplicial sets);
• a strong G-fibration if for every subgroup H of G the map of H-fixed points fH : XH −→ Y H is

a Serre fibration of spaces (respectively a Kan fibration of simplicial sets);
• a strict G-fibration if it is a strong fibration and for every subgroup H of G the square

(4.2)

XH //

fH

��

XhH

fhH

��
Y H // Y hH

is homotopy cartesian;
• a G-cofibration if it has the left lifting property for all strong G-acyclic fibrations;
• a free G-cofibration if it has the left lifting property for all weak G-acyclic fibrations.

For every group G, the category GT of based G-spaces and the category GsS of based G-simplicial
sets admit the weak equivariant model structure, i.e., the weak G-equivalences, weak G-fibrations and free
G-cofibrations form a model structure. References for this fact include [] in the case of spaces and [62, ] is
the case of simplicial sets.

Similary, GT and GsS admit the strong equivariant model structure, i.e., the strong G-equivalences,
strong G-fibrations and G-cofibrations form a model structure. References for this fact include [] in the
case of spaces and [62, ] is the case of simplicial sets.

Finally, GT and GsS admit the mixed equivariant model structure, i.e., the weak G-equivalences,
strictG-fibrations and G-cofibrations form a model structure. Proofs can be found in [77, Prop. 1.3] in the
case of spaces and in [] in the case of simplicial sets.

For every cofibration i : A −→ B of based spaces (respectively simplicial sets) and every subgroup H
of G then the G-morphism (G/H)+ ∧ i : (G/H)+ ∧ A −→ (G/H)+ ∧ B is a G-cofibration. In the context
of spaces, the G-cofibrations can be characterized as the retracts [???] of relative G-CW-complexes, i.e.,
equivariant cell complexes in which equivariant cells of the form (G/H ×Dn)+, for subgroups H of G and
n ≥ 0, are successively attached along their boundary (G/H×Sn−1)+ in the order of increasing dimension.
In the simplicial context, the situation is even simpler: a morphism f : A −→ B of G-simplicial sets is a
G-cofibration if and only it it is injective.

For every cofibration i : A −→ B of based spaces (respectively simplicial sets) free G-morphism G+∧ i :
G+∧A −→ G+∧B is a free G-cofibration. Moreover, the G-cofibrations can be characterized as the retracts
of free relative G-CW-complexes, i.e., the relative G-CW-complexes built only from free G-cells (G×Dn)+

(respectively (G ×∆[n])+). Moreover, the free G-cofibrations are precisely those G-cofibrations for which
G acts freely on the complement of the image. [ref] In the simplicial context, things simplify again: a
morphism f : A −→ B of G-simplicial sets is a free G-cofibration if and only it it is injective and G acts
freely on the complement of the image.

Remark 4.3. For any finite group G, the strict G-fibrations can be characterized in at least two other
ways as we recall in Proposition A.4.5. For a morphism of G-spaces or G-simplicial sets, the following are
equivalent:

(i) f is is a strict G-fibration,
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(ii) f is a strong G-fibration and the square

(4.4) X //

f

��

map(EG,X)

map(EG,f)

��
Y // map(EG, Y )

is homotopy cartesian in the strong G-equivariant model structure,
(iii) f has the right lifting property for all G-cofibrations which are weak G-equivalences.

Here map(EΣn, X) is the space (resepctively simplicial set) of all maps from the contractible free Σn-
simplicial set to X, with Σn-action by conjugation. [ref] Does this work in general C?

[use Cole mixing? weak homotopy equivalences, Hurewicz fibrations and mixed cofibrations; a space is
cofibrant if and only if it is homotopy equivalent to a CW-complex; works in G-spaces; Cole mixing [18,
Thm 2.1] also gives a model structure on GC with weak G-equivalences, strong G-fibrations and mixed
G-cofibrations. X is mixed cofibrant if and only if it is G-cofibrant and G-homotopy equivalent to a free
G-cofibrant object]

Now we we specialize the various ‘level’ notions of cofibrations and fibrations (compare Definition 3.3)
to symmetric spectra of spaces and simplicial sets.

Definition 4.5. Let f : X −→ Y be a morphism of symmetric spectra of spaces (respectively simplicial
sets). We call f

• a level equivalence if for all n ≥ 0, the morphism fn : Xn −→ Yn is weak Σn-equivalence, i.e., a
weak equivalence after forgetting the group action.

• a level fibration if for all n ≥ 0, the morphism fn : Xn −→ Yn is a weak Σn-fibration, i.e., a Serre
fibration (respectively Kan fibration) after forgetting the group action.

• a strict fibration if for all n ≥ 0, the morphism fn : Xn −→ Yn is a strict Σn-fibration.
• a level cofibration if the nth level fn : Xn −→ Yn of f is a Σn-cofibration for all n ≥ 0.
• a flat cofibration if the latching morphism νn(f) : Xn ∪LnX LnY −→ Yn is a Σn-cofibration for all
n ≥ 0.

• a projective cofibration if the latching morphism νn(f) : Xn ∪LnX LnY −→ Yn is a free Σn-
cofibration for all n ≥ 0.

By the criterion for flatness given in Proposition I.5.47 a symmetric spectrum A of simplicial sets is flat
in the original sense (i.e., A ∧− preserves level cofibrations [in the weak sense...]) if and only if the unique
morphism ∗ −→ A is a flat cofibration. We call a symmetric spectrum A projective if the unique morphism
∗ −→ A is a projective cofibration or, equivalently, if for every n ≥ 0 the morphism νn : LnA −→ An
is a free Σn-cofibration. For symmetric spectra of simplicial sets a morphism is a level cofibration if and
only if it is a categorical monomorphism. In particular, every symmetric spectrum of simplicial sets is level
cofibrant.

Clearly every projective cofibration is also a flat cofibration. Flat cofibrations are level cofibrations by
the following lemma. Thus we have the following implications for the various kinds of cofibrations:

projective cofibration =⇒ flat cofibration =⇒ level cofibration

All these containments are strict, as the following examples show. A semifree symmetric spectra GmL is
flat whenever L is a base Σm-CW-complex (respectively an arbitrary based Σm-simplicial set); but for
such L GmL is projective if and only the Σm-action is free (away from the base point). The symmetric
spectrum S̄ level cofibrant, but it is not flat since its second latching object L2S̄ is isomorphic to S1 ∨ S1

and the map L2S̄ −→ S̄2 = S2 is the fold map, which is not injective.

As a special case of Theorem 3.6, the level equivalences, level fibrations and projective cofibrations form
the projective level model structure on the category of symmetric spectra of spaces (respectively simplicial
sets). A morphism f is simultaneously a projective cofibration and a level equivalence if and only if for all
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n ≥ 0 the latching morphism νn(f) is a free Σn-cofibration and a weak equivalence of underlying spaces
(respectively simplicial sets). Since the Quillen model structure on spaces and simplicial sets are proper, so
is the projective level model structure by part (ii) of Theorem 3.6). The projective level model structure is
topological (respectively simplicial) and monoidal with respect to the smash product of symmetric spectra
[...].

We can also name explicit sets of generating cofibrations and acyclic cofibrations for the projective level
model structure. The acyclic fibrations in the Quillen model structure on spaces (respectively simplicial
sets) are detected by the cofibrations ∂Dm −→ Dm for m ≥ 0. In the context of spaces, Dm is the unit
ball in Rm and ∂Dm is its boundary, and (m−1)-dimensional sphere (where ∂D0 is empty). In the context
of simplicial sets, Dm has to be interpreted as the m-simplex ∆[m] and ∂Dm is its simplicial boundary
∂∆[m]. By part (iv) of Theorem 3.6, the acyclic level fibrations of symmetric spectra are then detected by
the set I lv

proj of projective cofibrations

Fn(∂Dm)+ −→ Fn(Dm)+

for n,m ≥ 0. Similarly, we obtain a set of acyclic cofibrations which detect level fibrations. The fibrations
in the Quillen model structure on spaces are detected by the acyclic cofibrations Dn −→ Dn × [0, 1] for
n ≥ 0. By part (iii) of Theorem 3.6, the level fibrations of symmetric spectra are then detected by the set
J lv

proj of projective cofibrations

Fn(∂Dm)+ −→ Fn(Dm × [0, 1])+

for n,m ≥ 0. In the context of simplicial sets, the acyclic cofibration Dm −→ Dm× [0, 1] has to be replaced
by the collection of simplicial horn inclusions Λk[m] −→ ∆[m] for m ≥ 1 and 0 ≤ k ≤ m throughout.
Altogether this shows that the projective level model structure is cofibrantly generated with I lv

proj and J lv
proj

as possible sets of generating cofibrations respectively generating acyclic cofibrations.
It remains to show that the projective level model structure is topological (respectively simplicial) and

monoidal. We defer this to Propositions 4.16 and 4.15 below.

As a special case of Theorem 3.8, the level equivalences, strict fibrations and flat cofibrations form the
flat level model structure on the category of symmetric spectra of spaces (respectively simplicial sets). A
morphism f is simultaneously a flat cofibration and a level equivalence if and only if for all n ≥ 0 the
latching morphism νn(f) is a Σn-cofibration and a weak equivalence of underlying spaces (respectively
simplicial sets).

A morphism f : X −→ Y is simultaneously a flat fibration and a level equivalence if and only if for all
n ≥ 0 and every subgroup H of Σn the map fHn : XH

n −→ Y Hn of H-fixed points is a weak equivalence and
fibration of spaces (respectively simplicial sets).

Since the Quillen model structure on spaces and simplicial sets are proper, so is the flat level model
structure by part (ii) of Theorem 3.8. The flat level model structure is topological (respectively simplicial)
and monoidal with respect to the smash product of symmetric spectra [...].

Again we can identify explicit sets of generating cofibrations and generating acyclic cofibrations for the
flat level model structure. By part (iv) of Theorem 3.8 the acyclic fibrations in the flat level model structure
are then detected by the set I lv

flat of flat cofibrations

Gn(Σn/H × ∂Dm)+ −→ Gn(Σn/H ×Dm)+

for n,m ≥ 0 and all subgroups H of Σn. In the context of simplicial sets, Dm again stands for the simplicial
m-simplex ∆[m].

The strict fibrations in the mixed model structure on Σn-spaces (respectively simplicial sets) are detected
by two different types of Σn-maps. First, the maps Σn/H ×Dm −→ Σn/H ×Dm× [0, 1] for all m ≥ 0 and
some subgroup H of Σn detect whether the induced map on H-fixed points is a fibration. If this condition
is satisfied for all subgroups H of Σn, the pushout product

C(EΣn)× ∂Dm ∪EΣn×∂Dm EΣn ×Dm −→ C(EΣn)×Dm

[reduced?] of the boundary inclusions ∂Dn −→ Dn with the cone inclusion EΣn −→ C(EΣn) then detects
whether all the squares (4.3) are homotopy cartesian [ref]. We let Kn denote the set of mixed Σn-acyclic
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cofibrations consisting of Σn/H × Dm −→ Σn/H × Dm × [0, 1] and [...] for all m ≥ 0 and all subgroups
H of Σn. By part (iv) of Theorem 3.8, the acyclic level fibrations in the flat model structure of symmetric
spectra are then detected by the set

J lv
flat = {Gnk | n ≥ 0, k ∈ Kn} .

As before, in the context of simplicial sets, the acyclic cofibration Dm −→ Dm × [0, 1] has to be replaced
by the collection of simplicial horn inclusions Λk[m] −→ ∆[m] for m ≥ 1 and 0 ≤ k ≤ m throughout.
Altogether this shows that the flat level model structure is cofibrantly generated with I lv

flat and J lv
flat as

possible sets of generating cofibrations respectively generating acyclic cofibrations.

Remark 4.6. For symmetric spectra of simplicial sets, there is yet another level model structure, the
injective level model structure. Here the cofibrations are the level cofibrations (i.e., monomorphisms) and
the injective fibrations are the morphisms which have the right lifting property with respect to all mor-
phisms which are simultaneously level cofibrations and level equivalences. This model structure is also
proper, topological (respectively simplicial) and cofibrantly generated; as the classes I lv

inj (respectively J lv
inj)

of generating cofibrations (respectively generating acyclic cofibrations) we can take representatives of the
isomorphism classes of monomorphisms f (respectively monomorphisms f which are also level equivalences)
with countable target. We do not develop this injective level model structure here, but the details can be
found in [36, Thm. 5.1.2].

It seems likely that there is also a corresponding injective level model structure for symmetric spectra
of spaces, but I do not know a reference and have not tried to prove it.

In the context of simplicial sets we have a few more tools available to characterize the projective and
flat cofibrations:

Lemma 4.7. Let f : A −→ B be a morphism of symmetric spectra of simplicial sets. Then f : A −→ B
is a projective cofibration if and only if it is a flat cofibration and the cokernel B/A is projective. [Is a
morphism f : A −→ B is a flat cofibration if and only if it is an injective cofibration (i.e., monomorphism)
and the cokernel B/A is flat?]

Proof. This is direct consequence of the definitions since a group acts freely on the complement of
the image of an equivariant map A −→ B if and only if the induced action on the quotient B/A is free
away from the basepoint. �

Theorem 4.8 (Positive projective and flat level model structures). (i) The positive level equivalences,
positive level fibrations and positive projective cofibrations form the positive projective level model
structure on The category of symmetric spectra of spaces (respectively simplicial sets).

(ii) The positive level equivalences, positive strict fibrations and positive flat cofibrations form the positive
flat level model structure on The category of symmetric spectra of spaces (respectively simplicial sets).

(iii) The positive projective and the positive flat level model structures are proper, topological (respectively
simplicial) cofibrantly generated and monoidal with respect to the smash product of symmetric spectra.

Now we proceed towards the stable model structures. For every morphism f : X −→ Y of symmetric
spectra the natural morphism λ̃X : X −→ Ω(shX) adjoint to λX : S1 ∧ X −→ shX gives rise to a
commutative square of symmetric spectra

(4.9)

X
λ̃X //

f

��

Ω(shX)

Ω(sh f)

��
Y

λ̃Y

// Ω(shY )

Definition 4.10. A morphism f : X −→ Y of symmetric spectra is a stable fibration if it is a level fibration
and the square (4.9) is levelwise homotopy cartesian after forgetting the symmetric group actions. Similarly,
f is a positive stable fibration if it is a positive level fibration and the square (4.9) is homotopy cartesian
after forgetting the symmetric group actions in every positive level.
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Theorem 4.11. The category of symmetric spectra of space (respectively simplicial sets) admits the fol-
lowing stable model structures in which the weak equivalences are the stable equivalences.

(i) The stable equivalences, stable fibrations and projective cofibrations form the absolute projective stable
model structure.

(ii) The stable equivalences, positive stable fibrations and positive projective cofibrations form the positive
projective stable model structure.

(iii) The stable equivalences, stable and strict fibrations and flat cofibrations form the absolute flat stable
model structure.

(iv) The stable equivalences, positive stable and positive strict fibrations and positive flat cofibrations form
the positive flat stable model structure.

Moreover, all four stable model structures are proper, topological (respectively simplicial), cofibrantly gener-
ated and monoidal with respect to the smash product of symmetric spectra.

Proof. We reduce the proof of the stable model structures to the level model structures by applying
a general localization theorem of Bousfield, see Theorem 1.9 of Appendix A. In Proposition I.4.39 we
constructed a functor Q : Sp −→ Sp with values in Ω-spectra and a natural stable equivalence αX : X −→
QX. We note that a morphism f : X −→ Y of symmetric spectra is a stable equivalence if and only if
Qf : QX −→ QY is a level equivalence. Indeed, since αX : X −→ QX and αY : Y −→ QY are stable
equivalences, f is a stable equivalence if and only if Qf is. But Qf is a morphism between Ω-spectra, so it
is a stable equivalence if and only if it is a level equivalence.

We now apply Bousfield’s Localization Theorem A.1.9 to the flat and projective level model structures,
in both the absolute and positive flavors, which are all proper. Axiom (A1) holds because of the commutative
square:

(4.12)

X
αX //

f

��

QX

Qf

��
Y αY

// QY

If f is a level equivalences, then Qf is a stable equivalence between Ω-spectra, hence a level equivalence.
Axiom (A2) holds: αQX is a stable equivalence between Ω-spectra, hence a level equivalence. Then QαX :
QX −→ QQX is a level equivalence since Q takes all stable equivalences, in particular αX , to level
equivalences.

We prove (A3) in the absolute projective level model structure. Since the projective fibrations include
the flat fibrations, it then also holds in the absolute flat level model structures. So we are given a pullback
square

V
i //

f

��

X

g

��
W

j
// Y

of symmetric spectra in which X and Y are Ω-spectra (possibly not levelwise Kan), f is levelwise a Kan
fibration and j is a stable equivalence. We showed in part (iv) of Proposition I.4.31 that then i is also a
stable equivalence. This proves (A3) for the two absolute level model structure. The verification of (A3) in
the two positive level model structure is similar [...]

In each of the four cases Bousfield’s theorem now provides a model structures with stable equivalences
as weak equivalence and with same class of cofibrations as before. Bousfield’s theorem also characterizes
the fibrations as those morphisms f : X −→ Y which are fibations in the original model structure and such
that the commutative square (4.12) is homotopy cartesian in the original model structure. [fix the rest] So
it remains to shows that for a morphism f : X −→ Y which is levelwise a Kan fibration the square (4.9) is
levelwise homotopy cartesian if and only if the square (4.12) is levelwise homotopy cartesian. �
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Alternative: we can first establish the absolute stable injective model structure and then use Cole
mixing: every level equivalence and every positive level equivalence is a stable equivalence; every flat and
projective cofibration, absolute or positive, is a monomorphism. So Cole mixing [18, Thm. 2.1] produces
model structures with stable equivalences and cofibrations the flat cofibrations, positive flat cofibrations,
projective cofibrations and positive projective cofibrations. If the injective stable model structure is not
available, we can start from the absolute flat stable model structure instead.

Remark 4.13. For symmetric spectra of simplicial sets, there are at least two more stable model structure,
namely the absolute injective stable model structure and the positive injective stable model structure. The
constructions are exactly as in the projective and flat case, but starting from the injective level model
structure.

Corollary 4.14. The following categories are equivalent to each other and to the stable homotopy category
SHC as defined in Section II.1:

(i) the homotopy category of projective Ω-spectra of spaces;
(ii) the homotopy category of projective positive Ω-spectra of spaces which are trivial in level 0;
(iii) the homotopy category of those flat Ω-spectra X of spaces such that for all n ≥ 0 the map Xn −→

map(EΣn, Xn) is a strong Σn-equivalence;
(iv) the homotopy category of those flat positive Ω-spectra X of spaces such that X0 is trivial and for all

n ≥ 1 the map Xn −→ map(EΣn, Xn) is a strong Σn-equivalence;
(v) the homotopy category of projective Ω-spectra of simplicial sets which are levelwise Kan;
(vi) the homotopy category of projective positive Ω-spectra of simplicial sets which are trivial in level 0 and

levelwise Kan;
(vii) the homotopy category of those flat Ω-spectra X of simplicial sets such that Xn is strictly Σn-fibrant

for all n ≥ 0;
(viii) the homotopy category of those flat positive Ω-spectra X of simplicial sets such that X0 is trivial and

Xn is strictly Σn-fibrant for all n ≥ 1;
(ix) the homotopy category of injective Ω-spectra of simplicial sets;
(x) the homotopy category of cofibrant sequential Ω-spectra;
(xi) the homotopy category of projective orthogonal Ω-spectra.

There are many more model for the stable homotopy category that we could add to the list, for example
the homotopy categories of of projective unitary Ω-spectra or of cofibrant S-modules.

We still have to show that the level model structures are topological respectively simplicial and that
the flat and monoidal with respect to the smash product of symmetric spectra. So we have to verify various
forms of the pushout product property. We recall that the pushout product of a morphism i : K −→ L of
based spaces (or simplicial sets) or symmetric spectra and a morphism j : A −→ B of symmetric spectra is
the morphism

i ∧ j : L ∧A ∪K∧A K ∧B −→ L ∧B .

The first proposition below is about internal smash products of symmetric spectra; the next proposition is
about smash products of spaces (simplicial sets) with symmetric spectra.

Proposition 4.15. Let i : K −→ L and j : A −→ B be morphisms of symmetric spectra.

(i) If i is a level cofibration and j is a flat cofibration, then i ∧ j is a level cofibration.
(ii) If both i and j are flat cofibrations, then so is i ∧ j.
(iii) If both i and j are projective cofibrations, then so is i ∧ j.
(iv) If i is a level cofibration, j a flat cofibration and one of i or j a level equivalence, π∗-isomorphism

respectively stable equivalence, then i∧ j is also a level equivalence, π∗-isomorphism respectively stable
equivalence.

Thus the flat and projective level model structures are monoidal model categories with respect to the smash
product of symmetric spectra.

Proof. Check on generators. �
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As a special case [explain] of Proposition 4.15 we obtain:

Proposition 4.16. Let i : K −→ L be a morphism of based spaces (respectively simplicial sets) and
j : A −→ B a morphism of symmetric spectra.

• Suppose that i is a cofibration of spaces (respectively simplicial sets). If j a level cofibration,
flat cofibration respectively projective cofibration, then the pushout product i ∧ j is also a level
cofibration, flat cofibration respectively projective cofibration.

• If i is a cofibration and weak equivalence of spaces (respectively simplicial sets) and j is a level
cofibration, then i ∧ j is a level equivalence of symmetric spectra.

• Suppose that i is a cofibration of spaces (respectively simplicial sets) and that j is a level cofibration.
If j is a level equivalence, π∗-isomorphism respectively stable equivalence of symmetric spectra, then
i ∧ j is also a level equivalence, π∗-isomorphism respectively stable equivalence.

Thus the flat and projective level model structures are topological (respectively simplicial) model categories.

[State all adjoint forms of the simplicial and monoidal axiom]

5. Operads and their algebras

Proposition 5.1. Let A be a flat symmetric spectrum and n ≥ 2. Then the symmetric power spectrum
(A∧n)/Σn is again flat.
[is the product of flat spectra flat ? how about AK and shA ?]

Theorem 5.2. Let f : X −→ Y be an injective morphism of Γ-spaces of simplicial sets. Then the associated
morphism f(S) : X(S) −→ Y (S) is a flat cofibration of symmetric spectra. In particular, for every Γ-space
of simplicial sets X, the associated symmetric spectrum X(S) is flat.

[how do the BF- and Q-cofibrations of Γ-spaces relate to the various cofibrations ?]

Proof. �

Definition 5.3. An operad O of symmetric spectra consists of

• a collection {O(n)}n≥0 of symmetric spectra,
• an action of the symmetric group Σn [on the right ?] on the spectrum O(n) for all n ≥ 0,
• a unit morphism ι : S −→ O(1) and
• composition morphisms

γ : O(n) ∧ O(i1) ∧ . . . ∧ O(in) −→ O(i)

for all n, i1, . . . , in ≥ 0 where i = i1 + · · ·+ in.

Moreover, this data has to satisfy the following three (?) conditions:
(Associativity) The square

O(n) ∧ O(i1) . . .O(in) ∧ O(j1
1) . . .O(j1

i1
) ∧ . . . ∧ O(jn1 ) . . .O(jnin)

γ∧Id //

shuffle

��

O(i) ∧ O(j1
1) . . .O(j1

i1
) ∧ . . . ∧ O(jn1 ) ∧ . . . ∧ O(jnin)

γ

��

O(n) ∧ O(i1) ∧ O(j1
1) . . .O(j1

i1
) ∧ . . . ∧ O(in) ∧ O(jn1 ) . . .O(jnin)

Id∧γ...∧γ
��

O(n) ∧ O(j1) ∧ . . . ∧ O(jn) γ
// O(j)

commutes for all n, i1, . . . , in, [...] ≥ 0, where the indices run over all natural numbers and i = i1 + · · ·+ in,
jk = jk1 + · · · jkik and j = j1 + · · · jn.

(Equivariance)
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(Unit) The two composite morphisms

O(n) ∼= S ∧ O(n)
ι∧Id−−−→ O(1) ∧ O(n)

γ−−→ O(n)

and

O(n) ∼= O(n) ∧ S ∧ · · · ∧ S︸ ︷︷ ︸
n

Id∧ι∧...∧ι−−−−−−−→ O(n) ∧ O(1) ∧ · · · ∧ O(1)︸ ︷︷ ︸
n

γ−−→ O(n)

are the identity for all n ≥ 0, where the first maps in both composites are unit isomorphisms.
A morphism f : O −→ P of operads is a collection of Σn-equivariant morphisms of symmetric spectra

f(n) : O(n) −→ P(n) for all n ≥ 0 which preserve the unit morphisms in the sense that f(1) ◦ ιO = ιP and
which commute with the structure morphisms in the sense that [...]

Definition 5.4. Given an operad O, an O-algebra is a symmetric spectrum A together with morphisms of
symmetric spectra

αn : O(n) ∧A(n) −→ A

for n ≥ 0 which satisfy the following conditions.
(Associativity) The square

O(n) ∧ O(i1) ∧ · · · ∧ O(in) ∧A(i1) ∧ · · · ∧A(in)

shuffle

��

γ∧Id // O(i) ∧A(i)

αi

��

O(n) ∧ O(i1) ∧A(i1) ∧ · · · ∧ O(in) ∧A(in)

Id∧αi1∧···αin
��

O(n) ∧A(n)
γ

// A

commutes for all n, i1, . . . , in ≥ 0, where i = i1 + · · ·+ in.
(Equivariance)
(Unit) The composite

A ∼= S ∧A ι∧Id−−−→ O(1) ∧A γ−→ A

is the identity.
A morphism f : A −→ B of O-algebras is a morphism of symmetric spectra which commutes with the

action morphisms in the sense that [...]

If we realize geometrically we obtain an operad |O| in the category of pointed compactly generated
spaces, which can similarly act on symmetric spectra of topological spaces.

Remark 5.5. In the special case n = 1 = i1 the associativity condition says that the morphism γ : O(1)∧
O(1) −→ O(1) is an associative product. Moreover, the unit condition for n = 1 says that ι : S −→ O(1)
is unital for γ : O(1) ∧ O(1) −→ O(1). In other words, for any operad O, the object O(1) is a monoid in
the monoidal category C. In the case of operads of symmetric spectra this means that for any operad O,
the spectrum O(1) is a symmetric ring spectrum with unit morphism ι : S −→ O(1) and multiplication
γ : O(1) ∧ O(1) −→ O(1). [O(n) is an O(1)-module for all n ≥ 0]

[O-algebras as monoids in (O(1) mod-,�, I)? This is only a weak monoidal product...]
The notion of an operad is not restricted to symmetric spectra; indeed, an operad can be defined in any

symmetric monoidal category (C,⊗, I). In the end we will mainly care for the case of symmetric spectra
(with respect to the smash product) but we can use the more general context, among other things, to
produce examples of operads of symmetric spectra. [operads in spaces, simplicial sets, categories, sets, and
chain complexes]

[Operads can be described as monoids with respect to the circle product of symmetric sequences]
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Example 5.6 (Operads of spaces or simplicial sets). ... give rise to operads of symmetric spectra by taking
suspension spectra (based and unbased versions)

Important special cases: A∞-operads (e.g. Stasheff polytopes) and E∞-operads.

Example 5.7 (Operads of categories).

Example 5.8 (Operads of sets). [gives rise to an operad in any symmetric monoidal (C,⊗, I) as long as C
has coproducts]

We can formalize the previous examples as follows. We have a diagram of symmetric monoidal categories
and strong monoidal functors

(set,×, ∗) // (categories,×, ∗) N // (sS,×, ∗)
Σ∞+ //

| |
��

(SpsS,∧,S)

| |
��

(T,×, {∗})
Σ∞+

// (SpT,∧,S)

We can (and will) take an operad in any one category and push it forward by applying the respective strong
monoidal functor to all objects in the operad.

Example 5.9 (Associative operad). We let Ass denote the operad of sets with Ass(n) = Σn [operad
structure]; Because of the equivariance conidition, the action morphism αn : Ass(n)⊗A(n) = qΣnA

(n) −→ A
is completely determined by its restriction to the summand indexed by the identity element of Σn.

So the Ass-algebras in the category of sets ‘are’ then the associative (and unital) monoids. More
precisely, the forgetful functor Ass -alg −→ (monoids) which remembers only the unit morphism and the
morphism

M ⊗M 1⊗Id⊗ Id−−−−−−→ Ass(2)⊗M ⊗M −→M

is an isomorphism of categories. [more details for C = Sp in the section on symmetric ring spectra]
In the special case of symmetric spectra under smash product we deduce that the category of Ass-

algebras is isomorphic to the category of symmetric ring spectra. [Ass-algebras in the stable homotopy
category are homotopy ring spectra]

Example 5.10 (Commutative operad). We let Com denote the operad of sets with Com(n) = ∗, the
one point set, for all n ≥ 0, and unique operad structure. This is the terminal operad of sets and the
Com-algebras in the category of sets are then the commutative (and associative and unital) monoids. This
phenomenon persists to any symmetric monoidal category (C,⊗, I) [explain in appendix;reference].

In the special case of symmetric spectra under smash product we deduce that the category of Com-
algebras is isomorphic to the category of commutative symmetric ring spectra.

Example 5.11 (A∞ operads).

Example 5.12 (E∞ operads). Several different E∞ operads have been discussed in the literature. Here
are some specific examples, where we only recall the spaces O(n) and refer to the original sources for the
remaining structure.

The Barratt-Eccles operad is the categorical operad with n-th category given by EΣn. The operad
is mostly used in its simplicial or topological version, i.e., after taking nerves and possibly also geometric
realization.

The Dold operad [...] The surjection operad [...] The linear isometries operad L [...]

Example 5.13 (Injection operad). The injection operad M is the operad of sets defined by letting M(n)
be the set of injections from the set ω×n into ω, for n ≥ 0. Note that for n = 0 the source is the empty set,
so M(0) has exactly one element, and M(1) is the injection monoid M. The symmetric groups permute
the second coordinates in ω × n. The operad structure is via disjoint union and composition, i.e., M is
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a suboperad of the endomorphism operad of the set ω in the symmetric monoidal category of sets under
disjoint union. More precisely, the operad structure morphism

γ : M(n)×M(i1)× · · · ×M(in) −→ M(i1 + · · ·+ in)

sends (ϕ, f1, . . . , fn) to ϕ ◦ (f1 + · · ·+ fn).
The injection operad is, in a sense, the discrete analog of the linear isometries operad discussed above.
[operad map M−→ L]

The injection operad came up before because the injection monoid M = M(1) acts naturally on the
naive homotopy groups of a symmetric spectrum. The entire operad injection is relevant because the naive
homotopy groups of every symmetric ring spectrum are naturally an algebra over the injection operad,
compare Exercise E.I.68.

Example 5.14 (Endomorphism operad). Given any symmetric monoidal category (C,⊗, I) and an object
X of C, the endomorphism operad End(X) is defined as follows.

In the case of symmetric spectra, a monoid with respect to the smash product is a symmetric ring
spectrum, and the monoid End(X)(1) coincides with the endomorphism ring spectrum End(X) as defined
in Example 3.41 in Chapter I.

[O-algebra structures on X are the same as operad morphisms O −→ End(X)]

Example 5.15 (Operads from monoids). As we explained in Remark 5.5, every operad O gives rise to
a monoid O(1) by neglect of structure. We can also go the other direction: suppse that M is a monoid
in the symmetric monoidal category C with unit morphism ι : I −→ M and multiplication morphism
µ : M ⊗M −→M . We define a operad oM in C by

oM(n) =

{
M for n = 1,

∅ else.

where ∅ denotes the initial object of C. All symmetric groups act trivially, and the unit morphism I −→
uM(1) of the operad is the unit morphism ι : I −→ M of the monoid. The composition morphism γ is
the mutliplication morphism µ : M ⊗M −→ M for n = i1 = 1. In all other cases, the source of the unit
morphism for oM involves at least one factor which is the initial object ∅, hence the entire source object is
an initial object, which only has one morphism out of it.

The associativity constraint specializes to the associtivity of µ in the case n = 1, and it is automatically
satisfied in all other cases since then the source is an initial object.

The functor which associates the operad oM to a monoid M is left adjoint to the functor which takes
an operad O to the monoid O(1).

The terminology is somewhat unfortunate in this particular case: algebras over the operad uM are ‘the
same as’ modules over the monoid M . More precisely, the forgetful functor oM -alg −→ M mod- which
forgets all action morphisms except oM(1)⊗A = M ⊗A −→ A is an isomorphism of categories.

Since simplicial sets act on symmetric spectra in a way compatible with the smash products, we can
consider O-algebras in category of symmetric spectra of simplicial sets.

[Operads versus symmetric operads; every operad O gives rise to a symmetric operad Σ×O such that
the O-algebras coincide with the symmetric algebras over Σ×O]

[Modules over an algebra over an operad; universal envelopping algebra]

6. Model structures for algebras over an operads

In this section we let O be an operad of symmetric spectra (under smash product), either in the context
of spaces or simplicial sets. We will lefi various stable model structure from the category of symmetric
spectra to the categorie of O-algebras. This contains the cases of module spectra over a fixed symmetric
ring spectrum, symmetric ring spectra, and of commutative symmetric ring spectra in the following sense.
These special cases are particlarly important, and we devote a seperate chapter (or section?) to each of
them [ref...].
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Theorem 6.1. Let O be an operad of symmetric spectra. The category of O-algebras admits the following
positive stable model structures in which the weak equivalences are those morphisms of O-algebras which
are stable equivalences on underlying symmetric spectra.

(i) In the positive projective stable model structure the fibrations are those morphisms of O-algebras
which are positive projective stable fibrations on underlying symmetric spectra.

(ii) In the positive flat stable model structure the fibrations are those morphisms of O-algebras which are
positive flat stable fibrations on underlying symmetric spectra.

If the object O(n) is projective (flat enough?) as a Σn-symmetric spectrum for every n ≥ 0, then the
category of O-algebras in R-modules also admits the following absolute stable model structures in which
the

(i) In the absolute flat stable model structure the fibrations are those morphisms of O-algebras which are
absolute flat stable fibrations on underlying symmetric spectra.

(ii) In the absolute projective stable model structure the fibrations are those morphisms of O-algebras
which are absolute projective stable fibrations on underlying symmetric spectra.

All model structures are cofibrantly generated, simplicial/topological and right proper.
For every (positive resp. absolut, flat) cofibrant O-algebra A the unique morphism O(0) −→ A from the

initial O-algebra is a flat cofibration of underlying symmetric spectra. Thus every cofibrant O-algebra A is
flat as a symmetric spectrum. [is this right?]

[free actions on operad of simplicial sets gives projective operad of symmetric spectra]
[explain restriction and extension along an operad morphism]

Theorem 6.2. Let f : O −→ P be a morphism of operads of symmetric spectra.

(i) The functor pair

P -alg
f∗ // O -alg
f∗

oo

is a Quillen adjoint functor pair with respect to the positive projective and the positive flat stable model
structures on both sides.

(ii) If for every n ≥ 0 the group Σn acts freely on O(n) and P(n), then (f∗, f
∗) is a Quillen adjoint functor

pair with respect to the absolut projective and absolute flat stable model structures on both sides.
(iii) If for every n ≥ 0 the map f(n) : O(n) −→ P(n) is a stable equivalence of symmetric spectra after

forgetting the Σn-action, then the adjoint functor pair (f∗, f
∗) is a Quillen equivalences in all the cases

whenever it is a Quillen functor pair.

The Quillen equivalence between commutative and E∞-ring spectra is a special case of Quillen equiv-
alences associated to weak equivalences of suitable operads[...]

Remark 6.3. Before we prove the theorem, let us explain why the absolute stable model structures does
not generally lift from symmetric spectra to O-algebras without the freeness assumption on the operad
O. We illustrate this for the operad Com (where the Σn-action is certainly not free in general), whose
algebras are commutative symmetric ring spectra. So suppose that the forgetful functor from commutative
symmetric ring spectra creates a model structure relative to one of the absolute (injective, flat or projective)
stable model structure on symmetric spectra. Then we could choose a fibrant replacement S −→ Sf of the
sphere spectrum in the respective stable model structure. The target is then Sf a commutative symmetric
ring spectrum which is also an Ω-spectrum. Since Sf is stably equivalent, thus π∗-isomorphic, to the sphere

spectrum, its 0-th space Sf0 has the homotopy type of QS0 = colimn ΩnSn. However, the space in level 0
of any commutative symmetric ring spectrum R is a simplicial (or topological) commutative monoid, via
µ0,0 : R0∧R0 −→ R0. [in pointed ssets...] If the monoid of components forms a group (which is the case for
QS0), then such a commutative monoid is weakly equivalent to a product of Eilenberg-Mac Lane spaces.
So altogether an absolute stable model structure on commutative symmetric ring spectra would imply that
space QS0 is weakly equivalent to a product of Eilenberg-Mac Lane spaces, which is not the case.
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From the operad O we define a functor On[−] : Sp −→ Σn-Sp for n ≥ 0 to the category of Σn-symmetric
spectra by

On[X] =
∨
k≥0

O(k + n) ∧Σk X
(k) .

In the definition, the symmetric group Σk acts on O(k + n) by restriction along the ‘inclusion’ − + 1n :
Σk −→ Σk+n and on X(k) by permuting the smash factors. The symmetric group Σn acts on each wedge
summand by restriction of the action on O(k + n) along the monomorphism 1k +− : Σn −→ Σk+n. As we
shall see, the functor O[−] = O0[−] has the structure of a triple on the category of symmetric spectra and
it acts from the right on the functors On[−]. We define a unit transformation X −→ O[X] = O0[X] as the
composite of

X ∼= S ∧X ι∧Id−−−→ O(1) ∧X
with the wedge summand inclusion for k = 1.

We now define a natural transformation m : On[O0[X]] −→ On[X] of functors to Σn-symmetric spectra.
First we generalize the operad composition to a morphism of symmetric spectra

O(k + n) ∧ O(i1) ∧ · · · ∧ O(ik)
Id∧ι∧···∧ι−−−−−−−→ O(k + n) ∧ O(i1) ∧ · · · ∧ O(ik) ∧ O(1) ∧ · · · ∧ O(1)︸ ︷︷ ︸

n

γ−−−−→ O(i1 + · · ·+ ik + n) .

For fixed k ≥ 0 we get a morphism

O(k + n) ∧

 ∨
m≥0

O(m) ∧Σm X(m)

(k)

∼=
∨

(i1,...,ik)∈Nk
O(k + n) ∧

(
O(i1) ∧ · · · ∧ O(ik) ∧Σi1×···×Σik

X(i1+···+ik)
)

−→
∨

(i1,...,ik)∈Nk
O(i1 + · · ·+ ik + n) ∧Σi1+···+ik

X(i1+···+ik) −→
∨
m≥0

O(m+ n) ∧Σm X(m) .

(6.4)

The morphism (6.4) is Σk-equivariant with respect to the diagonal action on the source and the trivial
action on the target. The morphism (6.4) is also Σn-equivariant for these action. So altogether (6.4) passes
to a natural Σn-equivariant map

O(k + n) ∧Σk

 ∨
m≥0

O(m) ∧Σm X(m)

(k)

−→
∨
m≥0

O(m+ n) ∧Σm X(m) .

As k varies, these morphism add up to the natural transformation m : On[O[X]] −→ On[X] of functors
with values in Σn-symmetric spectra.

These maps m are associative and unital in the sense that the diagrams of functors and natural trans-
formations

On[O[O[X]]]
On[mX ] //

mO[X]

��

On[O[X]]

m

��

On[X]

Id &&MMMMMMMMMM
On[unit]// On[O[X]]

m

��
On[O[X]]

m
// On[X] On[X]

commute for all n ≥ 0. These properties ultimately come from associativity and unitality of the operad
structure, and we omit the details.

For n = 0 we have the additional property that the composite

O[X]
unitO[X]−−−−−→ O[O[X]]

m−−→ O[X]
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is the identity, and so this structure makes the functor O[−] = O0[−] into a triple (also called monad) on
the category of symmetric spectra. An O[−]-algebra is a symmetric spectrum A together with a morphism
α : O[A] −→ A which is associative and unital in the sense that the following diagrams commute

O[O[A]]
O[α] //

m

��

A

α

��

A

Id
%%KKKKKKKKKKKK

unit // O[A]

α

��
O[A]

α
// A A

Given such an O[−]-algebra (A,α) we can give the symmetric spectrum A the structure of an algebra over
the operad O by declaring the n-th part of the action map to be the composite

O(n) ∧Σn A
(n) incl−−→ O[A]

α−→ A .

This assignment is an isomorphism of categories between the algebras over the triple O[−] and algebras
over the operad O. So we will now use these two notions of algebras interchangeably, and just talk about
O-algebras even when we think about O[−]-algebras.

One immediate consequence of the comparison between algebras over O[−] and O is the following. For
every symmetric spectrum X the spectrum O[X] has the structure of an O[−]-algebra, thus of an O-algebra,
such that X 7→ O[X] is left adjoint to the forgetful functor from O-algebras to symmetric spectra. By a
slight abuse of notation we also denote this free functor by

O[−] : Sp −→ O -alg .

Two examples of this have already come up in Example I.5.27: if O = Ass is the associative operad, then
Ass[X] = TX is the tensor algebra generated by the symmetric spectrum X; for the commutative operad
O = Com we get Com[X] = PX, the symmetric algebra generated by X.

We can also deduce from general principles that the category of O-algebras has limits and colimits.

Proposition 6.5. For every operad O of symmetric spectra, the category of O-algebras has [enriched?]
limits and colimits. The forgetful functor from O-algebras to symmetric spectra commutes with limits and
with filtered colimits.

Proof. A limit ofO-algebras is given by the limit of the underlying symmetric spectra, with a canonical
O-algebra structure. Colimits of algebras over a triple are slightly more subtle, but they exist here because
the underlying functor of the triple O preserves filtered colimits. �

The key ingredient in the proof of Theorem 6.1 is a homotopical analysis of certain pushouts of O-
algebras. For this we use a certain filtration of such pushout which we now define.

We consider a morphism f : X −→ Y of symmetric spectra and define a Σn-symmetric spectrum Qn(f)
and an equivariant morphism Qn(f) −→ Y (n) for n ≥ 0. To define Qn(f) we first describe an n-dimensional
cube of symmetric spectra; by definition, such a cube is a functor

W : P({1, 2, . . . , n}) −→ Sp

from the poset category of subsets of {1, 2, . . . , n} and inclusions. If S ⊆ {1, 2, . . . , n} is a subset, the vertex
of the cube at S is defined as

W (S) = C1 ∧ C2 ∧ . . . ∧ Cn
with

Ci =

{
X if i 6∈ S
Y if i ∈ S.

For S ⊆ T the morphism W (S) −→ W (T ) is a smash product of copies of the map f : X −→ Y at all
coordinates in T − S with identity maps of X or Y . For example for n = 2, the cube is a square and looks



6. MODEL STRUCTURES FOR ALGEBRAS OVER AN OPERADS 375

like

X ∧X
f∧Id

��

Id∧f // X ∧ Y
f∧Id

��
Y ∧X

Id∧f
// Y ∧ Y.

We denote by Qn(f) the colimit of the punctured cube, i.e., the cube with the terminal vertex removed.
[explain the Σn-action] It comes with a natural equivariant morphism Qn(f) −→ W ({1, . . . , n}) = Y (n) to
the terminal vertex of the cube.

Definition 6.6. Let G be a finite group. A morphism f : A −→ B of G-symmetric spectra is a flat
G-cofibration (respectively projective G-cofibration) if it has the left lifting property with respect to all
morphisms of G-symmetric spectra which are flat trivial fibrations (respectively projective trivial fibrations)
of underlying spectra.

G-symmetric spectra ‘are’ modules over the spherical group ring S[G]; under this isomorphism of
categories, the flat (projective) G-cofibrations are the same as the cofibrations in the flat (projective)
absolute stable model structure on S[G]-modules [see below].

see: Sergey Gorchinskiy, Vladimir Guletskii, Symmetric powers in stable homotopy categories,
arXiv:0907.0730

Proposition 6.7. Let f : X −→ Y be a flat (respectively projective) cofibration of symmetric spectra such
that f0 : X0 −→ Y0 is an isomorphism. Then for every n ≥ 0 the morphism of Σn-symmetric spectra

γn : Qn(f) −→ Y (n)

is a flat (respective projective) Σn-cofibration.

We note that hypothesis that f0 be an isomorphism is essential. Indeed, if K is a non-empty cofibrant
space (or simplicial set), then the suspension spectrum Σ∞+ K is projective. So the morphism from the
trivial spectrum to Σ∞+ K is a projective cofibration which violates the conclusion of Proposition 6.7: the

smash power (Σ∞+ K)(n) is isomorphic to Σ∞+ (Kn), but for any n ≥ 2 the cartesian product Kn has Σn-fixed

points, so it is not a free Σn-space. Consequently, the spectrum (Σ∞+ K)(n) is not Σn-flat [ref] (although its
underlying non-equivariant spectrum is projective, thus flat).

Proof of Proposition 6.7. Let us call a morphism f of symmetric spectra a power cofibration if for
all n ≥ 0 the morphism γn : Qn(f) −→ Y (n) is a flat Σn-cofibration. We claim that:

(a) The class of power cofibrations is closed under pushouts. Indeed, for every pushout squares of
symmetric spectra

X
f //

��

Y

��
Z g

// P

the square

Qn(f)
γn(f) //

��

Y (n)

��
Qnn−1(g)

γn(g)
// P (n)

is a pushout of Σn-spectra. So if f is a power fibration, then so is g, since flat Σn-cofibrations are stable
under pushouts.

(b) The class of power cofibrations is closed under countable composition. Indeed, if fi : Xi −→ Xi+1

are power cofibrations for all i ≥ 0 and f∞ : X0 −→ X∞ = colimXi is the canonical morphism, then
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(c) For every m ≥ 0 and every cofibration ϕ : K −→ L of Σm-simplicial sets, the map of semifree
symmetric spectra Gmϕ : GmK −→ GmL is a power cofibrations.

In the general case of a flat cofibration f : X −→ Y we use the filtration FmX defined in Section II.??.
The latching map νm(f) : Xm ∪LmX LmYm −→ Ym is a Σm-cofibration of based spaces (or simplicial sets),
so the morphism Gmνm(f) of semifree spectra is a power cofibration by (c). The pushout squares

Gm(Xm ∪LmX LmYm)
Gmνm(f) //

��

GmYm

��
X ∪Fm−1X Fm−1Y

jm
// X ∪FmX FmY

[check...] show that the upper horizontal morphism jm is a power cofibration by (a). The spectrum
Y is the colimit of the spectra X ∪FmX FmY along the morphisms jm, so finally the morphism X =
X ∪F−1X F−1Y −→ Y is a power cofibration by (b).

We start with the special case X = GmL for some m ≥ 0 and a pointed Σm-simplicial set L. We have

(GmL)(n) ∼= Gmn(Σ+
mn ∧Σm×···×Σm L ∧ . . . ∧ L) ;

in this description the permutation action of γ ∈ Σn in level mn+ k of (GmL)(n) is given by

γ∗ : Σ+
mn+k ∧(Σm)n×Σk L

(n) ∧ Sk −→ Σ+
mn+k ∧(Σm)n×Σk L

(n) ∧ Sk

τ ∧ a1 ∧ . . . an ∧ x 7−→ τ∆(γ) ∧ aγ−1(1) ∧ . . . aγ−1(n) ∧ x .

Here τ ∈ Σmn+k, ai ∈ L, x ∈ Sk and ∆ : Σn −→ Σmn is the diagonal embedding. The space(
(GmL)(n)

)
mn+k

is a wedge of copies of L(n) ∧ Sk indexed by the cosets of the group (Σm)n × Σk in

Σmn+k. The diagonal subgroup ∆(Σn) normalizes (Σm)n×Σk inside Σmn+k, and so Σn acts from the right
on the set of the cosets Σmn+k/(Σm)n × Σk by

[g ((Σm)n × Σk)] · γ = g∆(γ) ((Σm)n × Σk) .

By the formula above, this is how the permutation action of Σn permutes the wedge summands in level
mn + k. For m ≥ 1 the diagonal embedding ∆ : Σn −→ Σmn+k is injective and its image intersects the
subgroup Σmn+k/(Σm)n×Σk only in the identity element. Thus the right action of Σn on Σmn+k/(Σm)n×Σk
is free, and thus the Σn-action on (GmL)(n) is levelwise free away from the basepoint. �

Construction 6.8. Given an O-algebra (A,α : O(A) −→ A) and a number n ≥ 0 we define a Σn-symmetric
spectrum UnA as the coequalizer, in the category of Σn-symmetric spectra, of the two morphisms

On(O(A))
mA //
On(α)

// On(A) .

The role of the spectrum UnA is that the underlying symmetric spectrum of an O-algebra coproduct
AqO(X) is isomorphic to ∨

n≥0

UnA ∧Σn X
∧n .

For example, we have U0A = A since the diagram

O(O(A))
mA //
O(α)

// O(A)
α // A

is a (split) coequalizer, even as O-algebras. [So we should have Un(O(∗)) = O(n) to recover O(X) ∼=
O(∗)qO(X)]

We consider an O-algebra A, a morphism f : X −→ Y of symmetric spectra and a morphism g :
O(X) −→ A of O-algebras. We define a filtration of the O-algebra pushout AqO(X)O(Y ). We set A0 = A
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and define a symmetric spectrum An inductively as the pushout

(6.9) UnA ∧Σn Q
n
n−1

Id∧γn //

��

UnA ∧Σn Y
(n)

��
An−1

// An

The left vertical map is obtained by passage to coequalizers from the composite

On(A) ∧Σn Q
n
n−1 =

∨
k≥0

O(k + n) ∧Σk×Σn A
(k) ∧Qnn−1

∼=−→

∨
k≥0

O(k + n) ∧Σk×Σn A
(k) ∧ colimS 6={1,...,n}W (S)

use f : X −→ A−−−−−−−−−−→

Lemma 6.10. The colimit A∞ = colimnAn of the sequence of symmetric spectra has the structure of an
O-algebra which makes it a pushout in the category of O-algebras of the diagram

A
g←−− O(X)

O(f)−−−→ O(Y )

in such a way that the canonical morphism of symmetric spectra A −→ A∞ becomes the canonical morphism
of O-algebras from A to the pushout.

Proof. There are several things to check:

(i) A∞ is naturally a O-algebra so that
(ii) A −→ A∞ is a map of O-algebras and

(iii) A∞ has the universal property of the pushout in the category of O-algebras.

Define the O-algebra structure O(A∞) −→ A∞ as the composite of A −→ A∞ with the unit of A. The
multiplication of A∞ is defined from compatible maps An∧Am −→ An+m by passage to the colimit. These
maps are defined by induction on n + m as follows. Note that An ∧ Am is the pushout in mod-R in the
following diagram.

Qn ∧ ((A ∧ L)m ∧A) ∪(Qn∧Qm) ((A ∧ L)n ∧A) ∧Qm

��

// (A ∧ L)n ∧A) ∧ ((A ∧ L)m ∧A)

��
(An−1 ∧Am) ∪(An−1∧Am−1) (An ∧Am−1) // An ∧Am

The lower left corner already has a map to An+m by induction, the upper right corner is mapped there
by multiplying the two adjacent factors of A followed by the map (A ∧ L)n+m ∧ A −→ An+m from the
definition of An+m. We omit the tedious verification that this in fact gives a well defined multiplication
map and that the associativity and unital diagrams commute. Hence, A∞ is a O-algebra. Multiplication
in A∞ was arranged so that A −→ A∞ is a O-algebra map.

For (iii), suppose we are given another O-algebra B, a O-algebra morphism A −→ B, and a mod-R-map
L −→ B such that the outer square in

K

��

// L

��

��111111111111111

A

((QQQQQQQQQQQQQQQQ // A∞

!!
B

commutes. We have to show that there is a unique O-algebra map A∞ −→ B making the entire square
commute. These conditions in fact force the behavior of the composite map W (S) −→ Pn −→ A∞ −→ B.
Since A∞ is obtained by various colimit constructions from these basic building blocks, uniqueness follows.
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We again omit the tedious verification that the maps W (S) −→ B are compatible and assemble to a
O-algebra map A∞ −→ B. �

Proposition 6.11. Let O be an operad of symmetric spectra, A and O-algebra, f : X −→ Y be a flat
cofibration of symmetric spectra and let O(X) −→ A be a morphism of O-algebras. Suppose in addition
that

• f is an isomorphism in level 0, [or
• the symmetric groups Σn act freely on O(n) for all n ≥ 0].

Then then the pushout A −→ A∪O(X) O(Y ) is an injective cofibration [flat if source is flat?] of underlying
symmetric spectra. If moreover f is a stable equivalence or π∗-isomorphism, then so is the morphism
A −→ A ∪O(X) O(Y ).

Proof. Since f : X −→ Y is a flat acyclic cofibration, the morphism γn : Qn −→ Y (n) is also a flat
acyclic cofibration by Proposition 6.7. We show by induction on n that the morphisms An−1 −→ An defined
in (6.9) are injective stable equivalences.

Since γn is a flat acyclic cofibration, the morphism

Id∧γn : UnA ∧Qnn−1 −→ UnA ∧ Y (n)

is injective and a stable equivalence. In particular, the quotient spectrum UnA ∧ (Y/X)(n) is stably con-
tractible. Now we pass to quotients by the Σn-action. We deduce that the morphism

Id∧Σnγn : UnA ∧Σn Q
n
n−1 −→ UnA ∧Σn Y

(n)

is again injective, and its cokernel is isomorphic to the spectrum

UnA ∧Σn (Y/X)(n) .

Under the assumption that f : X −→ Y is an isomorphism in level 0 the symmetric spectrum Y/X is
trivial in level 0. Again by Proposition 6.7 the permutation action of Σn on the smash power (Y/X)(n) is then
free away from the basepoint, hence so is the diagonal action on UnA ∧ (Y/X)(n). Since UnA ∧ (Y/X)(n)

is stably constractible (respectively has trivial homomotopy groups) and has a free action, the quotient
spectrum UnA ∧Σn (Y/X)(n) is again stably contractible (respectively has trivial homomotopy groups) by
Proposition 6.12. �

Now we can left the various stable model structures from symmetric spectra to O-algebras.

Proof of Theorem 6.1. We define cofibrations of O-algebras by the lifting property with respect to
acylic fibrations of O-algebras.

The category ofO-algebras has limits and colimits by Proposition 6.5. The 2-out-of-3 property for stable
equivalences of O-algebras and the closure under retracts for stable equivalences and stable fibrations of
O-algebras follow from that corresponding properties for symmetric spectra. Cofibrations are defined by a
lifting property, so the are closed under retracts.

The factorizations are produced by the small object argument. We define the necessary sets of gener-
ating cofibrations and acyclic cofibrations as

IO = O(I) and JO = O(J) ,

where I and J are the generating cofibrations (respectively acyclic cofibrations) for the [...adjectives...]
stable model structure of symmetric spectra, defined in [...].

The key non-trivial step is to verify that every IO-cell complex is also a stable equivalence. This is a
special case of Proposition 6.11. �

Is this needed:

Proposition 6.12. Let G be a finite group and X a G-symmetric spectrum such that the G-action is free
away from the basepoint.

• If X is stably contractible, then so is the quotient symmetric spectrum.
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• If X is k-connected for some integer k, then so is the quotient symmetric spectrum.

Proof. Since the G-action is free away from the basepoint the morphism EG+ ∧G X −→ S0 ∧G X
induced by the unique map EG −→ ∗ is a level equivalence. So it suffices to show that the left hand side
is stably contractible (respectively k-connected) if X is. We show by induction over n that the symmetric
spectrum EnG+ ∧G X is stably contractible (respectively k-connected), where EnG is the simplicial n-
skeleton of EG. The induction start with n = −1 where we interpret E−1G as the empty simplicial set.
The quotient EnG/En−1G is isomorphic as a G-simplicial set to G+ ∧∆[n]/∂∆[n]∧G(n), where the smash
powers are taken with the unit 1 ∈ G as basepoint. So we get a cofibre sequence of symmetric spectra

En−1G+ ∧G X −→ EnG+ ∧G X −→
(
G+ ∧∆[n]/∂∆[n] ∧G(n)

)
∧G X ∼= ∆[n]/∂∆[n] ∧G(n) ∧X .

The last term is stably contractible (respectively (k + n)-connected) and the first morphism is injective.
So the inclusion En−1G+ ∧G X −→ EnG+ ∧G X is a stable equivalence (respectively (k + n)-connected)
and EnG+ ∧G X is stably contractible (respectively k-connected) for all n ≥ 0. Thus the filtered colimit
EG+ ∧G X is also stably contractible (respectively k-connected). �

7. Connective covers of structured spectra

Construction 7.1. The category of graded abelian groups forms a symmetric monoidal category under
graded tensor product (with sign in the symmetry isomorphism).

Let O be an operad of symmetric spectra. Then we can define an operad πO in the category of graded
abelian groups (under graded tensor product) by

(πO)(n) = π∗(O(n)) ,

the graded abelian group of true homotopy groups of the symmetric spectrum O(n).
For every operad O of symmetric spectra and every O-algebra A we now make the true homotopy

groups π∗A into a graded πO-algebra. For the associative respectively commutative operad this recovers the
structure of (commutative) graded ring on the homotopy groups of a semistable (commutative) symmetric
ring spectrum.

Example 7.2. Suppose E is an operad of sets, and let O = Σ∞+ E the operad of symmetric spectra obtained
by taking suspensions spectra. Then O(n) is a wedge of sphere spectrum S, indexed by the elements E(n),
and so by [...] we have π0O(n) ∼= Z[E(n)]. In other words, the degree part of the operad πO is the free
abelian group operad generated by E .

Example 7.3. Algebras over the associative operad ‘are’ symmetric ring spectra, and the observation above
[degree zeo part] reduces to the fact, already observed in Proposition I.6.25, that the homotopy groups of
a symmetric ring spectrum naturally form a graded ring.

For the commutative operad, we similar re-obtain that the homotopy groups of a sommutative sym-
metric ring spectrum naturally form a graded commutative ring.

Example 7.4. We identify the Σn-symmetric spectra UnA in the case of the initial, the commutative and
the associative operad. The key to this identification is the isomorphism

AqO(L) ∼=
∨
n≥0

UnA ∧Σn L
(n)

which is natural in the O-algebra A and the symmetric spectrum L.
Commutative operad: algebras over the commutative operad are commutative symmetric ring spectra

and the coproduct is given by the smash product of the underlying symmetric spectra. So for O = Com, a
symmetric spectrum L and an O-algebra A we have

AqO(L) = A ∧ PL =
∨
n≥0

A ∧ (L(n)/Σn) .

Thus we have UnA = A with trivial Σn-action. In particular, UnA is connective whenver A is.
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Associative operad: algebras over the associative operad are symmetric ring spectra and the coproduct
of a symmetric ring spectrum A with the tensor algebra TL of a symmetric spectrum L is given

AqO(L) =
∨
n≥0

A ∧ (L ∧A)(n) .

Since
A ∧ (L ∧A)(n) = (Σ+

n ∧A(n+1)) ∧Σn L
(n)

we have UnA = Σ+
n ∧A(n+1). In particular, UnA is connective whenver A is and the underlying symmetric

spectrum of A is flat, which for example is the case when A is cofibrant as a symmetric ring spectrum.
Initial operad: algebras over the initial operad are symmetric spectra and the coproduct is given by the

wedge. So we have
AqO(L) = A ∨ L .

This means that

Un(A) =


A for n = 0,

S for n = 1, and

∗ for n ≥ 2.

In particular UnA is connective whenver A is.

Proposition 7.5. Let O be an operad of symmetric spectra such that O(n) is connective for all n ≥ 0.
Then for every connective cofibrant O-algebra A the Σm-symmetric spectrum UmA is also connective.

Recall that a morphism of symmetric spectra is n-connected, for some integer n, if it induces iso-
morphisms of homotopy groups below dimension n and epimorphism on πn. If the morphism is a level
cofibration, then the long exact sequence of homotopy groups shows that the morphism is n-connected if
and only if its cokernel is n-connected.

Lemma 7.6. Let n ≥ 0. Then for every (n − 1)-connected flat symmetric spectrum X with X0 = ∗ and
every cofibrant connective O-algebra A the O-algebra morphism A −→ AqO(X) O(CX) is n-connected.

Proof. In a first step we show that if X is (n−1)-connected, then for every O-algebra A the summand
inclusion A −→ A q O(X) is (n − 1)-connected. The coproduct is a special case of a pushout along the
initial object, so as a special case of Lemma 6.10 the coproduct is isomorphic to∨

m≥0

UmA ∧Σm X(m) .

The morphism A −→ A q O(K) corresponds to the summand inclusion for m = 0, so it suffices to show
that the remaining summands are (n−1)-connected. Since A is connective and cofibrant the Σm-symmetric
spectrum UmA is also connective. [we only know this part for the associative or the commutative operad...]
For m ≥ 1 the smash power X(m) is again (n−1)-connected, flat and has a free Σm-action by Proposition 6.7.
So the spectrum UmA∧X(m) is also (n−1)-connected and has a free Σm-action, and thus by Proposition 6.12
the orbit spectrum UmA ∧Σm X(m) is (n− 1)-connected.

The O-algebra AqO(X) O(CX) is the realization of the simplicial O-algebra

[k] 7−→ AqO(X)q · · · q O(X)︸ ︷︷ ︸
k

= AqO(X∨ . . . ∨X︸ ︷︷ ︸
k

) .

The object of 0-simplices is exactly A. Since the realization of simplicial O-algebras in performed on
underlying symmetric spectra, we argue with the underlying simplicial object of symmetric spectra to
deduce that the vertex map A −→ AqO(X) O(CX) is n-connected.

We consider the simplicial spectrum obtained by dimensionwise collapsing the vertex object A is n-
connected. By the first part the spectrumAqO(X∨ . . . ∨X︸ ︷︷ ︸

k

)

 /A
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(quotient as symmetric spectra) is (n − 1)-connected for all k ≥ 1, and it is trivial for k = 0. So the
geometric realization is this simplicial quotient spectrum is k-connected, hence so is the vertex morphism
A −→ AqO(X) O(CX). �

Proposition 7.7. Let O be an operad of symmetric spectra such that O(n) is connective for all n ≥ 0 and
let ϕ : A −→ B be a morphism of O-algebras. For every n ≥ 0 there exists a functorial factorization

A
g−→ A〈n〉

h−→ B

of ϕ in the category of O-algebras such that:

• g is a positive projective cofibration of O-algebras and h is a positive projective level fibration;
• if A is connective [and cofibrant?], the morphism g induces isomorphisms of homotopy groups

below dimension n and an epimorphism on πn and the morphism h induces a monomorphism on
πn and an isomorphism of homotopy groups above dimension n.

Proof. The idea is to ‘kill homotopy groups’ in the world of O-algebras. In other words, we cone off
all morphisms from O-algebra spheres O(FmS

k+m) for k ≥ n to A and iterate the process. Since we want
functoriality, we cannot choose generators of homotopy groups, but we should rather cone off all morphism
from O(FmS

k+m) to A. The ‘small object argument’ is exactly the process to achieve this.

We define a set of morphisms of symmetric spectra as K〈n〉 = J lv,+proj ∪ C〈n〉. Here

J lv,+proj =
{
FmΛi[k]+ −→ Fm∆[k]+

}
m≥1,k≥0,0≤i≤k

of generating acyclic cofibrations for the positive projective level model structure and

C〈n〉 =
{
FmS

k+m −→ FmCS
k+m

}
m≥1,k≥n

where Sk+m −→ CSk+m is the cone inclusion. A morphism f : X −→ Y of symmetric spectra has the

right lifting property with respect to the set J lv,+proj if and only if it is a projective level fibration in positive
levels, i.e., if and only if the morphisms fm : Xm −→ Ym are Kan fibrations for m ≥ 1.

If in addition f has the right lifting property for the set C〈n〉, then so has its fibre F over the basepoint.
This means that for positive m the simplicial set Fm is Kan and has the right lifting property for the cone
inclusions Sk+m −→ CSk+m for all k ≥ n. Thus the homotopy groups of Fm vanish in dimensions ≥ n+m,
and so we have πkF = 0 for k ≥ n. The long exact sequence of homotopy groups shows that the map
πnf : πnX −→ πnY is injective and f induces isomorphisms of homotopy groups above dimension n.

We now apply the small object argument, in the category of O-algebras, to the morphism ϕ : A −→ B
with respect to the set OK〈n〉. It produces a functorial factorization

A
g−→ A〈n〉

h−→ B

of ϕ in the category of O-algebras such that g is a OK〈n〉-cell complex and h has the right lifting property
with respect to the set OK〈n〉. Since O is left adjoint to the forgetful functor, this means that the underlying
morphism of symmetric spectra of h has the right lifting property with respect to the set K〈n〉, so by the
above, h is a positive projective level fibration, induces a monomorphism on πn and isomorphisms of
homotopy groups above dimensions n.

Since every morphism in the set K〈n〉 is a positive projective cofibration of symmetric spectra, every
morphism in the set OK〈n〉 is a positive projective cofibration of O-algebras, and so every OK〈n〉-cell
complex, in particular the morphsm g, is a positive projective cofibration of O-algebras,

It remains to identify the effect of the morphism g : A −→ A〈n〉 on homotopy groups. Let f lv : X −→ Y
be a positive projective cofibration which is also a level equivalence. Then A −→ A qO(X) O(Y ) is a π∗-
isomorphism by Proposition 6.11.

If X is an (n− 1)-connected projective symmetric spectrum with X0 = ∗ and f c : X −→ CX the cone
inclusions, the by Lemma 7.6 the morphism A −→ AqO(X) O(CX) is n-connected.

Every OK〈n〉-cell complex is a countable compositition of pushouts along morphisms O(f lv∨f c) where
f lv and f c are positive projective cofibrations, f lv is a level equivalence and f c is a cone inclusion of
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an (n − 1)-connected spectrum. Such pushout can be done in two seperate steps, so by the above, the
morphism from A to the pushout is n-connected. So every OK〈n〉-cell complex is n-connected. This applies
in particular to the morphism g : A −→ A〈n〉 which thus induces a bijection of homotopy groups below
dimension n and an epimorphism in dimension n. �

Theorem 7.8. Let O be an operad of symmetric spectra such that O(n) is connective for all n ≥ 0.

(i) There exists a functor

τ≥0 : O -alg −→ O -alg

and a natural morphism of O-algebras τ≥0A −→ A with the following property:
• the O-algebra τ≥0A is connective
• the morphism τ≥0A −→ A induces an isomorphism on πk for all k ≥ 0.

We refer to τ≥0A as the connective cover of the O-algebra A.

(ii) For every n ≥ 0 there exists a functor

Pn : O -alg −→ O -alg

and a natural morphism of O-algebras A −→ PnA such that for every connective and cofibrant O-
algebra A the following properties hold:
• the homotopy groups πk(PnA) are trivial for k > n
• for k ≤ n the morphism A −→ PnA induces an isomorphism on πk.

We refer to PnA as the n-th Postnikov section of the connective O-algebra A.

Proof. For part (i) we first produce a morphism ϕ : A+ −→ A whose source is a connective O-
algebra and such that ϕ is surjective on π0. For example, we can choose a family of maps of pointed
spaces Snj −→ Anj with nj ≥ 1 whose classes generate π0A as an abelian group and define A+ as the free
O-algebra

A+ = O

∨
j

FnjS
nj

 .

The morphism A+ −→ A is adjoint to wedge of the adjoints FnjS
nj −→ A of the maps Snj −→ Anj . We

can make A+ depend functorially on A by using all maps Sj −→ Aj for all j ≥ 1.
Now we apply Proposition 7.7 with n = 0 to the morphism ϕ : A+ −→ A. Since the source is connective

and cofibrant we obtain a functorial O-algebra factorization

A+
g−→ A〈0〉

h−→ A

of ϕ such that g induces isomorphisms of negative dimensional homotopy groups and h induces a monomor-
phism on π0 and an isomorphism of homotopy groups in positive dimensions. Since A+ is connective, the
first statement says that A〈0〉 is also connective. Since the composite

π0(A+)
π0g // π0A

〈0〉 π0h // π0A

coincides with the surjective map π0ϕ, the map π0h : π0A
〈0〉 −→ π0A is not only injective, but in fact

bijective. So altogether we conclude that the morphism of O-algebras h : A〈0〉 −→ A serves as a connective
cover.

Part (ii) is the special case of Proposition 7.7 for the unique morphism A −→ ∗ to the terminal O-
algebra. In the factorization

A
g−→ A〈n+1〉 h−→ ∗

the morphism g induces an isomorphism of homotopy groups below dimension n + 1. The morphism h is
injective on homotopy group of dimension n+ 1 and above. The terminal O-algebra is a trivial symmetric
spectrum, so in this case we deduce that πkA

〈n+1〉 = 0 for k ≥ n + 1. So the morphism of O-algebras
g : A −→ A〈n+1〉 serves as the n-th Postnikov section. �



EXERCISES 383

Let O be an operad of symmetric spectra such that O(n) is connective for all n ≥ 0. Then the collection
of zeroth homotopy groups π0O is an operad of abelina groups (under tensor product). For every π0O-
algebra A the collection of Eilenberg-Mac Lane spectrum HA (see Example I.1.14) is naturally an algebra
over the operad O [...] [We could also deduce this from an operad morphism O −→ H(π0O)]

Proposition 7.9 (Uniqueness of Eilenberg-Mac Lane algebras). Let O be an operad of symmetric spectra
such that O(n) is connective for all n ≥ 0. If A is O-algebra with true homotopy groups concentrated in
dimension 0, then A is stably equivalent to H(π0A) as an O-algebra.

Remark 7.10. It seems worth spelling out the results of this section in the case of the initial operad oS
with objects

oS(n) =

{
S for n = 1,

∗ else.

Then oS-algebra ‘are’ S-modules, which in turn ‘are’ symmetric spectra. More precisely, the forgetful functor
oS -alg −→ Sp is an isomorphism of categories. Every object in the operad S is connective, so Theorem 7.8
provides a functor τ≥0 : Sp −→ Sp and a natural morphism of symmetric spectra τ≥0A −→ A such that
τ≥0A is connective and the morphism τ≥0A −→ A induces an isomorphism on πk for all k ≥ 0.

Since the homotopy groups of a τ≥0A depend functorially on the homotopy groups of A, the functor τ≥0

and the natural transformation descend to the level of homotopy categories. [ref to universal property] So
this section gives a somewhat different way to construct connective covers in the stable homotopy category,
which we first discussed in Theorem II.8.1.

In much the same way, the uniqueness result for Eilenberg-Mac Lane algebras is Proposition 7.9 spe-
cializes, in the case of the initial operad oS to the uniqueness result for Eilenberg-Mac Lane spectra in the
stable homotopy category as stated in Theorem II.5.25.

Exercises

Exercise 4.1 (Strong level model structure). The purpose of this exercise is to construct, under suitable
hypothesis on a model category C a ’strong’ level model structure on the category SpC of symmetric spectra
in C. The strong model structure has more homotopy types than the flat and projective level model
structure.

For every group G the strong G-equivalence, strong G-fibration and G-cofibrations in the category
GC of G-objects in C were introduced in Definition 3.1. We call a morphism f : X −→ Y of symmetric
spectra in C a strong level equivalence respectively a strong level fibration if for every n ≥ 0 the morphism
fn : Xn −→ Yn is a strong Σn-equivalence respectively strong Σn-fibration.

Assume now that for every symmetric group Σn the strong Σn-equivalences, strong Σn-fibrations and
Σn-cofibrations form a model structure on the category ΣnC. Show that the flat cofibrations, strong level
equivalences Σn-model structures form a model structure on the category SpC . We call this model structure
on SpC the strong level model structure. Define and prove a positive strong level model structure on SpC .
[Cole mixing of strong level with projective cofibrations?]

Exercise 4.2. Give instructions on how to prove the projective and flat level and stable model structures
for orthogonal spectra. Show that the two adjoint functor pairs

SpT

P
((

?

66
SpOUoo

are Quillen equivalences with respect to the projective stable model structure on SpO; for the pair (P, U) we
use the projective stable model structure, for (U, ?) the flat stable model structure on symmetric spectra.
Need that the forgetful functor takes projective cofibrations in SpO to flat cofibrations in Sp. Key steps:
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(1) A projective symmetric spectrum, X orthogonal Ω-spectrum, then in commutative triangle

A

'
""EEEEEEEE
ϕ // UX

UPA
ϕ̂

;;wwwwwwwww

the adjunction unit is a stable equivalence [ref], so ϕ is a stable equivalence of symmetric spectra if and
only if its adjoint ϕ̂ is a stable equivalence of orthogonal spectra.

(2) B projective orthogonal spectrum, Y flat symmetric Ω-spectrum, then in commutative triangle

UB

U(ψ) ##GGGGGGGG
ψ̂ // Y

U?Y

'

<<zzzzzzzz

the adjunction counit is a stable equivalence [ref], so ψ is a stable equivalence of orthogonal spectra if and

only if its adjoint ψ̂ is a stable equivalence of symmetric spectra.
Same for sequential spectra and unitary spectra.

History and credits

The projective and injective level and stable model structures for symmetric spectra are constructed in
the original paper [36] of Hovey, Shipley and Smith. The flat model structures show up in the literature
under the name of S-model structure. (the ‘S’ refers to the sphere spectrum). The cofibrant objects in this
model structure (which we call ‘flat’ and Hovey, Shipley and Smith call ‘S-cofibrant’) and parts of the model
structures show up in [36] and in [69], but the first verification of the full model axioms appears in Shipley’s
paper [77]. I prefer the term ‘flat’ model structure because the cofibrant objects are very analogous to flat
modules in algebra and because we can then also use the term ‘flat model structure’ for algebras over an
operad and modules over a symmetric ring spectrum.

The stable model structures for algebras over operads were obtained by different people in successively
more general situations. The first special case were the stable model structure for modules over a symmetric
ring spectrum and for algebra spectra of a commutative symmetric ring spectrum, which are examples
of the general theory of Schwede and Shipley [71]. The positive stable model structure for commutative
symmetric ring spectra was first established by Mandell, May, Schwede and Shipley in [53] for the projective
cofibration/fibration pair and by Shipley [77] for the flat cofibration/fibration pair (called the S-model
structure there). [known to Smith, and actually a motivitation for why symmetric spectra are ’right’]
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Module spectra

1. Model structures for modules

With the symmetric monoidal smash product and a compatible model structure in place, we are ready
to explore ring and module spectra. In this section we construct model structures on the category of
modules over a symmetric ring spectrum. We restrict our attention to stable model structures and show
that the forgetful functor to symmetric spectra ‘creates’ various such model structure. The forgetful functor
also creates various level model structures, but we have no use for that and so will not discuss level model
structures for R-modules.

The various stable model structures are also ‘stable’ in the technical sense that the suspension functor
on the homotopy category is an equivalence of categories. As consequence of this is that stable homotopy
category of modules over a ring spectrum is a triangulated category. The free module of rank one is a small
generator.

We originally defined a symmetric ring spectrum in Definition I.1.3 in the ‘explicit’ form, i.e., as a family
{Rn}n≥0 of pointed simplicial sets with a pointed Σn-action on Rn and Σp ×Σq-equivariant multiplication
maps µp,q : Rp ∧Rq −→ Rp+q and two unit maps subject to an associativity, unit and centrality condition.
Using the internal smash product of symmetric spectra we saw in Theorem I.5.25 that a symmetric ring
spectrum can equivalently be defined as a symmetric spectrum R together with morphisms µ : R∧R −→ R
and ι : S −→ R, called the multiplication and unit map, which satisfy certain associativity and unit
conditions. In this ‘implicit’ picture a morphism of symmetric ring spectra is a morphism f : R −→ S of
symmetric spectra commuting with the multiplication and unit maps, i.e., such that f ◦µ = µ ◦ (f ∧ f) and
f ◦ ι = ι.

A right R-module was originally defined explicitly, but it can also be given in an implicit form as
a symmetric spectrum M together with an action map M ∧ R −→ M satisfying associativity and unit
conditions. A morphism of right R-modules is a morphism of symmetric spectra commuting with the
action of R. We denote the category of right R-modules by mod-R.

The unit S of the smash product is a ring spectrum in a unique way, and S-modules are the same
as symmetric spectra. The smash product of two ring spectra is naturally a ring spectrum. For a ring
spectrum R the opposite ring spectrum Rop is defined by composing the multiplication with the twist map
R ∧R −→ R ∧R (so in terms of the bilinear maps µp,q : Rp ∧Rq −→ Rp+q, a block permutation appears).
The definitions of left modules and bimodules is hopefully clear; left R-modules and R-T -bimodule can also
be defined as right modules over the opposite ring spectrum Rop, respectively right modules over the ring
spectrum Rop ∧ T .

A formal consequence of having a closed symmetric monoidal smash product of symmetric spectra is
that the category of R-modules inherits a smash product and function objects. The smash product M ∧RN
of a right R-module M and a left R-module N can be defined as the coequalizer, in the category of

symmetric spectra, of the two maps

M ∧R ∧N // // M ∧N

385
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given by the action of R on M and N respectively. Alternatively, one can characterize M ∧R N as the
universal example of a symmetric spectrum which receives a bilinear map from M and N which is R-
balanced, i.e., all the diagrams

(1.1)

Mp ∧Rq ∧Nr

αp,q∧Id

��

Id∧αq,r // Mp ∧Nq+r
ιp,q+r

��
Mp+q ∧Nr ιp+q,r

// (M ∧N)p+q+r

commute. If M happens to be a T -R-bimodule and N an R-S-bimodule, then M ∧R N is naturally a
T -S-bimodule. If R is a commutative ring spectrum, the notions of left and right module coincide and
agree with the notion of a symmetric bimodule. In this case ∧R is an internal symmetric monoidal smash
product for R-modules. There are also symmetric function spectra HomR(M,N) defined as the equalizer
of two maps

Hom(M,N) −→ Hom(R ∧M,N) .

The first map is induced by the action of R on M , the second map is the composition of R ∧ − :
Hom(M,N) −→ Hom(R ∧ M,R ∧ N) followed by the map induced by the action of R on N . The in-
ternal function spectra and function modules enjoy the ‘usual’ adjointness properties with respect to the
various smash products. [spell out]

Proposition 1.2. Given a morphism f : R −→ S of symmetric ring spectra, the functor f∗ : mod-S −→
mod-R of restriction of scalar has a left and a right adjoint, and hence commutes with limits and colimits.

In particular, for every symmetric ring spectrum R the forgetful functor to symmetric spectra has a left
and a right adjoint, and hence commutes with limits and colimits.

Theorem 1.3. Let R be a symmetric ring spectrum of topological spaces or simplicial sets. The category of
right R-modules admits the following four stable model structures in which the weak equivalences are those
morphisms of R-modules which are stable equivalences on underlying symmetric spectra.

(i) In the absolute projective stable model structure the fibrations are those morphisms of R-modules
which are absolute projective stable fibrations on underlying symmetric spectra.

(ii) In the positive projective stable model structure the fibrations are those morphisms of R-modules
which are positive projective stable fibrations on underlying symmetric spectra.

(iii) In the absolute flat stable model structure the fibrations are those morphisms of R-modules which are
absolute flat stable fibrations on underlying symmetric spectra.

(iv) In the positive flat stable model structure the fibrations are those morphisms of R-modules which are
positive flat stable fibrations on underlying symmetric spectra.

Moreover we have:

• All four stable model structures are proper, simplicial and cofibrantly generated.
• If R is commutative then all four stable model structures are monoidal with respect to the smash

product over R.

If underlying symmetric spectrum of R is flat, then the category of right R-modules admits the following
two injective stable model structures in which the weak equivalences are those morphisms of R-modules which
are stable equivalences on underlying symmetric spectra.

(i) In the absolute injective stable model structure the fibrations are those morphisms of R-modules which
are absolute injective stable fibrations on underlying symmetric spectra.

(ii) In the positive injective stable model structure the fibrations are those morphisms of R-modules which
are positive injective stable fibrations on underlying symmetric spectra.

Moreover, both injective stable model structures are proper, simplicial and cofibrantly generated.
In all six model structures, a cofibration of R-modules is a monomorphism of underlying symmetric

spectra.
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Proof. In the language of Definition 1.4 of Appendix A we claim that in all of the six cases the forgetful
functor from R-modules to symmetric spectra creates a model structure on R-modules. In Theorem A.1.5
we can find sufficient conditions for this, which we will now verify.

The category of R-modules is complete, cocomplete and simplicial; in fact all limits, colimits, tensors
and cotensors with simplicial sets are created on underlying symmetric spectra. In particular the forgetful
functor preserves filtered colimits. The forgetful functor has a left adjoint free functor, given by smashing
with R. [Smallness]

It remains to check the condition which in practice is often the most difficult one, namely that every
(J ∧R)-cell complex is a weak equivalence. We claim that in all six cases the free functor X 7→ X ∧R takes
stable acyclic cofibrations of symmetric spectra of the respective kind to stable equivalences of R-modules
which are monomorphisms. In the first four cases (where we have no assumption on R) this uses that every
generating acyclic cofibration i : A −→ B is in particular a flat cofibration, so i ∧ Id : A ∧ R −→ B ∧ R
is injective and a stable equivalence by parts (i) and (iv) of Proposition 4.15. In the ‘injective’ cases (v)
and (vi) the argument is slightly different; then the assumption that R is flat assures that for every injective
stable equivalence i : A −→ B the morphism i ∧ Id : A ∧ R −→ B ∧ R is again injective (by the definition
of flatness) and a stable equivalence (by Proposition II.5.50).

So in all the six cases, the free functor −∧R takes the generating stable acyclic cofibrations to injective
stable equivalences of R-modules. Since colimits of R-modules are created on underlying symmetric spectra,
the class of injective stable equivalences is closed under wedges, cobase change and transfinite composition.
So every (J ∧ R)-cell complex is a stable equivalence. So we have verified the hypothesis of Theorem 1.5,
which thus shows that the forgetful functor creates the six model structure. It also shows that the model
structures are simplicial and right proper.

[left proper] [monoidal if R commutative] [preservation of cofibrations] �

[Is there an ‘strongly injective’ stable model structure in which cofibrations are the monomorphisms of
R-modules ? make exercise?]

Proposition 1.4. A morphism f : M −→ N of right R-modules is a flat cofibration if and only if for
every morphism g : V −→W of left R-modules whose underyling morphism of symmetric spectra is a level
cofibration the pushout product map

f ∧R g : M ∧RW ∪M∧RV N ∧RW −→ N ∧RW
is an level cofibration of symmetric spectra.

There are also characterizations of flat and projective cofibrations in terms of ‘R-module latching
objects’, see Exercise E.IV.2.

As we just proved, cofibrations of R-modules are always monomorphisms of underlying symmetric
spectra, but sometimes more is true. As the special case S = S of Theorem 1.5 (iii) below we will see that
if R is flat as a symmetric spectrum, then every flat cofibration of R-modules is also a flat cofibration on
underlying symmetric spectra. Similarly, if R is projective as a symmetric spectrum, then every projective
cofibration of R-modules is also a projective cofibration on underlying symmetric spectra.

For a morphism f : S −→ R of symmetric ring spectra, there is are two adjoint functor pairs relating the
modules over S and R. The functors are analogous to restriction and extension respectively coextension
of scalars. Every R-module becomes an S-module if we let S act through the homomorphism f ; more
precisely, given an R-module M we define an S-module f∗M as the same underlying symmetric spectrum
as M and with S-action given by the composite

(f∗M) ∧ S = M ∧ S Id∧f−−−→ M ∧R α−−→ M .

We call the resulting functor f∗ : mod-R −→ mod-S restriction of scalars along f and note that it has both a
left and right adjoint. We call the left adjoint extension of scalars and denote it by f∗ : mod-S −→ mod-R.
The left adjoint takes an S-module N to the R-module f∗N = N ∧S R, where S is a left R-module via f ,
and with right R-action through the right multiplication action of R on itself. We call the right adjoint of
f∗ the coextension of scalars and denote it by f! : mod-S −→ mod-R. The right adjoint takes an S-module
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N to the R-module f!N = Hommod-S(R,N), where S is a right R-module via f , and with right R-action
through the left multiplication action of R on itself.

Theorem 1.5. Let f : S −→ R be a homomorphism of symmetric ring spectra.

(i) The functor pair

mod-S
f∗ //

mod-R
f∗

oo

is a Quillen adjoint functor pair with respect to the absolute projective, the positive projective, the
absolute flat and the positive flat stable model structures on both sides.

(ii) If S and R are flat as symmetric spectra then (f∗, f
∗) is a Quillen adjoint functor pair with respect to

the absolute injective and the positive injective stable model structures on both sides.
(iii) Suppose that the morphism f : S −→ R makes R into a flat (respectively projective) right S-module.

Then the functor pair

mod-R
f∗ //

mod-S
f!

oo

is a Quillen adjoint functor pair with respect to the absolute and positive flat stable (respectively
absolute and positive projective stable) model structures on both sides. In particular, the restriction
of scalars f∗ then takes flat (respectively projective) cofibrations of R-modules to flat (respectively
projective) cofibrations of S-modules.

(iv) If the homomorphism f : S −→ R is a stable equivalence, then the adjoint functor pairs (f∗, f
∗) and

(f∗, f!) are a Quillen equivalences in all the cases when they are Quillen adjoint functors.

Proof. (i) In each case, the weak (i.e., stable) equivalences and the various kinds of fibrations are
defined on underlying symmetric spectra, hence the restriction functor preserves fibrations and acyclic
fibrations. By adjointness, the extension functor preserves cofibrations and trivial cofibrations.

(iv) If f : S −→ R is a stable equivalence, then for every flat right S-module N the morphism

N ∼= N ∧S S −→ N ∧S R = f∗N

is a stable equivalence. Thus if Y is a fibrant left R-module, an S-module map N −→ Y is a weak
equivalence if and only if the adjoint R-module map f∗N −→ Y is a weak equivalence. �

1.1. The derived category of a ring spectrum. For every model category C the full subcategory of
cofibrant objects form a cofibration category. Hence Theorem 1.3 immediately implies [except for ‘stable’]

The arguments involved in the verification of the axioms (T1)–(T4) are quite general and we find it
convenient to produce triangulated categories more generally. We do this in the axiomatic framework of
cofibration categories and show that the homotopy category of any stable cofibration category is triangulated
in a natural way. Besides symmetric spectra, we wil later also apply this to modules spectra over a symmetric
ring spectrum. We also give various exercises that show how more triangulations can be constructed using
the cofibration category framework.

Definition 1.6. A cofibration category is a category C equipped with two classes of morphisms, called
cofibrations respectively weak equivalences, that satisfy the following axioms (C1)–(C5).

In the statements, an acyclic cofibration is a morphism that is both a cofibration and a weak equivalence.
An object is fibrant if it has the extension property with respect to all acyclic cofibrations.

(C1) All isomorphisms are cofibrations and weak equivalences. Cofibrations are stable under com-
position. C has an initial object ∅ and for every object A the unique morphism ∅ −→ A is a
cofibration.

(C2) Given two composable morphisms f, g, in C, then if two of the three morphisms f, g and gf are
weak equivalences, so is the third.
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(C3) Given a cofibration i : A −→ B and any morphism f : A −→ C, there exists a pushout square

(1.7)

A
f //

i

��

C

j

��
B // P

in C and the morphism j is a cofibration. If additionally i is a weak equivalence, then so is j.
(C4) Every morphism in C can be factored as the composite of a cofibration followed by a weak equiv-

alence.
(C5) For every object A there exists an acyclic cofibration p : A −→ ωA such that ωA is fibrant.

We note that in a cofibration category the coproduct BqC of any two objects in C exists by (C3) with
A = ∅ an initial object, and the canonical morphisms from B and C to B q C are cofibrations.

Example 1.8. The category of symmetric spectra of simplicial sets has the structure of a cofibration
category with respect to the stable equivalences as weak equivalences and the monomorphisms as cofibrations
[justify axioms]

Moreover, the ‘concrete’ homotopy relation using homotopies defined on ∆[1]+ ∧ A coincides with the
model category theoretic homotopy relation using abstract cylinder objects. Thus the stable homotopy
category as introduced above turns out to be the homotopy category, in the sense of model category theory,
with respect to the injective stable model structure.

Remark 1.9. The axioms of a cofibration category are strictly weaker than those of a model category. In
the case of symmetric spectra, the cofibration structure is underlying a model structure, the injective stable
model structure; every symmetric spectrum is cofibrant and the fibrant objects are precisely the injective
Ω-spectra.

A cylinder object for an object A in a cofibration category is a quadrupel (I, i0, i1, p) consisting of an
object I and morphisms i0, i1 : A −→ I and a weak equivalence p : I −→ A satisfying pi0 = pi1 = IdA
and such that i0 + i1 : A q A −→ I is a cofibration. Every object has a cylinder object by axiom (C4). A
left homotopy between two morphisms f, g : A −→ B is a choice of cylinder object for A and a morphism
H : I −→ B such that f = Hi0 and g = Hi1. We say that f is left homotopic to g if such a left homotopy
exists.

Lemma 1.10. Let C be a cofibration category.

(1) Every morphism f : A −→ B can be factored as f = qj where j : A −→ B′ is a cofibration and
r : B′ −→ B is a weak equivalence that is left inverse to an acyclic cofibration.

(2) Let F : C −→ D be a functor that sends acyclic cofibrations to isomorphisms. Then F sends all
weak equivalences to isomorphisms.

Proof. (i) We choose a cylinder object (I, i0, i1, p) for A as in (C4). We define B′ as the pushout:

A
f //

i1

��

B

s

��

Id

��
I

fp

66
F // B′

r //___ B

Then the morphism s is an acyclic cofibration since i1 is. The morphism fp : I −→ B and the identity of B
glue to a morphism r : B′ −→ B with rs = IdB , and r is a weak equivalence since s is. We define j = Fi0,
and then have rj = rF i0 = fpi0 = f . It remains to show that j is a cofibration. For this we observe that
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the square

AqA
Idqf //

i0+i1

��

AqB
j+s

��
I

F
// B′

is also a pushout. Since i0 + i1 is a cofibration, so is j + s, and hence also j since the canonical map
A −→ AqB is a cofibration.

(ii) Let ϕ : A −→ B be any weak equivalence. Part (i) lets us choose a factorization ϕ = rj where
j : A −→ Ā is a cofibration and r : Ā −→ A′ is a weak equivalence that is left inverse to an acyclic
cofibration s : A′ −→ Ā. The morphisms Fs is an isomorphism in D by assumption and the relation
(Fr)(Fs) = F (rs) = Id implies that Fr is the inverse of Fs, and hence itself an isomorphism. Since ϕ and
r are weak equivalences, so is j. Since j is an acyclic cofibration, Fj is an isomorphisms in D by assumption.
Hence Ff = (Fr)(Fj) is an isomorphism. �

As we shall see in the next proposition, ‘left homotopy’ is an equivalence relation on the set of morphisms
between any pair of objects. We denote by [A,B] the set of left homotopy classes of morphisms from A
to B.

Proposition 1.11. Let A and B be objects of a cofibration category.

(i) ‘Left homotopy’ is an equivalence relation on the set of morphisms from A to B.
(ii) If f, g : A −→ B are left homotopic morphism and ϕ : A′ −→ A and ψ : B −→ B̄ any morphisms,

then fϕ is left homotopic to gϕ and ψf is left homotopic to ψg.
(iii) If Z is fibrant and IA is a cylinder object for an object A and f, g : A −→ Z are left homotopic

morphisms, then there is a homotopy from f to g defined on IA.
(iv) Let i : A −→ B be a cofibration and Z a fibrant object. Let f : A −→ Z and g : B −→ Z be morphisms

such that f is left homotopic to gi. Then there is a morphism g′ : B −→ Z which is left homotopic to
g and such that g′i = f .

(v) If Z is fibrant and ϕ : A −→ B is a weak equivalence, then the induced map [ϕ,Z] : [A′, Z] −→ [A,Z]
on homotopy classes of morphisms into Z is bijective.

(vi) Every weak equivalence between fibrant objects is a homotopy equivalence.

Proof. (i) For every morphism f : A −→ B and every cylinder object (IA, i0, i1, p) for A the morphism
fp : IA −→ B is a homotopy from f to f , so ‘left homotopy’ is reflexive. If f is left homotopic to g : A −→ B
via a homotopy H : IA −→ B with respect to a cylinder object (IA, i0, i1, p), then the same morphisms
H : IA −→ B is a homotopy from g to f with respect to a different cylinder object, namely (IA, i1, i0, p)
(i.e., the two ‘end inclusions’ i0, i1 : A −→ IA have changed their roles). So the relation ‘left homotopy’ is
symmetric. Given three morphisms f, g, h : A −→ B, a homotopy H : IA −→ B from f to g with respect
to a cylinder object (IA, i0, i1, p) and a homotopy H ′ : I ′A −→ B from g to h with respect to a cylinder
object (I ′A, i′0, i

′
1, p
′), we construct a homotopy from f to h as follows. We define I ′′A as the pushout:

A
i′0 //

i1

��

I ′A

j1

��
IA

j0
// I ′′A

Since the morphisms i′0 : A −→ I ′A and i1 : A −→ IA are acyclic cofibrations, so are the morphisms
j0 : IA −→ I ′′A and j1 : I ′A −→ I ′′A. The morphisms p : IA −→ A and p′ : I ′A −→ A glue to a
morphism q : I ′′A −→ A which is a weak equivalence since qj0 = p and j0 and p are weak equivalences.
The two morphisms j0i0, j1i

′
1 : A −→ I ′′A are composites of cofibrations, hence cofibrations. [need that

j0i0 + j1i
′
1 : AqA −→ I ′′A is a cofibration]

(ii) If H : IA −→ B is a homotopy from f to g, then ψH : IA −→ B̄ is a homotopy from ψf to ψg. [...]



1. MODEL STRUCTURES FOR MODULES 391

(iii) Let H : I ′A −→ Z be a homotopy from f to g with respect to a cylinder object (I ′A, i′0, i
′
1, p
′). We

define SA as the pushout:

AqA
i′0+i′1 //

i0+i1

��

I ′A

j1

��
IA

j0
// SA

The morphisms p : IA −→ A and p′ : I ′A −→ A glue to a morphism q : SA −→ A which we can factor
as q = sk where k : SA −→ DA is a cofibration and s : DA −→ A is a weak equivalence. The composite
kj1 : I ′A −→ DA is a cofibration, and a weak equivalence since s(kj1) = qj1 = p′ and s and p′ are weak
equivalences. Since Z is fibrant the homotopy H : I ′A −→ Z has an extension K : DA −→ Z such that
Kkj1 = H. The restriction Kkj0 : IA −→ Z is then the required homotopy from f to g through the
cylinder object IA.

(iv) Let (IA, i0, i1, p) be a cylinder object for A, f̄ : B −→ Z an extension-up-to-homotopy and
H : IA −→ Z a left homotopy from f to gi. We choose a pushout

AqA iqi //

i0+i1

��

B qB

��
IA // B ∪A IA ∪A B

and a factorization Id∪ip∪Id = qj as a cofibration j : B∪A IA∪AB −→ IB followed by a weak equivalence
q : IB −→ B. The quadrupel (IB, i′0, i

′
1, q) is then a cylinder object for B.

Moreover [...] the map IA ∪A B −→ B ∪A IA ∪A B is a cofibration, hence so is the composite
j(−) : IA∪AB −→ IB. This map is also a weak equivalence since the composite with the weak equivalence
i1 : B −→ IA ∪A B is right inverse to the weak equivalence q, and hence a weak equivalence. So j(−) :
IA ∪A B −→ IB is an acyclic cofibration, and thus the morphism H ∪ g : IA ∪A B −→ Z admits an
extension H̄ : IB −→ Z. The morphism ḡ = H̄i0 : B −→ Z is then homotopic to g and an extension of f .

(v) We show that for every acyclic cofibration j : A −→ B the induced map [j, Z] : [B,Z] −→ [A,Z]
is bijective. Lemma 1.10 (ii), applied to the set valued functor [−, Z] then shows the claim. Since Z is
fibrant, every morphism f : A −→ Z has an extension f̄ : B −→ Z with f̄ j = f ; so [j, Z] is surjective.
Now suppose that f, g : B −→ Z are two morphisms such that fj, gj : A −→ Z are left homotopic via a
homotopy H : IA −→ Z. We consider the pushout:

AqA
i0+i1 //

jqj
��

IA

J

�� jp

��

A′ qA′
i′0+i′1

//

Id + Id //

IA′

p′ $$
A′

Since i0 +i1 is a cofibration, so is i′0 +i′1. The morphism jp : IA −→ B and the fold map glue to a morphism
p′ : IB −→ B. Since j q j is an acyclic cofibration, so is the morphism J : IA −→ IB. Since p′J = jp and
J, j and p are weak equivalence, so is p′. Hence (IB, i′0, i

′
1, p
′) is a cylinder object for B. The homotopy

H : IA −→ Z and the morphism f + g : B q B −→ Z glue to a homotopy H ′ : IB −→ Z from f to g.
Altogether this shows that the the map [j, Z] is injective.

(vi) This part is a formal consequence of (v). �

Now we introduce the homotopy category of a cofibration category. This construction is a direct
generalization of the construction of the stable homotopy category SHC in Section 1. For each object Y of
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the cofibration category C we choose a ‘fibrant replacement’, i.e., an acyclic cofibration pY : Y −→ ωY to
a fibrant object. We insist that if Y is already fibrant, then ωY = Y and pY is the identity.

Definition 1.12. The homotopy category Ho(C) of a cofibration category C has the same objects as C. For
two objects, the morphisms from X to Y in Ho(C) are given by [X,ωY ], the set of left homotopy classes of
morphisms from X to the chosen fibrant replacement ωY . If f : X −→ ωY is a morphism in C we denote
by [f ] : X −→ Y its homotopy class, considered as a morphism in Ho(C).

Composition in the homotopy category is defined as follows. Let f : X −→ ωY and g : Y −→ ωZ be C-
morphism which represent morphism from X to Y respectively from Y to Z in Ho(C). Since pY : Y −→ ωY
is an acyclic cofibration and ωZ is fibrant Proposition 1.26 (v). provides a morphism ḡ : ωY −→ ωZ, unique
up to left homotopy, such that ḡ ◦ pY = g. Moreover, the homotopy class of the extension ḡ depends only
on the homotopy class of g. So we get a well-defined composite of [f ] ∈ Ho(C)(X,Y ) and [g] ∈ Ho(C)(Y,Z)
by

[g] ◦ [f ] = [ḡ ◦ f ] ∈ Ho(C)(X,Z) .

To see that composition in Ho(C) is associative we consider four objects X,Y, Z and W and three
morphisms f : X −→ ωY , g : Y −→ ωZ and h : Z −→ ωW in C. We choose extensions ḡ : ωY −→ ωZ and
h̄ : ωZ −→ ωW such that ḡ ◦ pY = g and h̄ ◦ pZ = h. Then h̄ḡ : ωY −→ ωW is an extension of h̄g, so we
have

([h] ◦ [g]) ◦ [f ] = [h̄g] ◦ [f ] = [(h̄ḡ)f ] = [h̄(ḡf)] = [h] ◦ [ḡ ◦ f ] = [h] ◦ ([g] ◦ [f ]) .

It is straightforward to check that [pX ], the homotopy class of the chosen fibrant replacement pX : X −→
ωX, is a two-sided unit for composition, so pX represents the identity of X in Ho(C).

The construction of the homotopy category comes with a functor γ : C −→ Ho(C) from the cofibration
category which is the identity on objects. For a morphism ϕ : X −→ Y in C we set

γ(ϕ) = [pY ◦ ϕ] in Ho(C)(X,Y ) ,

where pY : Y −→ ωY is the fibrant replacement. Note that we have γ(pY ) = [pY ] since pωY = Id by
convention. Thus for every C-morphism f : X −→ ωY we have the relation γ(pY )◦ [f ] = γ(f) as morphisms
from X to ωY in the Ho(C). Since γ(pY ) = [pY ] is an isomorphism with inverse [IdωY ], this can also be
rewritten as

(1.13) [f ] = γ(pY )−1 ◦ γ(f) ∈ Ho(C)(X,Y ) .

In other words, every morphism in the homotopy category can be written as a ‘fraction’, i.e., the composite
of a C-morphism with the inverse of a weak equivalence.

We also note that for morphisms α : W −→ X and f : X −→ ωY we have the relation

(1.14) [f ] ◦ γ(α) = [fα] ∈ Ho(C)(W,ωY ) .

Indeed, if f̄ : ωX −→ ωY is such that f̄pX is left homotopic to f , then f̄pXα is left homotopic to fα and
so

[f ] ◦ γ(α) = [f ] ◦ [pX ◦ α] = [f̄ ◦ pX ◦ α] = [fα] .

Since the homotopy class of pY is the identity of Y in Ho(C), γ preserves identities. For composable
C-morphism ϕ : X −→ Y and ψ : Y −→ Z we have

γ(ψ)γ(ϕ) = [pZ ◦ ψ]γ(ϕ) = [pZ ◦ (ψϕ)] = γ(ψϕ)

by (1.14). So γ is indeed a functor.
We now show that the functor γ : C −→ Ho(C) is a localization of the cofibration category at the class

of weak equivalences, i.e., a universal example of a functor which takes weak equivalences to isomorphisms.

Theorem 1.15. Let C be a cofibration category.

(i) The functor γ : C −→ Ho(C) takes weak equivalences to isomorphisms.
(ii) For every functor F : C −→ D which takes weak equivalences to isomorphisms, there exists a unique

functor F̄ : Ho(C) −→ D such that F̄ γ = ε.
(iii) The homotopy category Ho(C) has coproducts and the functor γ : C −→ Ho(C) preserves coproducts.
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(iv) Every morphism α : X −→ Y in Ho(C) can be written as α = γ(s)−1γ(i) with i : X −→ Z a cofibration
and s : Y −→ Z an acyclic cofibration.

Proof. (i) By Lemma 1.10 (ii) it suffices to show that γ takes every acyclic cofibration i : X −→ Y
to an isomorphism. Since ωX is fibrant we can choose an extension r : Y −→ ωX satisfying ri = pX . We
claim that the class of r in [Y, ωX] = Ho(C)(Y,X) is inverse to γ(i). Indeed, we have

[r] ◦ γ(i) = [r] ◦ [pY i] = [ri] = [pX ] = IdX

in Ho(C). To evaluate the other composite we choose a morphism I : ωX −→ ωY such that pY i is left
homotopic to IpX = Iri. Since i is a weak equivalence, the morphisms pY and Ir : Y −→ ωX are left
homotopic by Proposition 1.26 (v). So we have

γ(i) ◦ [r] = [pY i] ◦ [r] = [Ir] = [pY ] = IdY

in Ho(C).
(ii) We consider a functor G : Ho(C) −→ D and prove the uniqueness property by showing that G is

completely determined by the composite functor G ◦ γ : C −→ D. This is clear on objects since γ is the
identity on objects. If f : X −→ ωY is a C-morphism which represents a morphism [f ] : X −→ Y in Ho(C),
then we can apply G to the equation (1.13) and obtain

G([f ]) = (G ◦ γ)(pY )−1 ◦ (G ◦ γ)(f) .

Thus also the behavior of G on morphisms is determined by the composite G ◦ γ.
Now we tackle the existence property. Given a functor F : C −→ D which takes weak equivalences to

isomorphisms we set F̄ (X) = F (X) on objects. Given a morphism f : X −→ ωY , the uniqueness argument
tells us that we have to define the value of F̄ on [f ] by

F̄ ([f ]) = F (pY )−1 ◦ F (f) .

We have to check that this is well-defined and functorial.
To see that the assignment is well-defined we have to show that the D-morphism F (f) only depends

on the left homotopy class of f : X −→ ωY . Indeed, if (IX, i0, i1, p) is a cylinder object for X, then p
is a weak equivalence and so F (p) is an isomorphism in D. The two morphisms i0, i1 : X −→ IX satisfy
p ◦ i0 = IdX = p ◦ i1, so we have

F (p) ◦ F (i0) = IdFX = F (p) ◦ F (i1) .

Since F (p) is an isomorphism, we deduce F (i0) = F (i1). Now suppose that f, g : X −→ ωY are left
homotopic morphisms via some homotopy H : IX −→ ωY . Then we have

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) ,

which proves that F̄ ([f ]) is well-defined.
By the various definitions we have

F̄ (IdX) = F̄ ([pX ]) = F (pX)−1 ◦ F (pX) = IdF (X)

so F̄ is unital. For associativity we consider two morphisms f : X −→ ωY and g : Y −→ ωZ as well as a
morphism ḡ : ωY −→ ωZ such that ḡ ◦ pY is left homotopic to g. Then we have

F̄ ([g] ◦ [f ]) = F̄ ([ḡ ◦ f ]) = F (pZ)−1 ◦ F (ḡ ◦ f)

= F (pZ)−1 ◦ F (ḡ ◦ pY ) ◦ F (pY )−1 ◦ F (f)

= (F (pZ)−1 ◦ F (g)) ◦ (F (pY )−1 ◦ F (f)) = F̄ (g) ◦ F̄ (f)

where we used functoriality of F and homotopy invariance of F . Thus F̄ is a functor.
Finally, we have to check the relation F̄ ◦ γ = F . On objects this holds by definition. For a morphism

ϕ : X −→ Y in C we have

F̄ (γ(ϕ)) = F̄ ([pY ◦ ϕ]) = F (pY )−1 ◦ F (pY ◦ ϕ) = F (ϕ) ,

which finishes the proof.
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(iii) Since C has coproducts and every object of Ho(C) is in the image of γ, it suffices to show that γ
preserves coproducts. After unraveling the definitions, this comes down to the following: Let iA : A −→
A q B and iB : B −→ A q B be two C-morphisms which make A q B a coproduct of A and B. Then for
every object Y the map

[AqB,ωY ] −→ [A,ωY ]× [B,ωY ] , [f ] 7−→
(
[fiA], [fiB ]

)
between sets of left homotopy classes of morphisms is bijective. The map is surjective by the universal
property of the coproduct. For injectivity we consider two morphisms f, g : AqB −→ ωY such that fiA is
left homotopic to giA and fiB is left homotopic to giB . We choose cylinder objects (IA, i0.i1, p) for A and
(IB, j0.j1, q) for B and homotopies H : IA −→ ωY from fiA to giA and K : IB −→ ωY from fiB to giB .
Then IAq IB is a cylinder object for AqB, and H +K : IAq IB −→ ωY is a homotopy from f to g.

(iv) Let f : X −→ ωY represent ϕ. We choose a factorization (f + pY ) = vu of the morphism
f + pY : X q Y −→ ωY as a cofibration u : X q Y −→ Z followed by a weak equivalence v : Z −→ ωY .
Then u = i + s for uniquely defined morphisms i : X −→ Z and s : Y −→ Z; the morphisms i and s are
cofibrations since u is. Since vs = pY and v and pY are weak equivalences, s is also a weak equivalence.
Finally, we have

α = γ(pY )−1γ(f) =
(
γ(pY )−1γ(v)

) (
γ(v)−1γ(f)

)
= γ(s)−1γ(i) . �

A cofibration category is pointed if it has a zero object (i.e., if every initial object is also terminal). We
denote any zero object by ∗ and write also write ∗ : A −→ B for the zero morphism, i.e., unique morphism
that factors through a zero object. In a pointed setting we write A ∨B for the coproduct of two objects.

A cone functor for a pointed cofibration category is a functor C : C −→ C together with a natural
transformation i : Id −→ C such that for every object A of C the morphism iA : A −→ CA is a cofibration
and the object CA is weakly contractible.

Given a cone functor on a pointed cofibration category C, we define an associated suspension functor
Σ : C −→ C by setting ΣA = CA/A, the cokernel of the ‘cone inclusion’ iA : A −→ CA,, i.e., a pushout:

A
i //

��

CA

p

��
∗ // ΣA

By the gluing lemma [ref] the suspension functor takes weak equivalences to weak equivalences, so the
universal property of the localization functor γ : C −→ Ho(C) provides a unique functor Σ : Ho(C) −→ Ho(C)
such that Σ ◦ γ = γ ◦ Σ.

We observe that the suspension functor preserves coproducts in Ho(C). Indeed, if iA : A −→ CA,
iB : B −→ CB and iA∨B : A ∨ B −→ C(A ∨ B) are the chosen cones for two objects A, B and a
coproduct A ∨ B, then iA ∨ iB : A ∨ B −→ CA ∨ CB is another cone for A ∨ B. So the is a unique
isomorphism ψ : (iA ∨ iB) ∼= iA∨B in Ho(Cone C) between the two cones such that Ho(S)(ψ) is the identity
of A ∨ B in Ho(C). Applying the derived quotient functor Ho(−/−) to ψ produces an isomorphism from
Ho(iA ∨ iB) = ΣA ∨ ΣB to Ho(iA∨B) = Σ(A ∨B).

Definition 1.16. A pointed cofibration category C [with cone functor...] is stable if the suspension functor
Σ : Ho(C) −→ Ho(C) is an equivalence of categories.

Remark 1.17. It is not strictly necessary to assume the extra structure a cone functor on the pointed
cofibration category if we want to establish the homotopy category Ho(C) as a triangulated category, since
the suspension functor and the distinguished triangles on Ho(C) can be defined without functorial cones on
C. However, even though functorial cones are not logically necessary, they simplify the arguments a lot;
since the examples we care about have functorial cones, we only develop the theory in this context. The
necessary changes in the absence of a cone functor are explain in Exercises [...]

We will now show that the homotopy category of a stable cofibration category is additive. For this
purpose we use extra structure on a suspension, namely a certain collapse morphism κA : ΣA −→ ΣA∨ΣA
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in Ho(C). To define it, we consider a pushout CA∪ACA of two copies of the cone CA along iA. The gluing
lemma [!] guarantees that the map 0 ∪ Id : CA ∪A CA −→ CA/A = ΣA induced on horizontal pushouts of
the left commutative diagram

CA

∼
��

A
iAoo iA // CA CA

p

��

A
iAoo iA //

��

CA

p

��
∗ Aoo

iA
// CA ΣA ∗oo // ΣA

is a weak equivalence. We define the κA as the composite

ΣA
γ(0∪p)−1

−−−−−−→ CA ∪A CA
γ(p∪p)−−−−−→ ΣA ∨ ΣA

where the second morphism is the image of the C-morphism induced on horizontal pushouts of the right
commutative diagram above. Since the cone is functorial and the cofibration iA : A −→ CA is a natural
transformation, the collapse morphism is natural, i.e., for every morphism a : A −→ B we have (Σa∨Σa) ◦
κA = κB ◦ (Σa).

Proposition 1.18. The morphism κA : ΣA −→ ΣA ∨ ΣA satisfies the relations

(0 + Id)κA = Id and (Id + Id)κA = 0

as endomorphisms of ΣA in Ho(C). The endomorphism

mA = (Id +0) ◦ κA
is an involution, i.e., m2

A = Id.

Proof. We observe that (0 + Id) ◦ (p ∪ p) = 0 ∪ Id as C-morphisms CA ∪A CA −→ ΣA, so

(0 + Id)κA = (0 + Id) ◦ γ(p ∪ p) ◦ γ(0 ∪ Id)−1 = γ(0 ∪ Id) ◦ γ(0 ∪ Id)−1 = Id .

The square

CA ∪A CA
p∪p //

Id∪ Id

��

ΣA ∨ ΣA

Id + Id

��
CA p

// ΣA

commutes in C, so the morphism (Id + Id)κA = (Id + Id) ◦ γ(p ∪ p) ◦ γ(0 ∪ Id)−1 factors through the cone
CA, which is a zero object in Ho(C). Thus (Id + Id)κA = 0.

For the next relation we denote by τ the involution of CA ∪A CA that interchanges the two cones.
Then we have

mA = (Id +0) ◦ γ(p ∪ p) ◦ γ(0 ∪ p)−1 = γ(p ∪ 0) ◦ γ(0 ∪ p)−1 = γ(0 ∪ p) ◦ γ(τ) ◦ γ(0 ∪ p)−1 .

Since τ2 = Id this leads to m2
A = Id. �

By Theorem 1.15 (iii) the coproduct in any cofibration category C descends to a coproduct in the
homotopy category C. We will now show that for stable C the coproduct X ∨ Y is also a product of X and
Y in Ho(C) with respect to the morphisms pX = Id +0 : X ∨ Y −→ X and pY = 0 + Id : X ∨ Y −→ Y . So
we have to show that for every object B of C the map

(1.19) [B,X ∨ Y ] −→ [B,X]× [B, Y ] , ϕ 7−→ (pXϕ, pY ϕ)

is bijective.

Proposition 1.20. Let C be a pointed cofibration category.

(i) If the object B is a suspension, then the map (1.19) is surjective.
(ii) Let ϕ,ψ : B −→ X ∨ Y be morphisms in Ho(C) such that pXϕ = pXψ and pY ϕ = pY ψ. Then

Σϕ = Σψ.
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(iii) If C is stable, then the homotopy category Ho(C) is additive and for every object A of C the morphism
mA : ΣA −→ ΣA is the negative of the identity of ΣA.

Proof. (i) Given two morphisms α : ΣA −→ X and β : ΣA −→ Y in Ho(C) we consider the morphism
((α ◦mA) ∨ β) ◦ κA : ΣA −→ X ∨ Y . This morphism then satisfies

pX ◦ ((α ◦mA) ∨ β) ◦ κA = α ◦mA ◦ (Id +0) ◦ κA = α ◦m2
A = α

and similarly pY ◦ ((α ◦mA) ∨ β) ◦ κA = β. So the map (1.19) is surjective.
(ii) We first show that the composite

(1.21) Σ(X ∨ Y )
κX∨Y−−−−−→ Σ(X ∨ Y ) ∨ Σ(X ∨ Y )

(ΣiX)mX(ΣpX)+(ΣiY )(ΣpY )−−−−−−−−−−−−−−−−−−−→ Σ(X ∨ Y )

is the identity of Σ(X ∨ Y ). Indeed, after precomposition with ΣiX : ΣX −→ Σ(X ∨ Y ) we have

((ΣiX)mX(ΣpX) + (ΣiY )(ΣpY )) ◦ κX∨Y ◦ (ΣiX)

= ((ΣiX)mX(ΣpX) + (ΣiY )(ΣpY )) ◦ (ΣiX ∨ ΣiX) ◦ κX
= ((ΣiX)mX + 0) ◦ κX = ((ΣiX)mX) ◦ (IdΣX +0) ◦ κX
= (ΣiX) ◦m2

X = ΣiX

Similarly, we have ((ΣiX)mX(ΣpX) + (ΣiY )(ΣpY )) ◦ κX∨Y ◦ (ΣiY ) = ΣiY . Since the suspension functor
preserves coproducts, a morphism out of Σ(X ∨ Y ) is determined by precomposition with ΣiX and ΣiY .
This proves that the composite (1.21) is the identity. For ϕ : B −→ X ∨ Y we then have

Σϕ = ((ΣiX)mX(ΣpX) + (ΣiY )(ΣpY )) ◦ κX∨Y ◦ (Σϕ)

= ((ΣiX)mX(ΣpX) + (ΣiY )(ΣpY )) ◦ (Σϕ ∨ Σϕ) ◦ κB
= ((ΣiX)mXΣ(pXϕ) + (ΣiY )Σ(pY ϕ)) ◦ κB .

So Σϕ is determined by the composites pXϕ and pY ϕ, and this proves the claim.
(iii) Since C is stable, every object is isomorphic to a suspension, so the map (1.19) is always surjective

by part (i). Moreover, suspension is faithful, so the map (1.19) is always injective by part (ii). Thus the
map (1.19) is bijective for all objects B,X and Y , and so coproducts in Ho(C) are also products.

As we explained in Proposition 1.12 above, the fact that Ho(C) has isomorphic coproducts and products
(in the sense that the map (1.19) is always bijective) implies that the morphisms sets have a natural
structure of abelian monoid: given f, g : X −→ Z, let f⊥g : X −→ Z ∨ Z be the unique morphism
such that (Id +0)(f⊥g) = f and (0 + Id)(f⊥g) = g. Then the assignment f + g = (Id + Id)(f⊥g) is an
associative, commutative and binatural operation on the set Ho(C)(X,Z) with neutral element given by
the zero morphism.

The collapse map κA : ΣA −→ ΣA ∨ ΣA satisfies (Id +0)κ = mA and (0 + Id)κA = Id, and so
κA = mA⊥ Id. So we have mA + Id = (Id + Id)κA = 0. This shows that the morphism mA is the additive
inverse of the identity of ΣA. In particular, the abelian monoid Ho(C)(ΣA,Z) has inverses, and is thus an
abelian group. Since every object is isomorphic to a suspension, the abelian monoid Ho(C)(B,Z) is a group
for all objects B and Z, and so Ho(C) is an additive category. �

Now we introduce and discuss the class of distinguished triangles. Given a cofibration i : A −→ B in a
pointed cofibration category C, we define the connecting morphism δ(i) : B/A −→ ΣA in Ho(C) as

(1.22) δ(i) = γ(p ∪ 0) ◦ γ(0 ∪ q)−1 : B/A −→ ΣA .

Here p∪ 0 : C(i) = CA∪iB −→ ΣA is the morphism that collapses B and 0∪ q : C(i) −→ B/A is the weak
equivalence that collapses CA. Since the cone is functorial and the cofibration iA : A −→ CA is a natural
transformation, the connecting morphism (1.22) is natural, i.e., for every commutative square in C on the
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left

A
i //

α

��

B

β

��

B/A
δ(i) //

γ(β/α)

��

ΣA

Σγ(α)

��
A′

i′
// B′ B′/A′

δ(i′)

// ΣA′

such that i and i′ are cofibrations, the square on the right commutes in Ho(C).
The elementary distinguished triangle associated to a cofibration i : A −→ B is the sequence

A
γ(i)−−−−→ B

γ(q)−−−−→ B/A
δ(i)−−−→ ΣA .

A distinguished triangle is any triangle in the homotopy category which is isomorphic to the elementary
distinguished triangle associated to a cofibration in C.

Theorem 1.23. The suspension functor and the class of distinguished triangles make the homotopy category
Ho(C) of a stable cofibration category into a triangulated category.

The category of symmetric spectra of simplicial sets if a pointed cofibration category with respect to
monomorphisms as cofibrations and stable equivalences as weak equivalences. As a cone functor we can
take the functor A 7→ ∆[1] ∧A, and then [...] shows that this cofibration category structure is stable.

Proof of Theorem 1.23. We have see in Proposition 1.20 (iii) that the homotopy category of a
stable cofibration category is additive. So it remains to prove the axioms (T1) – (T4).

(T1) The unique morphism for any zero object to X is a cofibration with quotient morphism the

identity of X. The triangle 0 −→ X
Id−→ X −→ 0 is the associated elementary distinguished triangle.

(T2 – Rotation) We start with a distinguished triangle (f, g, h) and want to show that the triangle
(g, h,−Σf) is also distinguished. It suffices to consider the elementary distinguished triangle (γ(i), γ(q), δ(i))
associated to a cofibration i : A −→ B. In the diagram on the left

A
i //

iA

��

B

j

��

// ∗

��

B
γ(j) // Ci

γ(p∪0) //

γ(0∪q) ∼=
��

ΣA
δ(j) // ΣB

CA // C(i)
p∪0

// ΣA B
γ(q)

// B/A
δ(i)

// ΣA
Σγ(i)◦δ(iA)

// ΣB

the left square and the composite outer square are pushouts; so the right square is also a pushout and
the morphism p ∪ 0 : Ci −→ ΣA is the quotient projection associated to the cofibration j : B −→ C(i).
Moreover, both iA and j are cofibrations, so by naturality of the connecting morphisms we get δ(j)◦IdΣA =
Σγ(i) ◦ δ(iA). Hence the diagram on the right commutes. The upper row is the elementary distinguished
triangle of the cofibration j : B −→ C(i), and all vertical maps are isomorphisms, so the lower triangle is
distinguished, as claimed. By definition the connecting morphism δ(iA) conincides with the involution mA

of ΣA. In the stable context, mA is the negative of the identity, so (Σf) ◦ δ(iA) = −Σf .

(T3 – Completion of triangles) We are given two distinguished triangles (f, g, h) and (f ′, g′, h′) and
two morphisms a and b in Ho(C) satisfying bf = f ′a as in the diagram:

A
f //

a

��

B

b

��

g // C
h //

c

���
�
� ΣA

Σa

��
A′

f ′
// B′

g′
// C ′

h′
// ΣA′

We have to extend this data to a morphism of triangles, i.e., find a morphism c making the entire diagram
commute. If we can solve the problem for isomorphic triangles, then we can also solve it for the original
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triangles. We can thus assume that the triangle (f, g, h) and (f ′, g′, h′) are the elementary distinguished
triangle arising from two cofibrations i : A −→ B and i′ : A′ −→ B′.

We start with the special case where a = γ(α) and b = γ(β) for C-morphisms α : A −→ A′ and
β : B −→ B′. Then γ(i′α) = γ(βi), so the composite maps

pB′i
′α , pB′βi : A −→ ω(B′)

are homotopic. Proposition 1.26 (iv), applied to f = pB′i
′α, provides a morphism β′ : B −→ ω(B′),

homotopic to pB′β, such that β′i = pB′i
′α.

The following diagram on the left commutes in C, so the diagram of elementary distinguished triangles
on the right commutes in Ho(C) by the naturality of the connecting morphisms:

A
i //

α

��

B

β′

��

A
γ(i) //

γ(α)

��

B

γ(β′)
��

γ(q) // B/A

γ(β′/α)
��

δ(i) // ΣA

Σγ(α)

��
A′

pB′ i
′

// ω(B′) A′
γ(pB′ i

′) // ω(B′)
γ(q̄) // ω(B′)/A′

δ(pB′ i
′) // ΣA′

A′
i′

// B′

pB′∼
OO

A′
γ(i′)

// B′

γ(pB′ )
∼=

OO

γ(q′)

// B′/A′

γ(t/A′)∼=

OO

δ(i′)

// ΣA′

Since γ(pB′)
−1 ◦ γ(β′) = b, the morphism c = γ(pB′/A

′)−1 ◦ γ(β′/α) : B/A −→ B′/A′ is the desired filler.
In the general case we write a = γ(s)−1γ(α) where α : A −→ Ā is a C-morphism and s : A′ −→ Ā is an

acyclic cofibration. We choose a pushout

Ā
j // Ā ∪A′ B′

A′

s '

OO

i′
// B′

s′'

OO

We write γ(s′)b = γ(t)−1γ(β) : A −→ Ā∪A′ B′ where β : B −→ B̄ is a C-morphism and t : Ā∪A′ B′ −→ B̄
is an acyclic cofibration. We then have

γ(tj)γ(α) = γ(tj)γ(s)a = γ(ts′)γ(i′)a = γ(ts′)bγ(i) = γ(β)γ(i) ,

so by the special case, applied to the cofibrations i : A −→ B and tj : Ā −→ B̄ and the morphisms
α : A −→ Ā and β : B −→ B̄, there exists a morphism c : B/A −→ B̄/Ā in Ho(C) making the diagram

A
γ(i) //

γ(α)

��

B
γ(q) //

γ(β)

��

B/A

c
��

δ(i) // ΣA

Σγ(α)

��
Ā

γ(tj) // B̄
γ(q̄) // B̄/Ā

δ(tj) // ΣĀ

A′
γ(i′)

//

γ(s)

OO

B′
γ(q′)

//

γ(ts′)

OO

B′/A′
δ(i′)

//

γ(ts′/s)

OO

ΣA′

Σγ(s)

OO

commute (the lower part commutes by naturality of connecting morphisms). Since s is an acyclic cofibration
so is its cobase change s′. By the gluing lemma the weak equivalences s : A′ −→ Ā and ts′ : B′ −→ B̄
induce a weak equivalence ts′/s : B′/A′ −→ B̄/Ā on quotients and the composite

B/A
c−−−−→ B̄/Ā

γ(ts′/s)−1

−−−−−−−→ B′/A′

in Ho(C) thus solves the original problem.
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(T4 - Octahedral axiom) We start with the special case where f = γ(i) and f ′ = γ(j) for cofibrations
i : A −→ B and j : B −→ D. Then the composite ji : A −→ D is a cofibration with γ(ji) = f ′f . The
diagram

A
γ(i) // B

γ(j)

��

γ(qi) // B/A

γ(j/A)

��

δ(i) // ΣA

A
γ(ji)

// D
γ(qji)

//

γ(qj)

��

D/A
δ(ji)

//

γ(D/i)
��

ΣA

Σγ(i)

��
D/B

δ(j)

��

D/B

δ(j/A)=(Σγ(ci))δ(j)
��

δ(j)
// ΣB

ΣB
Σγ(ci)

// ΣB/A

then commutes by naturality of connecting morphisms. Moreover, the four triangles in question are the
elementary distinguished triangles of the cofibrations i, j, ji and j/A : B/A −→ D/A.

In the general case we write f = γ(s)−1γ(a) for a C-morphism a : A −→ B′ and a weak equivalence
s : B −→ B′. Then a can be factored as a = pi for a cofibration i : A −→ B̄ and a weak equivalence
p : B̄ −→ B′. Altogether we then have f = ϕ◦γ(i) where ϕ = γ(s)−1 ◦γ(p) : B̄ −→ B is an isomorphism in
Ho(C). We can apply the same reasoning to the morphism f ′ϕ : B̄ −→ D and write it as f ′ ◦ ϕ = ψ ◦ γ(j)
for a cofibration j : B̄ −→ D̄ in C and an isomorphism ψ : D̄ −→ D in Ho(C). The special case can then be
applied to the cofibrations i : A −→ B̄ and j : B̄ −→ D̄. The resulting commutative diagram that solves
(T4) for (γ(i), γ(j)) can then be translated back into a commutative diagram that solves (T4) for (f, f ′)
by conjugating with the isomorphisms ϕ : B̄ −→ B and ψ : D̄ −→ D. This completes the proof of the
octahedral axiom (T4), and hence the proof of Theorem 1.23. �

======================
Now we discuss how exact functors between stable cofibration cateories give rise to exact functors

between the triangulated homotopy categories. A functor F : C −→ D between cofibration categories is exact
if it preserves cofibrations, weak equivalences and the particular pushouts (1.7) along cofibrations that are
guaranteed by axiom (C3). Since F preserves weak equivalences, the composite functor γD◦F : C −→ Ho(D)
takes weak equivalences to isomorphisms and the universal property of the homotopy category provides a
unique derived functor Ho(F ) : Ho(C) −→ Ho(D) such that Ho(F ) ◦ γC = γD ◦ F .

We will now explain that for pointed cofibration categories C and D the derived functor Ho(F ) commutes
with suspension, in the sense that there is a preferred natural isomorphism

(1.24) τF : (LF ) ◦ Σ
∼=−−→ Σ ◦ (LF )

of functors from Ho(C) to Ho(D). Our construction is somewhat indirect, using universal properties. This
abstract approach to the construction of the isomorphism removed the necessity to deal with the choices of
cones and suspensions, and avoids the construction of homotopies.

The exact functor F prolongs to a functor ConeF : Cone C −→ ConeD between the cone categories:
for example, on objects we have (ConeF )(i : A −→ C) = (Fi : FA −→ FC). The prolonged functor
ConeF is exact since F is, so it has a derived functor Ho(ConeF ) : Ho(Cone C) −→ Ho(ConeD). We have
S ◦ (ConeF ) = F ◦ S : Cone C −→ D (equality, not just isomorphism), so equality Ho(S) ◦ Ho(ConeF ) =
Ho(F ) ◦Ho(S) also holds as functors Ho(Cone C) −→ Ho(D).

As we explained in [...] the individual choices of cones for the objects of C and D assemble uniquely
into cone functors

CC : C −→ Ho(Cone C) and CD : D −→ Ho(ConeD)
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characterized by Ho(S) ◦ CC = γC respectively Ho(S) ◦ CD = γD. The two functors

Ho(ConeF ) ◦ CC , CD ◦ F : C −→ Ho(ConeD)

become equal to Ho(F )◦γC = γD◦F after composition with the equivalence Ho(S) : Ho(ConeD) −→ Ho(D).
So there is a unique natural isomorphism

Θ : Ho(ConeF ) ◦ CC −→ CD ◦ F

of functors C −→ Ho(ConeD) such that Ho(S) ◦ Θ is the identity natural transformation of the functor
Ho(F ) ◦ γC = γD ◦ F : C −→ Ho(D). We compose the natural isomorphism Θ with the derived quotient
functor Ho(−/−) : Ho(ConeD) −→ Ho(D) and arrive at a natural isomorphism Ho(−/−) ◦Θ. The source
functor of Ho(−/−) ◦Θ is equal to

Ho(−/−) ◦Ho(ConeF ) ◦ CC = Ho((−/−) ◦ ConeF ) ◦ CC ∼= Ho(F ◦ (−/−)) ◦ CC

= Ho(F ) ◦Ho(−/−) ◦ CC = Ho(F ) ◦ ΣC ◦ γC ;

the target functor of Ho(−/−) ◦Θ is equal to

Ho(−/−) ◦ CD ◦ F = ΣD ◦ γD ◦ F = ΣD ◦Ho(F ) ◦ γC .

So Ho(−/−) ◦ Θ descends to a unique natural isomorphism τF : Ho(F ) ◦ ΣC −→ ΣD ◦ Ho(F ) of functors
Ho(C) −→ Ho(D) such that τF ◦ γD = Ho(−/−) ◦Θ.

Proposition 1.25. Let F : C −→ D be an exact functor between stable cofibration categories. Then the
derived functor Ho(F ) : Ho(C) −→ Ho(D) is an exact functor of triangulated categories with respect to the
natural isomorphism τF : Ho(F ) ◦ ΣC −→ ΣD ◦Ho(F ).

Proof. Any exact functor preserves finite coproducts; since coproducts descend to the homotopy
category, the derived functor of an exact functor again preserves coproducts. So in the stable context,
Ho(F ) is an additive functor.

We have to show the for every distinguished triangle (f, g, h) in Ho(C) the triangle
(Ho(F )(f),Ho(F )(g), τF ◦ Ho(F )(h)) is distinguished in Ho(D). If suffices to consider the case when the
triangle is the elementary distinguished triangle associated to a cofibration i : A −→ Y in C. Since F is
exact, F (i) is a cofibration in D, F (∗) is a zero object and the square

F (A)
f(i) //

��

F (B)

F (q)

��
F (∗) // F (B/A)

is a pushout. We claim that the connecting morphism of the cofibration F (i) equals τFA ◦ Ho(F )(δ(i)) [...]
The cofibration F (iA) : F (A) −→ F (CA) and iF (A) : F (A) −→ C(F (A)) are two cones of F (A). Since the
source functor S : Ho(ConeD) −→ Ho(D) is an equivalence of categories, there is a unique isomorphism
ϕ : F (iA) −→ iF (A) in the homotopy category of cones that is the identity on the source A. [...]

This established the claim and shows that the triangle

F (A)
γ(F (i))−−−−−→ F (B)

γ(F (q))−−−−−→ F (B/A)
τF (A)◦Ho(F )(δ(i))−−−−−−−−−−−−→ ΣDF (A)

is the elementary distinguished triangle of the cofibration F (i). Because Ho(F ) ◦ γ = γ ◦ F , this triangle is
also the image of the triangle (γ(i), γ(q), δ(i)), and this concludes the proof. �

Proposition 1.26. Let C be a cofibration category with functorial cylinders.

(i) If f, g : A −→ B are homotopic morphism and ϕ : A′ −→ A and ψ : B −→ B̄ any morphisms, then
fϕ is homotopic to gϕ and ψf is homotopic to ψg.

(ii) If Z is fibrant and A an arbitrary object of C, then the homotopy relation on the set of morphisms
from A to Z is an equivalence relation.
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(iii) Let i : A −→ B be a cofibration and Z a fibrant object. Let f : A −→ Z and g : B −→ Z be morphisms
such that f is homotopic to gi. Then there is a morphism g′ : B −→ Z which is homotopic to g and
such that g′i = f .

(iv) If Z is fibrant and ϕ : A −→ B is a weak equivalence, then the induced map [ϕ,Z] : [A′, Z] −→ [A,Z]
on homotopy classes of morphisms into Z is bijective.

(v) Every weak equivalence between fibrant objects is a homotopy equivalence.

Proof. (i) If H : IA −→ B is a homotopy from f to g, then ψH : IA −→ B̄ is a homotopy from ψf
to ψg and H(Iϕ) : IA′ −→ B is a homotopy from fϕ to gϕ.

(ii) The homotopy relation is reflexive because fp : IA −→ Z is a homotopy from a morphism f : A −→
Z to itself.

For the symmetry relation we define SA as the pushout in the left square

AqA
i1+i0 //

i0+i1

��

IA

j1

��

p

##HHHHHHHHH

IA
j0 //

p

55SA
q // A

(observe that i0 and i1 occur in different orders in the two maps). The morphisms p : IA −→ A on both
copies of IA glue to a morphism q : SA −→ A which we can factor as q = sk where k : SA −→ DA is a
cofibration and s : DA −→ A is a weak equivalence. The composite kj1 : IA −→ DA is a cofibration, and a
weak equivalence since s(kj1) = qj1 = p and s and p are weak equivalences. Since Z is fibrant the homotopy
H : IA −→ Z has an extension K : DA −→ Z such that Kkj1 = H. The restriction Kkj0 : IA −→ Z is
then a homotopy from g to f , so the homotopy relation is symmetric.

For transitivity we consider three morphisms f, g, h : A −→ Z, a homotopy H : IA −→ Z from f to g
and a homotopy H̄ : IA −→ Z from g to h. We construct a homotopy from f to h as follows. We define
IA ∪A IA as the pushout:

A
i0 //

i1

��

IA

j1

��
IA

j0
// IA ∪A IA

Since the morphisms i0 : A −→ IA and i1 : A −→ IA are acyclic cofibrations, so are the morphisms
j0, j1 : IA −→ IA ∪A IA. The morphisms p : IA −→ A on both copies of IA glue to a morphism
p∪ p : IA∪A IA −→ A which is a weak equivalence since (p∪ p)j0 = p and j0 and p are weak equivalences.
The two morphisms j0i0, j1i

′
1 : A −→ IA ∪A IA are composites of cofibrations, hence cofibrations. [need

that j0i0 + j1i
′
1 : AqA −→ I ′′A is a cofibration]

(iii) Let H : IA −→ Z be a homotopy from f to gi. We choose a pushout

AqA iqi //

i0+i1

��

B qB

��
IA // B ∪A IA ∪A B

and a factorization Id∪ip∪Id = qj as a cofibration j : B∪A IA∪AB −→ IB followed by a weak equivalence
q : IB −→ B. The quadrupel (IB, i′0, i

′
1, q) is then a cylinder object for B.

Moreover [...] the map IA ∪A B −→ B ∪A IA ∪A B is a cofibration, hence so is the composite
j(−) : IA∪AB −→ IB. This map is also a weak equivalence since the composite with the weak equivalence
i1 : B −→ IA ∪A B is right inverse to the weak equivalence q, and hence a weak equivalence. So j(−) :
IA ∪A B −→ IB is an acyclic cofibration, and thus the morphism H ∪ g : IA ∪A B −→ Z admits an
extension H̄ : IB −→ Z. The morphism ḡ = H̄i0 : B −→ Z is then homotopic to g and an extension of f .
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(iv) We show that for every acyclic cofibration j : A −→ B the induced map [j, Z] : [B,Z] −→ [A,Z]
is bijective. Lemma 1.10 (ii), applied to the set valued functor [−, Z] then shows the claim. Since Z is
fibrant, every morphism f : A −→ Z has an extension f̄ : B −→ Z with f̄ j = f ; so [j, Z] is surjective.
Now suppose that f, g : B −→ Z are two morphisms such that fj, gj : A −→ Z are left homotopic via a
homotopy H : IA −→ Z. We consider the pushout:

AqA
i0+i1 //

jqj
��

IA

J

�� jp

��

A′ qA′
i′0+i′1

//

Id + Id //

IA′

p′ $$
A′

Since i0 +i1 is a cofibration, so is i′0 +i′1. The morphism jp : IA −→ B and the fold map glue to a morphism
p′ : IB −→ B. Since j q j is an acyclic cofibration, so is the morphism J : IA −→ IB. Since p′J = jp and
J, j and p are weak equivalence, so is p′. Hence (IB, i′0, i

′
1, p
′) is a cylinder object for B. The homotopy

H : IA −→ Z and the morphism f + g : B q B −→ Z glue to a homotopy H ′ : IB −→ Z from f to g.
Altogether this shows that the the map [j, Z] is injective.

(v) This part is a formal consequence of (iv). �

==============================

Proposition 1.27. For every symmetric ring spectrum R the category of flat R-modules is a stable cofi-
bration category with respect to the stable equivalences and the flat cofibrations.

Define D(R) as the homotopy category of flat R-module spectra. [recall] In the special case R = S of
the sphere spectrum the R-modules are simply symmetric spectra (up to isomorphism of categories). So
D(S) is the homotopy category of flat symmetric spectra. By [...] the inclusion Sp[ −→ Sp of flat symmetric
spectra into all symmetic spectra induces an equivalence of homotopy categories D(S) = Ho(Sp[) −→ SHC
between the derived category of the sphere spectrum and the stable homotopy category. In this sense the
derived category D(S) ‘is’ the stable homotopy category.

Theorem 1.23 the speciallizes to

Theorem 1.28. Let R be a symmetric ring spectrum. Then the suspension functor and the distinguished
triangles make the category D(R) into a triangulated category. The image in D(R) of the free R-module of
rank one is a compact weak generator of D(R). If R is commutative, then the derived smash product over
R makes D(R) into a tensor triangulated category. For every morphism f : R −→ S of symmetric ring
spectra, the functor − ∧R S : (mod-R)[ −→ (mod-S)[ of extension of scalars is exact; its derived functor

− ∧LR S : D(R) −→ D(S)

is exact and has a left adjoint.

Remark 1.29. Theorem 1.28 says that modules over a symmetric ring spectrum form a stable model
category with single compact generator. The converse is also true, at least up to Quillen equivalence
and under some technical hypothesis. More precisely, let C be a stable model category which is proper,
cofibrantly generated and simplicial. Theorem 3.1.1 of [72] says that if the triangulated homotopy category
has a single compact generator, then C is Quillen equivalent to the stable model category of modules over a
symmetric ring spectrum. A ring spectrum which does the job can be obtained as a suitable endomorphism
ring spectrum (in a similar sense as in Example I.3.41) of a cofibrant-fibrant weak generator.

Corollary 1.30 (of the appendix). Let R be a connective symmetric ring spectrum. Then R-modules have
Postnikov section, and this gives a t-structure on D(R) whose heart is equivalent, via the functor π0 to the
abelian category of modules over the ring π0R.
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2. Toda brackets

Construction 2.1. Let T be a triangulated category and α : Y −→ Z, β : X −→ Y and γ : W −→ X
three composable morphisms which satisfy αβ = 0 = βγ. We define the Toda bracket 〈α, β, γ〉, a subset of
the morphism group T (ΣW,Z), as follows.

We start by choosing a distinguished triangle

(2.2) X
β−−→ Y

i−−→ C(β)
p−−→ ΣX .

Since αβ = 0 there exists a morphism ᾱ : C(β) −→ Z such that ᾱi = α; since βγ = 0 there exists a
morphism γ : ΣW −→ C(β) such that pγ = Σγ, compare the commutative diagram.

ΣW

γ

��

Σγ

""FFFFFFFFF

Y
i //

α
!!DDDDDDDDD C(β)

p //

ᾱ

��

ΣX

Z

The bracket 〈α, β, γ〉 then consists of all morphisms of the form ᾱγ : ΣW −→ Z for varying ᾱ and γ. We
recall that any two choices of triangles (2.2) are isomorphic, and so the bracket 〈α, β, γ〉 does not depend
on this choice.

Proposition 2.3. Let α : Y −→ Z, β : X −→ Y and γ : W −→ X be morphisms in a triangulated category
T satisfying αβ = 0 = βγ.

(i) The Toda bracket 〈α, β, γ〉 ⊆ T (ΣW,X) is a coset of the subgroup (α ◦ T (ΣW,Y )) + (T (ΣX,Z) ◦Σγ).
(ii) If δ : V −→W is another morphism such that γδ = 0, then the relation

α ◦ 〈β, γ, δ〉 = −〈α, β, γ〉 ◦ (Σδ)

holds as subsets of T (ΣV,Z).
(iii) For every exact functor (F, τ) : T −→ T ′ of triangulated categories the relation

F (〈α, β, γ〉) ⊆ 〈Fα, Fβ, Fγ〉 ◦ τW
holds as subsets of T ′(F (ΣW ), F (Z)).

(iv) Let

W
γ−−→ X

i′−−→ C(γ)
p′−−→ ΣW

be a distinguished triangle and β̄ : C(γ) −→ Y a morphism such that β̄i′ = β. Then the Toda bracket
〈α, β, γ〉 contains all morphisms t : ΣW −→ Z that satisfy tp′ = αβ̄.

Proof. (i) Let γ′ : ΣW −→ C(β) be another morphism satisfying pγ′ = Σγ. Then p(γ′ − γ) = 0, so
there is a morphism u : ΣW −→ Y such that iu = (γ′ − γ). We have

ᾱγ − ᾱγ′ = ᾱ(γ′ − γ) = ᾱiu = αu .

So different lifts for γ change the bracket representative by an element in α ◦ T (ΣW,Y ). The analogous
argument shows that extensions of α change the bracket representative by an element in T (ΣX,Z) ◦ (Σδ).
So the bracket 〈α, β, γ〉 lies in a single coset of the subgroup (α ◦ T (ΣW,Y )) + (T (ΣX,Z) ◦ Σγ).

Conversely, let ᾱ : C(β) −→ Z and γ : ΣW −→ C(β) satisfy ᾱi = α and pγ = γ, so that ᾱγ ∈ 〈α, β, γ〉.
Given arbitrary morphisms v : ΣX −→ Z and u : ΣW −→ Y , then ᾱ + vp is another extension of α and
γ + iu is another lift of γ. Hence

(ᾱ+ vp)(γ + iu) = ᾱγ + ᾱiu+ vpγ = ᾱγ + αu+ v(Σγ)

is also an element of the bracket 〈α, β, γ〉. So 〈α, β, γ〉 indeed consists of the entire coset.
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(ii) We choose distinguished triangles

X
β−−→ Y

i−−→ C(β)
p−−→ ΣX and W

γ−−→ X
i′−−→ C(γ)

p′−−→ ΣW .

The triangle

W
0−−→ Y

(1
0)−−−→ Y ⊕ ΣW

(0,1)−−−−→ ΣW

is also distinguished, so the ‘strong form’ of the octahedral axiom (compare Proposition 2.10 (iv)) provides
morphisms x : C(γ) −→ Y ⊕ ΣW and y : Y ⊕ ΣW −→ C(β) such that the triangle (x, y, (Σi′) ◦ p) is
distinguished and the diagram

W
γ // X

β

��

i′ // C(γ)

x

���
�
�

p′ // ΣW

W
0

// Y
(1
0)

//

i

��

Y ⊕ ΣW
(0,1)

//

y

���
�
� ΣW

Σγ

��
C(β)

p

��

C(β)

(Σi′)◦p
��

p
// ΣX

ΣX
Σi′

// ΣC(γ)

commutes. Then x =
(
β̄
p′

)
for a unique morphism β̄ : C(γ) −→ Y such that β̄i′ = β; similarly, y = (i, γ) for

a unique morphism γ : ΣW −→ C(β) such that pγ = Σγ. We have yx = 0 as consecutive morphisms in a
distinguished triangle, and this implies that

α ◦ β̄ ◦ δ + ᾱ ◦ γ ◦ (Σδ) = (α, ᾱγ) ◦
(
β̄δ

Σδ

)
= ᾱ ◦ (i, γ) ◦

(
β̄

p′

)
◦ δ

= ᾱ ◦ y ◦ x ◦ δ = 0 .

Hence the morphism

α ◦ β̄ ◦ δ = −ᾱ ◦ γ ◦ (Σδ)

is in the intersection of the sets α ◦ 〈β, γ, δ〉 and −〈α, β, γ〉 ◦ (Σδ). Since both sets are cosets for the same
subgroup

α ◦ T (ΣW,Y ) ◦ (Σδ) of T (ΣV,Z) ,

they must coincide.
(iii) For any choice of distinguished triangle (2.2) the image triangle

FX
Fβ−−−→ FY

Fi−−−→ F (C(β))
τX◦Fp−−−−−→ Σ(FX)

is distinguished in T ′, so it can be used to determine the bracket 〈F (α), F (β), F (γ)〉. If moreover ᾱ :
C(β) −→ Z and γ : ΣW −→ C(β) satisfy ᾱi = α respectively pγ = Σγ, then Fᾱ : F (C(β)) −→ FZ and

Fγ ◦ τ−1
W : Σ(FW ) −→ F (C(β)) satisfy Fᾱ ◦ Fi = Fα respectively

(τX ◦ Fp) ◦ (Fγ ◦ τ−1
W ) = τX ◦ F (pγ) ◦ τ−1

W = τX ◦ F (Σγ) ◦ τ−1
W = Σ(Fγ) ◦ τW ◦ τ−1

W = Σ(Fγ)

by naturality of τ . So the morphism

F (ᾱ ◦ γ) = Fᾱ ◦ (Fγ ◦ τ−1
W ) ◦ τW

belongs to the set 〈Fα, Fβ, Fγ〉 ◦ τW . This proves the relation F 〈α, β, γ〉 ⊆ 〈Fα, Fβ, Fγ〉 ◦ τW . �
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Remark 2.4. The subgroup (α ◦T (ΣW,Y )) + (T (ΣX,Z) ◦Σγ) of the group T (ΣW,X) that comes up in
part (i) of the previous proposition is called the indeterminacy of the Toda bracket 〈α, β, γ〉. The relation
in part (ii) of the previous proposition is sometimes referred to as a juggling formula.

In part (iii) above, the indeterminacy of the right hand side may be larger than the image of the
indeterminacy of the bracket 〈α, β, γ〉, which is why in general we only have containment, not necessarily
equality, as subsets of T ′(F (ΣW ), F (Z)).

Construction 2.5 (Toda brackets for ring spectra). The homotopy groups of a symmetric ring spectrum
have more structure than that of a graded ring, namely ‘secondary’ (and higher. . . ) forms of multiplications,
also called Toda brackets. Toda brackets are the homotopical analogues of Massey products in differential
graded algebras, and they satisfy similar relations.

We will restrict ourselves to the simplest kind of such brackets, namely triple brackets (as opposed to
four-fold, five-fold,. . . ) with single entries (as opposed to ‘matric’ Toda brackets). We construct these Toda
brackets as a special case of the Toda brackets for triangulated categories.

So we let R be a symmetric ring spectrum and M a right R-module. Evaluation at the suspended unit
is an isomorphism of abelian groups

ev : D(R)(R,M)k −→ πkM , α 7−→ (πkα)(ιk · 1)

and this map is multiplicative in the sense that it takes composition in the derived category of R-modules
to the action of π∗R on π∗M ; more precisely, the square

D(R)(R,M)k ⊗D(R)(R,R)l
◦ //

ev⊗ ev

��

D(R)(R,M)k+l

ev

��
πkM ⊗ πlR ·

// πk+lM

commutes for all integers k, l [ref...]. We can use this multiplicative isomorphism to translate the Toda
brackets in D(R) into Toda brackets in π∗R as follows. We consider homogeneous elements x ∈ πkM , y ∈
πlR and z ∈ πjR which satisfies the relations xy = 0 = yz. We let x̄ ∈ D(R)(Sk∧R,M), ȳ ∈ D(R)(Sl∧R,R)
and z̄ ∈ D(R)(Sj ∧ R,R) be the morphisms that satisfy ev(x̄) = x, ev(ȳ) = y respectively ev(z̄) = z. By
the multiplicativity of the evaluation the two consecutive composites in the sequence

Sk+l+j ∧R Sk+l∧z̄−−−−−−→ Sk+l ∧R Sk∧ȳ−−−−→ Sk ∧R x̄−−→ M

are zero. So the Toda bracket

〈x̄, Sk∧ ȳ, Sk+l∧ z̄〉 ⊆ D(R)(Σ(Sk+l+j ∧R), M)

is defined. If we evaluate all elements in this bracket at the homotopy class S1 ∧ (ιk+l+j · 1) of
π1+k+l+j(Σ(Sk+l+j ∧R)) we end up with a subset

〈x, y, z〉 ⊆ π1+k+l+jM

which defines the Toda bracket 〈x, y, z〉.

The three parts of Proposition 2.3 then specialize to corresponding properties for the Toda brackets of
symmetric ring spectra.

Proposition 2.6. Let R be a symmetric ring spectrum and M a right R-module. Let x ∈ πkM , z ∈ πlR
and z ∈ πjR be homotopy classes that satisfies xy = 0 = yz.

(i) The Toda bracket 〈x, y, z〉 ⊆ π1+k+l+jM is a coset of the subgroup x · π1+l+jR + π1+k+lM · z.
(ii) If u ∈ πiR is another homotopy class such that z · u = 0, then the relation

(2.7) x · 〈y, z, u〉 = (−1)k+1 · 〈x, y, z〉 · u

holds as subsets of π1+k+l+j+iM .[check the sign]
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(iii) For every morphism of symmetric ring spectra f : R −→ S, every S-module N and every morphism
of R-modules ϕ : M −→ f∗N the relation

ϕ∗(〈x, y, z〉) ⊆ 〈ϕ∗(x), f∗(y), f∗(z)〉
holds as subsets of π1+k+l+jN .

The subgroup x ·π1+l+jR + π1+k+lM · z is called the indeterminacy of the Toda bracket 〈x, y, z〉. The
relation in part (ii) of the previous proposition is sometimes referred to as a juggling formula; one can think
of the juggling formula as a kind of ‘higher form of associativity’.

The indeterminacy of the right hand side may be larger than the image of the indeterminacy of the
bracket 〈x, y, z〉, which is why in general we only have containment, not necessarily equality, as subsets of
πk+l+j+1N .

As we explain in Exercise E.IV.16, the Toda brackets of the form 〈x, y, z〉 for varying y and z contain
significant information about the structure of π∗(M/xR) as a graded π∗R-module, where M/xR is the
mapping cone of a morphism of R-modules which realizes left multiplication by x in homotopy.

We have given a rather abstract and indirect definition of Toda brackets in the homotopy ring of a
symmetric spectrum, via the triangulated derived category. However, in many cases, Toda brackets can be
calculated more explicitly and directly from geometric representative of homotopy classes. We explain this
in detail now.

Construction 2.8 (Toda brackets from geometric representatives). We let R be a symmetric ring spectrum,
M a right R-module and we consider based maps

f : Sk+n −→ Mn , g : Sl+m −→ Rm and h : Sj+p −→ Rp .

These elements represent naive homotopy classes [f ] ∈ π̂kM , [g] ∈ π̂lR respectively [h] ∈ π̂jR, and we
denote by

〈f〉 ∈ πkM , 〈g〉 ∈ πlR respectively 〈h〉 ∈ πjR

the corresponding true homotopy classes, i.e., the images under the tautological maps c : π̂∗M −→ π∗M
and c : π̂∗R −→ π∗R. We recall that the ‘geometric product’ f · g is the composite

Sk+n+l+m f∧g−−−−→ Mn ∧Rm
an+m−−−−−→ Mn+m

where an,m is the action of R on M . We assume now that the ‘geometric products’ f · g : Sk+n+l+m −→
Mn+m and g · h : Sl+m+j+p −→ Rm+j are nullhomotopic in the sense that there exist extensions H :
C(Sk+n+l+m) −→ Mn+m and H̄ : C(Sl+m+j+p) −→ Rm+j to the respective cones. Proposition I.6.25 (iii)
tells us that then

〈f〉 · 〈g〉 = (−1)nl · 〈f · g〉 = 0 and 〈g〉 · 〈h〉 = (−1)mj · 〈g · h〉 = 0 .

So the Toda bracket 〈〈f〉, 〈g〉, 〈h〉〉 is defined in π1+k+l+jM , and we’ll give an explicit constructruction of a
geometric representative.

To construct this representative we multiply the nullhomotopies H and H̄ with the appropriate spheres
on the left respecively right to arrive a two based maps

H ·Sj+p : C(Sk+n+l+m)∧Sj+n −→ Mn+m+j respectively Sk+n·H̄ : Sk+n∧C(Sl+m+j+p) −→ Mn+m+j .

If we restrict H · Sj+p or Sk+n · H̄ to Sk+n+l+m+j+p, the associativity of the action of R on M guarantees
that we get the same map in both cases, namely

f · g · h : Sk+n+l+m+j+p −→ Mn+m+j .

So the maps glue to a map

H · Sj+p ∪ Sk+n · H̄ : C(Sk+n+l+m) ∧ Sj+n ∪Sk+n+l+m+j+p Sk+n ∧ C(Sl+m+j+p) −→ Mn+m+j .

The source of this resulting map is a sphere of dimension 1 + k + n + m + l + j + p, and after making an
identification with the standard sphere S1+k+n+m+l+j+p, the combined map represents a homotopy class

〈(H · Sj+p) ∪ (Sk+n · H̄)〉 ∈ π1+k+l+jM .
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Proposition 2.9. Let H be a nullhomotopy of f · g and H̄ a nullhomotopy of g · h. Then the homotopy
class

± 〈 (H · Sj+p) ∪ (Sk+n · H̄) 〉
is in the Toda bracket 〈〈f〉, 〈g〉, 〈h〉〉.

Let us now turn to some calculations with Toda brackets. We start with a general relation, due to
Toda.

Proposition 2.10. Let R be a symmetric ring spectrum and x a homotopy class of R such that 2 · x = 0.
Then the relation

(2.11) η · x ∈ 〈2, x, 2〉
holds, where η ∈ π1R is the Hurewicz image of the Hopf class η ∈ π1S.

Proof. We choose a distinguished triangle in the stable homotopy category

S ·2−−→ S j−−→ S/2 δ−−→ ΣS
that defines the mod-2 Moore spectrum S/2. The derived axtension of scalars functor R ∧L − : SHC −→
D(R) takes this to a distinguished triangle

Sk ∧R ·2−−→ Sk ∧R j∧R−−−−→ Sk ∧ S/2 ∧R δ∧R−−−−→ Σ(Sk ∧R) .

in the derived category of R-modules. We let x̄ : Sk ∧ R −→ R be the morphism in D(R)(R,R)k that
satisfies ev(x̄) = x in πkR. Since 2 · x = 0 the morphism x̄ admits an extension y : Sk ∧ S/2∧R −→ R such
that y(j ∧R) = x̄. Using the factorization (6.50) of 2 · IdS/2 as jηδ we obtain

2 · y = y ◦ ((jηδ) ∧R) = y ◦ (j ∧R)) ◦ (η ∧R) ◦ (δ ∧R) = x̄ ◦ (η ∧R) ◦ (δ ∧R) .

By Proposition 2.3 (iv) the morphism x̄ ◦ (η ∧R) : Σ(Sk ∧R) −→ R is thus contained in the Toda bracket

〈2, x̄, 2〉 ⊆ D(R)(Σ(Sk ∧R), R) .

If we evaluate on the homotopy class Σ(ιk · 1) ∈ π1+kR this yields

η · x = (x̄ ◦ (η ∧R))∗(Σ(ιk · 1)) ∈ 〈2, x, 2〉 . �

The previous proposition is in fact a special case of a relation between Toda brackets and power
operations in the homotopy ring of a commutative symmetric ring spectrum R. Indeed, for a homotopy
class x ∈ πkR of even dimension there is a certain class Sq1(x) ∈ π2k+1R called the ‘∪1-oconstruction’ such
that for every homotopy class y ∈ πlR that satisfies x · y = 0 the relation

Sq1(x) · y ∈ 〈x, y, x〉
holds. Moreover, the ∪1-operation is natural for homomorphism between commutative symmetric ring
spectra and we have Sq1(2) = η in π1S, which gives back Proposition 2.10.

Example 2.12. Here are some examples of non-trivial Toda brackets. In the stable stems, i.e., the homo-
topy groups of the sphere spectrum (compare the table in Example 1.11) we have

η2 ∈ 〈2, η, 2〉 mod (0) 6ν ∈ 〈η, 2, η〉 mod (12ν)
ν2 ∈ 〈η, ν, η〉 mod (0) 40σ ∈ 〈ν, 24, ν〉 mod (0)

ησ + ε ∈ 〈ν, η, ν〉 mod (0) ε ∈ 〈η, ν, 2ν〉 mod (ησ)

The first bracket is an instance of Toda’s relation (2.11). The next two brackets are special instances of the
relation

3ν · x ∈ 〈η, x, η〉
that holds for every homotopy classes x in a symmetric ring spectrum R that satisfies η · x = 0. One proof
of this relation proceeds along the same lines as the proof of Proposition 2.10, but instead of the relation
2 · IdS/2 = jηδ one uses the factorization

η · IdC(η) = 3 · jνδ
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where

S1 η−−→ S j−−→ C(η)
δ−−→ ΣS1

is a distinguished triangle defining a cone of η. One should beware though that this patter does not continue:
multiplication by ν on the mapping cone of ν does not factor through the Hopf map σ.

With the help of juggling formula (2.7), we can use Toda brackets to deduce relations which themselves
don’t refer to brackets. For example,

η · 〈2, η, 2〉 = 〈η, 2, η〉 · 2

holds in πs
3 with zero indeterminacy (because 2η = 0). By Toda’s relation (2.11), the left hand side contains

η3 while by the table above, the right hand side contains 12ν. So we get the multiplicative relation

η3 = 12ν

as a consequence of the Toda brackets involving 2 and η. Since 2η = 0, multiplying this relation by 2
respectively η yields the relations

24 · ν = 0 and η4 = 0 .

Another example of a non-trivial Toda bracket is u ∈ 〈2, η, 1〉 (modulo 2u) in π2(ku). Here the complex
topological K-theory spectrum ku (compare Example I.??) is viewed just as a symmetric spectrum (and
not as a ring spectrum). Here η and 2 have to be viewed as elements in the stable stems, while the unit 1
and the Bott class u are homotopy classes of ku.

Since the relation η2 ∈ 〈2, η, 2〉 holds in πs
2, it also holds in the second homotopy group of every

ring spectrum (with possibly bigger indeterminacy, and possibly with η2 = 0); In the homotopy of real
topological K-theory ko the class η2 is non-zero (compare the table in Example I.1.20), so we get a non-
trivial bracket η2 ∈ 〈2, η, 2〉 (modulo 0) in π2(ko). We also have ξ ∈ 〈2, η, η2〉 (modulo 2ξ) in π4(ko) and
2β ∈ 〈ξ, η, η2〉 (modulo 4β) in π8(ko). [prove. Also η2β = Sq1(ξ) ∈ 〈ξ, η, ξ〉 (modulo 0) in π10(ko)]

In Example 6.39 and Remark 6.40 of Chapter I we explained how we can ‘kill’ the action of a homotopy
class x ∈ πlR on an R-module M as long as x acts injectively on π∗M . With the help of Toda brackets one
can show that in general not all graded modules over π∗R are realized by R-module spectra.

Proposition 2.13. Let R be a symmetric ring spectrum and x ∈ πkR a homotopy class. If there is a right
R-module whose homotopy groups are isomorphic to π∗R/(x · π∗−kR) as a graded right π∗R-module, then
for all homogeneous homotopy classes y, z with xy = 0 = yz the Toda bracket 〈x, y, z〉 contains 0.

Proof. We choose a right R-module N and a π∗-linear epimorphism p : π∗R −→ π∗N with kernel
x · (π∗−kR). The bracket 〈p(1), x, y〉 is then defined with indeterminacy p(1) · πk+l+1R + πk+1N · y. Since
p(1) generates π∗N as a graded π∗R-module, the indeterminacy of the bracket 〈p(1), x, y〉 is the entire group
πk+l+1N , and so we have 〈p(1), x, y〉 = πk+l+1N .

We choose an element a ∈ πk+l+j+1R of the bracket 〈x, y, z〉. Using the juggling formula (2.7) we get

p(a) = p(1) · a ∈ p(1) · 〈x, y, z〉 = −〈p(1), x, y〉 · z = πl+1N · z = p(πl+1R · z) .

Since the kernel of p equals x · π∗−kR we deduce that a lies in x · πl+j+1R + πk+l+1R · z. This is precisely
the indetermincy of the bracket 〈x, y, z〉, so the bracket also contains 0. �

Example 2.14. Here are some non-realizability results which can be obtained with the help of Proposi-
tion 2.13. We have the relation η2 ∈ 〈2, η, 2〉 in πs

2 with zero indeterminacy. So the bracket 〈2, η, 2〉 does
not contain zero and hence there is no symmetric spectrum whose homotopy groups realize Z/2 ⊗ πs

∗ as
a graded πs

∗-module. For an odd prime p, the bracket 〈p, α1, α1〉 in πs
4p−5 does not contain zero, hence

Z/p⊗ πs
∗ is not realizable as the homotopy of a spectrum.

In Example 2.12 we also exhibited various nonzero triple Toda brackets in the homotopy of the real
topological K-theory spectrum ko, such as

η2 ∈ 〈2, η, 2〉 , ξ ∈ 〈2, η, η2〉 and 2β ∈ 〈ξ, η, η2〉 .
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Moreover, in all three cases, the class on the left is not in the indeterminacy group, so the three brackets
do not contain zero. Proposition 2.13 lets us conclude that the π∗(ko)-modules

Z/2⊗ π∗(ko) , π∗(ko)/(η
2 · π∗(ko)) and π∗(ko)/(ξ · π∗(ko))

are not realizable as the homotopy of any ko-module spectrum. In Exercise E.I.42 we show more generally
that the only cyclic π∗KO-modules which are realizable as the homotopy of a KO-module spectrum are
the free module, the trivial module and Z/n⊗ π∗KO for n an odd integer. [work for connective also?]

[show that any ko-morphism ko/η −→ ku which extends the complexification map ko −→ ku is a stable
equivalence]

Exercises

Exercise E.IV.1 (Modules as continuous functors). There is way to interpret modules over a symmetric
ring spectrum R as continuous functors on a based topological (or simplicial) category ΣR which generalizes
the isomorphism between the categories of symmetric spectra and continuous functors Σ −→ T.

Given a symmetric ring spectrum of topological spaces R we define a based topological category ΣR as
follows. The objects of ΣR are the natural numbers 0, 1, 2, . . . and the based space of morphisms from n
to m is given by ΣR(n,m) = Σ+

m ∧1×Σm−n Rm−n, which is to be interpreted as a one-point space if m < n.
Composition is defined by ◦ : ΣR(m, k) ∧ΣR(n,m) −→ ΣR(n, k) is defined by

[τ ∧ z] ◦ [γ ∧ y] = [τ(γ × 1) ∧ µn,m(y ∧ z)]

where τ ∈ Σk, γ ∈ Σm, z ∈ Rk−m and y ∈ Rm−n. The identity in Σ(n, n) = Σ+
n ∧R0 is the identity of Σn

smashed with the identity element of R0.
Show that ΣR is a category and construct an isomorphism between the category of R-modules and the

category of based continuous functors from ΣR to the category T of based compactly generated spaces.
[Analog for simplicial sets]

Exercise E.IV.2. Let R by a symmetric ring spectrum. We define an R-bimodule R̄ by

R̄n =

{
∗ for n = 0

Rn for n ≥ 1.

We define the n-latching object LRnM of a right R-module M by LRnM = (M ∧R R̄)n. [use previous exercise
for latching objects] The latching object has a left action of the symmetric group Σn and a right action of
the pointed monoid R0. The inclusion R̄ −→ R is a morphism of R-bimodules and thus induces a morphism
of Σn-R0 simplicial bisets

νn : LRnM = (M ∧R R̄)n −→ (M ∧R R)n ∼= Mn .

Show:

(i) A morphism f : M −→ N is a flat cofibration of R-modules if and only if the maps νn(f) : LRnN ∪LRnM
Mn −→ Nn are cofibrations of right R0-simplicial sets.

(ii) A morphism f : M −→ N is a projective cofibration of R-modules if and only if the maps νn(f) :
LRnN ∪LRnM Mn −→ Nn are cofibrations of Σn-R0-simplicial bisets.

(Hint: define a suitable R-module analog of the filtration FmA of a symmetric spectrum A so that the
proof of Proposition II.5.47 can be adapted.)

Exercise E.IV.3. A functor F : C −→ D between cofibration categories is exact if it preserves weak
equivalences, cofibrations, initial objects and pushouts along cofibrations.

Let C and D be pointed cofibration categories and let F : C −→ D be an exact functor. Construct a
natural isomorphism τ : HoF ◦ΣHo(C) −→ ΣHo(D) ◦HoF of functors Ho(C) −→ Ho(D) such that for every
distinguished triangle (f, g, h) in Ho(C) the triangle

FA
Ff−−−→ FB

Fg−−−→ FC
τC◦Fh−−−−→ ΣFA
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is distinguished. In particular, if C and D are stable cofibration categories, then the induced functor
Ho(F ) : Ho(C) −→ Ho(D) is an exact functor of triangulated categories.

Exercise E.IV.4 (Approximation theorem). An exact functor F : C −→ D between cofibration categories,
has the approximation property if it satisfies the following two conditions:

(App1) A morphism α in C is a weak equivalence if and only if its image Fα is a weak equivalence in D.
(App2) For every object A of C, every fibrant object Z of D and every morphism ϕ : FA −→ Z in D there
exists a morphism α : A −→ A′ in C and a weak equivalence ψ : FA′ −→ Z in D such that ϕ′ ◦ Fα = ϕ,
i.e., the following triangle commutes:

FA ϕ

((QQQQQQ

Fα

��
Z

FA′
ψ

66mmmmmm

This approximation property was introduced by Waldhausen in his foundational work on algebraic K-
theory [88, Sec. 1.6] (with the minor difference that Waldhausen does not consider fibrant objects); in
that context the approximation property serves as a sufficient condition for an exact functor to induce an
equivalence of K-theory spaces.

(i) Show that for every exact functor F with the approximation property the induced functor HoF :
Ho(C) −→ Ho(D) is an equivalence of homotopy categories.

(ii) Let L : C −→ D be a left Quillen functor between model categories. Then the restriction Lc : Cc −→ Dc
of L to the full subcategories of cofibrant objects is an exact functor of cofibration categories. Show
that if L is a left Quillen equivalence, then Lc satisfies the approximation property.

Exercise E.IV.5. For a cofibration category C we let cof C be the category of cofibrations in C: the
objects of cof C are the cofibrations in C and a morphism from a cofibration i : A −→ B to a cofibration
i′ : A′ −→ B′ is a pair (α : A −→ A′, β : B −→ B′) of morphisms such that βi = i′α. A morphism (α, β)
is a weak equivalence in cof C if α and β are weak equivalences in C, and (α.β) is a cofibration in cof C if α
and i′ ∪ β : A′ ∪A B −→ B′ are cofibrations in C. Since β = (i′ ∪ β) ◦ (i∗α) the morphism β is then also a
cofibration in C. Show that these definitions make cof C into a cofibration category.

Exercise E.IV.6. Let C be a pointed cofibration category. We denote by Cone(C), the category of cones
in C, the full subcategory of cof C spanned by those cofibrations i : A −→ C whose target C is weakly
contractible.

(i) Show that Cone(C) is a cofibration category by restriction of the cofibrations structure of Exer-
cise E.IV.5 on the category cof C.

(ii) Show that the forgetful functor

U : Cone(C) −→ C , U(i : A −→ C) = A

is exact and has the approximation property. Conclude that this functor induces an equivalence of
homotopy categories Ho(Cone(C)) ∼= Ho(C).

(iii) Let F : Ho(C) −→ Ho(Cone(C)) be a quasi-inverse to the equivalence categories from (ii). Show that
the composite

Ho(C) F−−→∼= Ho(Cone(C)) (i:A−→C)7→C/A−−−−−−−−−−−→ Ho(C)

is naturally isomorphic to the suspension functor arsing from any cone functor. Conclude that C is
stable if and only if the functor Cone(C) −→ C that sends (i : A −→ C) to the quotient C/A induces
an equivalence of homotopy categories from Ho(Cone(C)) to Ho(C).

Exercise E.IV.7. Let C be a stable cofibration category and let T be a full triangulated subcategory
of the homotopy category Ho(C), i.e., T is non-empty, closed under isomorphisms, two-out-of-three and
distinguished triangles. Let C′ be the full subcategory of C spanned by those objects that belong to T .
Show that the restricted notions of cofibrations and weak equivalence make C′ into a stable cofibration
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category and that the inclusion C′ −→ C induces a fully faithful functor Ho(C′) −→ Ho(C) whose image
equals T .

Exercise E.IV.8. Let C be a cofibration category and τ : F −→ G a natural transformation between
functors F,G : C −→ D which takes weak equivalences to isomorphisms. Show that there exists a unique
natural transformation τ̄ : F̄ −→ Ḡ between the induced functors F̄ , Ḡ : Ho(C) −→ D such that τ̄ γ = τ .
Show that τ̄ is an isomorphism whenever τ is.

Exercise E.IV.9. Let C be a cofibration category and let ϕ : A −→ B be any C-morphism. Show that
γ(ϕ) is an isomorphism in Ho(C) if and only if there are cofibrations f : B −→ B′ and f ′ : B′ −→ B′′ such
that f ′ϕ and f ′′f ′ are weak equivalences.

Exercise E.IV.10 (Additive categories with translation). Let A be additive category equipped with an
additive endofunctor T : A −→ A. A differential object in (A, T ) is a pair (X, d) consisting of an object X
of A and a morphism d : X −→ TX, the differential. (Beware that there is no condition on the composite
(Td)d : X −→ TTX, i.e., we are not asking for a ‘complex’). A morphism f : (X, d) −→ (X ′, d′) of
differential objects is an A-morphism f : X −→ X ′ satisfying d′f = (Tf)d : X −→ TX ′. Two morphisms
f, g : (X, d) −→ (X ′, d′) are homotopic if there exists an A-morphism s : TX −→ X ′ (the homotopy)
such that d′s + (Ts)(Td) = Tf − Tg as morphisms TX −→ TX ′. A morphism f : (X, d) −→ (X ′, d′) of
differential objects is a homotopy equivalence if there is a morphism g : (X ′, d′) −→ (X, d) of differential
objects such that fg and gf are homotopic to the respective identity maps. A morphism f of differential
objects is a cofibration if the underlying map in A is a split monomorphism, i.e., if there is an A-morphism
g : C −→ X ′ such that f + g : X ⊕ C −→ X ′ is an isomorphism.

(1) Show that the cofibrations and homotopy equivalences make the category of differential objects
in (A, T ) into a cofibration category in which every object is fibrant.

(2) Show that the notion of ‘homotopy’ is an additive equivalence relation compatible with composi-
tion. Show that the homotopy category of the cofibration structure in (i) is the category K(A, T )
whose objects are differential objects in (A, T ) and whose morphisms are homotopy classes of
morphisms.

(3) The shift of a differential object is given by (X, d)[1] = (TX,−Td) on objects and by f [1] = Tf
on morphisms. Show that the shift functor on the category of differential object passes to a shift
functor on the homotopy category K(A, T ). Show that for a suitably chosen cone functor, this
induced shift functor on K(A, T ) is the suspension functor of the cofibration structure from (i).

(4) The mapping cone of a morphism f : (X, d) −→ (X ′, d′) of differential objects is the object

Cf =
(
X ⊕ TX ′,

(
d f
0 −Td′

))
.

Show that the image of the sequence

(E.IV.11) (X, d)
f−−→ (X ′, d′)

(1,0)−−−→ Cf
(0
1)−−→ (X, d)[1]

is a distinguished triangle in the homotopy category K(A, T ).
(5) Suppose now that the translation functor T is an auto-equivalence. Show that the cofibration

structure in (i) is then stable. Conclude that the homotopy category K(A, T ) is a triangulated
category. Show that a triangle in K(A, T ) is distinguished if and only if it is isomorphic to the
image of a diagram of the form (E.IV.11) for some morphism f : (X, d) −→ (X ′, d′) of differential
objects.

Exercise E.IV.12 (Cochain complexes in additive categories). For any additive category A we denote by
C(A) the category of chain complex in A; the homotopy category K(C(A)) of chain complexes in A has
as objects the chain complexes and as morphisms the chain homotopy classes of chain morphisms. Define
a structure of stable cofibration category on C(A) in which the weak equivalences are the chain homotopy
equivalences. Show that the homotopy category K(C(A)) has a triangulated structure with suspension
functor giving by the shift of a complex. (Hint: reduce to Exercise E.IV.10)
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Exercise E.IV.13 (Modules over Frobenius rings). A (right) Frobenius ring is a ring R such that the class
of projective right R-modules coincides with the class of injective right R-modules. In this exercise, all
R-modules are right R-modules.

Two morphisms of R-modules f, g : M −→ N are homotopic if the difference f − g factors through a
projective R-module. A morphism f : M −→ N of R-modules is a stable equivalence if there is a morphism
g : N −→M such that fg and gf are homotopic to the respective identity maps.

(i) Show that the monomorphisms and stable equivalences make the category of right R-modules into a
stable cofibration category in which every object is fibrant.

(ii) Show that the notion of ‘homotopy’ is an additive equivalence relation compatible with composition.
Let S(Mod-R) denote the stable category whose objects are the right R-modules and whose morphisms
are homotopy classes of R-linear maps. Show that S(Mod-R) is a homotopy category of the cofibration
structure in (i). Conclude that the stable category S(Mod-R) is a triangulated category.

(iii) Let M be an R-module and i : M −→ I an injective hull, i.e., a monomorphism with injective target.
Show that the quotient I/M can be taken as the suspension of M in S(Mod-R).

(iv) Let

0 −→ M
f−−→ N

g−−→ Q −→ 0

be a short exact sequence of R-modules and let i : M −→ I be an injective hull. We choose an
extension j : N −→ I, i.e., a homomorphism such that j ◦f = i. Then we define a map δ : Q −→ I/M
by

δ(q) = j(q̄) + i(M) ,

where q̄ ∈ N satisfies g(q̄) = q. Show that δ is well-defined and R-linear. Show that the image of the
morphism δ in S(Mod-R) is independent of the extension j. Show that the triangle

M
f−−→ N

g−−→ Q
δ−−→ I/M = ΣM

in the stable category S(Mod-R) is distinguished. Show that a triangle in S(Mod-R) is distinguished
if and only if is isomorphic to a triangle arising in this way from a short exact sequence of R-modules.

Exercise E.IV.14. [adapt to new defn of homotopy category; check if works] Let R be a symmetric ring
spectrum of simplicial sets. An R-module M is strongly injective is it has the extension property for all
homomorphisms of R-modules which are levelwise injective and a weak equivalence of underlying simplicial
sets. We define the derived category D(R) of the ring spectrum R as the homotopy category of those
strongly injective R-modules whose underlying symmetric spectra are Ω-spectra.

(i) Suppose that R is flat as a symmetric spectrum. Show that then the underlying symmetric spectrum
of a strongly injective R-modules is injective. Give an example showing that the converse is not true.

(ii) Show that the derived category D(R) has the structure of a triangulated category with shift and
distinguished triangles defined after forgetting the R-action.

(iii) Show that D(R) is the target of a universal functor from R-modules which takes stable equivalences
to isomorphisms.

(iv) Let f : R −→ S be a homomorphism of symmetric ring spectra which makes R a flat right S-module.
Show that restriction of scalars from S-modules to R-modules passes to an exact functor of triangulated
categories f∗ : D(S) −→ D(R).

(v) Suppose that the underlying symmetric spectrum of R is semistable. Show that then R, considered
as a module over itself, has a strongly injective Ω-spectrum replacement γR as an R-module. Show
that the map

[γR, γR]
D(R)
k

∼= πk(γR) ∼= πkR

is an isomorphism of graded rings, where the first map is evaluation at the unit 1 ∈ π0(γR) ∼=
πk(γR)[k]. Show that the map

[γR,M ]
D(R)
k

∼= πkM

is an isomorphism of graded modules over π∗R for every strongly injective Ω-R-module M . Show that
γR is a compact weak generator of the triangulated category D(R).
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We shall see later that for R = HA the Eilenberg-Mac Lane ring spectrum associated to a ring A (compare
Example I.1.14) the derived category D(HA) is triangle equivalent to the unbounded derived category of
the ring A. In fact, the equivalence of triangulated categories will come out as a corollary of a Quillen
equivalence of model categories.

Exercise E.IV.15. For commutative symmetric ring spectrum, get a cocycle on Pic(R), the group of
isomorphism classes of invertible R-modules. Should be related to the first multiplicative k-invariant.

Exercise E.IV.16. Let R be a symmetric ring spectrum, M a left R-module and x ∈ πkM a homo-
geneous homotopy class in the image of c : π̂∗M −→ π∗M . Denote by M/xR the mapping cone of a
R-homomorphism λx : FnS

k+n ∧ R −→ M which takes the unit class to x. The morphism λx should be
thought of as ‘left multiplication by x’ (and indeed, this is its effect in homotopy). Then the Toda brackets
of the form 〈x, y, z〉 for varying y and z contain significant information about the structure of π∗(M/xR)
as a graded π∗R-module.

(i) Show that there is a short exact sequence of graded right π∗R-modules

0 −→ π∗M/x · π∗−kR
j−−→ π∗(M/xR)

δ−−→ ann∗−k−1(x) −→ 0

where ann∗(x) = {y ∈ π∗R | x · y = 0} is the annihilator (right) ideal of x.
(ii) Let y ∈ πlR and z ∈ πjR be homogeneous classes which satisfy xy = 0 = yz. Show that the Toda

bracket 〈x, y, z〉 equals the set of all elements α of πk+l+j+1M for which there exists ỹ ∈ πk+l+1 with

δ(ỹ) = y and j(α+ x · π∗−kR) = ỹ · z .

History and credits

Shipley [77] calls the flat model structure for modules over a symmetric ring spectrum R the ‘R-model
structure’.
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Miscellaneous tools

In more detail, a triple is a pointed functor T : set∗ −→ set∗ together with natural transformations
m : T ◦ T −→ T and η : Id −→ T such that the following diagrams commute

T ◦ T ◦ T Id ◦m //

m◦Id
��

T ◦ T
m

��

T
Id ◦η //

=

&&MMMMMMMMMMMM T ◦ T
m

��

T
η◦Idoo

=

xxqqqqqqqqqqqq

T ◦ T m
// T T

An algebra over a triple T is a pointed set A together with a pointed map α : TA −→ A such that α ◦ ηA
is the identity and the following associativity diagram commutes:

T (TA)
T (α) //

mA

��

TA

α

��
TA α

// A

For every pointed set K, the pointed set TK is a T -algebra with structure map mK : T (TK) −→ TK; the
T -algebra (TK,mK) will be denoted fTK and it is the free T -algebra generated by K in the sense that the
free functor fT : set∗ −→ T -alg is left adjoint to the forgetful functor fT from T -algebras to pointed sets.
Note that we have T = fT ◦fT and that the structure maps of T -algebras provides a natural transformation
α : fT ◦ fT −→ Id.

1. Model category theory

The main references for model categories are Quillen’s original book [62], the modern introduction by
Dwyer and Spalinski [23] and Hovey’s monograph [35].

Definition 1.1. Let i : A −→ B and g : X −→ Y be morphisms in some category C. We say that i has the
left lifting property for g (or g has the right lifting property for i, or the pair (i, g) has the lifting property)
if for every commutative square (solid arrows only)

A

i

��

// X

g

��
B

>>~
~

~
~

// Y

there exists a lifting, i.e., a morphism B −→ X (dotted arrow) which makes both resulting triangles
commute.

1.1. Cofibrantly generated model categories and a lifting theorem. In this section we review
cofibrantly generated model categories and a general method for creating model category structures. If a
model category is cofibrantly generated, its model category structure is completely determined by a set of
cofibrations and a set of acyclic cofibrations. The transfinite version of Quillen’s small object argument

415
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allows functorial factorization of maps as cofibrations followed by acyclic fibrations and as acyclic cofibra-
tions followed by fibrations. Most of the model categories in the literature are cofibrantly generated, e.g.
topological spaces and simplicial sets, as are all model structures involving symmetric spectra which we
discuss in this book.

The only complicated part of the definition of a cofibrantly generated model category is formulating
the definition of relative smallness. For this we need to consider the following set theoretic concepts. The
reader might keep in mind the example of a compact topological space which is ℵ0-small relative to closed
embeddings.

Ordinals and cardinals. An ordinal γ is an ordered isomorphism class of well ordered sets; it can be
identified with the well ordered set of all preceding ordinals. For an ordinal γ, the same symbol will denote
the associated poset category. The latter has an initial object ∅, the empty ordinal. An ordinal κ is a
cardinal if its cardinality is larger than that of any preceding ordinal. A cardinal κ is called regular if for
every set of sets {Xj}j∈J indexed by a set J of cardinality less than κ such that the cardinality of each Xj

is less than that of κ, then the cardinality of the union
⋃
J Xj is also less than that of κ. The successor

cardinal (the smallest cardinal of larger cardinality) of every cardinal is regular.
Transfinite composition. Let C be a cocomplete category and γ a well ordered set which we identify

with its poset category. A functor V : γ −→ C is called a γ-sequence if for every limit ordinal β < γ the
natural map colimV |β −→ V (β) is an isomorphism. The map V (∅) −→ colimγV is called the transfinite
composition of the maps of V . A subcategory C1 ⊂ C is said to be closed under transfinite composition
if for every ordinal γ and every γ-sequence V : γ −→ C with the map V (α) −→ V (α + 1) in C1 for every
ordinal α < γ, the induced map V (∅) −→ colimγ V is also in C1. Examples of such subcategories are the
cofibrations or the acyclic cofibrations in a closed model category.

Relatively small objects. Consider a cocomplete category C and a subcategory C1 ⊂ C closed under
transfinite composition. If κ is a regular cardinal, an object C ∈ C is called κ-small relative to C1 if for
every regular cardinal λ ≥ κ and every functor V :λ −→ C1 which is a λ-sequence in C, the map

colimλ HomC(C, V ) −→ HomC(C, colimλ V )

is an isomorphism. An object C ∈ C is called small relative to C1 if there exists a regular cardinal κ such
that C is κ-small relative to C1.

I-injectives, I-cofibrations and I-cell complexes. Given a cocomplete category C and a class I of maps,
we denote

• by I-inj the class of maps which have the right lifting property with respect to the maps in I.
Maps in I-inj are referred to as I-injectives.

• by I-cof the class of maps which have the left lifting property with respect to the maps in I-inj.
Maps in I-cof are referred to as I-cofibrations.

• by I-cell ⊂ I-cof the class of the (possibly transfinite) compositions of pushouts (cobase changes)
of maps in I. Maps in I-cell are referred to as I-cell complexes.

In [62, p. II 3.4] Quillen formulates his small object argument, which immediately became a standard
tool in model category theory. In our context we will need a transfinite version of the small object argument,
so we work with the ‘cofibrantly generated model category’, which we now recall. Note that here I has to
be a set, not just a class of maps. The obvious analogue of Quillen’s small object argument would seem to
require that coproducts are included in the I-cell complexes. In fact, any coproduct of an I-cell complex is
already an I-cell complex, see [35, 2.1.6].

Lemma 1.2. Let C be a cocomplete category and I a set of maps in C whose domains are small relative to
I-cell. Then

• there is a functorial factorization of any map f in C as f = qi with q ∈ I-inj and i ∈ I-cell and
thus

• every I-cofibration is a retract of an I-cell complex.

Definition 1.3. A model category C is called cofibrantly generated if it is complete and cocomplete and
there exists a set of cofibrations I and a set of acyclic cofibrations J such that
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• the fibrations are precisely the J-injectives;
• the acyclic fibrations are precisely the I-injectives;
• the domain of each map in I (resp. in J) is small relative to I-cell (resp. J-cell).

Moreover, here the (acyclic) cofibrations are the I (J)-cofibrations.

For a specific choice of I and J as in the definition of a cofibrantly generated model category, the
maps in I (resp. J) will be referred to as generating cofibrations (resp. generating acyclic cofibrations).
In cofibrantly generated model categories, a map may be functorially factored as an acyclic cofibration
followed by a fibration and as a cofibration followed by an acyclic fibration.

Definition 1.4. Let C be a model category

R : D −→ C

a functor. We say that R creates a model structure on the category D if the following definitions make D
into a model category: a morphism f in D is a

• weak equivalence if the morphism R(f) is a weak equivalence in C,
• fibration if the morphism R(f) is a fibration in C,
• cofibration if it has the left lifting property with respect to all morphisms in D which are both

fibrations and weak equivalences.

Theorem 1.5. Let C be a model category, D a category which is complete and cocomplete and let

R : D −→ C : L

be a pair of adjoint functors such that R commutes with filtered colimits. Let I (J) be a set of generating
cofibrations (resp. acyclic cofibrations) for the cofibrantly generated model category C. Let LI (resp. LJ) be
the image of these sets under the left adjoint L. Assume that the domains of LI (LJ) are small relative to
LI-cell (LJ-cell). Finally, suppose every LJ-cell complex is a weak equivalence. Then R : D −→ C creates a
model structure on D which is cofibrantly generated with LI (LJ) a generating set of (acyclic) cofibrations.

If the model category C is right proper, then so is the model structure on D.
If C and D are simplicially enriched, the adjunction (L,R) is simplicial, and the model structure of C

is simplicial, then the model structure on D is again simplicial.
If C and D are topologically enriched, the adjunction (L,R) is continuous, and the model structure of

C is topological, then the model structure on D is again topological.

Proof. Model category axiom MC1 (limits and colimits) holds by hypothesis. Model category axioms
MC2 (saturation) and MC3 (closure properties under retracts) are clear. One half of MC4 (lifting properties)
holds by the definition of cofibrations in D.

The proof of the remaining axioms uses the transfinite small object argument (Lemma 1.2), which
applies because of the hypothesis about the smallness of the domains. We begin with the factorization
axiom, MC5. Every map in LI and LJ is a cofibration in D by adjointness. Hence every LI-cofibration or
LJ-cofibration is a cofibration in D. By adjointness and the fact that I is a generating set of cofibrations
for C, a map is LI-injective precisely when the map becomes an acyclic fibration in C after application of
R, i.e., an acyclic fibration in D. Hence the small object argument applied to the set LI gives a (functorial)
factorization of any map in D as a cofibration followed by an acyclic fibration.

The other half of the factorization axiom, MC5, needs the hypothesis. Applying the small object
argument to the set of maps LJ gives a functorial factorization of a map in D as an LJ-cell complex
followed by a LJ-injective. Since J is a generating set for the acyclic cofibrations in C, the LJ-injectives are
precisely the fibrations among the D-morphisms, once more by adjointness. We assume that every LJ-cell
complex is a weak equivalence. We noted above that every LJ-cofibration is a cofibration in D. So we see
that the factorization above is an acyclic cofibration followed by a fibration.

It remains to prove the other half of MC4, i.e., that any acyclic cofibration A −→ B in D has the left
lifting property with respect to fibrations. In other words, we need to show that the acyclic cofibrations are
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contained in the LJ-cofibrations. The small object argument provides a factorization

A −→W −→ B

with A −→ W a LJ-cofibration and W −→ B a fibration. In addition, W −→ B is a weak equivalence
since A −→ B is. Since A −→ B is a cofibration, a lifting in

A //

��

W

∼
��

B

>>

B

exists. Thus A −→ B is a retract of a LJ-cofibration, hence it is a LJ-cofibration. �

In cofibrantly generated model categories fibrations can be detected by checking the right lifting property
against a set of maps, the generating acyclic cofibrations, and similarly for acyclic fibrations. This is in
contrast to general model categories where the lifting property has to be checked against the whole class of
acyclic cofibrations. Similarly, in cofibrantly generated model categories, the pushout product axiom and
the monoid axiom only have to be checked for a set of generating (acyclic) cofibrations:

Lemma 1.6. Let C be a cofibrantly generated model category endowed with a closed symmetric monoidal
structure. If the pushout product axiom holds for a set of generating cofibrations and a set of generating
acyclic cofibrations, then it holds in general.

Proof. For the first statement consider a map i :A −→ B in C. Denote by G(i) the class of maps
j :K −→ L such that the pushout product

A ∧ L ∪A∧K B ∧K −→ B ∧ L
is a cofibration. This pushout product has the left lifting property with respect to a map f :X −→ Y if
and only if j has the left lifting property with respect to the map

p : [B,X] −→ [B, Y ]×[A,Y ] [A,X].

Hence, a map is in G(i) if and only if it has the left lifting property with respect to the map p for all
f :X −→ Y which are acyclic fibrations in C.

G(i) is thus closed under cobase change, transfinite composition and retracts. If i : A −→ B is
a generating cofibration, G(i) contains all generating cofibrations by assumption; because of the closure
properties it thus contains all cofibrations, see Lemma 1.2. Reversing the roles of i and an arbitrary
cofibration j : K −→ L we thus know that G(j) contains all generating cofibrations. Again by the closure
properties, G(j) contains all cofibrations, which proves the pushout product axiom for two cofibrations.
The proof of the pushout product being an acyclic cofibration when one of the constituents is, follows in
the same manner. �

We now spell out the small object argument for symmetric spectra.

Theorem 1.7 (Small object argument). Let I be a set of morphisms of symmetric spectra based on simplicial
sets. Then there exists a functorial factorization of morphisms as I-cell complexes followed by I-injective
morphisms.

Proof. In the first step we construct a functor F from the category of morphisms of symmetric spectra
to symmetric spectra as follows. Given a morphism f : X −→ Y and a morphism i : Si −→ Ti in the set I
we let Di denote the set of all pairs (a : Si −→ X, b : Ti −→ Y ) of morphisms satisfying fa = bi, i.e., which
make the square

Si
a //

i

��

X

f

��
Ti

b
// Y
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commute. We define F (f) as the pushout in the diagram∨
i∈I
∨
Di
Si

∨a //

∨i
��

X

j

��∨
i∈I
∨
Di
Ti // F (f)

The morphisms b : Ti −→ Y and f : X −→ Y glue to a morphism p : F (f) −→ Y such that pj = f .
The factorization we are looking for is now obtained by iterating this construction infinitely often, possibly
transfinitely many times.

We define functors Fn : Ar(Sp) −→ Spec and natural transformations X
jn−→ Fn(f)

pn−→ Y for every
ordinal n by transfinite induction. We start with F 0(f) = X, j0 = Id and p0 = f . For successor ordinal we
set Fn+1(f) = F (pn : Fn(f) −→ Y ) with the morphisms jn+1 = j ◦ jn respectively pn+1 = p(pn). For limit
ordinals λ we set Fλ(f) = colimµ<λ F

µ(f) with morphisms induced by the jµ and pµ. By construction, all
morphisms jn : X −→ Fn(f) are I-cell complexes.

We claim that there exists a limit ordinal κ, depending on the set I, such that for every morphism f
the map pκ : Fκ(f) −→ Y is I-injective. Then f = pκjκ is the required factorization.

We prove the claim under the simplifying hypothesis that for each morphism i ∈ I the source Si is
finitely presented as a symmetric spectrum, i.e., for every sequence Z0 −→ Z1 −→ Z2 −→ . . . the natural
map

colimn Sp(Si, Zn) −→ Sp(Si, colimn Zn)

is bijective. In that case, the first infinite ordinal ω will do the job. Indeed, Fω(f) is the colimit over the
sequence

X = F 0(f)
j1−→ F 1(f)

j2−→ F 2(f) · · · .
Given a morphism i ∈ I and a lifting problem

(1.8) Si
a //

i

��

Fω(f)

pω

��
Ti

b
// Y

there exists a factorization a = can for some n ≥ 0 and some morphism an : Si −→ Fn(f) since Si is finitely
presented (where c : Fn(f) −→ Fω(f) is the canonical morphism to the colimit). The commutative square

Si
an //

i

��

Fn(f)

pωc=pn

��
Ti

b
// Y

is an element in the set Di which is used to define Fn+1(f) = F (pn). Thus the canonical morphism
C : Ti −→ Fn+1(f) makes the diagram

Si
an //

i

��

Fn+1(f)

pn+1

��
Ti

b
//

C

;;wwwwwwwww
Y

commute. Then the composite of C with the canonical morphism Fn+1(f) −→ Fω(f) solves the lifting
problem (1.8). �
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1.2. Bousfield’s localization theorem.

Theorem 1.9 (Bousfield). Let C be a proper model category with a functor Q : C −→ C and a natural
transformation α : 1 −→ Q such that the following three axioms hold:

(A1) if f : X −→ Y is a weak equivalence, then so is Qf : QX −→ QY ;
(A2) for each object X of C, the maps αQX , QαX : QX −→ QQX are weak equivalences;
(A3) for a pullback square

V
k //

g

��

X

f

��
W

h
// Y

in C, if f is a fibration between fibrant objects such that α : X −→ QX, α : Y −→ QY and Qh : QW −→ QY
are weak equivalences, then Qk : QV −→ QX is a weak equivalence.

Then the following notions define a proper model structure on C: a morphisms f : X −→ Y is a
Q-cofibration if and only if it is a cofibration, a Q-equivalence if and only if Qf : QX −→ QY is a weak
equivalence, and Q-fibration if and only if f is a fibration and the commutative square

X
α //

f

��

QX

Qf

��
Y α

// QY

is homotopy cartesian.

The reference is [11, Thm. 9.3]. [note: if Q preserves pullbacks and fibrations, then (A3) is automatic]

1.3. Some useful lemmas.

Lemma 1.10 (Gluing lemma). We consider a commutative diagram

A

α

��

B
g //

β

��

foo C

γ

��
A′ B′

g′
//

f ′
oo C ′

in a model category C in which the morphisms α : A −→ A′ and g′ ∪ γ : B′ ∪B C −→ C ′ are cofibrations
respectively acyclic cofibrations. then the induced morphism on pushouts α ∪ γ : A ∪B C −→ A′ ∪B′ C ′ is a
cofibration respectively acyclic cofibration.

Proof. The map α ∪ γ factors as the composite

A ∪B C
α∪C−−−→ A′ ∪B C

A′∪γ−−−→ A′ ∪B′ C ′ .

The first map α ∪ C is a cofibration (resp. acyclic cofibration) since α is. The second map A′ ∪ γ is a
cofibration (resp. acyclic cofibration) by the assumption of g′ ∪ γ and since

B′ ∪B C

f∪C
��

g′∪γ // C ′

��
A′ ∪B C

A′∪γ
// A′ ∪B′ C ′

is a pushout. �
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2. Compactly generated spaces

An continuous map f : A −→ B of spaces is an h-cofibration if it has the homotopy extension property,
i.e., given a continuous map ϕ : B −→ X and a homotopy H : [0, 1] × A −→ X such that H(0,−) = ϕf ,
there is a homotopy H̄ : [0, 1] × B −→ X such that H̄ ◦ ([0, 1] × f) = H and H̄(0,−) = ϕ. An equivalent
condition is that the map [0, 1]×A ∪0×f B −→ [0, 1]×B has a retraction.

Lemma 2.1. Let f : A −→ B be an h-cofibration and suppose that a is contractible to a point a ∈ A,
relative to a. Then the quotient map q : B −→ B/A that collapses the image of A to a point is a based
homotopy equivalence, where B is based at f(a).

Proof. We let H : [0, 1] × A −→ A be a homotopy from the identity to the constant map at a
that satisfies H(t, a) = a for all t ∈ [0, 1]. The homotopy extension property provides a continuous map
H̄ : [0, 1]×B −→ B extending f ◦H and the identity of B. The map H̄(1,−) : B −→ B then sends A to the
basepoint f(a), so it factors over a continuous map s : B/A −→ B, i.e., which satisfies sq = H̄(1,−). We
claim that s is homotopy inverse, in the based sense, to the quotient map q. The map H̄ is a homotopy from
the identity to qs, and it is based since H̄(t, f(a)) = f(H(t, a)) = f(a). So it remains to find a homotopy
for the other composite.

Since the interval is compact, the map [0, 1] × q : [0, 1] × B −→ [0, 1] × B/A is a quotient map
and so qH̄ : [0, 1] × B −→ B/A factors over a continuous map K : [0, 1] × B/A −→ B/A such that
K([0, 1] × q) = qH̄. Then we have K(0,−)q = qH̄(0,−) = q; since q is surjective, this shows that the
homotopy K starts from the identity of B/A. Similarly we have K(1,−)q = qH̄(1,−) = qsq; since q is
surjective, this shows that the homotopy K ends in the map qs. Finally the homotopy is based because
K(t, q(f(a))) = q(H̄(t, f(a))) = q(H(t, a)) = q(a) for all t ∈ [0, 1]. �

We let f : A −→ B be a continuous maps of based spaces. The reduced mapping cone C(f) of f is
defined as the space

C(f) = ([0, 1] ∧A) ∪f B .

The unit interval [0, 1] is pointed by 0 ∈ [0, 1], so that [0, 1] ∧ A is the reduced cone of A. An equivalent
definition of C(f) is as the pushout:

A

f

��

1∧− // [0, 1] ∧A

j

��
B

i
// C(f)

The cone [0, 1] ∧ A of every based space A is contractible to its base point, relative to the basepoint.
For example, the homotopy

[0, 1]× ([0, 1] ∧A) −→ [0, 1] ∧A , (t, s ∧ a) 7−→ ((1− t)s) ∧ a
does the job. If the map f is an h-cofibration, then so is its cobase change j : [0, 1] ∧ A −→ C(f). So
Lemma 2.1, applied to the map j, yields:

Corollary 2.2. For every h-cofibration f : A −→ B the map C(f) −→ B/A that collapses the image of the
cone of A to a point is a based homotopy equivalence.

In this section we review some properties of compactly generated spaces. The most comprehensive
reference for this category is Appendix A of Lewis’ thesis [44] which, although widely circulated, is un-
published. So during this section we depart from our standing assumption that every space of compactly
generated.

Let us fix some terminology. A topological space is compact if it is quasi-compact (i.e., every open cover
has a finite subcover) and satisfies the Hausdorff separation property (i.e., every pair of distinct points can
be separated by disjoint open subsets).

Definition 2.3. Let X be a topological space.
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• X is weak Hausdorff if for every compact space K and every continuous map f : K −→ X the
image f(K) is closed in X.

• A subset U of X is compactly closed if for every compact space K and every continuous map
f : K −→ X, the inverse image f−1(U) is closed in K.

• X is a Kelley space if every compactly open subset is open.
• X is a compactly generated space if it is a Kelley space and weak Hausdorff.

We denote by Spc the category of topological spaces and continuous maps, by K its full subcategory
of Kelley spaces and by T the full subcategory of Spc and K of compactly generated spaces. We collect
some immediate observations. If K is compact and f : K −→ X continuous, then the image f(K) is always
quasi-compact; if X is Hausdorff, then any quasi-compact subset such as f(K) is closed. In other words,
Hausdorff spaces are also weak Hausdorff spaces. Any point of any space is the continuous image of a
compact space. So in weak Hausdorff spaces, all points and thus all finite subsets are closed. If X is weak
Hausdorff, K compact and f : K −→ X continuous, then the image f(K) is compact [44, Lemma 1.1].

Every closed subset is also compactly closed. One can similarly define compactly open subsets of X by
demanding that for every compact space K and every continuous map f : K −→ X, the inverse image is
open in K. A subset is then compactly open if and only if its complement is compactly closed. Thus Kelley
spaces can equivalently be defined by the property that all compactly open subsets are open.

All compact spaces are compactly generated. [also locally compact ? see Lewis] If X is weak Hausdorff
(respectively a Kelley space, respectively compactly generated) and K is compact, then the X×K with the
product topology is also weak Hausdorff (respectively a Kelley space, respectively compactly generated).
[check; ref or proof]

[ref. to Lewis’ thesis]
If X is any topological space we let kX be the space which has the same underlying set as X, but such

that the open subsets of kX are the compactly open subsets of X. This indeed defines a topology which
makes kX into a Kelley space and such that the identity Id : kX −→ X is continuous. Part (i) of the next
proposition is a fancy way of saying that any continuous map Y −→ X whose source Y is a Kelley space is
also continuous when viewed as a map to kX. If X is weak Hausdorff, then so is kX.

If X is any space we let wX denote the maximal weak Hausdorff quotient of X [defined; does this
preserve Kelley spaces ?].

Proposition 2.4. • The functor k : Spc −→ K is left inverse and right adjoint to the inclusion.
Unit and counit of the adjunction are the identity maps.

• The functor w : K −→ T is right inverse and left adjoint to the inclusion.

The construction of the left adjoint w : K −→ T to the inclusion is not particularly instructive, as it is
obtained by Freyd’s adjoint functor theorem. [give the proof]

There is a useful criterion, due to Lewis [44, App. A, Prop. 3.1], for when a Kelley space X is weak
Hausdorff: if and only if the diagonal subset in X ×X is closed in the K-topology (i.e., compactly closed
in the usual product topology).

It follows formally from part (i) of this proposition that the category K of Kelley spaces has small limits
and colimits. Colimits can be calculated in the ambient category of all topological spaces; equivalently, any
colimits of Kelley spaces is again a Kelley space. To construct limits, we can first take a limit in the ambient
category of all topological spaces; this ‘ambient limit’ need not be a Kelley space, but applying the functor
k : Spc −→ K yields a limit in K. Since k does not change the underlying set, the categories K and Spc
share the property that the forgetful functor to sets preserves all limits and colimits. More loosely speaking,
the underlying set of a limit or colimit in K is what one first thinks of.

An important example where a limit in K resp. T can differ from the limit in Spc is the product of
two CW-complexes X and Y . All CW-complexes are compactly generated [ref?], and the product X × Y
with the usual product topology is a Hausdorff space which comes with a natural filtration (X × Y )(n) =
∪p+q=nX(p)× Y(q), where X(p) is the p-skeleton of the CW structure on X. If X or Y is locally finite, then
the product topology is compactly generated, and then the above filtration makes X×Y into a CW-complex.
In general, however, X × Y may not be a Kelley space, and hence cannot have a CW structure. But the



2. COMPACTLY GENERATED SPACES 423

product in the category K, i.e., the space k(X ×Y ), is always compactly generated and a CW-complex via
the above filtration.

It follows formally from the above and part (ii) of the proposition that the category T of compactly
generated spaces has small limits and colimits. Limits can be calculated in the category K of Kelley spaces
as explained in the previous paragraph. To construct colimits, we can first take a colimit in the category K
of Kelley spaces (or equivalently in Spc); while a Kelley space, this colimit need not be weak Hausdorff, but
applying the functor w : K −→ T yields a colimit in T. The ‘maximal weak Hausdorff quotient’ functor
w : K −→ T is not particularly explicit and may change the underlying set; so one has to be especially
careful with general colimits in T: unlike for Spc of K, the forgetful functor from T to sets need not
preserve colimits. More loosely speaking, the underlying set of colimit in T may be smaller than one first
thinks.

It will be convenient to know some particular instances of diagrams in T where it makes no difference
if we calculate the colimit in the category T or in K respectively Spc.

We call a continuous map f : X −→ Y between topological spaces a closed embedding if f is injective,
the image f(X) is closed in Y and f is a homeomorphism onto its image. The basechange, in Spc or K,
of a closed embedding is again a closed embedding. (Note that there is an ambiguity with the meaning
of ‘embedding’ in general, due to the fact that a general subset of a Kelley space, endowed with the
subspace topology, need not be a Kelley space, and so one may or may not want to apply ‘Kelleyfication’
k : Spc −→ K to the subspace topology. However, closed subsets of Kelley spaces are again Kelley spaces
with the usual subspace topology [this is OK for subsets which are the intersection of an open and a closed
subset], so there is not such ambiguity with the notion of ‘closed embedding’.)

A partially ordered set is a set P equipped with a binary relation ‘≤’ which is reflexive (i.e., x ≤ x
for all x ∈ P ), antisymmetric (i.e., x ≥ y and y ≤ x imply x = y) and transitive (i.e., x ≥ y and y ≤ z
imply x ≤ z). The partially ordered set P is filtered if for every pair of elements x, y ∈ P there exists an
element z ∈ P such that x ≤ z and y ≤ z. [non-empty?] We will routinely interpret a partially ordered set
P as a category without change in notation. In the associated category, the objects are the elements of P
and there is a unique morphism from x to y if x ≤ y, and no morphism from x to y otherwise. Via this
interpretation we can consider functors defined on partially ordered sets.

Proposition 2.5. (i) Given a pushout in the category K of Kelley spaces

X
f //

��

Z

��
Y g

// Y ∪f Z

such that f is a closed embedding, then g is also a closed embedding. If moreover, X,Y and Z are
compactly generated, the so is Y ∪f Z, and hence the diagram is a pushout in T.

(ii) Let P be a filtered partially ordered set and F : P −→ T a functor from the associated poset category.
Let F∞ be the colimit of F in the category K of Kelley spaces (or, equivalently, in Spc) and κi :
F (i) −→ F∞ the canonical map. If for every i ≤ j in P the map F (i) −→ F (j) is injective, then the
maps κi are also injective and the colimit F∞ is weak Hausdorff, thus a colimit of F in the category
T. If moreover, all maps F (i) −→ F (j) are closed embedding, then so are the maps κi : F (i) −→ F∞.

(iii) Let λ be a regular (?) cardinal and X : λ −→ T a λ-sequence of injective maps. Then the colimit
colimλX in the category Spc is again compactly generated and thus a colimit of X in T.

Proof. (i) is [44, Prop. 7.5], (ii) is [44, Prop. 9.3] and (iii) is in Hovey [35, ]. �

An example of Lewis [44, ] shows that a pushout in T along a non-closed embedding need not even be
injective.

The following proposition says that compact spaces are ‘small with respect to closed embeddings’.
Note that if all spaces in the λ-sequence are compactly generated, then by Proposition 2.5 (ii) it makes no
difference whether the colimit is calculated in the category Spc, K or T.
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Proposition 2.6. [35, Prop. 2.4.2] Let λ be an ordinal and X : λ −→ T a λ-sequence of closed embeddings
[def? what happens at limit cardinals ?]. Then for every compact space K the natural map

colimi>λ C(K,Xi) −→ C(K, colimλX))

is bijective.

It is not in general true that C(K,−) commutes with filtered colimits over closed embeddings. An
example from Lewis’ theses (which he credits to Myles Tierney) is the unit interval [0, 1]. A subset of [0, 1]
is closed if and only if its intersection with every countable closed subset J of [0, 1] is closed in J , which
implies that [0, 1] is the filtered colimit of its countable closed subsets, ordered by inclusion. Since [0, 1] is
uncountable, the identity map of [0, 1] does not factor through any of the spaces in the filtered system.

[is there a criterion in terms of the poset P when for every compact space K the natural map

colimi∈P C(K,F (i)) −→ C(K, colimP F ))

is bijective. ? [or even a homeomorphism ?]]

Proposition 2.7. Let {Xi}i∈I be a family of based compactly generated spaces. Then the wedge (one-point
union)

∨
i∈I Xi is compactly generated, thus the coproduct of the family in T. Moreover, for every compact

space K and every continuous map f : K −→
∨
i∈I Xi there is a finite subset J of I such that f factors

through the sub-wedge
∨
i∈J Xi.

Proof. �

Corollary 2.8. Let λ be an ordinal and X : λ −→ T a λ-sequence of compactly generated spaces. If all
maps in the sequence are closed embeddings [def? what happens at limit cardinals ?], then for every point
x ∈ X∅ and every n ≥ 0 the natural map

colimi>λ πn(Xi, x) −→ πn(colimλX,x)

is bijective. If in addition all maps in the sequence are weak equivalences, then so is the transfinite composite
X∅ −→ colimλX.

[check out also Lemma 9.3 of [80]]
There is a suitable version of the compact open topology which gives mapping spaces in the category

T. For spaces X and Y , we let C(X,Y ) denote the set of continuous maps from X to Y . A subbasis for a
topology is given by all sets S(U, f : K −→ X) where U is an open subset of Y , K a compact space and f
a continuous map; the set S(U, f) consists of all those continuous ϕ : X −→ Y such that ϕ(f(k)) ⊂ U . If
X and Y are compactly generated, then the space C(X,Y ) is weak Hausdorff, but not necessarily a Kelley
space. So the mapping space map(X,Y ) is defined as kC(X,Y ), which is then a compactly generated space.
[ref to Lewis]

Theorem 2.9. The category of compactly generated spaces is cartesian closed, i.e., the natural map

map(X × Y,Z) ∼= map(X,map(Y, Z))

is a homeomorphism for all compactly generated spaces X,Y and Z, where the product on the left hand side
is taken in the category T.

[ref to Lewis ?]
A continuous map f : X −→ Y of topological spaces is a weak equivalence if f induces a bijection on

path components and for every point x ∈ X and n ≥ 1 the map πn(f) : πn(X,x) −→ πn(Y, f(x)) is an
isomorphism. An equivalent condition is that for every CW-complex A (possibly empty) the induced map
[A, f ] : [A,X] −→ [A, Y ] on homotopy classes of continuous maps is bijective.

The map f is a cofibration if and only if it is a retract of a relative cell complex [spell out]. The map
f is a fibration if it is a Serre fibration, i.e., has the right lifting property with respect to the inclusions
Dn −→ Dn × [0, 1], x 7→ (x, 0) for all n ≥ 0.
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Theorem 2.10. [35, Thm. 2.4.25] The cofibrations, weak equivalences and (Serre) fibrations make the
category T of compactly generated spaces into a proper model category. The model structure is monoidal
with respect to the cartesian product. [generators]

Although this will not be relevant for us we feel obliged to mention that the weak equivalences, cofi-
brations and (Serre) fibrations also define model structures on the categories Spc of all topological spaces
(this is originally due to Quillen [62, II.3, Thm. 1], proofs can also be found in [23, Prop. 8.3] or [35,
Thm. 2.4.19]) and K of Kelley spaces [35, Thm. 2.4.23]. Since weak equivalences are defined by taking
homotopy classes of continuous maps out of compact spaces the identity kX −→ X is a weak equivalence
for every topological space X. So weak equivalences don’t see any difference between the categories Spc
and K. A more structured way to say this is that the left of the two adjoint functor pairs

Spc
k

// K
incl.oo w //

T
incl.

oo

is a Quillen equivalence. The second pair is also a Quillen equivalence because the right adjoint preserves
and detects weak equivalences and fibrations and because for every cofibrant object A of K the adjunction
unit A −→ wA is an isomorphism, thus a weak equivalence. However, the category T is the only one among
these three model categories which is monoidal, and that is the reason why we work in T. [no: K is also
closed symmetric monoidal...] [Strom model structures a la Cole]

[based versions]
We consider a sequence

X0
f0−−→ X1

f1−−→ X2
f2−−→ · · ·

of based continuous maps between based topological spaces. We want to define the reduced mapping
telescope teliXi of the sequence. We first define the ‘partial telescopes’ Fj and based homotopy equivalences
αj : Xj −→ tel[0,j]Xi by induction on j ≥ 0. We start with tel[0,0]Xi = X0 and α0 = Id. The next partial
telescope tel[0,j+1]Xi is defined as the pushout of the diagram

Fj
αj←−−− Xj

x 7→x∧0−−−−−→ Xj ∧ [0, 1]+ ∪fj Xj+1 .

The map αj+1 is the composite of the homotopy equivalence Xj+1 −→ Xj ∧ [0, 1]+ ∪fj Xj+1 and the
canonical map from the mapping cylinder Xj ∧ [0, 1]+ ∪fj Xj+1 to the pushout Fj+1. The composite
αj+1 ◦ fj : Xj −→ Fj+1 is homotopic, in a basepoint preserving fashion, to the composite of αj and the
canonical map Fj −→ Fj+1. We can now define the reduced mapping telescope as the colimit of the
sequence

F0 −→ F1 −→ F2 −→ · · · .
The composite maps α′j : Xj −→ Fj −→ teliXi then have the property that α′j+1 ◦ fj : Xj −→ Fj+1 is
based homotopic to α′j . Thus for every n ≥ 0 the induced maps on homotopy groups (or sets, for n = 0)
satisfy

πn(α′j+1) ◦ πn(fj) = πn(α′j)

and so they assemble into a map

colimi πn(Xi, xi) −→ πn(teliXi, x∞) .

Proposition 2.11. For every sequence of based compactly generated spaces Xi and based continuous maps
fi : Xi −→ Xi+1 the reduced mapping telescope teliXi is again compactly generated and the natural map

colimi πn(Xi, xi) −→ πn(teliXi, x∞)

is bijective for every n.

Proof. We claim that if all the spaces Xi are compactly generated, then the maps Fj −→ Fj+1 are
all closed embeddings and all the partial telescopes Fj are compactly generated. Proposition 2.5 (ii) then
shows that the telescope is compactly generated and Corollary 2.8 shows that the canonical map

colimj πn(Fj , x∞) −→ πn(teliXi, x∞)
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is bijective for every n. Since αj : Xj −→ Fj is a homotopy equivalence we can replace the group (or set)
πn(tel[0,j]X

i, x∞) by the isomorphic group πn(Xj , xj) to obtain the isomorphism we want.

It remains to prove the claim. The map from Xj to the reduced mapping cone Xj ∧ [0, 1]+ ∪fj Xj+1

which sends x to the class of x ∧ 0 is a closed embedding [...] So its basechange Fj −→ Fj+1 is a closed
embedding and we can use Proposition 2.5 (i) to argue inductively that Fj+1 is compactly generated. �

3. Simplicial sets

The books by May [55], Lamotke [43] and Goerss-Jardine [30] or Chapter 3 of [35] can serve as general
references for simplicial sets and their homotopy theory. [search all these for references...]

We denote by ∆ the simplex category whose objects are the partially ordered sets [n] = {0, . . . , n}
(with the usual order) and whose morphisms are weakly monotone maps. A simplicial set is a contravariant
functor X from ∆ to the category of sets. We often denote the value X([n]) of X at the object [n] by Xn,
and refer to its elements as the n-simplices of X. [introduce di and si]

[morphisms] We denote the category of based simplicial sets by sS
Some important examples of simplicial sets are the representable simplicial sets ∆[n] = ∆(−, [n]) called

the standard n-simplex and its boundary ∂∆[n] defined by

(∂∆[n])m = {α : [m] −→ [n] | α is not surjective} .

Moreover, for every 0 ≤ k ≤ n there is a simplicial subset Λk[n] of ∂∆[n] called its k-th horn and given by

(Λk[n])m = {α : [m] −→ [n] | k 6∈ α([m])} .

Every small category C give rise to a simplicial set NC, called the nerve of C. To define the nerve we
introduce the category [[n]] associated to the ordered set [n]; so the object set of [[n]] is {0, . . . , n} and
there is a unique morphism from i to j if and only if i ≤ j. Every weakly monotone map α : [k] −→ [n]
is the object function of a unique functor [α] : [[k]] −→ [[n]]. In total this gives a fully faithful functor
[−] : ∆ −→ Cat from the simplex category ∆ to the category Cat of small categories. We can then define
the nerve of C by NC = Cat([−], C). In more detail, the k-simplices of the nerve NC are given by

(NC)k = Cat([[k]], C) ,

the set of functors from [[k]] to C. The structure map α∗ : (NC)n −→ (NC)k associated to a weakly
monotone map α : [k] −→ [n] is given by precomposition with the functor [α]. We note that a functor
ϕ : [[k]] −→ C is determined by a string of k composable morphisms

i0
a1−→ i1

a2−→ · · · ak−→ ik

in C. In particular, (NC)0 is the set of objects of C and (NC)1 is the set of morphisms of C.
[BM for a monoid M ]
A simplicial set can be thought of as a combinatorially defined CW-complex. This is made precise by

the functor of geometric realization. For a simplicial set X the geometric realization |X| is the topological
space

|X| =

∫
[n]∈∆

Xn ×∆[n] .

This need some explanation. We denote by

∆[n] = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0,

n∑
i=0

xi = 1}

the topological n-simplex. As n varies, we get a covariant functor ∆[−] : ∆ −→ Spc by sending a weakly
monotone map α : [k] −→ [n] to the affine linear map α∗ : ∆[k] −→ ∆[n] given by

α∗(x0, . . . , xk) = (y0, . . . , yn)

with yj =
∑
α(i)=j xi. [write as coequalizer, quotient space]
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For every simplicial set X, the geometric realization |X| comes with a natural filtration whose p-th term
is the image of the space qpn=0Xn×∆[n] under the quotient map. This filtration gives |X| the structure of
a CW-complex; in particular, the geometric realization of a simplicial set is a compactly generated space.
Thus we can, and will, view geometric realization as a functor | − | : sS −→ T to the category of compactly
generated spaces.

A homeomorphism

(3.1) ∆[n]
∼=−→ |∆[n]|

from the topological n-simplex to the geometric realization of the standard n-simplex is given by the com-
posite of the summand inclusion ∆[n] −→ qm ∆[n]m×∆[m] indexed by Id[n] ∈ ∆[n]n and the quotient map
to |∆[n]|. Under this homeomorphism, the realization |∂∆[n]| of the boundary of the simplex corresponds
to the geometric boundary of the topological n-simplex, i.e., the subspace of tuples (x0, . . . , xn) ∈ ∆[n]
such that xi = 0 for at least one coordinate Xi. Moreover, the realization |Λk[n]| of the k-th horn corre-
sponds to the union of all except the k-th faces of the topological n-simplex, i.e., the subspace of tuples
(x0, . . . , xn) ∈ ∆[n] such that there exists an i 6= k with xi = 0.

The geometric realization |NC| of the nerve is often called the classifying space of the small category C.

Theorem 3.2. The geometric realization functor | − | : sS −→ T has the following properties.

(i) For all simplicial sets K and L the natural map

|K × L| −→ |K| × |L|
is a homeomorphism where the target is the product in the category T of compactly generated spaces.

(ii) For all based simplicial sets K and L the natural map

|K ∧ L| −→ |K| ∧ |L|
is a homeomorphism where the target is the smash product in the category T of compactly generated
based spaces.

(iii) If A and X are simplicial sets and X is fibrant, then the natural map

|map(A,X)| −→ map(|A|, |X|)
is a weak equivalence.

(iv) If A and X are based simplicial sets and X is fibrant, then the natural map

|map(A,X)| −→ map(|A|, |X|)
[this time based; sort out the notation...] is a weak equivalence.

(v) The geometric realization of a Kan fibration between simplicial sets is a Serre fibration of spaces.

References for the proofs: (i): [35, Lemma 3.2.4], plus the fact that limits in the category T of
compactly generated spaces can be formed in the category K of Kelley spaces. [also: Ch. 3 of Gabriel-
Zisman [29] ?] (iii): the original reference is [63], but see also [35, Cor. 3.6.2] [is this in Gabriel-Zisman [29]
?]. �

As a special case of part (ii’) above we observe that for a fibrant based simplicial set X the natural
map

|ΩX| −→ Ω|X|
is a weak equivalence.

The geometric realization functor has an adjoint, the singular complex functor S : Spc −→ sS. For a
topological space X the n-simplices of the simplicial set S(X) are given by

S(X)n : Spc(∆[n], X) ,

the set of continuous maps from the topological n-simplex to X. For weakly monotone map α : [k] −→ [n]
the induced map α∗ : S(X)n −→ S(X)n is precomposition with the affine linear map α∗ : ∆[k] −→ ∆[n].
The adjunction bijection

sS(A,S(X)) ∼= T(|A|, X)
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is quite tautological. A morphism of simplicial sets f : A −→ S(X) gives, for every n-simplex a ∈ An, a
continuous map f(a) : ∆[n] −→ X. As the n-simplices vary, these maps give a continuous map

An ×∆[n] −→ X , (a, y) 7→ f(a)(y) .

These maps are compatible as n varies, so they assemble into a continuous map f̂ : |A| −→ X.
[Since the simplex ∆[n] is a compact space, the identity Id : kX −→ X induces an isomorphism after

taking singular complexes. Same for X −→ wX ?]
[The singular complex functor commuted with filtered colimits over closed embeddings.]
[compare combinatorial homotopy groups with homotopy groups of realization whenever X is Kan]

[realization of simplicial object is diagonal]
A morphism f : X −→ Y of simplicial sets is a weak equivalence if the geometric realization |f | is a

weak equivalence of topological spaces. [equivalent characterizations: |f | is homotopy equivalence; Ex∞ is
homotopy equivalence of ssets; [f,X] is bijection for all Kan simplicial sets X]

The map f is a cofibration if it is dimensionwise injective, or, equivalently, a categorical monomorphism.
The map f is a fibration if it is a Kan fibration, i.e., has the right lifting property with respect to the
inclusions Λk[n] −→ ∆[n] of all horns into simplices. [equivalently: right lifting property for all injective
weak equivalences.]

For every topological space X (in Spc, K or T?) the adjunction counit |S(X)| −→ X is a weak
equivalence and for every simplicial set Y , the adjunction unit Y −→ S(|Y |) is a weak equivalence. [refs...
the second is a formal consequence of the first by the def’n of weak equivalences in sS]

The following model structure on the category of simplicial sets is due to Quillen [62, II.3, Thm. 3];
proofs can also be found in [35, Thm. 3.6.5] and [30, Thm I.11.3]. The Quillen equivalence can be obtained
by combining Theorems 2.4.25 and 3.6.7 of [35]; however the equivalence of the homotopy categories of
CW-complexes and simplicial sets has been know since the 1950’s [ref’s: Gabriel-Zisman [29] ? May [55]?
according to Goerss-Jardine also Kan’s [40]]

Theorem 3.3. The cofibrations, weak equivalences and Kan fibrations make the category sS of simplicial
sets into a proper model category. The model structure is monoidal with respect to the cartesian product.
The adjoint functors of geometric realization and singular complex are a Quillen equivalence

sS
|−| //

T .
S

oo

[generators]

Proposition 3.4. Let B be a countable simplicial set and A a simplicial subset.

Proposition 3.5. Let B be a simplicial set and A a simplicial subset of B such that the inclusion A −→ B
is a weak equivalence. Let C be a countable simplicial subset of B. Then there is a countable simplicial
subset E of B that contains C and such that the inclusion E ∩A −→ E is a weak equivalence.

Proof. For a pair of simplicial sets K ⊆ L and a basepoint x ∈ K0 we consider the relative homotopy
set πk(L,K, x), which for k = 0 is defined as the quotient set π0L/πkK. The inclusion K −→ L is then a
weak equivalence if and only the set πk(L,K, x) consists of a single element for all k ≥ 0.

The simplicial set B is the filtered union of the simplicial subsets C ∪K as K runs through all finite
simplicial subsets of B containing a given basepoint a ∈ A0. The relative homotopy set πk(B,A, a) is then
the filtered colimit of the sets πk(C ∪ K, (C ∪ K) ∩ A, a); but πk(B,A, a) is trivial since A −→ B is a
weak equivalence. So for every n ≥ 1 and every relative homotopy class α ∈ πk(C,C ∩ A) there is a finite
simplicial subsets Kα of B, containing a, such that the image of α under the map

πk(C,C ∩A) −→ πk(C ∪Kα, (C ∪Kα) ∩A)

is trivial. We let F be the union of C and the Kα for all k ≥ 0 and all α ∈ πk(C,C ∩ A). Since C is
countable the set πk(C,C∩A) is also countable [ref]. So F is a countable simplicial subset of B with C ⊆ F
and such that the map

πk(C,C ∩A) −→ πk(F, F ∩A)
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is constant. We iterate this construction with F instead of C, etc, and end up with an ascending sequence

C ⊆ F ⊆ F 2 ⊆ F 3 ⊆ · · ·

of countable simplicial subsets of B. The union E = ∪n≥0F
n is then again countable and the relative

homotopy group

πk(E,E ∩A) ∼= colimn πk(Fn, Fn ∩A)

is trivial since all maps the colimit is taken over are constant. Hence the inclusion E ∩ A −→ E is a weak
equivalence. �

Proposition 3.6. Let G be a finite group, B a G-simplicial set and A a G-invariant simplicial subset of
B such that the inclusion A −→ B is a weak equivalence. Let C be a countable simplicial subset of B (not
necessarily G-invariant). Then there is a countable G-invariant simplicial subset E of B that contains C
and such that the inclusion E ∩A −→ E is a weak equivalence.

Proof. We construct a sequence of countable simplicial subsets En of B starting with E0 = C. For
n > 0 we observe that G · En−1, the union of all G-translates of En−1, is again countable because En−1

is. Proposition 3.5 lets us choose a countable simplicial subset En of B that contains G · En−1 and such
that the inclusion En ∩ A −→ En is a weak equivalence. We let E be the union of the ascending sequence
of simplicial subsets En. Since all the En are countable, so is E. Since G · En ⊆ En+1, the union E is
G-invariant. Since the inclusions En ∩ A −→ En are weak equivalences for all n ≥ 1, so is their union
E ∩A −→ E. �

[based version; realization of simplicial spaces and bisimplicial sets]
The augmented simplicial category ∆+ is the category with objects the finite ordered sets [n] =

{0, . . . , n} for n ≥ −1, where [−1] = ∅ is the empty set, and all weakly monotone maps as morphisms.
Thus ∆+ contains the simplicial category ∆ as a full subcategory and has one additional object [−1] which
is initial and receives no morphisms from [n] for n ≥ 0. An augmented simplicial object is a contravariant
functor from the augmented simplicial category ∆+ to C. An augmented simplicial object X determines,
and is determined by

• the simplicial object obtained by restriction of X to ∆,
• the object X−1 = X([−1]) and
• the morphism d0 : X0 −→ X−1, called the augmentation, induced by the unique morphism

[−1] −→ [0] in ∆+ which has to coequalize the two morphism d0, d1 : X1 −→ X0.

The augmentation d0 : X0 −→ X−1 of an augmented simplicial space X gives rise to a continuous map

|uX| −→ X−1 .

Proposition 3.7. Let X be an augmented simplicial space which admits extra degeneracies. Then the map
|res(X)| −→ X−1 induced by the augmentation is a based homotopy equivalence.

Proof. We let cX−1 denote the constant simplicial space with values X−1. We can define a morphism
of simplicial spaces s−1 : cX−1 −→ uX in simplicial dimension k by the composite of s−1 : X−1 −→ X0 with
the degeneracy morphism s : X0 −→ Xk. We can define a morphism of simplicial spaces d : uX −→ cX−1

in simplicial dimension k by the unique face morphism Xn −→ X−1. These morphisms induce based
continuous maps on geometric realizations

|s−1| : |cX−1| −→ |uX| respectively |d| : |uX| −→ |cX−1| .

Since the composite ds−1 : cX−1 −→ cX−1 is the identity, so is the composite of the realizations of d
and s−1. A homotopy of the other composite |s−1| ◦ |d| : |uX| −→ |uX| is given by the realization of the
morphism of simplicial spaces

H : uX ×∆[1] −→ uX

defined in simplicial dimension k by [...] �
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Proposition 3.8. Let X be an augmented simplicial abelian group which admits extra degeneracies. Then
the chain complex

· · · −→ Xn+1
∂−→ Xn

∂−→ · · ·X1
∂−→ X0

∂−→ X−1 −→ 0

is exact.

Proof. �

4. Equivariant homotopy theory

In this section we review some facts about equivariant homotopy theory over finite groups, with emphasis
on model structures. We let G be a finite group, the most important case for us will be when G = Σn is a
symmetric group.

We denote by TG respectively sSG the categories of G-objects in T or sS. So in the first case an
object is a based compactly generated spaces equipped with a continuous, based left G-action. In the
second case an object is a based simplicial X set equipped with an associative and unital action morphism
G × X −→ X which fixes the basepoint; the category sSG can equivalently be described as the category
of simplicial objects of left G-sets equipped with G-invariant basepoints. Morphisms in TG respectively
sSG are those morphisms in T or sS which commute with the G-action. [limits and colimits in underlying
categories T respectively sS; symmetric monoidal closed structure...]

The following terminology is useful for naming the various model structures. A morphism f : X −→ Y
of based G-spaces is a

• G-cell complex [...]
• G-cofibration if it is a retract of a G-cell complex;
• free G-cofibration if it is a retract of a free G-cell complex;
• weak G-equivalence (respectively weak G-fibration) if the underlying map of spaces is a weak

equivalence (respectively fibration) after forgetting the group action;
• strong G-equivalence (respectively strong G-fibration) if for every subgroup K of G the map of
K-fixed points fK : XK −→ Y K is a weak equivalence (respectively fibration) of spaces.

We note that relative G-CW complexes are G-cell complexes, and thus G-cofibrations, but in a G-cell
complex the cells need not be attached in the order of dimension.

A morphism f : X −→ Y of based G-simplicial sets is a

• G-cofibration if it is a monomorphism, i.e., injective in every simplicial dimension;
• free G-cofibration if it is a monomorphism a nd in every simplicial dimension n the action of G on
Yn is free away from the image f(Xn);

• weak G-equivalence (respectively weak G-fibration) if the underlying map of simplicial sets is a
weak equivalence (respectively fibration) after forgetting the group action;

• strong G-equivalence (respectively strong G-fibration) if for every subgroup K of G the map of
K-fixed points fK : XK −→ Y K is a weak equivalence (respectively fibration) of simplicial sets.

Theorem 4.1 (Weak equivariant model structure). For every finite group G the weak G-equivalences, weak

G-fibrations and free G-cofibrations make the categories TG of based G-spaces and sSG of based G-simplicial
sets into proper model categories. [generators, monoidal]

The weak equivariant model structure is a special case of Quillen’s model structure [62, Ch. II.4,
Thm. 4] on the category of simplicial objects in a category with sufficiently many projectives. [other refs ?
case of spaces ?]

Theorem 4.2 (Strong equivariant model structure). For every finite group G the strong G-equivalences,
strong G-fibrations and G-cofibrations the G-cofibrations, strong G-fibrations and strong G-equivalences
make the categories TG of based G-spaces and sSG of based G-simplicial sets into proper model categories.
[generators, monoidal]
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[can do this more generally for a family of subgroups...]
[for TG: Strom model structures a la Cole]
There is another pair of equivariant model structure which is relevant for the study of symmetric

spectra, namely the mixed model structure. [better name ?] The word ‘mixed’ refers to the fact that this
model structure has the same weak equivalences as the weak equivariant model structure, but the same
cofibrations as the strong equivalent model structure. There has to be a new class of fibrations then, which
we now define. The homotopy fixed points of a G-space (or G-simplicial set) X is the space (simplicial set)
XhG = map(EG,X)G of G-equivariant maps from the free contractible G-space EG to X. The unique
map EG −→ ∗ is equivariant and induces a natural map XG = map(∗, X)G −→ map(EG,X)G = XhG

from the fixed points to the homotopy fixed points. A morphism f : X −→ Y of bases G-spaces or based
G-simplicial sets is a strict G-fibration if it is a strong G-fibration and for every subgroup H of G the square
of spaces (simplicial sets)

(4.3) XH //

fH

��

XhH

fhH

��
Y H // Y hH

is homotopy cartesian.

Theorem 4.4 (Mixed equivariant model structure). For every finite group G the weak G-equivalences, strict

G-fibrations and G-cofibrations make the categories TG of based G-spaces and sSG of based G-simplicial
sets into proper model categories. [generators, monoidal]

In the case of G-simplicial sets, the mixed model structure was established by Shipley in [77, Prop. 1.3].
However, Shipley defines the mixed fibrations as the morphism with the right lifting property for G-
cofibration which are also weak G-equivalences, so we have to prove that this class coincides with our
definition of mixed G-fibration.

Proposition 4.5. Let G be a finite group and f : X −→ Y a morphism of based G-spaces or based
G-simplicial sets. Then the following are equivalent:

(i) f is is a strict G-fibration;
(ii) f is a strong G-fibration and the square

(4.6)

X //

f

��

map(EG,X)

map(EG,f)

��
Y // map(EG, Y )

is homotopy cartesian in the strong G-equivariant model structure;
(iii) f has the right lifting property for all G-cofibrations which are weak equivalences after forgetting the

group action.

Proof. [fix the proof... and generalize to general ground model category] (i)=⇒(ii) Strict G-fibrations
are strong G-fibrations by definition, so it remains to show that the square 4.6 is strongly G-homotopy
cartesian. Since f is a strong G-fibration and EG is G-cofibrant, the map map(EG, f) is a strong G-fibration
by the [adjoint of] the pushout product property. So we may show that the map X −→ Y ×map(EG,Y )

map(EG,X) is a strong G-equivalence.
We fix a G-equivariant based map f : X −→ Y . Let us first assume that f has the right lifting property

for all G-cofibrations which are weak G-equivalences. Then in particular f has the right lifting property
for all G-cofibrations which are strong G-equivalences, so f is a strong G-fibrations, and it remains to show
that the square (4.3) is homotopy cartesian for every subgroup H of G.

We claim that for every G-cofibration K −→ L which is also a weak G-equivalence the induced map

(4.7) map(L,X) −→ map(K,X)×map(K,Y ) map(L, Y )
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is a strong G-fibration and strong G-equivalence. To prove this, we note that for all subgroups H of G and
all boundary inclusions, the G-equivariant pushout product morphism

G/H × (L× ∂∆[n] ∪K×∂∆i[n] K ×∆[n]) −→ G/H × L×∆[n]

is a G-cofibration and weak G-equivalence. Since f has the right lifting property for such maps, by adjoint-
ness the H-fixed points of the map (4.7) have the right lifting property for all boundary inclusions, so they
are acyclic fibrations of spaces (simplicial sets). Since this holds for all subgroups H of G, the map (4.7) is
a strong G-acyclic fibration.

[...fix this...] Now we show that the square of property (ii) is G-homotopy cartesian. Since f is G-
fibration, so is the morphism map(EG, f), and hence it suffices to show that the morphism

X −→ Y ×map(EG,Y ) map(EG,X)

is a G-weak equivalence. The inclusion EG −→ C(EG) of EG into its cone is G-equivariant and an
injective weak equivalence of underlying simplicial sets (but not a G-weak equivalence !). So by the previous
paragraph the induced morphism

map(C(EG), X) −→ map(EG,X)×map(EG,Y ) map(C(EG), Y )

is a G-acyclic fibration. In the commutative square

X = map(∗, X) //

��

map(EG,X)×map(EG,Y ) map(∗, Y )

��
map(C(EG), X) // map(EG,X)×map(EG,Y ) map(C(EG), Y )

the vertical maps are induced by the unique morphism C(EG) −→ ∗ which is a G-equivariant homotopy
equivalence, so induces a homotopy equivalence on mapping spaces. So the top horizontal map is a G-weak
equivalence since the other three maps are.

For the other direction we assume that f is a strict G-fibration. Let i : K −→ L be a G-cofibration
which is also a weak G-equivalence; we have to show that the pair (i, f) has the lifting property. Then i is a
cofibration in the strong equivariant model structure. Since that model structure is monoidal, the induced
map

map(L,X) −→ map(K,X)×map(K,Y ) map(L, Y )

is a strong G-fibration. We show that it is also a strong G-equivalence, [thus a G-acyclic fibration]. Since the
square is G-homotopy cartesian, we can replace the G-fibration f : X −→ Y be the G-fibration map(EG, f)
and show that the G-fibration.

map(L,map(EG,X)) −→ map(K,map(EG,X))×map(K,map(EG,Y )) map(L,map(EG, Y ))

is a G-weak equivalence. This map is isomorphic to

map(L× EG,X) −→ map(K × EG,X)×map(K×EG,Y ) map(L× EG, Y ) .

What we have gained now is that the morphism i × Id : K × EG −→ L × EG is a G-equivariant weak
equivalence between free G-simplicial sets, thus a G-weak equivalence. So the latter morphism is a G-acyclic
fibration by the adjoint of the pushout product property.

By taking G-fixed points we then get an acyclic fibration of simplicial sets

mapG(L,X) −→ mapG(K,X)×mapG(K,Y ) mapG(L, Y )

which is in particular surjective on vertices. This exactly means that f : X −→ Y has the right lifting
property with respect to i : K −→ L. �

The fact that the strong and mixed equivariant model structures share the same class of cofibrations
implies that they also share the same acyclic fibrations. In other words, for a morphism f : X −→ Y in TG

or sSG the following are equivalence:

• f is a strong G-equivalence and strong G-fibration;
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• f is a weak G-equivalence and strong G-fibration and for every subgroup K of G the square (4.3)
of spaces (simplicial sets) is homotopy cartesian;

• f is a weak G-equivalence and mixed G-fibration.

For every finite group G the category of based G-spaces (compactly generated and weak Hausdorff)
and the category of based G-simplicial sets admit three model structures in which equivalence are the
weak equivariant equivalences, i.e., those equivariant morphisms which are weak equivalences of underlying
spaces (respectively simplicial sets). We call these three model structure the weak, tight and mixed model
structures. Propositions ?? can be applied to each of these and yields the projective, tight respective flat
level model structure of Theorem ?? respectively of Theorem ??. We discuss each of the three cases in
slightly more detail.

Example 4.8 (Projective level model structure). For every finite group G the category of based G-spaces
(compactly generated and weak Hausdorff) and the category of based G-simplicial sets admit the following
weak equivariant model structures. An equivariant morphism f : A −→ B of G-spaces (G-simplicial sets) is
a weak equivalence (resp. fibration) if and only if it is a weak equivalence (resp. Serre/Kan fibrations) of
spaces (simplicial sets) after forgetting the G-action. In topological context the morphism f is a cofibration
if it is a retract of a free G-cell complex. In the simplicial context, f is a cofibration if and only if it is
injective and the action of G on B is dimensionwise free away from the image of f .

In both contexts, the cofibrations can equivalently be described as those retracts G-cell complexes
G-CW-complex such that for every non-trivial subgroup K of G the induced map on K-fixed points fK :
AK −→ BK is an isomorphism. [simplicial...] [More details in the appendix...] [First reference: Quillen [62]]
Since fibrations and weak equivalences are defined on underlying spaces (simplicial sets), restriction along
every group homomorphism f : H −→ G preserves fibrations and weak equivalences, so f∗ is a right Quillen
functor. So as G-varies, the weak equivariant model structures define a Σ-model structure on the category
of based spaces respectively simplicial sets.

Proposition ?? provides an associated level model structure on symmetric spectra of spaces (resp.
simplicial sets), which is exact the projective level model structure of Theorem ??. The weak equivariant
model structures are proper and have functorial factorizations, so the projective level model structure
are also proper and have functorial factorizations. This proves part (i) of Theorem ?? respectively of
Theorem ??.

Example 4.9 (Tight level model structure). For every finite group G the category of based G-spaces
(compactly generated and weak Hausdorff) and the category of based G-simplicial sets admit the following
tight equivariant model structures. The weak equivalences are again the equivariant weak equivalences
(equivariant morphisms which are weak equivalences on underlying spaces or simplicial sets). A morphism
f : A −→ B of G-spaces (G-simplicial sets) is a fibration if and only if it is a strong equivariant fibration,
i.e., for every subgroup K of G the induced map on K-fixed points fK : AK −→ BK is a Serre fibration
(respectively Kan fibration). The cofibrations are those retracts G-cell complexes G-CW-complex such that
for every non-trivial subgroup K of G the induced map on K-fixed points fK : AK −→ BK is a weak
equivalence of spaces (resp. simplicial sets). [simplicial...] [More details in the appendix...] [First reference:
Cole [18]] Since the weak equivalences are defined on underlying spaces (simplicial sets), restriction along
every group homomorphism f : H −→ G preserves weak equivalences. [Fibrations...], so f∗ is a right
Quillen functor. So as G-varies, the tight equivariant model structures define a Σ-model structure on the
category of based spaces respectively simplicial sets.

Proposition ?? provides an associated level model structure on symmetric spectra of spaces (resp.
simplicial sets), which is exact the tight level model structure of Theorem ??. The tight equivariant model
structures are proper and have functorial factorizations, so the tight level model structure are also proper
and have functorial factorizations. This proves part (ii) of Theorem ?? respectively of Theorem ??.

Example 4.10 (Flat level model structure). [change projective to flat...] For every finite group G the cat-
egory of based G-spaces (compactly generated and weak Hausdorff) and the category of based G-simplicial
sets admit the following weak equivariant model structures. An equivariant morphism f : A −→ B of
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G-spaces (G-simplicial sets) is a weak equivalence (resp. fibration) if and only if it is a weak equivalence
(resp. Serre/Kan fibrations) of spaces (simplicial sets) after forgetting the G-action. In topological context
the morphism f is a cofibration if it is a retract of a free G-cell complex. In the simplicial context, f is a
cofibration if and only if it is injective and the action of G on B is dimensionwise free away from the image
of f .

In both contexts, the cofibrations can equivalently be described as those retracts G-cell complexes
G-CW-complex such that for every non-trivial subgroup K of G the induced map on K-fixed points fK :
AK −→ BK is an isomorphism. [simplicial...] [More details in the appendix...] [First reference: Quillen [62]]
Since fibrations and weak equivalences are defined on underlying spaces (simplicial sets), restriction along
every group homomorphism f : H −→ G preserves fibrations and weak equivalences, so f∗ is a right Quillen
functor. So as G-varies, the weak equivariant model structures define a Σ-model structure on the category
of based spaces respectively simplicial sets.

Proposition ?? provides an associated level model structure on symmetric spectra of spaces (resp.
simplicial sets), which is exact the projective level model structure of Theorem ??. The weak equivariant
model structures are proper and have functorial factorizations, so the projective level model structure
are also proper and have functorial factorizations. This proves part (i) of Theorem ?? respectively of
Theorem ??.

================================================
Now for some homotopy theory. Given enriched functors α : J −→ J′ and X : J −→ T where J and

J′ are small, we construct left and right homotopy Kan extensions of X along α. For this purpose we first
define a simplicial object B•(α,J, X) in the category of enriched functors from J′ to T, called the two-sided
bar construction. The functor of k-simplices is given by

Bk(α,J, X) =
∨

(i0,...,ik)∈(obJ)k+1

FJ′

ik
∧ J(ik−1, ik) ∧ · · · ∧ J(i0, i1) ∧Xi0 .

The face maps are given by the coaction of J on FJ′

ik
through α, composition in J respectively the action on

X [spell out]. The degeneracy maps are given by the identity morphisms in J. We note that the coequalizer

of the two face map d0.d1 : B1(α,J, X) −→ B0(α,J, X) is precisely the coend FJ′

• ∧J X•, which is the
(ordinary) left Kan extension of X along α.

We define the homotopy Kan extension αh∗(X) as the realization of this simplicial functor, i.e.,

αh∗(X) = |B•(α,J, X)| .

[define augmented simplicial object with B−1(α,J, X) = X] We thus obtain a natural morphism αh∗(X) −→
α∗(X).

Now consider the special case where J = J+ and J′ = (J ′)+ arise from an ordinary categories J by giving
then the discrete topology and adding disjoint basepoints to the morphism sets, and where α : J −→ J′

arises similarly from an ordinary functor a : J −→ J ′. Then the homotopy Kan extensions αh∗(X) can be
presented in a slightly different form. In fact the J′-functor Bk(α,J, X) is then isomorphic to∨

(a1,...,ak)∈(NJ)k

FJ′

ik
∧Xi0 ;

this wedge is indexed over all k-simplices of the nerve of the category J , i.e., strings of k composable
morphisms

i0
a1−→ i1

a2−→ · · · ak−→ ik

in J . The face maps are given by the coaction of J on FJ′

ik
through α, composition in J respectively the

action on X [spell out]. The degeneracy maps are given by the identity morphisms in J.
We discuss two important special cases of homotopy Kan extensions.
Homotopy colimits. We can take the target category J′ as the trivial category ∗, i.e., with only one

object and one identity morphism. If α : J −→ ∗ [should the target have morphisms S0?] is the unique
functor (which is automatically enriched), then the (ordinary) Kan extension α∗X of an enriched functor
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X : J −→ T is the enriched colimit colimJX [explain]. If we now use the ‘homotopy’ version of the Kan
extension we obtain the homotopy colimit αh∗(X). Since the functor α is uniquely determined it is customary
to use a different notation and write hocolimJX for αh∗(X).

In the case where J = J+ arises from an ordinary category J by giving it the discrete topology and
adding disjoint basepoints to the morphism sets, the enriched colimit colimJX is just the ordinary colimit
colimJ X of X over J . The homotopy colimit hocolimJX is then also written hocolimJ X. [nerve and
classifying space as hocolims]

Homotopy coends. Let G : Jop −→ T and X : J −→ T be continuous functors. We can define
a simplicial object B•(X,J, α) in the category of enriched functors from J′ to T, called the two-sided bar
construction. The functor of k-simplices is given by

Bk(G,J, X) =
∨

(i0,...,ik)∈(obJ)k+1

Gik ∧ J(ik−1, ik) ∧ · · · ∧ J(i0, i1) ∧Xi0 .

The face maps are given by the coaction of J on Gik through α, composition in J respectively the action on
X [spell out]. The degeneracy maps are given by the identity morphisms in J. We note that the coequalizer
of the two face map d0.d1 : B1(G,J, X) −→ B0(G,J, X) is precisely the coend G ∧J X.

We define the homotopy coend G ∧hJ X as the realization of this simplicial functor, i.e.,

G ∧hJ X = |B•(G,J, X)| .

[define augmented simplicial object with B−1(G,J, X) = G ∧J X] We thus obtain a natural morphism
G ∧hJ X −→ G ∧hJ X from the homotopy coend to the coend.

[under cofibrancy conditions, weak equivalences in G or X induce weak equivalences of homotopy
coends]

Proposition 4.11. (i) Homotopy coend commutes with colimits and smash product with a based space
in both variables.

(ii) Natural isomorphism G ∧hJ X ∼= Xop ∧hJop Gop
(iii) Let g : G −→ G′ be a natural weak equivalence of enriched Jop-functors and let ϕ : X −→ X ′ be

a natural weak equivalence of enriched J-functors. Suppose in addition that G, G′, X and X ′ are
objectwise cofibrant as based spaces [+cofibrancy in J]. Then the induced map g ∧hJ ϕ : G ∧hJ X −→
G′ ∧hJ X ′ of homotopy coends is a weak equivalence.

(iv) Let X be an enriched J-functor and j an object of J. Then the augmentation

J(−, j) ∧hJ X −→ Xj

is a homotopy equivalence.
(v) Let G be an enriched Jop-functor and j an object of J. Then the augmentation

G ∧hJ J(j,−) −→ Gj

is a homotopy equivalence.

Proof. (?) Use the ‘orientation reversal’ automorphism of the simplicial category ∆.
(ii) The space of k-simplices of the simplicial space B•(J(−, j),J, X) is given by

Bk(J(−, j),J, X) =
∨

(i0,...,ik)∈(obJ)k+1

J(ik, j) ∧ J(ik−1, ik) ∧ · · · ∧ J(i0, i1) ∧Xi0 .

Since j is fixed we can define ‘extra degeneracy maps’

s−1 : Bk(J(−, j),J, X) −→ Bk+1(J(−, j),J, X)

by including into the summand where ik = j via the identity morphism of the object j. For k ≥ −1, where
B−1(J(−, j),J, X) = Xj . The extra degeneracies satisfy the relations [...] which means that the realize to
a homotopy equivalence between J(−, j) ∧hJ X = |B•(J(−, j),J, X)| and Xj .

(iii) If we replace J by the opposite category Jop, this becomes an instance of (ii). �
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Bar resolutions. We have a bifunctor J(−,−)opJ ∧J −→ T; if we fix a particular value in one if the two
variables, we obtain co- respectively contravariant representable functors. For fixed j, the homotopy coend
J(−, j) ∧hJ X yields a based space, and as j varies we obtain another covariant functor X\ : J −→ T given
by (X\)j = J(−, j) ∧hJ X. The augmentations provide a natural transformation of J-functors X\ −→ X
which is objectwise a homotopy equivalence by Proposition 4.11.

[Can also view this as a special case of the homotopy Kan extension, X\ = Idh∗(X), by taking α as
the identity functor the category J. Then restriction along α does not do anything, and so the ordinary
left and right Kan extension functors along α = IdJ do not do anything either.] Homotopy Kan extension,
however, do have an effect. We refer to X\ as the bar resolution of X. The advantage of the resolution X\

over the original functor is that X\ tends to be ‘free’ (or ‘projective’, or ‘cofibrant’), see for example [...]
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Index

A[X], linearization 280

A∨, Pontryagin dual 263

B(n), 142

BO, 60

BP , Brown-Peterson spectrum 142

BP 〈n〉, 142

BSO, 60

BSU , 60

BSp, 60

BSpin, 60

BU , 60

CM , 336

DX, Spanier-Whitehead dual 291

E(n), Johnson-Wilson spectrum 142, 311

Ek(X), E-cohomology of X 270

Ek(X,A), E-cohomology of X with coefficients in A
288

Ek(X), E-homology of X 270, E-homology of X
308

Ek(X,A), E-homology of X with coefficients in A 288

F (Y, Z), derived function spectrum 243

FkX, k-skeleton 93, k-skeleton 347

FmK, free symmetric spectrum 42

FmL, free symmetric spectrum 344

G-equivalence

weak, see weak G-equivalence, see weak G-equivalence

G-fibration

strict, see strict G-fibration, see strict G-fibration

strong, see strong fibration, see strong fibration

weak, see weak fibration, see weak fibration

GmL, semifree symmetric spectrum 43, semifree
symmetric spectrum 344

HA, Eilenberg-Mac Lane spectrum 16

Hk(X,A), cohomology with A-coefficients 279

Hk(X,A), homology with A-coefficients 279

K(n), periodic Morava K-theory 142

KO, periodic real topological K-theory 22, 205

KU , 205

L .m X, twisted smash product 45

LkX, k-th latching space 93, k-th latching object

347

MO, unoriented Thom spectrum 17, 18

MOP , periodic unitary Thom spectrum 128

MSO, oriented Thom spectrum 17, 18

MSU , special unitary Thom spectrum 19

MSp, symplectic Thom spectrum 19

MSpin, spin Thom spectrum 17

MU , unitary Thom spectrum 19

MUP , periodic unitary Thom spectrum 147

M ∧R N , smash product of R-modules 385

Mk(R), matrix ring spectrum 52

NC, nerve of a category 426

P (n), 142

PX, symmetric algebra 93

P i, 318

PmL, co-semifree symmetric spectrum 60

PnX, n-th Postnikov section 296

Qi, Milnor element 299

R-local, 300

RM , monoid ring spectrum 52

R[1/x], 54, 136

Rop, opposite ring spectrum 52, opposite ring

spectrum 124

RmL, co-free symmetric spectrum 61

S(K, f), 285

Sn, n-sphere 5

TX, tensor algebra 92

X〈n〉, 295

XQ, rationalization of X 301

X(p), p-localization of X 300

Ap, dual mod-p Steenrod algebra 324

Ap, mod-p Steenrod algebra 317

∆[n], standard simplex 426

∂∆[n], boundary of a simplex 426

∆[n], topological simplex 426

Fin, category of standard finite sets 7

Ho(C), homotopy category of a cofibration category
392

Hom(X,Y ), 50

HomR(M,N), function spectrum for R-modules 386

In, 177, 186

Λk[n], horn of a simplex 426

L, linear isometries operad 370

M, injection monoid 173

Ω-spectrum, 63

Ω∞sh∞X, = telm Ωm shmX 68, 137, 182

Pn, 177

SW, Spanier-Whitehead category 289

S(X), singular complex 34

Σ, suspension in the stable homotopy category 228

Σ∞, suspension spectrum 15, 58

Sqi, 317

441
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Sq1, 338

Θi, Kervaire invariant class 332

π̂k, naive homotopy group 11

α1, class in (2p− 3)-stem 333

∆, simplex category 426

∆+, augmented simplex category 429

Γ, category of finite based sets 57, category of finite

based sets 150

I, category of finite sets and injections 57

K, category of Kelley spaces 422

K(A, T ) homotopy category of an additive category with

translation , 411

K(C), K-theory of a permutative category 164

N, sequential index category 170

O, orthogonal index category 170

Σ, symmetric index category 170

ΣR, 409

Spc, category of topological spaces 422

T, category of compactly generated topological spaces

5, 422

U, unitary index category 208

β, mod-p Bockstein operation 269

β1, class in (2p(p− 1)− 2)-stem 333

sS, 5, category of based simplicial sets 426

End(X), endomorphism operad 371

χn,m, shuffle permutation 10

∪1, ∪1-construction 407

diagH, diagonal of an I-spectrum 184

diagiX
i, 32

.m(L,X), equivariant function spectrum 47

η, Hopf map in 1-stem 12, 319, 320, 332, Hopf map in
1-stem 407

ηL,X , ?? 45

evm, evaluation functor at level m 43

γ, 218, 392

λ̂x, 125

ι, stabilization map 11, stabilization map 23

ιnm, true fundamental class 108

κ, class in 14-stem 333

λ̄A, natural morphism .A −→ ΩA 71

λ̂A, natural morphism S1 ∧ .A −→ A 71

λ̃A, natural morphism A −→ Ω(shA) 67

λ
(m)
A , natural morphism Sm ∧A −→ shm A 50

λX , natural morphism S1 ∧X −→ shX 37

λx, left multiplication by x 124

CP∞, 139

D, Shipley’s detection functor 192

P, orthogonal detection functor 192

SA, Moore spectrum 284

SM , spherical monoid ring 51

S, sphere spectrum 12

S̄, truncated sphere spectrum 95

S[k], truncated sphere spectrum 201

S/p, mod-p Moore spectrum 283, mod-p Moore

spectrum 287, 320

S/p∞, Moore spectrum for Z/p∞ 303

S[1/m], sphere spectrum with m inverted 53, 285

Sn, n-dimensional sphere spectrum 249

map(X,Y ), mapping space 49, mapping space 349

n, standard finite set {1, . . . , n} 7

ν, Hopf map in 3-stem 15, 319, 320, 332

νk, k-th latching morphism 347

πs
k, k-th stable stem 12

ψA,Y , natural isomorphism ΣF (Y,A) −→ F (Y,ΣA)

247

shW , shift of an M-module 178

shX, shifted spectrum 344

sh!, shift homomorphism for true homotopy groups 203

SHC, stable homotopy category 217

SHC[, stable homotopy category of flat spectra 239

SHCc, stable homotopy category of finite spectra 294

SHCQ, rational stable homotopy category 302

σ, Hopf map in 7-stem 15, 319, 320, 332

L /m A, twisted smash product 345

Sp, category of symmetric spectra 9, 34

SpT, category of symmetric spectra of spaces 9

SpsS, category of symmetric spectra of simplicial sets

34

SpO, orthogonal spectrum 143

SpU, unitary spectrum 146

Sp[, category of flat symmetric spectra 239

SpN, category of sequential spectra 23

SpC , category of symmetric spectra in C 344

Sp≤k, 201

τi, exterior generator of dual Steenrod algebra 326

〈α, β, γ〉, Toda bracket 403

〈f, x〉, Kronecker pairing 273

teliX
i, mapping telescope 32

Oper(A,n,B,m), 314

StOp(A,B, i), 315

., induction 40

.X, induced spectrum 344

L .m A, twisted smash product 345

ε, class in 8-stem 15, 332

|Y |, geometric realization 34

ξ, ??? 87

ξi, polynomial generator of dual Steenrod algebra 325

c, natural map π̂kX −→ πkX 107

ci, class in Ext3,∗A (F2,F2) 332

d, shift operator 174

f∗, restriction of scalars 387

f−1W , localization of an M-module 132

f−1X, 130

f!, coextension of scalars 387

f∗, extension of scalars 387

hi, class in Ext1,2
i

A (F2,F2) 331

k(n), connective Morava K-theory 142

ko, connective real topological K-theory 22, 408

v−1
1 S/p, Moore spectrum with inverted Adams map

283

ι̂nm, naive fundamental class 108

G-equivalence

strong, see strong G-equivalence, see strong

G-equivalence

A∞ operad, 370

Adams differential, 332

Adams map, 283, 313

Adams spectral sequence, 328

Adem relations
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2-primary, 317

odd-primary, 318

adjunction bijection

for (K ∧ −.map(K,−)), 6

approximation property, 410

arithmetic square, 304

assembly map, 148, 280

associative operad, 370

augmentation, 429

bar resolution, 436

Barratt-Eccles operad, 370

bilinearity diagram

of a bimorphism, 81, 345

bimorphism, 81, 345

Bockstein, 314, 317

mod-p, 318

Bockstein morphism, 280

of an extension, 267

Bockstein operation

mod-p, 269

Bockstein. mod-p, 317

Bott class, 22, 139

Bott periodicity, 161

Bott periodicity theorem, 22

boundary

of a simplex, 426

bounded below, 292

Bousfield class, 312

Bousfield localization, 309

at a set of primes, 300

smashing, 311

Brown-Comenetz dual, 263

Brown-Peterson spectrum, 13, 142

C-equivalence, 307

C-local, 307

C-localization, 307

Cartan formula, 317, 318

for spectrum cohomology, 323

Cartan-Serre basis

of the Steenrod algebra, 326

category with cofibrations and weak equivalences, 55

cell complex, 416

central map, 10, 126

chain complex

of a symmetric spectrum, 336

classifying space

of a category, 427

closed embedding, 423

cobordism spectrum, see Thom spectrum

coextension of scalars, 387

cofibrantly generated, 416

cofibration

level, 98

of simplicial sets, 428

of spaces, 424

cofibration cateogory

stable, 394

cohomology

generalized, 269

of a symmetric spectrum, 270, 279, 288

cohomology operation, 314

reduced, 314

stable, 315

cohomotopy group, 227

colimit

in T, 423

of symmetric spectra, 35

collaps morphism

of a suspension, 394

commutative operad, 370

compact, 255, 291

compactly generated, 422

compactly open, 422

completion

p-adic, 303

profinite, 303

cone functor

of a cofibration category, 394

connected cover, 295

connecting homomorphism, 27, 29

for true homotopy groups, 112, 123

connecting morphism

in the stable homotopy category, 229

of a cofibration, 396

connective, 264, 335

connective cover

of a spectrum, 383

of an O-algebra, 382

connective real K-theory

mod-2 (co-)homology, 327

continuous functor, 147

∪1-construction, 407

cup1 product, 338

degree shift

of a graded object, 132

derivation, 298

detection functor, 191, 192

orthogonal, 192

Shipley’s, 192

diagonal, 32

of an I-functor, 131

of an I-spectrum, 184

of the mod-p Steenrod algebra, 322

diagonalizable functor, 149

distinguished triangle

elementary, 229, 397

in Ho(C), 397

in opposite category, 334

in the stable homotopy category, 229

Dold operad, 370

dual

Brown-Comenetz, see Brown-Comenetz dual

Pontryagin, see Pontryagin dual

Spanier-Whitehead, 291, see Spanier-Whitehead dual

dual Hopf algebra, 324

dual Steenrod algebra, 324

duality

of the stable homotopy category, 291

dualizable, 294
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E∞ operad, 370

E-acyclic, 308

E-cohomology, 270

with coefficients, 288

E-equivalence, 308

E-homology, 270, 308

with coefficients, 288

E-local, 308

E-localization, 308

Eilenberg-Mac Lane space, 314

Eilenberg-Mac Lane spectrum, 16, 76, 150, 165, 225, 266,

284, 301, 383

generalized, 302

of an I-functor, 208

of an M-module, 177

endomorphism operad, 371

endomorphism ring spectrum, 51

equivariant function spectrum, 47

essential map, 319

evaluation morphism, 243

exact functor, 245

between cofibration categories, 409

Ext p-completion, 306

extension of scalars, 387

exterior product

in E-(co)homology, 272

in ordinary (co)homology, 281

fibration

injective, 365

of simplicial sets, 428

of spaces, 424

finite spectrum, 292

fixed points, 353

flat cofibration

in SpC , 349, 363

flat level model structure

on SpC , 356

flat resolution, 102, 192

flat symmetric spectrum, 98, 103, 104

free orthogonal spectrum, see orthogonal spectrum, free

free symmetric spectrum, see symmetric spectrum, free

function ring spectrum, 53

function spectrum, 50

derived, 243

functor

cohomological, 257

enriched, 170

exact, 245

homological, 257

functorial factorization

in SpC , 358

fundamental class

of S, 115

of Sn, 249

of FmSn, 204

naive, 108

true, 108

of an Eilenberg-Mac Lane space, 225, 314, 337

Γ-category, 164

Γ-space, 150

Eilenberg-Mac Lane, 165

special, 154

very special, 154

generating hypothesis, 294

generating set

weak, 255, 262

generator

of a triangulated category, 262

weak, 255

geometric realization

of a simplicial set, 426

of a symmetric spectrum of spaces, 34

h-cofibration, 28, 421

Hausdorff space

weak, see weak Hausdorff space

heart

of a t-structure, 266

homology

generalized, 269, 308

of a symmetric spectrum, 270, 279, 288, 308

homotopy

of spectrum morphisms, 62

homotopy category

of a cofibration category, 392

of an additive category with translation, 411

universal property, 392

homotopy colimit, 271, 283, 435

in a triangulated category, 256

in the stable homotopy category, 258

of a sequence, 256

homotopy equivalence

of symmetric spectra, 63

homotopy fiber, 28, 112

homotopy fixed points, 353, 431

homotopy group

mod-p, 313

naive, see naive homotopy group

of a space, 6

of spheres, 12

relative to a class, 204

true, see true homotopy group

homotopy Kan extension, 434

homotopy limit

in the stable homotopy category, 307, 309

homotopy module, 253

homotopy ring spectrum, 253, 272, 273

Hopf algebra

dual, see dual Hopf algebra

Hopf invariant, 330

Hopf map, 12, 15, 319, 320, 330, 332

horn

of a simplex, 426

Hurewicz homomorphism, 282, 303

Hurewicz theorem

for spectra, 282

HZ-local, 312

I-functor, 208

I-space, 57
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indeterminacy

of a Toda bracket, 405, 406

induction, 40, 344

and stable equivalences, 72

induction isomorphism

of true homotopy groups, 202

injection monoid, 173, 186, 371

injection operad, 123, 211, 213, 370

injective class, 354

inner product space, 206

invertible, 249, 294

Johnson-Wilson spectrum, 142, 311

juggling formula

for Toda brackets, 405, 406

k-invariant, 298

K-local, 313

K-theory

algebraic

of a category with cofibrations and weak

equivalences, 55

of a ring, 166

Morava, 142

of a permutative category, 164

topological, 20, 22, 139, 149, 161, 205, 283, 303

Künneth theorem, 281

Kan extension, 172

homotopy, see homotopy Kan extension

Kan fibration, 428

Kelley space, 422

Kervaire invariant, 332

kill

homotopy class, 127

regular sequence, 127

Kronecker pairing, 273

in mod-p homology, 339

in ordinary homology, 281

latching morphism, 347

latching object, 347

latching space, 93, 96

of semifree spectra, 95

of twisted smash products, 96

left lifting property, 349, 415

left multiplication

by a map, 124

level

of a sequential spectrum, 23

of a symmetric spectrum, 9

level acyclic cofibration, 99

level cofibration, 98, 350

in SpC , 349, 363

level equivalence

in SpC , 349, 363

strong, 383

level fibration

in SpC , 354, 363

strong, 383

level model structure

flat, see flat level model structure, 433

positive, see positive level model structure

positive projective, see positive projective level model
structure

projective, see projective level model structure, 433

strong, see strong level model structure

tight, 433

lifting property

left, see left lifting property

of a pair of morphisms, 349

right, see right lifting property

limit

in T, 423

of symmetric ring spectra, 36

of symmetric spectra, 35

linear isometries operad, 370

linearization

of a space, 16

of a spectrum, 280

localization

Bousfield, see Bousfield localization

of a spectrum, 300

of an abelian group, 300

smashing, 313

localizing subcategory, 262

long exact sequence

of naive homotopy groups, 27, 29

of true homotopy groups, 112

loop space, 6

loop spectrum, 23, 37, 177

M-module, 173

tame, 173

map, 49

mapping cone, 25, 27, 112, 229, 320

mapping space, 49, 349

mapping telescope, 32

reduced, 425

matrix ring spectrum, 52, 124

Milnor basis

of the Steenrod algebra, 326

Milnor element, 299

Milnor sequence, 258

mod-p Moore spectrum, 301

model category

cofibrantly generated, 416

model structure

creating, 417

flat level, see flat level model structure

for G-spaces/G-simplicial sets

mixed, 431

strong, 430

weak, 430

for R-modules, 386

for simplicial sets, 428

for spaces, 425

for symmetric spectra

flat level, 364

injective level, 365

positive level, 365

projective level, 363

stable, 366

positive level, see positive level model structure
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positive projective level, see positive projective level

model structure

projective level, see projective level model structure

strong level, see strong level model structure

on SpC , 383

module

over a symmetric ring spectrum, 10, 385

over homotopy ring spectrum, see homotopy module

module spectrum, 385

monoid ring

spherical, see spherical monoid ring

monoid ring spectrum, 52, 124

Moore space, 320

Moore spectrum, 284, 300, 303

mod-p, 255, 283, 287

mod-2, 287

Morava K-theory

connective, 142

periodic, 142

morphism

of module spectra, 10

of sequential spectra, 23

of symmetric ring spectra, 10

of symmetric spectra, 9, 344

of triangles, 227

multiplication

in homotopy of symmetric ring spectrum, 122

in naive homotopy of symmetric ring spectrum, 213

in stable stems, 13

n-connected, 264

naive homotopy group, 11, 23

of a loop spectrum, 178

of a product, 32, 181

of a shift, 37

of a suspended spectrum, 24, 178

of a symmetric ring spectrum, 213

of a twisted smash product, 46

of a wedge, 30

of shift adjoint, 41

nerve

of a category, 426

Ω-spectrum, 17, 225

positive, 20, 225

operad, 368

A∞, see A∞ operad

E∞, see E∞ operad

associative, see associative operad

Barratt-Eccles, see Barratt-Eccles operad

commutative, see commutative operad

Dold, see Dold operad

injection, see injection operad

linear isometries, see linear isometries operad

of categories, 370

of sets, 370

of simplicial sets, 370

of spaces, 370

of symmetric spectra, 368

surjection, see surjection operad

orthogonal ring spectrum, 143

orthogonal spectrum, 143

coordinate free, 206

free, 144

p-local spectrum, 300

pairing

Kronecker, see Kronecker pairing

of true homotopy groups, 116, 252

partially ordered set

filtered, 423

pentagon condition

for a homotopy ring spectrum, 254

for a smash product, 85, 346

periodic self-map, 283

permutative category, 162

Picard category, 167

Pontryagin dual, 263

positive level model structure

on SpC , 358

positive projective level model structure

on SpC , 358

Postnikov section

of a spectrum, 296

of an O-algebra, 382

product

exterior, see exterior product

on true homotopy groups, 116, 252

projective cofibration

in SpC , 363

projective level model structure

on SpC , 355

pushout product, 367

pushout product morphism, 351

rational spectrum, 301

rationalization

of a spectrum, 301

regular ideal, 127

regular sequence, 127

relative skeleton

of a morphism, 348

representability

of cohomological functors, 262

of cohomology operations, 314

of homotopy groups, 225

of stable cohomology operations, 316

representable functor

enriched, 172

restriction of scalars, 387

right lifting property, 349

ring spectrum

Eilenberg-Mac Lane, 123

orthogonal, see orthogonal ring spectrum

symmetric, see symmetric ring spectrum

up to homotopy, see homotopy ring spectrum

roots of unity, 54

S·-construction, 55

S-duality, see Spanier-Whitehead duality

semifree symmetric spectrum, see symmetric spectrum,
semifree

semistable, see symmetric spectrum, semistable
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sequential spectrum, 23

Serre fibration, 424

shift, 37, 178, 344

and stable equivalences, 76

of a free spectrum, 44, 47

of semifree spectrum, 44, 47

of twisted smash product, 196

shift homomorphism, 178

for true homotopy groups, 203

shift operator, 174

shuffle, 46

simplex

standard, 426

topological, 426

simplex category, 426

simplicial functor, 148

simplicial object

augmented, 429

simplicial set, 426

singular complex

of a space, 427

of a symmetric spectrum of simplicial sets, 34

skeleton

of a symmetric spectrum, 93, 145

of semifree spectra, 95

of twisted smash products, 96

relative, see relative skeleton

small object argument, 416

smash product, 81

derived, 239

of R-modules, 385

of a space and symmetric spectrum, 36

of an I-space and symmetric spectrum, 57

of symmetric ring spectra, 92

of symmetric spectra, 83

twisted, see twisted smash product

with semifree symmetric spectrum, 87

Spanier-Whitehead category, 289

Spanier-Whitehead dual, 291, 294

special Γ-category, 164

special Γ-space, 154

spectral sequence

for true homotopy groups, 188

naive-to-true, 188, 211

spectrum

connective, 312

finite, 291

orthogonal, see orthogonal spectrum

rational, 301

sequential, see sequential spectrum

symmetric, see symmetric spectrum

unitary, see unitary spectrum

spectrum cohomology, 279

spectrum homology, 279, 300

sphere, 5

sphere spectrum, 12, 303

truncated, 95, 98, 201

with m inverted, 53

spherical monoid ring, 51, 150

sS-category, 170

stabilization map, 11, 23

stable equivalence, 65, 65

stable homotopy category, 217

rational, 301

universal property, 218, 334

stable homotopy group

of a space, 16

of spheres, 12

stable natural transformation, 117

stable stem, 12

stably contractible, 66

stably essential map, 319

Steenrod algebra, 317

dual, see dual Steenrod algebra

Hopf algebra structure, 322

Steenrod power operation, 318

Steenrod squaring operation, 317, 338

strict G-fibration, 354, 362

strict fibration

in SpC , 354, 363

strictly G-fibrant, 61

strong G-equivalence, 354, 362

strong G-fibration, 354, 362

strong level equivalence, 383

strong level fibration, 383

strong level model structure

on SpC , 383

surjection operad, 370

suspension, 23, 177

and naive homotopy groups, 24

and stable equivalences, 67, 72

in the stable homotopy category, 228

suspension functor

of a cofibration category, 394

suspension isomorphism

for naive homotopy groups, 24

in E-(co-)homology, 270

suspension spectrum, 15

of an I-space, 58

suspensions, 37

symmetric algebra, 374

of a symmetric spectrum, 93

symmetric function spectrum, 441

symmetric ring spectrum, 9

commutative, 10

implicit, 91

opposite, 52, 124

symmetric sequence, 198

symmetric spectrum, 9

co-free, 60

co-semifree, 60

coordinate free, 194

flat, 98, 103, 104

free, 42, 77, 114, 180

in C, 343, 344

injective, 60, 63

of simplicial sets, 34

projective, 363

semifree, 43, 49, 77, 98, 180

in C, 344

semistable, 38, 104

truncated, 201
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symmetric spectrum in C
free, 344

semifree, 344, 345

T-category, 169

t-structure, 266

tame, 173

tame product

of Mc-modules, 181

tensor algebra, 374

of a symmetric spectrum, 92

Thom spectrum

oriented, 17, 18

special unitary, 19

spin, 17

symplectic, 19

unitary, 19

unoriented, 17, 18

Toda bracket

for ring spectra, 405, 413

in KO, 407

in KU , 408

in a triangulated category, 403

in stable stems, 407

topological André-Quillen cohomology, 298

topological Hochschild cohomology, 298

transfinite composition, 416

triangle, 227

triangulated category, 227

compactly generated, 262

true homotopy group, 106, 205

of a free spectrum, 114

of a loop spectrum, 110

of a product, 114

of a suspended spectrum, 110

of a symmetric ring spectrum, 122

of a wedge, 113

of an induced spectrum, 202

truncation

of a symmetric spectrum, 201

twisted smash product, 45, 48, 179, 345

naive homotopy groups, 46

stable homotopy type, 78

unit maps, 9, 11

unitary spectrum, 146

unitary Thom spectrum, 13

universal property

of smash product, 83

unstability condition, 317, 318

v1-multiplication, 313

v1-periodic, 313

very special Γ-space, 154

weak G-equivalence, 354, 362

weak G-fibration, 354, 362

weak colimit, 258

weak equivalence

of simplicial sets, 428

of spaces, 424

weak Hausdorff space, 422

Whitehead theorem

for spectra, 282

Yoneda lemma

enriched, 172
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