
Errata for

Global homotopy theory

New Mathematical Monographs 34
Cambridge University Press

Cambridge, 2018. xviii+828 pp.
by Stefan Schwede

last updated: August 3, 2023

This document lists typos and mistakes that I became aware of after publication
of the book Global homotopy theory in September 2018. As of today, I know of no
serious mathematical issue, but there are a certain number of potentially misleading
typos, and minor fixable gaps in the proofs of Propositions 2.4.28, Proposition
3.1.36 and Theorem 6.2.24. I would like to thank Benjamin Böhme, Jack Davies,
Urs Flock, Grigory Garkusha, Vincent Grande, Alexander Müller and Jonathan
Wassermann for discovering some of the mistakes.

All errata below refer to the published version of my book; in the electronic
version available on my homepage, I have already corrected the typos, fixed the
known mathematical issues, and updated the references.

Chapter 1:

p.23, l.14: the (K×G)-cofibrations should be defined by the left lifting property
(not the right lifting property) with respect to all morphisms of (K ×G)-spaces f
such that fΓ is a weak equivalence and Serre fibration for every closed subgroup Γ
of K ×G.

p.36, l.-10: in the proof of the unstable strong level model structure (Proposition
1.2.10), the last instance of the orthogonal space LH,Rm should be in mathbold font,
i.e., LH,Rm .

p.64, l.-14: ‘(...) the F-global model structure lifts to categories of modules and
algebras (...)’ (plural)

p.65, l.1: the F(m)-cofibrations should be defined by the left lifting property (not
the right lifting property) with respect to all morphisms q of O(m)-spaces such that
the map qH is a weak equivalence and Serre fibration for all H ∈ F(m).

Chapter 2:

p.99, l.-8: ‘Moreover, the coequalizer is split in the underlying category (...)’ (as
opposed to ‘reflexive’)

p.162, l.13: the arguments to f⋆ and (Gr(φ) ◦ f)⋆ are missing. The correct
sentence should be: ‘So the two G-vector bundles f⋆(γV ) and (Gr(φ) ◦ f)⋆(γW )
over A are isomorphic.’

p.166, l.-1: as we shall now explain
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p.180, proof of Proposition 2.4.28: contrary to my claim, the diagram

BO′
(m)

incl //

iBO′
(m) ''

BO′
(m+1)

j

��

iBO′
(m+1)

((
sh(BO′

(m)) sh(incl)
// sh(BO′

(m+1))

in the middle of page 180 does not commute. This issue can be fixed as follows.
We modify the definition of the morphism

j : BO′
(m+1) −→ sh(BO′

(m))

by using the linear isometric embedding

V ⊕ V ⊕ Rm+1 −→ V ⊕ R⊕ V ⊕ R⊕ Rm

(v, v′, (x1, . . . , xm+1)) 7−→ (v, 0, v′, xm+1, (x1, . . . , xm))

instead of the one specified in the published book; the difference is a cyclic permu-
tation of the last m + 1 coordinates. With this modified definition of j, the left
triangle in the above diagram commutes. The right triangle still does not com-
mute; however, it commutes up to a homotopy of morphisms of orthogonal spaces.
Indeed, the two morphisms from BO′

(m+1) to sh(BO′
m+1) are induced by two dif-

ferent linear isometric embeddings from Rm+1 to R⊕Rm+1 that are applied to the
last coordinates; the space of such linear isometric embeddings is path connected,
and the desired homotopy is induced by any choice of path. The rest of the proof
then applies unchanged.

p.182, l.13: bO(A3) should be replaced by πA3
0 (bO)

p.200, l.-4: in the commutative square at the bottom of page 200, the four
instances of πGk should just be πk, i.e., without the superscript ‘G’

p.216, l.6: ‘We emphasize that the behaviour on morphisms (...)’

Chapter 3:

p.236, l.11: in the last line of the proof of Proposition 3.1.16, a superscript ‘X’
is missing in (lXg )∗(c

∗
g[f ]) = [f ].

p.240, l.7; p.284, l.6 and l.8; p.471, l.5; and p.548, l.-8: the term ‘antipodal map’
for the involution of SV that gives rise to εV : πGk (X ∧ SV ) −→ πGk (X ∧ SV ) is
misleading: the involution S−IdV : SV −→ SV fixes the points 0 and ∞ and sends
every other vector to its negative. So the restriction to the unit sphere is what is
usually called the antipodal map. There is nothing wrong with the mathematics,
but the adjective ‘antipodal’ is poorly chosen here.

p.251, proof of Proposition 3.1.36: As stated, the right triangle in the upper
diagram on page 251 does not commute up to based G-homotopy. Instead, the right
diagonal map f∧S1 : X∧S1 −→ Y ∧S1 must be replaced by f∧τ : X∧S1 −→ Y ∧S1,
where τ : S1 −→ S1 is the sign involution τ(x) = −x. In this corrected form, the
commutativity of the right triangle is an instance of Proposition 3.1.35 (i). This
mistake also influences the next step in the proof of exactness. Because the degree
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of the sign involution τ is −1, the right square that compares the sequence for
i : Y −→ Cf with the sequence for f : X −→ Y only commutes up up to sign:

∂ = (− ∧ S−1) ◦ πGk (pi)
= (− ∧ S−1) ◦ πGk (f ∧ τ) ◦ πGk (∗ ∪ p)
= −(− ∧ S−1) ◦ πGk (f ∧ S1) ◦ πGk (∗ ∪ p)
= −πGk−1(f) ◦ (− ∧ S−1) ◦ πGk (∗ ∪ p) .

(There is also a typo, in that πGk (f) should be πGk−1(f).) Fortunately, changing
a homomorphism of abelian groups into its negative does not change kernel nor
cokernel. So the extra sign does not influence the question of exactness.

p.293, l.-9: in the third-to-last line of the proof of Proposition 3.3.8, the part ‘for
every G-representation V ’ is redundant.

p.294, proof of Proposition 3.3.10: in both parts of the proof, all instances
of equivalences of equivariant orthogonal spectra should be replaced by π∗-iso-
morphisms.

p.320, l.10: which amounts to a G-Mackey functor

p.333, l.16: in the target of the symmetric monoidal structure on the category O,
the arguments should be V ⊕V ′ and W ⊕W ′ (as opposed to V ⊕W and V ′⊕W ′);
so the target should read O(V ⊕ V ′,W ⊕W ′).

Chapter 4:

p.367, l.-9: this should read ‘(...) and K-representation Ū (...)’ (as opposed to
‘G-representation’).

p.367, l.-4/5: the two instances of equivariant homotopy groups should be in-
dexed by the Lie group K (as opposed to G), so they should read πKk (λG,V,W ) and
πK−k(λG,V,W ), respectively.

p.414, l.-15: in the proof of Theorem 4.4.4, it should read ‘(...) if F preserves
sums, then for every object X of S, (...)’ (as opposed to: ‘for every object X of T ’)

p.454, l.8: in the displayline, the superscript ‘G’ is missing from Q⊗ πGk (f)

Chapter 5:

p.519, l.9: ‘where Cs ⊂ U(1) is the group of sth roots of unity.’

Chapter 6:

p.549, l.21: in Example 6.1.7, the definition of the structure maps of MOP
should have φ2(x) instead of BOP(φ)(x); the correct displayline should read

(w,φ) ∧ (x, U) 7−→ ((w, 0) + φ2(x),BOP(φ)(U)).

p.560: in line -15, bO(V ) should be bOP(V ); in the displayline -12, the defini-
tion of the structure maps of mOP should have (φ⊕R∞)(x) instead of bOP(φ)(x);
the correct displayline should read

(w,φ) ∧ (x, U) 7−→ ((w, 0) + (φ⊕ R∞)(x),bOP(φ)(U)).

p.562, l.-13 should read ‘(...) τG,V lies in the homogeneous summand mOP[−m].’

(as opposed to MOP[−m])
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p.579, l.-11: there need to be G-fixed points around Grj(V
⊥), so it should read

‘(...) the wedge of the spaces mOP[j](V G) ∧ (Grj(V
⊥))G for j ≥ 0.’

p.581, l.-10: the formula for the precursor of the structure map of mU is wrong:
to U we need to add (VC ⊕ 0⊕ 0), and not (0⊕WC ⊕ 0)

p.585, l.13: remove ‘to’ in ‘. . . and to (H ◦ ψ)|′M . . . ’

p.594, l.-6: in the displayline, it should read ψ[x, s] (as opposed to q[x, s])

p.600, l.-4: the displayline should read Tx(M
G) = (TxM)G (and not with di)

p.605, l.15: the C-action on the smooth manifold [−1, 1]×C M should be given
by τ · [x,m] = [−x,m] (indeed, because [x,m] = [−x, τm], the incorrect formula in
the published book describes the trivial C-action).

p.609, l.12: the last instance ofM in the display line should beM+, i.e. it should
come with a subscript ’+’ for a disjoint basepoint.

p.612 ff: The proof of Theorem 6.2.24 contains a gap. The published argument
only proves the relation

WirthGH⟨G×H M⟩ = ⟨M⟩ ∧WirthGH⟨G/H⟩ ,

which reduces the claim in the general case to the special case M = ∗.
Here is the missing argument for the special case, i.e., the relationWirthGH⟨G/H⟩ =

τH,L. We choose a G-equivariant wide smooth embedding i : G/H −→ V into a
G-representation. The differential at the coset eH of the embedding i is a linear
embedding

L = TeH(G/H)
di−−→ V ;

we define a scalar product on L so that this embedding becomes isometric. As
before we let W = V − (di)eH(L) denote the orthogonal complement of the image
of L. In this situation there are two different collapse maps:

• the collapse map c : SV −→ G⋉H SW defined in (3.2.10) for the construc-
tion of the external transfer isomorphism; and

• the collapse map cG/H : SV −→ MGr(V ) ∧ G/H+ used in Construction
6.2.20 to define the normal class ⟨G/H⟩.

We also choose a slice as in the construction of the map lGH , i.e., a smooth
embedding

s : D(L) −→ G

of the unit disc of L with s(0) = 1, such that s(h · l) = h · s(l) · h−1 for all
(h, l) ∈ H ×D(L), and such that the differential at 0 of the composite

D(L)
s−−→ G

proj−−→ G/H
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is the identity of L. The various collapse maps participate in the following diagram
of H-equivariant based maps:

SV
c

(3.2.10)
//

cG/H
**

G⋉H SW
lSW

(3.2.2)
//

b

��

SW ∧ SL

SW∧tH,L

��
W⋄tH,L

��

MGr(V ) ∧G/H+

MGr(V )∧l
��

SW ∧MGr(L) ∧ SL

σMGr
W,L ∧SL

��
MGr(V ) ∧ SL

MGr(V )∧ϵL
//MGr(V ) ∧ SL

Here the vertical map b : G ⋉H SW −→ MGr(V ) ∧ G/H+ is defined by b[g, w] =
(gw, gW )∧gH, the map tH,L is the representative from (6.1.2) for the inverse Thom
class τH,L, and ϵL : SL −→ SL is the involution sending l to −l. The upper left
triangle commutes on the nose, by direct inspection of the explicit formulas for the
collapse maps.

We claim that the right part of the diagram commutes up to H-equivariant based
homotopy. Both composites starting in G ⋉H SW involve the collapse map lGH , so
both take the complement of the tubular neighborhood of H in G to the basepoint.
So we may specify an H-homotopy of the two composites, precomposed with the
tubular neighborhood embedding

D(L)× SW −→ G⋉H SW , (l, w) 7−→ [s(l), w] ,

provided the homotopy is constant on the boundary S(L) × SW . The following
homotopy serves the purpose:

K : [0, 1]×D(L)× SW −→ MGr(V ) ∧ SL ,

K(x, l, w) = (s(xl) · w, s(xl) ·W ) ∧ −l
1− |l|

Indeed, s(0) is the multiplicative unit of G, so

K(0, l, w) = (w,W ) ∧ −l
1− |l|

= (W ⋄ tH,L)((lSW [s(l), w]) .

Moreover,

K(1, l, w) = (s(l) · w, s(l) ·W ) ∧ −l
1− |l|

= (MGr ∧ (ϵL ◦ l))(b[s(l), w]) .

By Proposition 3.2.12 (i), the composite lSW ◦c : SV −→ SW∧SL isH-equivariantly
homotopic to the inverse of the H-isometry

W ⊕ L ∼= V , (w, x) 7−→ W + (di)eH(x) .

So the previous homotopy-commutative diagram witnesses the relation

(ϵL)∗(l∗(res
G
H(⟨G/H⟩))) = τH,L .

By Proposition 6.1.4 (i), the involution (ϵL)∗ of MGrG0 (S
L) fixes the inverse Thom

class τH,L, so this is the desired relation WirthGH⟨G/H⟩ = τH,L.
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p.614, l.9: the middle term in the displayline should be G×H M (as opposed to
G), and the map into it should be s̄ ×H M (as opposed to s̄). So the line should
read:

D(L)×M
s̄×HM−−−−→ G×H M

ψ−−→ V ⊕W

p.614/615, Example 6.2.25: in the entire argument, O(m) should be embedded
into O(1 +m) as the subgroup fixing the vector (1, 0) of R ⊕ νm. So in order to
suggest the correct embedding, the notation O(m+1) should be replaced by O(1+
m) throughout Example 6.2.25, i.e., m+1 should become 1+m. Correspondingly,
the map ψ should be defined as

ψ : O(1 +m)/O(m) −→ S(R⊕ νm) , ψ(A ·O(m)) = A · (1, 0, . . . , 0) .
p.620, l.-17: in the lowest displayline, the dimensional subscript to the first

Grassmannian should be dim(V G)− n+ j (instead of dim(V G) + j).

Appendix A:

p.688, l.-15: source and target of the functor w must be exchanged, so that it
becomes w : K −→ T

p.697, l.13: source and target of the inclusion must be exchanged, so that it
becomes T ⊂ K

p.697, l.-14f: unlike for Spc or K, the forgetful functor from T to sets need not
preserves colimits. More loosely speaking, the underlying set of a colimit in T may
be smaller than one first thinks.

p.712, l.6: the reference to Conner and Floyd’s book [39] should refer to Chapter
VIII, so the correct reference is [39, VIII, Lemma 38.1]

p.716, l.-2: (B.b0) should be (B, b0) (comma instead of period)

Appendix B:

p.738, l.-1: the third sentence in the proof of Proposition B.1 (ii) contains the
phrase ‘both colimits are formed in the ambient category of sets, so the map is
bijective’. This formulation misleadingly suggest that G-fixed points commute with
arbitrary filtered colimits. But for discrete groups G, this is not the case unless
we assume that G finitely generated. However, this caveat is not relevant for our
proof: we consider a filtered system of closed embeddings, which are in particular
injective; and for all groups G, filtered colimits over injective G-maps commute
with G-fixed points.

p.751, Proposition B.17: ‘such that the G-action is free.’

References:

The former preprints [73], [74] and [145] have been published as follows:

[73] M.Hausmann, Symmetric spectra model global homotopy theory of finite
groups. Algebr.Geom.Topol.19 (2019), no. 3, 1413–1452.

[74] M.Hausmann, D.Ostermayr, Filtrations of global equivariant K-theory.
Math. Z.295 (2020), 161–210.

[145] S. Schwede, Orbispaces, orthogonal spaces, and the universal compact Lie
group. Math. Z.294 (2020), 71–107.


