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Introduction

Content. The representation theory of finite-dimensional algebras is a relatively
young area of mathematics. Its big bang or rather big bangs were Gabriel’s Theorem
(the classification of representation-finite quivers) in 1970, Auslander and Reiten’s
discovery of almost split sequences (aka Auslander Reiten sequences) in 1975, Roi-
ter’s proof of the 1st Brauer-Thrall Conjecture in 1968, and the Kiev School results
on the representation theory of partially ordered sets in 1972. This also lead to a
conceptual proof of Gabriel’s Theorem.

There is quite a large zoo of classes of finite-dimensional algebras which people
study for various reasons. Many of these classes have a beautiful representation
theory and often provide a link to other areas of mathematics or mathematical
physics.

Part 1 is a compilation of short notes on the most important classes. (I identified
about 100 of these up to now.) Usually, I will briefly define a class, give some
examples, mention a few important results, and provide literature recommendations
for further reading.

Part 2 contains a recollection of some fundamental results and techniques from the
representation theory of finite-dimensional algebras. This includes an overview of the
categories and subcategories which are frequently studied. I also give a list of general
conjectures, e.g. the classical homological conjectures. Many more conjectures can
be found in the various more specialized sections of Part 1.

In the appendix of the FD-Atlas there is a section containing all necessary cate-
gorical definitions and also a list of books and articles.

Disclaimer and call for help. In both parts of the FD-Atlas my selections are
influenced by my personal taste and also by my ignorance and lack of knowledge.
I encourage everyone to send me complaints and suggestions. I would be very
happy to learn about other classes of finite-dimensional algebras and about further
conjectures and open problems.

I’m aware that the citations in Part 1 are not optimal and should be improved.
Please send me your suggestions. I will also try to add more examples.

Publication. The FD-Atlas will be published on my Bonn website and later also
on the arXiv. I’m planning regular extensions and improvements.

Acknowledgements. I thank Gustavo Jasso for helpful discussions. I’m very
greatful to Klaus Bongartz who sent me numerous suggestions and corrections.

Notation and conventions.
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Throughout, let K be a (commutative) field.

By an algebra we mean an associative K-algebra with an identity element.
Throughout, A denotes an algebra.

Our focus lies on finite-dimensional (and mostly non-commutative) algebras.

By a module we mean a left module, unless stated otherwise.

Our focus lies on finite-dimensional modules over finite-dimensional algebras.

mod(A) is the category of finite-dimensional A-modules, and ind(A) is the
category of finite-dimensional indecomposable A-modules.

Mod(A) is the category of all A-modules.

For a module M and m ≥ 1 let Mm be the m-fold direct sum M ⊕ · · · ⊕M .

For a set X let 1X be the identity map X → X.

Given maps f : X → Y and g : Y → Z, we denote their composition by

gf : X → Z.

Sometimes we also write g ◦ f instead of gf .

Set K∗ = K \ {0}.

Let N := {0, 1, 2, 3, . . .} be the natural numbers (including 0).

If I is a set, we denote its cardinality by |I|.

We use

blue boxes to highlight statements,

green boxes to highlight definitions,

magenta boxes to highlight conjectures and open problems,

gray boxes to highlight other contents.
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Part 1. Classes of finite-dimensional algebras

Overview

Classes.

• n-Auslander 4.8, n-CY-tilted 4.13, n-Gorenstein 6.4, ∞-Gorenstein 6.4, n-
hereditary 4.9.4, n-Iwanaga-Gorenstein 6.3, n-minimal Auslander-Gorenstein
6.4, n-representation-finite 4.9.2, n-representation-infinite 4.9.3, P -minimal
10.2, P -maximal 10.2, τ -tame 2.1, τ -tilting finite 4.10
• A almost hereditary 4.5, Auslander 4.8, Auslander-Gorenstein 6.4, Auslan-

der regular 6.4
• B biserial 7.2, Brauer graph 5.4, Brauer tree 5.4, brick finite 4.10
• C canonical 4.4, concealed canonical 4.4, clannish 7.5, cluster 10.10, cluster-

tilted 4.13, concealed 4.3
• D dense orbit property 10.11, derived tame 2.1.5, differential graded 9.2,

directed 1.3, distributive 1.4
• E enveloping algebra 9.4
• F fractionally Calabi-Yau 4.11, Frobenius 5.1.3
• G geometrically irreducible 10.12, gendo-symmetric 10.4, generically tame

2.1.4, gentle 7.4, Ginzburg dg 9.2, graded 9.1, group 5.3
• H hereditary 3.2, Hochschild cohomology 9.6, Hopf 5.6
• I incidence 8.3, Iwanaga-Gorenstein 6.3
• J Jacobian 4.14
• K Koszul 9.8, Koszul dual 9.8
• L local 10.1, locally hereditary 8.1, low-dimensional 10.8
• M minimal representation-infinite 4.3, monomial 8.2, multiplicative basis

8.1 (multiplicative Cartan basis, filtered multiplicative basis)
• N Nagase P -minimal 10.2, Nakayama 7.1
• O one-point extension 10.3
• P path 3.2, periodic 5.5, preprojective 3.4
• Q QF-3 6.1, quadratic 9.7, quasi n-Gorenstein 6.4, quasi∞-Gorenstein 6.4,

quasi Auslander-Gorenstein 6.4, quasi-canonical 4.4, quasi-hereditary 3.5,
quasi-tilted 4.5
• R repetitive 5.2.2, representation-finite 1.1 (representation-infinite), Ringel-

Hall 10.9
• S Schur 3.6, selfinjective 5.1, semisimple 3.1, separable 3.1, shod 4.6, simply

connected 10.7, skewed-gentle 7.5.2, special biserial 7.3, species 3.3, stan-
dard 1.2 (non-standard), standardly stratified 3.5, string 7.3, strongly quasi-
hereditary 3.5, strongly simply connected ??, symmetric 5.1.5
• T tame 2.1 (n-domestic, domestic, linear growth, polynomial growth, ex-

ponential growth), tensor 9.3, tilted 4.1.5, tree 10.6, triangular 10.5, trivial
extension 5.2, tubular 4.7, twisted fractionally Calabi-Yau 4.11, twisted pe-
riodic 5.5
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• W weakly n-representation-finite 4.9.2, weakly Gorenstein 6.2, weakly shod
4.6, weakly symmetric 5.1.4, wild 2.2 (strictly wild, controlled wild, endo
wild, controlled endo wild, WILD, strictly WILD)
• Y Yoneda 9.5
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Metaclasses. To get some structure into this, I grouped the classes of algebras into
several larger metaclasses:

§1 Representation-finite §2 Tame-wild §3 Hereditary

§4 Tilted §5 Selfinjective §6 Gorenstein

§7 Biserial §8 Multiplicative basis §9 Graded

§10 Others

The borders between these metaclasses are not very rigid and sometimes a bit
artificial. One should not take the names of the metaclasses literally, e.g. most
algebras listed in the Tilted metaclass are not tilted, but nevertheless they belong
there morally.

The following diagrams give an overview for each metaclass. The edges indicate
inclusions (the class at the lower end of an edge is contained in the class at the upper
end).
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§1 Representation-finite algebras:

distributive
§1.4

char(K) = 2
representation-

finite
§1.1

non-standard
§1.2

standard
§1.2

directed
§1.3

Nakayama
§7.1

semisimple
§3.1

§2 Tame and wild algebras:

generically
tame
§2.1.4

τ -tame
§2.1.3

=?

controlled
endo wild
§2.2 =?

wild
§2.2

=?

WILD
§2.2

tame
§2.1

endo wild
§2.2

=?

controlled
wild
§2.2

strictly
WILD
§2.2

derived
tame
§2.1.5

polynomial
growth
§2.1

=?

exponential
growth
§2.1

strictly
wild
§2.2

linear
growth
§2.1

domestic
§2.1

n-domestic
§2.1
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§3 Hereditary algebras:

gl. dim <∞
standardly
stratified
§3.5

quasi-hereditary
§3.5

triangular
§10.5

strongly
quasi-hereditary

§3.5

Schur
§3.6

gl. dim ≤ 1 gl. dim = 2 gl. dim =∞

gl. dim = 0
hereditary
§3.2

preprojective
non-Dynkin
§3.4

selfinjective
§5.1

semisimple
§3.1

species
§3.3

preprojective
Dynkin
§3.4

separable
§3.1

path
§3.2
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§4 Tilted algebras:

triangular
§10.5

weakly
shod
§4.6

gl. dim ≤ 3 dom. dim ≥ n+ 1 ≥ gl. dim

shod
§4.6

gl. dim ≤ 2
n-Auslander
§4.8

n=1

n-CY tilted
§4.13

n=2

almost
hereditary
§4.5

Auslander
§4.8

2-CY tilted
§4.13

quasi-
canonical
§4.4

quasi-tilted
§4.5

f.d.
Jacobian
§4.14

concealed
canonical
§4.4

tilted
§4.1.5

cluster-
tilted
§4.13

tubular
§4.7

canonical
§4.4

concealed
§4.3

gl. dim ≤ n
hereditary
§3.2

Iwanaga-
Gorenstein
§6.3

n-hereditary
§4.9.4

weakly
n-representation-

finite
§4.9.2

twisted
fractionally

CY
§4.11

=?

n-representation-
infinite
§4.9.3

n-representation-
finite
§4.9.2

fractionally
CY
§4.11

τ -tilting
finite
§4.10

brick finite
§4.10

symmetric
§5.1.5
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§5 Selfinjective algebras:

gl. dim =∞
Iwanaga-

Gorenstein
§6.3

selfinjective
§5.1

Frobenius
§5.1.3

weakly
symmetric
§5.1.4

twisted
periodic
§5.5

=?

repetitive
§5.2.2

finite-
dimensional

Hopf
§5.6

symmetric
§5.1.5

periodic
§5.5

special
biserial
§7.3

group
§5.3

trivial
extension
§5.2

Brauer
graph
§5.4

preprojective
Dynkin
§3.4

Brauer tree
§5.4
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§6 Gorenstein algebras:

dom. dim ≥ 1

weakly
Gorenstein
§6.2

quasi
n-Gorenstein
§6.4

QF-3
§6.1

Iwanaga-
Gorenstein
§6.3

?

quasi
∞-Gorenstein

§6.4

n-Gorenstein
§6.4

selfinjective
§5.1

gentle
§7.4

quasi
Auslander-
Gorenstein
§6.4

∞-Gorenstein
§6.4

gl. dim <∞
Auslander-
Gorenstein
§6.4

dom. dim ≥ n

Auslander
regular
§6.4

(n− 1)-minimal
Auslander-
Gorenstein
§6.4

(n − 1)-
Auslander
§4.8
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§7 Biserial algebras:

tame
§2.1

biserial
§7.2

derived
tame
§2.1.5

clannish
§7.5

special biserial
§7.3

Nakayama
§7.1

skewed-gentle
§7.5.2

string
§7.3

Brauer
graph
§5.4

gentle
§7.4

basic
Nakayama
§7.1

§8 Multiplicative basis algebras:

multiplicative
basis
§8.1

filtered
multiplicative

basis
§8.1

triangular
§10.5

multiplicative
Cartan basis
§8.1

locally
hereditary
§8.4

representation-
finite
§1.1

monomial
§8.2

incidence
§8.3

hereditary
§3.2

path
§??
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§9 Graded algebras:

graded
§9.1

tensor
§9.3

Yoneda
§9.5

differential
graded
§9.2

quadratic
§9.7

Koszul
dual
§9.8

Hochschild
cohomology
§9.6

Ginzburg dg
§9.2

Koszul
§9.8

enveloping
§9.4

§10 Other algebras:

gl. dim <∞ dom. dim ≥ 2 gl. dim =∞
one-point
extension
§10.3

triangular
§10.5

gendo-
symmetric
§10.4

local
§10.1

low-dimensional
§10.8

simply
connected
§10.7

symmetric
§5.1.5

Ringel-Hall
§10.9

cluster
§10.10

strongly simply
connected
§??

P -maximal
§10.2

P -minimal
§10.2

Nagase
P -minimal
§10.2

tree
§10.6

dense orbit
property
§10.11

geometrically
irreducible
§10.12
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What’s new?

• 25.06.22: Part 1: Expanded the section on Gorenstein algebras.
• 15.12.22: New class: geometrically irreducible algebras.
• 15.12.22: Part 2: Added a section on varieties of modules and algebras.
• 15.12.22: New class: algebras with the dense orbit property
• 15.12.22: New class: brick finite algebras.

Future additions to the FD-Atlas.

• torsionless-finite (Richmond, Ringel)
• simply connected
• strongly simply connected
• cluster
• Ringel-Hall
• piecewise hereditary (Happel’s book)
• derived discrete (Vossieck)
• n-preprojective (Iyama, Oppermann)
• Serre-formal (Iyama et al)
• higher Nakayama (Jasso, Külshammer)
• multicoil
• zigzag
• surface
• hybrid (Erdmann, Skowroński)
• multiserial/special multiserial/Brauer configuration (Green, Schroll)
• pg-critical (Skowroński)
• cellular (Graham, Lehrer)
• Hecke?
• quiver Hecke?

Examples to be included:

• Liu-Schulz example (Ringel)
• Kronecker quiver (with classification)
• Klein four-group algebra (with classification)
• Beilinson algebra
• quaternion algebra
• Temperley-Lieb algebras
• Brauer algebras

Future additions to Part 2:

• Coverings of module categories
• Expand the section on varieties of modules and algebras (e.g. discuss quiver

Grassmannians)
• Bocses



FD-ATLAS 21

1. Representation-finite algebras

§1 Representation-finite algebras:

distributive
§1.4

char(K) = 2
representation-

finite
§1.1

non-standard
§1.2

standard
§1.2

directed
§1.3

Nakayama
§7.1

semisimple
§3.1

Back to Overview Metaclasses 1.

1.1. Representation-finite algebras. Let A be a finite-dimensional K-algebra.

1.1.1. Representation-finite and representation-infinite algebras.

A is representation-finite (or of finite representation type) if there are
only finitely many finite-dimensional indecomposable A-modules, up to iso-
morphism. Otherwise, A is representation-infinite.

Representation-finite algebras have a beautiful representation theory. The follow-
ing outline is a bit imprecise, and it is not even true in some cases, but it gives the
correct broad picture:

Let K be algebraically closed, and let A be representation-finite. Then the
following hold:

(i) There is a covering π : Ã → A where Ã is an infinite-dimensional di-
rected algebra.

(ii) The knitting algorithm gives a combinatorial construction of the
Auslander-Reiten quiver ΓÃ.

(iii) The pushdown functor πλ : mod(Ã) → mod(A) yields the Auslander-
Reiten quiver ΓA and a covering ΓÃ → ΓA.

(iv) The mesh category of ΓA is equivalent to mod(A).
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Example: Let A = KQ/I where Q is the quiver

1a
88 2

b
oo

and I is generated by {a3, ab}. Let Ã = KQ̃/Ĩ where Q̃ is the infinite quiver

...

��

...

12

a1
��

22
b2
oo

11

a0
��

21
b1
oo

10

a−1

��

20
b0
oo

1−1

��

2−1

b−1
oo

...
...

and Ĩ is generated by {ai−1aiai+1, ai−1bi | i ∈ Z}. (In contrast to our usual conven-

tion, the algebra Ã does not have an identity element. But it satisfies sufficiently
many finiteness conditions to be treated similarly to a finite-dimensional algebra.)
We get a covering

π : Ã→ A

defined by 1i 7→ 1, 2i 7→ 2, ai 7→ a and bi 7→ b for i ∈ Z.

Clearly, Ã is Z-graded. Let AN = KQN/IN where QN is the infinite quiver

...

��

...

12

a1
��

22
b2
oo

11

a0
��

21
b1
oo

10 20
b0
oo

and IN is the ideal generated by {ai−1aiai+1, ai−1bi | i ≥ 1}. So AN is obtained from

Ã by restricting to non-negative degrees. Now the knitting algorithm yields the
Auslander-Reiten quiver ΓAN (the indecomposable modules are displayed by their
dimension vectors, the projectives are marked in red and the injectives in blue (the
first module of the 2nd and 3rd row is projective as an AN-module but not projective
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as an Ã-module)):

0 0
1 0
1 0
1 0

��

0 0
0 0
0 0
0 1

oo

0 0
0 0
1 0
1 0

BB

��

0 0
1 0
1 0
1 1

BB

��

oo
1 0
1 0
1 0
0 0

��

0 0
0 0
0 1
0 0

oo

0 0
0 0
0 0
1 0

CC

��

0 0
0 0
1 0
1 1

oo

CC

��

0 0
1 0
1 0
0 0

oo

CC

��

1 0
1 0
1 1
0 0

oo

CC

��

1 0
1 0
1 0
0 0
0 0

��

0 0
0 0
0 1
0 0
0 0

oo

0 0
0 0
0 0
1 1

DD

0 0
0 0
1 0
0 0

oo

DD

��

0 0
1 0
1 1
0 0

oo

DD

��

1 0
1 0
0 0
0 0

oo

DD

��

1 0
1 0
1 1
0 0
0 0

oo

DD

��

· · ·

0 0
0 0
1 1
0 0

DD

0 0
1 0
0 0
0 0

DD

oo

��

1 0
1 1
0 0
0 0

DD

oo

��

1 0
1 0
0 0
0 0
0 0

oo

��

DD

0 0
1 1
0 0
0 0

CC

1 0
0 0
0 0
0 0

CC

oo

��

· · ·

1 1
0 0
0 0
0 0

CC

Extending this to the left gives the Auslander-Reiten quiver ΓÃ.

The pushdown functor πλ : mod(Ã)→ mod(A) yields the Auslander-Reiten quiver
ΓA (the indecomposables are displayed by their composition factors):

1
1
1

!!

2oo

1 2
1

��

1
1

oo

??

  

1
1 2

1
oo

??

1

@@

��

1 2
1

oo

;;

$$
2

1

<<

1oo

(One needs to identify the first module of the 2nd and 3rd row with the last module
of the 3rd and 4th row, respectively. As before, the projectives are red and the
injectives are blue.) Note that ΓA has two τA-orbits.

Not many people work on representation-finite algebras right now, however there
are still interesting open problems.
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Bongartz [Bo13] wrote an excellent survey on the representation theory of repre-
sentation-finite algebras and on the delicate issues of covering theory.

References for covering theory are [BG81] and [G81].

There is an urgent need to write text books about representation-finite algebras
including a detailed and up to date introduction to covering theory.

Problem 1.1. Develop the representation theory of representation-finite K-
algebras where K is an arbitrary field.

1.1.2. Auslander correspondence. For finite-dimensional K-algebras A and B we
write A ∼ B if the categories mod(A) and mod(B) are equivalent. The following
theorem is a special case of the Morita-Tachikawa correspondence:

Theorem 1.2 (Auslander correspondence [A74]). There is a bijection

{A | A is representation-finite}/∼ −→ {B | dom. dim(B) ≥ 2 ≥ gl. dim(B)}/∼
which sends A to B := EndA(M)op with M an additive generator of mod(A).
The inverse sends B to A := EndB(Q)op with Q an additive generator of
proj-inj(B).

Example: Let A = KQ, where Q is the quiver

1 2oo // 3

Here is the Auslander-Reiten quiver ΓA (we display modules by their composition
factors):

1

��

2
3

��

oo

2
1 3

??

��

2oo

3

??

2
1

??

oo

Then

M := M1 ⊕ · · · ⊕M6 := 1 ⊕ 2
1 3

⊕ 3 ⊕ 2
3
⊕ 2 ⊕ 2

1

is an additive generator of mod(A). Let

B := EndA(M)op.
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It follows that B ∼= KQ′/I ′, where Q′ is the quiver

1 4
b

��

2

a
^^

d��

5

c
^^

f��
3 6

e

^^

and the ideal I ′ is generated by {ab, de, bc− ef}. The B-module

Q := P (4)⊕ P (5)⊕ P (6)

is an additive generator of proj-inj(A), and we have

A ∼= EndB(Q)op.

1.1.3. Brauer-Thrall Conjectures and beyond. The implication (i) =⇒ (ii) in the
following theorem is due to Tachikawa [T73, Corollary 9.5], and the converse (ii)
=⇒ (i) was proved by Auslander [A74].

Theorem 1.3. The following are equivalent:

(i) A is representation-finite.

(ii) Each M ∈ Mod(A) is a direct sum of finite-dimensional indecomposable
A-modules.

The following theorem has been proved by Roiter using the Gabriel-Roiter mea-
sure, and later in a strenghtened form by Auslander using the Auslander-Reiten
quiver and the Harada-Sai Lemma. Both approaches are discussed in [R80].

Theorem 1.4 (Roiter [R68] (1st Brauer-Thrall Conjecture)). The following
are equivalent:

(i) A is representation-finite.

(ii) There exists some bA ≥ 1 such that

length(M) ≤ bA

for all M ∈ ind(A).

A has enough large indecomposable modules if for each infinite cardinal
λ there exists an indecomposable A-module of cardinality ≥ λ.

Here is a more general version of the 1st Brauer-Thrall Conjecture which still
seems to be open:
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Conjecture 1.5 (Simson [Si03]). If A is representation-infinite, then A has
enough large indecomposable modules.

The following result also has the same flavour as the 1st Brauer-Thrall Conjecture.

Theorem 1.6 (Smalø, Venas [SV98]). The following are equivalent:

(i) A is representation-finite.

(ii) There exists some bA ≥ 1 such that

length(BB) ≤ bA

for all B := EndA(M) with M ∈ ind(A).

I learned from Sverre Smalø (Email from 2016) that the following question still
seems to be open:

Question 1.7. Assume that exists some bA ≥ 1 such that

Loewy(BB) ≤ bA

for all B := EndA(M) with M ∈ ind(A). Does it follow that A is
representation-finite?

Here Loewy(BB) denotes the Loewy length of BB.

Conjecture 1.8 (2nd Brauer-Thrall Conjecture). Let K be infinite, and as-
sume that A is representation-infinite. Then there are infinitely many positive
integers d such that there are infinitely many isomorphism classes of indecom-
posable A-modules of length d.

Smalø [S80] showed that the above conjecture holds provided there is one d such
that there are infinitely many isomorphism classes of indecomposable A-modules of
length d.

The results in [BGRS85] play a crucial role in the proof of the following result.

Theorem 1.9 (Bautista [B85]). Assume that K is algebraically closed. Then
the 2nd Brauer-Thrall Conjecture is true.

A detailed treatment of the 2nd Brauer-Thrall Conjecture can be found in [Bo13,
Section 7.3] and in [Bo17].
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Theorem 1.10 (Bongartz [Bo13b]). Let K be algebraically closed. Assume
that there is an indecomposable A-module of length n ≥ 2. Then there exists
an indecomposable A-module of length n− 1.

Example: This example is due to Ringel. Let A = KQ where Q is the quiver

2

��

3

��

4

��

1

and K is the field with 2 elements. Then Theorem 1.10 does not hold for A.

The following recursive definition is due to Ringel:

All simple A-modules are accessible. An A-module of length d ≥ 2 is acces-
sible provided it is indecomposable and it admits an accessible submodule or
an accessible factor module of length d− 1.

Here is a stengthened version of Theorem 1.10:

Theorem 1.11 (Ringel [R11]). Let K be algebraically closed. Assume that
there is an indecomposable A-module of length n. Then there exists an acces-
sible A-module of length n.
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Back to Overview §1 Representation-finite.

1.2. Standard algebras. Let A be a finite-dimensional K-algebra, and let ΓA be
the Auslander-Reiten quiver of A, and let dA be the associated valuation. For all
missing definitions we refer to Section 14.

A is a standard algebra if the valuation dA splits and if the mesh category
K〈ΓeA〉 is equivalent to ind(A).

In this case, each connected component of ΓA is standard.

Proposition 1.12. Standard algebras are representation-finite.

Examples:

(i) Let A = KQ be a finite-dimensional path algebra. Then A is a standard
algebra if and only if Q is a Dynkin quiver.

(ii) Let A = K[T ]/(T n) for some n ≥ 2. Then A is a standard algebra.

There are also representation-infinite finite-dimensional algebras A such that each
connected component of ΓA is standard. The easiest example is the path algebra of
the Kronecker quiver

1 2oo
oo

Let A be representation-finite, and assume that dA splits. Then A is a non-
standard algebra if A is not standard.

Proposition 1.13 ([BGRS85]). Assume that K is algebraically closed. If A
is a non-standard K-algebra, then char(K) = 2.
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Let K be algebraically closed, and let A be a non-standard K-algebra. Then there
is a unique standard algebra A, the standard form of A, having an Auslander-
Reiten quiver ΓA isomorphic to ΓA, see [BrG83]. However, the categories ind(A)
and ind(A) are not equivalent.

Example: Let K be algebraically closed with char(K) = 2, and let Q be the quiver

1c
88

a
// 2

b
oo

Let I := (c4, c2 + ba, ab) and I ′ := (c4, c2 + c3 + ba, ab) be ideals in KQ. Then
A := KQ/I is a standard algebra, A′ := KQ/I ′ is a non-standard algebra, and the
Auslander-Reiten quivers ΓA and ΓA′ are isomorphic, see [Rie83] for this and also
for other examples of this kind.
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1.3. Directed algebras. Let A be a finite-dimensional K-algebra. Ringel’s book
[R84] is the standard reference for this subsection.

A path of length s ≥ 2 in mod(A) is a tuple (X1, X2, . . . , Xs) of finite-
dimensional indecomposable A-modules such that for each 1 ≤ i ≤ s − 1
there exists a non-zero and non-invertible homomorphism Xi → Xi+1.

Examples:

(i) If X ∈ ind(A) such that EndA(X) is not a K-skew-field, then (X,X) is a
path of length 2.

(ii) Let A = KQ/I be a basic algebra, and let a1a2 · · · am be a path in Q. Then
(P (t(a1)), P (t(a2)), . . . , P (t(am)), P (s(am))) is a path in mod(A).
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A is a directed algebra if there is no path (X1, X2, ..., Xs) of length s ≥ 2 in
mod(A) with X1

∼= Xs.

Examples:

(i) Semisimple algebras, path algebra KQ of Dynkin quivers and representation-
finite hereditary algebras are directed.

(ii) Let A be directed. Then any factor algebra A/I is again directed.

(iii) A = K[X]/(X2) is representation-finite, but not directed.

Lemma 1.14. If A is directed, then A is triangular. In particular, gl. dim(A) <∞.

Theorem 1.15. Each directed algebra is representation-finite.

Theorem 1.16. The following are equivalent:

(i) A is a directed algebra.

(ii) Each connected component of the Auslander-Reiten quiver ΓA is a pre-
projective component.

Corollary 1.17. For a directed algebra A, the knitting algorithm computes
the Auslander-Reiten quiver ΓA.

We say that K is a splitting field for A if EndA(S) ∼= K for all simple
A-modules S.

For example, this is the case if K is algebraically closed or if A = KQ/I is a basic
algebra.

Assume that K is a splitting field for A, and that A is directed. Let (ΓA, dA) be
the Auslander-Reiten quiver of A. Then the valuation dA splits.

Corollary 1.18. Assume that K is a splitting field for A, and that A is di-
rected. Then ind(A) is equivalent to the mesh category K〈ΓeA〉.
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Proposition 1.19. If A is directed, then for each X ∈ ind(A) the following
hold:

(i) EndA(X) is a K-skew-field.

(ii) ExtiA(X,X) = 0 for all i ≥ 1.

The following theorem is a special case of [ARS97, Section IX, Theorem 1.2]:

Theorem 1.20. Let A be a directed algebra. For X, Y ∈ ind(A) the following
are equivalent:

(i) X ∼= Y .

(ii) dim(X) = dim(Y ).

X ∈ mod(A) is sincere if [X : S] 6= 0 for all simple A-modules S.

Proposition 1.21. Let A be directed, and let X ∈ ind(A) be sincere. Then
the following hold:

(i) proj. dim(X) ≤ 1.

(ii) inj. dim(X) ≤ 1.

(iii) gl. dim(A) ≤ 2.

If gl. dim(A) <∞, then

X 7→ χA(X) :=
∑
i≥0

(−1)i dim ExtiA(X,X)

yields a quadratic form χA : Zn → Z where n = n(A) is the number of simple
A-modules, up to isomorphism. The value χA(X) only depends on dim(X).

A quadratic form q : Zn → Z is weakly positive provided q(x) > 0 for all
0 6= x ∈ Nn.

For a proof of the following result we refer to [R84, Section 2.4].
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Theorem 1.22. Assume that K is a splitting field for A. Let A be directed
with gl. dim(A) ≤ 2. Then χA is weakly positive, and

X 7→ dim(X)

yields a bijection between the set of isomorphism classes of indecomposable
A-modules and the set

{x ∈ Nn | χA(x) = 1}
of positive roots of χA.

Example: Let A = KQ/I where Q is the quiver

2
a

��

1 4

b
^^

d��
3

c

^^

5

^^

and I is generated by ab− cd. Then A is a sincere directed algebra. We have

χA =
5∑
i=1

x2
i −

∑
a∈Q1

xs(a)xt(a) + x1x4.

Here is the Auslander-Reiten quiver ΓA (the modules are displayed by their dimen-
sion vectors, projectives are red and injectives are blue):
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The following is a consequence of the previous theorem together with a result by
Ovsienko on roots of quadratic forms. This is explained in [R84].
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Theorem 1.23. Assume that K is a splitting field for A. Let A be a directed,
and let X ∈ ind(A). Then each entry in dim(X) is at most 6.

A directed algebra A is sincere if there exists a sincere X ∈ ind(A).

Theorem 1.24 (Bongartz [B82]). Let K be algebraically closed. Let A be
a sincere directed algebra, and let n(A) > 13. Then A belongs to one of 24
infinite families of algebras. Furthermore,

length(X) ≤ 2n(A) + 48

for all X ∈ ind(A).

The 24 families of sincere directed algebras A with n(A) > 13 can also be found
in Ringel’s book [R84]. The cases with n(A) ≤ 13 are classified by Dräxler [D89].
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1.4. Distributive algebras. Let A be a finite-dimensional K-algebra.

Let S be a partially ordered set (or poset for short). For a subset T ⊆ S an upper
bound for T is some s ∈ S such that t ≤ s for all t ∈ T . A supremum of T is a
smallest upper bound s0 for T , i.e. s0 is an upper bound and if s is an upper bound
for T , then s0 ≤ s. Similarly, one defines a lower bound and an infimum of T .

A poset S is a lattice if for any two elements s, t ∈ S there is a supremum
and an infimum of T = {s, t}. In this case write s + t for the supremum and
s ∩ t for the infimum.
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A lattice S is a distributive lattice if

s ∩ (t+ u) = (s ∩ t) + (s ∩ u)

for all s, t, u ∈ S.

It is an easy exercise to show that a lattice S is distributive if and only if

s+ (t ∩ u) = (s+ t) ∩ (s+ u).

for all s, t, u ∈ S.

A is a distributive algebra if the lattice of two-sided ideals in A is distribu-
tive.

Proposition 1.25 (Jans [J57]). For K infinite, the following are equivalent:

(i) A is distributive.

(ii) The lattice of two-sided ideals in A is finite.

The next result yields an easy method for checking if an algebra is distributive or
not.

Proposition 1.26 (Kupisch [K65]). For a basic algebra A = KQ/I the following
are equivalent:

(i) A is distributive.

(ii) For all i, j ∈ Q0 we have eiAei ∼= K[T ]/(Tmi) for some mi ≥ 1, and eiAej
is cyclic as an eiAei-module or cyclic as a (right) ejAej-module.

Examples:

(i) For n ≥ 2 let A = KQ/I where Q is the quiver

1a
88 2

b
oo c

ff

and I is generated by {an, ab− bc, cn}. Then A is distributive.

(ii) Let A = KQ/I be a basic algebra such that dim(eiAei) ≤ 1 for all i ∈ Q0.
(For example, this is the case if Q is acyclic.) Then A is distributive if and
only if dim(eiAej) ≤ 1 for all i, j ∈ Q0.
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Theorem 1.27 (Jans [J57, Theorem 2.1]). Assume that K is infinite. If A
is not distributive, then there is an infinite family of pairwise non-isomorphic
finite-dimensional indecomposable A-modules of the same length.

Corollary 1.28. Let K be an infinite field. If A is representation-finite, then
A is distributive.

Theorem 1.29 (Ringel [R11]). Let K be algebraically closed. If A is not
distributive it has an accessible module of length d for each d ≥ 1.

(The definition of an accessible module can be found in Section 1.1.)

The tame distributive algebras with two simple modules have been classified in
[DG96].
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2. Tame and wild algebras

§2 Tame and wild algebras:

generically
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§2.1.3

=?

controlled
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§2.2 =?

wild
§2.2
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WILD
§2.2
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§2.1

endo wild
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=?
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wild
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WILD
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derived
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polynomial
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exponential
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wild
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§2.1

n-domestic
§2.1

Back to Overview Metaclasses 1.

2.1. Tame algebras. Let K be a field, and let A be a finite-dimensional K-algebra.

2.1.1. Tame algebras. Let K[T ] be the polynomial ring in one variable T .

Assume that K be algebraically closed. The algebra A is tame if for each d
there exist finitely many A-K[T ]-bimodules M1, . . . ,Mt, which are free of finite
rank as right K[T ]-modules, such that (up to isomorphism) all but finitely
many indecomposable d-dimensional A-modules are isomorphic to a module
of the form

Mi ⊗K[T ] S

with S a simple K[T ]-module.

In this case, let µ(d) be the minimal number of such bimodules. (Recall that the
simple K[T ]-modules are of the form Sλ := K[T ]/(T − λ) with λ ∈ K, and that
Sλ ∼= Sµ if and only if λ = µ.)
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Let mod(A, d) be the affine variety of d-dimensional A-modules. The group
G = Gld(K) acts on mod(A, d) by conjugation, and the G-orbits correspond to
the isomorphism classes of d-dimensional A-modules. Each of the bimodules Mi in
the definition of a tame algebra yields a rational curve Ci in mod(A, d). The curves
C1, . . . , Ct intersect all but finitely many orbits of the d-dimensional indecomposable
A-modules.

There is an enormous wealth of publications on tame algebras. However, in con-
trast to the representation-finite algebras, one cannot speak of a theory of tame
algebras. As it stands, there are extremely few results on tame algebras in general.
Instead, one usually works with special classes of tame algebras.

There is a vague feeling that the known classes of tame algebras (at least
morally) cover all tame algebras or (more cautiously) all tame phenomena.

At least in principle, it should be possible to describe the category mod(A) of any
given tame algebra A.

2.1.2. Growth of a tame algebra.

One says that a tame algebra A is

• domestic if there exists some n ≥ 0 with

µ(d) ≤ n

for all d. For a minimal such n we call A an n-domestic algebra.

• of linear growth if there exists some n ≥ 1 such that

µ(d) ≤ nd

for all d.

• of polynomial growth if there exists some n ≥ 1 such that

µ(d) ≤ nd

for all d.

• of exponential growth if for each n ≥ 1 there exists some d ≥ 1 such
that

µ(d) > nd.

Examples: Let K be algebraically closed.

(i) The path algebra of the Kronecker quiver

1
//
// 2

is tame 1-domestic (and not representation-finite).

(ii) Tubular algebras are tame of linear growth (and not domestic).
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(iii) Let A = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {a3, b2, ab, ba}. Then A is tame of exponential growth
(and not of polynomial growth).

(iv) The path algebra of the 3-Kronecker quiver

1
//
//
// 2

is not tame.

Conjecture 2.1. The following are equivalent:

(i) A is tame of linear growth.

(ii) A is tame of polynomial growth.

2.1.3. τ -tame algebras.

A finite-dimensional K-algebra A is τ-tame if for each d all but finitely many
(up to isomorphism) d-dimensional indecomposable A-modules M satisfy

τ(M) ∼= M

where τ denotes the Auslander-Reiten translation.

Theorem 2.2 (Crawley-Boevey [CB88]). If A is tame, then A is τ -tame.

Conjecture 2.3. If A is τ -tame, then A is tame.

More on Conjecture 2.3 can be found in [BCBLZ00].

2.1.4. Generically tame algebras. As before, let A be a finite-dimensional K-algebra.
The length of M ∈ Mod(A) is denoted by length(M). Note that M is also a B-
module where B := EndA(M). Let endolength(M) be the length of M as a B-
module.

The following definition is due to Crawley-Boevey [CB91, CB92].

M ∈ Mod(A) is a generic module if the following hold:

(i) M is indecomposable;

(ii) length(M) =∞;

(iii) endolength(M) <∞.
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Example: Let A be the path algebra of the Kronecker quiver

1
//
// 2

and let G be the representation

K(T )
1
//

T
// K(T )

where K(T ) is the field of rational functions in one variable T . Then G is a generic
A-module.

Theorem 2.4 (Crawley-Boevey [CB91]). Let K be algebraically closed. Then
the following are equivalent:

(i) A is representation-infinite.

(ii) There exists a generic A-module.

The algebra A is generically tame if for each d there are only finitely many
generic A-modules of endolength d, up to isomorphism.

This version of tameness has the advantage that it does not rely on any assump-
tions on the ground field K.

Theorem 2.5 (Crawley-Boevey [CB91]). Let K be algebraically closed. Then
the following are equivalent:

(i) A is tame.

(ii) A is generically tame.

The following conjectures are for finite-dimensional K-algebras with K an arbi-
trary field (the algebraically closed case is covered by Theorems 2.4 and 2.5):

Conjecture 2.6. The following are equivalent:

(i) A is representation-infinite.

(ii) There exists a generic A-module.

Conjecture 2.7. The following are equivalent:

(i) A is not wild.

(ii) A is generically tame.

2.1.5. Derived-tame algebras. Let K be algebraically closed, and let A be a finite-
dimensional K-algebra.
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Let X ∈ Db(mod(A)) be a bounded complex of finite-dimensional A-modules.
The homological dimension of X is

h-dim(X) := (dim(Hi(X))i ∈ N(Z)

Geiß and Krause [GK02] propose the following definition of derived tameness of
a finite-dimensional K-algebra.

Assume that K be algebraically closed. The algebra A is derived tame if
for each d ∈ N(Z) there exist finitely many bounded complexes M1, . . . ,Mt

of A-K[T ]-bimodules, which are free of finite rank as right K[T ]-modules,
such that (up to isomorphism) all but finitely many indecomposable complexes
X ∈ Db(mod(A)) with h-dim(X) = d are isomorphic to a complex of the form

Mi ⊗K[T ] S

with S a simple K[T ]-module.

Happel constructed an embedding of triangulated categories

Db(mod(A))→ mod(Â)

where Â is the repetitive algebra of A. He also showed that this is a triangle

equivalence if and only if gl. dim(A) < ∞. Note that the repetitive algebra Â is
infinite-dimensional, but the definition of its tameness makes of course sense.

Theorem 2.8 (Geiß, Krause [GK02]). Assume that gl. dim(A) < ∞. Then
the following are equivalent:

(i) A is derived tame.

(ii) Â is tame.

The implication (ii) =⇒ (i) holds also without the assumption gl. dim(A) <∞.

Some authors call A derived tame if Â is tame, see for example [P98].

Conjecture 2.9. If Â is tame, then A is derived tame.

Examples:

(i) Gentle algebras and skewed-gentle algebras are derived tame.

(ii) Tubular algebras are derived tame.

(iii) Let A = KQ/I where Q is the quiver

1
a
// 2

b
// 3

c
// 4gg
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and let I be generated by cba. Then A is representation-finite. However, A
is not derived tame.

2.2. Wild algebras. Let A be a finite-dimensional K-algebra. By K〈x, y〉 we de-
note the free K-algebra in two non-commuting variables x and y.

The K-algebra A is

• wild if there exists a faithful exact K-linear functor

mod(K〈x, y〉)→ mod(A)

which respects indecomposables and reflects isomorphism classes.

• strictly wild if there exists a fully faithful exact K-linear functor

mod(K〈x, y〉)→ mod(A).

• controlled wild if there exists a faithful exact K-linear functor

F : mod(K〈x, y〉)→ mod(A)

and an additive subcategory C of mod(A) such that for all M,N ∈
mod(K〈x, y〉) we have

HomA(F (M), F (N)) = F (HomK〈x,y〉(M,N))⊕ C(F (M), F (N))

where C(F (M), F (N)) is the subspace of radA(F (M), F (N)) consisting
of all homomorphisms factoring through a module in C.
• endo wild if for each finite-dimensional K-algebra B there exists some
M ∈ mod(A) with EndA(M) ∼= B.

• controlled endo wild if for each finite-dimensional K-algebra B there
exists some M ∈ mod(A) and a nilpotent ideal I of EndA(M) with
EndA(M)/I ∼= B.

Examples:

(i) Wild path algebras are strictly wild.

(ii) Wild local algebras are never strictly wild.

(iii) Wild local algebras are controlled wild, see [H01].

Conjecture 2.10. The following are equivalent:

(i) A is wild.

(ii) A is controlled wild.

(iii) A is controlled endo wild.
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Conjecture 2.11. The following are equivalent:

(i) A is strictly wild.

(ii) A is endo wild.

One can show that A is wild if and only if there exists an A-K〈x, y〉-bimodule M ,
which is free of finite rank as a right K〈x, y〉-module, such that the functor

M ⊗K〈x,y〉 − : mod(K〈x, y〉)→ mod(A)

respects indecomposables and reflects isomorphism classes.

Theorem 2.12 (Brenner [B74]). For any finitely generated K-algebra B there
exists a fully faithful exact K-linear functor

mod(B)→ mod(K〈x, y〉).

In other words, the problem of classifying the finite-dimensional modules over a
wild algebra A includes the same classification problem for all finitely generated
K-algebras B. Even more striking, for a strictly wild algebra A and any finitely
generated K-algebra B, the category mod(A) has a subcategory which is equivalent
to mod(B).

For a proof of the following spectacular theorem we refer to [CB88]. Drozd’s
original proof (which is only sketched in [D80]) is published in Russian [D77, D79].

Theorem 2.13 (Drozd [D80]). Let K be algebraically closed. Then A is tame
or wild, but not both.

Getting a deeper understanding of the tame-wild dichotomy is one of the most
intriguing problems in the representation theory of finite-dimensional algebras.

There are numerous theorems which describe the representation-finite/tame/wild
divide of certain classes of algebras, e.g. path algebras of quivers, incidence algebras,
tree algebras. Some details will be mentioned in other sections of the FD-Atlas.

There are notions of wildness which also take the infinite-dimensional modules
into account:
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For example, the K-algebra A is

• WILD if there exists a faithful exact K-linear functor

Mod(K〈x, y〉)→ Mod(A)

which respects indecomposables and reflects isomorphism classes.

• strictly WILD if there exists a fully faithful exact K-linear functor

Mod(K〈x, y〉)→ Mod(A).

The following implications hold:

controlled
endo wildKS bj =?

wildKS

=?

WildKS

endo wildbj
=?

controlled
wildKS

strictly
WILD4<

strictly
wild

We refer to [S05] for more details.

Example: For m ≥ 2 let K(m) be the path algebra of the m-Kronecker quiver.
(This is the quiver with two vertices 1 and 2 and m arrows 1→ 2.) Then K(m) is
strictly wild (and therefore also strictly WILD) for m ≥ 3.

Ringel [R99] showed that K(2) is strictly WILD, but not wild.
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3. Hereditary algebras

§3 Hereditary algebras:

gl. dim <∞
standardly
stratified
§3.5

quasi-hereditary
§3.5

triangular
§10.5

strongly
quasi-hereditary

§3.5

Schur
§3.6

gl. dim ≤ 1 gl. dim = 2 gl. dim =∞

gl. dim = 0
hereditary
§3.2

preprojective
non-Dynkin
§3.4

selfinjective
§5.1

semisimple
§3.1

species
§3.3

preprojective
Dynkin
§3.4

separable
§3.1

path
§3.2

Back to Overview Metaclasses 1.

Exceptions: Semisimple selfinjective or semisimple preprojective algebras have
global dimension 0.

3.1. Semisimple algebras. Let A be a K-algebra.

3.1.1. Semisimple modules and semisimple algebras.

An A-module M is simple (or irreducible) if it contains exactly two sub-
modules, namely 0 and M . A module M is semisimple if M is a direct sum
of simple modules.
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Theorem 3.1. For an A-module M the following are equivalent:

(i) M is semisimple;

(ii) M is a sum of simple submodules;

(iii) Every submodule of M is a direct summand.

The proof of Theorem 3.1 uses the Axiom of Choice. This is not surprising: The
implication (ii) =⇒ (i) yields the existence of a basis of a vector space. (We
just look at the special case of modules over A = K. The simple A-modules are
1-dimensional, and every vector space is a sum of its 1-dimensional subspaces, thus
condition (ii) holds.)

Let AA be the regular representation of A, i.e. the algebra A acts on itself by left
multiplication.

The algebra A is semisimple if all A-modules are semisimple.

Theorem 3.2 (Wedderburn [W08]). Let A be a K-algebra. Then the following
are equivalent:

(i) A is a semisimple algebra;

(ii) AA is a semisimple module;

(iii) gl. dim(A) = 0;

(iv) There exist K-skew fields Di and natural numbers ni with 1 ≤ i ≤ s
such that

A ∼=
s∏
i=1

Mni(Di).

The opposite algebra Aop of a semisimple algebra A is again semisimple.

A semisimple algebra

A ∼=
s∏
i=1

Mni(Di)

is infinite-dimensional if and only if at least one of the K-skew fields Di is infinite-
dimensional. If A is finite-dimensional and K is algebraically closed, then Di = K
for all i.

Let A = Mn(D) for some K-skew field D and some n ≥ 1. Let S = Dn. We treat
the elements of Dn as column vectors. Then S is a simple A-module with A acting
from the left by matrix multiplication. Furthermore, we have EndA(S) ∼= Dop. It
follows that AA ∼= Sn. By the theorem, every A-module is isomorphic to a direct
sum of copies of S.
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If

A ∼=
s∏
i=1

Mni(Di),

then there are exactly s isomorphism classes of simple A-modules.

3.1.2. Superdecomposable modules. Finite products of semisimple algebras are again
semisimple. Infinite products however behave differently: Let I be an infinite set,
and let

A :=
∏
i∈I

Ki

be the product of copies Ki of our field K. This is a K-algebra with componentwise
addition and multiplication. The A-module

Ufin :=
⊕
i∈I

Ki

is a submodule of the regular representation AA. Define

U∞ := AA/Ufin.

A module is called superdecomposable provided it is non-zero and has no
indecomposable direct summands.

Proposition 3.3. U∞ is superdecomposable.

3.1.3. Separable algebras. Assume now that A is a finite-dimensional K-algebra.

The algebra
Ae := A⊗K Aop

is the enveloping algebra of A.

A is separable if A is projective as an Ae-module.

Proposition 3.4 ([SY11, Proposition 11.8]). Separable algebras are semisim-
ple.

Proposition 3.5 ([SY11, Theorem 11.11]). A is separable if and only if Ae is
semisimple.
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Proposition 3.6 ([SY11, Corollary 11.12]). If K is a perfect field (e.g. if K
is algebraically closed) and A is semisimple, then A is separable.

Literature – semisimple algebras
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Back to Overview Hereditary 3.

3.2. Hereditary algebras.

3.2.1. Hereditary algebras.

A K-algebra A is called hereditary if submodules of projective A-modules
are again projective.

Finite-dimensional hereditary K-algebras together with their close relatives
(e.g. the preprojective algebras) form arguably the single most important class
of finite-dimensional K-algebras. There are numerous deep links between the
representation theory of hereditary algebras and different areas of mathematics
and mathematical physics.

Proposition 3.7. For a K-algebra A the following are equivalent:

(i) A is hereditary;

(ii) gl. dim(A) ≤ 1.

Examples:

(i) Let Q be a quiver. Then the path algebra KQ is hereditary. A path algebra
KQ is finite-dimensional if and only if Q is acyclic. Path algebras are the
most studied and best understood class of hereditary algebras.

(ii) LetM be an acyclic K-modulated graph. Then the tensor algebra T (M) is
a finite-dimensional hereditary K-algebra.

For an acyclic quiver Q, the path algebra KQ is isomorphic to T (M) for some
acyclic K-modulated graph M.
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Theorem 3.8. Let A be a finite-dimensional hereditary K-algebra. Then the
following hold:

(i) If A is representation-finite, then A is Morita equivalent to T (M) for
some acyclic modulated graph M.

(ii) If the field K is perfect, then A is Morita equivalent to T (M) for some
acyclic modulated graph M.

(iii) If the field K is algebraically closed, then A is Morita equivalent to KQ
for some acyclic quiver Q.

A proof of Theorem 3.8(i) can be found in [?, Theorem C].

There are examples of finite-dimensional hereditary K-algebras which are not
Morita equivalent to any of the tensor algebras T (M).

3.2.2. Representation types of hereditary algebras. In this subsection, let A be a
finite-dimensional hereditaryK-algebra. Let S(1), . . . , S(n) be the simpleA-modules,
up to isomorphism.

Since A is hereditary, we can assume without loss of generality that
Ext1

A(S(i), S(j)) = 0 for all i ≥ j.

Let C := (cij) be the symmetrizable generalized Cartan matrix associated
with A, where

cij := − dimEndA(S(i))op Ext1
A(S(i), S(j)) and cji := − dimEndA(S(j)) Ext1

A(S(i), S(j))

for i < j, and cii := 2. Let D := (c1, . . . , cn) be the symmetrizer of C where
ci := dimK EndA(S(i)).

The Tits form of A is the quadratic form q = qC,D : Zn → Z defined by

q :=
n∑
i=1

cix
2
i +

∑
i<j

cicijxixj.

Proposition 3.9. For X ∈ mod(A) we have

q(dim(X)) = dim EndA(X)− dim Ext1
A(X,X).
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An • • · · · • • n ≥ 1

Bn •
(1,2)
• · · · • • n ≥ 2

Cn •
(2,1)
• · · · • • n ≥ 3

•

Dn • • • · · · • n ≥ 4

•

E6 • • • • •

•

E7 • • • • • •

•

E8 • • • • • • •

F4 • •
(1,2)
• •

G2 •
(1,3)
•

Figure 1. Dynkin graphs

The valued graph Γ(C) of C has vertices 1, . . . , n and an (unoriented) edge

between i and j if and only if cij < 0. An edge i j has the value

(|cji|, |cij|). In this case, we display this valued edge as

i
(|cji|,|cij |)

j.

We just write i j if (|cji|, |cij|) = (1, 1).

The matrix C is connected if Γ(C) is a connected graph.

From now on, we assume additionally that C is connected.

Figure 1 shows a list of valued graphs called Dynkin graphs. By definition each
of the graphs An, Bn, Cn and Dn has n vertices. The graphs An, Dn, E6, E7 and
E8 are the simply laced Dynkin graphs.

In Figure 2 we display a list of valued graphs called Euclidean graphs. By

definition each of the graphs Ãn, B̃n, C̃n, D̃n, B̃Cn, B̃Dn and C̃Dn has n + 1
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Ãn • • • · · · • • • n ≥ 2

B̃n •
(1,2)
• • · · · • •

(2,1)
• n ≥ 2

C̃n •
(2,1)
• • · · · • •

(1,2)
• n ≥ 2

• •

D̃n • • • · · · • • • n ≥ 4

•

•

Ẽ6 • • • • •

•

Ẽ7 • • • • • • •

•

Ẽ8 • • • • • • • •

Ã11 •
(1,4)
• Ã12 = Ã1 •

(2,2)
•

B̃Cn •
(1,2)
• • · · · • •

(1,2)
• n ≥ 2

•

B̃Dn • • • · · · • •
(2,1)
• n ≥ 3

•

C̃Dn • • • · · · • •
(1,2)
• n ≥ 3

F̃41 • • •
(1,2)
• • F̃42 • • •

(2,1)
• •

G̃21 • •
(1,3)
• G̃22 • •

(3,1)
•

Figure 2. Euclidean graphs

vertices. The graphs Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8 are the simply laced Euclidean
graphs.
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The Tits form q is positive definite if q(α) > 0 for all 0 6= α ∈ Zn, and q is
positive semidefinite if q(α) ≥ 0 for all α ∈ Zn and q is not positive definite.
Otherwise, q is indefinite.

Theorem 3.10. For a finite-dimensional connected hereditary K-algebra A
the following hold:

(i) A is representation-finite ⇐⇒ Γ(C) is a Dynkin graph ⇐⇒ q is
positive definite.

(ii) A is tame ⇐⇒ Γ(C) is a Euclidean graph ⇐⇒ q is positive semi-
definite.

(iii) A is wild ⇐⇒ q is indefinite.

In case (i), A is a directed algebra, and the AR quiver ΓA consists of a single
preprojective component.

In case (ii), we use the term tame in the sense that A is not representation-finite
and not wild. (Recall that we defined tame algebras only for K-algebras where
K is algebraically closed.) In this case, ΓA consists of a preprojective component,
a preinjective component, and an infinite family of regular components of type
ZA∞/(τm) for some m ≥ 1. There are at most 3 regular components with m ≥
2. If K is algebraically closed, these regular components are parametrized by the
projective line P1(K).

In case (iii), ΓA consists of a preprojective component, a preinjective component,
and an infinite family of regular components of type ZA∞. There is no known
meaningful way to parametrize the regular components.

3.2.3. Quivers and path algebras.

A quiver is a quadruple Q = (Q0, Q1, s, t) where Q0 and Q1 are finite sets and
s, t : Q1 → Q0 are maps.

The elements in Q0 are called vertices, and the elements in Q1 are arrows. Let
a ∈ Q1. Then s(a) is the starting vertex and t(a) is the terminal vertex of a.
One usally draws an arrow a ∈ Q1 as

s(a)
a
// t(a)
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Thus Q is a finite directed graph. But note that multiple arrows and loops (a
loop is an arrow a with s(a) = t(a)) are allowed.

1

d
��

a
))

b

55 2

f




c
ff

3 4

e

II

Let Q = (Q0, Q1, s, t) be a quiver. A sequence

a = (a1, a2, . . . , am)

of arrows ai ∈ Q1 is a path in Q if s(ai) = t(ai+1) for all 1 ≤ i ≤ m − 1. In
this case, length(a) := m is the length of a. Furthermore set s(a) = s(am)
and t(a) = t(a1).

t(a)
a1
oo · · ·a2

oo s(a)
am
oo

Instead of (a1, a2, . . . , am) one often just writes a1a2 · · · am. Additionally there
is a path ei of length 0 for each vertex i ∈ Q0. Let s(ei) = t(ei) = i.

A path a starts in s(a) and ends in t(a).

A path a of length m ≥ 1 is an oriented cycle in Q if s(a) = t(a). The quiver
Q is acyclic if there is no oriented cycles in Q.

The path algebra KQ of Q over K is the K-algebra with basis (indexed by)
the set of all paths in Q. The multiplication of paths a and b is defined as
follows: If a = (a1, . . . , al) and b = (b1, . . . , bm) are paths in Q with l,m ≥ 1,
then

ab := a · b :=

{
(a1, . . . , al, b1, . . . , bm) if s(al) = t(b1),

0 otherwise.

If a or b is a path of length 0, then

ab := a · b :=


a if b = ei and s(a) = i,

b if a = ei and t(b) = i,

0 otherwise.

These multiplication rules are clearly associative, so extending them K-linearly
turns KQ into a K-algebra.

KQ is finite-dimensional if and only if Q is acyclic.

By definition we have

eiej =

{
ei if i = j,

0 otherwise.
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The element

1 =
∑
i∈Q0

ei

is the identity in KQ. In other words, {ei | i ∈ Q0} is a complete set of orthogonal
idempotents.

Examples:

(i) Let Q be the following quiver:

1

d




c
��

2
a
oo

b
//

e
��

3

4
f
// 5

The path algebra KQ is 17-dimensional. Here are some examples of multi-
plications of paths:

e1 · e1 = e1, e3 · e4 = 0, fc · a = fca, a · fc = 0,

b · e2 = b, e2 · b = 0, e3 · b = b.

(ii) For m ≥ 1, let Q be the m-loop quiver with a single vertex and m loops
a1, . . . , am. Let K〈x1, . . . , xm〉 be the free algebra in m non-commuting vari-
ables. We get a K-algebra isomorphism

K〈x1, . . . , xm〉 → KQ

defined by xi 7→ ai for 1 ≤ i ≤ m. It maps a monomial of the form xi1 · · ·xit
to the path (ai1 , . . . , ait). For m = 1 we get KQ ∼= K[T ], where K[T ] is the
polynomial ring in one variable T .

Proposition 3.11. Path algebras are hereditary.

3.2.4. Quiver representations and modules over path algebras.

A representation
V = (Vi, Va)

of a quiver Q = (Q0, Q1, s, t) is given by a K-vector space Vi for each vertex
i ∈ Q0 and a linear map

Va : Vs(a) → Vt(a)

for each arrow a ∈ Q1.
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A homomorphism
f = (fi) : V → W

between representations V = (Vi, Va) and W = (Wi,Wa) is given by a linear
map

fi : Vi → Wi

for each i ∈ Q0 such that the diagram

Vs(a)

fs(a)
��

Va
// Vt(a)

ft(a)
��

Ws(a)
Wa
// Wt(a)

commutes for each a ∈ Q1.

A homomorphism f = (fi)i : V → W of representations of Q is an isomorphism
if each fi is an isomorphism. In this case, we write V ∼= W .

The homomorphisms f : V → W between representations V and W of a quiver
Q form a K-vector space which is denoted by HomQ(V,W ).

Examples: Let Q be the Kronecker quiver

1 2oo
oo

For λ1, λ2 ∈ K let Mλ1,λ2 be the representation

K K
λ2

oo

λ1
oo

Then

HomQ(Mλ1,λ2 ,Mµ1,µ2) = {f = (f1, f2) | f1λ1 = µ1f2 and f1λ2 = µ2f2}.

K

f1
��

K

f2
��

λ2

oo

λ1
oo

K K
µ2
oo

µ1
oo

It follows that Mλ1,λ2
∼= Mµ1,µ2 if and only if (λ1, λ2) = c(µ1, µ2) for some c ∈ K∗.

A subrepresentation of a representation V = (Vi, Va) is given by a tuple
(Ui)i of subspaces Ui ⊆ Vi such that

Va(Us(a)) ⊆ Ut(a)

for all a ∈ Q1.

The representations of a quiver Q form an abelian K-category Rep(Q). The full
subcategory of finite-dimensional representations is denoted by rep(Q).
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Proposition 3.12. Let Q be a quiver. Then there is an equivalence

F : Mod(KQ)→ Rep(Q).

Construction of F : For a KQ-module V and i ∈ Q0 define Vi := eiV . This yields
a direct decomposition

V =
⊕
i∈Q0

Vi

of K-vector spaces. For a ∈ Q1 define

Va : Vs(a) → Vt(a)

v 7→ av.

(Note that a = et(a)aes(a).) This gives a representation (Vi, Va) of Q. Define F (V ) :=
(Vi, Va).

The equivalence in the proposition restricts to an equivalence

mod(KQ)→ rep(Q).

The functor F is almost an isomorphism of categories. (If we identify internal
and external direct sums, we get a bijection on the classes of objects.)

Often one does not distinguish between KQ-modules and representations of Q.

3.2.5. Representation types of quivers. For a quiver Q = (Q0, Q1, s, t) the underlying
graph |Q| of Q has Q0 as a set of vertices, and for i, j ∈ Q0 there are qij := |{a ∈
Q1 | {s(a), t(a)} = {i, j}}| unoriented edges connecting i and j.

Q is a Dynkin quiver if |Q| is one of the graphs in Figure 3 (the graphs An
and Dn have n vertices).

Q is a Euclidean quiver if |Q| is one of the graphs in Figure 4 (the graphs

Ãn and D̃n have n+ 1 vertices).

Theorem 3.13. Let A = KQ be a finite-dimensional connected path algebra.
Then the following hold:

(i) KQ is representation-finite ⇐⇒ Q is a Dynkin quiver ⇐⇒ qQ is
positive definite.

(ii) KQ is tame ⇐⇒ Q is a Euclidean quiver. ⇐⇒ qQ is positive
semidefinite.

(iii) KQ is wild ⇐⇒ qQ is indefinite.
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An • • · · · • • n ≥ 1

•

Dn • • • · · · • n ≥ 4

•

E6 • • • • •

•

E7 • • • • • •

•

E8 • • • • • • •

Figure 3. Dynkin quivers

Ãn • • • · · · • • • n ≥ 1

• •

D̃n • • • · · · • • • n ≥ 4

•

•

Ẽ6 • • • • •

•

Ẽ7 • • • • • • •

•

Ẽ8 • • • • • • • •

Figure 4. Euclidean quivers

In (i) we have

{dim(X) | X ∈ ind(KQ)} = {x ∈ Zn | qQ(x) = 1} = Φ+
re
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and in (ii) we have

{dim(X) | X ∈ ind(KQ)} = {x ∈ Zn | qQ(x) = 0, 1} = Φ+
re.

(Here φ+
re is the set of positive roots of the Kac-Moody Lie algebra associated with

Q, see the next subsection.)

3.2.6. Kac’s Theorem. In this section, we assume that K is algebraically closed. Let
Q be a quiver with vertices {1, . . . , n}, and let A = KQ. Recall that we can identify
mod(A) and rep(Q).

For α, β ∈ Zn we define

〈α, β〉 :=
n∑
i=1

αiβi −
∑
a∈Q1

αs(a)βt(a)

and

(α, β) := 〈α, β〉+ 〈β, α〉.

Let q = qC,D : Zn → Z be the Tits form of A. We have D = (1, . . . , 1) and cij = cji
for all i, j. It follows that q(x) = 〈x, x〉 for all x ∈ Zn.

The standard basis vector ei ∈ Zn is a simple root if there is no loop at i. In
this case, define

si : Zn → Zn

α 7→ α− (α, ei)ei.

Let W := 〈si | ei is a simple root〉 be the Weyl group.

Then
Φ+

re := {w(ei) | ei simple root, w ∈ W} ∩ Nn

is the set of positive real roots of Q.

The support of x = (x1, . . . , xn) ∈ Zn is defined as supp(x) := {1 ≤ i ≤ n | xi 6=
0}. Let suppQ(x) be the full subquiver of Q with vertices in supp(x).

Let

F := {α ∈ Nn | α 6= 0, suppQ(α) is connected, (α, ei) ≤ 0 for all simple roots ei}
be the fundamental region of Q.

Let
Φ+

im := {w(F ) | w ∈ W} ∩ Nn

be the set of positive imaginary roots of Q.

For α ∈ Φ+
re (resp. α ∈ Φ+

im) we have q(α) = 1 (resp. q(α) ≤ 0).
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For α ∈ Nn let

X := rep(Q,α) :=
∏
a∈Q1

HomK(Kαs(a) , Kαt(a)) and G :=
n∏
i=1

GLαi(K).

Then G acts on X by conjugation:

For g = (g1, . . . , gn) ∈ G and x = (xa)a ∈ X let

gx := (g−1
t(a)xags(a))a ∈ X,

and let
Gx := {gx | g ∈ G}

be the orbit of x.

For x, y ∈ X we have x ∼= y if and only if Gx = Gy.

For s ≥ 0 let Xs := {x ∈ X | dimGx = s}.

This is locally closed in X.

Let Y ⊆ X be constructible and G-stable. Let

µ(Y ) := max{dim(Y ∩Xs)− s | s ≥ 0}
be the number of parameters of Y in X.

Let ind(Q,α) be the indecomposable representations in X = rep(Q,α), and let

µ(α) := µ(ind(Q,α)).

Theorem 3.14 (Kac [Ka80, Ka82]). For α ∈ Nn we have ind(Q,α) 6= ∅ if
and only if α ∈ Φ+

re ∪ Φ+
im. In this case,

µ(α) = 1− q(α).

For α ∈ Φ+
re, ind(Q,α) consists of one orbit.

For arbitrary ground fields K, an analogue of Kac’s Theorem is still missing.

One can associate a symmetric Kac-Moody Lie algebra g to Q. (This does not
depend on the orientation of Q.) The set of positive roots of g is Φ+

re ∪ Φ+
im. For a

Dynkin quiver Q, g is a simple finite-dimensional Lie algebra. For more details we
refer to Kac’s book [Ka85].



60 JAN SCHRÖER

There are numerous deep results which relate the representation theory of Q
with the representation theory of g.

To be continued...

3.2.7. Schur roots. [Sch92]

To be continued...

3.2.8. Tree modules. [P12, W10, W12]

To be continued...

3.2.9. Crawley-Boevey-Kerner bijections. [CBK94]

To be continued...
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3.3. Species. The representation theory of species and modulated graphs is based
on an idea by Gabriel [G73] and has been developed by Dlab and Ringel [DR75,
DR76, R76]. For an extension of this framework we refer to [GLS17, GLS20, K17].

A matrix C = (cij) ∈ Mn(Z) is a symmetrizable generalized Cartan
matrix provided the following hold:

(C1) cii = 2 for all i;

(C2) cij ≤ 0 for all i 6= j;

(C3) cij 6= 0 if and only if cji 6= 0.

(C4) There is some integer tupleD = (c1, . . . , cn) with ci ≥ 1 and cicij = cjcji
for all i, j.

The tupleD appearing in (C4) is called a symmetrizer of C. The symmetrizer
D is minimal if c1 + · · ·+ cn is minimal.

Let C = (cij) ∈ Mn(Z) be a symmetrizable generalized Cartan matrix, and let
D = (c1, . . . , cn) be a symmetrizer of C. The valued graph Γ(C) of C has vertices
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1, . . . , n and an (unoriented) edge between i and j if and only if cij < 0. An edge

i j has value (|cji|, |cij|). We display this valued edge as

i
(|cji|,|cij |)

j

and we just write i j if (|cji|, |cij|) = (1, 1).

A symmetrizable generalized Cartan matrix C is connected if Γ(C) is a connected
graph. If D is a minimal symmetrizer of C, then the other symmetrizers of C are
given by mD with m ≥ 1.

Given (C,D) as above, let qC,D : Zn → Z be the quadratic form defined by

qC,D :=
n∑
i=1

ciX
2
i −

∑
i<j

ci|cij|XiXj.

For 1 ≤ i ≤ n let Hi be a finite-dimensional K-skew field, and for each edge

i
(|cji|,|cij |)

j

of Γ(C) let iHj be an Hi-Hj-bimodule and let jHi be an Hj-Hi-bimodule such
that K acts centrally and the following hold:

(i) dimK(Hi) = ci for all i, and dimK(iHj) = dimK(jHi) = ci|cij|.
(ii) There are isomorphisms

jHi
∼= HomHi(iHj, Hi) ∼= HomHj(iHj, Hj)

of Hj-Hi-bimodules.

The tuple M(C,D) := (Hi, iHj, jHi) is called a modulation or species for
(C,D).

In particular, we have

Hi(iHj) ∼= H
|cij |
i
∼= (jHi)Hi and Hj(jHi) ∼= H

|cji|
j
∼= (iHj)Hj .

Let C = (cij) ∈ Mn(Z) be a symmetrizable generalized Cartan matrix. An
orientation of C is a subset Ω ⊂ {1, 2, . . . , n} × {1, 2, . . . , n} such that the
following hold:

(i) {(i, j), (j, i)} ∩ Ω 6= ∅ if and only if cij < 0;

(ii) For each sequence ((i1, i2), (i2, i3), . . . , (it, it+1)) with t ≥ 1 and
(is, is+1) ∈ Ω for all 1 ≤ s ≤ t we have i1 6= it+1.

(We think of (i, j) ∈ Ω as an arrow i joo . Condition (ii) says that there are

no oriented cycles.)
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For an orientation Ω of C, a representation M = (Mi,Mij) of (M(C,D),Ω)
is given by a finite-dimensional Hi-module Mi for each 1 ≤ i ≤ n and an
Hi-linear map

Mij : iHj ⊗j Mj →Mi

for each (i, j) ∈ Ω.

A morphism f : M → N of representations M = (Mi,Mij) and N = (Ni, Nij)
of (M(C,D),Ω) is a tuple f = (fi)i of Hi-linear maps fi : Mi → Ni for 1 ≤
i ≤ n such that for each (i, j) ∈ Ω the diagram

iHj ⊗j Mj

Mij

��

1⊗jfj
//
iHj ⊗j Nj

Nij

��

Mi
fi

// Ni

commutes.

The representations of (M(C,D),Ω) form an abelian category which is denoted
by rep(C,D,Ω).

To define rep(C,D,Ω), one only needs the bimodules iHj for (i, j) ∈ Ω. To
define reflection functors which relate these categories for different orientations
one also needs the bimodules jHi and condition (ii) in the definition of a
modulation.

Let S be a K-algebra, and let B = ABA be an A-A-bimodule. The tensor
algebra TS(B) is defined as

TS(B) :=
⊕
m≥0

B⊗m

where B0 := S, and B⊗m := B ⊗S · · · ⊗S B is the m-fold tensor product of B
for m ≥ 1.

Recall that the multiplication of TS(B) is defined as follows: For r, s ≥ 1, bi, b
′
i ∈ B

and a, a′ ∈ S let

(b1 ⊗ · · · ⊗ br) · (b′1 ⊗ · · · ⊗ b′s) := (b1 ⊗ · · · ⊗ br ⊗ b′1 ⊗ · · · ⊗ b′s)
and

a(b1 ⊗ · · · ⊗ br)a′ := (ab1 ⊗ · · · ⊗ bra′).
Obviously, TS(B) is generated by S and B as a K-algebra.

Proposition 3.15. The TS(B)-modules are given by the S-module homomor-
phisms B ⊗S X → X, where X is an S-module.
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For a modulation (Hi, iHj, jHi) for (C,D) and an orientation Ω of C let

S :=
n∏
i=1

Hi and B :=
⊕

(i,j)∈Ω

iHj.

Then B is an S-S-bimodule in the obvious way. The tensor algebra TS(B) is
sometimes called a species or species algebra of type C.

Theorem 3.16. The following hold:

(i) TS(B) is a finite-dimensional hereditary K-algebra whose Tits form
coincides with qC,D.

(ii) There is an equivalence

rep(M(C,D),Ω)→ mod(TS(B))

(Mi,Mij) 7→M :=
n⊕
i=1

Mi.

Here TS(B) acts on M as follows: The action of S on M is clear. For aij ∈ iHj

and mj ∈Mj let aijmj := Mij(iaj ⊗mj).

Examples:

(i) Let Q be an acyclic quiver with Q0 = {1, . . . , n}, and let A = KQ be its
path algebra. Let Ω := {(t(a), s(a)) | a ∈ Q1}. For i ∈ Q0 set Hi := K,
and for (i, j) ∈ Ω let iHj be the subspace of KQ spanned by the arrows
{a ∈ Q1 | s(a) = j and t(a) = i}, and let jHi := D(iHj) be the K-dual
of iHj. Then (Hi, iHj, jHi) is a modulation for (C,D) where C = (cij) is
defined by

cij :=

{
2 if i = j,

−|{a ∈ Q1 | {s(a), t(a)} = {i, j}}| otherwise,

and D := (1, . . . , 1). Let

S :=
∏
i∈Q0

Hi and B :=
⊕

(i,j)∈Ω

iHj.

There is a K-algebra isomorphism

KQ→ TS(B)

which is defined in the obvious way. Thus all finite-dimensional path algebras
are isomorphic to species.

(ii) The complex numbers C are an R-C-bimodule RCC in the obvious way. Let
S := R× C and B := RCC. Then there is a K-algebra isomorphism

TS(B)→
(
R C
0 C

)
.
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This is a representation-finite 5-dimensional R-algebra of Dynkin type B2.
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Back to Overview Hereditary 3.

3.4. Preprojective algebras. LetQ = (Q0, Q1, s, t) be an acyclic connected quiver.
Let Q be the double quiver obtained from Q by adding for each arrow a : i → j
in Q a new arrow a∗ : j → i pointing in the opposite direction.

The preprojective algebra associated with Q is

Π(Q) := KQ/(c)

where (c) is the ideal generated by

c :=
∑
a∈Q1

(aa∗ − a∗a).

Example: Let Q be the quiver

1 2
a
oo 3

b
oo

c
// 4
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The AR quiver ΓKQ looks as follows:

4

��

3
2

1

��

oo

3
2 4

1

??

��

3
2

��

oo

2
1

??

��

3
2 4

��

??

oo 3oo

1

??

2

??

oo 3
4

??

oo

Then

Π(Q) = KQ/I

where Q is the quiver

1
a∗
// 2

b∗
//

a
oo 3

b
oo

c
// 4

c∗
oo

and I is generated by

{aa∗, bb∗ − a∗a, −c∗c− b∗b, cc∗}

The indecomposable projective Π(Q)-modules are

1
��

2
��

3
��

4

2
����

1
��

3
�� ��

2
��

4
��

3

3
����

2
����

4
��

1
��

3
��

2

4
��

3
��

2
��

1

Observe how the colours are related to the τ -orbits in ΓKQ.

Preprojective algebras appear in many different contexts and provide several
beautiful bridges to other areas of mathematics (e.g. representation theory of
Kac-Moody Lie algebras, cluster algebras and singularity theory).

For an algebra A and an A-A-bimodule B let

TA(B) :=
⊕
m≥0

B⊗m

be the associated tensor algebra. Note that Ext1
KQ(D(KQ), KQ) is an KQ-KQ-

bimodule in the obvious way.

Theorem 3.17. Π(Q) ∼= TKQ(Ext1
KQ(D(KQ), KQ)).
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Corollary 3.18. We have

KQΠ(Q) ∼=
⊕
X

X

where the direct sum runs over a complete set of representatives of isomorphism
classes of indecomposable preprojective KQ-modules.

Corollary 3.18 justifies the name preprojective algebra for Π(Q).

Theorem 3.19. Let Π = Π(Q). For X, Y ∈ mod(Π) there is a functorial
isomorphism

Ext1
Π(X, Y ) ∼= DExt1

Π(Y,X).

Theorem 3.20. The following are equivalent:

(i) Q is a Dynkin quiver;

(ii) Π(Q) is finite-dimensional.

In this case, Π(Q) is selfinjective. If Q is not a Dynkin quiver, then
gl. dim(Π(Q)) = 2.

The preprojective algebra Π(Q) is representation-finite if and only if Q is of type
An with n = 1, 2, 3, 4, and Π(Q) is tame if and only if Q is of type A5 or D4.

3.4.1. Nilpotent varieties. To be continued...

3.4.2. Semicanonical and dual semicanonical bases. To be continued...

3.4.3. Preprojective algebras and cluster algebras. To be continued...
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3.5. Quasi-hereditary algebras. Let A be a finite-dimensional K-algebra. Let
S(1), . . . , S(n) be the simpleA-modules, and let P (1), . . . , P (n) (resp. I(1), . . . , I(n))
be the indecomposable projective (resp. indecomposable injective) A-modules, up
to isomorphism. We label these modules such that

top(P (i)) ∼= S(i) ∼= soc(I(i)).

3.5.1. Standard modules.

Let ∆(i) be the largest factor module of P (i) such that [∆(i) : S(j)] = 0 for
all j > i. The modules ∆(i) are called standard modules of A.

From this definition we immediately get the following:

(i) top(∆(i)) ∼= S(i).

(ii) ∆(i) is indecomposable.

(iii) ∆(n) = P (n).
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Let F(∆) be the full subcategory of all X ∈ mod(A) having a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = X

such that for each 1 ≤ i ≤ t we have Xi/Xi−1
∼= ∆(j) for some 1 ≤ j ≤ n.

Such a filtration is called a ∆-filtration of X. We additionally assume that
0 ∈ F(∆).

Lemma 3.21. For 1 ≤ i ≤ j ≤ n we have Ext1
A(∆(j),∆(i)) = 0.

3.5.2. Quasi-hereditary algebras.

The algebra A is a standardly stratified algebra if for each 1 ≤ i ≤ n we
have

P (i) ∈ F(∆).

The algebra A is quasi-hereditary if for each 1 ≤ i ≤ n the following hold:

(i) P (i) ∈ F(∆).

(ii) [∆(i) : S(i)] = 1.

Proposition 3.22 ([ADL98]). The following are equivalent:

(i) A is quasi-hereditary.

(ii) A is standardly stratified and gl. dim(A) <∞.

Note that the definition of ∆(i) depends on the labeling of the simple A-
modules. Thus A might be quasi-hereditary for one labeling and not quasi-
hereditary for another.

There is an equivalent definition of quasi-hereditary algebras using hereditary
chains, see [CPS88, DR89].

One can use adapted partial orders on the simple A-modules instead of total orders
to define quasi-hereditary algebras. For simplicity we restricted to the case of total
orders.
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Quasi-hereditary algebras were introduced by Cline, Parshall and Scott
[CPS88]. They appear in different interesting contexts. Most notably, each
block of the BGG category O of a reductive Lie algebra over C is Morita
equivalent to mod(A) for some quasi-hereditary C-algebra A.

Examples: In the following examples we highlight the standard modules ∆(i) with
different colours.

(i) Let Q be the quiver

1
a
//
2

b
oo

and let A = KQ/I with I generated by ab. The indecomposable projective
A-modules are

P (1) =
1
2
1

P (2) =
2
1
.

(Both P (1) and P (2) are uniserial modules. The numbers 1 and 2 stand
for composition factors isomorphic to the simple A-modules S(1) and S(2),
respectively.) The standard modules are

∆(1) ∼= S(1) = 1 and ∆(2) = P (2) =
2
1
.

Now it is obvious that A is quasi-hereditary.

(ii) Let Q be the quiver

1
a
// 2

b
// 3

and let A = KQ/I with I generated by ba. The indecomposable projective
A-modules are

P (1) =
1
2

P (2) =
2
3

P (3) = 3.

Thus A is quasi-hereditary with standard modules ∆(i) ∼= S(i) for i = 1, 2, 3.
Using the labeling

3
a
// 2

b
// 1

A is quasi-hereditary with standard modules ∆(i) = P (i) for i = 1, 2, 3.

P (1) = 1 P (2) =
2
1

P (3) =
3
2
.

However, for the labeling

1
a
// 3

b
// 2

A is no longer quasi-hereditary, since P (1) does not have a ∆-filtration.

P (1) =
1
3

P (2) = 2 P (3) =
3
2
.
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(iii) Let A = KQ/I be a basic algebra such that Q has no oriented cycles. Then
there exists a labelings of the simple A-modules such that A becomes quasi-
hereditary with ∆(i) ∼= S(i) (resp. ∆(i) = P (i)) for all i.

(iv) The following example is due to Dlab and Ringel [DR89]. Let Q be the
quiver

j
b

��

i

a

AA

kc
oo

and let A = KQ/I with I generated by {bac, acba}. We have gl. dim(A) = 4.

P (i) =

i
j
k
i

P (j) =

j
k
i
j

P (k) =
k
i
j
.

There does not exist a labeling such that A becomes quasi-hereditary.

(v) Let Q be the quiver

1 a
ff

and let A = KQ/I with I generated by a2. We have

P (1) = ∆(1) =
1
1
.

So P (1) ∈ F(∆). Thus A is standardly stratified. However A is not quasi-
hereditary since [∆(1) : S(1)] = 2 > 1.

The following two theorems deal with the question of finding quasi-hereditary
labelings. We omit the proofs.

Theorem 3.23 (Dlab, Ringel [DR89, Theorem 1]). The following are equiv-
alent:

(i) A is quasi-hereditary for each labeling of the simple A-modules.

(ii) A is hereditary.

Theorem 3.24 (Dlab, Ringel [DR89, Theorem 2]). If gl. dim(A) ≤ 2, then
there exists a labeling of the simple A-modules such that A becomes quasi-
hereditary.

Theorem 3.25 (Cline, Parshall, Scott [CPS88]). Let A be quasi-hereditary.
Then

gl. dim(A) <∞.
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Dually, let ∇(i) be the largest submodule of I(i) such that [∇(i) : S(j)] = 0
for all j > i. The modules ∇i are called costandard modules.

Similarly as above, let F(∇) be the full subcategory of mod(A) consisting of
A-modules having a filtration by costandard modules.

Theorem 3.26 (Dlab, Ringel [DR92, Proposition 3.1]). Let A be quasi-
hereditary. There is a tilting module T ∈ mod(A) such that

F(∆) ∩ F(∇) = add(T ).

The module T appearing in the previous theorem is the characteristic tilting
module of A. The algebra

B := EndA(T )op

is called the Ringel dual of A.

Let T be the characteristic module of a quasi-hereditary algebra A. Then

F(∆) = {X ∈ mod(A) | ExtiA(X,T ) = 0 for all i ≥ 1}
and

F(∇) = {Y ∈ mod(A) | ExtiA(T, Y ) = 0 for all i ≥ 1}.

A quasi-hereditary algebra A is strongly quasi-hereditary if

proj. dim(∆(i)) ≤ 1

for all 1 ≤ i ≤ n.

Theorem 3.27 (Iyama [I03]). Let X ∈ mod(A). Then there exists some
Y ∈ mod(A) such that

EndA(X ⊕ Y )op

is a strongly quasi-hereditary algebra.

Ringel [R10] wrote Iyama’s proof of Theorem 3.27 in a more transparent way
and also noted that the resulting algebras are strongly quasi-hereditary and not just
quasi-hereditary.

Corollary 3.28 (Iyama [I03]). rep. dim(A) <∞.

Proof. Let X := AA⊕D(AA) and then apply Theorem 3.27. �
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Corollary 3.29. Auslander algebras are strongly quasi-hereditary.

Corollary 3.30. Let A be a finite-dimensional K-algebra. Then there is a
strongly quasi-hereditary K-algebra Γ and an idempotent e ∈ Γ with

eΓe ∼= A.

Following closely Ringel [R10], we outline a contructive proof of Theorem 3.27.

Let X, Y ∈ mod(A), and let

X =
r⊕
i=1

Xi and Y =
s⊕
j=1

Yj

be in mod(A) with Xi and Yj indecomposable for all i and j. Let ui : Xi → X
be the canonical inclusion, and let pj : Y → Yj the canonical projection. Let
radA(X, Y ) be the set of all f ∈ HomA(X, Y ) such that

pjfui : Xi → Yj

is non-invertible for all i and j.

Lemma 3.31. The following hold:

(i) radA(X, Y ) is a subspace of HomA(X, Y ).

(ii) radA(X, Y ) does not depend on the chosen direct sum decompositions of X
and Y .

For X ∈ mod(A), the subspace radA(X,X) is just the radical of the K-algebra
EndA(X). Recall that we can see X as an EndA(X)-module. Then

γX := radA(X,X)X

is the radical of the EndA(X)-module X. To make this explicit, we have

γX =
∑

f∈radA(X,X)

Im(f).

Obviously, γX is also an A-submodule of the A-module X.

Lemma 3.32. For X ∈ mod(A) the following hold:

(i) If X is non-zero, then γX is a proper submodule of X.
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(ii) For each direct sum decomposition X = X1 ⊕ · · · ⊕Xm we have

γX =
m⊕
i=1

(Xi ∩ γX)

and

Xi ∩ γX = radA(X,Xi)X :=
∑

f∈radA(X,Xi)

Im(f).

Now we come to the key construction. We consider a fixed X ∈ mod(A). We
define inductively

M1 := X and Mi+1 := γMi

for i ≥ 1. By Lemma 3.32(i) there is some n ≥ 0 such that Mn+1 = 0. The smallest
such n will be denoted by d(X). We have d(X) ≤ length(X). Let

M :=

d(X)⊕
i=1

Mi and M>i :=

d(X)⊕
j=i+1

Mj.

Given an indecomposable direct summand N of M , there is a unique index i ≥ 1
such that N is isomorphic to a direct summand of Mi but not to a direct summand
of M>i. We call layer(N) := i the layer of N .

The algebra

Γ := EndA(M)op = EndA(X ⊕M>1)op

is strongly quasi-hereditary.

The indecomposable projective Γ-modules are of the form

P (N) := HomA(M,N)

with N an indecomposable direct summand of M . By S(N) we denote the (simple)
top of the Γ-module P (N). (All simple Γ-modules are of this form.)

Define

L(N) := HomA(M,N)/〈M>i〉.
where 〈M>i〉 is the subspace of all homomorphisms M → N which factor through
add(M>i).

The following theorem almost immediately implies Theorem 3.27.

Theorem 3.33. For each simple Γ-module S(N) the following hold:

(i) [L(N) : S(N ′)] = 0 for all simples S(N ′) with layer(N ′) > layer(N).

(ii) [L(N) : S(N)] = 1.



FD-ATLAS 75

(iii) The obvious projection

HomA(M,N)
f−→ L(N)

is a Γ-module epimorphism and layer(S(N ′)) > layer(S(N)) for all simples
S(N ′) with [top(Ker(f)) : S(N ′)] 6= 0.

(iv) Ker(f) is projective.

Example: Let Q be the quiver

1a
88

b
// 2

and let A = KQ/I where I is generated by a2. Let

X := AA⊕D(AA) = P (1)⊕ P (2)⊕ I(1)⊕ I(2).

We can visualize X as follows:

1
1 2
2

⊕ 2 ⊕ 1
1
⊕

1
1
2

We have d(X) = 4, and the modules Mi and the layers look as follows:

M1 =
1

1 2
2

⊕ 2 ⊕ 1
1
⊕

1
1
2

Layer 1 : N1 =
1

1 2
2

M2 =
1
2
⊕ 2 ⊕ 1

1
⊕

1
1
2

Layer 2 : N2 =
1
1
2

M3 = 2 ⊕ 1
1
⊕ 1

2
Layer 3 : N3 =

1
1
, N4 =

1
2

M4 = 1 ⊕ 2 Layer 4 : N5 = 1 , N6 = 2

Let

Γ′ := EndA(N1 ⊕ · · · ⊕N6)op.

Now Γ is Morita equivalent to Γ′, and Γ′ is isomorphic to the path algebra of the
quiver

6 1
a1
oo

a4
��

2
a2
oo 3

a3
oo

a6
��

4

a5

OO

5a8
oo

a7

OO

modulo the ideal generated by

{a4a5, a1a2, a5a4a2a3a7, a1a5a8, a6a7, a2a3a7 − a5a8, a4a2a3 − a8a6}.
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The indecomposable projective Γ′-modules look as follows:

1
4 6
1
6

2
1
4
1
6

3
2 5
1 3

4 2
1

4
1
6

5
3

4 2
1

6

The standard modules are highlighted in different colours.
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3.6. Schur algebras. We assume that K is algebraically closed. Let p := char(K).
For n ≥ 1 and r ≥ 0, let V := Kn, and let V ⊗r := V ⊗· · ·⊗V be the tensor product
of r copies of V . The symmetric group Σr acts on V ⊗r in the obvious way.

Then
S(n, r) := EndΣr(V

⊗r)

is a Schur algebra.

The representation theory of S(n, r) depends heavily on the three numbers p, n
and r.
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Theorem 3.34 ([G80]). There is a K-algebra homomorphism

η : GLn(K)→ S(n, r)

which induces an equivalence between mod(S(n, r)) and the category of poly-
nomial GLn(K)-representation which are homogeneous of degree r.

The simple S(n, r)-modules are indexed by integer tuples λ = (λ1, . . . , λn) with
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with λ1 + · · ·+ λn = r.

Theorem 3.35 ([DN98]). The following are equivalent:

(i) S(n, r) is semisimple.

(ii) One of the following holds:
– p = 0 or n = 1;
– n ≥ 2 and p > r;
– p = 2, n = 2, and r = 3.

Theorem 3.36 (Erdmann [E93]). The following are equivalent:

(i) S(n, r) is representation-finite.

(ii) One of the following holds:
– p = 0 or n = 1;
– n = 2 and r < p2;
– n ≥ 3 and r < 2p;
– p = 2, n = 2 and r = 5, 7.

For representation-finite S(n, r), Erdmann [E93] gives a description (up to Morita
equivalence) of S(n, r) in terms of quivers with relations.

Theorem 3.37 ([DEMN99]). The following are equivalent:

(i) S(n, r) is tame and not representation-finite.

(ii) One of the following holds:
– p = 3, n = 3 and r = 7, 8;
– p = 3, n = 2 and r = 9, 10, 11;
– p = 2, n = 2 and r = 4, 9.

Proposition 3.38 ([G80, Remark 6.5g]). Let n ≥ r. Then S(n, r) is Morita
equivalent to S(r, r).

Proposition 3.39 ([P89]). S(n, r) is quasi-hereditary.
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Example: This example is taken from [X92]. For m ≥ 1 let Am := KQ/I where Q
is the quiver

1
b1

// 2
b2

//

a1
oo · · ·

bm−1

//

a2
oo m

am−1
oo

and I is generated by

{a1b1, aiai+1, bi+1bi, bjaj − aj+1bj+1 | 1 ≤ i ≤ m− 2, 2 ≤ j ≤ m− 1}.
(For m = 1, we have Am = K.) Let n ≥ r > 0 and p = r. Then each block of
S(n, r) is Morita equivalent to some Am, and there is exactly one block with m ≥ 2.
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4. Tilted algebras

§4 Tilted algebras:

triangular
§10.5

weakly
shod
§4.6

gl. dim ≤ 3 dom. dim ≥ n+ 1 ≥ gl. dim

shod
§4.6

gl. dim ≤ 2
n-Auslander
§4.8

n=1

n-CY tilted
§4.13

n=2

almost
hereditary
§4.5

Auslander
§4.8

2-CY tilted
§4.13

quasi-
canonical
§4.4

quasi-tilted
§4.5

f.d.
Jacobian
§4.14

concealed
canonical
§4.4

tilted
§4.1.5

cluster-
tilted
§4.13

tubular
§4.7

canonical
§4.4

concealed
§4.3

gl. dim ≤ n
hereditary
§3.2

Iwanaga-
Gorenstein
§??

n-hereditary
§4.9.4

weakly
n-representation-

finite
§4.9.2

twisted
fractionally

CY
§4.11

=?

n-representation-
infinite
§4.9.3

n-representation-
finite
§4.9.2

fractionally
CY
§4.11

τ -tilting
finite
§4.10

brick finite
§4.10

symmetric
§5.1.5

Back to Overview Metaclasses 1.



80 JAN SCHRÖER

4.1. Tilting theory. Let A be a finite-dimensional K-algebra.

4.1.1. Torsion pairs.

Let F and T be full subcategories of mod(A). Then (T ,F) is called a torsion
pair in mod(A) provided the following hold:

(i) For Y ∈ mod(A) we have HomA(T , Y ) = 0 if and only if Y ∈ F .

(ii) For X ∈ mod(A) we have HomA(X,F) = 0 if and only if X ∈ T .

In this case, T is called the torsion class and F is the torsion-free class of
the torsion pair. If we deal with a fixed torsion pair (T ,F), the modules in T are
torsion modules and the ones in F are torsion-free modules.

4.1.2. Tilting modules.

T ∈ mod(A) is a tilting module if the following hold:

(i) ExtiA(T, T ) = 0 for all i ≥ 1.

(ii) proj. dim(T ) = d <∞.

(iii) There exists a short exact sequence

0→ AA→ T0 → T1 → · · · → Td → 0

where Ti ∈ add(T ) for all 0 ≤ i ≤ d.

If d ≤ 1, then such a module is also called a classical tilting module.

If A is hereditary, then each tilting module is automatically a classical tilting
module.

There is also the dual concept of a cotiling module.

Warning: In the literature, classical tilting modules are often called tilting modules,
and tilting modules are then called generalized tilting modules.

4.1.3. Brenner-Butler Theorem. Let T ∈ mod(A) be a tilting module, and let B :=
EndA(T )op. Then (A, T,B) is called a tilting triple.

Let (A, T,B) be a tilting triple with T a classical tilting module. Define

F(T ) := {AX | HomA(T,X) = 0}, X (T ) := {BY | T ⊗B Y = 0},
T (T ) := {AX | Ext1

A(T,X) = 0}, Y(T ) := {BY | TorB1 (T, Y ) = 0}.

Then (T (T ),F(T )) is a torsion pair in mod(A), and (X (T ),Y(T )) is a torsion
pair in mod(B).
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Theorem 4.1 (Brenner, Butler [BB80, HR82]). Let (A, T,B) be a tilting triple
with T a classical tilting module. Then the functors

HomA(T,−) : mod(A)→ mod(B), Ext1
A(T,−) : mod(A)→ mod(B),

T ⊗B − : mod(B)→ mod(A), TorB1 (T,−) : mod(B)→ mod(A)

restrict to equivalences

T (T )

HomA(T,−)
**

Y(T )

T⊗B−
jj

F(T )

Ext1A(T,−)
**

X (T )

TorB1 (T,−)

jj

which are quasi-inverses of each other.

Example: This example is due to Assem [A90]. Let Q be the quiver

2
b

��

1 4

a
^^

c��
3

d

^^

5e
oo

6
f

^^

and let A = KQ/I where the ideal I is generated by {ba − dc, de, df}. Here is
the Auslander-Reiten ΓA (we display the dimension vectors of the indecomposable
modules):

0
1 0

1 0
0

��

1
0 0

0 0
0

��

0
0 1

1 0
0

��

0
0 0

1 1
1

��

1
0 1

0 0
0

��
0

1 0
0 0

0

AA

��

1
1 0

1 0
0

AA

��

//
1

1 1
1 0

0

//
1

0 1
1 0

0

��

AA

0
0 1

2 1
1

��

AA

1
0 1

1 1
1

��

AA

0
0 1

0 0
0

1
1 0

0 0
0

BB

0
0 0

1 0
0

AA

��

//
0

0 0
1 1

0

//
1

0 1
2 1

1

@@

��

//
1

0 1
1 0

1

//
1

0 2
2 1

1

BB

��

//
0

0 1
1 1

0

//
0

0 1
1 1

1

AA

��

//
0

0 0
0 0

1

0
0 0

1 0
1

AA

1
0 1

1 1
0

AA

0
0 1

1 0
1

AA

0
0 0

0 1
0

Let T be the direct sum of the six indecomposable A-modules which are framed
in ΓA. Thus

T := T (1)⊕ · · · ⊕ T (6) :=
0

1 0
0 0

0
⊕

1
1 1

1 0
0
⊕

0
0 1

1 0
0
⊕

1
0 1

1 0
1
⊕

1
0 1

1 1
0
⊕

1
0 1

0 0
0
.
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The modules in F(T ) are marked in blue, and the modules in T (T ) are displayed
in red. Then B := EndA(T )op ∼= KQ′/I ′ where Q′ is the quiver

1 3
b

��

2

a

OO

4
c
oo 6

e
oo

f��
5

d

^^

and I ′ is generated by {ce − df, ab, ac, ad}. (In Assem’s paper the quiver of B is
computed wrongly. Namely, there is no arrow from 6 to 3.) Here is the Auslander-
Reiten quiver ΓB:

0 0
1 1 1

1

""

0 1
0 0 0

0

1 0
1 0 0

0

!!

0 1
1 0 0

0

""

0 0
1 1 0

1

<<

""

0 1
1 1 1

1

<<

""
1 0
0 0 0

0

==

0 0
1 0 0

0

<<

""

//
0 0
1 1 0

0
//

0 1
2 1 0

1

<<

""

//
0 1
1 0 0

1
//

0 1
1 1 0

1

<<

""

//
0 0
0 1 0

0
//

0 0
0 1 1

1
//

""

0 0
0 0 1

1
//

0 0
0 0 1

0

0
0 1 0 0

1

<<

1
0 1 1 0

0

<<

0
0 0 0 0

1

<<

0
0 0 1 1

0

<<

The modules in Y(T ) are marked in red, and the modules in X (T ) are marked in
blue.

In this example, the algebras A and B are both directed algebras. So one obtains
their Auslander-Reiten quivers by the knitting algorithm, and one can use the mesh
category for computing homomorphisms.

Example: Let A = KQ where Q is the quiver

4

�� ��

2

��

3

��

1

and let

T := T (1)⊕ · · · ⊕ T (4) :=
0

0 0
1
⊕ 1

1 0
1
⊕ 1

0 1
1
⊕ 1

0 0
0
.

Then T is a tilting module. Note that T (1) is preprojective, T (4) is prinjective, and
T (2) and T (4) are regular. We have B := EndA(T )op ∼= KQ′/I ′ where Q′ is the
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quiver
4

a1

��

b1

��

2

a2
��

3

b2��

1

and I ′ is generated by {a2a1, b2b1}. The algebra B is representation-finite. (There
are 10 indecomposable B-modules, up to isomorphism.)

4.1.4. Reflection functors. We now consider an important special case of the Brenner-
Butler Theorem. (In fact, the Brenner-Butler Theorem (and tilting theory in gen-
eral) were inspired by this special case.) Let Q be an acyclic quiver, and let A = KQ.
Let i ∈ Q0 be a sink, i.e. there is no arrow a ∈ Q1 with s(a) = i. Let Q′ be the quiver
which is obtained from Q by reversing all arrows ending in i, and let A′ = KQ′.

Q : •

��

Q′ : •

��

•

!!

•

��

•

��

• • •

i i

aa OO ??

Then
T := τ−1

A (P (i))⊕ AA/P (i)

is a tilting module and
B := EndA(T )op ∼= A′.

(Note that P (i) = S(i) is simple, since i is a sink.) We have

F(T ) = add(S(i)),

T (T ) = {X ∈ mod(A) | X has no direct summand isomorphic to S(i)},
X (T ) = add(S(i)′),

Y(T ) = {X ∈ mod(B) | X has no direct summand isomorphic to S(i)′}.
Here S(i)′ is the simple B-module which is isomorphic to the top of the indecom-
posable projective B-module HomA(T, τ−1

A (P (i))). The functors

HomA(T,−) : mod(A)→ mod(B) and Ext1
A(T,−) : mod(A)→ mod(B)

restrict to an equivalences

HomA(T,−) : T (T )→ Y(T ) and Ext1
A(T,−) : F(T )→ X (T ).

The functor HomA(T,−) is equivalent to the Bernstein-Gelfand-Ponomarev reflec-
tion functor

F+
i : rep(Q)→ rep(Q′),

i.e. there exists an equivalence S : rep(Q′)→ mod(B) such that the functors S ◦F+
i

and HomA(T,−) are isomorphic. (Here we identify mod(A) and rep(Q).) For more
on this we refer to [APR79], [BB80], [BGP73].
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4.1.5. Tilted algebras.

Let A be a finite-dimensional hereditary algebra, and let T ∈ mod(A) be a
tilting module. Then

B := EndA(T )op

is called a tilted algebra.

The tilted algebra B is in general no longer hereditary, but we have gl. dim(B) ≤ 2.

Theorem 4.2. For a tilted algebra B = EndA(T )op, each indecomposable B-
module M is contained in X (T ) or Y(T ).

A standard reference for tilted algebras is [HR82].

4.1.6. Happel’s and Rickard’s theorem.

Theorem 4.3 (Happel [H87a]). Let (A, T,B) be a tilting triple. Then there
exists a triangle equivalence

Db(mod(A))→ Db(mod(B)).

Happel stated his theorem for classical tilting modules, but his proof works for
arbitrary tilting modules.

T ∈ Db(mod(A)) is a tilting complex if the following hold:

(i) Hom(T, T [i]) = 0 for all i 6= 0.

(ii) add(T ) generates Kb(proj(A)) as a triangulated category.

Theorem 4.4 (Rickard [Ric89, Theorem 6.4]). For finite-dimensional K-
algebras A and B the following are equivalent:

(i) There is a triangle equivalence

Db(mod(A))→ Db(mod(B)).

(ii) There is a triangle equivalence

Kb(proj(A))→ Kb(proj(B)).

(iii) There exists a tilting complex T ∈ Db(mod(A)) with

B ∼= End(T )op.
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Back to Overview Tilted 4.

4.2. τ-tilting theory. Let A be a finite-dimensional algebra.

Tilting theory got revolutionized by cluster-tilting theory and τ -tilting theory,
which were developed in the attempt to categorify Fomin-Zelevinsky cluster algebras.

X ∈ mod(A) is τ-rigid if HomA(X, τA(X)) = 0.

In this case, we have Ext1
A(X,X) = 0.

Let X ∈ mod(A) such that Ext1
A(X,X) = 0 (i.e. X is rigid) and proj. dim(X) ≤

1. Then X is τ -rigid.

For X ∈ mod(A) let sd(X) be the number of isomorphism classes of indecompos-
able direct summands of X. Let n(A) := sd(AA).

A τ -rigid module X is a τ-tilting module if sd(X) = n(A).

Dually, one defines τ−-rigid and τ−-tilting modules.
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For X ∈ mod(A) let AnnA(X) := {a ∈ A | aX = 0}.

Proposition 4.5 ([AIR14, Proposition 2.2]). Let X ∈ mod(A) be a τ -tilting module.
Then X is a classical tilting module over B := A/AnnA(X).

Theorem 4.6 ([AIR14, Theorem 0.2]). Let X ∈ mod(A) be τ -rigid. Then the
following hold:

(i) sd(X) ≤ n(A).

(ii) There exists some X ′ ∈ mod(A) such that X⊕X ′ is a τ -tilting module.

Recall that X ∈ mod(A) is basic if X is a direct sum of pairwise non-isomorphic
indecomposable modules.

A pair (P,X) of A-modules is a support τ-tilting pair (resp. almost com-
plete support τ-tilting pair) if the following hold:

(i) X is τ -rigid;

(ii) P ∈ proj(A) and HomA(P,X) = 0;

(iii) sd(P ) + sd(X) = n(A) (resp. sd(P ) + sd(X) = n(A)− 1).

Such a pair is basic if P and X are basic.

We say that (P ′, X ′) is a direct summand of (P,X) if P ′ is a direct summand
of P and X ′ is a direct summand of X.

Let sτ -tilt(A) be the set of isomorphism classes (in the obvious sense) of basic
support τ -tilting pairs.

Dually, let sτ−-tilt(A) be the set of isomorphism classes of basic support τ−-
tilting pairs.

Theorem 4.7 ([AIR14, Theorem 0.4]). Any basic almost complete support
τ -tilting pair of A-modules is a direct summand of exactly two basic support
τ -tilting pairs.
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The exchange graph E(sτ -tilt(A)) of basic support τ -tilting pairs has the
elements from sτ -tilt(A) as vertices, and we draw an edge between two pairs if
they share a basic almost complete support τ -tilting pair as a direct summand.
Let E(sτ -tilt(A))◦ be the connected component of E(sτ -tilt(A)) which contains
(P (1)⊕ · · · ⊕ P (n), 0).

Examples:

(i) Let A = KQ where Q is the quiver

1 2oo

The AR quivers ΓA looks as follows:

2
1

��

1

??

2oo

The indecomposable τ -rigids are

P (1) = 1 , P (2) = 2
1 , I(2) = 2 .

Here is the exchange graph E(sτ -tilt(A)) of basic support τ -tilting pairs:

(P (1)⊕ P (2), 0)

(P (1), I(2)) (P (2), P (1))

(0, P (2)⊕ I(2))

(0, P (1)⊕ P (2))

(ii) Let A = KQ/I where Q is the quiver

1a
88 2oo

and I is generated by a2. The AR quivers ΓA looks as follows:

2
1
1

��

2oo

1
1

??

��

2
1 2

1

??

��

oo

1

??

��

1 2
1

??

��

oo 2
1

oo

2
1

??

1

??

oo
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(One needs to identify the first module in the 3rd and 4th row with the last
module in the 4th and 3rd row, respectively. So there are 7 indecomposables
in total.) The indecomposable τ -rigids are

P (1) = 1
1 , P (2) =

2
1
1
, I(1) =

2
1 2

1
, I(2) = 2 .

Here is the exchange graph E(sτ -tilt(A)) of basic support τ -tilting pairs:

(P (1)⊕ P (2), 0)

(P (2), P (1)) (P (1), I(2))

(0, P (1)⊕ P (2)) (0, I(1)⊕ I(2))

(0, P (2)⊕ I(1))

We work now over K = C. Let Q be a 2-acyclic quiver, i.e. Q does not have loops
or 2-cycles. Let A(Q) be the Fomin-Zelevinsky cluster algebra associated with
Q. These are combinatorially defined (possibly infinitely generated) commutative
C-algebras.

Cluster algebras provide many bridges to other parts of mathematics. Survey
articles on this are easy to find.

Theorem 4.8 (Derksen, Weyman, Zelevinksy [DWZ08, DWZ10]). Let Q be
a 2-acyclic quiver, and let S be a non-degenerate potential for Q. Assume
that the Jacobian algebra A = P(Q,S) is finite-dimensional. Then there is an
injective map

{clusters in A(Q)} → sτ -tilt(A)

which yields an isomorphism of exchange graphs

E(A(Q))→ E(sτ -tilt(A))◦.

In the theorem above, the cluster variables which do not belong to the initial
cluster {x1, . . . , xn} in A(Q) correspond to the indecomposable τ -rigid A-modules.

The articles [DWZ08, DWZ10] contain a more general and differently worded ver-
sion of the theorem above which does not need the finite-dimensionality assumption.
There are also many analogous (and related) results which deal with cluster-tilting
objects in 2-Calabi-Yau categories instead of support τ -tilting pairs for Jacobian
algebras.
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Back to Overview Tilted 4.

4.3. Concealed algebras. Let A be a finite-dimensional K-algebra.

A connected component C of the Auslander-Reiten quiver ΓA is a preprojec-
tive component if the following hold:

(i) Each module in C is isomorphic to τ−kA (P ) for some indecomposable
projective A-module P and some k ≥ 0.

(ii) C does not have any oriented cycles.

The preprojective components of ΓA can be computed via the knitting algo-
rithm.

T ∈ mod(A) is preprojective if each indecomposable direct summand of T
lies in some preprojective component of ΓA.

Indecomposable preprojective modules are directing modules. Thus, as a special
case of [ARS97, Section IX, Theorem 1.2] they are determined by their dimension
vectors:

Theorem 4.9. Let X, Y ∈ mod(A) be indecomposable with dim(X) =
dim(Y ). If X is preprojective, then X ∼= Y .

Let A be hereditary, and let T ∈ mod(A) be a preprojective tilting module.
Then

B := EndA(T )op

is a concealed algebra.

Concealed algebras form a special class of tilted algebras.
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Example: Let A = KQ where Q is the quiver

2

��

3

��

4

��

5

ww
1

The preprojective component of ΓA looks like this (we display the dimension vectors
of the indecomposable modules):

1 0 0 0
1

��

0 1 1 1
2

��

2 1 1 1
3

��

· · ·

0 1 0 0
1

$$

1 0 1 1
2

$$

1 2 1 1
3

$$

· · ·

0 0 0 0
1

CC

::

$$

��

1 1 1 1
3

CC

::

$$

��

2 2 2 2
5

CC

::

$$

��

3 3 3 3
7

FF

<<

""

��

0 0 1 0
1

::

1 1 0 1
2

::

1 1 2 1
3

::

· · ·

0 0 0 1
1

CC

1 1 1 0
2

CC

1 1 1 2
3

CC

· · ·

We framed the indecomposable direct summands of

T := T (1)⊕ · · · ⊕ T (5) := 1 0 0 0
1 ⊕ 1 0 1 1

2 ⊕ 1 1 0 1
2 ⊕ 1 1 1 0

2 ⊕ 2 1 1 1
3 .

The module T is a tilting modules, and we have B := EndA(T )op ∼= KQ′/I ′ where
Q′ is the quiver

5
a1

��

b1
��

c1

��

2

a2
��

3

b2
��

4

c2
��

1

and I ′ is generated by a2a1 + b2b1 + c2c1.

The algebra A minimal representation-infinite if A is representation-
infinite, and if for each non-zero idempotent e ∈ A the factor algebra A/AeA
is representation-finite.

Warning: There are different notions of minimal representation-infinite algebras.
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Theorem 4.10 (Happel, Vossieck [HV83]). Assume that K is algebraically
closed. The following are equivalent:

(i) A is minimal representation-infinite and has a preprojective component.

(ii) A is the path algebra of some n-Kronecker quiver with n ≥ 2 or B is a
tame concealed algebra.

The Happel-Vossieck list (which can be found in Ringel’s book [R84]) contains
the classification of all tame concealed algebras. This list also appears in the study
of cluster algebras.

For further reading on concealed algebras we recommend [R84].
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Back to Overview Tilted 4.

4.4. Canonical algebras. Let K be algebraically closed, and let A be a finite-
dimensional K-algebra.

For most results in this section, one can drop the assumption that K is alge-
braically closed. However some of the definitions (e.g. the definition of a canonical
algebra) and also the proofs become much more involved in the general case.

By a subcategory we mean a full subcategory.

4.4.1. Separating families of components.

A component C of ΓA is sincere if for each simple A-module S there exists
some X ∈ C with [X : S] 6= 0.

Recall that X ∈ ind(A) is sincere if [X : S] 6= 0 for all simple A-modules S. Note
that a sincere component C of ΓA does not necessarily contain a sincere module.

Let T = (Ti)i∈I be a family of components of ΓA. Then T is sincere if for each
simple A-module S there exists some i ∈ I and some X ∈ Ti with [X : S] 6= 0.

We define add(T ) in the obvious way.
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The next definition is due to Malicki and Skowroński [MS19]. It is based on a more
restricted definition by Ringel [R84]. Lenzing and de la Peña [LP99] introduced the
similar concept of separating exact subcategories.

A family TA = (Ti)i∈I of components of ΓA is separating if the following hold:

(i) Each Ti is generalized standard, HomA(Ti, Tj) = 0 for all i 6= j, and TA
is sincere.

(ii) The set of components of ΓA can be written as a disjoint union

PA ∪ TA ∪ IA
such that

HomA(IA, TA) = 0, HomA(TA,PA) = 0, HomA(IA,PA) = 0.

(iii) Each homomorphism from PA to IA factors through add(TA).

In this case, we say that TA separates PA from IA.

Note that PA and IA are uniquely determined by TA.

Here are some examples of algebras with a separating family of components (one
can even use the more restricted definition by Ringel):

(i) Tame representation-infinite hereditary algebras.

(ii) Tame representation-infinite concealed algebras.

(iii) Tubular algebras.

4.4.2. Canonical algebras. The following definition is due to Ringel [R84].
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For t ≥ 2 and p = (p1, . . . , pt) with pi ≥ 1 for all i, let Q = Q(p1, . . . , pt) be
the quiver

11
a12
// 12

a13
// · · ·

a1p1−1
// 1p1−1

a1p1

��

21 a22
// 22 a23

// · · · a2p2−1

// 2p2−1

a2p2
  

α

a11

HH

a21

AA

at1

��

...
... ω

t1
at2
// t2

at3
// · · ·

atpt−1
// tpt−1

atpt

>>

For t = 2, let λ = 0 and C(p, λ) := KQ. For t ≥ 3, let λ = (λ3, . . . , λt) ∈ Kt−2

where the λi are non-zero and pairwise different. Without loss of generality
we assume that λ3 = 1 and pi ≥ 2 for all i. Then let

C(p, λ) := KQ/I

where I is generated by the relations

ρi := a1p1 · · · a12a11 + λia2p2 · · · a22a21 − aipi · · · ai2ai1
for 3 ≤ i ≤ t. The algebra C(p, λ) is a canonical algebra of type p.

The standard references for canonical algebras are [R84, R90].

Canonical algebras are representation-infinite.

With p = (p1, . . . , pt) as above, let

χp := 2−
t∑
i=1

(
1− 1

pi

)
.

Proposition 4.11. The following hold:

(i) C(p, λ) is tame domestic if and only if χp > 0.

(ii) C(p, λ) is a tubular algebra if and only if χp = 0.

(iii) C(p, λ) is wild if and only if χp < 0.

One of the key characteristics of a canonical algebra A = C(p, λ) is the existence
of a sincere separating family of components of ΓA:

Let A := C(p, λ) be a canonical algebra. Let P be the subcategory of all X ∈
mod(A) such that Xa : Xs(a) → Xt(a) is a monomorphism for each a ∈ Q1, but
not all Xa are isomorphisms. Dually, I is the subcategory of all X ∈ mod(A)
such that Xa : Xs(a) → Xt(a) is an epimorphism for each a ∈ Q1, but not all Xa
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are isomorphisms. Let T be the subcategory of all X ∈ mod(A) such that no
indecomposable direct summand of X is in P or I.

For X ∈ mod(A) define

ι(X) := dim(Xα)− dim(Xω).

Proposition 4.12. Let A = C(p, λ), and let P, T and I be defined as above.
A module X ∈ mod(A) is in P, T or I if and only if for each indecomposable
direct summand Y of X we have ι(Y ) < 0, ι(Y ) = 0 or ι(Y ) > 0, respectively.

Proposition 4.13. Let A = C(p, λ), and let P, T and I be defined as above.
Each component C of ΓA is a subcategory of one of the subcategories P, T or
I.

Let PA, TA and IA be the components of ΓA which are contained in P , T and I,
respectively.

Theorem 4.14 (Ringel [R84]). Let A = C(p, λ), and let P, T and I be defined
as above. Then the following hold:

(i) TA = (Tx)x∈P1(K) is a separating family of components of ΓA which
separates PA from IA.

(ii) Each Tx is a standard stable tube. There are x1, . . . , xt ∈ P1(K) such
that the rank of Txi is pi for 1 ≤ i ≤ t. All other tubes Tx have rank 1.

The modules in T can be described very explicitely.

4.4.3. Weighted projective lines. Let t ≥ 3. A weighted projective line X :=
X(p, λ) is given by a weight sequence p = (p1, . . . , pt) of integers pi ≥ 1, and
a parameter sequence λ = (λ3, . . . , λt) ∈ Kt−3 where the λi are non-zero and
pairwise different. Without loss of generality we assume that λ3 = 1.

Let L = L(p, λ) be the abelian group denerated by elements x1, . . . , xt modulo the
relations pixi = pjxj for all 1 ≤ i, j ≤ t. We call c := pixi the canonical element
of L. Let m := l.c.m.(p1, . . . , pt). Then

δ : L→ Z

xi 7→
m

pi

is the degree map.
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Let
S := S(p, λ) := K[X1, . . . , Xt]/I

where I is the ideal generated by the relations

ρi := Xp1
1 + λiX

p2
2 −X

pi
i = 0

for 3 ≤ i ≤ t.

S is L-graded with Xi of degree xi.

Let modL(S) be the category of finitely generated L-graded S-modules, and let
modL

0 (S) be the Serre subcategory of modL(S) consisting of the finite-dimensional
S-modules in modL(S).

Let
coh(X) := modL(S)/modL

0 (S)

be the category of coherent sheaves on the weighted projective line X.

The category coh(X) was introduced and studied by Geigle and Lenzing [GL87].

coh(X) is a connected noetherian abelian K-category.

Let coh0(X) be the subcategory of all X ∈ coh(X) such that X has finite length,
and let coh+(X) be the subcategory of allX ∈ coh(X) such that HomX(coh0(X), X) =
0. The objects in coh0(X) are torsion objects and the objects in coh+(X) are vec-
tor bundles.

For each X ∈ coh(X) we have X = X0 ⊕ X+ with X0 ∈ coh0(X) and X+ ∈
coh+(X). There is a family

(Tx)x∈P1(K)

of Hom orthgonal, uniserial abelian subcategories Tx such that

coh0(X) = add

 ⋃
x∈P1(K)

Tx

 .

Let

ω := (t− 2)c−
t∑
i=1

xi

be the dualizing element of L.

The group L acts on modL(S) by degree shift M 7→M(x).
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coh(X) has Serre duality in the form of functorial isomorphisms

HomX(X, Y (ω)) ∼= DExt1
X(Y,X)

for all X, Y ∈ coh(X).

Theorem 4.15 (Geigle, Lenzing [GL87, GL91]). There is a triangle equiva-
lence

Db(coh(X) ' Db(mod(C(p, λ))).

The isomorphism class of C(p, λ) depends on the choice of (p, λ). This is explained
in [GL91, Proposition 9.1]. In particular, coh(X(p, λ)) ' coh(X(p′, λ′)) if and only
if C(p, λ) ∼= C(p′, λ′).

Standard references for weighted projective lines and their connection to canonical
algebras are [GL87, GL91]. For a survey on weighted projective lines we refer to
[CK09]. We also recommend [BKL13].

4.4.4. Concealed canonical and quasi-canonical algebras. Let X := X(p, λ) be a
weighted projective line.

T ∈ coh(X) is a tilting sheaf if the following hold:

(i) Ext1
X(T, T ) = 0.

(ii) If X ∈ coh(X) with HomX(T,X) = 0 and Ext1
X(T,X) = 0, then X = 0.

If such a T is a vector bundle, then T is a tilting bundle.

The following definition (in a slightly different but equivalent form) is due to
Lenzing and Meltzer [LM96].

Let T ∈ coh(X) be a tilting bundle. Then

B := EndX(T )op

is a concealed canonical algebra.

Concealed canonical algebras are quasi-tilted.

The next definition is taken from [LS96]:

A finite-dimensional K-algebra B is quasi-canonical if there is a triangle
equivalence

Db(mod(B))→ Db(mod(C(p, λ)))

for some (p, λ).
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Concealed canonical algebras are quasi-canonical.

Theorem 4.16 (Lenzing, de la Peña [LP99]). Let TA = (Ti)i∈I be a separating
family of components of ΓA. The following are equivalent:

(i) Each Ti is a stable tube.

(ii) A is concealed canonical.

Theorem 4.17 (Lenzing, Skowroński [LS96]). Let TA = (Ti)i∈I be a separating
family of components of ΓA. The following are equivalent:

(i) Each Ti is a semiregular tube.

(ii) A is quasi-tilted and quasi-canonical.

Further generalizations of these two theorems can be found in [MS19].
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4.5. Quasi-tilted algebras. Let A be a finite-dimensional K-algebra.

4.5.1. Almost hereditary algebras.

A is almost hereditary if the following hold:

(i) gl. dim(A) ≤ 2.

(ii) If X ∈ ind(A), then proj. dim(X) ≤ 1 or inj. dim(X) ≤ 1.

Examples:

(i) Tilted algebras are almost hereditary.

(ii) Canonical algebras are almost hereditary.

(iii) Let A = KQ/I where Q is the quiver

1
a
//
2

b
oo

and I is generated by ba. Then

gl. dim(A) = 2 and proj. dim(S(1)) = inj. dim(S(1)) = 2.

Thus A is not almost hereditary.

4.5.2. Quasi-tilted algebras.

An abelian category C is hereditary if Ext2
C(X, Y ) = 0 for all X, Y ∈ C.

Let H be a hereditary abelian K-category with finite-dimensional Hom- und Ext-
spaces.

Examples:

(i) Let Q be an acyclic quiver. Then H := mod(KQ) has the properties listed
above.

(ii) Let X be a weighted projective line, and let coh(X) be the category of co-
herent sheaves on X. Then H := coh(X) has the properties listed above.

T ∈ H is a tilting object if the following hold:

(i) Ext1
H(T, T ) = 0.

(ii) If HomH(T,X) = 0 and Ext1
H(T,X) = 0 for some X ∈ H, then X = 0.
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Let T ∈ H be a tilting object. Then

B := EndH(T )op

is a quasi-tilted algebra.

In this case, we have
Db(H) ' Db(mod(B)).

The following two theorems are quite amazing.

Theorem 4.18 (Happel, Reiten, Smalø [HRS96, Theorem II.2.3]). The fol-
lowing are equivalent:

(i) A is quasi-tilted.

(ii) A is almost hereditary.

Theorem 4.19 (Happel [H01, Theorem 3.1]). Let K be algebraically closed,
and let H be a connected hereditary abelian K-category with finite-dimensional
Hom- und Ext-spaces. Suppose that H contains a tilting object. Then

Db(H) ' Db(mod(KQ)) or Db(H) ' Db(coh(X))

where Q is a connected acyclic quiver and X is a weighted projective line.

In other words, if K is algebraically closed and A is quasi-tilted, then A is
derived equivalent to a tilted algebra or to a concealed canonical algebra.

Theorem 4.20 ([HRS96, Corollary II.3.6]). Let A be representation-finite. Then
the following are equivalent:

(i) A is quasi-tilted.

(ii) A is tilted.

There are many examples of quasi-tilted algebras which are not tilted, see [HRS96,
Proposition III.3.11].

Literature – quasi-tilted algebras
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4.6. Shod algebras. Let A be a finite-dimensional K-algebra.

The following definition is due to Coelho and Lanzilotta [CL99].

A is a shod algebra if for each X ∈ ind(A) we have proj. dim(X) ≤ 1 or
inj. dim(X) ≤ 1.

Here shod stands for small homological dimension.

Examples:

(i) Almost hereditary algebras are shod algebras.

(ii) Let A = KQ/I where Q is the quiver

1
a
// 2

b
// 3

c
// 4

and I is generated by {ba, cb}. Then A is a shod algebra and gl. dim(A) = 3.
In particular, A is not almost hereditary.

Theorem 4.21 ([HRS96, Proposition II.1.1]). If A is a shod algebra, then

gl. dim(A) ≤ 3.

A path in mod(A) is a diagram

X1
f1
// X2

f2
// · · ·

ft−1
// Xt

with Xi ∈ ind(A) and fi 6= 0 for all i. In this case, we write X1  Xt.

The length of such a path is |{1 ≤ i ≤ t− 1 | fi is not an isomorphism}|.

Let

L(A) := {X ∈ ind(A) | if Y  X, then proj. dim(Y ) ≤ 1},
R(A) := {X ∈ ind(A) | if X  Y , then inj. dim(Y ) ≤ 1}.

Theorem 4.22 (Coelho, Lanzilotta [CL99]). The following are equivalent:

(i) A is a shod algebra.

(ii) ind(A) = L(A) ∪R(A).

The following definition is again due to Coelho and Lanzilotta [CL03].
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A is a weakly shod algebra if there exits some m ≥ 1 such that the length
of each path of the form

I = X1
f1

// X2
f2
// · · ·

ft−1
// Xt = P

where I is indecomposable injective and P is indecomposable projective is
bounded by m.

Each shod algebra is a weakly shod algebra.

Theorem 4.23 (Coelho, Lanzilotta [CL03, Section 2.5]). The following are
equivalent:

(i) A is a weakly shod algebra.

(ii) (a) L(A) ∪R(A) is cofinite in ind(A).
(b) None of the components of ΓA which are not semiregular, contain

oriented cycles.

(Condition (ii)(a) means that there are only finitely many X ∈ ind(A) with
X /∈ L(A) ∪R(A), up to isomorphism.)

Theorem 4.24 ([CL03, Section 6.1]). Weakly shod algebra are triangular.
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4.7. Tubular algebras. In this subsection, let K be algebraically closed, and let
A be a finite-dimensional K-algebra.

The standard reference for tubular algebras is Ringel’s book [R84].

Tubular algebras form a small but interesting class of tame algebras. The defini-
tion of a tubular algebra is technical and requires knowledge on the representation
theory of tame hereditary algebras (and more generally of tame concealed algebras)
and on the technique of one-point extensions (and more generally of branch exten-
sions). But having swallowed the definition, one gets rewarded by some nice theory.
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We need three ingredients for the definition of a tubular algebra:

(i) Let A be a tame concealed algebra. Then the projective line I := P1(K)
indexes the tubes in ΓA. For i ∈ I let Ti be the associated tube. There are
at most three elements i ∈ I with rk(Ti) ≥ 2.

(ii) Let E1, . . . , Er be a collection of pairwise non-isomorphic quasi-simple regular
A-modules, and let B1, . . . , Br be branches. Let

B := A[E1, Bt][E2, B2] · · · [Er, Br]

be the associated iterated branch extension. (For details on branch exten-
sions we refer to Section 10.3 on one-point extension algebras.)

(iii) Define a map

t : I → N

i 7→ rk(Ti) +
∑

1≤k≤r
Ek∈Ti

|Bk|.

Let i1, . . . , is be the elements in I with ni := t(i) ≥ 2. Without loss of
generality we assume that n1 ≥ · · · ≥ ns. Then (n1, . . . , ns) is the tubular
type of B.

The algebra B is a tubular algebra provided (n1, . . . , ns) belongs to the
following list of tubular types:

(2, 2, 2, 2), (3, 3, 3), (4, 4, 2), (6, 3, 2).

The number of simple modules of a tubular algebra is 6, 8, 9 or 10.

There is also the notion of a cotubular algebra which is defined by iterated
branch coextensions.

Theorem 4.25 ([R84]). Tubular algebras are also cotubular and vice versa.

This leads to some intriguing symmetry results.

One can also define tubular algebras over fields K which are not algebraically
closed. For this more general definition we refer to [K09].

The category mod(A) of a tubular algebra A has a beautiful description due
to Ringel [R84]. His classification result turns out to have a lot in common with
Atiyah’s [A57] classification of vector bundles on elliptic curves.
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Theorem 4.26 ([R84]). The AR quiver ΓA of a tubular algebra A looks as
follows: There is a preprojective component PA, a preinjective component IA
and for each γ ∈ Q≥0 ∪ {∞} there is a P1(K)-family Tγ of tubes such that
HomA(Tγ, Tδ) = 0 for all γ > δ. (The family T0 might contain projective
modules, and T∞ might contain injective modules.) Each component of ΓA is
a standard component.

For a tubular algebra A and X ∈ mod(A) let

qA(X) :=
2∑
i=0

dim EndA(X)− dim Ext1
A(X,X) + dim Ext2

A(X,X).

This value only depends on the dimension vector dim(X). This yields an integral
quadratic from qA : Zn → Z. (Here n = n(A) is the number of simple A-modules.)
The form qA is positive semidefinite.

Let
∆+
A := {x ∈ Nn | qA(x) = 0, 1} \ {0}

be the set of positive roots of qA.

Theorem 4.27 ([R84]). For a tubular algebra A we have

{dim(X) | X ∈ ind(A)} = ∆+
A.

Theorem 4.28 ([HR86]). Each tubular algebra is derived equivalent to a tubu-
lar canonical algebra.

Theorem 4.29 ([R84]). Tubular algebras are tame (non-domestic of linear
growth).

Theorem 4.30 ([HR86]). Tubular algebras are derived tame.

The derived category Db(mod(A)) of a tubular algebra A is described in [HR86].

Proposition 4.31 ([R84]). Tubular algebras are quasi-tilted.

Proposition 4.32 ([R84]). Let A be a tubular algebra, and let T ∈ mod(A)
be a preprojective tilting module. Then B := EndA(T )op is again a tubular
algebra.



104 JAN SCHRÖER

There is a beautiful link between Geigle and Lenzing’s theory of sheaves on
weighted projective lines and the representation theory of canonical algebras. The
tubular cases are particularly well understood and interesting. We refer to [LM93]
for more details.

Examples: The following algebras are tubular. The red (resp. blue) vertex shows
how it is obtained as a one-point extension (resp. one-point coextension) from a
tame concealed algebra.

(i) For λ ∈ K \ {0, 1} let Aλ = KQ/I where Q is the quiver

•

a1

��

•

b1��

• •

a2

WW

b2

__

d2

��

c2

��

•

c1
__

•

d1

WW

and I is generated by

{a1a2 + b1b2 + c1c2, a1a2 + λb1b2 + d1d2}.
Then Aλ is a tubular algebra of type (2, 2, 2, 2). Furthermore, we have Aλ ∼=
Aµ if and only if µ ∈ {λ, 1− λ, λ−1, (1− λ)−1, λ(λ− 1)−1, (λ− 1)λ−1}.

(ii) Let A = KQ/I where Q is the quiver

•
a1

��

· · ·a2
oo •

ap−1
oo

• •b1
oo · · ·b2

oo •
bq−1
oo •

ap
__

bq
oo

cr
��

•
c1

__

· · ·c2
oo •cr−1

oo

and I is generated by a1 · · · ap + b1 · · · bq + c1 · · · cr. Then A is a tubular
algebra if and only if (p, q, r) ∈ {(3, 3, 3), (4, 4, 2), (6, 3, 2)}.

(iii) Let A = KQ/I where Q is the quiver

•
b1
��

•
b2
��

a1
oo •

b3
��

a2
oo

• •oo •oo •c1
oo •c2

oo •oo •oo

and I is generated by {b1a1 − c1b2, b2a2 − c2b3}.
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The algebras in (i) and (ii) are exactly the tubular canonical algebras.
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4.8. Auslander algebras. Let A be a finite-dimensional K-algebra.

M ∈ mod(A) is an additive generator of mod(A) if

add(M) = mod(A).

Obviously, A is representation-finite if and only if there exists such an additive
generator.

Theorem 4.33 (Auslander Correspondence [ARS97]). There are mutually in-
verse bijections F and G between the sets

{A | A representation-finite fin.-dim. K-algebra}/∼
and

{B | B fin.-dim. K-algebra with dom. dim(B) ≥ 2 ≥ gl. dim(B)}/∼
defined by F : A 7→ B := EndA(M)op with M a additive generator of mod(A),
and G : B 7→ A := EndB(Q)op with Q an additive generator of proj-inj(B).

By ∼ we mean “up to Morita equivalence”.

For an additive generator M of mod(A) the algebra

B := EndA(M)op

is the Auslander algebra of A.
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Example: Let A = KQ/I where Q is the quiver

1
a
// 2

b
oo

and I is generated by {ab, ba}. Here is the Auslander-Reiten quiver of A (one needs
to identify the leftmost and the rightmost vertex):

2
1

��

1

??

2oo

��

1oo

1
2

??

Let B = KQ′/I ′ where Q′ is the quiver

2
b

��

1

a
@@

3

d��
4

c

^^

and I ′ is generated by {ba, cd}. The indecomposable projective B-modules P (i)
and the indecomposable injective B-modules I(i) look as follows:

P (1) =
1
2

P (2) =
2
3
4

P (3) =
3
4

P (4) =
4
1
2

I(1) =
4
1

I(2) =
4
1
2

I(3) =
2
3

I(4) =
2
3
4

Then B is the Auslander algebra of A. For Q := P (2) ⊕ P (4) we have A ∼=
EndB(Q)op.

For n ≥ 1, M ∈ mod(A) is an n-cluster-tilting module if

add(M) = {X ∈ mod(A) | ExtiA(M,X) = 0 for 1 ≤ i ≤ n− 1}
= {X ∈ mod(A) | ExtiA(X,M) = 0 for 1 ≤ i ≤ n− 1}.

For n = 1, the above conditions on the vanishing of Ext groups are empty. There-
fore M ∈ mod(A) is 1-cluster-tilting if and only if add(M) = mod(A). In this
case, EndA(M)op is Morita equivalent to an Auslander algebra. In particular, A is
representation-finite.

There are numerous examples of 2-cluster-tilting modules. The study of n-cluster-
tilting modules for n ≥ 3 is less developed.
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The following groundbreaking result due to Iyama generalizes Theorem 4.33.

Theorem 4.34 (Higher Auslander correspondence [I07a, I07b]). There are
mutually inverse bijections between the sets

{(A,M) | A fin.-dim. K-algebra,M n-cluster-tilting in mod(A)}/∼
and

{B | B fin.-dim. K-algebra with dom. dim(B) ≥ n+ 1 ≥ gl. dim(B)}/∼

In the theorem above we have (A,M) ∼ (A′,M ′) if there is an equivalence
mod(A) → mod(A′) which restricts to an equivalence add(M) → add(M ′), and
B ∼ B′ if there is an equivalence mod(B)→ mod(B′).

For n ≥ 1, a finite-dimensional K-algebra B is an n-Auslander algebra if

dom. dim(B) ≥ n+ 1 ≥ gl. dim(B).

In this case, if one of these dimensions is equal to n+ 1, then the other dimension
is also n+ 1.

Example: For n ≥ 1, let B = KQ/I where Q is the quiver

1
a1
// 2

a2
// · · ·

an+1
// n+ 2

and I is generated by {ai+1ai | 1 ≤ i ≤ n}. Then B is an n-Auslander algebra.
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4.9. n-representation-(in)finite and n-hereditary algebras. Let A be a finite-
dimensional K-algebra. In this subsection, we follow [HIO14]. For further reading
we recommend [HI11a, HI11b, I11, IO11, IO13].

4.9.1. Higher Nakayama functors.



108 JAN SCHRÖER

Let
ν := DHomA(−, AA) : mod(A)→ mod(A)

and
ν− := HomA(D(AA),−) : mod(A)→ mod(A)

be the Nakayama functors.

They restrict to equivalences

proj(A)
ν
// inj(A)

ν−
oo

which are quasi-inverses of each other.

These equivalences yield equivalences of homotopy categories

Kb(proj(A))
ν
// Kb(inj(A))

ν−
oo

which are quasi-inverses of each other.

If gl. dim(A) <∞, then the inclusions

Kb(proj(A))→ Db(mod(A)) and Kb(inj(A))→ Db(mod(A))

are triangle equivalences. Thus we obtain two triangle equivalences

Db(mod(A))
ν
// Db(mod(A))

ν−
oo

which are again quasi-inverses of each other.

Let

[−] : Db(mod(A))→ Db(mod(A))

be the shift automorphism. For n ∈ Z set [n] := [−]n.

Define
νn := ν ◦ [−n] : Db(mod(A))→ Db(mod(A))

and
ν−n := ν− ◦ [n] : Db(mod(A))→ Db(mod(A)).

Let
τn := DExtnA(−, AA) : mod(A)→ mod(A)

and
τ−n := ExtnA(D(AA),−) : mod(A)→ mod(A).
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We have
τn ∼= H0(νn(−)) : mod(A)→ mod(A)

and
τ−n
∼= H0(ν−n (−)) : mod(A)→ mod(A).

4.9.2. n-representation-finite algebras.

Let n ≥ 1. Recall that T ∈ mod(A) is an n-cluster-tilting module if

add(T ) = {M ∈ mod(A) | ExtiA(T,M) = 0 for all 1 ≤ i ≤ n− 1}
= {M ∈ mod(A) | ExtiA(M,T ) = 0 for all 1 ≤ i ≤ n− 1}.

For n ≥ 1, A is n-representation-finite if gl. dim(A) ≤ n and if there exists
an n-cluster-tilting module T ∈ mod(A).

Proposition 4.35. The following are equivalent:

(i) A is 1-representation-finite.

(ii) A is representation-finite and gl. dim(A) ≤ 1.

Proposition 4.36. Assume that gl. dim(A) ≤ n. Then the following are equivalent:

(i) A is n-representation-finite.

(ii) For each indecomposable projective A-module P there exists some i ≥ 0 such
that ν−in (P ) is an indecomposable injective A-module.

In this case,

T :=
⊕
i≥0

τ−in (AA)

is an n-cluster-tilting module in mod(A).

For n ≥ 1, A is weakly n-representation-finite if there exists an n-cluster-
tilting module T ∈ mod(A).

4.9.3. n-representation-infinite algebras.
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For n ≥ 1, A is n-representation-infinite if gl. dim(A) ≤ n and if each
M ∈ mod(A) satisfies

ν−in (M) ∈ mod(A)

for all i ≥ 0.

In this case, gl. dim(A) = n, since ExtnA(D(AA), AA) = ν−1
n (AA) 6= 0.

Proposition 4.37. The following are equivalent:

(i) A is 1-representation-infinite.

(ii) A is representation-infinite and gl. dim(A) ≤ 1.

Example: For n ≥ 1 let An = KQn/In be the Beilinson algebra where Qn is the
quiver

1
... 2

a
(1)
n+1

hh

a
(1)
1

xx ... 3

a
(2)
n+1

hh

a
(2)
1

xx ... · · ·
a
(3)
n+1

hh

a
(3)
1

xx ... n

a
(n−1)
n+1

ii

a
(n−1)
1

ww ... n+ 1

a
(n)
n+1

hh

a
(n)
1

ww

and In is generated by the relations

{a(k)
i a

(k+1)
j − a(k)

j a
(k+1)
i | 1 ≤ i, j ≤ n+ 1, 1 ≤ k ≤ n− 1}.

(Note that A1 is just the path algebra of the Kronecker quiver.) The algebra An is
n-representation-infinite, see [HIO14, Example 2.15].

4.9.4. n-hereditary algebras. Assume that A is hereditary, i.e. gl. dim(A) ≤ 1. Then
we have

ind(Db(mod(A)) =
⋃
t∈Z

(ind(A))[t].

For n ≥ 1, let

DnZ(mod(A)) := {X ∈ Db(mod(A)) | H i(X) = 0 for all i ∈ Z \ nZ}.

(For n = 1 we have DnZ(mod(A)) = Db(mod(A)).)

For gl. dim(A) ≤ n we have

ind(DnZ(mod(A))) =
⋃
t∈Z

(ind(A))[tn].

A is n-hereditary if gl. dim(A) ≤ n and if

νin(AA) ∈ DnZ(mod(A))

for all i ∈ Z.
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Theorem 4.38 ([HIO14, Theorem 3.4]). Assume that A is connected. Then
the following are equivalent:

(i) A is n-hereditary.

(ii) A is n-representation-finite or n-representation-infinite.

Literature – n-representation-finite algebras
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4.10. τ-tilting finite algebras. Let A be a finite-dimensional algebra.

X ∈ mod(A) is τ-rigid if HomA(X, τA(X)) = 0.

A is τ-tilting finite if there are only finitely many indecomposable τ -rigid
A-modules, up to isomorphism.

Theorem 4.39 ([DIJ19]). The following are equivalent:

(i) A is τ -tilting finite.

(ii) tors(A) = ff-tors(A).

(iii) torsfr(A) = ff-torsfr(A).

(iv) wide(A) = lf-wide(A) = rf-wide(A).

(v) brick(A) = lf-brick(A) = rf-brick(A).

(vi) tors(A) is finite.

(vii) torsfr(A) is finite.

(viii) wide(A) is finite.

(ix) brick(A) is finite.



112 JAN SCHRÖER

For the missing definitions and some more details we refer to Section 16.10.

X ∈ mod(A) is a brick if EndA(X) is a K-skew field.

A is brick finite if brick(A) is finite.

Corollary 4.40. The following are equivalent:

(i) A is τ -tilting finite;

(ii) A is brick finite.

Examples:

(i) Representation-finite algebras are τ -tilting finite.

(ii) Let A = Π(Q) be a preprojective algebra where Q is a Dynkin quiver. Then
A is τ -tilting finite.

Literature – τ-tilting finite algebras
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4.11. Fractionally Calabi-Yau algebras. LetA be a finite-dimensionalK-algebra.

There is an embedding

Kb(proj(A))→ Db(mod(A))

of triangulated categories. This embedding is a triangle equivalence if and only if
gl. dim(A) <∞. The same holds for Kb(inj(A)).

Recall that A is Iwanaga-Gorenstein if

proj. dim(D(AA)) <∞ and inj. dim(AA) <∞.

Considering Kb(proj(A)) and Kb(inj(A)) as subcategories of Db(mod(A)), Happel
[H91] showed that for A Iwanaga-Gorenstein, we have

Kb(proj(A)) = Kb(inj(A)).
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If A is Iwanaga-Gorenstein, then

νA := D ◦RHomA(−, AA) : Kb(proj(A))→ Kb(proj(A))

is a Serre functor.

A is a fractionally Calabi-Yau algebra if the following hold:

(i) A is Iwanaga-Gorenstein.

(ii) There is a natural isomorphism

νlA
∼= [m]

of endofunctors Kb(proj(A))→ Kb(proj(A)) where m and l are integers
with l 6= 0, [−] is the shift functor and [m] := [−]m.

In this case, A is an (m, l)-Calabi-Yau algebra. (The rational number m/l
is uniquely determined by A.) One writes

CY-dim(A) := (m, l)

if l > 0 is the smallest integer such that A is (m, l)-Calabi-Yau.

Note that an (m, l)-Calabi-Yau algebra is (km, kl)-Calabi-Yau for all k ≥ 1. The
converse is in general wrong.

Suppose that gl. dim(A) < ∞, and let ΦA be the Coxeter matrix of A. If A is
(m, l)-Calabi-Yau, then Φ2l

A is the identity matrix, see [P14, Lemma 2.9].

A is a twisted fractionally Calabi-Yau algebra if the following hold:

(i) A is Iwanaga-Gorenstein.

(ii) There is a natural isomorphism

νlA
∼= [m] ◦ σ∗

of endofunctors Kb(proj(A))→ Kb(proj(A)) where m and l are integers
with l 6= 0 and σ : A→ A is a K-algebra automorphism.

In this case, A is a twisted (m, l)-Calabi-Yau algebra.

Here σ∗ denotes the endofunctor

σ∗ := σA1

L
⊗A − : Kb(proj(A))→ Kb(proj(A))

where σA1 is the A-A-bimodule defined by axb := σ(a)xb for a, b, x ∈ A.

Obviously, fractionally Calabi-Yau algebras are twisted fractionally Calabi-Yau.

Examples:

(i) A is (0, 1)-Calabi-Yau if and only if A is symmetric.

(ii) If A is selfinjective, then A is twisted (0, 1)-Calabi-Yau.
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(iii) Let Q be an acyclic quiver, and let A = KQ. Then Q is fractionally Calabi-
Yau if and only if Q is a Dynkin quiver. In this case, let h be the Coxeter
number of Q. We have

CY-dim(A) =


(
h

2
− 1,

h

2

)
if Q is of type A1, D2n, E7 or E8,

(h− 2, h) otherwise,

see [HI11, Section 3.1]. Here are the Coxeter numbers of the Dynkin quivers:

Q An Dn E6 E7 E8

h n+ 1 2(n− 1) 12 18 30

Theorem 4.41 (Chan, Darpö, Iyama, Marczinzik [CDIM20, Theorem 1.2]).
Assume that A/J(A) is a separable K-algebra. The following are equivalent:

(i) T (A) is periodic.

(ii) gl. dim(A) <∞ and A is fractionally Calabi-Yau.

Theorem 4.42 ( [CDIM20, Theorem 1.3]). Assume that A/J(A) is a separa-
ble K-algebra. The following are equivalent:

(i) T (A) is twisted periodic.

(ii) gl. dim(A) <∞ and A is twisted fractionally Calabi-Yau.

Conjecture 4.43 (Periodicity Conjecture [CDIM20, Question 1.4]). Assume
that gl. dim(A) < ∞. If A is twisted fractionally Calabi-Yau, then A is frac-
tionally Calabi-Yau.

There are examples of twisted fractionally Calabi-Yau algebras with infinite global
dimension which are not fractionally Calabi-Yau.

Theorem 4.44 (Herschend, Iyama [HI11, Theorem 1.1]). If A is connected
and n-representation-finite, then A is twisted fractionally Calabi-Yau.

Theorem 4.45 ([HI11, Remark 1.6]). The class of fractionally Calabi-Yau
K-algebras is closed under derived equivalence.
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Example: Let A = KQ/I where Q is the quiver

1
c

��

a

��

2

b ��

3

d��
4

and I is generated by ba − dc. Then A is fractionally Calabi-Yau, but there is no
n such that A is n-representation-finite. The algebra A is derived equivalent to the
path algebra of the quiver

1

��

2

��

3

��

4

which is 1-representation-finite. Thus being n-representation-finite for some n ≥ 1
is not preserved under derived equivalence. This example is taken from [HI11,
Remark 1.6(a)].

Theorem 4.46 ([CDIM20, Corollary 1.8]). Let K be a perfect field. Then the
class of twisted fractionally Calabi-Yau K-algebras of finite global dimension
is closed under derived equivalence.

The class of twisted fractionally Calabi-Yau K-algebras of infinite global dimen-
sion not closed under derived equivalence.

Literature – Fractionally Calabi-Yau algebras
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4.12. Calabi-Yau categories. Let C be a Hom-finite K-linear category. As usual
let D := HomK(−, K).
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A Serre functor for C is an equivalence

S : C → C
such that there are functorial isomorphisms

HomC(X,S(Y )) ∼= DHomC(Y,X)

for all X, Y ∈ C.

Suppose that C is a Hom-finite K-linear triangulated category. If there is a Serre
functor S for C, then S is a triangle equivalence and it is unique up to unique
isomorphism.

Let C be an idempotent complete Hom-finite K-linear triangulated category,
and let n ≥ 1. Then C is an n-Calabi-Yau category if there are functorial
isomorphisms

HomC(X, Y [n]) ∼= DHomC(Y,X)

for all X, Y ∈ C. In other words, [n] is a Serre functor for C.

Note that the conditions idempotent complete and Hom-finite ensure that C is a
Krull-Remak-Schmidt category, i.e. each object is a finite direct sum of objects with
local endomorphism rings and therefore the Krull-Remak-Schmidt Theorem holds
in C.

The definition above is commonly used amongst mathematicians working on
the representation theory of finite-dimensional algebras. However this is not
standard. Keller [K08] uses the term weakly n-Calabi-Yau instead of n-Calabi-
Yau and he is not insisting on idempotent completeness. The standard defini-
tion of an n-Calabi-Yau category is more involved, see e.g. [K08] .

For i ≥ 0 one often writes ExtiC(X, Y ) instead of HomC(X, Y [i]).

Lemma 4.47. For an n-Calabi-Yau category C there are functorial isomorphisms

Extn−iC (X, Y ) ∼= DExtiC(Y,X)

for all X, Y ∈ C and 0 ≤ k ≤ n.

In particular, for a 2-Calabi-Yau category C we have functorial isomorphisms

Ext1
C(X, Y ) ∼= DExt1

C(Y,X)

for all X, Y ∈ C.

4.13. Calabi-Yau tilted algebras.



FD-ATLAS 117

Let C be an n-Calabi-Yau category. An object T ∈ C is an n-cluster-tilting
object if

add(T ) = {X ∈ C | ExtiC(T,X) = 0 for 1 ≤ i ≤ n− 1}
= {X ∈ C | ExtiC(X,T ) = 0 for 1 ≤ i ≤ n− 1}.

By Lemma 4.47 the second equality in the definition above is redundant.

Let T be an n-cluster-tilting object in an n-Calabi-Yau category C. Then

B := EndC(T )op

is an n-Calabi-Yau tilted algebra.

Recall that for a finite-dimensional algebra A, cogen(AA) is the subcategory of
all M ∈ mod(A) such that M is isomorphic to a submodule of AA

m for some m. If
A is 1-Iwanaga-Gorenstein, then cogen(AA) = gp(A) is the Frobenius category of
Gorenstein-projective A-modules. In particular, its stable category is a triangulated
category.

Theorem 4.48 (Keller, Reiten [KR07]). For a 2-Calabi-Yau tilted algebra A
the following hold:

(i) A is a 1-Iwanaga-Gorenstein algebra.

(ii) gl. dim(A) ≤ 1 or gl. dim(A) =∞.

(iii) gp(A) is a 3-Calabi-Yau category.

Theorem 4.49 (Keller, Reiten [KR07]). Let C be 2-Calabi-Yau category, and
let T be a 2-cluster-tilting object in C. Then

HomC(T,−) : C/ add(T [1])→ mod(EndC(T )op)

is an equivalence of categories.

It is not known in general if the 2-Calabi-Yau tilted algebra EndC(T )op determines
C, see [KR08] for some partial results.

Let C be 2-Calabi-Yau category, and let T be a 2-cluster-tilting object in C. We
assume that T = T1 ⊕ · · · ⊕ Tn with Ti indecomposable and Ti 6∼= Tj for all i 6= j.
Set B := EndC(T )op. Assume also that the quiver of B has no loops.

Using the same arguments as in [BMRRT06] one gets that for each 1 ≤ k ≤ n
there exists a unique indecomposable object T ′k ∈ C such that T ′k 6∼= Tk and

µk(T ) := T ′ := T ′k ⊕ T/Tk
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is a 2-cluster tilting object. Define B′ := EndC(T
′)op. Let Sk be the simple top of

the indecomposable projective B-module HomC(T, Tk), and let S ′k be the simple top
of the indecomposable projective B′-module HomC(T

′, T ′k).

The following result can be interpreted as a spectacular generalization of the
results in [APR79].

Theorem 4.50 ([BMR07, KR07]). There is an equivalence of K-linear cate-
gories

mod(B)/ add(Sk)→ mod(B′)/ add(S ′k).

For further reading on 2-Calabi-Yau tilted algebras we refer to [K08] and [R10].

We focus now on a special class of 2-Calabi-Yau tilted algebras.

Let Q be an acyclic quiver, and let

CQ := Db(mod(KQ))/τ−1[1]

be the cluster category associated with Q.

Cluster categories were defined in [BMRRT06].

Keller [K05] proved that CQ is a triangulated category with all morphism spaces
finite-dimensional. Based on this, it is straightforward to check that CQ is a 2-
Calabi-Yau category.

A finite-dimensional K-algebra A is a cluster-tilted algebra if

A ∼= EndCQ(T )op

for some cluster-tilting object T ∈ CQ.

Obviously, cluster-tilted algebras are 2-Calabi-Yau tilted algebras.

Cluster tilted algebras have been introduced and studied in [BMR07].

Recall that a Hom-finite K-linear triangulated category C is algebraic if there
exists a Frobenius category F and a triangle equivalence

C → F .

(Here F denote the stable category of F .)
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Theorem 4.51 (Keller, Reiten [KR08]). Let K be algebraically closed. Let
C be an algebraic 2-Calabi-Yau category. Assume that there exits a 2-cluster-
tilting object T ∈ C such that the quiver Q of B := EndC(T )op is acyclic. Then
there is a triangle equivalence

C → CQ.

Example: Let A = KQ where Q is the quiver

1 2oo 3oo

The Auslander-Reiten quiver ΓA is

P (3)

��

P (2)

??

��

I(2)

��

oo

P (1)

??

S(2)

??

oo I(3)oo

The Auslander-Reiten quiver of the derived category Db(mod(A)) is

I(3)[−1]

��

P (3)

��

oo P (1)[1]

��

oo S(2)[1]oo

��

I(3)[1]oo

· · · P (2)

??

��

I(2)

��

??

oo P (2)[1]

��

??

oo I(2)[1]oo

??

��

· · ·

P (1)

??

S(2)

??

oo I(3)

??

oo P (3)[1]oo

??

P (1)[2]oo

We have CQ = Db(mod(A))/τ−1[1]. The objects marked in blue yield a complete
set of representatives of isomorphism classes of indecomposable objects in CQ. The
object

T := P (1)⊕ P (3)⊕ I(3)

is a 2-cluster-tilting object in CQ. The endomorphism algebra B = EndCQ(T )op is
isomorphic to KQ/I where Q is the quiver

2

��

1 // 3

ZZ

and I is generated by all paths of length 2.
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4.14. Jacobian algebras.

4.14.1. Completed path algebras. Let Q be a quiver. The path algebra of Q is denote
by KQ. Let K〈〈Q〉〉 be the completed path algebra of Q. As a C-vector space
we have

K〈〈Q〉〉 =
∏
m≥0

KQm

where KQm is a K-vector space with a basis labeled by the paths of length m in
Q. The multiplication of KQ and K〈〈Q〉〉 is induced by the concatenation of paths.
Both algebras are naturally graded by the length of paths.

Let

m :=
∏
m≥1

KQm

be the arrow ideal of K〈〈Q〉〉. For any subset U ⊆ K〈〈Q〉〉 let

U :=
⋂
p≥0

(U + mp)

be the m-adic closure of U .

Let A = K〈〈Q〉〉/I where I is an ideal in K〈〈Q〉〉. Let

A := K〈〈Q〉〉/I

and for p ≥ 2 let

Ap := K〈〈Q〉〉/(I + mp)

be the p-truncation of A. The algebras Ap are finite-dimensional K-algebras, and
we get a chain

· · · → Ap → · · · → A3 → A2

of surjective K-algebra homomorphismsms. This yields a chain

mod(A2)→ mod(A3)→ · · · → mod(Ap)→ · · ·

of embeddings.
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Proposition 4.52. We have

mod(A) = mod(A) =
⋃
p≥2

mod(Ap).

Note that

A = lim←−(Ap),

i.e. A is the inverse limit of the algebras Ap.

If we assume additionally that I ⊆ m2, then Ap is a basic K-algebra for all p.

4.14.2. Jacobian algebras. Let Q be a quiver. A path a1 · · · am of length m ≥ 1 in
Q is a cycle or more precisely an m-cycle if s(am) = t(a1). Quivers without cycles
are called acyclic. A quiver is 2-acyclic if it does not contain any 2-cycles.

An element S ∈ K〈〈Q〉〉 is a potential for Q if S is a (possibly infinite) linear
combination of cycles in Q. The pair (Q,S) is called a quiver with potential. It
is 2-acyclic if Q is 2-acyclic.

We recall Derksen, Weyman and Zelevinsky’s [DWZ08] definition of the Jacobian
algebra P(Q,S). For a cycle a1 · · · am in Q and an arrow a ∈ Q1 define

∂a(a1 · · · am) :=
∑

1≤p≤m
ap=a

ap+1 · · · ama1 · · · ap−1.

We extend this linearly and obtain the cyclic derivative ∂a(S) of a potential S for
Q. Let

∂(S) := {∂a(S) | a ∈ Q1}.

Let I(S) be the ideal in K〈〈Q〉〉 generated by ∂(S).

Let
P(Q,S) := K〈〈Q〉〉/I(S)

be the Jacobian algebra associated with (Q,S).

Jacobian algebras play a central role in the categorification of Fomin-Zelevinsky
cluster algebras. For the definition of cluster algebras we refer to [FZ02]. Jacobian
algebras also appear in mathematical physics, see for example [C13].

One often focusses on Jacobian algebras P(Q,S) where Q is a 2-acyclic quiver
and S is a non-degenerate potential.

Examples:
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(i) Let Q be the quiver

2
b

��

1

a

DD

3c
oo

and let S = cba. It follows that P(Q,S) = KQ/I where I is generated by
all paths of length 2.

(ii) Let Q be an acyclic quiver. Then S = 0 is the only potential for Q, and we
have P(Q,S) = KQ

Theorem 4.53 (Amiot [A09]). Suppose that P(Q,S) is finite-dimensional.
Then P(Q,S) is a 2-Calabi-Yau tilted algebra.

There are many examples of 2-Calabi-Yau categories C such that all 2-Calabi-Yau
tilted algebras arising from C are Jacobian algebras.

4.14.3. Mutations of quivers. The following combinatorial definition is due to Fomin
and Zelevinsky [FZ02]. It is a crucial ingredient for their definition of cluster alge-
bras.

Let Q be a 2-acyclic quiver, and let k ∈ Q0. The mutation of Q at k is a
quiver µk(Q) which is obtained from Q in three steps:

(i) For each path ba of length 2 in Q with s(b) = t(a) = k, add a new
arrow [ba] with s([ba]) = t(b) and t([ba]) := s(a).

k
b

��

•

a

DD

•
[ba]

oo

(ii) Reverse each arrow incident to k.

(iii) Choose a 2-cycle cd and then remove the arrows c and d. Repeat this
until there are no 2-cycles left.

Note that µk(µk(Q)) = Q for all k.

The mutation operation yields an equivalence relations on the set of all 2-acyclic
quivers.

A 2-acyclic quiver Q is of finite mutation type if there are only finitely many
quivers mutation equivalent to Q. Otherwise, Q is of infinite mutation type.
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Example:

Q = 2

����

1

DD DD

3oo

µ1(Q) = 2

����

1 // 3

µ2(Q) = 2

����

1 //
//
// 3

ZZ ZZ

The quiver Q is of infinite mutation type.

There is a beautiful combinatorial classification of quivers of finite mutations type
by Felikson, Shapiro and Tumarkin [FST12]. Their classification is inspired by some
groundbreacking work by Fomin, Shapiro and Thurston [FST08].

4.14.4. Non-degenerate potentials. Let K = C. Let Q be 2-acyclic, and let S be a
potential for Q. For k ∈ Q0, Derksen, Weyman and Zelevinsky [DWZ08, DWZ10]
defined a Jacobian algebra P(µk(Q,S)) where (Q′, S ′) := µk(Q,S) is again a quiver
with potential. We do not repeat here the rather technical definition of µk(Q,S). It
can happen that Q′ contains 2-cycles.

The potential S is non-degenerate provided for all sequences (k1, . . . , kt) of
vertices and

(Q′, S ′) := µkt · · ·µk1(Q,S),

the quiver Q′ is 2-acyclic. In this case, we have

Q′ = µkt · · ·µk1(Q).

Theorem 4.54 (Derksen, Weyman and Zelevinsky [DWZ08]). For each 2-
acyclic quiver there exists a non-degenerate potential.

The proof of this theorem is not constructive, i.e. for a given 2-acyclic quiver Q it
can be difficult to write down explicitely a non-degenerate potential for Q. By work
of Labardini-Fragoso [LF09, LF10] this problem has been solved for most quivers Q
of finite mutation type.

Question 4.55. Let Q be a 2-acyclic quiver. Is there always a non-degenerate
potential S for Q such that

dimP(Q,S) <∞?

Theorem 4.56 (Derksen, Weyman, Zelevinsky [DWZ08, DWZ10]). Let Q be
a 2-acyclic quiver, and let S be a non-degenerate potential for Q. Then the
Fomin-Zelevinsky cluster algebra A(Q) can be categorified via P(Q,S).

4.14.5. Nearly Morita equivalence. Also in this section, let K = C.
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For a K-algebra A and M ∈ mod(A) the M-stable category

mod(A)/ add(M)

has by definition the same objects as mod(A), and the morphism spaces are the
morphism spaces from mod(A) modulo the subspaces of morphism factoring through
some object in add(M).

Theorem 4.57 (Buan, Iyama, Reiten, Smith [BIRS11]). Let S be a potential
for a 2-acyclic quiver Q, and let (Q′, S ′) := µk(Q,S). There is an equivalence
of additive categories

mod(P(Q,S))/ add(S(k))→ mod(P(Q′, S ′))/ add(S(k)).

The following statement may not come as a surprise, but the proof is not so
straightforward.

Theorem 4.58 ([GLS16]). Let S be a potential for a 2-acyclic quiver Q, and
let (Q′, S ′) := µk(Q,S). Then P(Q,S) and P(Q′, S ′) have the same represen-
tation type.

Krause [K97] proved that stable equivalences of dualizing algebras preserve the
representation type. At least for finite-dimensional Jacobian algebras, this leads to
another proof of the theorem above.

4.14.6. Tame-wild classification of Jacobian algebras. Also in this section, let K =
C.

A 2-acyclic quiver Q is of finite cluster type if the Fomin-Zelevinsky cluster
algebra A(Q) has only finitely many cluster variables.

The following spectacular result yields new symmetries on the root systems of
finite-dimensional complex Lie algebras over C.

Theorem 4.59 (Fomin and Zelevinsky [FZ03]). Q is of finite cluster type if
and only if Q is mutation equivalent to a Dynkin quiver.

Combining this with Derksen, Weyman and Zelevinsky’s results one gets the fol-
lowing:
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Theorem 4.60. For a 2-acyclic quiver Q and a non-degenerate potential S
for Q the following are equivalent:

(i) Q is of finite cluster type.

(ii) Q is mutation equivalent to a Dynkin quiver.

(iii) P(Q,S) is representation-finite.

We call a 2-acyclic quiver Q Jacobi-tame (resp. Jacobi-wild) if for all non-
degenerate potentials S the Jacobian algebra P(Q,S) is tame (resp. wild).
Otherwise, we call Q Jacobi-irregular.

We need the following list of exceptional 2-acyclic quivers of finite mutation type:

Km

• ···
a1
//

am
// •

T1 •

����•

CC CC

•oo
oo

T2 •

����

•

>>

// •

^^

•

??aa

X6 •

��

•
''

•

����

•
88

ww•

OO OO

•
ff

X7 • //
// •

��

•
((

•

����

•

WW

77

vv•

OO OO

•
gg

Theorem 4.61 ([GLS16]). Let Q be a 2-acyclic quiver. If Q is not mutation
equivalent to one of the quivers T1, T2, X6, X7 or Km with m ≥ 3, then the
following hold:

(i) Q is Jacobi-tame if and only if Q is of finite mutation type.

(ii) Q is Jacobi-wild if and only if Q is of infinite mutation type.

For the exceptional cases the following hold:

(iii) If Q is mutation equivalent to one of the quivers X6, X7 or Km with
m ≥ 3, then Q is Jacobi-wild.

(iv) If Q is mutation equivalent to one of the quivers T1 or T2, then Q is
Jacobi-irregular.

For most quivers of finite mutation type there exists exactly one non-degenerate
potential up to weak right equivalence, compare [GLS16].



126 JAN SCHRÖER

Example: We discuss one of the exceptional cases. Let Q := T1 be the quiver

2

b1

��

b2

��

1

a1

DD

a2

DD

3
c1

oo

c2
oo

We consider the potentials

S1 := c1b1a1 + c2b2a2,

S2 := c1b1a1 + c2b2a2 + a1b2c1a2b1c2,

S3 := c2b2a1 + c2b1a2 + c1b2a2.

All three potentials are non-degenerate.

(1) The ideal I(S1) is generated by

{b1a1, c1b1, a1c1, b2a2, c2b2, a2c2}.

We get I(S1) = I(S1). Thus P(Q,S1) is an infinite-dimensional gentle alge-
bra. In particular, P(Q,S1) is tame.

(2) The ideal I(S2) is generated by

{b1a1 + a2b1c2a1b2, c1b1 + b2c1a2b1c2, a1c1 + c2a1b2c1a2,

b2a2 + a1b2c1a2b1, c2b2 + b1c2a1b2c1, a2c2 + c1a2b1c2a1}.

The algebra K〈〈Q〉〉/I(S2) is infinite-dimensional, whereas the Jacobian al-

gebra P(Q,S2) = K〈〈Q〉〉/I(S2) is finite-dimensional. The algebra P(Q,S2)
is also tame.

(3) The ideal I(S3) is generated by

{c1b2, a2c2, b2a2, c2b1 + c1b2, a1c2 + a2c1, b2a1 + b1a2}.
The algebra P(Q,S3) is wild.
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5. Selfinjective algebras
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5.1. Selfinjective algebras.

5.1.1. Two important bimodules. Let A be a K-algebra. Then A is an A-A-bimodule
in the obvious way. The K-dual

D(A) := HomK(A,K)

is also an A-A-bimodule via

A×D(A)→ D(A) D(A)× A→ D(A)

(a, f) 7→ [af : b 7→ f(ba)] (f, a) 7→ [fa : b 7→ f(ab)].

5.1.2. Selfinjective algebras.

A K-algebra A is selfinjective if AA is injective.
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Proposition 5.1. For a finite-dimensional K-algebra A the following are
equivalent:

(i) A is selfinjective;

(ii) AA is injective;

(iii) proj(A) = inj(A);

(iv) Proj(A) = Inj(A).

Examples:

• Semisimple algebras are selfinjective.

• The truncated polynomial ring A = K[T ]/(T n) is selfinjective for all n ≥ 1.

• Let A = KQ/I where Q is the quiver

1
a
//
2

b
oo

and I is generated by {ab, ba}. We have

P (1) = I(2) =
1
2

and P (2) = I(1) =
2
1
.

Thus A is selfinjective.

Proposition 5.2. Let A be a finite-dimensional selfinjective K-algebra. Then
for M ∈ Mod(A) the following are equivalent:

(i) proj. dim(M) =∞;

(ii) M is non-projective.

Corollary 5.3. For a finite-dimensional selfinjective K-algebra A we have

gl. dim(A) =

{
0 if A is semisimple,

∞ otherwise.

Selfinjective algebras appear in numerous different contexts and disguises. Some
of these are mentioned below.

5.1.3. Frobenius algebras.
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A finite-dimensional K-algebra A is a Frobenius algebra if there exists a
non-degenerate K-bilinear form

(−, ?) : A× A→ K

such that (ab, c) = (a, bc) for all a, b, c ∈ A.

Theorem 5.4 (Brauer, Nesbitt, Nakayama (1937-1939)). For a finite-
dimensional K-algebra the following are equivalent:

(i) A is a Frobenius algebra.

(ii) There exists an isomorphism

AA→ AD(A)

of left A-modules.

(iii) There exists an isomorphism

AA → D(A)A

of left A-modules.

Corollary 5.5. Frobenius algebras are selfinjective.

Corollary 5.6. Basic selfinjective algebras are Frobenius algebras.

There are examples of finite-dimensional selfinjective algebras which are not Frobe-
nius algebras.

For more details on Frobenius algebras we recommend [SY11, Section IV].

5.1.4. Weakly symmetric algebras.

A finite-dimensional algebra A is weakly symmetric if for each simple A-
module S, the projective cover P (S) of S is isomorphic to the injective hull
I(S) of S.

Weakly symmetric algebras are selfinjective. The converse is in general wrong.

5.1.5. Symmetric algebras.
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A finite-dimensional K-algebra A is a symmetric algebra if there exists a
non-degenerate symmetric K-bilinear form

(−, ?) : A× A→ K

such that (ab, c) = (a, bc) for all a, b, c ∈ A.

Symmetric algebras are weakly symmetric. The converse is in general wrong.

Theorem 5.7 (Brauer, Nesbitt, Nakayama (1937-1941)). For a finite-
dimensional K-algebra the following are equivalent:

(i) A is symmetric.

(ii) There exists an isomorphism

AAA → AD(AA)A

of A-A-bimodules.

Here are some classes of symmetric algebras:

• group algebras KG for G a finite group;

• blocks of group algebras KG for G a finite group;

• trivial extension algebras T (A) for A a finite-dimensional algebra.

Symmetric algebras are weakly symmetric.

Example: Let q ∈ K∗, and let Aq = KQ/Iq where Q is the quiver

1a
88 bff

and Iq is generated by {a2, b2, ab − qba}. Then Aq is weakly symmetric for all q,
and Aq is symmetric if and only if q = 1.

For more details on symmetric algebras we recommend [SY11, Section IV].

Literature – Selfinjective algebras
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5.2. Trivial extension and repetitive algebras. Let A be a finite-dimensional
K-algebra. Recall that D(A) := HomK(A,K) is an A-A-bimodule via

A×D(A)→ D(A) D(A)× A→ D(A)

(a, f) 7→ [af : b 7→ f(ba)] (f, a) 7→ [fa : b 7→ f(ab)].

5.2.1. Trivial extension algebras.

The trivial extension algebra

T (A) := AnD(A)

of A has A⊕D(A) as an underlying K-vector space, and its multiplication is
defined by

(a, f) · (b, g) := (ab, ag + fb)

for a, b ∈ A and f, g ∈ D(A).

Lemma 5.8. Trivial extension algebras are symmetric.

Proof. The map

(−, ?) : T (A)× T (A)→ K

((a, f), (b, g)) 7→ f(b) + g(a)

is a non-degenerate symmetric K-bilinear form with (xy, z) = (x, yz) for all x, y, z ∈
T (A). In other words, T (A) is symmetric. �

The subspace D(A) of T (A) is a two-sided ideal of T (A). This yields a K-algebra
isomorphism A ∼= T (A)/D(A). Thus each finite-dimensional K-algebra is a factor
algebra of a symmetric algebra.

Suppose that A = KQ/I is a basic algebra such that I is generated by zero
relations and commutativity relations. Then there is a combinatorial rule how
to write T (A) as a path algebra modulo an admissible ideal, see [FP02] and
also [Sch99].

Using this, one can for example show the following:

Proposition 5.9. The following are equivalent:

(i) A is a gentle algebra.

(ii) T (A) is a special biserial algebra.
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Example: Let A = KQ/I where Q is the quiver

1 3
b

��

2
a

^^

4

c
^^

and I is generated by abc. Then T (A) ∼= KQ′/I ′ where Q′ is the quiver

1
pab

// 3
b

��

2 pbc
//

a

^^

4

c
^^

and I ′ is generated by

{abc, paba− cpbc, pbcbpab} ∪ {p | p is a path of length 4}.

The trivial extension algebra T (A) is Z-graded with deg(A) := 0 and
deg(D(A)) := 1.

Let modZ(T (A)) be the category of finite-dimensional Z-graded T (A)-modules.

This category is an important tool which helps to understand the derived category
Db(mod(A)).

5.2.2. Repetitive algebras.

The underlying vector space of the repetitive algebra Â of A is

Â :=



. . .
. . .

A D(A)
A D(A)

A
.. .
. . .


Thus the elements in Â are infinite matrices M = (mij)ij with rows and
columns indexed by Z with only finitely many non-zero entries. The entries
on the diagonal are in A, the entries on the upper off diagonal are in D(A),
and all other entries are 0. We can identify such an element (mij)ij with the
tuple (ai, fi)i where ai = mii and fi := mi,i+1.

The multiplication in Â is induced by the usual matrix multiplication with the
additional rule that fg := 0 for all f, g ∈ D(A). More explicitely, for (ai, fi)i
and (bi, gi)i in Â we define

(ai, fi)i · (bi, gi)i := (aibi, aigi + fibi+1)i.
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The repetitive algebra Â is infinite-dimensional provided A 6= 0. It has no identity
element. But it has enough idempotents which serve as “local identities” and make
it “locally finite-dimensional”.

Suppose that A = KQ/I is a basic algebra such that I is generated by zero
relations and commutativity relations. Then there is a combinatorial rule how

to write Â as a path algebra (of an infinite quiver) modulo an admissible ideal,
see [Sch99].

Example: Let A = KQ/I where Q is the quiver

1a
88 2

b
oo c

ff

and I is generated by {a2, c3, ab}. Then Â ∼= KQ̂/Î where Q̂ is the quiver

· · ·

pa[2]

��

pbcc[2]

��

· · ·

1a[1] 88

pa[1]

��

pbcc[1]

��

2
b[1]

oo c[1]ff

1a[0] 88

pa[0]

��

pbcc[0]

��

2
b[0]

oo c[0]ff

1a[−1] 88

pa[−1]

��

pbcc[−1]

��

2
b[−1]

oo c[−1]ff

· · · · · ·

and Î is generated by the relations

• a[i]2, c[i]3, a[i]b[i],

• pa[i]a[i]− a[i− 1]pa[i],

• pbcc[i]b[i]c[i]− c[i− 1]pbcc[i]b[i],

• pa[i]a[i]− b[i− 1]c[i− 1]2pbcc[i],

• all paths which are not subpaths of pa[i]a[i], a[i− 1]pa[i], pbcc[i]b[i]c[i]
2, c[i−

1]pbcc[i]b[i]c[i], c[i− 1]2pbcc[i]b[i] or b[i− 1]c[i− 1]2pbcc[i]

where i runs through Z.
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Proposition 5.10 ([H88]). The following hold:

(i) Â is selfinjective.

(ii) The indecomposable projective-injective Â-modules are finite-
dimensional.

(iii) The stable category mod(Â) is a triangulated category.

Happel [H88, Section II.4] constructed a functor

F : Db(mod(A))→ mod(Â)

of triangulated categories.

We also refer to [BM06] for a detailed explanantion of the construction of F .

Theorem 5.11 (Happel [H88, Section II.4]). The Happel functor F is full and
faithful. It is an equivalence if and only if gl. dim(A) <∞.

The categories mod(Â) and modZ(T (A)) are equivalent, see [H88, Sec-
tion II.2.4].
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5.3. Group algebras.

Let G be a group, and let KG be a K-vector space with a basis {bg | g ∈ G}
indexed by the elements in G. Define

bgbh := bgh.

Extending this linearly turns the vector space KG into a K-algebra. One calls
KG the group algebra of G over K.

Clearly, KG is finite-dimensional if and only if G is a finite group.

A representation of G over K is a group homomorphism

ρ : G→ GL(V )

where V is a K-vector space.

In the obvious way one can define homomorphisms of representations.

The category of representations of G over K is isomorphic to the category
Mod(KG).

The representation theory of KG depends very much on the field K. In particular,
the characteristic char(K) plays an important role.

Theorem 5.12 (Maschke). Let G be a finite group, and let K be a field such
that char(K) does not divide |G|. Then KG is semisimple.

Even for semisimple group algebras there are many intriguing problems and con-
jectures. For example, one can try to construct the simple representations, determine
their characters and describe tensor products of simples, etc. This would rather run
under the label Representation theory of finite groups and not under Representa-
tion theory of finite-dimensional algebras. Of course one should not think of a rigid
border between these research areas.

Let G be a finite group. Suppose that char(K) divides |G|. Then KG is not
semisimple. The representation theory of KG runs then under the label modular
representation theory of finite groups.

There are many beautiful long standing conjectures on the (modular and non-
modular) representation theory of finite groups.
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Proposition 5.13. Group algebras are symmetric.

Proof. The map

(−, ?) : KG×KG→ K(∑
g∈G

λgeg,
∑
g∈G

µgeg

)
7→
∑
g∈G

λgµg−1

is a non-degenerate symmetric K-bilinear form with (xy, z) = (x, yz) for all x, y, z ∈
KG. In other words, KG is symmetric. �

One can also show that blocks of group algebras are always symmetric. (For the
definition of a block we refer to Section 11.7.) Note however that blocks of group
algebras are in general not isomorphic to group algebras.

There is a rather well developed representation theory of finite-dimensional sym-
metric K-algebras.

Assume from now on that K is algebraically closed with p = char(K) > 0.

Theorem 5.14 (Higman [H54]). Let G be a finite group with p | |G|. Then
the following are equivalent:

(i) KG is representation-finite.

(ii) The p-Sylow subgroups of G are cyclic.

To determine the representation type of blocks of group algebras, we need the
notion of a defect group.

Let H be a subgroup of a finite group G. We can see KH as a subalgeba of KG.
For U ∈ mod(KH) let

UG := KG⊗KH U ∈ mod(KG)

be the induced KG-module. Then M ∈ mod(KG) is H-projective if there exists
some U ∈ mod(KH) such that M is isomorphic to a direct summand of UG.

Let B be a block of KG. A defect group of B is a minimal subgroup D of
G such that all M ∈ mod(B) are D-projective.

Note that there are several equivalent definitions of a defect group.

The defect groups of B form a G-conjugacy class of p-subgroups of G.
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So one often speaks of the defect group of B.

The principal block of KG is the unique block B0 which contains the trivial
KG-module K. Its defect group is a p-Sylow subgroup of G.

Theorem 5.15 (Dade, Janusz, Kupisch (1966-1969)). Let G be a finite group,
and let B be a block of KG with defect group D. Then the following are
equivalent:

(i) B is representation-finite.

(ii) D is cyclic.

(iii) B is Morita equivalent to a Brauer tree algebra.

For more details and also references for the next theorem we refer to [E90].

Theorem 5.16. Let G be a finite group, and let B be a block of KG with
defect group D. Then the following are equivalent:

(i) B is representation-infinite and tame.

(ii) char(K) = 2 and D is dihedral, semidihedral or generalized quaternion.

If char(K) = 2 and D is dihedral, then B is Morita equivalent to a Brauer graph
algebra.

Conjecture 5.17 (Donovan Conjecture). Let D be a p-group. Then there are
only finitely many Morita equivalence classes of blocks of group algebras with
defect group D.

Question 5.18. Let B1 and B2 be blocks of some group algebras KG1 and KG2,
respectively. When are B1 and B2 derived equivalent?

For blocks of symmetric groups, there is a spectacular answer to this question:
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Theorem 5.19 (Chuang, Rouquier [CR08]). Let G1 and G2 be symmetric
groups, and let B1 and B2 be blocks of KG1 and KG2, respectively. The
following are equivalent:

(i) There is a triangle equivalence

Db(mod(B1))→ Db(mod(B2)).

(ii) B1 and B2 have isomorphic defect groups.

Apart from a few exceptions in case p = 2, (i) and (ii) are also equivalent to

(iii) B1 and B2 have the same number of simple modules, up to isomor-
phism.
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5.4. Brauer tree and Brauer graph algebras. Brauer tree algebras were defined
by Janusz [J69] and then generalized under the name Brauer graph algebras by
Donovan and Freislich [DF78]. These algebras appear in the representation theory
of blocks of group algebras KG of certain finite groups G.

A Brauer graph is a tuple G = (G0, Q1,m, o) where

• (G0, G1) is a finite unoriented connected graph (loops and multiple
edges are allowed) with vertex set G0 and edge set G1 with G1 6= ∅,

• m : G0 → N1 is a map which assigns a multiplicity to each vertex,

• o gives for each vertex v ∈ G0 a circular order i1 < i2 < · · · < it < i1
of the (half-)edges incident to v. A loop contributes two (half-)edges.

For a vertex v ∈ G0 let val(i) be its valency, i.e. the number of edges incident to
v where loops are counted twice.



140 JAN SCHRÖER

Let v ∈ G0 with val(v) = 1, and let i ∈ G1 be incident to v. If m(v) ≥ 2, then
the circular order associated with v is by convention i < i. (For val(v)m(v) = 1, we
do not need any circular order.)

Given a Bauer graph G, one defines a quiver QG as follows: The vertices of
QG are the edges of G. For each vertex v ∈ G0 with val(v)m(v) ≥ 2 let
i1 < i2 < · · · < it < i1 be the circular order associated with v. Then we have
arrows ak : ik → ik+1 for 1 ≤ k ≤ t− 1 and at : it → i1 in QG.

By definition, for each v ∈ G0 with val(v)m(v) ≥ 2 there is an oriented cycle
at · · · a1 in QG associated with v. (In this case, ai · · · a1at · · · ai+1 is of course also an
oriented cycle for each 1 ≤ i ≤ t− 1.) Each of these cycles is called a v-cycle.

There are three types of relations defining an admissible ideal IG in KQG:

(1) Let i be an edge in G connecting vertices v1 and v2 such that
val(vk)m(vk) ≥ 2 for k = 1, 2. Let Cv1 be a v1-cycle, and let Cv2
be a v2-cycle such that s(Cv1) = s(Cv2). Then let

Cm(v1)
v1

− Cm(v2)
v2

∈ IG.
(2) Let v ∈ G0 with m(v)val(v) ≥ 2. For each v-cycle Cv = at · · · a1 let

a1C
m(v)
v ∈ IG.

(3) Let a and b be arrows in QG with s(a) = t(b). If ab is not a subpath of
any v-cycle Cv = at · · · a1, then

ab ∈ IG.
There is one exception to this rule: If a = b and Cv = a is a v-cycle,
then ab /∈ IG.

Note that the relations of type (2) are often redundant.

The algebra
AG := KQG/IG

is called a Brauer graph algebra.

Let G = (G0, G1,m, o) be

v1
1
v2

with m(v1) = m(v2) = 1. Then QG has one vertex 1 and no arrows. So by the
definition above, we have AG = K. However, there is a convention which makes
an exception here and defines AG := K[T ]/(T 2). Furthermore, A = K is also
considered a Brauer graph algebra (with no Brauer graph associated with it).

Examples:



FD-ATLAS 141

(i) Let G be

v11

with m(v1) = m ≥ 1. The circular order for v1 is 1 < 1 < 1. Then QG is

1a1 88
a2ff

and the generators of IG are
(1) (a2a1)m − (a1a2)m

(2) a1(a2a1)m, a2(a1a2)m

(3) a2
1, a2

2

(ii) Let G be

v11 2

with m(v1) = 2. Let 1 < 1 < 2 < 2 < 1 be the circular order for v1. Then
QG is

1a1 88

a2
//
2 a3ff

a4
oo

and the generators of IG are
(1) (a4a3a2a1)2 − (a1a4a3a2)2, (a2a1a4a3)2 − (a3a2a1a4)2

(2) a1(a4a3a2a1)2, a2(a1a4a3a2)2, a3(a2a1a4a3)2, a4(a3a2a1a4)2

(3) a2
1, a2

3, a2a4, a4a2

If we choose the circular order 1 < 2 < 1 < 2 < 1 for v1, the quiver QG is

1
a1
))

a3

��

2
a2

ii

a4

[[

We omit to display the relations for this case.

(iii) Let G be

v1
1

v2

with m(v1) = 1 and m(v2) ≥ 2. Then QG is

1 a1ff

and the generators of IG are
(1) –

(2) a
m(v2)+1
1

(3) –

(iv) This example is taken from [Sch18]. Let G be

v11

2

3

v2
4

v3



142 JAN SCHRÖER

with m(v1) = m(v2) = m(v3) = 1. The circular order for v1 is 1 < 1 < 2 <
3 < 1, and the order for v2 is 2 < 4 < 3 < 2. Then QG is

2
b1

��
a3

��

1a1 88

a2
@@

4

b2��

3

b3

OO

a4

^^

and the generators of IG are
(1) a4a3a2a1 − a1a4a3a2, a2a1a4a3 − b3b2b1, a3a2a1a4 − b2b1b3

(2) a1(a4a3a2a1), a2(a1a4a3a2), a3(a2a1a4a3), a4(a3a2a1a4),
b1(b3b2b1), b2(b1b3b2), b3(b2b1b3)

(3) a2
1, a2a4, b1a2, a4b2, b3a3, a3b3

The next theorem is essentially due to Roggenkamp [Ro98], see also [Sch15].

Theorem 5.20. For a finite-dimensional connected basic K-algebra A =
KQ/I the following are equivalent:

(i) A is a symmetric special biserial algebra.

(ii) A is a Brauer graph algebra.

A Brauer graph G = (G0, G1,m, o) is a Brauer tree if (G0, G1) is a tree (no
loops, no multiple edges) and m(v) = 1 for all but at most one v ∈ G0. In this
case, AG is a Brauer tree algebra.

Proposition 5.21. For a Brauer graph algebra A the following are equivalent:

(i) A is representation-finite.

(ii) A is a Brauer tree algebra.

Theorem 5.22 (Gabriel, Riedtmann [GR79], Rickard [R89]). For a finite-
dimensional connected selfinjective K-algebra A, the following equivalent:

(i) A is Morita equivalent to a Brauer tree algebra.

(ii) A is stably equivalent to a symmetric Nakayama algebra.

(iii) A is derived equivalent to a symmetric Nakayama algebra.

Literature – Brauer tree and Brauer graph algebras

[DF78] P. Donovan, M.-R. Freislich, The indecomposable modular representations of certain groups
with dihedral Sylow subgroup. Math. Ann. 238 (1978), no. 3, 207–216.
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[Sch18] S. Schroll, Brauer graph algebras: a survey on Brauer graph algebras, associated gentle

algebras and their connections to cluster theory. Homological methods, representation theory,
and cluster algebras, 177–223, CRM Short Courses, Springer, Cham, 2018.
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5.5. Periodic algebras. Let A be a finite-dimensional K-algebra.

M ∈ mod(A) is Ω-periodic if

Ωm
A (M) ∼= M

for some m ≥ 1. (Here ΩA(M) is by definition the kernel of the projective
cover P →M .)

M ∈ mod(A) is τ-periodic if

τmA (M) ∼= M

for some m ≥ 1. (Here τA is the Auslander-Reiten translation.)

Proposition 5.23. If all non-projective M ∈ ind(A) are Ω-periodic (resp.
τ -periodic), then A is selfinjective.

Proposition 5.24 ([SY11, Section 10]). Let A be selfinjective and
representation-finite. Then all non-projective M ∈ ind(A) are Ω-periodic and
τ -periodic.

Let Ae := A ⊗K Aop denote the enveloping algebra of A. Recall that Ae acts
on A by

(x⊗ y)a := xay.

A is a periodic algebra if A is Ω-periodic as an Ae-module.
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Proposition 5.25 ([SY11, Theorem 11.19(i)]). If A is periodic, then all non-
projective M ∈ ind(A) are Ω-periodic.

Examples:

(i) Let K be algebraically closed, and let A be connected, not semisimple, selfin-
jective and representation-finite. Then A is periodic, see [D10] and references
therein.

(ii) Brauer tree algebras which are not semisimple are periodic. This is a special
case of (i).

(iii) Let Q be an acyclic quiver, and let A = T (KQ) be the trivial extension
algebra of the path algebra KQ. Then A is periodic if and only if Q is a
Dynkin quiver, see [BBK02, Theorems 2.1 and 2.2].

(iv) Let Q be a Dynkin quiver, and let A = Π(Q) be the associated preprojective
algebra. If Q is not of type A1, then A is periodic, see [ES98, Theorem 7.3]
and references therein.

Algebras A such that the trivial extension algebra T (A) is periodic are studied in
[CDIM20].

Theorem 5.26 ([ES08, Theorem 2.9]). Let A and B be connected finite-
dimensional K-algebras. If there is a triangle equivalence

Db(mod(A)) ' Db(mod(B)),

then A is periodic if and only if B is periodic.

For a K-algebra automorphism σ : A→ A let σA1 be the Ae-module defined by

(x⊗ y)a := σ(x)ay.

A is a twisted periodic algebra if there exists some n ≥ 1 and a K-algebra
automorphism σ : A→ A such that

Ωn
Ae(A) ∼= σA1

in mod(Ae).

Obviously, each periodic algebra is twisted periodic.

Proposition 5.27 (Green, Snashall, Solberg [GSS03, Lemma 1.5], [SY11,
Proposition 11.18]). Twisted periodic algebras are selfinjective.

Recall that A is separable if A is projective an an Ae-module.
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Theorem 5.28 (Green, Snashall, Solberg [GSS03, Theorem 1.4]). Assume
that A is connected and not semisimple, and that A/J(A) is a separable K-
algebra. For n ≥ 1 the following are equivalent:

(i) Ωn(A/J(A)) ∼= A/J(A).

(ii) There exists a K-algebra automorphism σ : A→ A such that

Ωn
Ae(A) ∼= σA1

in mod(Ae).

(iii) There exists a natural isomorphism

σ∗ ∼= Ωn

of endofunctors mod(A)→ mod(A) for some K-algebra automorphism
σ : A→ A.

Note that (i) is equivalent to the condition that all simple A-modules are Ω-
periodic, and (ii) says that A is twisted periodic. In (iii), σ∗ denotes the obvious
endofunctor induced by σ.

For more details on the previous theorem we also refer to [SY11, Theorem 12.2],
[CDIM20, Proposition 3.3] and [H20, Corollary 2.2].

Conjecture 5.29 (Periodicity Conjecture [ES08]). Every twisted periodic al-
gebra is periodic.
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Back to Overview §5 Selfinjective.

5.6. Hopf algebras. In the following all tensor products are taken over K.

A K-algebra A = (A, µ, η) is a K-vector space A together with two K-linear
maps

µ : A⊗ A→ A and η : K → A

such that the diagrams

A⊗ A⊗ A 1⊗µ
//

µ⊗1

��

A⊗ A

µ

��

A⊗ A µ
// A

and K ⊗ A η⊗1
//

∼=
$$

A⊗ A

µ

��

A⊗K

∼=
zz

1⊗η
oo

A

commute. The map µ is the multiplication and η is the unit of A.

A K-coalgebra C = (C,∆, ε) is a K-vector space C together with two K-
linear maps

∆: C → C ⊗ C and ε : C → K

such that the diagrams

C
∆

//

∆

��

C ⊗ C

1⊗∆

��

C ⊗ C ∆⊗1
// C ⊗ C ⊗ C

and K ⊗ C C ⊗ Cε⊗1
oo

1⊗ε
// C ⊗K

C

∼=

dd

∼=

::

∆

OO

commute. The map ∆ is the comultiplication and ε is the counit of C.

A K-bialgebra H = (H,µ, η,∆, ε) is given by a K-algebra (H,µ, η) and a
K-coalgebra (H,∆, ε) such that ∆ and ε are K-algebra homomorphisms.

For such a K-bialgebra H and X, Y ∈ Mod(H) the comultiplication ∆: H →
H ⊗H yields an H-module structure on X ⊗ Y .

For a K-bialgebra H = (H,µ, η,∆, ε) the convolution product is defined as

∗ : HomK(H,H)× HomK(H,H)→ HomK(H,H)

(f, g) 7→ f ∗ g

where f ∗ g is the composition

H
∆−→ H ⊗H f⊗g−−→ H ⊗H µ−→ H.
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A K-bialgebra H = (H,µ, η,∆, ε) is a Hopf algebra if there exists a K-linear
map

s : H → H

such that
s ∗ 1H = ηε = 1H ∗ s.

The map s is the antipode of H.

For such a Hopf algebra H and X ∈ Mod(H) the antipode s : H → H yields
an H-module structure on the K-dual D(X).

Example: Let G be a finite group, and let A = KG be its group algebra. Then A
is a finite-dimensional Hopf algebra where

∆: A→ A⊗ A ε : A→ K s : A→ A

g 7→ g ⊗ g g 7→ 1 g 7→ g−1

are the comultiplication, counit and antipode, respectively.

The following result is a consequence of the Larson-Sweedler Theorem, see e.g.
[SY11, Section VI.3].

Proposition 5.30. Finite-dimensional Hopf algebras are Frobenius algebras.

Literature – Hopf algebras

[A80] E. Abe, Hopf algebras. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka.
Cambridge Tracts in Mathematics, 74. Cambridge University Press, Cambridge-New York,
1980. xii+284 pp.

[SY11] A. Skowroński, K. Yamagata, Frobenius algebras. I. Basic representation theory. EMS Text-
books in Mathematics. European Mathematical Society (EMS), Zrich, 2011. xii+650 pp.
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6. Gorenstein algebras

§6 Gorenstein algebras:

dom. dim ≥ 1

weakly
Gorenstein
§6.2

quasi
n-Gorenstein
§6.4

QF-3
§6.1

Iwanaga-
Gorenstein
§6.3

?

quasi
∞-Gorenstein

§6.4

n-Gorenstein
§6.4

selfinjective
§5.1

gentle
§7.4

quasi
Auslander-
Gorenstein
§6.4

∞-Gorenstein
§6.4

gl. dim <∞
Auslander-
Gorenstein
§6.4

dom. dim ≥ n

Auslander
regular
§6.4

(n− 1)-minimal
Auslander-
Gorenstein
§6.4

(n − 1)-
Auslander
§4.8

Back to Overview Metaclasses 1.

6.1. QF-3 algebras. Let A be a finite-dimensional K-algebra.

A is a QF-3 algebra if there exists a faithful projective-injective A-module.

Proposition 6.1. The following are equivalent:

(i) A is a QF-3 algebra.

(ii) dom. dim(A) ≥ 1.

(iii) The injective envelope of AA is projective.



FD-ATLAS 149

QF-3 algebras play a crucial role in the Morita-Tachikawa correspondence, Aus-
lander correspondence and Iyama’s higher Auslander correspondence.

6.2. Weakly Gorenstein algebras. Let A be a finite-dimensional K-algebra.

6.2.1. Gorenstein projective modules. Let M ∈ mod(A). The Aop-module M∗ :=
HomA(M, AA) is the A-dual of M . Let

φM : M →M∗∗

be the A-module homomorphism defined by φM(m)(f) := f(m) for m ∈ M and
f ∈M∗.

M is torsionless if M is isomorphic to a submodule of AA
m for some m ≥ 1.

M is torsionless if and only if φM is a monomorphism.

M is reflexive if φM is an isomorphism.

A complete projective resolution is an exact sequence

P • : · · · → P−1 → P 0 → P 1 → · · ·

with P i ∈ proj(A) for all i ∈ Z such that HomA(P •, AA) is also exact.

The module M is Gorenstein projective if there exists such a complete
projective resolution

· · · → P−1 → P 0 d0−→ P 1 → · · ·
with Im(d0) ∼= M . The subcategory of Gorenstein projective A-modules is
denoted by gp(A).

All modules in gp(A) are torsionless.

Let
⊥A := {M ∈ mod(A) | ExtiA(M, AA) = 0 for all i ≥ 1}.

The modules in ⊥A are called semi Gorenstein projective.

Let C be an exact subcategory of mod(A), i.e. C is a full sucategory, 0 ∈ C and
if

0→ X → Y → Z → 0

is a short exact sequence with X,Z ∈ C, then Y ∈ C. Then C is an exact category
where the exact structure for C is induced by the exact structure for mod(A).
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The subcategories gp(A) and ⊥A are exact subcategories of mod(A), and we
have

gp(A) ⊆ ⊥A.

Examples of semi Gorenstein projective modules which are not Gorenstein pro-
jective can be found in [JS06] and [M17].

An exact category F is a Frobenius category if F has enough projective
and enough injective objects, and if the class P(F) of projective objects in F
coincide with the class I(F) of injective objects in F .

Proposition 6.2. gp(A) is a Frobenius category with P(gp(A)) = proj(A).

Happel proved that the stable category F of a Frobenius category F is triangu-
lated. Thus we get the following:

Corollary 6.3. The stable category gp(A) is a triangulated category.

As a good survey on Gorenstein homological algebra we recommend [C10].

6.2.2. Weakly Gorenstein algebras. The following definition is due to Ringel and
Zhang [RZ20a].

A is a weakly Gorenstein algebra if

gp(A) = ⊥A.

Theorem 6.4 (Ringel, Zhang [RZ20a]). The following are equivalent:

(i) A is weakly Gorenstein.

(ii) φM is a monomorphism (i.e. M is torsionless) for all M ∈ ⊥A.

(iii) φM is an epimorphism for all M ∈ ⊥A.

(iv) φM is an isomorphism (i.e. M is reflexive) for all M ∈ ⊥A.

6.3. Iwanaga-Gorenstein algebras. Let A be a finite-dimensional K-algebra.
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Conjecture 6.5 (Gorenstein Symmetry Conjecture [ARS97]). The following
are equivalent:

(i) proj. dim(D(AA)) <∞.

(ii) inj. dim(AA) <∞.

A is an Iwanaga-Gorenstein algebra if

proj. dim(D(AA)) <∞ and inj. dim(AA) <∞.

In this case, we have n := proj. dim(D(AA)) = inj. dim(AA), and we say that A
is an n-Iwanaga-Gorenstein algebra.

Example: For n ≥ 2 let A = KQ/I where Q is the quiver

1
b1
//

a1

��

2
b2
//

a2

��

· · ·
bn−1

// n

an

��

and I is generated by

{a2
i | 1 ≤ i ≤ n} ∪ {biai − ai+1bi | 1 ≤ i ≤ n− 1} ∪ {bi+1bi | 1 ≤ i ≤ n− 2}.

We have

P (n) ∼= n

~~

n

, I(1) ∼= 1

��

1

, P (i) ∼= I(i+ 1) ∼= i

�� ��

i

��

i− 1

��

i+ 1

for 1 ≤ i ≤ n + 1. Now one checks easily that A is (n − 1)-Iwanaga-Gorenstein.
Furthermore, we have dom. dim(A) = n− 1 and gl. dim(A) =∞.

Proposition 6.6. The following hold:

(i) If gl. dim(A) = n <∞, then A is n-Iwanaga-Gorenstein.

(ii) A is selfinjective if and only if A is 0-Iwanaga-Gorenstein.

Proposition 6.7. For an n-Iwanaga-Gorenstein algebra A, and M ∈ mod(A)
the following are equivalent:

(i) proj. dim(M) ≤ n;

(ii) proj. dim(M) <∞;

(iii) inj. dim(M) ≤ n;

(iv) inj. dim(M) <∞.
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Proposition 6.8. For an Iwanaga-Gorenstein algebra A we have

gp(A) = ⊥A.

In other words, Iwanaga-Gorenstein algebras are weakly Gorenstein.

For an Iwanaga-Gorenstein algebra A the modules in gp(A) are often called
maximal Cohen-Macaulay modules.

Let d ≥ 0. Let Ωd(mod(A)) be the subcategory of all M ∈ mod(A) such that
M is isomorphic to a module of the form P ⊕Ωd(N) for some P ∈ proj(A) and
N ∈ mod(A). Dually, Ω−d(mod(A)) is the subcategory of all M ∈ mod(A)
such that M is isomorphic to a module of the form I ⊕ Ω−d(N) for some
I ∈ inj(A) and N ∈ mod(A).

Proposition 6.9. For all n ≥ 0 we have

gp(A) ⊆ Ωn(mod(A)).

Theorem 6.10. For n ≥ 0 the following are equivalent:

(i) A is n-Iwanaga-Gorenstein.

(ii) gp(A) = Ωn(mod(A)).

Thus, for a 1-Iwanaga-Gorenstein algebra A we have

gp(A) = cogen(AA).

In other words, M ∈ mod(A) is Gorenstein projective if and only if M is isomorphic
to a submodule of a finite-dimensional projective module.

Example: Let A = KQ/I where Q is the quiver

1 // 2 a
ff

and I is generated by a2. Then A is 1-Iwanaga-Gorenstein and

gp(A) = add

1
2
2
⊕ 2

2
⊕ 2

 .

Let Db(mod(A)) be the derived category of bounded complexes of finite-dimen-
sional A-modules, and let Kb(proj(A)) be the homotopy category of bounded com-
plexes of finite-dimensional projective A-modules.
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Considering Kb(proj(A)) and Kb(inj(A)) as subcategories of Db(mod(A)), Happel
[H91] showed that for A Iwanaga-Gorenstein, we have

Kb(proj(A)) = Kb(inj(A)).

The Verdier quotient

Sing(A) := Db(mod(A))/Kb(proj(A))

is the singularity category of A.

If gl. dim(A) <∞, then Kb(proj(A)) and Db(mod(A)) are triangle equivalent and
Sing(A) = 0. This is in line with the general philosophy that finite global dimension
is associated with smooth (= non-singular) behaviour. Again philosophically speak-
ing, the singularity category Sing(A) measures how far away A (or Db(mod(A))) is
from being smooth.

Theorem 6.11 (Buchweitz [Bu]). Let A be an Iwanaga-Gorenstein algebra.
Then there is a triangle equivalence

gp(A) ' Sing(A).

There are numerous 1-Iwanaga-Gorenstein algebras appearing at the interface
between representation theory of finite-dimensional algebras and the categorification
of Fomin-Zelevinsky cluster algebras. We refer to [BIRS09, KR07, KR08] for more
information. Other appearances of 1-Iwanaga-Gorenstein algebras can be found in
[GLS17] and [RZ17].

6.4. n-Gorenstein algebras and Auslander-Gorenstein algebras. Let A be a
finite-dimensional K-algebra, and let

0→ AA→ I0 → I1 → I2 → · · ·
be a minimal injective resolution of the regular representation AA.

The dominant dimension of A is defined as

dom. dim(A) :=

{
d if Ii ∈ proj(A) for all 0 ≤ i ≤ d− 1 and Id /∈ proj(A),

∞ if Ii ∈ proj(A) for all i ≥ 0.

For n ≥ 1, A is an n-Gorenstein algebra (resp. quasi n-Gorenstein
algebra) if

proj. dim(Ii) ≤ i (resp. proj. dim(Ii) ≤ i+ 1)

for all 0 ≤ i ≤ n− 1.

If dom. dim(A) ≥ n, then A is n-Gorenstein. For n = 1, the converse is also true.
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A is an ∞-Gorenstein algebra (resp. quasi ∞-Gorenstein algebra) if A
is n-Gorenstein (resp. quasi n-Gorenstein) for all n ≥ 1.

Proposition 6.12. A is n-Gorenstein if and only if Aop is n-Gorenstein.

The Nakayama Conjecture is a special case of the following conjecture.

Conjecture 6.13. If A is an n-Gorenstein algebra for all n ≥ 1, then A is
an Iwanaga-Gorenstein algebra.

Here is a more general conjecture:

Conjecture 6.14. Suppose that

proj. dim(Ii) <∞
for all i ≥ 0. Then A is an Iwanaga-Gorenstein algebra.

For d ≥ 0, the subcategories Ωd(mod(A)) and Ω−d(mod(A)) are closed under
finite direct sums, but in general they are not closed under direct summands.

Therefore, let X d := add(Ωd(mod(A))) and X−d := add(Ω−d(mod(A))).

Proposition 6.15 (Auslander,Reiten [AR94]). Let A be an n-Gorenstein al-
gebra. Then for 0 ≤ d ≤ n the following hold:

(i) X d is functorially finite.

(ii) X d is closed under extensions.

(iii) X d = Ωd(mod(A)).

Theorem 6.16 ([AR94]). The following are equivalent:

(i) X d is closed under extensions for all 0 ≤ d ≤ n.

(ii) A is quasi n-Gorenstein.

In the situation of the theorem, X d has Auslander-Reiten sequences.
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A is an Auslander-Gorenstein algebra (resp. quasi Auslander-
Gorenstein algebra) if the following hold:

(i) A is n-Gorenstein (resp. quasi n-Gorenstein) for all n ≥ 0.

(ii) inj. dim(AA) <∞.

Example: Let A = KQ/I where Q is the quiver

1

�� �� ��

2

��

3

��

4

��

5

and I is generated by the set of all commutativity relations p − q where p and q
run through all paths of length 2 in Q. (Thus A is an incidence algebra.) We have
P (1) = I(5) and

dim(P (1)) =
1

1 1 1
1

.

One easily checks thatA is quasi Auslander-Gorenstein but not Auslander-Gorenstein.

Theorem 6.17 ([AR94, Corollary 5.5]). Auslander-Gorenstein algebras are
Iwanaga-Gorenstein.

A is an Auslander regular algebra if the following hold:

(i) A is n-Gorenstein for all n ≥ 0.

(ii) gl. dim(A) <∞.

The following class of algebras is introduced and studied in [IS18].

For n ≥ 0, A is n-minimal Auslander-Gorenstein if

dom. dim(A) ≥ n+ 1 ≥ inj. dim(AA).

Each n-Auslander algebra is n-minimal Auslander-Gorenstein and also Auslander
regular.
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7. Biserial algebras

§7 Biserial algebras:

tame
§2.1

biserial
§7.2

derived
tame
§2.1.5

clannish
§7.5

special biserial
§7.3

Nakayama
§7.1

skewed-gentle
§7.5.2

string
§7.3

Brauer
graph
§5.4

gentle
§7.4

basic
Nakayama
§7.1

Back to Overview Metaclasses 1.

7.1. Nakayama algebras. Let A be a finite-dimensional K-algebra.

M ∈ mod(A) is uniserial if it has a unique composition series.

In other word, there is a chain

0 = M0 ⊂M1 ⊂ · · · ⊂Mt = M

of submodules of M such that Mi/Mi−1 is simple for all 1 ≤ i ≤ t and M has exactly
t+ 1 submodules, namely M0, . . . ,Mt.

A finite-dimensional K-algebra A is a Nakayama algebra if each indecom-
posable projective left or right A-module is uniserial.

Thus A is a Nakayama algebra if and only if all indecomposable projective and
all indecomposable injective (left) A-modules are uniserial.

Theorem 7.1 (Nakayama [N41]). Let A be a Nakayama algebra. Then A is
representation-finite, and each indecomposable A-module is uniserial. Up to
isomorphism, the indecomposable A-modules are the non-zero factor modules
of the indecomposable projective A-modules.
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Nakayama algebras were the first class of well studied representation-finite alge-
bras. There is still some ongoing research on their homological behaviour.

Proposition 7.2. Let A = KQ/I be a basic algebra. Then A is a Nakayama
algebra if and only if Q is of the form

1 // 2 // · · · // n or 1 // 2 // · · · // ncc

for some n ≥ 1.

Examples:

(i) Let A = KQ/I where Q is the quiver

1
a
// 2

b
��

4

d

OO

3c
oo

and I is generated by {dcba, adc}. We get

P (1) =

1
2
3
4

P (2) = I(1) =

2
3
4
1

P (3) =
3
4
1

P (4) = I(4) =

4
1
2
3
4

I(2) =
4
1
2

I(3) =

4
1
2
3

Clearly, A is a Nakayama algebra. We have dom. dim(A) = 1, fin. dim(A) = 2
and gl. dim(A) =∞.

(ii) Let A = KQ where Q is the quiver

1 // 2 3oo

Then all indecomposable projective left A-modules are uniserial, but the
indecomposable projective right A-module e2A is not. Thus A is not a
Nakayama algebra.

Literature – Nakayama algebras
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higher Nakayama algebras.)
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7.2. Biserial algebras.

A finite-dimensional K-algebra A is a biserial algebra if for each indecom-
posable projective left or right A-module P there exist uniserial submodules
U1 and U2 of P such that

U1 + U2 = rad(P ) and length(U1 ∩ U2) ≤ 1.

Biserial algebras were first studied by Fuller [F79].

Examples:

(i) Nakayama algebras are biserial.

(ii) Let A = KQ/I where Q is the quiver

1
a
// 2

c
��

b
// 4

e
// 5

3
d

@@

and I is generated by {eb, (b − dc)a}. Then A is basic biserial, but not
special biserial. (The definition of special biserial algebras is further below.)
The indecomposable projective A-modules are

P (1) = 1

��

2

��

��

3

��

4

P (2) = 2

����

3

��

4

4

��

5

P (3) = 3

��

4

��

5

P (4) = 4

��

5

P (5) = 5
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and the indecomposable injective A-modules (which are the duals of the
indecomposable projective right A-modules) are

I(1) = 1 I(2) = 1

��

2

I(3) = 1

��

2

��

3

I(4) = 1

����

2

��

2

��

3

��

4

I(5) = 2

��

3

��

4

��

5

As usual, the numbers i in these drawings stand for basis vectors (each
corresponding to a composition factor S(i)) and the arrows show how the
arrows of the algebra act on these basis vectors. Note that for I(4) we have
a1 = 2 + 2. So (against the intuition of the picture) we have top(I(4)) ∼=
S(1)⊕ S(2). This example is taken from [SW83].

(iii) For λ ∈ K let Aλ = KQ/Iλ where Q is the quiver

1
b

��

2
a1

//

a2
// 3

c
^^

and Iλ is generated by {ca1, (a1−λa2)b} together with all paths of length 5.
Then Aλ is basic biserial for all λ ∈ K. The choice of λ has a lot of influence
on the representation theory of Aλ. Namely, Aλ is tame domestic if and only
if λ 6= 0, whereas A0 is tame of exponential growth. This example is taken
from [K09].

We repeat now Vila-Freyer and Crawley-Boevey’s [VFCB98] characterization of
biserial algebras in terms of quivers with relations.

A bisection of Q is a pair (σ, τ) of maps Q1 → {±1} such that the following
hold:

(i) For a, b ∈ Q1 with a 6= b and s(a) = s(b) we have σ(a) 6= σ(b).

(ii) For a, b ∈ Q1 with a 6= b and t(a) = t(b) we have τ(a) 6= τ(b).

A quiver Q = (Q0, Q1, s, t) is biserial if for each vertex i ∈ Q0 we have

|{a ∈ Q1 | s(a) = i}| ≤ 2 and |{a ∈ Q1 | t(a) = i}| ≤ 2.
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The quiver Q has a bisection if and only if Q is biserial.

Assume now that (σ, τ) is a bisection of Q.

A path p = a1 · · · at of length t ≥ 2 in Q is (σ, τ)-good if σ(ai) = τ(ai+1) for
1 ≤ i ≤ t− 1. Otherwise, p is (σ, τ)-bad.

For each (σ, τ)-bad path ax of length 2 (with a, x ∈ Q1) we choose an element
dax ∈ KQ such that the following hold:

(i) dax = 0 or dax = λxb1 · · · bt with b1 · · · btx a (σ, τ)-good path of length t+1 ≥ 2
such that t(b1) = t(a), b1 6= a and λx ∈ K∗.

• x
// • a

//

b1···bt−1 ��

•

•
b1

??

(ii) If dax = λxb and dby = λya (with a, x, b, y ∈ Q1) and λx, λy ∈ K∗, then
λxλy 6= 1.

•
x
//

y
// •

a
//

b
// •

Then
{ax− daxx | ax is a (σ, τ)-bad path}

is a set of (σ, τ)-relations.

Theorem 7.3 (Vila-Freyer [VFCB98]). Let K be algebraically closed. Each
basic biserial K-algebra is isomorphic to KQ/I where Q is a biserial quiver
and I is an admissible ideal containing a set of (σ, τ)-relations.

Warning: The ideal generated by a set of (σ, τ)-relations might be non-admissible.
Usually one needs to add further relations to ensure that it contains the ideal KQ≥m
for some m ≥ 2. (Here KQ≥m is the subspace of KQ which is spanned by all paths
p in Q with length(p) ≥ m.)

Külshammer [K11] gave a module theoretic characterization of biserial algebras.

The following result is proved via deformations of algebras. (Geiß [G95] proved
that deformations of tame algebras are tame.)

Theorem 7.4 (Crawley-Boevey [CB95]). Let K be algebraically closed. Bis-
erial K-algebras are tame.
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Theorem 7.5 (Janusz [J69], Kupisch [K68]). Let K be algebraically closed.
Representation-finite group algebras KG are biserial, up to Morita equivalence.

For most biserial algebras, the finite-dimensional indecomposable modules have
been classified by Vila-Freyer in his PhD thesis [VF94]. Up to my knowledge, these
results are not published elsewhere and the thesis is not easily accessible.

Most research on biserial algebras focusses on the subclasses of special biserial
algebras, string algebras and gentle algebras.

Literature – biserial algebras

[CB95] W. Crawley-Boevey, Tameness of biserial algebras, Arch. Math. (Basel) 65 (1995), no. 5,
399–407.

[VFCB98] R. Vila-Freyer, W. Crawley-Boevey, The structure of biserial algebras. J. London Math.
Soc. (2) 57 (1998), no. 1, 41–54.

[F79] K. Fuller, Biserial rings. Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978), pp.
64–90, Lecture Notes in Math., 734, Springer, Berlin, 1979.

[G95] C. Geiß, On degenerations of tame and wild algebras. Arch. Math. (Basel) 64 (1995), no. 1,
11–16.

[J69] G. Janusz, Indecomposable modules for finite groups. Ann. of Math. (2) 89 (1969), 209–241.
[K09] J. Külshammer, Biserielle Algebren. Diplomarbeit, Universität Bonn (2009).
[K11] J. Külshammer, Biserial algebras via subalgebras and the path algebra of D4. J. Algebra 331

(2011), 58–67.
[K68] H. Kupisch, Projektive Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe. (German)

J. Algebra 10 (1968), 1–7.
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7.3. Special biserial and string algebras.

7.3.1. Special biserial algebras.
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A basic algebra A = KQ/I is special biserial provided the following hold:

(i) Q is biserial.

(ii) Let a1, a2, b ∈ Q1 with a1 6= a2 and s(a1) = s(a2) = t(b), then
|{a1b, a2b} ∩ I| ≥ 1.

•
b ��

•
��

•
a1

��

a2

��

• •
(iii) Let a1, a2, b ∈ Q1 with a1 6= a2 and t(a1) = t(a2) = s(b), then
|{ba1, ba2} ∩ I| ≥ 1.

•
a1 ��

•
a2��

•
b

�� ��

• •

Each special biserial algebra is a biserial algebra.

The converse is usually wrong.

There is a combinatorial description of all finite-dimensional indecomposable
modules over special biserial algebras, see [BR87, WW85]. (They are either
string modules or band modules or non-uniserial projective-injective mod-
ules.) The Auslander-Reiten quivers of special biserial algebras can also be
constructed combinatorially, see [BR87].

To be expanded...

Special biserial algebras appear in numerous different contexts. They also serve
as a commonly used test class for conjectures.

Examples of special biserial algebras:

(i) Let A = KQ/I where Q is the quiver

1
a
//

c
// 2

b
//

d
// 3
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and I is generated by {ba−dc, da, bc}. The indecomposable projectives are

P (1) = 1
c

��

a

��

2

b ��

2

d��
3

P (2) = 2
b

��

d

��

3 3

P (3) = 3

(ii) Let n ≥ 1, and let A = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {a2, b2, (ab)n − (ba)n}.
(iii) For q ∈ K∗ let Aq = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {a2, b2, ab− qba}. For q, q′ ∈ K∗ we have Aq ∼= Aq′ if
and only if q′ ∈ {q, q−1}.

Theorem 7.6 (Skowroński, Waschbüsch [SW83]). Let K be algebraically
closed. Representation-finite biserial K-algebras are special biserial, up to
Morita equivalence.

Theorem 7.7 (Wald, Waschbüsch [WW85, Theorem 1.4]). Let K be alge-
braically closed. Each special biserial K-algebra is isomorphic to a factor al-
gebra of some symmetric special biserial algebra.

7.3.2. String algebras.

A basic algebra A = KQ/I is a string algebra if the following hold:

(i) Q is biserial.

(ii) Let a1, a2, b ∈ Q1 with a1 6= a2 and s(a1) = s(a2) = t(b), then
|{a1b, a2b} ∩ I| ≥ 1.

(iii) Let a1, a2, b ∈ Q1 with a1 6= a2 and t(a1) = t(a2) = s(b), then
|{ba1, ba2} ∩ I| ≥ 1.

(iv) I is generated by a set of paths in Q.

Obviously, each string algebra is a special biserial algebra.

The converse is usually wrong.

Examples of string algebras:

(i) Basic Nakayama algebras KQ/I.
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(ii) For n ≥ 2 let A = KQ/I where Q is the quiver

1
a
// 2 bff

and I is generated by {ba, bn}.
(iii) Let n ≥ 2, and let A = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {an, bn, ab, ba}.

For a string algebra A and X, Y ∈ ind(A), there is a combinatorial construction
of a basis of HomA(X, Y ), see [CB89] and [Kr91].

To be expanded...

7.3.3. From special biserial to string algebras. A special biserial algebra A is a string
algebra if and only if there is no indecomposable non-uniserial projective-injective
A-module.

Let A = KQ/I be special biserial, and let AA = P (1) ⊕ · · · ⊕ P (n) with P (i)
indecomposable projective for 1 ≤ i ≤ n. Let

J :=
⊕
i

soc(P (i))

where i runs over all indices such that P (i) is non-uniserial projective-injective. Then
J is a two-sided ideal in A, and A/J is a string algebra. We get an obvious embedding
mod(A/J) → mod(A). The only indecomposable finite-dimensional A-modules,
which are not A/J-modules, are the indecomposable non-uniserial projective-injec-
tives. However, the homological behaviour of A and A/J might change dramatically.

In terms of quivers with relations it is quite easy to describe J . Namely, J is
generated by the union of all sets {p, q} where p and q are paths of length at least
two in Q such that s(p) = s(q), t(p) = t(q) and p− λq ∈ I for some λ ∈ K∗.
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7.4. Gentle algebras.

A basic algebra A = KQ/I is a gentle algebra if the following hold:

(i) Q is biserial.

(ii) Let a1, a2, b ∈ Q1 with a1 6= a2 and s(a1) = s(a2) = t(b), then
|{a1b, a2b} ∩ I| = 1.

(iii) Let a1, a2, b ∈ Q1 with a1 6= a2 and t(a1) = t(a2) = s(b), then
|{ba1, ba2} ∩ I| = 1.

(iv) I is generated by a set of paths of length 2 in Q.

Obviously, each gentle algebra is a string algebra.

The converse is usually wrong.

Gentle algebras and string algebras are important classes of monomial algebras.

They generalize the path algebras of quivers of type An and Ãn. They also appear
in surprisingly many different contexts, and they also serve as a test class for new
ideas and conjectures.

Examples of gentle algebra:

(i) Let A = KQ/I where Q is the quiver

1
a
//

c
// 2

b
//

d
// 3

and I is generated by {da, bc}. The indecomposable projectives are

P (1) = 1
c

��

a

��

2
b ��

2
d��

3 3

P (2) = 2
b

��

d

��

3 3

P (3) = 3
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(ii) Let A = KQ/I where Q is the quiver

1 a
ff

and I is generated by a2. Besides A = K this is the only local gentle algebra.

In part (iii) of the following theorem, one extends the definition of a special biserial
algebra to infinite quivers in the obvious way.

Theorem 7.8 ([R97, Sch99a]). The following are equivalent:

(i) A is a gentle algebra.

(ii) The trivial extension algebra T (A) is special biserial.

(iii) The repetitive algebra Â is a special biserial algebra.

Theorem 7.9 ([Sch99b]). Let A be a gentle algebra, and let M ∈ mod(A)
with Ext1

A(M,M) = 0. Then EndA(M) is a gentle algebra.

Recall that two finite-dimensional K-algebras A and B are derived equiva-
lent if there is a triangle equivalence

Db(mod(A))→ Db(mod(B)).

Theorem 7.10 ([SchZ03]). Let A and B be finite-dimensional basic K-
algebras which are derived equivalent. If A is a gentle algebra, then B is a
gentle algebra

To each gentle algebra A one can associate a triangulated marked surface. For
X, Y ∈ ind(A) there are curves γX and γY on this surface such that (roughly speak-
ing) dim HomA(X, Y ) and dim Ext1

A(X, Y ) can be computed by counting intersec-
tions of these curves.

Using this approach, there is a recent concerted effort to get a derived equivalence
classification of gentle algebras. Despite a lot of progress it still seems to be difficult
to decide if two given gentle algebras are derived equivalent or not.

To be continued...

Literature – gentle algebras

[APS19] C. Amiot, P.-G. Plamondon, S. Schroll, A complete derived invariant for gentle algebras
via winding numbers and Arf invariants. arXiv:1904.02555
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Back to Overview Biserial 7.

7.5. Clannish and skewed-gentle algebras.

7.5.1. Clannish algebras. Let Q = (Q0, Q1, s, t) be a quiver. A loop in Q is an arrow
a ∈ Q1 with s(a) = t(a).
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We fix a subset Qsp
1 ⊆ {a ∈ Q1 | s(a) = t(a)} of special loops of Q. Let

Qord
1 := Q1 \Qsp

1 be the set of ordinary arrows of Q.

Let S be the ideal in KQ generated by the elements {a2 − a | a ∈ Qsp
1 }.

Let I be an ideal in KQ. Then KQ/I is a clannish algebra if the following
hold:

(C1) Q is biserial.

(C2) For arrows a1, a2 ∈ Q1 and b ∈ Qord
1 with a1 6= a2 and s(a1) = s(a2) =

t(b) we have |{a1b, a2b} ∩ I| ≥ 1.

(C3) For arrows a1, a2 ∈ Q1 and b ∈ Qord
1 with a1 6= a2 and t(a1) = t(a2) =

s(b) we have |{ba1, ba2} ∩ I| ≥ 1.

(C4) There is an ideal J ⊆ KQ≥2 such that I = J + S.

(C5) There exists some m ≥ 2 such that each path a1a2 . . . am of length m
in Q which does not contain a subpath aiai+1 = aa with a ∈ Qsp

1 for
some 1 ≤ i ≤ m− 1 is contained in I.

Note that the ideal I appearing in the above definition is not an admissible ideal
in case Qsp

1 is non-empty. In any case, there exists a quiver Q′ and an admissible
ideal I ′ in the path algebra KQ′ such that KQ/I ∼= KQ′/I ′.

A finite-dimensional K-algebra which is Morita equivalent to a clannish algebra
is also called a clannish algebra.

The definition of a clannish algebra is due to Crawley-Boevey [CB89]. Crawley-
Boevey’s definition varies slightly from ours. He assumes additionally that the ideal
J is generated by zero-relations. On the other hand, we assume additionally con-
dition (C5) implying that clannish algebras are finite-dimensional. We also refer to
the closely related definition of a quasi-clannish algebra due to de la Peña and Geiß
[DG99].

There is a combinatorial description of all finite-dimensional indecomposable
modules over clannish algebras, see [CB89, D00]. The Auslander-Reiten quiver
of clannish algebras can also be constructed combinatorially, see [DG99].

If one considers special biserial algebras as natural generalizations of path algebras

of quivers of type An and Ãn, then clannish algebras are in the same sense natural

generalizations of path algebras of quivers of type Dn and D̃n.

Proposition 7.11 ([CB89, D00]). Let K be algebraically closed. Then clan-
nish K-algebras are tame algebras.

7.5.2. Skewed-gentle algebras.
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A clannish algebra KQ/I is a skewed-gentle algebra provided in addition
to (C1),. . .,(C5) also the following hold:

(C6) For arrows a1, a2 ∈ Q1 and b ∈ Qord
1 with a1 6= a2 and s(a1) = s(a2) =

t(b) we have a1b /∈ I or a2b /∈ I.
(C7) For arrows a1, a2 ∈ Q1 and b ∈ Qord

1 with a1 6= a2 and t(a1) = t(a2) =
s(b) and we have ba1 /∈ I or ba2 /∈ I.

(C8) The ideal J appearing in (C4) is generated by a set of paths of length
two.

A finite-dimensional K-algebra which is Morita equivalent to a skewed-gentle
algebra is also called a skewed-gentle algebra.

The definition of a clannish algebra can be extended to infinite quivers in the
obvious way.

Proposition 7.12 ([DG99]). If A is a skewed-gentle algebra, then the repeti-

tive algebra Â is a clannish algebra,

Example: Let Q be the quiver

1ε1 88 2oo 3oo ε3ff

with Qsp
1 := {ε1, ε3}, and let I be the ideal in KQ generated by ε2

i − εi with i = 1, 3.
Let Q′ be the quiver

1′

��

3′

��

1 2oo 3oo

1′′

??

3′′

__

Then KQ/I and KQ′ are isomorphic skewed-gentle algebras.
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8. Multiplicative basis algebras

§8 Multiplicative basis algebras:
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Back to Overview Metaclasses 1.

8.1. Multiplicative basis algebras. Let A be a finite-dimensional K-algebra.

A K-basis B of A is a multiplicative basis if the following holds:

(M1) bb′ ∈ B ∪ {0} for all b, b′ ∈ B.

Examples of algebras with a multiplicative basis are matrix algebras Mn(K),
group algebras KG of finite groups G, path algebras KQ of acyclic quivers Q,
monomial algebras KQ/I and incidence algebras I(P ) of finite posets P .

Example: For q ∈ K let Aq = KQ/Iq where Q is the quiver

1a
88 bff

and Iq is generated by {a2, b2, ab− qba}. If q(q − 1)(q2 − q + 1) 6= 0, then Aq does
not have a multiplicative basis. This example is taken from [BGRS85].

A K-basis B of A is a filtered multiplicative basis if the following hold:

(M1) bb′ ∈ B ∪ {0} for all b, b′ ∈ B.

(M2) B ∩ J(A) is a K-basis of J(A).
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Here J(A) denotes the Jacobson radical of A.

There are examples of a finite groups G such that KG does not have a filtered
multiplicative basis, see [P87]. For some positive examples, we refer to [B00].

A K-basis B of A is a multiplicative Cartan basis if the following hold:

(M1) bb′ ∈ B ∪ {0} for all b, b′ ∈ B.

(M2) B ∩ J(A) is a K-basis of J(A).

(M3) B contains a complete set of primitive pairwise orthogonal idempotents
e1, . . . , en.

If A = KQ/I is a basic algebra, and B is a multiplicative Cartan basis of A as in
the definition above, then B is the disjoint union of B ∩ J(A) and {e1, . . . , en}.

I’m guessing that the existence of a filtered multiplicative basis implies the exis-
tence of a multiplicative Cartan basis. But I didn’t check it.

Almost by definition, a multiplicative Cartan basis of A provides a basis of each
indecomposable projective and each indecomposable injective A-module.

Let A = KQ/I be a basic algebra. A path p of length at least 2 with a ∈ I is
a zero relation. For two paths p 6= q of length at least 2 with s(p) = s(q) and
t(p) = t(q) and p− q ∈ I, the element p− q is a commutativity relation.

The next result is similar to [G00, Theorem 2.3] and is proved in a similar way.

Proposition 8.1. For a basic algebra A = KQ/I the following are equivalent.

(i) A ∼= KQ/I ′ where I ′ is an admissible ideal which is generated by zero
relations and commutativity relations.

(ii) A has a multiplicative Cartan basis.

The following result is a milestone. The proof is quite involved.

Theorem 8.2 ([BGRS85]). Let K be algebraically closed. If A is
representation-finite, then A has a multiplicative Cartan basis.

Corollary 8.3. Let K be algebraically closed. For each d ≥ 1 there exist
only finitely many d-dimensional representation-finite K-algebras, up to iso-
morphism.

Problem 8.4 ([R02, Problem 1]). Determine all minimal algebras without a
multiplicative Cartan basis.
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One can modify the three definition above by replacing condition (M1) by the
condition

bb′ ∈ {λc | λ ∈ K, c ∈ B}

for all b, b′ ∈ B.

Green [G00] defined and studied ordered multiplicative bases. We won’t
repeat his definition here.
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8.2. Monomial algebras.

A basic algebra A = KQ/I is a monomial algebra if I can be generated by
a set of paths in Q.

Here are some classes of monomial algebras:

• finite-dimensional path algebras;

• basic Nakayama algebras;

• string algebras;

• tree algebras.

Proposition 8.5. Let A = KQ/I be a monomial algebra. Then

{p+ I | p is a path in Q with p /∈ I}

is a K-basis of A.
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This multiplicative basis (see Section 8.1) implies that the construction of in-
decomposable projective and indecomposable injective modules over a monomial
algebra becomes purely combinatorial. We illustrate this with an example.

Example: Let Q be the quiver

1

c

CC
2

a
oo

b
oo 3

d
oo e

ff

and let A = KQ/I with I generated by

{ac, bc, ad, cbd, de2, e3}.
The indecomposable projectives P (1), P (2), P (3) are

1

��

2

�� ��

3

�� ��

2 1

��

1

��

2

��

3

����

2 2 1 2

��

3

1

and the indecomposable injectives I(1), I(2), I(3) are

3

��

3

��

2

��

2

��

3

��

3

��

2

��

2

��

1

&&

3

��

3

��

1 2 3

It is an open problem to find a characterization of the class of monomial alge-
bras which is independent of generators and relations. We refer to [BG99] for an
attempt in this direction. Maybe such a characterization does not exist, and maybe
monomial algebras are not a meaningful class of algebras, except that they are easy
to handle (concerning certain aspects, like the construction of projectives and pro-
jective resolutions, etc). Monomial algebras are also a commonly used test class for
conjectures and new phenomena. Various important results on monomial algebras
can be found in [ZH91].
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8.3. Incidence algebras. Let P be a finite poset. The main reference for this
section is Simson’s beautiful book [Si92].

8.3.1. Representations of P . For i, j ∈ P we call

[i, j] := {k ∈ P | i ≤ k ≤ j}

an interval in P .

A representation of the poset P is a tuple V = (V∗, Vi)i∈P of K-vector spaces
such that the following hold:

(i) Vi ⊆ V∗ for all i ∈ P .

(ii) For each non-empty interval [i, j] in P we have Vi ⊆ Vj.

Such a representation V is also called a P -space.

For representations V = (V∗, Vi) and W = (W∗,Wi) of P a morphism V → W
is a K-linear map f : V∗ → W∗ such that

f(Vi) ⊆ Wi

for all i ∈ P .

In this case, for i ∈ P let fi : Vi → Wi be the restriction of f . The morphism
f : V → W is an isomorphism provided f and all fi are isomorphisms of K-vector
spaces.

A representation (V∗, Vi) is finite-dimensional if dim(V∗) <∞.

Let rep(P ) be the category of finite-dimensional representations of P .

One can define direct sums of representations of P in the obvious way. This leads
to the notion of an indecomposable representation of P .

Proposition 8.6. rep(P ) is a K-linear Krull-Remak-Schmidt category.

The poset P is representation-finite if there are only finitely many inde-
composable representations in rep(P ), up to isomorphism.

Let P ∗ be the poset obtained from P by adding a new element ∗ to P such
that i < ∗ for all i ∈ P .
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The Tits form of P is defined by

qP : ZP ∗ → Z

x 7→
∑
i∈P ∗

x2
i +

∑
i>j
i,j∈P

xixj −
∑
i∈P

xix∗.

This is a quadratic form.

A quadratic form q : Zn → Z is weakly positive (resp. weakly non-
negative) if q(x) > 0 (resp. q(x) ≥ 0) for all x ∈ Nn.

For n ≥ 1 let (n) be the poset 1 < 2 < · · · < n. By (n1, . . . , nt) we denote the
disjoint union of posets (ni). Let N be the poset 1 < 3 > 2 < 4, and let (N, n) be
the disjoint union of N and (n).

A subposet of a poset P is a subset U of P together with the induced partial
order on U .

Theorem 8.7 (Kleiner [K72]). For a poset P the following are equivalent:

(i) P is representation-finite.

(ii) qP is weakly positive.

(iii) P does not contain any subposet isomorphic to of one of the posets
(1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), (N, 4).

For V = (V∗, Vi) ∈ rep(P ) the coordinate vector

cdn(V ) := (c∗, ci)i∈P ∈ ZP ∗

of V is defined by c∗ := dim(V∗) and

ci := dim

(
Vi/
∑
k<i

Vk

)
for i ∈ P .

Theorem 8.8 (Drozd [D74]). If P is representation-finite, then there is a
bijection

{V ∈ rep(P ) | V is indecomposable}/∼= −→ {x ∈ ZP ∗ | qP (x) = 1}
V 7→ cdn(V ).
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8.3.2. Incidence algebras. For a, b ∈ P we call

[a, b] := {x ∈ P | a ≤ x ≤ b}

an interval in P .

The incidence algebra I(P ) of the finite poset P has a K-basis given by the
set of non-empty intervals in P . The multiplication is defined by

[c, d] · [a, b] :=

{
[a, d] if b = c,

0 otherwise.

Warning: In the literature, the incidence algebra is often defined as I(P )op, i.e. by

[a, b] · [c, d] :=

{
[a, d] if b = c,

0 otherwise.

There are the usual issues at work (left versus right modules and how to compose
arrows in path algebras).

Let Q be the quiver with vertex set P and an arrow a→ b for each interval [a, b]
in P with |[a, b]| = 2. Let I be the ideal in KQ generated by all commutativity
relations p − q where p and q are paths in Q with s(p) = s(q) and t(p) = t(q). It
follows that I is an admissible ideal.

We have
I(P ) ∼= KQ/I.

One often just identifies I(P ) and KQ/I.

Example: Let P be the poset described by the following Hasse diagram (for x < y,
x is drawn below y):

•

• • •

•

• •
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Then I(P ) = KQ/I where Q is the quiver

•??
a1

OO

a2

__
a3

• __

b1

•
OO

b2

•??

b3

•??
c1

__
c2

• •
and I is generated by

{aibi − ajbj, aibick − ajbjck | 1 ≤ i, j ≤ 3, k = 1, 2}.
Note that most of these relations are redundant, e.g. the relations involving ck follow
already from the other relations.

Let P ∗ be the poset obtained from P by adding an element ∗ with i < ∗ for
all i ∈ P .

Let I(P ∗) = KQ/I, and let e∗ ∈ I(P ∗) be the idempotent associated to the vertex
∗ of Q.

There is an obvious surjective algebra homomorphism

I(P ∗)→ I(P )

with kernel I(P ∗)e∗I(P ∗) = e∗I(P ∗). This yields a functor

mod(I(P ))→ mod(I(P ∗))

which we treat as an inclusion.

There is also a functor

mod(I(P ∗))→ mod(I(P ))

which send X to X/e∗X.

There is an obvious functor

rep(P )→ mod(I(P ∗))

which we also treat like an inclusion.

Example: Let P be the poset with Hasse diagram

• •

•

• •
Then P is representation-finite, but I(P ) and I(P ∗) are representation-infinite.
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Let
modsp(I(P ∗)) := {X ∈ mod(I(P ∗)) | soc(X) is projective}.

The modules in modsp(I(P ∗)) are called socle projective.

Note that P (∗) is the only simple projective I(P ∗)-module, up to isomorphism.
One easily checks that rep(P ) and modsp(I(P ∗)) are equivalent categories. In con-
trast to modsp(I(P ∗)), the subcategory rep(P ) of mod(I(P ∗)) is not closed under
isomorphisms.

Proposition 8.9. Let I(P ∗) = KQ/I. Then

modsp(I(P ∗)) = {V ∈ mod(I(P ∗)) | Vout(i) is injective for all i ∈ P}
= {V ∈ mod(I(P ∗)) | Va is injective for all a ∈ Q1}.

Here we interpret I(P ∗)-modules as representations V = (Vi, Va) of the quiver Q.
For i ∈ P we have

Vout(i) :=

Va1...
Vat

 : Vi →
t⊕

k=1

Vt(ak)

where a1, . . . , at are the arrows starting in i. The first equality in the proposition
follows almost directly from the definition of modsp(I(P ∗)). The second equality
uses the commutativity relations in the definition of I(P ∗).

Proposition 8.10. The subcategory modsp(I(P ∗)) of mod(I(P ∗)) is additive,
closed under extensions and closed under kernels.

Let
prinj(I(P ∗)) := {X ∈ mod(I(P ∗)) | X/e∗X ∈ proj(I(P ))}

be the category of prinjective I(P ∗)-modules.

It follows that X ∈ mod(I(P ∗)) is prinjective if and only if its minimal projective
resolution is of the form

0→ P (∗)m → P → X → 0

for some m ≥ 0.
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All arrows in the following diagram can be interpreted as inclusions:

rep(P )

vv

mod(I(P ∗)) proj(I(P ∗))

vv

hh

mod(I(P ))

77

prinj(I(P ∗))

hh

proj(I(P ))

gg 66

For a proof of the following result we refer to [Si92].

Theorem 8.11. The following hold:

(i) The subcategory prinj(I(P ∗)) of mod(I(P ∗)) is additive, closed under
extensions and closed under kernels of epimorphisms.

(ii) prinj(I(P ∗)) is hereditary, i.e.

Ext2
I(P ∗)(X, Y ) = 0

for all X, Y ∈ prinj(I(P ∗)).

(iii) prinj(I(P ∗)) has Auslander-Reiten sequences.

Concider the bilinear form

〈−, ?〉P : ZP ∗ × ZP ∗ → Z

(x, y) 7→
∑
i∈P ∗

xiyi +
∑
i>j
i,j∈P

xiyj −
∑
i∈P

xiy∗.

Theorem 8.12. For X, Y ∈ prinj(I(P ∗)) we have

〈cdn(X), cdn(Y )〉P = dim HomI(P ∗)(X, Y )− dim Ext1
I(P ∗)(X, Y ).

Let

F : mod(I(P ∗))→ rep(P )

be the functor defined by V 7→ (V∗, Vi)i∈P where V∗ := e∗V and Vi := Im(Vp) where
p is a path in Q with s(p) = i and t(p) = ∗. (Note that the choice of p does not
matter, because of the commutativity relations.) It is clear how F should be defined
on morphisms.

For a proof of the following result we also refer to [Si92].



182 JAN SCHRÖER

Theorem 8.13. The restriction of F to prinj(I(P ∗)) yields an equivalence

prinj(I(P ∗))/ proj(I(P ))→ rep(P ).

It seems that the category rep(P ) is more important (or at least more stud-
ied) than the categories mod(I(P )) and mod(I(P ∗)). But relating rep(P ) to these
categories as described above seems to be the right approach for getting a better
understanding of rep(P ).

Example: Let P be the poset 3 > 1 < 4 > 2. Then A := I(P ∗) = KQ/I where Q
is the quiver

*

3

b
@@

4

d
^^

1
a

^^

c

@@

2

^^

and I is generated by ba− dc. Here is the Auslander-Reiten quiver ΓA (we display
modules by their dimension vectors):

1
1 1

1 0

��

0
0 1

0 1
oo

��

0
1 0

1 0
oo

��

1
1 0

0 0

##

0
0 1

0 0
oo

##

1
1 1

1 1
oo

##

1
0 0

0 0

;;

##

1
1 1

0 0
oo

;;

##

DD

1
1 2

1 1
oo

;;

##

DD

0
1 1

1 1
oo

DD

##

0
0 0

1 0
oo

1
0 1

0 0

;;

##

1
1 1

0 1
oo

;;

##

0
1 1

1 0
oo

;;

##

0
0 1

1 1
oo

;;

##

1
0 1

0 1

;;

0
1 0

0 0
oo

;;

0
0 1

1 0
oo

;;

0
0 0

0 1
oo

The modules in rep(P ) are marked in red, the modules in prinj(A) are framed,
and the modules in proj(I(P )) are double framed. The functor F : prinj(I(P ∗)) →
rep(P ) sends the double framed modules to 0, it sends the framed red modules to
themselves, and we have

F
(

1
1 2

1 1

)
=

1
1 1

1 1
.

The quadratic form qP : Z5 → Z associated with P is

qP =
5∑
i=1

x2
i + x3x1 + x4x1 + x4x2 − (x1 + x2 + x3 + x4)x5.
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(We identify ZP ∗ and Z5 in the obvious way.) Here are the coordinate vectors of the
indecomposable modules on rep(P ) and prinj(I(P ∗)):

V
1

0 0
0 0

1
1 0

0 0

1
0 1

0 0

1
1 1

0 0

1
0 1

0 1

1
1 1

1 0

1
1 1

1 1

cdn(V )
1

0 0
0 0

1
1 0

0 0

1
0 1

0 0

1
1 1

0 0

1
0 0

0 1

1
0 0

1 0

1
0 0

1 1

V
0

0 1
0 0

0
1 0

0 0

0
0 1

0 1

0
1 1

1 0

1
1 2

1 1

cdn(V )
0

0 1
0 0

0
1 0

0 0

0
0 0

0 1

0
0 0

1 0

1
0 0

1 1

8.3.3. Varieties associated with P . For a dimension vector d let mod(I(P ∗), d) be
the affine variety of I(P ∗)-modules with dimension vector d.

Define
modsp(I(P ∗), d) := mod(I(P ∗), d) ∩modsp(I(P ∗))

and
prinj(I(P ∗), d) := mod(I(P ∗), d) ∩ prinj(I(P ∗)).

By Proposition 8.9 we get that modsp(I(P ∗), d) is open in mod(I(P ∗), d). One
can also show that prinj(I(P ∗), d) is open in mod(I(P ∗), d).

For a K-vector space V and d ∈ N let Grd(V ) be the projective variety of d-
dimensional subspaces of V .

Let d = (di) ∈ ZP with di ≤ dj if i ≤ j in P . For a finite-dimensional K-vector
space V let

GrPd (V ) :=

{
(Vi)i ∈

∏
i∈P

Grdi(V ) | Vi ⊆ Vj if i ≤ j in P

}
.

This is a projective variety whose closed points correspond to the representations
(V∗, Vi) ∈ rep(P ) with V∗ = V and dim(Vi) = di for all i ∈ P .

The projective variety GrPd (V ) is studied for example in [CFI19] and [FI19],
whereas modsp(I(P ∗), d) and prinj(I(P ∗), d) are discussed in [Si92, Section 15.2].

8.3.4. Tame and wild posets. Let K[T ] be the polynomial ring in one variable T .
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Assume that K be algebraically closed. The poset P is tame (resp. prin-
jective tame) if for each d there exist finitely many I(P ∗)-K[T ]-bimodules
M1, . . . ,Mt, which are free of finite rank as right K[T ]-modules, such that
(up to isomorphism) all but finitely many indecomposable d-dimensional socle
projective (resp. prinjective) I(P ∗)-modules are isomorphic to a module of the
form

Mi ⊗K[T ] S

with S a simple K[T ]-module.

The poset P is wild (resp. prinjective wild) if there exists a functor

F := M ⊗K〈x,y〉 − : mod(K〈x, y〉)→ modsp(I(P ∗))

(resp.
F := M ⊗K〈x,y〉 − : mod(K〈x, y〉)→ prinj(I(P ∗))

) where M is an I(P ∗)-K〈x, y〉-bimodule which is free of finite rank as a right
K〈x, y〉-module such that F preserves indecomposables and reflects isomor-
phism classes.

Theorem 8.14 (Drozd). Let K be algebraically closed. The following are
equivalent:

(i) P is tame.

(ii) P is prinjective tame.

(iii) P is not wild.

(iv) P is not prinjective wild.

Theorem 8.15 (Nazarova [N75]). Let K be algebraically closed. The following
are equivalent:

(i) P is tame.

(ii) qP is weakly non-negative.

(iii) P does not contain any subposet isomorphic to of one of the posets
(1, 1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 3), (1, 3, 4), (1, 2, 6), (N, 5).

8.3.5. Tame incidence algebras.
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Let A = KQ/I be a basic algebra. Let R be a minimal set of relations which
generate I. For i, j ∈ Q0 let rij := |R ∩ ejKQei|. Then

qA : ZQ0 → Z

x 7→
∑
i∈Q0

x2
i −

∑
a∈Q1

xs(a)xt(a) +
∑
i,j∈Q0

rijxixj

is the Tits form of A.

The following characterization of tame incidence algebras relies on covering theory.

Theorem 8.16 (Leszczyński [L03]). Let K be algebraically closed. For an
incidence algebra I(P ) the following are equivalent:

(i) I(P ) is tame.

(ii) For each convex subcategory B of the universal Galois covering Ĩ(P )
of I(P ), the Tits from qB is weakly non-negative.

Literature – incidence algebras

[CFI19] C. Cavalcante Fonseca, K. Iusenko, On dimension of poset variety. Linear Algebra Appl.
568 (2019), 155–164.

[D74] Y. Drozd, Coxeter transformations and representations of partially ordered sets. (Russian)
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Back to Overview §8 Multiplicative.

8.4. Locally hereditary algebras. Let A be a finite-dimensional K-algebra. The
following definition is due to Bautista [Bau81].

A is locally hereditary if each non-zero homomorphism between indecom-
posable projective A-modules is a monomorphism.

Examples:

(i) If A is hereditary, then A is locally hereditary.

(ii) Each incidence algebra I(P ) is locally hereditary.

Proposition 8.17. Locally hereditary algebras are triangular.

Theorem 8.18 (Bautista [Bau81]). If A is representation-finite and locally
hereditary, then A is directed.

Literature – locally hereditary algebras
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Back to Overview §8 Multiplicative.
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9. Graded algebras

§9 Graded algebras:

graded
§9.1

tensor
§9.3

Yoneda
§9.5

differential
graded
§9.2

quadratic
§9.7

Koszul
dual
§9.8

Hochschild
cohomology
§9.6

Ginzburg dg
§9.2

Koszul
§9.8

enveloping
§9.4

Back to Overview Metaclasses 1.

9.1. Graded algebras. Let A be a K-algebra, and let G be a group.

9.1.1. Graded algebras.

A is G-graded if there is a K-vector space decomposition

A =
⊕
g∈G

Ag

such that
AgAh ⊆ Agh

for all g, h ∈ G.

The direct sum above is aG-grading of A. The elements in Ag are homogeneous
of degree g.

A G-grading is full if {g ∈ G | Ag 6= 0} generates the group G. Without loss of
generality, we always assume that G-gradings are full.

Note that 1A ∈ A1G .

A Z-graded algebra A is positively graded (resp. negatively graded) provided
Ai = 0 for all i < 0 (resp. i > 0).

Let A = KQ/I be a basic algebra.
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A degree function is a map deg : Q1 → G. For each path a = a1 · · · at of length
t ≥ 1 in Q define deg(a) := deg(a1) · · · deg(at). For i ∈ Q0, set deg(ei) := 1G.

Such a degree function deg induces a G-grading

KQ =
⊕
g∈G

KQg

where KQg is spanned by all paths a in Q with deg(a) = g. Assume now that
the admissible ideal I is generated by a set of homogeneous elements. We get a
G-grading

A =
⊕
g∈G

Ag

with Ag := KQg/I := {a+ I | a ∈ KQg}. We say that A is G-graded via deg.

Example: Let A = KQ/I be a monomial algebra. Let deg : Q1 → G be any degree
function. Then A is G-graded via deg. As a special case, one can take the degree
function deg : Q1 → Z defined by deg(a) := 1 for all a ∈ Q1. Then A is Z-graded
via deg.

9.1.2. Graded modules.

Assume that A is G-graded. Then X ∈ mod(A) is graded if there is a K-
vector space decomposition

X =
⊕
g∈G

Xg

such that
AgXh ⊆ Xgh

for all g, h ∈ G.

For graded A-modules X and Y an A-module homomorphism f : X → Y is
graded if

f(Xg) ⊆ Yg
for all g ∈ G.

Let gr(A) be the category of finite-dimensional graded A-modules with graded
homomorphisms as morphisms.

There is a forgetful functor

F : gr(A)→ mod(A)

which is defined in the obvious way.

One calls M ∈ mod(A) gradable if M ∼= F (X) for some X ∈ gr(A).
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For h ∈ G there is a shift functor

σ(h) : gr(A)→ gr(A)

defined by

X =
⊕
g∈G

Xg 7→ Y =
⊕
g∈G

Yg

where Yg := Xh−1g. It is defined in the obvious way on morphisms.

For h ∈ G, an A-module homomorphism f : F (X) → F (Y ) is a homomor-
phism of degree h if

f(Xg) ⊆ Ygh
for all g ∈ G.

Obviously, each A-module homomorphism f : F (X)→ F (Y ) is of the form

f =
∑
h∈G

fh

with fh a homomorphism of degree h for each h ∈ G.

The group G is torsion-free if each element g 6= 1G in G has infinite order.

For example, Z is torsion-free.

For the following statements, the generalization from Z-graded to G-graded alge-
bras is discussed in [G81].

Proposition 9.1 (Gordon, Green [GG82a, Section 3]). Let A be a G-graded
finite-dimensional K-algebra with G torsion-free. Then the following hold:

(i) X ∈ gr(A) is indecomposable if and only if F (X) ∈ mod(A) is inde-
composable.

(ii) Direct summands of gradable A-modules are gradable.

(iii) Each indecomposable projective, each indecomposable injective and each
simple A-module is gradable.

Proposition 9.2 ([GG82a, Section 4]). Let A be a G-graded finite-dimensional K-
algebra with G torsion-free. Let X, Y ∈ ind(gr(A)) with F (X) ∼= F (Y ). Then there
exists a unique h ∈ G such that X ∼= σ(h)(Y ) in gr(A).
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Theorem 9.3 (Gordon, Green [GG82b, Section 4]). Let A be a G-graded
finite-dimensional K-algebra with G torsion-free. Then the following hold:

(i) Let C be a connected component of the Auslander-Reiten quiver ΓA. If
X ∈ C is gradable, then each module in C is gradable.

(ii) If A is representation-finite, then each X ∈ mod(A) is gradable.

(iii) If A is representation-infinite, then there are indecomposable gradable
A-modules of arbitrarily large length.

The very close connecting between coverings of quiver with relations and G-graded
algebras is explained by Green [G83, Theorems 3.2 and 3.4]. The standard references
for coverings are [BG81, DS85, DS857]. The following examples gives a glimpse on
how this works.

Examples:

(i) Let A = KQ where Q is the Kronecker quiver

1 2
b

oo

a
oo

Let G = Z and set deg(e1) = deg(e1) = deg(a) = 0 and deg(b) = 1. Then A

is G-graded via deg. Consider the infinite quiver Q̃:

...

~~

1−1

2−1
b−1

||

a−1
bb

10

20
b0

||

a0
bb

11

21
b1

||

a1
bb

12

...

``
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Now any finite-dimensional representation M = (M1i ,M2i ,Mai ,Mbi) of Q̃
yields a G-graded A-module

M =
⊕
i∈Z

(M1i ⊕M2i).

There is an equivalence of categories

mod(KQ̃)→ gr(A).

(ii) Let A = KQ/I where Q is the quiver

1 2
a
oo bff

and I is generated by b2. Let G = Z and set deg(e1) = deg(e2) = deg(a) = 0

and deg(b) = 1. Then A is G-graded via deg. Let Ã = KQ̃/Ĩ where Q̃ is
the quiver

...

��

1−1 2−1

a−1
oo

b−1
��

10 20
a0
oo

b0
��

11 21
a1
oo

b1
��

12 22
a2
oo

��

...

and Ĩ is generated by {bi+1bi | i ∈ Z}. Each finite-dimensional Ã-module
yields a G-graded A-module. There is an equivalence of categories

mod(Ã)→ gr(A).

In contrast to our usual convention, KQ̃ and Ã do not have an identity element.
But the paths of length 0 provide sufficiently many idempotents to work with.

Another example can be found in Section 1.1.
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Back to Overview §9 Graded.

9.2. Differential graded algebras.

9.2.1. Differential graded algebras.

A Z-graded algebra

A :=
⊕
i∈Z

Ai

together with a cochain complex of vector spaces

· · ·Ai−1
d−→ Ai

d−→ Ai+1
d−→ · · ·

with
d(ab) = d(a)b+ (−1)iad(b)

for all i ∈ Z, a ∈ Ai and b ∈ A is called a differential graded algebra (or
dg algebra for short). We say that d is a differential for A.

Note that d(1A) = 0.

Each algebra A can be seen as a dg algebra concentrated in degree 0, i.e. A = A0

and d = 0.

Examples: Let A = KQ/I be a gentle algebra. In particular, I is generated by
a set of paths of length 2. Any degree function deg : Q1 → Z together with the
zero differential turns A into a differential graded algebra. These algebras feature
prominently in work of Lekili and Polishchuk [LP20].

Let A be a dg algebra, and let D(A) be the derived category of dg A-modules.
Let Db(A) be its subcategory of dg A-modules whose homology is of finite total
dimension, and let per(A) be the subcategory of perfect dg A-modules. This is
the smallest triangulated subcategory of D(A) which is closed under direct sum-
mands and which contains A. If A is homologically smooth, then Db(A) is a
subcategory of per(A) and one can consider the triangulated quotient category
C(A) := per(A)/Db(A). Let π : per(A)→ C(A) the canonical projection functor.
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Theorem 9.4 (Amiot [A09]). Let A be a dg algebra such that the following
hold:

(i) A is homologically smooth,

(ii) A is bimodule 3-Calabi-Yau,

(iii) H i(A) = 0 for all i > 0,

(iv) H0(A) is finite-dimensional.

Then C(A) is Hom-finite and 2-Calabi-Yau. Furthermore, π(A) ∈ C(A) is a
cluster-tilting object whose endomorphism ring is isomorphic to H0(A).

For missing definitions we refer to [A09]. In the context of Theorem 9.4, the
category C(A) is often called the Amiot cluster category. These categories feature
in the categorification of Fomin-Zelevinsky cluster algebras.

Meanwhile Theorem 9.4 has been generalized in various directions.

9.2.2. Ginzburg dg algebras. Let Q be a quiver. A potential S for Q is an element
in KQ which is a linear combination of cycles of length at least 1 in Q.

For a cycle a1 · · · am of length m ≥ 1 in Q and an arrow a ∈ Q1 define

∂a(a1 · · · am) :=
∑

1≤p≤m
ap=a

ap+1 · · · ama1 · · · ap−1.

We extend this linearly and obtain the cyclic derivative ∂a(S) of a potential S for
Q.
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Let Q̃ be the quiver which is obtained from Q as follows: For each arrow
a : i → j of Q add a new arrow a∗ : j → i. Add a new loop ti : i → i for each
vertex i of Q. Then

Γ(Q,S) := KQ̃ =
⊕
m∈Z

Γm

is a Z-graded algebra where

• deg(a) := 0 and deg(a∗) := −1 for a ∈ Q1,

• deg(ei) := 0 and deg(ti) := −2 for i ∈ Q0,

• Γm is generated by all paths of degree m.

There is a differential d

· · · d−→ Γ−1
d−→ Γ0

d−→ Γ1
d−→ · · ·

defined by

• d(a) := 0 and d(a∗) := ∂a(S) for a ∈ Q1,

• d(ei) := 0 and d(ti) := ei

(∑
a∈Q1

(aa∗ − a∗a)
)
ei for i ∈ Q0.

Then Γ(Q,S) together with d is the Ginzburg dg algebra associated with
(Q,S).

Ginzburg dg algebras were introduced in [G06]. They appear in different branches
of mathematics, e.g. they play a crucial role in the categorification of Fomin-
Zelevinsky cluster algebras and in the construction of Donaldson-Thomas invariants
for certain 3-Calabi-Yau categories.

By definition, H i(Γ(Q,S)) = 0 for all i > 0. Furthermore, we have

H0(Γ(Q,S)) ∼= KQ/(∂a(S) | a ∈ Q1).

Example: Let Q be the quiver

2

b

��

1

a

DD

3c
oo

and let S = cba. Then Q̃ is

2

b

��
a∗

��

t2

��

1
c∗

//

a

DD

t1 88 3
c

oo

b∗

ZZ

t3ff
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and we have d(ei) = d(a) = d(b) = d(c) = 0, d(a∗) = cb, d(b∗) = ac, d(c∗) = ba,
d(t1) = cc∗ − a∗a, d(t2) = aa∗ − b∗b, d(t3) = bb∗ − c∗c. We get

H0(Γ(Q,S)) ∼= KQ/(cb, ac, ba).

Theorem 9.5 (Keller [K11]). The Ginzburg dg algebra Γ(Q,S) is homologi-
cally smooth and bimodule 3-Calabi-Yau.

Thus each Ginzburg dg algebra Γ(Q,S) satisfies the assumptions (i), (ii) and (iii)
of Theorem 9.4. For many important examples, also assumption (iv) holds.

In many situations one needs the completed Ginzburg dg algebra Γ̂(Q,S)
where the potential

S ∈ K̂Q
is now a possibly infinite linear combination of cycles of length at least 1 in Q

and the underlying vector space of Γ̂(Q,S) is

K̂Q̃ =
∏
m∈Z

Γm instead of KQ̃ =
⊕
m∈Z

Γm.

One gets

H0(Γ̂(Q,S)) ∼= P(Q,S)

where
P(Q,S) := K̂Q/(∂a(S) | a ∈ Q1)

is the Jacobian algebra associated with (Q,S). For more details we refer to
[K11, KY11].
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Back to Overview §9 Graded.

9.3. Tensor algebras. Let A be a K-algebra, and let M ∈ Bimod(A). For i ≥ 1
let

M⊗i := M ⊗A · · · ⊗AM
be the tensor product of i copies of M . Furthermore, let M⊗0 := A.
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The Z-graded K-algebra

TA(M) :=
⊕
i≥0

M⊗i

is the tensor algebra of M .

The multiplication for TA(M) is defined by

(x1 ⊗ · · · ⊗ xi)(y1 ⊗ · · · ⊗ yj) := x1 ⊗ · · · ⊗ xi ⊗ y1 ⊗ · · · ⊗ yj
for i, j ≥ 1. For a ∈M⊗0 = A and x1 ⊗ · · · ⊗ xi ∈M⊗i let

a(x1 ⊗ · · · ⊗ xi) := (ax1)⊗ x2 ⊗ · · · ⊗ xi,
(x1 ⊗ · · · ⊗ xi)a := x1 ⊗ · · · ⊗ xi−1 ⊗ (xia).

Example: Let Q be a quiver. Then S := KQ0 is a finite-dimensional semisimple K-
algebra, and V := KQ1 is a finite-dimensional S-S-bimodule. We have an obvious
isomorphism

KQ ∼= TS(V ).

of Z-graded K-algebras.

Back to Overview §9 Graded.

9.4. Enveloping algebras. Let A be a finite-dimensional K-algebra.

The algebra
Ae := A⊗K Aop

is the enveloping algebra of A.

The multiplication for Ae is defined by

(a⊗ b)(a′ ⊗ b′) := (aa′)⊗ (b ? b′) = (aa′)⊗ (b′b)

where b ? b′ := b′b denotes the multiplication in Aop.

One can identify mod(Ae) with the category bimod(A) of finite-dimensional
A-A-bimodules.

The enveloping algebra Ae acts on A by

(x⊗ y)a := xay.

Proposition 9.6 ([SY11, Lemma 11.16]). For each n ≥ 0, the Ae-module
Ωn
Ae(A) is a projective left A-module and a projective right A-module.
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Proposition 9.7 ([SY11, Proposition 11.5]). A is selfinjective if and only if
Ae is selfinjective.

For basic algebras A and B, Leszczyński [L94] spelled out the construction of
A⊗K B in terms of quivers with relations.

Example: Let A = KQ/I where Q is the quiver

1 2
a
oo 3

b
oo

c
// 4

and I is generated by {ab}. Then Ae ∼= KQ′/I ′ where Q′ is the quiver

(1, 1)

(1,aop)

��

(2, 1)
(a,1)
oo

(2,aop)

��

(3, 1)

(3,aop)

��

(b,1)
oo

(c,1)
// (4, 1)

(4,aop)

��

(1, 2)

(1,bop)

��

(2, 2)
(a,2)
oo

(2,bop)

��

(3, 2)

(3,bop)

��

(b,2)
oo

(c,2)
// (4, 2)

(4,bop)

��

(1, 3) (2, 3)
(a,3)
oo (3, 3)

(b,3)
oo

(c,3)
// (4, 3)

(1, 4)

(1,cop)

OO

(2, 4)
(a,4)
oo

(2,cop)

OO

(3, 4)

(3,cop)

OO

(b,4)
oo

(c,4)
// (4, 4)

(4,cop)

OO

and I ′ is generated by (a, i)(b, i) and (i, bop)(i, aop) for 1 ≤ i ≤ 4 and also by all
commutativity relations.
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9.5. Yoneda algebras. Let A be a K-algebra.

For M ∈ mod(A) let

Ext•A(M,M) :=
⊕
n≥0

ExtnA(M,M)

be the Yoneda algebra of M .
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The multiplication for Ext•A(M,M) comes from the Yoneda product of exact se-
quences

0→M →M1 → · · · →Mn →M → 0.

Yoneda algebras are positively graded algebras.

Back to Overview §9 Graded.

9.6. Hochschild cohomology algebras. Let A be a finite-dimensional K-algebra.

The Hochschild cohomology algebra of A is

HH•(A) := Ext•Ae(A,A) :=
⊕
i≥0

ExtiAe(A,A).

Here Ae := A⊗K Aop is the enveloping algebra of A.

Hochschild cohomology algebras are positively graded algebras.

If gl. dim(A) <∞, then dimHH•(A) <∞.

We have

HH0(A) ∼= Z(A) and HH1(A) ∼= DerK(A,A)/Der0
K(A,A).

Here Z(A) is the center of A,

DerK(A,A) := {f ∈ HomK(A,A) | f(ab) = af(b) + f(a)b for all a, b ∈ A}

is the K-vector space of derivations of A, and

Der0
K(A,A) := {fx ∈ HomK(A,A) | x ∈ A and fx(a) = ax− xa for all a ∈ A}

is the K-vector space of inner derivations of A.

The Hochschild cohomology groups HH i(A) control the deformations of
the algebra A, see [GP95, G64].

Some explicit computations of Hochschild cohomology groups can for example be
found in [RR14].
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Theorem 9.8 (Happel [H89], Rickard [R91]). Let A and B be finite-
dimensional K-algebras. If there is a triangle equivalence

Db(mod(A)) ' Db(mod(B)),

then there is an isomorphism

HH•(A) ∼= HH•(B)

of Z-graded algebras.
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9.7. Quadratic algebras.

A K-algebra A is a quadratic algebra if

A ∼= TS(V )/I

where

(i) S is a semisimple K-algebra.

(ii) V ∈ Bimod(S).

(iii) I is generated by a subset of V ⊗S V .

Quadratic algebras are Z-graded.

Proposition 9.9. For a basic algebra A = KQ/I the following are equivalent:

(i) A is quadratic.

(ii) I is generated by a subset of KQ2.
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9.8. Koszul algebras. Let

A =
⊕
i∈Z

Ai

be a positively graded K-algebra. (Thus Ai = 0 for all i < 0.)

A is a Koszul algebra if the following hold:

(i) A0 is a semisimple algebra.

(ii) A0 has a graded projective resolution

· · · f3−→ P2
f2−→ P1

f1−→ P0
f0−→ A0 → 0

such that Pj is generated by its degree j component for all j ≥ 0. (All
fj are graded homomorphisms.)

Proposition 9.10 ([BGS96, Proposition 2.2.1]). If A is a Koszul algebra, then
Aop is also a Koszul algebra.

Proposition 9.11 ([BGS96, Corollary 2.3.3]). Koszul algebras are quadratic.

Examples: Let A = KQ/I where Q is the quiver

1
a
//
2

b
oo

c
//
3

d
oo

and I is generated by {ab − dc, ba, cd}. Thus A is the preprojective algebra of
Dynkin type A3. The algebra A is Z-graded. (The paths of length 0 have degree 0
and the arrows have degree 1.) We have A0

∼= A/J(A). There is a graded projective
resolution

· · · → P3 → P2 → P1 → P0 → A0 → 0.

However P3 is not generated in degree 3, and all graded projective resolutions of A0

have this flaw. So A is quadratic but not Koszul. For a detailed discussion we refer
to [BBK02]. (I thank Gustavo Jasso for pointing out this reference.)
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The Yoneda algebra of A is

E(A) := Ext•A(A0, A0) =
⊕
n≥0

ExtnA(A0, A0)

where the product comes from the Yoneda product of exact sequences.

If A is a Koszul algebra, then E(A) is the Koszul dual of A.

A Koszul algebra A is left finite if Ai is finitely generated as an A0-module for
all i ≥ 0.

Theorem 9.12 ([BGS96, Theorem 1.2.5]). Assume that A is a left finite
Koszul algebra. Then E(A) is a left finite Koszul algebra, and we have

E(E(A)) ∼= A.

Examples: The following are Koszul algebras:

(i) Finite-dimensional hereditary algebras.

(ii) Finite-dimensional quadratic algebras A with gl. dim(A) = 2, see e.g [GM96].

(iii) Quadratic monomial algebras, see [GZ94]).

Many algebras arising from the representation theory of Lie algebras are Koszul
algebras. One standard reference for this is [BGS96], see also [MOS09].
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10. Other algebras
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Back to Overview Metaclasses 1.

10.1. Local algebras.

A K-algebra A is local if AA has a unique maximal submodule.

It follows that A is local if and only A/J(A) is a non-zero K-skew field.

Local algebras are crucial for the understanding of direct sum decompositions of
modules.

A proof of the following proposition can be found for example in [RSch20].

Proposition 10.1. Let A be a K-algebra, and let M ∈ Mod(A). Then the
following hold:

(i) If EndA(M) is local, then M is indecomposable.

(ii) If M is indecomposable and length(M) <∞, then EndA(M) is local.
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Theorem 10.2 (Krull-Remak-Schmidt-Azumaya [A50]). Let A be a K-
algebra, and let ⊕

i∈I

Mi
∼=
⊕
j∈J

Nj

be an isomorphism of two direct sums of indecomposable A-modules. If
EndA(Mi) is local for all i ∈ I then there exists a bijection σ : I → J such
that

Mi
∼= Nσ(i)

for all i ∈ I.

For finite sets I and J this is called the Krull-Remak-Schmidt Theorem.

The following definition is made up just for these notes.

A K-algebra A is generalized local if there exists only one simple A-module,
up to isomorphism.

The following hold:

(i) All local K-algebras are generalized local.

(ii) For n ≥ 2, the K-algebra Mn(K) is generalized local but not local.

(iii) A finite-dimensional K-algebra A is generalized local if and only if A is
Morita equivalent to a local K-algebra.

(iv) For a basic algebra A = KQ/I the following are equivalent:
(a) A is local;

(b) A is generalized local;

(c) Q has only one vertex.

(v) The power series algebra A = K[[T ]] is local and hereditary.

Proposition 10.3. Let A be a finite-dimensional local K-algebra. Then for
M ∈ Mod(A) the following are equivalent:

(i) proj. dim(M) =∞;

(ii) M is non-projective.

Corollary 10.4. For a finite-dimensional local K-algebra A we have

gl. dim(A) =

{
0 if A is semisimple,

∞ otherwise.
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A local basic algebra is representation-finite if and only if it is isomorphic to
K[T ]/(T n) for some n ≥ 1.

Ringel [R74] determined the representation types (tame/wild) of all local basic
algebras.
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[RSch20] C. Ringel, J. Schröer, Representation theory of algebra I: Foundations. Lecture notes
(2020).

Back to Overview §10 Others.

10.2. Minimal algebras. Let A be a finite-dimensional K-algebra.

10.2.1. P -Minimal algebras.

Let P be a property satisfied by the algebra A. Then A is a P -minimal
algebra if none of the factor algebras A/I with I 6= 0 satisfies P .

For example, Ringel [R11] classified the special biserial algebras which are minimal
representation-infinite. He also explains how this fits into the much larger project
of understanding all minimal representation-infinite algebras. As another example,
Brüstle and Han [BH01] classified all minimal wild basic algebras A = KQ/I such
that Q has two vertices and no loops.

Warning: There are several different notions of minimality.

For example, in Section 4.3 (about concealed algebras) we consider a condition
P (namely that A is representation-infinite) such that none of the factor algebras
A/AeA with e ∈ A a non-zero idempotent satisfies P . We refer also to [U90] where
the same concept of minimality has been used.

Let s(A) be the number of simple A-modules, up to isomorphism.

Problem 10.5 ([R02, Problem 2]). Are there minimal wild algebras A with
s(A) > 10?
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10.2.2. P -maximal algebras. Instead of P -minimal algebras one can also look for P -
maximal algebras, in the sense that each algebra with the property P is isomorphic
to a factor algebra of a P -maximal algebra.

For example, the maximal representation-finite basic algebras A = KQ/I such
that Q has two vertices were classified in [BG82], and the maximal tame distributive
basic algebras A = KQ/I such that Q has two vertices can be found in [G93].

10.2.3. Nagase P -minimal algebras. For a finite-dimensional K-algebra A let s(A)
be the number of simple A-modules, up to isomorphism.

The following interesting definition is due to Nagase and Ringel [N02, R02].

Let P be a property satisfied by the algebra A. Then A is a P -Nagase
minimal algebra if the following hold:

(i) A is P -minimal;

(ii) If B is a finite-dimensional K-algebra satisfying property P , and if
there exists a full, faithful and exact functor

mod(B)→ mod(A),

then s(B) ≥ s(A).

Example: The only Nagase minimal strictly wild basic algebra is the path algebra
of the 3-Kronecker quiver

1 //
//
// 2

Proposition 10.6 ([R02]). Let A be a finite-dimensional algebra which satisfies P .
Then there is a Nagase P -minimal algebra B and a full, faithful and exact functor
mod(B)→ mod(A).

Problem 10.7 ([R02, Problem 3]). Determine all Nagasa minimal wild alge-
bras.
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10.3. One-point extension algebras.

10.3.1. One-point extensions. Let A be a finite-dimensional K-algebra.

For M ∈ mod(A) let

A[M] :=

(
A M
0 K

)
be the one-point extension of A by M . This is a finite-dimensional K-
algebra whose multiplication is defined by(

a m
0 λ

)(
a′ m′

0 λ′

)
=

(
aa′ am′ +mλ′

0 λλ′

)
.

(Here we use that M is an A-module and that K acts centrally on the under-
lying K-vector space of M .)

One point extensions (and more generally branch extensions) are a useful tech-
nique for studying (and like in the case of tubular algebras for defining) certain
classes of algebras.

Examples:

(i) Let A′ = KQ′/I ′ be a basic algebra, and let ∗ ∈ Q′0 be a source, i.e. there is
no arrow a ∈ Q1 with t(a) = ∗. Let M := rad(P (∗)) and e := 1− e∗. Then

A′ ∼=
(
A M
0 K

)
with A := eAe.

(ii) Let A = KQ/I be a basic algebra, and let M ∈ mod(A). We have

top(M) ∼=
⊕
i∈Q0

S(i)mi

for some mi ≥ 0. Let Q′ be the quiver obtained from Q by adding a new
vertex ∗ and by adding mi arrows ∗ → i for each i ∈ Q0. Then there is an
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admissible ideal I ′ in KQ′ with I ⊆ I ′ and

KQ′/I ′ ∼=
(
A M
0 K

)
.

10.3.2. Branch extensions.

The full branch Bd = KQd/Id of depth d is given by the quiver Qd with
vertices

{ki | 0 ≤ k ≤ d, 1 ≤ i ≤ 2k}
and arrows

{aki : (k + 1)2i−1 → ki, bki : ki → (k + 1)2i | 0 ≤ k ≤ d− 1, 1 ≤ i ≤ 2k}
and the ideal Id generated by

{bkiaki | 0 ≤ k ≤ d− 1, 1 ≤ i ≤ 2k}.

For d = 3, the quiver Qd looks like this:

31

a21
  

32 33

a22
  

34 35

a23
  

36 37

a24
  

38

21

a11 ''

b21

>>

22
b22

>>

23

a12 ''

b23

>>

24
b24

>>

11

a01 ++

b11

77

12
b12

77

01
b01

33

A branch B = KQ/I is given by a full connected subquiver Q of some full branch
Qd containing the vertex 01 and I := Id ∩KQ. Let |B| be the number of vertices of
B.

Let A = KQ/I be a basic algebra, and letM ∈ mod(A). Then A[M ] ∼= KQ′/I ′

with Q′0 = Q0 ∪ {∗}. For a branch B = KQ′′/I ′′ let

A[M,B] := KQ′′′/I ′′′

where Q′′′ is obtained from Q′ and Q′′ by identifying the vertices ∗ and 01

and I ′′′ is the ideal generated by I ′ ∪ I ′′. The algebra A[M,B] is a branch
extension of A.

Example: Let Q be the quiver

2

a
��
b
��

1
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and let A = KQ. Let M be the representation

K

1
��

1
��

K

and let B = B2 = KQ2/I2. Then A[M,B] ∼= KQ′/I ′ where Q′ is the quiver

21

a11 ��

22 23

a12 ��

24

11

a01
''

b11

??

12

b12

??

01

b01

77

c
��

2

a
��
b
��

1

and I ′ is generated by {ac− bc, b11a11 , b12a12 , b01a01}.

10.3.3. Subspace categories. We follow [R84], [R80a, R80b] and [S92].

A vector space category is a pair (K, |·|) where K is a Krull-Remak-Schmidt
K-category and | · | : K → mod(K) is a K-linear functor.

The subspace category Ǔ(K, | · |) has as objects triples

V = (V∗, γV , V0)

where V0 ∈ K, V∗ ∈ mod(K) and γV : V∗ → |V0| is a K-linear map. For objects
V,W ∈ Ǔ(K, | · |) a morphism

f = (f∗, f0) : V → W

is given by f0 ∈ HomA(V0,W0) and f∗ ∈ HomK(V∗,W∗) such that |f0|γV =
γWf∗.

V∗

f∗
��

γV
// |V0|

|f0|
��

W∗
γW
// |W0|

Let U(K, | · |) be the subcategory of Ǔ(K, | · |) with objects V = (V∗, γV , V0)
such that γV is a monomorphism.

(i) The categories Ǔ(K, |·|) and U(K, |·|) are Krull-Remak-SchmidtK-categories.
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(ii) The only indecomposable object which is in Ǔ(K, | · |) but not in U(K, | · |)
is S(ω) := (K, 0, 0), up to isomorphism.

A vector space category (K, | · |) is linear if | · | is faithful and dimK(|X|) = 1
for all X ∈ ind(K).

In this case, the following hold:

(i) dimK HomK(X, Y ) ≤ 1 for all X, Y ∈ ind(K).

(ii) If f : X → Y and g : Y → Z are non-zero morphisms with X, Y, Z ∈ ind(K),
then gf : X → Z is non-zero.

(iii) The category K is directed, i.e. all X ∈ ind(K) are directing. (The def-
inition of a directing object is analogous to the definition of a directing
module.) It follows that the isomorphism classes of indecomposable objects
in K form a poset which is denoted by P (K). (Define [X] ≤ [Y ] if and only
if HomK(X, Y ) 6= 0.)

Theorem 10.8 ([S92, Theorem 17.13(b)]). Assume that (K, | · |) is linear, and
let P = P (K) be the associated poset. Then there is an equivalence

FK : Ǔ(K, | · |)/K → rep(P op).

Let V = (V∗, γV , V0) ∈ Ǔ(K, | · |). We fix an isomorphism

V0
∼=

⊕
Y ∈ind(K)

Y nY

with nY ≥ 0. Set U := V∗, and for Z ∈ ind(K) define

UZ := Ker

V∗ γV−→ |V0|
πZ−→

⊕
Y ∈ind(K)
K(Y,Z) 6=0

|Y |nY


where πZ denotes the obvious projection. Then FK(V ) := (U ; (UZ)Z).

10.3.4. Subspace categories and one-point extensions.
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Proposition 10.9. For M ∈ mod(A) there is an equivalence

Ǔ(mod(A),HomA(M,−))→ mod(A[M ])

which sends V = (V∗, γV , V0) to the A[M ]-module(
A M
0 K

)
×
(
V0

V∗

)
→
(
V0

V∗

)
((

a m
0 λ

)
,

(
v0

v∗

))
7→
(
av0 + γV (m⊗ vw)

λvw

)
where γV ∈ HomA(M⊗K V∗, V0) corresponds to γV ∈ HomK(V∗,HomA(M,V0))
under the tensor-Hom adjunction, i.e.

γV : v∗ 7→ [m 7→ γV (m⊗ v∗)].

Let A′ = KQ′/I ′ be a basic algebra, and let ∗ be a source in Q. Let a1, . . . , at be
the arrows in Q′ with s(ai) = ∗ for 1 ≤ i ≤ t. Let Q be the quiver obtained from Q′

by deleting ∗. Set A = KQ/I where I := KQ ∩ I ′. Let V ∈ mod(A′). We can see
V as a representation V = (Vi, Va)i∈Q′0,a∈Q′1 of Q′. Set V0 := (Vi, Va)i∈Q0,a∈Q1 , and
let M := rad(P (∗)) ⊆ A. Thus V0,M ∈ mod(A). We get a map

γV : V∗ → HomA(M,V0)

v∗ 7→ [m 7→ mv∗].

Note that the A-module M is generated by a1, . . . , at and that any f ∈ HomA(M,V0)
is determined by f(a1), . . . , f(at). We have γV (v∗)(ai) = Vai(v∗). The functor in the
previous proposition sends (V∗, γV , V0) to V .

For M ∈ mod(A) let

KM := add({X ∈ ind(A) | HomA(M,X) 6= 0}).

The indecomposable objects in Ǔ(mod(A),HomA(M,−)) are of the form
(0, 0, V0) with V0 ∈ ind(A) and HomA(M,V0) = 0, or they belong to
ind(Ǔ(KM ,HomA(M,−))).

Assume that (KM ,HomA(M,−)) is linear, i.e. we have dim HomA(M,X) = 1 for
all X ∈ ind(KM). Then Theorem 10.8 reduces the classification of indecomposables
in Ǔ(KM ,HomA(M,−)) to the classification of indecomposables in rep(P (KM)op).
In particular, the representation type of A[M ] depends only on the representation
types of the algebra A and of the poset P (KM)op.

Examples:
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(i) Let Q be the quiver

2

��

3

��

1

and let A = KQ. The AR quiver ΓA looks as follows:

1 0
1

""

0 1
0

oo

0 0
1

<<

""

1 1
1

oo

<<

""

0 1
1

<<

1 0
0

oo

Let M,N1, N2 be the indecomposable A-modules with

dim(M) = 1 1
1 , dim(N1) = 0 1

0 , dim(N2) = 1 0
0 .

It follows that KM = add(M ⊕ N1 ⊕ N2), and that (KM , | · |) with | · | =
HomA(M,−) is a linear vector space category. The poset P := P (KM)op is
of the form

[M ]

[N1]

<<

[N2]

bb

Recall that an object in rep(P ) consists of tuples (U ;UM , UN1 , UN2) where
U is a finite-dimensional K-vector space, and UM , UN1 and UN2 are sub-
spaces of U with UNi ⊆ UM for i = 1, 2. The indecomposables in rep(P )
are (K;K,K,K), (K;K,K, 0), (K;K, 0, K), (K;K, 0, 0), (K; 0, 0, 0), up to
isomorphism. Here are the irreducible morphisms in rep(P ):

(K; 0, 0, 0)

!!

(K;K,K, 0)

))

(K;K, 0, 0)

55

))

(K;K,K,K)

(K;K, 0, K)

55

We have A[M ] ∼= KQ′/I ′ where Q′ is the quiver

∗
a

��

c

��

2

b ��

3

d��
1
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and I ′ is generated by ba− dc. The AR quiver ΓA[M ] looks as follows:

1
1 1

1

��

0
1 0

1

  

0
0 1

0

  

oo
1

1 0
0

  

oo

0
0 0

1

>>

  

0
1 1

1

FF

>>

  

oo
1

1 1
0

>>

  

oo
1

0 0
0

oo

0
0 1

1

>>

0
1 0

0

>>

oo
1

0 1
0

>>

oo

The modules marked in red and blue correspond to the indecomposables in
Ǔ(KM , | · |), and the red ones are the indecomposables in KM . We have

FK(
1

1 1
1

) ∼= (K; 0, 0, 0), FK(
1

1 1
0

) ∼= (K;K, 0, 0),

FK(
1

1 0
0

) ∼= (K;K,K, 0), FK(
1

0 1
0

) ∼= (K;K, 0, K),

FK(
1

0 0
0

) ∼= (K;K,K,K).

(ii) Let A′ = KQ′/I ′ where Q′ is the quiver

1 2
b

oo

a
oo ∗c

oo

and I ′ is generated by {ac}. Then

A′ ∼=
(
KQ M

0 K

)

where Q is obtained from Q′ by deleting ∗, and M ∼= rad(P (∗)) is the
representation

K K
1
oo

0
oo

of Q. The vector space category (KM , | · |) with | · | = HomA(M,−) is linear.
The associated poset P := P (KM)op is isomorphic to the total order N∪Nop
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where N < Nop. More precisely, P looks as follows:

[N1]

[N2]

OO

[N3]

OO

...

OO

...

[M3]

OO

[M2]

OO

[M1]

OO

where Mi = M((a−1b)i−1c) and Ni+1 = M(b(a−1b)i−1c) for i ≥ 1 and N1 =
M = M(b). (For a string C, the associated string module is denoted by
M(C).) It is easy to describe rep(P ).

Literature – one-point extension algebras
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Back to Overview §10 Others.

10.4. Gendo-symmetric algebras. Let A be a finite-dimensional algebra.
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M ∈ mod(A) is a generator-cogenerator of mod(A) if for each X ∈ mod(A)
there exists some n ≥ 1 together with an epimorphism Mn → X and a
monomorphism X →Mn.

This is the case if and only if AA⊕D(AA) ∈ add(M).

Let A and A′ be finite-dimensional K-algebras. We write A ∼ A′ if A and A′ are
Morita equivalent. For M ∈ mod(A) and M ′ ∈ mod(A′) we write (A,M) ∼ (A′,M ′)
if there exists an equivalence mod(A)→ mod(A′) which restricts to an equivalence
add(M)→ add(M ′).

A proof of the following theorem can for example be found in [CB20].

Theorem 10.10 (Morita-Tachikawa correspondence). There are mutually in-
verse bijections F and G between the sets

{(A,M) | A f.d. K-algebra, M generator-cogenerator of mod(A)}/∼
and

{B | B f.d. K-algebra with dom. dim(B) ≥ 2}/∼
defined by F : (A,M) 7→ B where B := EndA(M)op, and G : B 7→ (A,M)
where A := EndB(Q)op and M := HomB(Q,D(BB)) with Q an additive gen-
erator of proj-inj(B).

One can now consider pairs (A,M) as above where A comes from a special class of
algebras and then ask if one can say something about the algebras B := EndA(M)op

arising in this way.

The following definition is due to Fang and König [FK16].

B is gendo-symmetric if

B ∼= EndA(M)op

where A is a finite-dimensional symmetric algebra, and M is a generator-
cogenerator of mod(A).

Finite-dimensional symmetric algebras A are gendo-symmetric. (The regular rep-
resentation AA is a generator-cogenerator and A ∼= EndA(AA)op.)

Theorem 10.11 ([M17]). The following are equivalent:

(i) A is gendo-symmetric.

(ii) (A,D(AA)) is a bocs.
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Theorem 10.12 ([KSX01]). Let C ' mod(A) be a block of the BGG category
O of a complex semisimple Lie algebra. Then A is gendo-symmetric.

The algebra A in the previous theorem is a quasi-hereditary algebra.

Theorem 10.13 ([KSX01]). The Schur algebras S(n, r) with n ≥ r are gendo-
symmetric (and not symmetric).

Example: Let A = KQ/I where Q is the quiver

1a
88

and I is generated by a2. There are two indecomposable A-modules, namely

P = 1
1 and S = 1 .

The algebra A is symmetric, M := P ⊕S is a generator-cogenerator of mod(A) and
B := EndA(M)op ∼= KQ′/I ′ where Q is the quiver

1
b
// 2

a
oo

and I is generated by ba. The algebra B is gendo-symmetric, but it is not symmetric.
(We have gl. dim(B) = 2.)

Literature – gendo-symmetric algebras
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[KSX01] S. König, I. Slung̊ard, C. Xi, Double centralizer properties, dominant dimension, and
tilting modules. J. Algebra 240 (2001), no. 1, 393–412.
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10.5. Triangular algebras. Let A be a finite-dimensional K-algebra.

Let S(1), . . . , S(n) be the simple A-modules, up to isomorphism. Then A is a
triangular algebra if there does not exists a sequence (i1, . . . , im) of indices
with m ≥ 2 and i1 = im such that

Ext1
A(S(ik), S(ik+1)) 6= 0

for all 1 ≤ k ≤ m− 1.
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Proposition 10.14. A basic algebra A = KQ/I is a triangular algebra if and
only if Q has no oriented cycles.

Proposition 10.15. If A is a triangular algebra, then

gl. dim(A) <∞.

The converse of Proposition 10.15 is in general wrong.

Example: Let A = KQ/I where Q is the quiver

1
a
//
2

b
oo

and I is generated by ab. Then gl. dim(A) ≤ 2 and A is not triangular.

There are almost no interesting results on triangular algebras in general. (One ex-
ception is mentioned below.) However, many interesting classes of finite-dimensional
algebras are almost by definition triangular: Semisimple algebras, finite-dimensional
path algebras, tubular algebras, canonical algebras, tree algebras, incidence algebras,
and many others.

From now on assume that K is algebraically closed

Let A = KQ/I be a basic algebra. Recall that a relation for Q is a linear
combination

t∑
i=1

λipi

of pairwise different paths pi of length at least two in Q such that λi 6= 0, s(pi) =
s(pj) and t(pi) = t(pj) for all 1 ≤ i, j ≤ t. The admissible ideal I is (almost by
definition) generated by a finite set of relations. Let R be a set of relations, and
assume that R is of minimal cardinality such that R generates I. For i, j ∈ Q0

define

r(i, j) := R ∩ eiAej.
One can show that these numbers do only depend on the isomorphism class of A
and not on the choice of the admissible ideal I or the set R. For more details we
refer to [?].

Let A = KQ/I be a basic triangular algebra. The Tits form of Q is defined
as

qA : ZQ0 → Z

x 7→
∑
i∈Q0

x2
i −

∑
a∈Q1

xs(a)xt(a) +
∑
i,j∈Q0

r(i, j)xixj.
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Proposition 10.16. Let A = KQ/I be a basic triangular algebra. Assume
that gl. dim(A) ≤ 2. For M ∈ mod(A) we have

qA(dim(M)) = dim EndA(M)− dim Ext1
A(M,M) + dim Ext2

A(M,M).

Some of the following definitions will only be used in later sections of the FD-Atlas.

Let A be a finite-dimensional K-algebra with gl. dim(A) < ∞. For M ∈
mod(A) define

χA(M) :=
∑
i≥0

(−1)i dim ExtiA(M,M).

This value only depends on the dimension vector dim(M) ∈ Zn. (Here n is
the number of simple A-modules, up to isomorphism.) We obtain a quadratic
form

χA : Zn → Z
which is called the Euler form of A.

Thus for a basic triangular algebra A with gl. dim(A) ≤ 2 one can identify qA and
χA.

A quadratic form
q : Zn → Z

is non-negative (resp. weakly non-negative) if q(x) ≥ 0 for all x ∈ Zn
(resp. x ∈ Nn). It is weakly positive if q(x) > 0 for all 0 6= x ∈ Nn.

.

A proof of the following result can be found in [?].

Theorem 10.17. Let A = KQ/I be a basic triangular algebra. If A is tame,
then qA is weakly non-negative.

The converse is in general wrong. But it remains an interesting problem to identify
classes of triangular algebra such that the converse holds.

Back to Overview §10 Others.

10.6. Tree algebras.

A basic algebra A = KQ/I is a tree algebra if the quiver Q is a tree, i.e. Q
does not contain any (oriented or non-oriented) cycles.
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Tree algebras are monomial algebras.

Proposition 10.18 (Bongartz,Ringel [BR81]). Each tree algebra has a pre-
projective component.

Corollary 10.19. For a tree algebra A the following are equivalent:

(i) A is representation-finite.

(ii) A is a directed algebra.

The representation type of a tree algebra A is characterized via its Tits form qA.
(For the definition of the Tits form qA we refer to Section 10.5.)

Theorem 10.20 (Bongartz [B83]). For a tree algebra A the following are
equivalent:

(i) A is representation-finite.

(ii) The Tits form qA is weakly positive.

For example, all gentle tree algebras are representation-finite.

Assume from now on that K is algebraically closed.

Theorem 10.21 (Brüstle [B04]). For a tree algebra A the following are equiv-
alent:

(i) A is tame.

(ii) The Tits form qA is weakly non-negative.

Brüstle also shows that a tree algebra is wild if and only if it is strictly wild.

There is an algorithm which decides if qA is weakly positive or weakly non-
negative.

Example: Let A = KQ/I be the tree algebra where Q is the quiver

•

��

•
a

��

•
b

��

• // • // •
c
��

•

��

•

??

• •oo

��

•
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and I is generated by {ca, cb}. Then A is a tame algebra of exponential growth.
(The algebra A belongs to the list of pg-critical algebras.)

There is also a notion of tameness for the derived category Db(mod(A)) of a
finite-dimensional K-algebra A. Each derived-tame algebra is tame. The converse
is mostly wrong.

Theorem 10.22 (Brüstle [B01], Geiß [G02]). For a tree algebra A the follow-
ing are equivalent:

(i) A is derived-tame.

(ii) The Euler form χA is non-negative.

(For the definition of the Euler form χA we refer again to Section 10.5.)

The definition of a tree algebra is straightforward, but it remains unclear if there
is some homological or geometric characterization of this class of algebras.

Besides the finite/tame/wild classification of tree algebras and their derived cat-
egories, there are very few results on tree algebras in general.

Literature – tree algebras
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Back to Overview §10 Others.

10.7. Contruction site: Simply connected algebras.

Back to Overview §10 Others.

10.8. Low-dimensional algebras. Let K be algebraically closed with char(K) 6=
2, and let A be a finite-dimensional K-algebra. This section contains the list of
isomorphism classes of k-algebras of dimension at most 4. With the exception of
M2(K), all of them are basic algebras KQ/I. The list is taken from Gabriel [G74].
For the list of isomorphism classes of 5-dimensional K-algebras we refer to Mazzola
[M79].
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1-dimensional:

(1) •

2-dimensional:

(1) • • (2) •a
99 /(a2)

3-dimensional:

(1) • • • (2) • •a
99 /(a2)

(3) •a
99 /(a3) (4) •a

99 bee /(a, b)2

(5) • •oo

4-dimensional:

(1) • • • • (2) • • •a
99 /(a2)

(3) •a
99 •b 99 /(a2, b2) (4) • •a

99 /(a3)

(5) •a
99 /(a4) (6) • •a

99 bee /(a, b)2

(7) •a
99 bee /(a2, b2, ab− ba) (8) •a

99 bee /(a3, b2, ab, ba)

(9) •a
99

b

��
c

ee /(a, b, c)2 (10) M2(K)

(11) •
a
// •

b
oo /(ab, ba) (12) •a

99 bee /(a2, b2, ab+ ba)

(13) • • •oo (14) •a
99

b
// • /(a2, ba)

(15) •a
99 •b
oo /(a2, ab) (16) •a

99 bee /(a2, b2, ab)

(17) • •oo
oo (18) Aλ = •a

99 bee /(a2, b2, ab− λba)

(19) •a
99 bee /(a2, b2 + ab, ab+ ba)
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The numbering is taken from [G74]. In (18) we have λ ∈ K \{0,±1} and Aλ ∼= Aµ
if and only if µ ∈ {λ, λ−1}. Note that the 4-dimensional algebras (1), . . . , (9) are
commutative, whereas all others are not.

Gabriel and Mazzola do much more than just computing the lists above. They
consider the affine variety alg(n) of n-dimensional K-algebras and determine its
irreducible components (Gabriel for n ≤ 4 and Mazzola for n = 5). The general
linear group Gln(K) acts on alg(n) such that the orbits correspond to isomorphism
classes of algebras. The closure of an orbit is a union of orbits. For n ≤ 4 Gabriel
determines all orbit closures.

Literature – low-dimensional algebras

[G74] P. Gabriel, Finite representation type is open. Proceedings of the International Conference
on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23 pp.
Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

[H79] D. Happel, Deformations of five-dimensional algebras with unit. Ring theory (Proc. Antwerp
Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978), pp. 459–494, Lecture Notes
in Pure and Appl. Math., 51, Dekker, New York, 1979.

[M79] G. Mazzola, The algebraic and geometric classification of associative algebras of dimension
five. Manuscripta Math. 27 (1979), no. 1, 81–101.

Back to Overview §10 Others.

10.9. Construction site: Ringel-Hall algebras.

Back to Overview §10 Others.

10.10. Construction site: Cluster algebras.

Back to Overview §10 Others.

10.11. Algebras with the dense orbit property. Let K be algebraically closed,
and let A be a finite-dimensional K-algebra. For d ≥ 0 let mod(A, d) be the affine
variety of d-dimensional A-modules. The following definition is due to Chindris,
Kinser and Weyman [CKW15].

A has the dense orbit property if for each d ≥ 0 and Z ∈ Irr(A, d) there is
some M ∈ mod(A, d) with

Z = OM .

Examples:

(i) Obviously, representation-finite algebras have the dense orbit property.
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(ii) For n ≥ 2 let A = KQ/I where Q is the quiver

1a
88 2

b
oo

and I is generated by {an, a2b}. Then A has the dense orbit property, see
[CKW15, Theorem 4.1]. The algebra A is wild for n ≥ 7.

(iii) Let A = KQ/I where Q is the quiver

1a
88 2

b
oo c

ff

and I is generated by {an, ba−ac, cn}. Then A has the dense orbit property,
see [B21].

Literature – algebras with the dense orbit property

[B21] G. Bobiński, Algebras with irreducible module varieties III: Birkhoff varieties. Int. Math.
Res. Not. IMRN 2021, no. 4, 2497–2525.

[CKW15] C. Chindris, R. Kinser, J. Weyman, Module varieties and representation type of finite-
dimensional algebras. Int. Math. Res. Not. IMRN 2015, no. 3, 631–650.
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10.12. Geometrically irreducible algebras. Let K be algebraically closed, and
let A be a finite-dimensional K-algebra. For d ≥ 0 let mod(A, d) be the affine variety
of d-dimensional A-modules.

A is geometrically irreducible if for each d ≥ 0 all connected components
of mod(A, d) are irreducible.

These algebras were introduced and studied in [BS19].

Theorem 10.23 ([BS19, Theorem 1.3]). Assume that Ext1
A(S, S) = 0 for all

simple A-modules S. Then the following are equivalent:

(i) A is geometrically irreducible;

(ii) A is hereditary.

By the No-Loop Theorem, if gl. dim(A) <∞, then Ext1
A(S, S) = 0 for all simple

A-modules S.

Example: For n ≥ 2 let A = KQ/I where Q is the quiver

1a
88 2

b
oo c

ff

and I is generated by {an, cn, ab− bc}. It is shown in [B21] that A is geometrically
irreducible.
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Literature – geometrically irreducible algebras

[B21] G. Bobiński, Algebras with irreducible module varieties III: Birkhoff varieties. Int. Math.
Res. Not. IMRN 2021, no. 4, 2497–2525.

[BS19] G. Bobiński, J. Schröer, Algebras with irreducible module varieties I. Adv. Math. 343 (2019),
624–639.

Back to Overview §10 Others.
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Part 2. Fundamental results, conjectures and techniques

11. Finite-dimensional algebras

In this section we want to recall some general statements about finite-dimensional
K-algebras and give at least a partial answer to the question why they are special.
All statements are wrong if one considers the more general class of finitely generated
K-algebras.

11.1. Modules categories. Let A be a K-algebra. Let Mod(A) be the category of
A-modules. (By a module we always mean a left modules, unless stated otherwise.)
Let mod(A) be the category of finite-dimensional A-modules.

If A is finite-dimensional, then for M ∈ Mod(A) the following are equivalent:

(i) M is finite-dimensional.

(ii) M is finitely generated, i.e. there exists an exact sequence

AA
n →M → 0

for some n ≥ 0.

(iii) M is finitely presented, i.e. there exists an exact sequence

AA
m → AA

n →M → 0

for some m,n ≥ 0.

Both categories Mod(A) and mod(A) are abelian.

The category mod(A) is a length category. In particular, it is a Krull-Remak-
Schmidt category.

Our focus lies on mod(A) for A finite-dimensional.

11.2. Simple modules over finite-dimensional algebras. LetA be aK-algebra.
Recall that the Jacobson radical

J(A) := rad(AA)

is the intersection of all maximal left ideals in A. We proved that J(A) is a two
sided ideal, and that it equals the intersection of all maximal right ideals. We have
also seen that an element x ∈ A annihilates all simple A-modules if and only if
x ∈ J(A).
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Let A be a finite-dimensional K-algebra. Then the following hold:

(i) We have

A/J(A) ∼=
n∏
i=1

Mni(Di)

with ni ≥ 1 and Di a finite-dimensional K-skew field for 1 ≤ i ≤ n.

(ii) Up to isomorphism, there are exactly n simple A-modules
S(1), . . . , S(n). We can assume that

S(i) = Dni
i

with A/J(A) and A acting in the obvious way. We have

Di
∼= EndA(S(i))op.

11.3. Projective and injective modules over finite-dimensional algebras.
Let A be a finite-dimensional K-algebra.

Theorem 11.1. Up to isomorphism, there are exactly n indecomposable pro-
jective A-modules P (1), . . . , P (n) and n indecomposable injective A-modules
I(1), . . . , I(n). We can order these such that

P (i)/ rad(P (i)) ∼= S(i) ∼= soc(I(i)).

We have

AA ∼=
n⊕
i=1

P (i)ni

and

D(AA) ∼=
n⊕
i=1

I(i)ni

for some ni ≥ 1.

Note that in general dim(P (i)) 6= dim(I(i)).

Theorem 11.2. Each projective A-module is a direct sum of indecomposable
projectives, and each injective A-module is a direct sum of indecomposable
injectives.

Theorem 11.3. Each M ∈ Mod(A) has a projective cover P (M) → M and
an injective envelope M → I(M).

(Recall that injective envelopes exist for all modules over arbitrary K-algebras
whereas projective covers do not exist in general.)
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For M ∈ Mod(A) the following hold:

(i) For P ∈ Proj(A), an epimorphism P → M is a projective cover if and
only if the induced map top(P )→ top(M) is an isomorphism.

(ii) For I ∈ Inj(A), a monomorphism M → I is an injective envelope if
and only if the restriction soc(M) ∼= soc(I) is an isomorphism.

11.4. Homological dimensions.

11.4.1. Projective, injective and global dimension. For a projective resolution

P• = (· · · → P2 → P1 → P0)

define

d(P•) :=

{
min{m ≥ 0 | Pm+1 = 0} if such an m exists,

∞ otherwise.

For an A-module M let

proj. dim(M) := min{d(P•) | P• is a projective resolution of M}.
We call proj. dim(M) the projective dimension of M .

Thus proj. dim(M) = 0 if and only if M is projective.

Lemma 11.4. For M ∈ Mod(A) and m ≥ 0 the following are equivalent:

(i) proj. dim(M) ≤ m;

(ii) Extm+1
A (M,−) = 0;

(iii) Extp+1
A (M,−) = 0 for all p ≥ m.

For an injective resolution

I• = (I0 → I1 → I2 → · · · )
define

d(I•) :=

{
min{m ≥ 0 | Im+1 = 0} if such an m exists,

∞ otherwise.

For an A-module M let

inj. dim(M) := min{d(I•) | I• is an injective resolution of M}.
We call inj. dim(M) the injective dimension of M .

Thus inj. dim(M) = 0 if and only if M is injective.
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Lemma 11.5. For N ∈ Mod(A) and m ≥ 0 the following are equivalent:

(i) inj. dim(N) ≤ m;

(ii) Extm+1
A (−, N) = 0;

(iii) Extp+1
A (−, N) = 0 for all p ≥ m.

The global dimension of A is by definition

gl. dim(A) := sup{proj. dim(M) |M ∈ Mod(A)}.
Here sup denotes the supremum.

Lemma 11.6. For a K-algebra A and m ≥ 0 the following are equivalent:

(i) gl. dim(A) ≤ m;

(ii) proj. dim(M) ≤ m for all M ∈ Mod(A);

(iv) inj. dim(M) ≤ m for all M ∈ Mod(A);

(ii) Extm+1
A (−, ?) = 0;

(iii) Extp+1
A (−, ?) = 0 for all p ≥ m.

Corollary 11.7. We have

gl. dim(A) = sup{inj. dim(M) |M ∈ Mod(A)}.

As the following results show, the computation of projective, injective and global
dimensions can be reduced to simple modules.

Theorem 11.8. Let A be a finite-dimensional K-algebra. Then

gl. dim(A) = max{proj. dim(S) | S is a simple A-module}.

Lemma 11.9. Let A be a finite-dimensional K-algebra. For M ∈ Mod(A)
and m ≥ 1 the following are equivalent:

(i) proj. dim(M) ≤ m.

(ii) Extm+1
A (M,S) = 0 for all simple A-modules S.



228 JAN SCHRÖER

Lemma 11.10. Let A be a finite-dimensional K-algebra. For N ∈ Mod(A)
and m ≥ 1 the following are equivalent:

(i) inj. dim(N) ≤ m.

(ii) Extm+1
A (S,N) = 0 for all simple A-modules S.

Thus for a finite-dimensional K-algebra A one can determine the projective (resp.
injective) dimensions of all A-modules M by computing only the injective (resp.
projective) resolutions of the simple A-modules and then apply HomA(M,−) (resp.
HomA(−,M)).

11.4.2. Dominant dimension. Let A be a finite-dimensional K-algebra, and let

0→ AA→ I0 → I1 → I2 → · · ·

be a minimal injective resolution of AA.

The following definition is due to Tachikawa [T64].

Then

dom. dim(A) :=

{
n if Ii ∈ proj(A) for 0 ≤ i ≤ n− 1 and In /∈ proj(A),

∞ if Ii ∈ proj(A) for all i ≥ 0

is the dominant dimension of A.

Remarks:

(i) We have dom. dim(A) = 0 if and only if I0 is non-projective.

(ii) Recall that A is semisimple if and only if gl. dim(A) = 0. In this case, we
have dom. dim(A) =∞.

(iii) More generally, it follows immediately from the definitions that for all self-
injective algebras A we have dom. dim(A) =∞.

Lemma 11.11. If dom. dim(A) <∞, then dom. dim(A) ≤ gl. dim(A).

Lemma 11.12. If 1 ≤ gl. dim(A) <∞, then dom. dim(A) ≤ gl. dim(A).

The following theorem indicates that the dominant dimension is an interesting
invariant of an algebra.
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Theorem 11.13 (Auslander Correspondence). Up to Morita equivalence, the
representation-finite algebras A correspond bijectively to the algebras B with
dom. dim(B) ≥ 2 ≥ gl. dim(B). (One takes M ∈ mod(A) with add(M) =
mod(A) and maps it to B = EndA(M)op.)

11.4.3. Representation dimension. Let A be a finite-dimensional K-algebra.

M ∈ mod(A) is a generator-cogenerator of mod(A) provided

proj(A) ⊆ add(M) and inj(A) ⊆ add(M).

The following definition is due to Auslander [A71].

Let

rep. dim(A) := min{gl. dim(EndA(M)op) |M generator-cogenerator of mod(A)}
be the representation dimension of A.

Proposition 11.14. The following are equivalent:

(i) rep. dim(A) = 0;

(ii) A is semisimple.

Proposition 11.15. rep. dim(A) 6= 1.

The following theorem indicates that the representation dimension is an interest-
ing invariant of an algebra.

Theorem 11.16 (Auslander [A71]). The following are equivalent:

(i) rep. dim(A) ≤ 2;

(ii) A is representation-finite.

Theorem 11.17 (Rouquier [R06]). For each n ≥ 2 there exists an algebra A
with

rep. dim(A) = n.

Theorem 11.18 (Iyama [I03]). rep. dim(A) <∞.
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11.5. Basic algebras.

A K-algebra A is basic provided it is finite-dimensional and

A/J(A) ∼=
n∏
i=1

K.

Here we deviate from the usual definition which demands that

A/J(A) ∼=
n∏
i=1

Di

for some K-skew fields Di.

For a K-algebra A the following are equivalent:

(i) A is basic.

(ii) A ∼= KQ/I where Q is a quiver and I is an admissible ideal in the path
algebra KQ.

Let K be algebraically closed, and let A be a finite-dimensional K-algebra.
Then there exists a basic K-algebra B such that mod(A) and mod(B) are
equivalent categories.

Let A be a finite-dimensional K-algebra.
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The most important A-modules are:

AA P (1), . . . , P (n) indecomposable projective A-modules

D(AA) I(1), . . . , I(n) indecomposable injective A-modules

A/J(A) S(1), . . . , S(n) simple A-modules

We can label these modules such that

top(P (i)) ∼= S(i) ∼= soc(I(i))

for 1 ≤ i ≤ n.

Suppose that A is Morita equivalent to a basic algebra KQ/I. Then the following
hold:

(i) The vertices Q0 correspond to the simples S(1), . . . , S(n).

(ii) The number of arrows i→ j in Q1 is dim Ext1
A(S(i), S(j)) for 1 ≤ i, j ≤ n.

(iii) Having a detailed knowledge of P (1), . . . , P (n) leads to a description of I.

Remarks:

• Computing Q1 is in general much harder than computing Q0.

• Computing I is in general much harder than computing Q.

• In general, I is not uniquely determined, i.e. there can be different ideals I1

and I2 such that KQ/I1
∼= KQ/I2.

Algebras occur in many different forms, and this determines how difficult the
computation of Q and I will be.

For example, let G be a finite group, and let A = KG be its group algebra with
K algebraically closed. Finding the simple A-modules can be already very hard,
but in many cases this is doable. If char(K) does not divide |G|, then Q1 = ∅ and
I = 0. So in this case, finding the simples is enough and A is just a semisimple
algebra. Otherwise, if char(K) divides |G|, then the next challenge is to compute
dim Ext1

A(S(i), S(j)).

For the symmetric groups G = Sn one knows how to parametrize the simple
modules. However, if char(K) divides |G|, it seems to be close to impossible to
compute dim Ext1

A(S(i), S(j)). Also the K-dimension of the simples is unknown in
this case.

What is the advantage of dealing with a basic algebra A = KQ/I?

First, certain homological and representation theoretical information is readily
available. For example, the simple modules S(i) and also dim Ext1

A(S(i), S(j)) are
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trivial to obtain. Also the indecomposable projective modules P (i) and the indecom-
posable injective modules I(i) can be constructed quite explicitely. An A-module is
just a representation V = (Vi, Va) of Q such that the linear maps Va satisfy the defin-
ing relations in I. So it is almost trivial to write down representations. (Classifying
them up to isomorphism is another and much more complicated matter.) In case V
is finite-dimensional, the Jordan-Hölder multiplicity [V : S(i)] is just dim(Vi). It is
also easy to compute top(V ) and soc(V ). With some effort this leads to the explicit
construction of the minimal projective and the minimal injective resolution of V .
(This depends a bit on the complexity of the defining relations in I.)

11.6. Algebraically closed ground fields. There are numerous publications on
the representation theory of finite-dimensional K-algebras, where K is assumed to
be algebraically closed. This assumption often helps, e.g. one can focus on basic
algebras KQ/I. However, many results can be generalized to algebras over arbitrary
ground fields without too many difficulties. One oftens gets the impression that the
authors did not think of this issue very hard and just made a habit of always working
over algebraically closed fields. In this sense, the results in the literature (including
the FD-Atlas) are not always optimal.

11.7. Connected algebras. Let A be a finite-dimensional K-algebra. Then there
is a unique direct sum decomposition

A = A1 ⊕ · · · ⊕ At
where the Ai are indecomposable two-sided ideals. (An ideal I is indecomposable
if it cannot be written as I = I1 ⊕ I2 with I1 and I2 non-zero two-sided ideals.) Let
now 1 = e1 + · · · + et with ei ∈ Ai for 1 ≤ i ≤ t. The elements e1, . . . , et are a
complete set of orthogonal central idempotents. Then Ai is a K-algebra with unit
element ei. We call A1, . . . , At the blocks of A. (The terminology block is often just
used for group algebras.)

There is an obvious K-algebra isomorphism

A ∼= A1 × · · · × At.
Each Ai-module can be seen as an A-module in the obvious way. For each M ∈
Mod(A) we get a direct sum decomposition

M = e1M ⊕ · · · ⊕ etM.

Note that eiM ∈ Mod(Ai) for 1 ≤ i ≤ t. Thus each indecomposable A-module
belongs to a unique block. The algebra A is connected if t = 1.

A basic algebra A = KQ/I is connected if and only if the quiverQ is connected.

For a finite-dimensional K-algebra A the following are equivalent:

(i) A is connected.
(ii) If AA = U1 ⊕ U2 with U1 and U2 submodules of AA with HomA(U1, U2) =

HomA(U2, U1) = 0, then U1 = 0 or U2 = 0.
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(iii) For any simple A-modules S 6∼= S ′ there exists a tuple (Si1 , Si2 , . . . , Sit) of
simple A-modules such that Si1

∼= S, Sit
∼= S ′ and for each 1 ≤ k ≤ t− 1 we

have Ext1
A(Sik , Sik+1

)⊕ Ext1
A(Sik+1

, Sik) 6= 0.
(iv) 0 and 1 are the only central idempotents in A.

11.8. Various approaches to the representation theory of algebras. There
are many different approaches to the representation theory of finite-dimensional
algebras. Let us try to name some of them:

(i) One can develop the representation theory of basic algebras A = KQ/I, i.e.
try to understand mod(A). Here we get certain things for free, e.g. the sim-
ple modules S(i), the numbers dim Ext1

A(S(i), S(j)) and also a pretty good
description of the indecomposable projectives P (i) and the indecomposable
injectives I(i). Already the case A = KQ is extremely interesting.

(ii) There are several striking results on the representation theory of arbitrary
finite-dimensional algebras without the need to use basic algebras. One can
also define different classes of finite-dimensional algebras by homological con-
ditions (e.g. hereditary algebras, quasi-hereditary algebras, tilted algebras,
quasi-tilted algebras) and then study their representation theory.

(iii) For K algebraically closed, one can take interesting K-algebras A (e.g. group
algebras or certain quasi-hereditary algebras appearing in Lie Theory or di-
agram algebras like the Temperley-Lieb algebras) and try to find KQ/I as
indicated above. To get a complete answer can be very difficult and often
impossible. So this angle of representation theory only helps up to a certain
degree.

(iv) Everywhere in mathematics and physics one can look for abelian categories
which are equivalent or at least somehow related to mod(A) for some finite-
dimensional algebra A. This can be very fruitful and often leads to new links
between different research areas.

(v) One can also take the representation theory of finite-dimensional algebras
as an inspiration to develop new tools of Homological Algebra. These tools
might turn out to be useful in a much wider context.

(vi) One can look at the definitions, tools and results in other areas of mathe-
matics and try to find analogues for finite-dimensional algebras. For example
many ideas from Commutative Algebra and Algebraic Geometry turned out
to be useful for finite-dimensional algebras.

12. Finite length modules

12.1. Filtrations of modules. A chain

0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = M
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of submodules of a module M is called a filtration of M . The length of such a
filtration is

|{1 ≤ i ≤ s | Ui/Ui−1 6= 0}|.
A filtration

0 = U ′0 ⊆ U ′1 ⊆ · · · ⊆ U ′t = M

is a refinement of the filtration above if

{Ui | 0 ≤ i ≤ s} ⊆ {U ′j | 0 ≤ j ≤ t}.

Two filtrations

U0 ⊆ U1 ⊆ · · · ⊆ Us and V0 ⊆ V1 ⊆ · · · ⊆ Vt

of M are called isomorphic if s = t and there exists a bijection σ : [1, s] → [1, t]
such that

Ui/Ui−1
∼= Vσ(i)/Vσ(i)−1

for 1 ≤ i ≤ s.

Theorem 12.1 (Schreier). Any two filtrations of a module M have isomorphic
refinements.

12.2. Jordan-Hölder Theorem.

A filtration
0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = M

of a module M is a composition series of M if Ui/Ui−1 is simple for 1 ≤ i ≤ s.
The modules Ui/Ui−1 are the composition factors of M .

For M = 0, we call 0 a composition series of M . It has length 0, and there are no
composition factors.

The following is a direct consequence of Theorem 12.1.

Theorem 12.2 (Jordan-Hölder). Assume that a module M has a composition
series of length s. Then the following hold:

(i) Any filtration of M has length at most s and can be refined to a com-
position series.

(ii) All composition series of M have length s and are isomorphic to each
other.

If M has a composition series of length s, then we say that V has length
l(M) := s. Otherwise, M has infinite length and we write l(M) =∞.
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Let
0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = M

be a composition series of M . For a simple module S let

[M : S] := |{1 ≤ i ≤ s | Ui/Ui−1
∼= S}|

be the Jordan-Hölder multiplicity of S in M .

We know from Theorem 12.1 that the Jordan-Hölder multiplicities [M : S] do not
depend on the choice of a composition series of M .

One calls ([M : S])S the dimension vector of M , where S runs through a
complete set of representatives of isomorphism classes of the simple modules.

Note that only finitely many entries of the dimension vector of a finite length
module M are non-zero.

For a finite-dimensional algebra A, an A-module M has finite length if and
only if M is finite-dimensional.

12.3. Local endomorphism rings. The endomorphism ring EndA(M) of a module
M contains information about the decomposition of M into direct sums of submod-
ules:

Proposition 12.3. For each M ∈ Mod(A) there is a bijection

{e ∈ EndA(M) | e2 = e} → {(U1, U2) | U1, U2 are submodules with M = U1⊕U2}.
defined by e 7→ (Im(e),Ker(e)).

A ring R is local if the following hold:

• 1 6= 0;

• If r ∈ R, then r or 1− r is invertible.

Note that we do not exclude that for some r ∈ R both r and 1− r are invertible.

Examples:

• Every skew field is a local ring.

• Mn(K) is not local, provided n ≥ 2.

• K[T ] is not local.

• Let p ∈ K[T ] be irreducible, and let n ≥ 1. Then K[T ]/(pn) is local.
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Proposition 12.4. Let M ∈ Mod(A). If EndA(M) is a local ring, then M is
indecomposable.

Example: The regular representation of A = K[T ] is indecomposable, but its
endomorphism ring EndA(AA) ∼= K[T ]op ∼= K[T ] is not local. Thus the converse of
the previous proposition is in general wrong.

Proposition 12.5. Let M ∈ Mod(A) be of finite length. Then the following
are equivalent:

(i) V is indecomposable.

(ii) EndA(V ) is a local ring.

12.4. Krull-Remak-Schmidt Theorem.

Theorem 12.6 (Krull-Remak-Schmidt). Let M1, . . . ,Mm be A-modules with
local endomorphism rings, and let N1, . . . , Nn be indecomposable A-modules.
If

m⊕
i=1

Mi
∼=

n⊕
j=1

Nj

then m = n and there exists a permutation π such that Mi
∼= Nπ(i) for all

1 ≤ i ≤ m.

As an important application, the Krull-Remak-Schmidt Theorem reduces the clas-
sification of finite length modules up to isomorphism to the classication of indecom-
posable finite length modules up to isomorphism.

In the literature the Krull-Remak-Schmidt Theorem is often called Krull-
Schmidt Theorem. But in fact, as part of his Doctoral Dissertation which
he published in 1911, Robert Remak (1888-1942) was the first to prove such
a result in the context of finite groups. Remak’s PhD advisor was Ferdinand
Frobenius (1849-1917). Afterwards Krull generalized this to modules. Schmidt
did not contribute anything new, but one has to remember that there was no
internet at the time and that he might have not been aware of Remak’s work.
When the Fascists came to power in 1933, Remak, who was of Jewish ancestry,
lost his right to teach. After several weeks in the concentration camp Sachsen-
hausen in 1938, he managed to migrate to Amsterdam. He was later arrested
by the German occupation authorities and was murdered in Auschwitz in 1942.
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Otto Schmidt (1891-1956) was a Soviet scientist. His mother was Latvian and
his father was a descendant of German settlers in Courland, hence the very
German sounding name. Schmidt contributed to mathematics, geophysics,
astronomy, and he was an arctic explorer. He also had an impressive political
career. Amongst many other honours, Schmidt was declared a Hero of the
Soviet Union, and he received the Order of Lenin three times. There is an oil
on canvas painting by Jakoff Jakovlevitch Kalinitchenko from 1938 showing
Stalin and Schmidt shaking hands. Given his numerous high profile positions
and responsibilities, it remains Schmidt’s secret how he managed to survive
all the purges of the Stalin era.

After positions in Freiburg and Erlangen, Wolfgang Krull (1899-1971) became
Professor in Bonn in 1939. His position was formerly held by Otto Toeplitz
(1881-1940), who lost it in 1935, due to his Jewish ancestry. Toeplitz migrated
in 1939 and died shortly after in Jerusalem. Krull became a member of the
NS-Lehrerbund on August 1st, 1933. According to his German Wikipedia
entry, a membership in the NSDAP could not be confirmed. After World War
II, Krull’s name was on a list of politically compromised persons, but he was
readmitted to his Professor position in 1946.
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13. Homological conjectures

13.1. Cartan Determinant Conjecture. LetA be a finite-dimensionalK-algebra.
Let P (1), . . . , P (n) (resp. I(1), . . . , I(n)) be the indecomposable projective (resp.
injective) A-modules, and let S(1), . . . , S(n) be the simple A-modules, up to isomor-
phism. As usual, we choose the labeling such that top(P (i)) ∼= S(i) ∼= soc(I(i)).

Let CP (resp. CI) be the matrix with jth column the dimension vector
dim(P (j)) (resp. dim(I(j))) with 1 ≤ j ≤ n. The matrix CA := CP is
called the Cartan matrix of A.

An important aspect of the representation theory of finite-dimensional algebras
is the interplay between the projective, the injective and the simple modules. The
Cartan matrix helps to shed some light on this.

Let SA be the diagonal matrix with ii-th entry dim EndA(S(i)). Recall that the
transpose of a matrix M is denoted by tM .

Lemma 13.1. We have
tCI = SACPS

−1
A .

Recall that for a basic algebra A = KQ/I we have EndA(S(i)) ∼= K for all
1 ≤ i ≤ n.

Corollary 13.2. If A = KQ/I is basic, then
tCI = CP .

In other words, the j-th row of CP is dim(I(j)).

Examples:

(i) For

A =

(
R C
0 C

)
.

we have

CA = CP =

(
1 2
0 1

)
, CI =

(
1 0
1 1

)
, SA =

(
1 0
0 2

)
.

(ii) Let A = KQ/I be a basic algebra such that Q has no oriented cycles. Then
det(CA) = 1.

(iii) Let A = KQ/I where Q is the 1-loop quiver

1 a
ff

and I is generated by am for some m ≥ 2. Then

CA = (m) and det(CA) = m.
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Thus CA is invertibe over Q, but not invertible over Z.

(iv) For m ≥ 1, let A = KQ/I where Q is the quiver

1
a1
//

am

···
// 2

b

XX

and I is generated by all paths of length 2. Then

CA =

(
1 1
m 1

)
and det(CA) = −m+ 1.

Theorem 13.3 (Eilenberg [E58]). If gl. dim(A) <∞, then det(CA) = ±1.

In the following proposition, we treat elements in Zn as column vectors.

Proposition 13.4. Assume that gl. dim(A) < ∞. For X, Y ∈ mod(A) we
have

〈X, Y 〉A :=
∑
i≥0

(−1)i dim ExtiA(X, Y ) = tdim(X)(tCA)−1SAdim(Y ).

The following conjecture is still wide open. Up to our knowledge it was first
spelled out by Zacharia [Z83].

Conjecture 13.5. If gl. dim(A) <∞, then det(CA) = 1.

The Cartan Determinant Conjecture is discussed for example in [FZH86].
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13.2. Finitistic Dimension Conjectures. LetA be a finite-dimensionalK-algebra.

Let

fin. dim(A) := sup{proj. dim(M) |M ∈ mod(A), proj. dim(M) <∞}
be the finitistic dimension of A.
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The following famous conjecture was first formulated by Bass [Ba60].

Conjecture 13.6 (Finitistic Dimension Conjecture). fin. dim(A) <∞.

Conjecture 13.6 has been confirmed for various classes of algebras. However,
most classes of well understood algebras are defined by relatively easy relations like
zero relations or commutativity relations. Examples with complicated overlapping
relations involving scalars are hard to handle. So despite more than 100 publications
on this conjecture, there is in fact not much evidence supporting it. For an overview
we refer to [ZH95].

Note that

fin. dim(Aop) = sup{inj. dim(M) |M ∈ mod(A), inj. dim(M) <∞}.

(Here we use the duality D : mod(A)→ mod(Aop).)

Conjecture 13.7. fin. dim(A) <∞ if and only if fin. dim(Aop) <∞.

Example: We give an example due to Happel [H] of a finite-dimensional algebra A
with

fin. dim(A) 6= fin. dim(Aop).

Let Q be the quiver

n // n− 1 // · · · // 2 // 1 ff

and let A = KQ/I where I is generated by all paths of length 2 in Q. Then

fin. dim(A) = 0 and fin. dim(Aop) = n− 1.

Proposition 13.8. The following are equivalent:

(i) fin. dim(A) = 0;

(ii) HomA(D(AA), S) 6= 0 for all simple A-modules S.

For example, if A is local, then fin. dim(A) = 0.

Let

Fin.Dim(A) := sup{proj. dim(M) |M ∈ Mod(A), proj. dim(M) <∞}
be the big finitistic dimenion of A.

(Thus the supremum is now taken over all A-modules with finite projective di-
mension, and not just over all finite-dimensional A-modules with finite projective
dimension.)
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We obviously have

fin.dim(A) ≤ Fin.Dim(A).

Zimmermann-Huisgen [ZH92, ZH95] found the first examples of finite-dimensional
algebras A with

fin.dim(A) 6= Fin.Dim(A).

She studied this phenomenon in the context of monomial algebras. Smalø [S98]
constructed another class of examples:

For n ≥ 1 let Q(n) be the quiver

n
//
//
// n− 1

//
//
// · · ·

//
//
// 2

//
//
// 1

//
//
// 0

β

RR

α
��

where the arrows i→ i− 1 are denoted by ρi, σi, τi for 1 ≤ i ≤ n . Let

A(n) := KQ(n)/I(n)

where I(n) is the ideal in KQ(n) generated by the following list of relations:

• α2, β2, αβ, βα, αρ1, ασ1, βτ1,

• xiyi+1 for 1 ≤ i ≤ n− 1 and x 6= y with x, y ∈ {ρ, σ, τ},
• xixi+1 − yiyi+1 for 1 ≤ i ≤ n− 1 and x, y ∈ {ρ, σ, τ}.

The modules P (0), P (1) and P (i) for 2 ≤ i ≤ n look as follows:

P (0) : 0
α

||

β

��

P (1) : 1
ρ1

||

σ1

��

τ1

��

P (i) : i
ρi

zz

σi

��

τi

##

0 0 0

β
��

0

β
��

0

α
��

i− 1

ρi−1
$$

i− 1

σi−1

��

i− 1

τi−i
zz

0 0 0 i− 2

Theorem 13.9 (Smalø [S98]). For n ≥ 1 we have

fin.dim(A(n)) = 1 and Fin.Dim(A(n)) = n.

When I could not understand one step of Smalø’s proof and asked him about it,
I got this slightly cryptic answer:

“The idea is based on the fact that 2 < 3, and therefore 2n < 3n for all natural
numbers n ≥ 1. However, 2∞ = 3∞.”

Actually, this really helped...
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13.3. Nakayama Conjectures. Let A be a finite-dimensional K-algebra, and let

0→ AA→ I0 → I1 → · · ·

be a minimal injective resolution of the regular representation of A.

Conjecture 13.10 (Nakayama Conjecture [N58]). If Ii is projective for all
i ≥ 0, then A is selfinjective.

Here is an obvious reformulation of the Nakayama Conjecture:

Conjecture 13.11. If dom. dim(A) =∞, then A is selfinjective.

Proposition 13.12. If the Finitistic Dimension Conjecture is true for A, then
the Nakayama Conjecture is true for A.

Conjecture 13.13 (Generalized Nakayama Conjecture [AR75]). For each in-
decomposable injective A-module I there exists some j ≥ 0 such that I is
isomorphic to a direct summand of Ij.

Proposition 13.14. If the Generalized Nakayama Conjecture is true for A,
then the Nakayama Conjecture is true for A.

Proposition 13.15. The following hold:

(i) Let M ∈ mod(A) be non-zero with proj. dim(M) = n <∞. Then

ExtnA(M, AA) 6= 0.

(ii) Suppose that gl. dim(A) = n <∞. Then the following hold:
(a) inj. dim(AA) = gl. dim(A).
(b) The Generalized Nakayama Conjecture is true for A.
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Conjecture 13.16. Let S be a simple A-module. Then there exists some i ≥ 0
such that

ExtiA(S, AA) 6= 0.

Proposition 13.17. The Generalized Nakayama Conjecture is true for A if
and only if Conjecture 13.16 is true for A.

Here is an even stronger conjecture which is discussed in [CF90] (I do not know
if there is an older reference for this):

Conjecture 13.18 (Strong Nakayama Conjecture [CF90]). Let M ∈ mod(A)
be non-zero. Then there exists some i ≥ 0 such that

ExtiA(M, AA) 6= 0.

Proposition 13.19. If the Finitistic Dimension Conjecture is true for Aop,
then the Strong Nakayama Conjecture is true for A.

Literature - Nakayama Conjectures

[AR75] M. Auslander, I. Reiten, On a generalized version of the Nakayama conjecture. Proc. Amer.
Math. Soc. 52 (1975), 69–74.

[CF90] R. Colby, R. Fuller, A note on the Nakayama conjectures. Tsukuba J. Math. 14 (1990), no.
2, 343–352.

[N58] T. Nakayama, On algebras with complete homology. Abh. Math. Sem. Univ. Hamburg 22
(1958), 300–307.

13.4. No Loop Conjectures. Let A be a finite-dimensional K-algebra.

Conjecture 13.20 (No Loop Conjecture). Let S be a simple A-module with
Ext1

A(S, S) 6= 0. Then gl. dim(A) =∞.

Theorem 13.21 (Igusa [I90], Lenzing [L69]). Assume that K is algebraically
closed. Then Conjecture 13.20 is true.

Conjecture 13.22 (Strong No Loop Conjecture). Let S be a simple A-module
with Ext1

A(S, S) 6= 0. Then proj. dim(S) =∞.

Theorem 13.23 (Igusa, Liu, Paquette [ILP11]). Assume that K is alge-
braically closed. Then Conjecture 13.22 is true.
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The following even stronger conjecture is due to Liu and Morin [LM04].

Conjecture 13.24 (Very Strong No Loop Conjecture). Let S be a simple
A-module with Ext1

A(S, S) 6= 0. Then ExtiA(S, S) 6= 0 for infinitely many i.

Literature - No loop conjectures

[I90] K. Igusa, Notes on the no loops conjecture. J. Pure Appl. Algebra 69 (1990), no. 2, 161–176.
[ILP11] K. Igusa, S. Liu, C. Paquette, A proof of the strong no loop conjecture. Adv. Math. 228

(2011), no. 5, 2731–2742.
[L69] H. Lenzing, Nilpotente Elemente in Ringen von endlicher globaler Dimension. (German)

Math. Z. 108 (1969), 313–324.
[LM04] S. Liu, J. Morin, The strong no loop conjecture for special biserial algebras. Proc. Amer.

Math. Soc. 132 (2004), no. 12, 3513–3523.

13.5. Global dimension conjectures. Let A be a K-algebra.

The global dimension of A is

gl. dim(A) := sup{proj. dim(M) |M ∈ Mod(A)}.
Here sup denotes the supremum.

Proposition 13.25. For m ≥ 0 the following are equivalent:

(i) gl. dim(A) ≤ m.

(ii) Extm+1
A (−, ?) = 0.

Corollary 13.26. We have

gl. dim(A) = sup{inj. dim(M) |M ∈ Mod(A)}.

There are examples of infinite-dimensional K-algebras A such that

gl. dim(A) 6= gl. dim(Aop).

Recall that an A-module is cyclic if it can be generated by a single element.

Clearly, an A-module M is cyclic if and only if M ∼= AA/U for some submodule
U of the regular representation AA.

Theorem 13.27 (Auslander [A55]). We have

gl. dim(A) = sup{proj. dim(M) | M is a cyclic A-module}.
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Corollary 13.28. For a finite-dimensional K-algebra A we have

gl. dim(A) = max{proj. dim(S) | S is a simple A-module}.

Conjecture 13.29 (Marczinzik [M18]). For a finite-dimensional K-algebra A
we have

gl. dim(A) = inj. dim(J(A)).

Let Q be a quiver. We know that gl. dim(KQ) ≤ 1, even if KQ is infinite-
dimensional.

Proposition 13.30. Let A = KQ/I be a basic algebra with I 6= 0. Then

gl. dim(A) ≥ 2.

If Q has a loop and K is algebraically closed, then gl. dim(KQ/I) = ∞ for all
admissible ideals I. (This follows from Theorem 13.21.)

Theorem 13.31 (Dlab, Ringel [DR89, DR90]). Let Q be a quiver without
loops. Then there exists an admissible ideal I such that

gl. dim(KQ/I) ≤ 2.

Proposition 13.32. For a basic algebra A = KQ/I we have

gl. dim(A) ≤ sup{length(p) | p is a path in Q}.

Problem 13.33. Given a quiver Q and some d ≥ 1. Find a sufficient and
necessary condition on Q such that there exists an admissible ideal I with

gl. dim(KQ/I) = d.

Following Happel and Zacharia [HZ13] we define

g(Q) := sup{gl. dim(KQ/I) | I admissible in KQ, gl. dim(KQ/I) <∞}
and

d(Q) := sup{dimK(KQ/I) | I admissible in KQ, gl. dim(KQ/I) <∞}.
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Theorem 13.34 (Schofield [S85]). Let K be algebraically closed. There is
a function f : N → N such that for all finite-dimensional K-algebras A with
dimK(A) ≤ d and gl. dim(A) <∞ we have

gl. dim(A) ≤ f(d).

Corollary 13.35 (Happel, Zacharia [HZ13]). Let K be algebraically closed. If
d(Q) <∞, then g(Q) <∞.

As a matter of habit, I upgraded problems and questions in [HZ13] to conjectures.

Conjecture 13.36. If g(Q) <∞, then d(Q) <∞.

Here is an even stronger conjecture:

Conjecture 13.37. g(Q) <∞ and d(Q) <∞.

Conjecture 13.38. Assume that gl. dim(KQ/I) < ∞ for some admissible
ideal I. Then we have

gl. dim(KQ/I) ≤ dimK(KQ/I).

One can refine the above conjectures by using

g(Q, d) := sup{gl. dim(KQ/I) | I admissible in KQ, gl. dim(KQ/I) = d}

and

d(Q, d) := sup{dimK(KQ/I) | I admissible in KQ, gl. dim(KQ/I) = d}

with d ≥ 1.

Proposition 13.39. If A and B are finite-dimensional K-algebras with

Db(mod(A)) ' Db(mod(B)),

then gl. dim(A) <∞ if and only if gl. dim(B) <∞.

I learned the following two questions from Martin Kalck [K16].
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Question 13.40. Let A and B be finite-dimensional K-algebras with

Db(mod(A)) ' Db(mod(B)).

Assume that gl. dim(A) ≤ m ≤ gl. dim(B). Is there a finite-dimensional K-
algebra C with gl. dim(C) = m and

Db(mod(A)) ' Db(mod(C))?

Question 13.41. Let A be a finite-dimensional K-algebra. Is there some
bA ≥ 0 such that for each finite-dimensional K-algebra B with

Db(mod(A)) ' Db(mod(B))

we have
| gl. dim(A)− gl. dim(B)| ≤ bA?

Theorem 13.42 ([H87, H88, HR82]). Let T ∈ mod(A) be a classical tilting
module, and let B := EndA(T )op. Then

| gl. dim(A)− gl. dim(B)| ≤ 1

and
Db(mod(A)) ' Db(mod(B)).

Conjecture 13.43 (Kalck [K16]). Let K be algebraically closed. Let X =
X(p, λ) be a weighted projective line with weight sequence p = (p1, . . . , pt), and
let A be a finite-dimensional K-algebra with

Db(coh(X)) ' Db(mod(A)).

Then
gl. dim(A) ≤ max{pi | 1 ≤ i ≤ t}.

Most conjectures and statements in this section should have an analogue in the
world of finite-dimensional K-algebras with K an arbitrary field.
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13.6. Conjectures on rigid modules. Let A be a finite-dimensional K-algebra.

For M ∈ mod(A) let sd(M) be the number of isomorphism classes of indecom-
posable direct summands of M . Let n(A) be the number of isomorphism classes of
simple A-modules. Recall that we have

n(A) = sd(AA) = sd(D(AA)).

We call M ∈ mod(A) rigid if

Ext1
A(M,M) = 0.

I found the following conjecture in [K].

Conjecture 13.44. For each d ≥ 1 there are only finitely many rigid A-
modules of dimension d, up to isomorphism.

Using a geometric argument, Conjecture 13.44 can be proved provided K is alge-
braically closed. There is a proof for A hereditary and K arbitrary. It also should
not be difficult to prove it in general and probably someone did it already, I just
could not find a reference.

An A-module M is selforthogonal if

ExtiA(M,M) = 0

for all i ≥ 1. (This terminology varies from author to author.)

The following conjecture can be found in [H, H95].

Conjecture 13.45. Let M ∈ mod(A) be selforthogonal. Then we have

sd(M) ≤ n(A).

Also the following weaker conjecture from [H, H95] is still unsolved.
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Conjecture 13.46. Let M ∈ mod(A) be selforthogonal with proj. dim(M) <
∞. Then we have

sd(M) ≤ n(A).

Theorem 13.47 (Bongartz [Bo81]). Let M ∈ mod(A) be selforthogonal with
proj. dim(M) ≤ 1. Then there exists some N ∈ mod(A) such that

sd(M ⊕N) = n(A) and proj. dim(M ⊕N) ≤ 1.

In particular, we have
sd(M) ≤ n(A).

There exist finite-dimensional K-algebras A such that for each m ≥ 1 there exists
some M ∈ mod(A) with Ext1

A(M,M) = 0 and sd(M) = m, see [HIO14].

Here is a related problem:

Problem 13.48 (Iyama [I]). Find a finite-dimensional algebra A and an A-
module

M :=
⊕
i∈I

Mi

such that I is infinite, Mi ∈ mod(A) is indecomposable for all i, and Mi 6∼= Mj

for all i 6= j such that the following hold:

(i) Ext1
A(M,M) = 0.

(ii) If N ∈ mod(A) is indecomposable with Ext1
A(M,N) = 0, then N ∼= Mi

for some i.

(iii) If N ∈ mod(A) is indecomposable with Ext1
A(N,M) = 0, then N ∼= Mi

for some i.

Question 13.49 (Tachikawa). Let A be selfinjective. Let M ∈ mod(A) be
selforthogonal. Does this imply that M is projective?

Conjecture 13.50 (Auslander-Reiten [AR75]). Each selforthogonal
generator-cogenerator of mod(A) is projective.

Proposition 13.51 (Müller [M68]). Conjecture 13.50 is true if and only if
the Nakayama Conjecture is true.

Conjecture 13.52 ([AR75]). Each selforthogonal generator of mod(A) is pro-
jective.
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Proposition 13.53 ([AR75]). Conjecture 13.52 is true if and only if the Gen-
eralized Nakayama Conjecture is true.

A module T ∈ mod(A) is a tilting module if the following hold:

(i) T is selforthogonal;

(ii) proj. dim(T ) <∞;

(iii) There exists an exact sequence of the form

0→ AA→ T0 → T1 → · · · → Tm → 0

with Ti ∈ add(T ) for all 1 ≤ i ≤ m.

Proposition 13.54. For tilting modules T we have

sd(T ) = n(A).

In the literature, tilting modules are sometimes called generalized tilting modules,
whereas the term tilting module is used for tilting modules with projective dimension
at most one. Tilting modules with projective dimension at most one are also called
classical tilting modules.

Conjecture 13.55. Let M ∈ mod(A) be a selforthogonal A-module with
proj. dim(M) <∞ and sd(M) = n(A). Then M is a tilting module.

Direct summands of tilting modules are called partial tilting modules.

There are examples of selforthogonal modules M with proj. dim(M) < ∞ which
are not partial tilting modules, see [H, H95].

A partial tilting module M ∈ mod(A) with sd(M) = n(A) − 1 is an almost
complete tilting module. An indecomposable C ∈ mod(A) is a comple-
ment of an almost complete tilting module M if M ⊕ C is a tilting module.

Conjecture 13.56. Let M ∈ mod(A) be a projective almost complete tilting
module. Then M has only finitely many complements, up to isomorphism.

For a proof of the following result we refer to [HU98].

Proposition 13.57. Conjecture 13.56 is true if and only if the Generalized
Nakayama Conjecture is true.
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Here is a more general conjecture, see for example [HU98]:

Conjecture 13.58. Let M ∈ mod(A) be an almost complete tilting module.
Then M has only finitely many complements, up to isomorphism.

Theorem 13.59 ([HU89, RS90]). Let M ∈ mod(A) be an almost complete
classical tilting module. Then M has at most two complements, up to isomor-
phism.

Conjecture 13.60. Assume that D(AA) is selforthogonal with
proj. dim(D(AA)) <∞. Then D(AA) is a tilting module.

Conjecture 13.61 (Wakamatsu Tilting Conjecture [W88]). Let T ∈ mod(A)
such that the following hold:

(i) T is selforthogonal with proj. dim(T ) <∞.

(ii) There exists an exact sequence

0→ AA→ T0
f0−→ T1

f1−→ T2
f2−→ T3

f4−→ · · ·
with Ti ∈ add(T ) and

Im(fi) ⊆ {M ∈ mod(A) | ExtjA(M,T ) = 0 for all j ≥ 1}
for all i ≥ 0.

Then T is a tilting module.
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13.7. Hierarchy of homological conjectures. We display the relation between
various homologicaly conjectures:
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14. Auslander-Reiten theory

Let A be a finite-dimensional K-algebra, and let mod(A) be the category of finite-
dimensional A-modules.

Auslander-Reiten theory provides a homological tool box for studying the category
mod(A). For many representation-finite algebras A it also yields a combinatorial
description of mod(A) via the knitting algorithm and the mesh category.

14.1. Auslander-Reiten sequences.

A homomorphism f : X → Y in mod(A) is a split monomorphism if f is a
monomorphism and Im(f) is a direct summand of Y .

A homomorphism f : X → Y in mod(A) is a split epimorphism if f is an
epimorphism and Ker(f) is a direct summand of X.

It follows that f : X → Y is a split monomorphism (resp. split epimorphism) if
and only if there exists some homomorphism g : Y → X such that

gf = 1X (resp. fg = 1Y ).

A homomorphism f in mod(A) is irreducible if the following hold:

(i) f is not a split monomorphism.

(ii) f is not a split epimorphism.

(iii) If f = f2f1 for some homomorphisms f1 and f2, then f1 is a split
monomorphism or f2 is a split epimorphism.

Lemma 14.1. Every irreducible homomorphism in mod(A) is either injective
or surjective.

A short exact sequence

0→ X
f−→ Y

g−→ Z → 0

in mod(A) is an Auslander-Reiten sequence if f and g are irreducible.

Proposition 14.2. For i = 1, 2 let

ηi : 0→ Xi → Yi → Zi → 0

be an Auslander-Reiten sequence in mod(A). If X1
∼= X2 or Z1

∼= Z2, then η1

and η2 are isomorphic.
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One can characterize Auslander-Reiten sequences in terms of source maps and
sink maps.

A homomorphism f : X → Y in mod(A) is left almost split if the following
hold:

(i) f is not a split monomorphism.

(ii) For every homomorphism h : X → M which is not a split monomor-
phism there exists some h′ : Y →M with h′f = h.

X

h
��

f
// Y

h′~~

M

A homomorphism f : X → Y is left minimal if all h ∈ EndA(Y ) with hf = f
are automorphisms.

A homomorphism f : X → Y is a source map for X if the following hold:

(i) f is left almost split.

(ii) f is left minimal.

Lemma 14.3. Let I be an indecomposable injective module. Then the projec-
tion

I → I/ soc(I)

is a source map. Let X ∈ ind(A) be non-injective. Then any source map
X → Y is a monomorphism.

Lemma 14.4. Source maps are unique up to isomorphism. More precisely, for
X ∈ mod(A) and i = 1, 2 let fi : X → Yi be source maps. Then there exists an
isomorphism h : Y1 → Y2 such that hf1 = f2.

A source map X → Y contains all irreducible homomorphisms starting in X:
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Lemma 14.5. Let f : X → Y be a source map, and let f ′ : X → Y ′ be an
arbitrary homomorphism. Then the following are equivalent:

(i) There exists a homomorphism f ′′ : X → Y ′′ and an isomorphism
h : Y → Y ′ ⊕ Y ′′ such that the diagram

X
f

//[
f ′

f ′′

]
��

Y

hzz

Y ′ ⊕ Y ′′

commutes.

(ii) f ′ is irreducible or Y ′ = 0.

Corollary 14.6. Non-zero source maps are irreducible.

Here are the dual definitions and statements:

A homomorphism g : Y → Z in mod(A) is right almost split if the following
hold:

(i) g is not a split epimorphism.

(ii) For every homomorphism h : N → Z which is not a split epimorphism
there exists some h′ : N → Y with gh′ = h.

N

h
��

h′

~~

Y
g
// Z

A homomorphism g : Y → Z is right minimal if all h ∈ EndA(Y ) with gh = g
are automorphisms.

A homomorphism g : Y → Z is a sink map for Z if the following hold:

(i) g is right almost split.

(ii) g is right minimal.
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Lemma 14.7. Let P be an indecomposable projective module. Then the em-
bedding

rad(P )→ P

is a sink map. Let Z ∈ ind(A) be non-projective. Then any sink map Y → Z
is an epimorphism.

Lemma 14.8. Sink maps are unique up to isomorphism.

A sink map Y → Z contains all irreducible homomorphisms ending in Z:

Lemma 14.9. Let g : Y → Z be a sink map, and let g′ : Y ′ → Z be an
arbitrary homomorphism. Then the following are equivalent:

(i) There exists a homomorphism g′′ : Y ′′ → Z and an isomorphism
h : Y ′ ⊕ Y ′′ → Y such that the diagram

Y ′ ⊕ Y ′′

[g′,g′′]
��

h

zz

Y
g

// Z

commutes.

(ii) g′ is irreducible or Y ′ = 0.

Corollary 14.10. Non-zero sink maps are irreducible.

Theorem 14.11. Let

η : 0→ X
f−→ Y

g−→ Z → 0

be a short exact sequence in mod(A). Then the following are equivalent.

(i) g is right almost split, and X is indecomposable.

(ii) f is left almost split, and Z is indecomposable.

(iii) f is a source map.

(iv) g is a sink map.

(v) η is an Auslander-Reiten sequence.

14.2. Existence of Auslander-Reiten sequences.
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The stable category mod(A) has by definition the same objects as mod(A).
The morphisms spaces in mod(A) are

HomA(X, Y ) := HomA(X, Y )/P(X, Y )

where P(X, Y ) is the subspace of all homorphisms X → Y factoring through
a projective A-module.

Dually, the stable category mod(A) has the same objects as mod(A). The
morphisms spaces in mod(A) are

HomA(X, Y ) := HomA(X, Y )/I(X, Y )

where I(X, Y ) is the subspace of all homorphisms X → Y factoring through
an injective A-module.

Stable categories are in general not abelian, but there are some interesting excep-
tions.

If A is selfinjective, then mod(A) is a triangulated category with the shift given
by the inverse syzygy functor Ω−1

A .

Let νA := DHomA(−, AA) and ν−1
A := HomA(D(AA),−). These functors are

the Nakayama functors and give rise to equivalences

proj(A)
νA
//
inj(A)

ν−1
A

oo

which are quasi-inverses of each other.

For M ∈ mod(A) let

P1
f−→ P0 →M → 0

be a minimal projective presentation. Define

τA(M) := Ker(νA(f)).

Dually, for M ∈ mod(A) let

0→M → I0
f−→ I1

be a minimal injective presentation. Define

τ−1
A (M) := Cok(ν−1

A (f)).

One calls τA and τ−1
A Auslander-Reiten translations.
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The AR translations τA and τ−1
A induce bijections

{[X] | X ∈ ind(A) non-projective}
τA

// {[X] | X ∈ ind(A) non-injective}
τ−1
A

oo

which are inverses of each other. (Here [X] denotes the isomorphism class of X.)

Theorem 14.12 (Auslander, Reiten [SY11, Chapter III, Corollary 4.8]). The
Auslander-Reiten translations τA and τ−1

A induce equivalences

mod(A)
τA
//
mod(A)

τ−1
A

oo

which are quasi-inverses of each other.

Theorem 14.13 (Auslander-Reiten formulas [SY11, Chapter III, Theo-
rem 6.3]). For X, Y ∈ mod(A) we have functorial isomorphisms

DHomA(Y, τA(X)) ∼= Ext1
A(X, Y ) ∼= DHomA(τ−1

A (Y ), X).

For X ∈ ind(A) let

EndA(X) := EndA(X)/P(X,X).

If X is projective, then EndA(X) = 0. Otherwise, we have P(X,X) ⊆ J(EndA(X)).

We have

DEndA(X) = {f ∈ DEndA(X) | f(P(X,X)) = 0}.

The Auslander-Reiten formulas lead to the following groundbreaking existence
theorems:

Theorem 14.14 (Existence of Auslander-Reiten sequences [SY11, Chap-
ter III, Theorem 8.4]). Let X ∈ ind(A) be non-projective. We have a functorial
isomorphism

η : DEndA(X)→ Ext1
A(X, τA(X)).

Let 0 6= f ∈ DEndA(X) with f(J(EndA(X))) = 0. Then

η(f) : 0→ τA(X)→ F → X → 0

is an Auslander-Reiten sequence.

14.3. Translation quivers. Let (Γ0,Γ1, s, t) be a quiver. In contrast to our usual
convention, we now allow Γ0 and Γ1 to be infinite sets. As before, we allow multiple
arrows between vertices. We call (Γ0,Γ1, s, t) locally finite if for each vertex y
there are at most finitely many arrows ending at y and there are at most finitely
many arrows starting at y.
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A loop is an arrow a ∈ Γ1 with s(a) = t(a).

A six-tuple Γ = (Γ0,Γ1, s, t, τ, σ) is a translation quiver if the following hold:

(T1) (Γ0,Γ1, s, t) is a locally finite quiver without loops;

(T2) τ : Γ′0 → Γ0 is an injective map where Γ′0 is a subset of Γ0, and for all
z ∈ Γ′0 and y ∈ Γ0 the number of arrows y → z equals the number of
arrows τ(z)→ y;

(T3) σ : Γ′1 → Γ1 is an injective map with σ(α) : τ(z)→ y for each α : y → z,
where Γ′1 is the set of all arrows α : y → z with z ∈ Γ′0.

If Γ = (Γ0,Γ1, s, t, τ, σ) is a translation quiver, then τ is called the translation
of Γ. The vertices in Γ0 \ Γ′0 are the projective vertices, and Γ0 \ τ(Γ′0) is the set
of injective vertices. The map τ yields a bijection Γ′0 → τ(Γ′0) from the set of
non-projective to the set of non-injective vertices. The inverse map is denoted by
τ−1.

If there is an arrow x→ y in a quiver Γ, then x is called a direct predecessor of
y, and y is a direct successor of x. Recall that a path of length n ≥ 1 in Γ is an
n-tuple w = (a1, . . . , an) of arrows in Γ such that s(ai) = t(ai+1) for 1 ≤ i ≤ n− 1.
We say that w starts in s(w) := s(an), and w ends in t(w) := t(a1). Additionally,
for each vertex x of Γ there is a path 1x of length 0 with s(1x) = t(1x) = x.

We write

x
m
// y

for indicating that there are exactly m arrows x→ y. We draw a dashed arrow

x zoo

to indicate that x = τ(z).

By condition (T2) we know that each non-projective vertex z of Γ yields a full
subquiver of the form

y1
m1

��

τ(z)

mt
��

m1
??

... z

yt

mt

??

where y1, . . . , yt are the direct predecessors of z in Γ, and mi ≥ 1 for 1 ≤ i ≤ t. Such
a subquiver is called a mesh in Γ. By (T2) and (T3) the map σ yields a bijection
between the set of arrows yi → z and the set of arrows τ(z)→ yi for each 1 ≤ i ≤ t.

If Γ does not have any projective or injective vertices, then Γ is stable.
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Connected components (with respect to arrows and dashed arrows) of translation
quivers are again translation quivers in the obvious way.

Example: The following translation quiver is finite and has just one connected
component. Its projective vertices are 1, 2, 3, 4 and its injective vertices are 4, 7, 8, 9.

3

��
��

7oo

��
��

1

@@
@@

��

5oo

@@
@@

8oo

4

@@

��

2

@@

6oo 9oo

(We do not specify the map σ. It gives a bijection between the two arrows 3 → 5
and the two arrows 1→ 3, etc.)

14.4. Mesh category of a translations quiver. Let Γ = (Γ0,Γ1, s, t, τ, σ) be a
translation quiver.

The path category KΓ of Γ has the vertices of Γ as objects. For vertices
x, y ∈ Γ0 the morphism space HomKΓ(x, y) has a K-basis indexed by the paths
in Γ which start in x and end in y. There is a path 1x of length 0 which is the
identity element for x. The K-bilinear composition is defined via the usual
composition of paths in quivers.

For each non-projective vertex z we call the linear combination

ρz :=
∑

α : y→z

ασ(α)

the mesh relation associated to z, where the sum runs over all arrows ending
in z.

By definition, ρz is a morphism in the path category KΓ.

The mesh category K〈Γ〉 of the translation quiver Γ is by definition the
factor category of KΓ modulo the ideal MΓ generated by all mesh relations
ρz, where z runs through the set Γ′0 of all non-projective vertices of Γ.

Example: Let Γ be the translation quiver

2

��
��

4

��
��

oo

1

@@
@@

3

@@
@@

oo 5oo
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(We do not specify σ.) For 1 ≤ i, j ≤ 5 we get

dim HomKΓ(i, j) =

{
2j−i if j ≥ i,

0 otherwise.

dim HomK〈Γ〉(i, j) =

{
j − i+ 1 if j ≥ i,

0 otherwise.

14.5. Valued translation quivers.

Assume that Γ = (Γ0,Γ1, s, t, τ, σ) is a translation quiver without multiple
arrows. A function

d : Γ0 ∪ Γ1 → N1

is a valuation for Γ if the following hold:

(V1) If α : x→ y is an arrow, then d(x) and d(y) divide d(α);

(V2) We have d(τ(z)) = d(z) and d(τ(z) → y) = d(y → z) for every non-
projective vertex z and every arrow y → z.

If d is a valuation for Γ, then we call (Γ, d) a valued translation quiver.

If d is a valuation for Γ with d(x) = 1 for all vertices x of Γ, then d splits.

Let (Γ, d) be a valued translation quiver such that d splits. Then we define the
expansion (Γ, d)e of Γ as follows: The quiver (Γ, d)e has the same vertices as
(Γ, d), and also the same translation τ . For every arrow α : x → y in Γ, we
get a sequence of d(x → y) arrows αi : x → y where 1 ≤ i ≤ d(α). (Thus the
arrows in (Γ, d)e starting in x and ending in y are enumerated, there is a first
arrow, a second arrow, etc.) Now σ sends the ith arrow y → z to the ith arrow
τ(z)→ y provided z is a non-projective vertex.

A valued quiver is a valued translation quiver which only has projective vertices.
In particular, we allow that a valued quiver is infinite.

Let ∆ be a valued quiver. We define a valued translations quiver Z∆ as follows:
The vertices of Z∆ are

{x[i] | x ∈ ∆0, i ∈ Z}.
For each arrow a : x→ y in ∆1 there are arrows

a[i] : x[i]→ y[i] and a′[i] : y[i]→ x[i+ 1]

for all i ∈ Z. For x ∈ ∆0 and i ∈ Z define

τ(x[i+ 1]) := x[i].

Let d be the valuation for ∆. The valuation dZ for Z∆ is defined by dZ(x[i]) :=
d(x), dZ(a[i]) := d(a) and dZ(a′[i]) := d(a) for all x ∈ ∆0, a ∈ ∆1 and i ∈ Z.
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Example: Let ∆ be the valued quiver

3

2

@@

1

2
@@

where the valuation for the vertices is d1 = d3 = 1 and d2 = 2. Then Z∆ is

· · ·
$$

3[−1]oo

##

3[0]oo

""

3[1]

!!

oo · · ·oo

· · ·

<<

2

""

2[−1]oo

2

$$

::

2[0]
2

""

oo

<<

2[1]oo

<<

2

""

· · ·

>>

oo

· · ·

>>

1[−1]oo

2 ::

1[0]oo

2 ;;

1[1]oo

2 <<

· · ·oo

2
==

where the valuation for the vertices is d1[i] = d3[i] = 1 and d2[i] = 2.

For a valued quiver ∆ let G be a group of automorphisms of the valued translation
quiver Z∆. (Such an automorphism is defined in the obvious way. It is compatible
with the translation τ and with the valuation d for Z∆.) For a vertex x and an
arrow a of Z∆, let [x] and [a] be their G-orbits.

Let Z∆/G be the valued translation quiver with vertices the G-orbits [x], with
arrows

[a] : [s(a)]→ [t(a)],

and with
τ([x]) := [τ(x)].

The valuation for Z∆/G is defined by d([x]) := d(x) and d([a]) := d(a).

14.6. Radical of a module category.

For X, Y ∈ ind(A) let

radA(X, Y ) := {f ∈ HomA(X, Y ) | f is not invertible}.

In particular, if X 6∼= Y , then radA(X, Y ) = HomA(X, Y ). If X = Y , then

radA(X,X) = rad(EndA(X)) = J(EndA(X))

is the Jacobson radical of EndA(X).

Now let

X =
s⊕
i=1

Xi and Y =
t⊕

j=1

Yj
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with Xi, Yj ∈ ind(A) for all i and j. Recall that we can think of a homomorphism
f : X → Y as a matrix

f =

f11 · · · f1s

...
...

ft1 · · · fts



where fji : Xi → Yj is a homomorphism for all i and j.

Set

radA(X, Y ) :=

radA(X1, Y1) · · · radA(Xs, Y1)
...

...
radA(X1, Yt) · · · radA(Xs, Yt)

 .

This definition does not depend on the chosen direct sum decompositions of X
and Y .

Lemma 14.15. For X, Y ∈ mod(A) the following are equivalent:

(i) f ∈ radA(X, Y ).

(ii) For each g ∈ HomA(Y,X) the map 1X − gf is an isomorphism.

Let X, Y ∈ mod(A). Define rad0
A(X, Y ) := HomA(X, Y ), rad1

A(X, Y ) :=
radA(X, Y ), and for m ≥ 2 let radmA (X, Y ) be the homomorphisms f ∈
HomA(X, Y ) such that f = hg for some g ∈ radm−1

A (X,C), h ∈ radA(C, Y )
and C ∈ mod(A).

Let
rad∞A (X, Y ) :=

⋂
m≥0

radmA (X, Y )

be the infinite radical of mod(A).

Lemma 14.16. For m ∈ N ∪ {∞}, the map

(X, Y ) 7→ radmA (X, Y )

defines an ideal radmA in mod(A). In particular, radmA (X, Y ) is a subspace of
HomA(X, Y ).

The next result follows from a bit of Auslander-Reiten theory together with the
Harada-Sai Lemma.
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Theorem 14.17. Let A be representation-finite. Then

rad∞A = 0.

Lemma 14.18. For X, Y ∈ ind(A) and f ∈ HomA(X, Y ) the following are
equivalent:

(i) f is irreducible.

(ii) f ∈ radA(X, Y ) \ rad2
A(X, Y ).

14.7. Bimodules of irreducible homomorphisms.

For X, Y ∈ ind(A) define

IrrA(X, Y ) := radA(X, Y )/ rad2
A(X, Y ).

We call IrrA(X, Y ) the bimodule of irreducible maps from X to Y .

Warning: One has to keep in mind that the elements in IrrA(X, Y ) are not maps.
They are residue classes of maps.

For X ∈ ind(A) let

F (X) := EndA(X)/ rad(EndA(X)).

It follows that F (X) is a finite-dimensional K-skew field.

Lemma 14.19. IrrA(X, Y ) is an F (Y )-F (X)-bimodule.

Lemma 14.20. Assume K is algebraically closed. If X is an indecomposable A-
module, then

F (X) ∼= K.
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Theorem 14.21. Let X, Y ∈ ind(A), and let f : X → E be a source map for
X. Write

E = Y s ⊕ E ′

with s maximal. Thus f = t[f1, . . . , fs, f
′] where fi : X → Y , 1 ≤ i ≤ s and

f ′ : X → E ′ are homomorphisms. Then the following hold:

(i) The residue classes of f1, . . . , fs in IrrA(X, Y ) form a basis of the F (Y )-
vector space IrrA(X, Y );

(ii) We have

s = dimF (Y )(IrrA(X, Y )) =
dimK(IrrA(X, Y ))

dimK(F (Y ))
.

Here is the corresponding result for sink maps:

Theorem 14.22. Let X, Y ∈ ind(A), and let g : E → Y be a sink map for Y .
Write

E = X t ⊕ E ′

with t maximal. Thus g = [g1, . . . , gt, g
′] where gi : X → Y , 1 ≤ i ≤ t and

g′ : E ′ → Y are homomorphisms. Then the following hold:

(i) The residue classes of g1, . . . , gt in IrrA(X, Y ) form a basis of the F (X)-
vector space IrrA(X, Y );

(ii) We have

t = dimF (X)(IrrA(X, Y )) =
dimK(IrrA(X, Y ))

dimK(F (X))
.

Corollary 14.23. Let
0→ τA(X)→ E → X → 0

be an Auslander-Reiten sequence, and let Y ∈ ind(A). Then

dimK IrrA(τA(X), Y ) = dimK IrrA(Y,X).

Lemma 14.24. Let X ∈ ind(A) be non-projective. Then

F (τA(X)) ∼= F (X).

14.8. Auslander-Reiten quivers. Let A be a finite-dimensional K-algebra. For
an A-module X denote its isomorphism class by [X]. Recall that for X, Y ∈ ind(A)
we defined

F (X) := EndA(X)/ rad(EndA(X)) and IrrA(X, Y ) := radA(X, Y )/ rad2
A(X, Y ).

Let τA be the Auslander-Reiten translation for A.
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The Auslander-Reiten quiver ΓA = (Γ0,Γ1, s, t) of A has as vertices

Γ0 := {[X] | X ∈ ind(A)}.
For X, Y ∈ ind(A) there is an arrow [X] → [Y ] if and only if IrrA(X, Y ) 6= 0.
Let

Γ′0 := {[X] ∈ Γ0 | X is non-projective}
and define

τ : Γ′0 → Γ0

[X] 7→ [τA(X)].

For [X] ∈ Γ′0 we draw a dotted arrow [τA(X)] oo [X].

For each vertex [X] of ΓA define

dX := dA([X]) := dimKF (X),

and for each arrow [X]→ [Y ] let

dXY := dA([X]→ [Y ]) := dimK IrrA(X, Y ).

Arrows in ΓA are displayed as [X]
dXY−−→ [Y ].

Lemma 14.25. The following hold:

(i) (ΓA, dA) is a valued translation quiver.

(ii) The valuation dA splits if and only if for each X ∈ ind(A) we have F (X) ∼=
K.

(iii) A vertex [X] of (ΓA, dA) is projective (resp. injective) if and only if X is
projective (resp. injective).

Lemma 14.26. If K is algebraically closed, then dA splits.

Examples of Auslander-Reiten quivers can be found in Section 14.12.

14.9. Components of Auslander-Reiten quivers. Connected components of
Auslander-Reiten quivers are just called components.
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Theorem 14.27 (Auslander). Assume that A is connected. Then the follow-
ing are equivalent:

(i) A is representation-finite.

(ii) ΓA has a finite component.

(iii) There is a component C of ΓA and some b ≥ 1 such that

length(X) ≤ b

for all [X] ∈ C.

The following two conjectures are from the list of conjectures in [ARS97].

Conjecture 14.28. Assume that ΓA has only one connected component. Then
A is representation-finite.

Conjecture 14.29. Assume that A is representation-infinite. Then ΓA has
infinitely many connected components.

I found the following conjecture in [Bu].

Conjecture 14.30. Let K be algebraically closed. Assume there is some X ∈
ind(A) such that

lim
n→∞

n

√
length(τnA(X)) > 1 or lim

n→∞
n

√
length(τ−nA (X)) > 1.

Then A is wild.

For a component C of the Auslander-Reiten quiver ΓA let ind(C) be the full sub-
category of ind(A) with objects a set of representatives of isomorphism classes of
all X with [X] ∈ C. For X ∈ ind(A) we often just write X ∈ C if [X] ∈ C, and we
write C instead of ind(C). Thus we treat C (or any set of components of ΓA) as a
full subcategory of ind(A) and mod(A).

Assume that the induced valuation for C splits, and let Ce be the expansion of
C. Then C is standard if the mesh category K〈Ce〉 is isomorphic to ind(C).

In this case, the mesh category K〈Ce〉 provides a combinatorial description of
ind(C).

C is generalized standard if

rad∞A (X, Y ) = 0

for all X, Y ∈ C.
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Proposition 14.31 (Liu [L94]). Let K be algebraically closed. Then any
standard component of ΓA is generalized standard.

The τ-orbit of X ∈ ΓA is

{τ i(X) | i ∈ Z}

C is preprojective (resp. preinjective) if the following hold:

(i) C contains no oriented cycles.

(ii) Each X ∈ C belongs to the τ -orbit of a projective (resp. injective)
module.

X ∈ ind(A) is preprojective (resp. preinjective) if [X] lies in a preprojec-
tive (resp. preinjective) component of ΓA.

Theorem 14.32. Assume that C is preprojective or preinjective, and assume
that the induced valuation for C splits. Then C is standard.

C is regular if it does not contain any projective or injective module, i.e.

C ∩ proj(A) = ∅ and C ∩ inj(A) = ∅.

C is semiregular if it does not contain both a projective and an injective
module, i.e. we have

C ∩ proj(A) = ∅ or C ∩ inj(A) = ∅.

C is a semiregular tube if C is semiregular and it contains an oriented cycle.

The shapes of semiregular tubes and semiregular components were described
by Liu [L93]. This extends work by Zhang [Z91].

A path
X1 → X2 → · · · → Xt

in ΓA is a sectional path if

Xi 6∼= τ(Xi+2)

for 1 ≤ i ≤ t− 2.

Sectional paths are an important combinatorial tool for analyzing Auslander-
Reiten quivers.
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There are examples of Auslander-Reiten components C ∼= Z∆ where ∆ is one of
the following three quivers:

A∞ : 1 // 2 // 3 // · · ·

A∞∞ : · · · // 2 // 1 // 0 // 1 // 2 // · · ·

D∞ : 1

��

3 // 4 // 5 // · · ·

2

>>

C is a stable tube of rank r ≥ 1 if

C ∼= ZA∞/(τ r).
A stable tube of rank 1 is a homogeneous tube.

The following picture shows a stable tube of rank 3 (one needs to identify the
vertices on the two dashed vertical lines):
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Theorem 14.33 (Skowroński [S94]). There is only a finite number of gener-
alized standard components of ΓA which are not stable tubes.
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The stable Auslander-Reiten quiver sΓA is obtained from ΓA by deleting
the τ -orbits which contain a projective or injective module.

This is again a valued translation quiver in the obvious way.

A stable component of ΓA is by definition a component of the stable
Auslander-Reiten quiver sΓA.

Note that each regular component is a stable component.

X ∈ C is τ-periodic if τ r(X) = X for some r ≥ 1.

C is periodic if each X ∈ C is τ -periodic. Otherwise, C is non-periodic.

Proposition 14.34. Assume that C is a stable component of ΓA. Suppose
there exists some periodic X ∈ C. Then C is periodic.

Theorem 14.35 (Happel, Preiser, Ringel [HPR80]). Let C be a stable com-
ponent of ΓA. If C contains a τ -periodic module, then the following hold:

(i) If C is infinite, then

C ∼= ZA∞/(τ r)
for some r ≥ 1.

(ii) If C is finite, then
C ∼= Z∆/G

where ∆ is a valued quiver of Dynkin type and G is a group of auto-
morphisms of Z∆ containing the automorphism τ r for some r ≥ 1.

Theorem 14.36 (Zhang [Z91]). Let C be a stable component of ΓA. If C does
not contain a τ -periodic module, then

C ∼= Z∆

where ∆ is a valued acyclic quiver.

Both theorems were proved by combinatorial methods.

Problem 14.37 (Ringel [R02, Problem 6]). Assume that A is 1-domestic.
Are all but finitely many components of ΓA homogeneous tubes?
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Problem 14.38 (Ringel [R02, Problem 5]). Assume that A is tame. Let C be
a regular component of ΓA which is not a stable tube. Does it follow that

C ∼= ZA∞∞ or C ∼= ZD∞?

Theorem 14.39 (Liu [L96]). Assume that a stable component C of ΓA con-
tains a τ -orbit with infinitely many modules of the same length. Then

C ∼= ZA∞.

Conjecture 14.40 (Liu [L96, Problem 2]). Assume that a stable component
C of ΓA contains infinitely many modules of the same length. Then

C ∼= ZA∞.

We follow now [Bu]. Let

η : 0→ τA(M)→
t⊕
i=1

Ei →M → 0

be an Auslander-Reiten sequence in mod(A) with Ei indecomposable for all 1 ≤ i ≤
t. In this case, set sd(η) := t.

Theorem 14.41. Assume that sd(η) ≥ 2 and E1
∼= E2. Then the following

hold:

(i) A is representation infinite.

(ii) If sd(η) ≥ 4, then A is wild.

(iii) If sd(η) = 3 and E3 is not projective-injective, then A is wild.

Theorem 14.42 (Bautista, Brenner [BB81]). If A is representation-finite,
then

sd(η) ≤ 4.

In this case, if sd(η) = 4, then one the Ei is projective-injective.

The following conjecture is due to Brenner. Some special cases are considered in
[PT99].

Conjecture 14.43 (Five Terms in the Middle Conjecture). If A is tame, then

sd(η) ≤ 5.

In this case, if sd(η) = 5, then one the Ei is projective-injective.
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For n ≥ 2, the path algebra of the n-Kronecker quiver

1 ···
a1
//

an
// 2

is an example of a representation-infinite algebra with sd(η) ≤ n for all Auslander-
Reiten sequences η. (Recall that the n-Kronecker quiver is tame for n = 2 and
strictly wild for n ≥ 3.)
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14.10. Directing and reachable modules. As before, letA be a finite-dimensional
K-algebra.

A path of length n ≥ 0 in mod(A) is a finite sequence

([X0], [X1], . . . , [Xn])

of isomorphism classes with Xi ∈ ind(A) for all i such that radA(Xi−1, Xi) 6= 0
for 1 ≤ i ≤ n.

Such a path ([X0], [X1], . . . , [Xn]) starts in X0 and ends in Xn. If n ≥ 1 and
[X0] = [Xn], then ([X0], [X1], . . . , [Xn]) is a cycle in mod(A). In this case, we say
that the modules X0, . . . , Xn−1 lie on a cycle.

For X, Y ∈ ind(A) we write X � Y if there exists a path which starts in X and
ends in Y , and we write X ≺ Y if there is such a path of length n ≥ 1.

X ∈ ind(A) is directing if X does not lie on a cycle.

In other words, X is directing if and only if X 6≺ X.

Examples:

(i) Let A be the path algebra of a Dynkin quiver. Then all indecomposable
A-modules are directing.

(ii) Let A = K[T ]/(Tm) for some m ≥ 2. Then none of the indecomposable
A-modules is directing.

Lemma 14.44. Let X be a directing A-module, then EndA(X) is a K-skew
field, and we have ExtiA(X,X) = 0 for all i ≥ 1.

X ∈ mod(A) is sincere if each simple A-module occurs as a composition factor
of X.
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Theorem 14.45. Let X be a sincere directing A-module. Then the following
hold:

(i) proj. dim(X) ≤ 1;

(ii) inj. dim(X) ≤ 1;

(iii) gl. dim(A) ≤ 2.

Theorem 14.46. Let X, Y ∈ ind(A) with dim(X) = dim(Y ). If X is a
directing module, then X ∼= Y .

X ∈ ind(A) is reachable if there are only finitely many paths in mod(A)
which end in X.

Lemma 14.47. Every reachable module is directing.

Let −1P := ∅. For n ≥ 0 let nP be the class of all X ∈ ind(A) such that all
paths ending in X have length at most n. Let

∞P :=
⋃
n≥0

nP .

We get a chain

∅ = −1P ⊆ 0P ⊆ · · · ⊆ n−1P ⊆ nP ⊆ · · ·

Lemma 14.48. For X ∈ ind(A) the following are equivalent:

(i) X is reachable.

(ii) X ∈ ∞P.

The following properties of ∞P are easy to prove:
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(i) 0P is the class of simple projective modules.

(ii) 1P contains additionally all indecomposable projective modules P such
that rad(P ) is semisimple and projective.

(iii) 2P can contain non-projective modules (e.g. if A is the path algebra of
a quiver of Dynkin type A2).

(iv) nP is closed under indecomposable submodules.

(v) If X ∈ nP is non-projective, then τA(X) ∈ n−2P .

(vi) For each X ∈ nP there is some indecomposable projective A-module
P and some m ≥ 0 such that

X ∼= τ−mA (P ).

As before, let ΓA be the Auslander-Reiten quiver of A.

Let −1Γ := ∅. For n ≥ 0, if n−1Γ is already defined, then nΓ is the set of all
vertices [X] ∈ ΓA such that all direct predecessors of [X] in ΓA are in n−1Γ.
Set

∞Γ :=
⋃
n≥0

nΓ.

We get a chain of inclusions

∅ = −1Γ ⊆ 0Γ ⊆ · · · ⊆ n−1Γ ⊆ nΓ ⊆ · · ·

We have X ∈ nP if and only if [X] ∈ nΓ.

For [X] ∈ ΓA we have [X] ∈ ∞Γ if and only if there are only finitely many
paths in ΓA ending in [X].

For n ≥ −1 let nΓ be the full subquiver of ΓA with vertices nΓ. Set

∞Γ :=
⋃
n≥0

nΓ.

14.11. Knitting algorithm. The results in this section are based on Theorems 14.21
and 14.22, Corollary 14.23 and Lemma 14.24.

Here is the basic idea of the knitting process: Let X ∈ ind(A). Whenever the
sink map ending in X is known, we can construct the source map starting in X. In
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(ΓA, dA) the situation around the vertex [X] looks like this:

[Y1]

��

[τ−1
A (Y1)]oo

...
...

[Yr]

!!

[τ−1
A (Yr)]oo

[X]

99

&&

GG

��

[I1]

<<

[P1]

...
...

[Is]

II

[Pt]

Here the Yi are non-injective modules, the Ii are injective, and the Pi are projective.
The sink map ending in X is of the form Y → X where

Y =
r⊕
i=1

Y
dYiX/dYi
i ⊕

s⊕
i=1

I
dIiX/dIi
i .

To get the source map X → Z, we have to translate the non-injective modules Yi
using τ−1

A . Note that

dXτ−1
A (Yi)

= dYiX and dτ−1
A (Yi)

= dYi

for all i. Furthermore, we have to check if X occurs as a direct summand of rad(P )
where P runs through the set of indecomposable projective modules.

For an indecomposable projective module P and an indecomposable module X
let rXP be the multiplicity of X in a direct sum decomposition of rad(P ) into
indecomposables, i.e.

rad(P ) = XrXP ⊕ C

for some module C and rXP is maximal with this property.

In this case, there is an arrow [X]→ [P ] with valuation

dXP = rXPdX .

We get

Z =
r⊕
i=1

τ−1
A (Yi)

d
Xτ−1

A
(Yi)

/d
τ−1
A

(Yi) ⊕
t⊕
i=1

P
dXPi/dPi
i .



FD-ATLAS 277

If X is non-injective, we get a mesh

[τ−1
A (Y1)]

��

...

[τ−1
A (Yr)]

''

[X]

99

%%

GG

��

[τ−1
A (X)]oo

[P1]

77

...

[Pt]

DD

in the Auslander-Reiten quiver (ΓA, dA). We have

dτ−1
A (Yi)τ

−1
A (X) = dXτ−1

A (Yi)
and dτ−1

A (X) = dX .

Knitting preparations:

(i) Determine all indecomposable projectives P (1), . . . , P (n) and all indecom-
posable injectives I(1), . . . , I(n).

(ii) For each 1 ≤ i ≤ n determine rad(P (i)) and decompose it into indecompos-
able modules, say

rad(P (i)) =

ri⊕
j=1

R
rij
ij

where rij ≥ 1, and the Rij are indecomposable such that Rik
∼= Ril if and

only if k = l.

(iii) For each 1 ≤ i ≤ n determine dP (i) = dimKF (P (i)).

Since the inclusion rad(P (i))→ P (i) is a sink map, we have

dRijP (i) = rijdRij and rij = rRijP (i).

Furthermore, we know that

F (P (i)) = EndA(P (i))/ rad(EndA(P (i))) ∼= EndA(P (i)/ rad(P (i))) ∼= EndA(S(i))

where S(i) is the simple A-module with S(i) ∼= P (i)/ rad(P (i)).

Knitting algorithm:

Let −1∆ be the empty quiver. For n ≥ 0 we define inductively quivers n∆,

n∆(proj), n∆(proj, τ−), which are full valued translation subquivers of (ΓA, dA).
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For all n ≥ 1 these quivers will be related by the diagram

n−1∆

""

n∆ //

%%

n−1∆(proj) //
n−1∆(proj, τ−)

��

n+1∆ //
n∆(proj) //

n∆(proj, τ−)

where the arrows stand for inclusions. By n∆, n∆(proj), n∆(proj, τ−), we denote
the set of vertices of n∆, n∆(proj), n∆(proj, τ−), respectively.

(I0) Define 0∆: Let 0∆ be the quiver (without arrows) with vertices [S]
where S is simple projective.

(II0) Add projectives: For each [S] ∈ 0∆, if [S] = [Rij] for some i, j, then
(if it wasn’t added already) add the vertex [P (i)] with valuation dP (i),
and add an arrow [S] → [P (i)] with valuation dSP (i) = rSP (i)dS. We
denote the resulting quiver by 0∆(proj).

(III0) Translate the non-injectives in 0∆: For each [S] ∈ 0∆ with S non-
injective, add the vertex [τ−1

A (S)] to 0∆(proj) with valuation dτ−1
A (S) =

dS, and for each arrow [S] → [Y ] constructed so far add an arrow
[Y ]→ [τ−1

A (S)] to 0∆(proj) with valuation dY τ−1
A (S) = dSY . We denote

the resulting quiver by 0∆(proj, τ−).

Note that any source map starting in a simple projective module S is of the
form S → P where P is projective. (Proof: Assume there is an indecomposable
non-projective module X and an arrow [S] → [X]. Then there has to be an arrow
[τA(X)] → [S], a contradiction since [S] is a source in (ΓA, dA).) Thus we get P
from the data collected in (i), (ii) and (iii). More precisely, we have

P =
n⊕
i=1

P (i)dSP (i)/dP (i) ,

and dSP (i) = rSP (i)dS.

Now assume that for n ≥ 1 the quivers n−1∆, n−1∆(proj) and n−1∆(proj, τ−) are
already defined. We also assume that for each vertex [X] ∈ n−1∆(proj, τ−) and each
arrow [X]→ [Y ] in n−1∆(proj, τ−) we defined valuations dX and dXY , respectively.
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(In) Define n∆: Let n∆ be the full subquiver of n−1∆(proj) with vertices
[X] such that all direct predecessors of [X] in n−1∆(proj) are contained
in n−1∆, and if [X] is a vertex with [X] = [P (i)] projective, then we
require additionally that [Rij] ∈ n−1∆ for all j.

(IIn) Add projectives: For each [X] ∈ n∆, if [X] = [Rij] for some i, j, then
(if it wasn’t added already) add the vertex [P (i)] to n−1∆(proj, τ−)
with valuation dP (i), and add an arrow [X]→ [P (i)] to n−1∆(proj, τ−)
with valuation dXP (i) = rXP (i)dX . We denote the resulting quiver by

n∆(proj).

(IIIn) Translate the non-injectives in n∆ \ n−1∆: For each [X] ∈ n∆ \
n−1∆ with X non-injective, add the vertex [τ−1

A (X)] to n∆(proj) with
valuation dτ−1

A (X) = dX , and for each arrow [X] → [Y ] constructed so

far add an arrow [Y ]→ [τ−1
A (X)] to n∆(proj) with valuation dY τ−1

A (X) =

dXY . We denote the resulting quiver by n∆(proj, τ−).

The algorithm stops if n∆ \ n−1∆ is empty for some n. It can happen that the
algorithm never stops.

Define

∞∆ :=
⋃
n≥0

n∆ and ∞∆ :=
⋃
n≥0

n∆.

The situation around a vertex [X] ∈ n∆ looks like this:

[Y1]

��

[τ−1
A (Y1)]oo

��

...
...

[Yr]

##

[τ−1
A (Yr)]oo

''

[X]

88

&&

FF

��

[τ−1
A (X)]

[I1]

;;

[P1]

77

... [Rij]?

99

...

[Is]

II

... [Pt]

EE

[Rij]?

99

Red ⊆ n−1∆, Blue ⊆ n−1∆(proj, τ−), Green ⊆ n∆(proj), Magenta ⊆ n∆(proj, τ−).
For each Rij an indecomposable direct summand of rad(Pk), one needs to check if
[Rij] ∈ m∆ for some m. Otherwise, [Pk] will not be in ∞∆.
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The following statements follow directly from the construction of ∞∆.

(i) Let [Yi]→ [X], 1 ≤ i ≤ s be the arrows in n∆ ending in [X]. Then the sink
map ending in X is of the form

s⊕
i=1

Y
dYiX/dYi
i → X

and [Yi] ∈ n−1∆ for all i.

(ii) Let [X] ∈ n∆, and let [X] → [Zi], 1 ≤ i ≤ t be the arrows in n∆(proj)
starting in [X]. Then the source map starting in X is of the form

X →
t⊕
i=1

Z
dXZi/dZi
i .

(iii) For [X] and [Zi] as in (ii) the following are equivalent:
(a) X is non-injective.
(b) We have

l(X) <
t∑
i=1

dXZi/dZi · l(Zi).

In this case, we have

dim(τ−1
A (X)) = −dim(X) +

t∑
i=1

dXZi/dZi · dim(Zi).

Lemma 14.49. For all n ≥ −1 we have

n∆ = nΓ.

In particular, ∞∆ = ∞Γ.

Corollary 14.50. Let [X] ∈ ∞∆ and [Y ] ∈ ΓA. Then [X] = [Y ] if and only
if dim(X) = dim(Y ).

If we know the dimension vectors dim(P (i)) and dim(Rij) for all i, j, then our
knitting algorithm yields an algorithm to determine dim(X) for any vertex
[X] ∈ ∞∆. We get a knitting algorithm which only uses dimension vectors.

Here are some further remarks:

(i) We have ∞∆ 6= ∅ if and only if there is a simple projective module.

(ii) The number of connected components of ∞∆ is bounded by the number of
simple projective A-modules.

(iii) For each [X] ∈ ∞∆ we have X ∼= τ−mA (P ) for some indecomposable projective
P and some m ≥ 0.
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(iv) There is also a dual knitting algorithm by starting with the simple injective
A-modules. As a knitting preparation one needs to decompose I(i)/ soc(I(i))
into a direct sum of indecomposables, and one needs the values dI(i).

Lemma 14.51. Let C be a connected component of ΓA. Then the following
are equivalent:

(i) C is a preprojective component of ΓA.

(ii) C ⊆ ∞∆.

Recall that

∞Γ = ∞∆, and ∞P = {X ∈ ind(A) | [X] ∈ ∞Γ}

where ∞P is the class of reachable A-modules. We consider ∞P as a full subcategory
of mod(A).

Theorem 14.52. For a finite-dimensional K-algebra A the following are
equivalent:

(i) A is a directed algebra.

(ii) ∞P = ind(A).

(iii) ∞∆ = ΓA.

(iv) ΓA is a union of preprojective components.

(v) ΓA is a union of preinjective components.

In this case, A is representation-finite.

Using covering theory and knitting, one can also construct the Auslander-Reiten
quiver of most non-directed representation-finite algebras.

Proposition 14.53. Let A be a finite-dimensional connected hereditary alge-
bra. Then the following hold:

(i) ΓA has a unique preprojective component ΓP and a unique preinjective
component ΓI.

(ii) ΓP = ∞∆.

(iii) ΓP = ΓI if and only if A is representation-finite.

14.12. Examples (knitting). If not mentioned otherwise, all vertices in the fol-
lowing examples have valuation 1.
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14.12.1. Let Q be the quiver

2

��

3

��

4

��

1

and let A = KQ. Using the dimension vector notation, ΓA looks as follows:

1 0 0
1

""

0 1 1
1

""

oo 1 0 0
0

oo

0 0 0
1

""

��

<<

1 1 1
2

""

��

<<

oo 1 1 1
1

""

��

<<

oo

0 1 0
1

<<

1 0 1
1

<<

oo 0 1 0
0

oo

0 0 1
1

EE

1 1 0
1

EE

oo 0 0 1
0

oo

14.12.2. Here is the Auslander-Reiten quiver of the algebra A = KQ/I where Q is
the quiver

1
a

��

c

��

2

b
��

3

d
��

4

and I is the ideal generated by ba− dc:

0
1 0

1

  

0
0 1

0

  

oo
1

1 0
0

  

oo

0
0 0

1

>>

��

0
1 1

1

  

>>

��

oo
1

1 1
0

>>

��

oo
1

0 0
0

oo

1
1 1

1

>>

0
0 1

1

FF

0
1 0

0

FF

oo
1

0 1
0

FF

oo
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14.12.3. Let Q be the quiver

2

��

a
��

1 3
b
��

4
c
��

6

��

5

and let A = KQ/I where I is generated by cba. In the following two pictures
we display the composition factors of the indecomposable modules. (When the
submodule lattice of a module is not too complicated, this can be a good alternative
to displaying dimension vectors.) The number i stands for the simple module S(i).
Then ΓA looks as follows:

6
5

""

4

##

oo 3

$$

oo 2
1

oo

��
5

??

��

4 6
5

;;

##

oo 3
4

;;

""

oo 2
1 3

<<

oo

!!

2oo

4
5

��

==

3
4 6

5

<<

oo

!!

2
1 3

4

;;

��

2
3

oo

@@

3
4

5

<<

6oo

1

FF

2
3

4
oo

GG

14.12.4. Let A = KQ/I where Q is the quiver

2

b
��

1
a
oo

3

c
��

7
f
oo

4
d
// 5

e
// 6

and the ideal I is generated by edcba and dcf . Here is ΓA:



284 JAN SCHRÖER
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14.12.5. Let A be the path algebra of the quiver

3

��

��

2

��

1

Then there is an infinite preprojective component in ΓA, which can be obtained from
the following picture by identifying the vertices in the first with the corresponding
vertices in the fourth row:

1
1
2

��

2
3
3

��

oo
4

4
5

��

oo · · ·oo

0
1
1

��

@@

2
2
3

��

@@

oo
3

4
4

��

@@

oo · · ·oo

��

AA

0
0
1

��

@@

1
2
2

��

@@

oo
3

3
4

��

@@

oo
4

5
5

��

@@

oo · · ·oo

1
1
2

@@

2
3
3

@@

oo
4

4
5

@@

oo · · ·oo

AA

14.12.6. Let A = KQ/I where Q is the quiver

3

a
��

d

��

2

c
��

b
��

1

and I is the ideal generated by ba. The indecomposable projective A-modules are
of the form

P (1) = 1 , P (2) = 2
1 1 , P (3) =

3
2 1

1
.

We have dP (i) = 1 for all i. Then ∞∆ consists of two points, namely P (1) and P (2):

0
1
2

2

��

2
5
8

oo

0
0
1

2

BB

1

��

1
3
5

2

BB

oo

1
1
2

1

BB
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Note that one of the direct summands of rad(P (3)) does not show up in the course
of the knitting algorithm. So we get n∆ = 1∆ for all n ≥ 2.

14.12.7. Let K = R and set

A =

(
R C
0 C

)
⊂M2(C).

Clearly, A is a 5-dimensional K-algebra. Let e1 =

(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
. Set

P (1) = Ae1 =

(
R
0

)
and P (2) = Ae2 =

(
C
C

)
.

These are the indecomposable projective A-modules. Next, we observe that

rad(P (1)) = 0 and rad(P (2)) =

(
C
0

)
=

(
R
0

)
⊕
(
R
0

)
= P (1)⊕ P (1).

Furthermore, we have

EndA(P (1)) ∼= (e1Ae1)op ∼= R and EndA(P (2)) ∼= (e2Ae2)op ∼= C.

Thus F (P (1)) ∼= R and F (P (2)) ∼= C, and therefore dP (1) = 1 and dP (2) = 2. We
get

dP (1)P (2) = rP (1)P (2)dP (1) = 2 · 1.
The indecomposable injectives are

I(1) =
( C/R

C

)
and I(2) = ( 0

C ) .

Here is ΓA:

dP (2) = 2 2
1

2

��

0
1

oo

dP (1) = 1 1
0

2

AA

1
1

2

AA

oo

So there are just four indecomposable A-modules, up to isomorphism. (Note that
the valuation of the vertices remains constant on τ -orbits, so it is enough to display
them only once per orbit.) We can also display ΓA as

2 P (2)
2

""

I(2)oo

1 P (1)

2
;;

I(1)

2
<<

oo

14.12.8. Let

A =

(
R C
0 R

)
⊂M2(C).

So A is a 4-dimensional R-algebra. The indecomposable projectives are

P (1) =

(
R
0

)
and P (2) =

(
C
R

)
.
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We have

rad(P (1)) = 0 and rad(P (2)) =

(
C
0

)
=

(
R
0

)
⊕
(
R
0

)
= P (1)⊕ P (1)

and F (P (i)) ∼= R for i = 1, 2. This implies

dP (1)P (2) = rP (1)P (2)dP (1) = 2 · 1.

Knitting gives an infinite preprojective component of ΓA:

dP (2) = 1 2
1

2

��

4
3

2

��

oo 6
5

oo

2

��

· · ·oo

dP (1) = 1 1
0

2

AA

3
2

2

AA

oo 5
4

2

AA

oo · · ·

2

??

oo

14.12.9. In the previous two examples, we could have worked with a field extension
K ⊂ L with dimK(L) = 2 instead of the field extension R ⊂ C. Essentially this
would lead to the same results. Note however the following: For

A =

(
Q Q(

√
2)

0 Q(
√

2)

)
and B =

(
Q Q(

√
3)

0 Q(
√

3)

)
.

the Auslander-Reiten quivers ΓA and ΓB are isomorphic as valued translation quiv-
ers, but A and B are not isomorphic, and also not Morita equivalent.

14.12.10. Let

A =

(
K L
0 L

)
⊂M2(L)

where K ⊂ L is a field extension of dimension 3, e.g. K = Q and L = Q( 3
√

2). The
indecomposable projective A-modules are

P (1) =

(
K
0

)
and P (2) =

(
L
L

)
.

In this case there are 6 indecomposable A-modules, and ΓA looks like this:

dP (2) = 3 3
1

3

��

3
2

3

��

oo 0
1

oo

dP (1) = 1 1
0

3

AA

2
1

3

AA

oo 1
1

3

AA

oo

14.12.11. Let

A =

(
K L
0 L

)
⊂M2(L)

where K ⊂ L is a field extension of dimension 4. The indecomposable projective
A-modules are

P (1) =

(
K
0

)
and P (2) =

(
L
L

)
.
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Then ΓA has an infinite preprojective component:

dP (2) = 4 4
1

4

��

8
3

4

��

oo 12
5

oo

4

��

16
7

4

��

oo · · ·oo

dP (1) = 1 1
0

4
AA

3
1

4
AA

oo 5
2

4
@@

oo 7
3

4
@@

oo · · ·

4
??

oo

14.13. Mesh category. Let A be a finite-dimensional K-algebra.

We say that K is a splitting field for A if

EndA(S) ∼= K

for all simple A-modules S.

Examples:

(i) If K is algebraically closed, then K is a splitting field for every A.

(ii) If A = KQ/I is a basic algebra, then K is a splitting field for A.

Lemma 14.54. Assume that K is a splitting field for A. Then EndA(X) ∼= K
for all X ∈ ∞P. In particular, the valuation for ∞Γ splits.

Recall that the mesh category of a translation quiver Γ is denoted by K〈Γ〉.

Theorem 14.55. Assume that K is a splitting field for A. Then there is an
equivalence of categories

K〈Γ〉 → ∞P
where Γ := (∞Γ)e is the expansion of the valued translation quiver ∞Γ.

Let M,X ∈ ind(A) be non-isomorphic such that X is non-projective. Let

0→ τA(X)→ E → X → 0

be the Auslander-Reiten sequence ending in X. Then

0→ HomA(M, τA(X))→ HomA(M,E)→ HomA(M,X)→ 0

is exact.

Let Γ = (∞Γ)e. If [X] and [Z] are vertices in Γ such that none of the paths in
Γ starting in [X] and ending in [Z] contains a subpath of the form [Y ] → [N ] →
[τ−1
A (Y )] for some vertices [Y ] and [N ] of Γ, then we have

HomK〈Γ〉([X], [Z]) = HomKΓ([X], [Z]).

Using these two facts one can calculate dimensions of homomorphism spaces in
the mesh category K〈Γ〉. This is illustrated in the examples below.
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14.14. Examples (mesh categories).

14.14.1. Let Q be the quiver

2

��

5oo

1 3oo

4

OO

6oo

and let A = KQ. Here is ΓA:

1 1
1 0
0 0

��

0 0
1 1
1 0

��

1 0
1 0
1 1

��

1 1
1 1
0 0

��

0 0
0 0
1 0

��

0 0
0 0
0 1

1 0
1 0
0 0

��

@@

1 1
2 1
1 0

��

@@

1 0
2 1
2 1

��

@@

2 1
2 1
1 1

��

@@

1 1
1 1
1 0

��

@@

0 0
0 0
1 1

@@

0 0
1 0
0 0

@@

��

// 0 0
1 1
0 0

// 1 0
2 1
1 0

//

@@

��

1 0
1 0
1 0

// 2 1
3 1
2 1

//

��

@@

1 1
2 1
1 1

// 2 1
3 2
2 1

//

��

@@

1 0
1 1
1 0

// 2 1
2 1
2 1

//

��

@@

1 1
1 0
1 1

// 1 1
1 1
1 1

//

@@

��

0 0
0 1
0 0

0 0
1 0
1 0

��

@@

1 0
2 1
1 1

��

@@

2 1
2 1
1 0

��

@@

1 1
2 1
2 1

��

@@

1 0
1 1
1 1

��

@@

1 1
0 0
0 0

��
0 0
1 0
1 1

@@

1 0
1 1
0 0

@@

1 1
1 0
1 0

@@

0 0
1 1
1 1

@@

1 0
0 0
0 0

@@

0 1
0 0
0 0

The next diagram shows the locations of the indecomposable projective and the
indecomposable injective A-modules:

P (5)

��

◦

��

◦

��

◦

��

◦

��

I(6)

P (2)

��

??

◦

��

??

◦

��

??

◦

��

??

◦

��

??

I(4)

??

P (1)

??

��

// P (3) // ◦ //

??

��

◦ // ◦ //

��

??

◦ // ◦ //

��

??

◦ // ◦ //

��

??

◦ // I(1) //

??

��

I(3)

P (4)

��

??

◦

��

??

◦

��

??

◦

��

??

◦

��

??

I(2)

��

P (6)

??

◦

??

◦

??

◦

??

◦

??

I(5)

The following pictures show how to compute dim HomA(P (i),−) for all indecom-
posable projective A-modules P (i). Note that the cases P (2) and P (4), and also
P (5) and P (6) are dual to each other. We marked the vertices [Z] by a where
a = dim HomA(P (i), Z), provided none of the paths in ΓA starting in [P (i)] and
ending in [Z] contains a subpath of the form [Y ] → [E] → [τ−1

A (Y )]. One can
compute dim HomA(X,−) for all X ∈ ind(A) in a similar fashion.
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dim HomA(P (1),−):

1

��

1

��

1

��

1

��

0

��

0

1

��

@@

2

��

BB

2

��

BB

2

��

BB

1

��

BB

0

BB

1

@@

��

// 1 // 2 //

AA

��

1 // 3 //

��

BB

2 // 3 //

��

BB

1 // 2 //

��

BB

1 // 1 //

BB

��

0

1

��

@@

2

��

BB

2

��

BB

2

��

BB

1

��

BB

0

��

1

AA

1

BB

1

BB

1

BB

0

BB

0

dim HomA(P (2),−):

1

��

0

��

1

��

1

��

0

��

0

1

��

@@

1

��

@@

1

��

BB

2

��

BB

1

��

BB

0

BB

0

AA

��

// 0 // 1 //

@@

��

1 // 2 //

��

AA

1 // 2 //

��

BB

1 // 2 //

��

BB

1 // 1 //

BB

��

0

0

��

@@

1

��

@@

2

��

BB

1

��

BB

1

��

BB

1

��

0

@@

1

AA

1

BB

0

BB

1

BB

0

dim HomA(P (3),−):

0

��

1

��

0

��

1

��

0

��

0

0

��

@@

1

��

@@

1

��

BB

1

��

BB

1

��

BB

0

BB

0

AA

��

// 1 // 1 //

@@

��

0 // 1 //

��

AA

1 // 2 //

��

BB

1 // 1 //

��

BB

0 // 1 //

BB

��

1

0

��

@@

1

��

@@

1

��

BB

1

��

BB

1

��

BB

0

��

0

@@

1

AA

0

BB

1

BB

0

BB

0
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dim HomA(P (5),−):

1

��

0

��

0

��

1

��

0

��

0

0

��

AA

1

��

@@

0

��

@@

1

��

BB

1

��

BB

0

BB

0

BB

��

// 0 // 0 //

@@

��

0 // 1 //

��

@@

1 // 1 //

��

AA

0 // 1 //

��

BB

1 // 1 //

BB

��

0

0

��

AA

0

��

@@

1

��

@@

1

��

BB

0

��

BB

1

��

0

@@

0

@@

1

AA

0

BB

0

BB

1

14.14.2. The preprojective component of the Kronecker quiver

1 2oo
oo

looks as follows:

P (2)

&&
&&

τ−1
A (P (2))

((
((

oo τ−2
A (P (2))

((
((

oo · · ·oo

P (1)

;;
;;

τ−1
A (P (1))

66
66

oo τ−2
A (P (1))

66
66

oo τ−3
A (P (1))

99
99

oo

A straightforward computation in the mesh category yields for example

dim HomA(τ−1
A (P (1)), τ−2

A (P (2))) = 4.

14.14.3. Let A = K[X, Y ]/(X2, Y 2, XY ). There is just one simple A-module S.
Let P be its projective cover and I its injective envelope. The modules P and τ−1

A (S)
look as follows:

P : 1
�� ��

1 1

τ−1
A (S) : 1

�� ��

1
�� ��

1 1 1

The Auslander-Reiten component Γ containing these modules looks as follows:

P

����

τ−1
A (P )oo

����

· · ·oo

τ2
A(S)

����

τA(S)

����

oo S

?? ??

oo τ−1
A (S)

?? ??

oo τ−2
A (S)oo

?? ??

· · ·

?? ??

τA(I)

?? ??

oo I

?? ??

oo

In the mesh category of Γ we have

HomK〈Γ〉([P ], [τ−1
A (S)]) = 2 and HomK〈Γ〉([τ

−1
A (S)], [P ]) = 0.
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However, it is easy to check that

dim HomA(P, τ−1
A (S)) = 5 and dim HomA(τ−1

A (S), P ) = 4.
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15. Varieties of modules and algebras

Let K be algebraically closed, and let A be a finite-dimensional K-algebra.

15.1. Varieties of modules.

For d ≥ 0 let mod(A, d) be the set of all K-algebra homomorphisms

A→Md(K).

Then mod(A, d) is an affine variety. Its elements can also be seen as the closed
points of an affine scheme mod(A, d) which is defined in the obvious way.

Each M ∈ mod(A, d) gives rise to an d-dimensional A-module, and up to iso-
morphism each d-dimensional A-module occurs in this way. Therefore, one calls
mod(A, d) (resp. mod(A, d)) the variety of d-dimensional A-modules (resp.
scheme of d-dimensional A-modules).

In general, the varieties mod(A, d) are singular and have many irreducible com-
ponents.+

Theorem 15.1 (Bongartz [B91, Proposition 1]). The following are equivalent:

(i) mod(A, d) is smooth for all d ≥ 0;

(ii) A is hereditary.

Let
ind(A, d) := {M ∈ mod(A, d) |M is indecomposable}.

Then ind(A, d) is a constructible subset of mod(A, d).

The group GLd(K) acts by conjugation on mod(A, d): For g ∈ GLd(K) and
M ∈ mod(A, n) define

g.M : A→Md(K)

a 7→ gM(a)g−1.

The orbit of M ∈ mod(A, d) is

OM := {g.M | g ∈ GLd(K)}.

Then OM is a locally closed subset of mod(A, d).

Let OM also denote the corresponding orbit in mod(A, d).
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Lemma 15.2. For M,N ∈ mod(A, d) the following are equivalent:

(i) OM = ON ;

(ii) M ∼= N .

Often the dimension of an orbit can be calculated with the help of the following
lemma.

Proposition 15.3. For M ∈ mod(A, d) we have

dimOM = d2 − dim EndA(M).

For any constructible subset U of an affine variety X, we denote the Zariski closure
of U by U .

For M,N ∈ mod(A, d) we write M ≤deg N if

N ∈ OM .
In this case we say that N is a degeneration of M .

Short exact sequences provide a large source of examples of degenerations, but
not all degenerations occur in this way.

Proposition 15.4. For each short exact sequence

0→ N →M → N ′ → 0

in mod(A) we have M ≤deg N ⊕N ′.

Theorem 15.5 (Zwara [Z00]). For M,N ∈ mod(A, d) the following are equiv-
alent:

(i) M ≤deg N ;

(ii) There exists some Z ∈ mod(A) and a short exact exact sequence

0→ Z → Z ⊕M → N → 0;

(iii) There exists some Z ∈ mod(A) and a short exact exact sequence

0→ N →M ⊕ Z → Z → 0.

The directions (ii) =⇒ (i) and (iii) =⇒ (i) are due to Riedtmann [R86,
Proposition 3.4]. Short exact sequences like in (ii) and (iii) are called Riedtmann
sequences.
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For M,N ∈ mod(A, d) we write M ≤virt N if there exists some Z ∈ mod(A)
such that

M ⊕ Z ≤deg N ⊕ Z.

This notion of a virtual degeneration is due to Riedtmann [R86].

The existence of a degeneration M ⊕ Z ≤deg N ⊕ Z usually does not imply that
M ≤deg N . This runs under the label failure of cancellation.

For M,N we write M ≤hom N if

dim HomA(M,X) ≤ dim HomA(N,X)

for all X ∈ mod(A).

It can be shown that M ≤hom N if and only if

dim HomA(X,M) ≤ dim HomA(X,N)

for all X ∈ mod(A).

For M,N ∈ mod(A, d) we write M ≤ext N if there exist short exact sequences

0→ Ni →Mi → N ′i → 0

with 1 ≤ i ≤ s such that Mi
∼= Ni−1 ⊕ N ′i−1 for 2 ≤ i ≤ s, M = M1 and

N = Ns ⊕N ′s.

Proposition 15.6. ≤ext, ≤deg, ≤virt and ≤hom define partial orders on the set
of isomorphism classes of d-dimensional A-modules.

Proposition 15.7. For M,N ∈ mod(A, d) we have

M ≤ext N =⇒ M ≤deg N =⇒ M ≤virt N =⇒ M ≤hom N.

The following two examples are due to John Carlson.

(i) Let A = KQ/I where Q is the quiver

1a
88 2oo

and I is generated by a2. We define three A-modules as follows:

M : 2

��

N : 2

��

1

��

Z : 1

��

1

��

1 1

1
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There is a short exact sequence

0→ Z → Z ⊕M → N → 0.

Thus M ≤deg N . Since M and N are indecomposable and not isomorphic,
we get M 6≤ext N .

(ii) Let A = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {a2, b2, ab−ba}. Let P = AA. Thus P looks as follows:

1
a
��

b
��

1

b ��

1

a��
1

For λ ∈ K let Mλ : A→M2(K) be the A-module defined by

Mλ(a) =

(
0 0
1 0

)
and Mλ(b) =

(
0 0
λ 0

)
.

Finally, let S be the simple A-module. There are short exact sequences

0→ rad(P )→ P ⊕ rad(P )/ soc(P )→ P/ soc(P )→ 0

0→Mλ → rad(P )→ S → 0

0→ S → P/ soc(P )→Mµ → 0

where λ, µ ∈ K. Note that rad(P )/ soc(P ) ∼= S2. We get degenerations

P ⊕ S2 ≤deg rad(P )⊕ P/ soc(P ) ≤deg Mλ ⊕Mµ ⊕ S2.

Thus we have P ≤virt Mλ⊕Mµ for all λ, µ ∈ K. A straightforward dimension
argument shows that P 6≤deg Mλ ⊕Mµ, see [R86, Section 3.1].

Question 15.8 (Bongartz [B96, Section 1]). Do ≤virt and ≤hom coincide?

Theorem 15.9 (Bongartz [B96, Corollary 4.2]). Let A be a directed algebra.
Then for M,N ∈ mod(A, d) we have

M ≤ext N ⇐⇒ M ≤deg N ⇐⇒ M ≤virt N ⇐⇒ M ≤hom N.

Theorem 15.10 (Riedtmann [R86, Corollary 2.3], Zwara [Z99, Theorem 1]).
Let A be a representation-finite algebra. Then for M,N ∈ mod(A, d) we have

M ≤deg N ⇐⇒ M ≤virt N ⇐⇒ M ≤hom N.

For M ∈ mod(A, d) let TM (resp. TM) be the tangent space of mod(A, d) (resp.
mod(A, d)) at M , and let T ◦M be the tangent space of OM at M . We have dimT ◦M =
dimOM .
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The following result is often useful and helps to calculate dimTM or dim TM in
many situations.

Theorem 15.11 (Voigt’s Lemma [G74, Proposition 1.1]). For M ∈ mod(A, d)
there is an injective map

TM/T
◦
M → Ext1

A(M,M)

and an isomorphism
TM/T

◦
M → Ext1

A(M,M).

Corollary 15.12 ([G74, Corollary 2.2]). For M ∈ mod(A, d) the following
are equivalent:

(i) OM is an open subscheme of mod(A, d);

(ii) Ext1
A(M,M) = 0.

Corollary 15.13. Let M ∈ mod(A, d). If Ext1
A(M,M) = 0, then OM is open

in mod(A, d).

The converse of the previous corollary is in general wrong. There is an example
in Section 15.2.

Lemma 15.14 ([G74, Corollary 1.3]). For M ∈ mod(A, d) the following are
equivalent:

(i) OM is closed;

(ii) M is semisimple.

Recall that the dimension vector of M ∈ mod(A) is defined as dim(M) = ([M :
S])S where S runs over all isomorphism classes of simple A-modules, and [M : S]
denotes the Jordan-Hölder multiplicity of S in M .

Proposition 15.15 ([G74, Corollary 1.4]). The following hold:

(i) Each connected component of mod(A, d) contains exactly one closed
orbit.

(ii) For M,N ∈ mod(A, d) the following are equivalent:
(a) M and N belong to the same connected component of mod(A, d);

(b) dim(M) = dim(N).



298 JAN SCHRÖER

15.2. Direct sums of irreducible components. Let Irr(A, d) be the set of irre-
ducible components of mod(A, d), and let

Irr(A) =
⋃
d≥0

Irr(A, d).

For Z ∈ Irr(A) and M ∈ Z let dim(Z) := dim(M) be the dimension vector
of Z. For a simple A-module S let [Z : S] := [M : S].

These definitions do not depend on the choice of M .

The following is a direct consequence of Proposition 15.15.

Proposition 15.16. For Z1, Z2 ∈ Irr(A, d) the following are equivalent:

(i) dim(Z1) = dim(Z2);

(ii) Z1 and Z2 belong to the same connected component of mod(A, d).

Proposition 15.17. For M ∈ mod(A, d) the following are equivalent:

(i) OM is open in mod(A, d);

(ii) OM ∈ Irr(A, d).

Let d1, . . . , dt, d ∈ N with d = d1 + · · ·+dt, and let Zi ∈ Irr(A, di) for 1 ≤ i ≤ t.
Then

GLd(K)× Z1 × · · · × Zt → mod(A, d)

(g,M1, . . . ,Mt) 7→ g. (M1 ⊕ · · · ⊕Mt)

is a morphism of affine varieties. We denote its image by

Z1 ⊕ · · · ⊕ Zt.

For Z ∈ Irr(A) and n ≥ 1 let Zn := Z ⊕ · · · ⊕ Z be the direct sum of n copies of
Z.

The Zariski closure
Z1 ⊕ · · · ⊕ Zt

is an irreducible closed subset of mod(A, d).

However, in general we have Z1 ⊕ · · · ⊕ Zt 6∈ Irr(A, d).
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For Z1, Z2 ∈ Irr(A) define

e(Z1, Z2) := min{dim Ext1
A(M1,M2) | (M1,M2) ∈ Z1 × Z2}.

By upper semicontinuity the set

{(M1,M2) ∈ Z1 × Z2 | dim Ext1
A(M1,M2) = e(Z1, Z2)}

is a dense open subset of Z1 × Z2.

Theorem 15.18 (Crawley-Boevey, Schröer [CBS02]). For Z1, . . . , Zt ∈ Irr(A)
the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt ∈ Irr(A);

(ii) e(Zi, Zj) = 0 for all i 6= j.

Z ∈ Irr(A) is indecomposable if the indecomposable modules in Z form a
dense subset of Z.

Examples:

(i) Let A = K[X]/(X2) and d = 1. Then mod(A, d) consists just of a point
which corresponds to the simple A-module S. Thus Z := OS = OS =
mod(A, 1) is an indecomposable irreducible component. We have e(Z,Z) =
1, since dim Ext1

A(S, S) = 1. In particular, we get Z ⊕ Z 6∈ Irr(A, 2).

(ii) Let M ∈ mod(A, d) with Ext1
A(M,M) = 0, and let Z := OM . Then Zn ∈

mod(A, nd) for all n ≥ 1.

(iii) Let A = KQ where Q is the Kronecker quiver

1 2
b

oo

a
oo

For λ ∈ K let Mλ ∈ mod(A, 2) be the A-module defined by

K K(
λ
)oo

(
1
)

oo

Then

Z :=
⋃
λ∈K

OMλ
∈ Irr(A, 2).

Since e(Z,Z) = 0, we get that Z ′ := Z ⊕ Z ∈ Irr(A, 4). Thus Z ′ is not in-
decomposable. However, Z ′ contains the indecomposable A-modules defined
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by

K2 K2λ 1
0 λ


oo

1 0
0 1


oo

for λ ∈ K.

The following result is a Krull-Remak-Schmidt Theorem for irreducible compo-
nents.

Theorem 15.19. For Z ∈ Irr(A) there exist uniquely determined indecom-
posable irreducible components Z1, . . . , Zt ∈ Irr(A) such that

Z = Z1 ⊕ · · · ⊕ Zt.

Theorem 15.19 can be deduced from the considerations in [P91a, Section 1.3]. A
detailed proof can be found in [CBS02, Section 2].

In the situation of Theorem 15.19 we call

Z = Z1 ⊕ · · · ⊕ Zt.
the generic decomposition of Z.

Schofield [Scho92] gave an algorithm which computes the generic decomposition
for all Z ∈ Irr(A) in case A = KQ is the path algebra of an acyclic quiver Q.

Theorem 15.20 (Schofield [Scho92]). Assume that A is hereditary. Then for
each Z ∈ Irr(A) there is an algorithm which computes the generic decomposi-
tion of Z.

15.3. g-vectors of irreducible components. Let P (1), . . . , P (n) be the indecom-
posable projective A-modules, up to isomorphism. For P ∈ proj(A) and 1 ≤ i ≤ n
let [P : P (i)] be the multiplicity of P (i) in P , i.e. we have

P ∼= P (1)[P :P (1)] ⊕ · · · ⊕ P (n)[P :P (n)].

For M ∈ mod(A) let

P1 → P0 →M → 0

be a minimal projective presentation of M .
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For 1 ≤ i ≤ n let

gi := gi(M) := [P1 : P (i)]− [P0 : P (i)].

Then
g(M) := (g1, . . . , gn) ∈ Zn

is the g-vector of M .

Proposition 15.21. For M ∈ mod(A) and 1 ≤ i ≤ n we have

gi(M) = − dim HomA(M,S(i)) + dim Ext1
A(M,S(i)).

Corollary 15.22. For each Z ∈ Irr(A) there exists a dense open subset U ⊆ Z
such that g(M) = g(N) for all M,N ∈ U .

In this case, g(Z) := g(M) with M ∈ U is the g-vector of Z.

The additive categorification of Fomin-Zelevinsky cluster algebras highlights the
importance of g-vectors of modules and irreducible components. In this context,
one studies A = P(Q,S), the Jacobian algebra associated with a quiver Q and a
non-degenerate potential S for Q.

15.4. τ-reduced components.

For Z ∈ Irr(A, d) let

c(Z) := min{dim(Z)− dim(OM) |M ∈ Z}
be the generic number of parameters of Z.

Thus c(Z) = 0 if and only if there is some M ∈ Z with Z = OM .

Let

e(Z) := min{dim Ext1
A(M,M) |M ∈ Z},

h(Z) := min{dim HomA(M, τA(M)) |M ∈ Z}.

Here τA denote the Auslander-Reiten translation for A.

By upper semicontinuity the sets

{M ∈ Z | dim(Z)− dim(OM) = c(Z)},
{M ∈ Z | dim Ext1

A(M,M) = e(Z)},
{M ∈ Z | dim HomA(M, τA(M)) = h(Z)}
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are dense open subsets of Z. For the first two sets this is well known. For the third
set we refer to [GLFS23].

Proposition 15.23. We have c(Z) ≤ e(Z) ≤ h(Z).

Proof. Use Voigt’s Lemma and the Auslander-Reiten formulas. �

We call Z generically reduced (resp. generically τ-reduced) if c(Z) =
e(Z) (resp. c(Z) = h(Z)).

Let
Irrτ (A) := {Z ∈ Irr(A) | Z is generically τ -reduced}.

There is an obvious dual notion of generically τ−-reduced irreducible com-
ponents.

Generically τ -reduced components (under the name strongly reduced components)
were introduced and studied in [GLS12]. They play an important role in the con-
struction of good bases for Fomin-Zelevinsky cluster algebras.

M ∈ mod(A) is τ-rigid if HomA(M, τA(M)) = 0.

Examples:

(i) Let M ∈ mod(A) be τ -rigid. Then

Z := OM ∈ Irrτ (A).

(ii) Let A be hereditary. Then Irrτ (A) = Irr(A).

(iii) Let A = KQ/I where Q is the quiver

1
a

// 2

b
��

3

c

XX

and I is generated by {ba, cb, ac}. Let M be the A-module given by

K
1
// K

0��

K
0

ZZ

Then Z := OM ∈ Irr(A, 3), and we have c(Z) = e(Z) = 0 and h(Z) = 1.
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(iv) Let A = KQ/I where Q is the quiver

1a
88

and I is generated by a2. Let S be the A-module given by

K0
66

Thus S is the simple A-module. Then Z := OS ∈ Irr(A, 1). (In fact, we have
Z = OS = mod(A, 1).) We have c(Z) = 0 and e(Z) = h(Z) = 1.

(v) Let A = KQ/I where Q is the quiver

1a
88 bff

and I is generated by {a2, b2, ab − ba}. Then P = AA is indecomposable
projective-injective. For M = P/ soc(P ) we have τA(M) ∼= rad(P ). Then
Z := OM ∈ Irr(A, 3), and we have c(Z) = 0, e(Z) = 2 and h(Z) = 3.

For Z1, Z2 ∈ Irr(A) define

h(Z1, Z2) := min{dim HomA(M1, τA(M2)) | (M1,M2) ∈ Z1 × Z2}.

By upper semicontinuity the set

{(M1,M2) ∈ Z1 × Z2 | dim HomA(M1, τA(M2)) = h(Z1, Z2)}

is a dense open subset of Z1 × Z2, see [GLFS23].

Theorem 15.24 ([CLS15, Theorem 1.3]). For Z1, . . . , Zt ∈ Irrτ (A) the fol-
lowing are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt ∈ Irrτ (A);

(ii) h(Zi, Zj) = 0 for all i 6= j.

A beautiful result by Plamondon [P13] says that one can describe and parametrize
the generically τ -reduced components quite explicitly.

Let S(1), . . . , S(n) be the simple A-modules, up to isomorphism.

For Z ∈ Irr(A) let

g(Z)◦ := g(Z) +
∑

i∈null(Z)

Nei.

where null(Z) := {1 ≤ i ≤ n | [Z : S(i)] = 0}.
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Theorem 15.25 (Plamondon [P13]). We have

Zn =
⋃

Z∈Irrτ (A)

g(Z)◦

and this union is disjoint.

Corollary 15.26. The map

η : Irrτ (A)→ Zn

Z 7→ g(Z)

is injective.

The proof of Theorem 15.25 is based on the following result:

Theorem 15.27 (Plamondon [P13]). Given (P1, P0) ∈ proj(A)× proj(A) the
following hold:

(i) There exists a unique Z ∈ Irr(A) such that there is a dense open subset
U of HomA(P1, P0) with⋃

f∈U

OCok(f) = Z.

(ii) The component Z is generically τ -reduced, and all generically τ -reduced
components arise in this way.

In the situation of the previous theorem one can assume without loss of generality
that add(P1) ∩ add(P0) = 0.

A is τ-tilting finite if there are only finitely many indecomposable τ -rigid
modules in mod(A), up to isomorphism.

The following theorem can be extracted from [A21, Theorem 4.7] and [DIJ19,
Theorem 5.4, Corollary 6.7].

Theorem 15.28. The following are equivalent:

(i) A is τ -tilting finite;

(iii) Each Z ∈ Irrτ (A) is of the form Z = OM for some τ -rigid M ∈
mod(A).

15.5. Additive invariants for irreducible components. The following defini-
tion is taken from [Sch23].
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Let r ≥ 1. An additive invariant for Irr(A) is a map

η : Irr(A)→ Zr

such that for all Z1, Z2 ∈ Irr(A) with Z1 ⊕ Z2 ∈ Irr(A) we have

η(Z) = η(Z1) + η(Z2).

An additive invariant η : Irr(A)→ Zr is complete if η is injective.

Examples:

(i) Let n = n(A). Then Irr(A) → Zn, Z 7→ dim(Z) is an additive invariant.
This is complete if and only if A is geometrically irreducible.

(ii) Let n = n(A). Then Irr(A)→ Zn, Z 7→ g(Z) is an additive invariant.

(iii) Let A be torsionfree finite, and let r be the number of indecomposable tor-
sionfree A-modules, up to isomorphism. Then there is a complete additive
invariant Irr(A)→ Zr, see [Sch23].

(iv) Let A = Π(Q) be the preprojective algebra of some Dynkin quiver Q, and
let r be the number of indecomposable KQ-modules, up to isomorphism.
Then there is a complete additive invariant Irr(A)→ Zr. (This follows from
Lusztig’s work, see [Sch23] for references.)

(v) For n ≥ 2 and r ≥ 1 let A be n-representation-infinite. Then there is no
complete additive invariant Irr(A)→ Zr, see [Sch23].

15.6. Varieties of modules and tame algebras.

For d ≥ 1 and 1 ≤ t ≤ d2 let

mod(A, d, t) := {M ∈ mod(A, d) | dimOM ≤ d2 − t}
= {M ∈ mod(A, d) | dim EndA(M) ≥ t}.

The mod(A, d, t) are closed subsets of mod(A, d) with

mod(A, d, t2) ⊆ · · · ⊆ mod(A, d, 2) ⊆ mod(A, d, 1).

Note that mod(A, d, 1) = mod(A, d).

The following is a direct consequence of Proposition 15.3.
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Proposition 15.29. The following are equivalent:

(i) A is representation-finite.

(ii) For each d ≥ 1 there exists some finite subset C ⊆ mod(A, d) such that

GLd(K)C = mod(A, d).

(iii) For each d ≥ 1 and 1 ≤ t ≤ d2 we have

dim mod(A, d, t) ≤ d2 − t.

Corollary 15.30. If A is representation-finite, then dim mod(A, d) ≤ d2 − 1 for
each d ≥ 1.

Theorem 15.31 ([G95, Proposition 2], [P91b, Theorem 1.3]). The following
are equivalent:

(i) A is tame.

(ii) For each d ≥ 1 there exists some constructible subset C ⊆ mod(A, d)
with dimC ≤ d such that

GLd(K)C = mod(A, d).

(iii) For each d ≥ 1 there exists some constructible subset C ⊆ ind(A, d)
with dimC ≤ 1 such that

GLd(K)C = ind(A, d).

(iv) For each d ≥ 1 and 1 ≤ t ≤ d2 we have

dim mod(A, d, t) ≤ d+ (d2 − t).

Corollary 15.32. If A is tame, then dim mod(A, d) ≤ d2 + d− 1 for each d ≥ 1.

15.7. Richmond stratification. For d ≥ 0 let S(d) be the set of isomorphism
classes [L] of submodules L of Ad with dim(L) = dim(Ad)− d.

For [L] ∈ S(d) let S(L) be the set of all M ∈ mod(A, d) such that there exists
a short exact

0→ L→ Ad →M → 0.

We call S(L) a Richmond stratum of mod(A, d).
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Lemma 15.33. mod(A, d) is the disjoint union of its Richmond strata.

Theorem 15.34 (Richmond [Ri01, Theorem 1]). S(L) is an irreducible locally
closed subset of mod(A, d) with

dimS(L) = dim HomA(L,Ad)− dim EndA(L).

Recall that M ∈ mod(A) is torsionless if M is isomorphic to a submodule of
Ad for some d.

The algebra A is torsionless-finite if there are only finitely many indecom-
posable torsionless A-modules up to isomorphism.

Example: String algebras are torsionless-finite.

The following is a direct consequence of the irreducibility of Richmond strata.

Proposition 15.35. Let A be torsionless-finite. Then for each Z ∈ Irr(A) there is

a unique Richmond stratum S(L) with Z = S(L).

Especially for torsionless-finite algebra, the Richmond stratification is a useful tool
for classifying and understanding the irreducible components of varieties of modules,
see for example [Sch04].

Theorem 15.36 (Richmond [Ri01, Theorem 2]). For [L], [L′] ∈ S(d) the fol-
lowing hold:

(i) If S(L′) ⊆ S(L), then L ≤deg L
′;

(ii) If L ≤deg L
′ and dim HomA(L,A) = dim HomA(L′, A), then S(L′) ⊆

S(L).

Examples:

(i) Let A be hereditary. Then Irr(A, d) is the set of connected components of
mod(A, d), and the Richmond strata of mod(A, d) coincide with the irre-
ducible components.

(ii) Let A be selfinjective. Then the Richmond strata of mod(A, d) coincide with
the orbits OM with M ∈ mod(A, d).
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(iii) We have

{M ∈ mod(A) | proj. dim(M) ≤ 1} =
⋃

[L]∈S(d)
L projective

S(L).

15.8. Varieties of algebras. For d ≥ 0 the d-dimensional K-algebras form an
affine variety alg(d). The elements of alg(d) can also be seen as the closed points of
an affine scheme alg(d) which is defined by polynomials in d3 variables.

The group GLd(K) acts on alg(d) by conjugation. The orbits of this action
correspond to the isomorphism classes of d-dimensional K-algebras. The orbit of an
algebra A is denoted by OA. Let OA also denote the corresponding orbit in alg(d).

For i ≥ 0 and an A-A-bimodule M let H i(A,M) be the i-th Hochschild cohomol-
ogy group.

For A ∈ alg(d) let TA (resp. TA) be the tangent space of alg(d) (resp. alg(d)) at
A, and let T ◦A be the tangent space of OA at A. We have dimT ◦A = dimOA.

Theorem 15.37 ([G74, Proposition 2.4]). For A ∈ alg(d) there is an injective
map

TA/T
◦
A → H2(A,A)

and an isomorphism
TA/T

◦
A → H2(A,A).

Corollary 15.38 ([G74, Corollary 2.5]). For A ∈ alg(d) the following are
equivalent:

(i) OA is an open subscheme of alg(d);

(ii) H2(A,A) = 0.

Corollary 15.39 ([G74, Corollary 2.6]). Let A ∈ alg(d). If gl. dim(A) ≤ 1,
then OA is an open subscheme of alg(d).

Corollary 15.40. Let A ∈ alg(d). If H2(A,A) = 0, then OA is open in
alg(d).

Proposition 15.41 ([G74, Proposition 2.2]). For d ≥ 1 and A ∈ alg(d) the
following are equivalent:

(i) OA is closed;

(ii) A ∼= K[X1, . . . , Xd−1]/(XiXi | 1 ≤ i, j ≤ d− 1).
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Corollary 15.42. alg(d) is connected.

Not much is known about the irreducible components of the varieties alg(d).
Gabriel [G74] described them for d ≤ 4. The case d = 5 is studied in [H79] and
[M79]. We refer to [DPS98] for further results in this direction.

Let J(A) be the Jacobson radical of A. Recall that A is semisimple if and only if
J(A) = 0.

Proposition 15.43 ([G74, Proposition 2.7]). For s ≥ 0 the set

{A ∈ alg(d) | dim J(A) ≤ s}
is open in alg(d). In particular, the d-dimensional semisimple K-algebras form
an open subset of alg(d).

Theorem 15.44 (Gabriel [G74, Theorem 4.2]). The d-dimensional
representation-finite K-algebras form an open subset of alg(d).

For refinements of Theorem 15.44 we refer to Kasjan’s work [K02a, K03, K13].

Conjecture 15.45 (Geiß [G95, G96]). The d-dimensional tame K-algebras
form an open subset of alg(d).

For further reading related to Conjecture 15.45 see [H05, K02b, K07].

Problem 15.46 (Ringel [R02, Problem 15]). Let n, d ≥ 1. Is the class of
d-dimensional K-algebras which are m-domestic with m ≤ n open in alg(d)?

For A,B ∈ alg(d) with B ∈ OA we say that B is a degeneration of A, and
A is a deformation of B.

Theorem 15.47 (Geiß [G96, Theorem 4.4]). Deformations of tame (resp.
representation-finite) algebras are tame (resp. representation-finite).



310 JAN SCHRÖER

Hierarchy of complexity of the representation types of algebras:

strictly wild high complexity

controlled wild

wild

tame of exponential growth

tame of polynomial growth

tame of linear growth ��

OO

domestic

representation-finite low complexity

Conjecture 15.48 (Geiß). Suppose that

B ∈ OA.
Then the representation type of B is at least as complex as the representation
type of A.

Here is a more general definition of deformations of algebras:

Theorem 15.49 (Crawley-Boevey[CB95, Theorem B]). Let A be a finite-
dimensional K-algebra, and let X be an irreducible variety. Consider mor-
phisms

f1, . . . , fr : X → A.

For x ∈ X let Ax := A/(f1(x), . . . , fr(x)). Let x0, x1 ∈ X such that the
following hold:

(i) Ax0 is tame.

(ii) There is a dense open subset U ⊆ X with Ax ∼= Ax1 for all x1 ∈ U .

Then Ax1 is tame.

In the situation of this theorem, Ax0 is a degeneration of Ax1 , and Ax1 is a
deformation of Ax0 .

Theorem 15.49 is mostly applied with X = K being the affine line.
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In Geiß’s definition one deforms the structure constants of an algebra whereas
in Crawley-Boevey’s definition one deforms the relations. Crawley-Boevey
[CB95] pointed out that one can refine both definitions and deform structure
constants and relations at the same time.

Example: Let λ ∈ K, and let Aλ = KQ/Iλ where Q is the quiver

•a
99 bee

and the ideal Iλ is generated by

{(ab)2 − (ba)2, a2 − λbab, b2 − λaba, (ab)2a, (ba)2b}.
(If char(K) = 2, then A1 is isomorphic to the group algebra KQ8 of the quaternion
group Q8.) Note that Aλ ∼= A1 for all λ 6= 0. The algebra A0 is special biserial
(and therefore known to be tame). We want to show that A1 is a deformation of
A0. With the same quiver Q let B = KQ/I where the ideal I is generated by

{(ab)2 − (ba)2, p | p is a path of length 5}.

Define f1, f2 : K → B by f1(λ) := a2 − λbab and f2(λ) := b2 − λaba. Then
B/(f1(λ), f2(λ)) ∼= Aλ for each λ ∈ K. Thus we are in the situation of Theo-
rem 15.49 and can conclude that A1 is tame.

Problem 15.50 (Ringel [R02, Problem 16]). Describe the deformations of
special biserial algebras.

Theorem 15.51 (Crawley-Boevey [CB95]). Biserial algebras are deforma-
tions of special biserial algebras.

The classification of tame Jacobian algebras P(Q,S), where Q is a 2-acyclic quiver
and S is a non-degenerate potential for Q, relies heavily on the fact that many
tame Jacobian algebras are deformations of special biserial algebras, see [GLFS16,
Sections 6 and 7].
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[GLS12] C. Geiß , D. Leclerc, J. Schröer, Generic bases for cluster algebras and the Chamber
Ansatz. J. Amer. Math. Soc. 25 (2012), no. 1, 21–76.

[GP95] C. Geiß, J.A. de la Peña, On the deformation theory of finite-dimensional algebras.
Manuscripta Math. 88 (1995), no. 2, 191–208.

[G95] C. Geiß, On degenerations of tame and wild algebras. Arch. Math. (Basel) 64 (1995), no. 1,
11–16.

[G96] C. Geiß, Geometric methods in representation theory of finite-dimensional algebras. Repre-
sentation theory of algebras and related topics (Mexico City, 1994), 53–63, CMS Conf. Proc.,
19, Amer. Math. Soc., Providence, RI, 1996.

[G64] M. Gerstenhaber, On deformations of rings and algebras. Ann. of Math. (2) 79 (1964),
59–103.

[H05] Y. Han, Is tame open?. J. Algebra 284 (2005), no. 2, 801–810.
[H79] D. Happel, Deformations of five-dimensional algebras with unit. Ring theory (Proc. Antwerp

Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978), pp. 459–494, Lecture Notes
in Pure and Appl. Math., 51, Dekker, New York, 1979.

[M79] G. Mazzola, The algebraic and geometric classification of associative algebras of dimension
five. Manuscripta Math. 27 (1979), no. 1, 81–101.

[Hu17] A. Hubery, Irreducible components of quiver Grassmannians. Trans. Amer. Math. Soc. 369
(2017), no. 2, 1395–1458.

[K02a] S. Kasjan, Representation-directed algebras form an open scheme. Colloq. Math. 93 (2002),
no. 2, 237–250.

[K02b] S. Kasjan, On the problem of axiomatization of tame representation type. Fund. Math. 171
(2002), 53–67.

[K03] S. Kasjan, Representation-finite triangular algebras form an open scheme. Cent. Eur. J.
Math. 1 (2003), no. 1, 97–107.

[K07] S. Kasjan, Tame strongly simply connected algebras form an open scheme. J. Pure Appl.
Algebra 208 (2007), no. 2, 435–443.

[K13] S. Kasjan, Representation-finite algebras over algebraically closed fields form open Z-
schemes. Bull. Lond. Math. Soc. 45 (2013), no. 3, 595–601.

[K94] A. King, Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford
Ser. (2) 45 (1994), no. 180, 515–530.

[K84] H. Kraft, Geometrische Methoden in der Invariantentheorie. (German) Aspects of Mathe-
matics, D1. Friedr. Vieweg & Sohn, Braunschweig, 1984. x+308 pp.

[K82] H. Kraft, Geometric methods in representation theory. In: Representations of algebras
(Puebla, 1980), pp. 180–258, Lecture Notes in Math., 944, Springer, Berlin-New York, 1982.

[M80] K. Morrison, The scheme of finite-dimensional representations of an algebra. Pacific J. Math.
91 (1980), no. 1, 199–218.



FD-ATLAS 313

[P91a] J.A. de la Peña, On the dimension of the module varieties of tame and wild algebras. Comm.
Algebra 19 (1991), no. 6, 1795–1807.

[P91b] J.A. de la Peña, Functors preserving tameness. Fund. Math. 137 (1991), no. 3, 177–185.
[P13] P.-G. Plamondon, Generic bases for cluster algebras from the cluster category. Int. Math.

Res. Not. IMRN 2013, no. 10, 2368–2420.
[P74] C. Procesi, Finite dimensional representations of algebras. Israel J. Math. 19 (1974), 169–

182.
[Rei03] M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver

moduli. Invent. Math. 152, 349–368 (2003).
[Ri01] N. Richmond, A stratification for varieties of modules. Bull. London Math. Soc. 33 (2001),

no. 5, 565–577.
[R86] C. Riedtmann, Degenerations for representations of quivers with relations. Ann. Sci. École
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16. Subcategories

Let A be a finite-dimensional K-algebra. This section provides an incomplete list
of frequently studied subcategories of mod(A).

16.1. Exact subcategories and Frobenius subcategories. Let A be a finite-
dimensional K-algebra.

A full subcategory C of mod(A) is an full exact subcategory if 0 ∈ C and C
is closed under extensions, i.e. for each short exact sequence

0→ X → Y → Z → 0

in mod(A) with X,Z ∈ C we have Y ∈ C.

In this case, C is additive and closed under isomorphisms.

Each full exact subcategory is an exact subcategory.

(The definition of an exact subcategory can be found in the Section A.)

Let C be a full exact subcategory of mod(A). Then X ∈ C is C-projective (resp.
C-injective) if Ext1

A(X, C) = 0 (resp. Ext1
A(C, X) = 0). The subcategory C has

enough projectives (resp. enough injectives) if for each X ∈ C there exists a
C-projective P (X) (resp. a C-injective I(X)) and a short exact sequence

0→ X ′ → P (X)→ X → 0 (resp. 0→ X → I(X)→ X ′ → 0)

with X ′ ∈ F .

A full exact subcategory F of mod(A) is a Frobenius subcategory if the
following hold:

(i) F has enough projectives;

(ii) F has enough injectives;

(iii) An object is C-projective if and only if it is C-injective.

Full exact subcategories and Frobenius subcategories of mod(A) play an important
role in many different contexts. The stable category of a Frobenius subcategory is
triangulated.

Examples: Let A be a finite-dimensional K-algebra.

(i) If A is quasi-hereditary, then the category F(∆) of ∆-filtered A-modules is
a full exact subcategory of mod(A), see e.g. [R92].

(ii) The category gp(A) of Gorenstein projective A-modules is a Frobenius sub-
category of mod(A), see e.g. [B05, Proposition 3.8].
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(iii) If A is selfinjective, then mod(A) is a Frobenius category. (This is a special
case of (ii).)

(iv) Let A = Π(Q) be the (possibly infinite-dimensional) preprojective algebra
of an acyclic quiver Q. To each element w of the Weyl group W associated
with Q one can construct a Frobenius subcategory Cw of mod(A) such that Cw
categorifies a Fomin-Zelevinsky cluster algebra, see [BIRS09] and [GLS11].

(v) Let Q be the quiver

1 2
a
oo 3

b
oo

and let A = KQ. The AR quiver ΓA looks as follows (each number i stands
for a composition factor S(i)):

3
2
1

��
2
1

AA

��

3
2

��

oo

1

??

2

??

oo 3oo

Then

C := add
(

2
1 ⊕

3
2
1
⊕ 2 ⊕ 3

2

)
is a full exact subcategory of mod(A). We have

proj(C) = add
(

2
1 ⊕

3
2
1
⊕ 2

)
and inj(C) = add

(
3
2
1
⊕ 2 ⊕ 3

2

)
.

The category C has enough projectives and enough injectives, but it is not a
Frobenius subcategory.

(vi) Let Q be the quiver

1 2
a
oo 3

b
oo

and let A = Π(Q) be the associated preprojective algebra, i.e. A = KQ/I
where Q is the quiver

1
a∗
// 2

a
oo

b∗
// 3

b
oo

and I is generated by {aa∗, bb∗ − a∗a, −b∗b}. There are 12 indecomposable
A-modules, up to isomorphism. The AR quiver ΓA looks as follows (each
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number i stands for a composition factor S(i)):

1
2

3

  

2
1 3

2

��

3
2

1

1
2

!!

3

""

oo 2
1

>>

!!

oo

2

==

!!

1 3
2

<<

""

EE

oo 2
1 3

==

!!

oo 2oo

3
2

==

1

<<

oo 2
3

==

  

oo

3
2

1

>>

1
2

3

(One needs to identify the modules on the left dashed vertical line with the
modules on the right dashed vertical line in the obvious way.) Then

C := add
(

1 ⊕ 2 ⊕ 1
2 ⊕ 2

1 ⊕ 3
2

1

)
is a Frobenius subcategory of mod(A) with

proj(C) = inj(C) = add
(

1
2 ⊕ 2

1 ⊕ 3
2

1

)
.
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16.2. Abelian subcategories. Let C be a full subcategory of mod(A).

C is an abelian subcategory of mod(A) if C is additive and closed under
kernels and cokernels.

Warning: It can happen that C is abelian, but not an abelian subcategory. (For
this reason, some authors call an abelian subcategory an exact abelian subcategory.)

Example: Let A = KQ where Q is the quiver

1 2oo 3oo
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The Auslander-Reiten quiver of A is

3
2
1

��2
1

??

��

3
2

��

oo

1

??

2oo

??

3oo

The subcategory

C := add

1⊕
3
2
1
⊕ 3


is an abelian category which is equivalent to mod(KQ′) where Q′ is the quiver

1 2oo

However C is not an abelian subcategory, since C is not closed under kernels and
also not closed under cokernels. On the other hand,

D := add

1⊕
3
2
1
⊕ 3

2


is an abelian subcategory of mod(A). Note that D is also equivalent to mod(KQ′).

Proposition 16.1. The following are equivalent:

(i) C is an abelian subcategory of mod(A).

(ii) C is abelian and the inclusion functor C → mod(A) is exact.

16.3. Wide subcategories. Let C be a full subcategory of mod(A).

C is a wide subcategory of mod(A) if C is an abelian subcategory which
is closed under extensions. Let wide(A) be the set of wide subcategories of
mod(A).

For X ∈ mod(A) let [X] denotes its isomorphism class. For such a wide subcate-
gory let

S(C) := {[S] | S is simple in C}.

(An object S ∈ C is simple in C if S does not have a non-zero proper subobject U
with U ∈ C.)
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X ∈ mod(A) is a brick if EndA(X) is a K-skew field, i.e. each non-zero
endomorphism of X is an isomorphism. Let brick(A) be the set of isomorphism
classes of bricks in mod(A).

Bricks are indecomposable.

A semibrick for A is a subset S of brick(A) such that HomA(X, Y ) = 0 for
all [X], [Y ] ∈ S with [X] 6= [Y ]. Let semibrick(A) be the set of semibricks for
A.

For such a semibrick S let filt(S) be the full subcategory of all M ∈ mod(A) such
that there exists a chain

0 = M0 ⊂M1 ⊂ · · · ⊂Mt = M

of submodules with [Mk/Mk−1] ∈ S for all 1 ≤ k ≤ t. We also assume that
0 ∈ filt(S). (In particular, for S = ∅, we have filt(S) = 0.)

Example: Let A = KQ where Q is the Kronecker quiver

1 2oo
oo

and for λ ∈ K let Xλ be the representation

K K
λ
oo

1
oo

Then S = {[Xλ] | λ ∈ K} is a semibrick for A. Identifying mod(A) and rep(Q), the
category filt(S) consists of all finite-dimensional representations

V W
g

oo

f
oo

such that f is an isomorphism.

Theorem 16.2 (Ringel [R76, Section 1]). The maps

semibrick(A)←→ wide(A)

S 7→ filt(S)

S(C)← [ C
are bijections which are inverses of each other.

Literature – wide subcategories
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16.4. Serre subcategories. Let C be a full subcategory of mod(A).

C is a Serre subcategory of mod(A) if C is additive and for each short exact
sequence

0→ X → Y → Z → 0

in mod(A) we have Y ∈ C if and only if X,Z ∈ C.

16.5. Thick subcategories. Let C be a full subcategory of mod(A).

C is a thick subcategory of mod(A) if C is additive, closed under direct sum-
mands, kernels of epimorphisms, cokernels of monomorphisms and extensions.

In this case, for each short exact sequence

0→ X1 → X2 → X3 → 0

in mod(A), if Xi, Xj ∈ C with i 6= j, then X1, X2, X3 ∈ C.

Proposition 16.3 (Vossieck). Let A be hereditary. Then each thick subcate-
gory of mod(A) is an abelian subcategory.

Examples:

(i) Let A = KQ/I where Q is the quiver

1 2
a
oo 3

b
oo

and I is generated by ab. Thus A is not hereditary. The AR quiver ΓA looks
as follows:

2
1

��

1

??

2oo

��

1oo

1
2

??

(One needs to identify the first and last module in the second row.) Then

C := add ( 2
1 ⊕ 1

2 ) = proj(A) = inj(A)

is a thick subcategory which is not abelian. More generally, for a finite-
dimensional algebra A and P ∈ proj(A)∩ inj(A), add(P ) is a thick subcate-
gory of mod(A).

(ii) For M ∈ mod(A) the full subcategories

{X ∈ mod(A) | ExtnA(M,X) = 0 for all n ≥ 0}
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and

{X ∈ mod(A) | ExtnA(X,M) = 0 for all n ≥ 0}
are thick.

(ii) The subcategories

{X ∈ mod(A) | proj. dim(X) <∞}

and

{X ∈ mod(A) | inj. dim(X) <∞}
are thick.

One can also define thick subcategories of triangulated categories. This is used
more often than thick subcategories of abelian categories.

16.6. Resolving and coresolving subcategories.

C is resolving if C is closed under extensions, closed under kernels of epimor-
phisms, and if it contains proj(A).

In this case, for X ∈ C the syzygies Ωi
A(X) with i ≥ 1 are also contained in C.

Dually, C is coresolving if C is closed under extensions, closed under cokernels
of monomorphisms, and if it contains inj(A).

16.7. Co- and contravariantly finite subcategories. LetA be a finite-dimensional
K-algebra.

A homomorphism g : M → N in mod(A) is right minimal if all h ∈ EndA(M)
with gh = g are automorphisms.

Mh
66

f
// N

Dually, a homomorphism f : M → N in mod(A) is left minimal if all h ∈
EndA(N) with hf = f are automorphisms.

M
f
// N h
hh

Lemma 16.4. Let f : M → N be in mod(A). Then there exists a direct sum
decomposition M = M1⊕M2 such that the restriction f : M1 → N is right minimal
and f(M2) = 0.
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There is an obvious dual statement.

Let C be a full subategory of mod(A).

A homomorphism g : M → N in mod(A) is a right C-approximation of N
if M ∈ C and if

HomA(C, g) : HomA(C,M)→ HomA(C,N)

is surjective for all C ∈ C.
C

h
��~~

M g
// N

In other words, every homomorphism h from the subcategory C to the module
N factors through the fixed homomorphism g.

Dually, a homomorphism f : M → N in mod(A) is a left C-approximation
of M if N ∈ C and if

HomA(f, C) : HomA(N,C)→ HomA(M,C)

is surjective for all C ∈ C.
M

f
//

h
��

N

~~

C

In other words, every homomorphism h from M to the subcategory C factors
through the fixed homomorphism f .

A right (resp. left) C-approximation is called minimal if it is right minimal (resp.
left minimal).

Minimal approximations are unique up to isomorphism.

Assume now that C is closed under isomorphism and under direct summands.

Then C is covariantly finite if every N ∈ mod(A) has a right C-
approximation.

Dually, C is contravariantly finite if every M ∈ mod(A) has a left C-
approximation.
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One calls C functorially finite if it is both covariantly finite and contravari-
antly finite.

These types of subcategories allow to develop Auslander-Reiten theory for sub-
categories.

Literature – co- and contravariantly finite subcategories
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2, 426–454.

[EMM10] K. Erdmann, D. Madsen, V. Miemietz, On Auslander-Reiten translates in functorially
finite subcategories and applications. Colloq. Math. 119 (2010), no. 1, 51–77.

16.8. Torsion pairs. Let A be an abelian category.

A pair (T ,F) of full subcategories of A is a torsion pair for A if the following
hold:

(i) HomA(T ,F) = 0.

(ii) If X ∈ A with HomA(X,F) = 0, then X ∈ T .

(iii) If Y ∈ A with HomA(T , Y ) = 0, then Y ∈ F .

Given a torsion pair (T ,F), one calls T a torsion class and F a torsion-free
class in A.

Proposition 16.5. (i) A full subcategory T of A is a torsion class if and
only if T is closed under factors objects and extensions.

(ii) A full subcategory F of A is a torsion-free class if and only if F is
closed under subobjects and extensions.

Proposition 16.6. Let (T ,F) be a torsion pair for A. For each M ∈ A there
is a unique subobject tM of M such that tM ∈ T and M/tM ∈ F .

Clearly, tM is the largest torsion subobject of M .

We consider now the special case A = mod(A) where A is a finite-dimensional
algebra.
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Let tors(A) (resp. torsfr(A)) be the set of torsion classes (resp. torsion-free
classes in mod(A). Let ff-tors(A) (resp. ff-torsfr(A)) be the set of functorially
finite torsion classes (resp. functorially finite torsion-free classes in mod(A).

For a full subcategory C of mod(A) let C⊥ := {X ∈ mod(A) | HomA(C, X) = 0}
and ⊥C := {X ∈ mod(A) | HomA(X, C) = 0}. We get bijections

tors(A)
(−)⊥

∼=
//
torsfr(A)

⊥(−)

oo

which are inverses of each other. These restrict to bijections

ff-tors(A)
(−)⊥

∼=
//
ff-torsfr(A)

⊥(−)

oo

For a full subcategory C of mod(A) let T (C) (resp. F(C)) be the smallest torsion
class (resp. torsion-free class) in mod(A) which contains C.

For a wide subcategory C of mod(A) we have

T (C) ∩ F(C) = C.

For a torsion class T in mod(A) let

αT (T ) := {Y ∈ T | Ker(f) ∈ T for all f ∈ HomA(X, Y ) and X ∈ mod(A)}.

Dually, for a torsion-free class F in mod(A) let

αF (F) := {X ∈ F | Cok(f) ∈ F for all f ∈ HomA(X, Y ) and Y ∈ mod(A)}.

Theorem 16.7. For the maps

wide(A)

T (−)

��

wide(A)

F(−)

��

tors(A)
(−)⊥

∼=
//

αT

OO

torsfr(A)
⊥(−)

oo

αF

OO

we have αT ◦ T (−) = id and αF ◦ F(−) = id.

An important class of examples of torsion pairs arises from tilting modules and
partial tilting modules.
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T ∈ mod(A) is a partial tilting module if the following hold:

(T1) Ext1
A(T, T ) = 0.

(T2) proj. dim(T ) ≤ 1.

T is a tilting module if additionally the following holds:

(T3) There exists a short exact sequence

0→ AA→ T0 → T1 → 0

with T0, T1 ∈ add(T ).

For a partial tilting module T let

F(T ) := {X ∈ mod(A) | HomA(T,X) = 0},
T (T ) := {X ∈ mod(A) | Ext1

A(T,X) = 0}.

For M ∈ mod(A) let

gen(M) := {X ∈ mod(A) | there is an epimorphism Mm → X for some m},
cogen(M) := {X ∈ mod(A) | there is a monomorphism X →Mm for some m}.

Proposition 16.8. Let T ∈ mod(A) be a partial tilting module, then
(gen(T ),F(T )) and (T (T ), cogen(τA(T ))) are torsion pairs.

Proposition 16.9. Let T ∈ mod(A) be a tilting module, then gen(T ) = T (T )
and cogen(τA(T )) = F(T ). In particular, (T (T ),F(T )) is a torsion pair.

Example: Let Q be the quiver

2

��

3

��

4

��

1

and let A = KQ. Let T be the indecomposable A-module with

dim(T ) = 0 1 1
1 .
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Then T is a partial tilting module, and (gen(T ),F(T )) is a torsion pair. The AR
quiver ΓA looks as follows:

1 0 0
1

��

0 1 1
1

��

1 0 0
0

0 1 0
1

""

1 0 1
1

""

0 1 0
0

0 0 0
1

<<

EE

""

1 1 1
2

<<

EE

""

1 1 1
1

<<

EE

""

0 0 1
1

<<

1 1 0
1

<<

0 0 1
0

The modules in gen(T ) are marked in red, and the ones in F(T ) are marked in blue.

16.9. Hierarchy of subcategories.

Proposition 16.10. We have the following inclusions between classes of sub-
categories of mod(A):

exact

full exact

abelian thick torsion(-free) (co)resolving

wide co/contravariantly finite

Serre functorially finite

16.10. Functorially finite torsion classes. Let A be a finite-dimensional algebra.

X ∈ mod(A) is τ-rigid if HomA(X, τA(X)) = 0.

Example: Let X ∈ mod(A) such that Ext1
A(X,X) = 0 (i.e. X is rigid) and

proj. dim(X) ≤ 1. Then X is τ -rigid.

For X ∈ mod(A) let sd(X) be the number of isomorphism classes of indecompos-
able direct summands of X. Let n(A) := sd(AA).
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A τ -rigid module X is a τ-tilting module if sd(X) = n(A).

Dually, one defines τ−-rigid and τ−-tilting modules.

Theorem 16.11 ([AIR14, Theorem 0.2]). Let X ∈ mod(A) be τ -rigid. Then
the following hold:

(i) sd(X) ≤ n(A).

(ii) There exists some X ′ ∈ mod(A) such that X⊕X ′ is a τ -tilting module.

Recall that X ∈ mod(A) is basic if X is a direct sum of pairwise non-isomorphic
indecomposable modules.

A pair (P,X) of A-modules is a support τ-tilting pair if X is τ -rigid, P is
projective, HomA(P,X) = 0 and sd(P ) + sd(X) = n(A).

Such a pair is basic if P and X are basic.

Let sτ -tilt(A) be the set of isomorphism classes (in the obvious sense) of basic
support τ -tilting pairs.

Dually, let sτ−-tilt(A) be the set of isomorphism classes of basic support τ−-
tilting pairs.

For a torsion class T in mod(A), P ∈ T is T -projective if Ext1
A(P, T ) = 0. The

torsion class T has a T -projective generator if and only if T is functorially finite.
In this case, let P (T ) denote a basic T -projective generator of T . (This is unique,
up to isomorphism.)

For a torsion-free class F in mod(A), I ∈ F is F-injective if Ext1
A(F , I) = 0. The

torsion-free class F has an F -injective cogenerator if and only if F is functorially
finite. In this case, let I(F) denote a basic F -injective cogenerator of F . (This is
unique, up to isomorphism.)

A wide subcategory C ∈ wide(A) is left finite (resp. right finite) if T (C) (resp.
F(C)) is functorially finite.

Let lf-wide(A) (resp. rf-wide(A)) be the set of left finite (resp. right finite)
wide subcategories of mod(A).
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Theorem 16.12 ( [MS17, Proposition 3.9], [AIR14, Theorem 0.5]). There are
bijections

lf-wide(A)

T (−)

��

rf-wide(A)

F(−)

��

ff-tors(A)

T 7→P (T )

��

αT

OO

(−)⊥

∼=
//
ff-torsfr(A)

F7→I(F)

��

⊥(−)

oo

αF (−)

OO

sτ -tilt(A)

T 7→gen(T )

OO

sτ−-tilt(A)

T 7→cogen(T )

OO

Let brick(A) be the set of isomorphism classes of bricks in mod(A).

A brick X is left finite (resp. right finite) if the smallest torsion class T (X)
(resp. the smallest torsion-free class F(X)) containing X is functorially finite.

Let lf-brick(A) (resp. rf-brick(A)) be the set of isomorphism classes of left
finite (resp. right finite) bricks.

Let τ -rigid(A) be the set of isomorphism classes of indecomposable τ -rigid
A-modules.

Theorem 16.13 ([DIJ19, Theorem 4.1]). The map

τ -rigid(A)→ lf-brick(A)

X 7→ radB(X)

with B := EndA(X) is a bijection.

The previous theorem has a dual version.

For further results in this direction we refer to [A20].

Example: Let A = KQ/I where Q is the quiver

1a
88 2oo
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and I is the ideal generated by a2. The AR quiver ΓA looks as follows:

2
1

1

!!

2oo

1
1

??

  

2
2 1

1

>>

!!

oo

1

@@

��

2 1
1

<<

##

oo 2
1

oo

2
1

==

1

<<

oo

(One needs to identify the two blue and the two red modules.) Thus there are 7
indecomposable A-modules, up to isomorphism. Four of these are τ -rigid. The map

τ -rigid(A)→ lf-brick(A)

is given by
2

1
1

7→ 2
1

1
, 2 7→ 2 , 1

1 7→ 1 ,
2

2 1
1

7→ 2
1 .
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16.11. Chains of torsion classes and stability. Let A be a length category, and
let Ob(A)× := Ob(A) \ {0}.

Our focus lies as usual on A = mod(A) where A is a finite-dimensional algebra.

16.11.1. Chains of torsion classes and slicings. We follow [T18].

A chain of torsion classes in A indexed by [0, 1] is given by a set

η = {Ts | s ∈ [0, 1]}
of torsion classes such that Ts ⊆ Tr for all r, s ∈ [0, 1] with r ≤ s, T0 = A and
T1 = 0.

For such a chain of torsion classes, for s ∈ [0, 1] let Fs be the full subcategory of
A such that (Ts,Fs) is a torsion pair.

For r ≤ s we get Fr ⊆ Fs.
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For X ∈ A and s ∈ [0, 1] there is a unique subobject tsX of X such that tsX ∈ Ts
and X/tsX ∈ Fs. It follows that tsX is the largest torsion subobject of X with
respect to Ts.

We get tsX ⊆ trX for all r ≤ s.

Let
Pη := {Pη(r) | r ∈ [0, 1]}

where

Pη(r) :=


⋂
s>0Fs if r = 0,(⋂
s<r Ts

)
∩
(⋂

s>r Fs
)

if r ∈ (0, 1),⋂
s<1 Ts if r = 1.

Theorem 16.14 ([T18, Theorem 1.4]). Let η = {Ts | s ∈ [0, 1]} be a chain of
torsion classes in A. Then each X ∈ Ob(A)× has a unique filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

such that the following hold:

(i) For each 1 ≤ i ≤ n there exists some ri ∈ [0, 1] such that Xi/Xi−1 ∈
Pη(ri).

(ii) r1 > r2 > · · · > rn.

The filtration in the theorem is the Harder-Narasimhan filtration of X.

A slicing of A is given by a set

P = {P(r) | r ∈ [0, 1]}
of full additive subcategories P(r) of A such that the following hold:

(i) HomA(P(r),P(s)) = 0 for all r > s.

(ii) For each X ∈ Ob(A)× there exists a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

and r1 > r2 > · · · > rn in [0, 1] such that

Xi/Xi−1 ∈ P(ri)

for 1 ≤ i ≤ n.

Theorem 16.15 ([T18, Theorem 1.6]). Every chain η of torsion classes in A
indexed by [0, 1] induces a slicing Pη of A, and every slicing of A arises in this
way.

16.11.2. Maximal green sequences.
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A maximal green sequence in A is a non-refineable finite chain

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn = A
of torsion classes in A.

The torsion classes Ti appearing in such a maximal green sequence are func-
torially finite.

Maximal green sequences do not always exist, and if they exist, they might have
different lengths.

The existence (or non-existence) of maximal green sequences is an important
matter and is related e.g. to the existence of good bases for Fom-Zelevinsky cluster
algebras and to the construction of Donaldson-Thomas invariants for certain 3-
Calabi-Yau categories.

Let now A be a finite-dimensional algebra, and let A = mod(A).

Theorem 16.16 ([DK20, Theorem A.3]). There is a bijection Φ between
the set of maximal green sequences in A and the set of non-refinable finite
sequences ([B1], . . . , [Bn]) of isomorphism classes of bricks in A such that
HomA(Bi, Bj) = 0 for all i < j.

The set tors(A) of torsion classes in mod(A) is a poset where the partial order is
given by T ≤ T ′ if T ⊆ T ′.

Let Hasse(tors(A)) be the associated Hasse quiver. Its vertices are the torsion
classes in mod(A), and there is an arrow q : T → T ′ provided T < T ′ and for each
torsion classes T ′′ with T ≤ T ′′ ≤ T ′ we have T ′′ = T or T ′′ = T ′. In this case,
there is a unique brick S ∈ T ′ with HomA(T , S) = 0. The arrow q receives S as a
label. (The brick S might appear as a label of more than one arrow.)

Maximal green sequences in A correspond to the finite paths of the form

0 = T0
B1−→ T1

B2−→ · · · Bn−→ Tn = A
in the labelled quiver Hasse(tors(A)).

The map Φ in the theorem sends such a maximal green sequence to the tuple
([B1], . . . , [Bn]). Vice verse, given a non-refinable finite sequences ([B1], . . . , [Bn]) as
in the theorem and 1 ≤ i ≤ n, let Ti := T (B1, . . . , Bi) be the smallest torsion class
containing B1, . . . , Bi. Then

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn = A
is a maximal green sequence.

A brick sequence ([B1], . . . , [Bn]) as above is also called a maximal green se-
quence.
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Examples:

(i) Let Q be the quiver

1 2oo

and let A = KQ. The AR quiver ΓA looks as follows:

2
1

��

1

??

2oo

The maximal green sequences in mod(A) are ( 1 , 2 ) and ( 2 , 2
1 , 1 ). The chain

of torsion classes associated with the first sequence is

0 = T0
1−→ T1 = add( 1 )

2−→ T2 = mod(A)

and the chain associated with the second sequence is

0 = T0
2−→ T1 = add( 2 )

2
1−→ T2 = add( 2 ⊕ 2

1 )
1−→ T3 = mod(A).

(ii) Let Q be the quiver

1 2oo
oo

and let A = KQ. The only maximal green sequence in mod(A) is

( 1 , 2 ).

(iii) Let A = KQ/I where Q is the quiver

2

a

��

b∗

��

1

a∗

GG

c
// 3

c∗
oo

b

WW

and I is generated by the relations

{aa∗, a∗a, bb∗, b∗b, cc∗, c∗c} ∪ {all paths of length 3 in Q}.

Note that A is a representation-infinite string algebra. By [H21, Exam-
ple 4.27], there is no maximal green sequence in mod(A).

16.11.3. Why stability? One would like to parametrize the isomorphism classes of
objects in A by a space X (usually a quasi-projective variety). This is a bit too naive
and usually fails. Choosing a stability function φ, one gets the wide subcategory
Aφ(t) of φ-semistable objects of phase t in A. For the simple objects in Aφ(t)
(i.e. the φ-stable objects of phase t in A) one can construct a parametrizing space
Xφ(t). We will not discuss Xφ(t) in these notes. Instead we focus on the notion of
directedness arising from stability functions.
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16.11.4. Looking for directedness. In a length category, there are usually many cy-
cles, i.e. sequences of non-zero and non-invertibles morphisms

X = X0
f1−→ X1

f2−→ · · · fn−→ Xn = X

where the Xi are indecomposable objects. Torsion pairs, chains of torsion classes,
stability, ∆-filtered modules for quasi-hereditary algebras, to some extend coverings
of module categories and similar concepts all have one thing in common: One tries
to get rid of cycles and to obtain a situation where everything is directed, i.e. the
morphisms only go in one direction. More precisely, one tries to construct full
additive subcategories

{A(r) | r ∈ P}

of A where P is some totally ordered set such that HomA(A(r),A(s)) = 0 for
all r > s. Furthermore, for each non-zero object X in A (or in some suitable
subcategory of A) there should be a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

and r1 > r2 > · · · > rn in P such that Xi/Xi−1 ∈ P(ri) for 1 ≤ i ≤ n. One
would also like that this filtration is unique. The key words here are “slicings” and
“Harder-Narasimhan filtrations”.

16.11.5. Rudakov stability. This is based on [R97]. Let P be a totally ordered set.

A map
φ : Ob(A)× → P

is a stability function if the following hold:

(i) φ is constant on isomorphism classes.

(ii) For each short exact sequence

0→ X → Y → Z → 0

of non-zero objects in A, exactly one of the following holds:
(a) φ(X) < φ(Y ) < φ(Z).
(b) φ(X) > φ(Y ) > φ(Z).
(c) φ(X) = φ(Y ) = φ(Z).

Condition (ii) is called the see-saw property. For each X ∈ Ob(A)× one
calls φ(X) the phase of X.

X ∈ Ob(A)× is φ-semistable if

φ(U) ≤ φ(X)

for all non-zero subobjects U of X. Such a φ-semistable object X is φ-stable
if the only subobject U with φ(U) = φ(X) is X.
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For each t ∈ P let

Aφ(t) := {X ∈ Ob(A)× | X is φ-semistable and φ(X) = t} ∪ {0}.

Proposition 16.17. Let φ : Ob(A)× → P be a stability function. Then the
following hold:

(i) Aφ(t) is a wide subcategory of A.

(ii) The simple objects in Aφ(t) are the φ-stable objects with phase t.

(iii) HomA(Aφ(t),Aφ(s)) = 0 for all t > s.

Theorem 16.18 ([BST18, Theorem 2.13]). Let φ : Ob(A)× → P be a stability
function. Then each X ∈ Ob(A)× has a unique filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

such that the following hold:

(i) For each 1 ≤ i ≤ n there exists some ti ∈ P such that Xi/Xi−1 ∈
Aφ(ti).

(ii) t1 > t2 > · · · > tn.

The filtration
0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

in the previous theorem is the Harder-Narasimhan filtration of X.

16.11.6. Bridgeland stability. We follow [B07, Section 2]. As before, let A be a
length category.

Let

H := {r exp(iπφ) | r > 0, φ ∈ (0, 1]} ⊂ C
be the upper half plane.

Recall that K0(A) denotes the Grothendieck group of A. For an object X in A
we denote the corresponding element in K0(A) also by X. (There won’t be any
confusion arising from this.)

A stability function for A is a group homomorphism

Z : K0(A)→ C
such that for each X ∈ Ob(A)× we have Z(X) ∈ H.

Note that a stability function Z : K0(A) → C is completely determined by the
values Z(S) where S runs over the simple objects in A.
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For such a stability function Z, the phase of X ∈ Ob(A)× is

φZ(X) :=
1

π
arg(Z(X)) ∈ (0, 1].

X ∈ Ob(A)× is Z-semistable if for all non-zero subobjects U of X we have

φZ(U) ≤ φZ(X).

Such a Z-semistable object X is Z-stable if the only subobject U with
φZ(U) = φZ(X) is U = X.

Let
AZ(t) := {M ∈ A |M is Z-semistable and φZ(X) = t} ∪ {0}.

Proposition 16.19. Let Z : K0(A)→ C be a stability function. Then

φZ : Ob(A)× → (0, 1]

is a stability function (in the sense of Rudakov), and we have

AZ(t) = AφZ (t)

for all t ∈ (0, 1].

16.11.7. King stability. We follow [K94].

A character of A is a group homomorphism

θ : K0(A)→ R.

X ∈ A is θ-semistable if θ(X) = 0 and for all subobjects U of X we have
θ(U) ≤ 0. Such a θ-semistable object X is θ-stable if X 6= 0 and the only
subobjects U with θ(U) = 0 are 0 and X.

Let
Aθ := {X ∈ A | X is θ-semistable}.

With P = R the character θ gives a stability function (in the sense of Rudakov)

φθ : Ob(A)× → P

X 7→ θ(X).
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We get
Aθ = Aφθ(0).

To be continued...
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Appendix A. Categories

This section is devoted to recall some fundamental notions on categories and
functors. We will not always go for the most general definitions. For convenience,
we define several categorical concepts only inside module categories Mod(A).

A.1. Coproducts. Let C be a category. An object X in C is a coproduct of a
familiy (Xi)i∈I of objects in C if the following hold: There exists a family (ιi : Xi →
X)i∈I of morphisms such that for any Y ∈ Ob(C) and any family (fi : Xi → Y )i∈I
of morphisms there exists a unique morphism f : X → Y such that fi = f ◦ ιi for
all i ∈ I.

Xi

fi
��

ιi
// X

f~~

Y

In this case, we write

X =
⊕
i∈I

Xi and f =
⊕
i∈I

fi.

A.2. Products. Let C be a category. An object X in C is a product of a familiy
(Xi)i∈I of objects in C if the following hold: There exists a family (πi : X → Xi)i∈I
of morphisms such that for any Y ∈ Ob(C) and any family (fi : Y → Xi)i∈I of
morphisms there exists a unique morphism f : Y → X such that fi = πi ◦ f for all
i ∈ I.

Y
f

~~

fi
��

X
πi
// Xi

In this case, we write

X =
∏
i∈I

Xi and f =
∏
i∈I

fi.

A.3. Zero objects. Let C be a category. Then I ∈ Ob(C) is an initial object if
C(I,X) contains exactly one morphism for all X ∈ Ob(C).

Dually, T ∈ Ob(C) is a terminal object if C(X,T ) contains exactly one mor-
phism for all X ∈ Ob(C).

Exercise: Given two initial objects I1 and I2 (resp. terminal objects T1 and T2).
Then there exists a unique isomorphism I1 → I2 (resp. T1 → T2).

An object in C is a zero object if it is an initial object and a terminal object.
We denote such a zero object usually by 0.

The category C is a pointed category if it contains a zero object.
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A.4. Preadditive categories.

A category C is preadditive if C(X, Y ) is an abelian group for all X, Y ∈
Ob(C) and if the composition maps are bilinear, i.e.

f ◦ (g1 + g2) = (f ◦ g1) + (f ◦ g2)

and
(f1 + f2) ◦ g = (f1 ◦ g) + (f2 ◦ g)

for all f, f1, f2 ∈ C(Y, Z), g, g1, g2 ∈ C(X, Y ) and X, Y, Z ∈ Ob(C).

Exercise: Let C be preadditive, and let X ∈ Ob(C). If C(X,X) consists of
exactly one element, then X is a zero object.

A.5. Biproducts and additive categories.

Let C be a preadditive category. An object X ∈ Ob(C) is a biproduct of
objects X1, . . . , Xn ∈ Ob(C) if the following hold: There exist morphisms

πi : X → Xi and ιi : Xi → X

such that

πi ◦ ιj =

{
1Xi if i = j,

0 otherwise,

and
ι1 ◦ π1 + · · ·+ ιn ◦ πn = 1X .

In this case, we call

X
π1

��

πn

��

X1

ι1

DD

· · · Xn

ιn

ZZ

a biproduct diagram, and we write

X = X1 ⊕ · · · ⊕Xn.

Biproducts often coincide with the notion of finite direct sums (for example in
Mod(A) and in Ab). Infinite biproducts do not make sense, whereas infinite direct
sums (for example in Mod(A) and in Ab) are often defined.

A zero object is by definition also a biproduct.

A pointed preadditive category in which every biproduct exists is called an
additive category.
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A functor F : C → D between preadditive categories is an additive functor
if the maps

FX,Y : C(X, Y )→ D(F (X), F (Y ))

are group homomorphisms for all X, Y ∈ Ob(C).

Exercise: A functor between additive categories is additive if and only if it
preserves all biproduct diagrams.

Exercise: All adjoint functors between additive categories are additive functors.

A.6. Ideals in additive categories. Let C be an additive category.

An ideal I in C is given by a subgroup I(X, Y ) of C(X, Y ) for each pair
(X, Y ) ∈ C × C such that for all f ∈ C(X ′, X), g ∈ I(X, Y ) and h ∈ C(Y, Y ′)
we have

h ◦ g ◦ f ∈ I(X ′, Y ′).

For an ideal I in C let C/I be the factor category which has the same objects
as C and as morphisms

(C/I)(X, Y ) := C(X, Y )/I(X, Y )

for X, Y ∈ C.

C/I is an additive category.

A.7. Triangulated categories. Let T be an additive category, and let

[−] : T → T

be an equivalence. For objects X and morphisms f in T and n ∈ Z we write X[n]
and f [n] for [−]n(X) and [−]n(f). A diagram

X
u−→ Y

v−→ Z
w−→ X[1]

of morphisms in T is called a triangle. Such a triangle is also denoted by (u, v, w).
Two triangles (u1, v1, w1) and (u2, v2, w2) are isomorphic if there is a triple (f1, f2, f3)
of isomorphisms such that the diagram

X1
u1
//

f1
��

Y1
v1
//

f2
��

Z1
w1
//

f3
��

X1[1]

f1[1]

��

X2
u2
// Y2

v2
// Z2

w2
// X2[1]

commutes.
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The category T together with a set of triangles which are called distinguished
triangles is a triangulated category if the following hold:

(T1) – A triangle which is isomorphic to a distinguished triangle is also
distinguished.

– For each morphism u : X → Y in T there exists a distinguished
triangle

X
u−→ Y → Z → X[1].

– The triangle

X
1X−→ X → 0→ X[1]

is distinguished for each X ∈ T .

(T2) A triangle

X
u−→ Y

v−→ Z
w−→ X[1]

is distinguished if and only if

Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1]

is distinguished.

(T3) Let

X1
u1
//

f1
��

Y1
v1
//

f2
��

Z1
w1
// X[1]

f1[1]

��

X2
u2
// Y2

v2
// Z2

w2
// X2[1]

be a diagram of morphism in T such that both rows are distinguished
triangles and u2f1 = f2u1. Then there is a morphism f3 : Z1 → Z2 such
that v2f2 = f3v1 and w2f3 = f1[1]w1.

(T4) Let (u1, v1, w1), (u2, v2, w2) and (u3, v3, w3) be distinguished triangles
such that u3 = u2u1. Then there exists a distinguished triangle
(u4, v4, w4) such that the diagram

X
u1
// Y

u2

��

v1
// U

u4

��

w1
// X[1]

X
u3

// Z
v3

//

v2

��

V

v4

��

w3
// X[1]

u1[1]
��

W

w2

��

W
w2
//

w4

��

Y [1]

Y [1]
v1[1]

// U [1]

commutes.

Condition (T4) runs under the name octahedral axiom.
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Triangulated categories are like tensor products: No one likes them on first sight.
One needs time, patience and frequent encounters to discover their lovable proper-
ties.

As an introduction to triangulated categories we recommend the books [GM03],
[N01] and [Y20] and also the survey articles [K96] and [Kr07]. The book [H88]
focusses on the triangulated categories arising from finite-dimensional algebras.

Let T = (T , [−]) and T ′ = (T ′, [−]′) be triangulated categories. A triangle
functor from T to T ′ consists of an additive functor

F : T → T ′

and a natural transformation

α : F ◦ [1]→ [1]′ ◦ F
such that the following hold: For each distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

in T , the diagram

F (X)
F (u)−−→ F (Y )

F (v)−−→ F (Z)
αX◦F (w)−−−−−→ F (X)[1]

is a distinguished triangle in T ′.

A triangle equivalence is a triangle functor which is also an equivalence.

A.8. Kernels and cokernels in preadditive categories.

Let C be a preadditive category. For a morphism f : X → Y in C we say that
a morphism g : U → X is a kernel of f if the following hold:

• f ◦ g = 0;

• If g′ : U ′ → X is a morphism with f ◦ g′ = 0, then there exists a unique
morphism g′′ : U ′ → U such that g ◦ g′′ = g′.

In this case, we say that f has a kernel.

U ′

g′

��

g′′

~~

U
g
// X

f
// Y

Kernels are unique up to unique isomorphism.

Exercise: Figure out what this last sentence means and prove it.
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For a morphism f : X → Y in C we say that a morphism g : Y → U is a
cokernel of f if the following hold:

• g ◦ f = 0;

• If g′ : Y → U ′ is a morphism with g′ ◦ f = 0, then there exists a unique
morphism g′′ : U → U ′ such that g′′ ◦ g = g′.

In this case, we say that f has a cokernel.

X
f
// Y

g
//

g′

��

U

g′′~~

U ′

Cokernels are unique up to unique isomorphism.

A.9. Pushouts and pullbacks. Let C be a category.

Let f1 : X → Y1 and f2 : X → Y2 be morphisms in C. Then a pair (g1 : Y1 →
Z, g2 : Y2 → Z) of morphisms is called a pushout of (f1, f2) (or fibre sum of
(f1, f2)) if the following hold:

• g1f1 = g2f2;

• For all morphisms h1 : Y1 → Z ′ and h2 : Y2 → Z ′ such that h1f1 = h2f2 there
exists a unique morphism h : Z → Z ′ such that h1 = hg1 and h2 = hg2.

Y1

g1
��

h1

))
X

f1
>>

f2   

Z
h

// Z ′

Y2

g2
??

h2

55

One sometimes denotes Z by Y1 +Z Y2.

Pushouts are unique up to unique isomorphism.

Exercise: Figure out what this last sentence means and prove it.

Dually, let g1 : Y1 → Z and g2 : Y2 → Z be morphisms in C. Then a pair (f1 : X →
Y1, f2 : X → Y2) is called a pullback of (g1, g2) (or fibre product of (f1, f2)) if the
following hold:

• g1f1 = g2f2;

• For all morphisms h1 : X ′ → Y1 and h2 : X ′ → Y2 such that g1h1 = g2h2 there
exists a unique morphism h : X ′ → X such that f1h = h1 and f2h = h2.
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Y1

g1

��

X ′
h
//

h1

55

h2
))

X
f1

>>

f2

  

Z

Y2

g2

??

One sometimes denotes X by Y1 ×Z Y2.

Pullbacks are unique up to unique isomorphism.

Since the pushout of a pair (f1 : X → Y1, f2 : X → Y2) (resp. the pullback of a
pair (g1 : Y1 → Z, g2 : Y2 → Z)) is unique up to unique isomorphism, we speak of
the pushout of (f1, f2) (resp. the pullback of (g1, g2)).

A.10. Exact categories. Let C be an additive category.
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The category C together with a class E of diagrams

X
f−→ Y

g−→ Z

in C is an exact category (in the sense of Quillen) if the following axioms
holds:

(E1) E is closed under isomorphisms and contains the canonical (split ex-
act) sequences

X → X ⊕ Y → Y.

(E2) Let

X
f−→ Y

g−→ Z

be in E . Then f is called an admissible monomorphism and g an
admissible epimorphism. Suppose h : Z ′ → Z is any morphism in
C, then the pullback

Y ′

��

g′
// Z ′

h
��

Y
g
// Z

exists, and g′ is an admissible epimorphism. Dually, suppose h : X →
X ′ is any morphism in C, then the pushout

X

h
��

f
// Y

��

X ′
f ′
// Y ′

exists, and f ′ is an admissible monmorphism.

(E3) Let

X
f−→ Y

g−→ Z

be in E . Then f is a kernel of g, and g is a cokernel of f . The com-
position of two admissible monomorphisms is an admissible monomor-
phism, and the composition of two admissible epimorphisms is an ad-
missible epimorphism.

(E4) Let g : Y → Z be a morphism in C, which has a kernel in C. Let
h : Y ′ → Y be any morphism in C such that g ◦ h : Y ′ → Z is an
admissible epimorphism. Then g is an admissible epimorphism. Dually,
let f : X → Y be a morphism in C, which has a cokernel in C. Let
h : Y → Y ′ be any morphism in C such that h ◦ f : X → Y ′ is an
admissible monomorphism. Then f is an admissible monomorphism.

One also calls the pair (C, E) an exact category.

Keller (1990) proved that the axiom (E4) is redundant.
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We call the diagrams in E short exact sequences in C, and we say that E is an
exact structure on C. For a short exact sequence

X → Y → Z

we often write

0→ X → Y → Z → 0.

Let C and D be exact categories. An additive functor

F : C → D
is an exact functor if for each short exact sequence

0→ X → Y → Z → 0

in C, the corresponding diagram

0→ F (X)→ F (Y )→ F (Z)→ 0

is a short exact sequence in D.

The exactness of an contravariant additive functor is defined accordingly.

A full subcategory U of an exact category C is an exact subcategory if U is
an exact category and if the inclusion functor

U → C
is exact.

Let C be an exact category. A subcategory U of C is closed under extensions
if for each short exact sequence

X → Y → Z

in C with X,Z ∈ U , we also have Y ∈ U .

A full subcategory U of an exact category C is a full exact subcategory if
0 ∈ U and if U is closed under extensions.

In this case, U together with the short exact sequences

X → Y → Z

in C such that X, Y, Z ∈ U form an exact category. We say that the exact struc-
ture on U is induced by the exact structure on C.

Each full exact subcategory is an exact subcategory.

Let C be an exact category, and let Ab be the category of abelian groups with the
canonical exact structure.
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An object P ∈ C is C-projective if the functor

C(P,−) : C → Ab

is exact.

The category C has enough projectives if for each object Y ∈ C there is an
exact sequence

X → P → Y

where P is C-projective. We write Ω(Y ) := X.

Here are the dual definitions:

An object I ∈ C is C-injective if the contravariant functor

C(−, I) : C → Ab

is exact.

The category C has enough injectives if for each object X ∈ C there is an exact
sequence

X → I → Y

where I is C-projective. We write Σ(X) := Y .

A.11. Frobenius categories.

An exact category F is a Frobenius category if the following hold:

(i) F has enough projectives;

(ii) F has enough injectives;

(iii) An object is C-projective if and only if it is C-injective.

Let F be a Frobenius category. The stable category F has by definition the
same objects as F . The morphism sets in F are

F(X, Y ) := F(X, Y )/P(X, Y )

where P(X, Y ) is the subgroup of all morphisms X → Y factoring through a
C-projective object.

Frobenius categories form a source for triangulated categories:

Theorem A.1 (Happel [H87, H88]). Let F be a Frobenius category. Then F
is a triangulated category where the shift functor [−] is induced by Σ(−).
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A triangulated category T is algebraic if there is a triangle equivalence

T → F
for some Frobenius category F .

For a more detailed proof of Theorem A.1 we refer to [HZ] and [Kr07]. A discussion
of some subtleties of the proof of Theorem A.1 can be found in [K07].

A.12. Preabelian and abelian categories.

An additive category C is preabelian if every morphism has both a kernel
and a cokernel.

A preabelian category is abelian if every monomorphism is a kernel of some
morphism, and every epimorphism is a cokernel of some morphism.

Let C be an abelian category. A short exacts sequence in C is a diagram

X
f−→ Y

g−→ Z

such that f is a kernel of g, and g is a cokernel of f .

Let E be the class of short exact sequences in an abelian category C. Then
(C, E) is an exact category.

For an abelian category A we often write Hom(X, Y ) or HomA(X, Y ) instead of
A(X, Y ).

A.13. Sub- and factor objects. Let C be a category. Monomorphisms f1 : X1 →
X and f2 : X2 → X in C are equivalent if there exists an isomorphism h : X1 → X2

with f1 = f2h.

X1

h
��

f1
// X

X2
f2
// X

An equivalence class of such monomorphisms is a subobject of X.

Analogously, epimorphisms g1 : X → X1 and g2 : X → X2 in C are equivalent if
there exists an isomorphism h : X1 → X2 with hg1 = g2.

X
g1
// X1

h
��

X
g2
// X2
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An equivalence class of such epimorphisms is a factor object of X.

Assume now that C is abelian. For each morphism f : X → Y we get a commu-
tative diagram

Ker(f)
f ′

// X
f

//

��

Y
f ′′
// Cok(f)

Cok(f ′)
∼=
// Ker(f ′′)

OO

The image Im(f) of f is the subobject of Y given by the equivalence class of the
monomorphism Ker(f ′′)→ Y .

A.14. Length categories. Let C be an abelian category.

An object X ∈ C has finite length if there exists a chain

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = X

of subobjects such that Xi/Xi−1 is simple for all 1 ≤ i ≤ t. Such a chain is
called a composition series.

The abelian category C is a length category if each objects in C has finite
length and if C is skeletally small.

A length category C is uniserial if each X ∈ C has a unique composition
series.

An abelian category C is noetherian if each X ∈ C satisfies the ascending
chain condition for subobjects, i.e. there is no infinite ascending chain

X1 ⊂ X2 ⊂ · · · ⊂ Xt ⊂ · · ·
of subobjects of X.

A.15. Idempotent complete categories.

An additive category C is idempotent complete if each endomorphism e ∈
C(X,X) with e2 = e has a kernel.

In this case, we have
X = Ker(e)⊕Ker(1X − e).

For each additive category C there exists an idempotent complete additive cate-
gory C and a functor

F : C → C
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which is additive, full and faithful such that each object in C is isomorphic to a direct
summand of an object in the image of F . One calls C the idempotent completion
of C.

A.16. Krull-Remak-Schmidt categories.

An additive category C is a Krull-Remak-Schmidt category if each object
X ∈ C is isomorphic to a finite direct sum of objects with local endomorphism
rings.

It follows that an analogue of the Krull-Remak-Schmidt Theorem holds in C.

Examples:

(i) Each length category is a Krull-Remak-Schmidt category, e.g. the category
mod(A) of finite length modules over an algebra A.

(ii) Let K be algebraically closed, and let X be a complete K-variety. The cat-
egory coh(X) of coherent sheaves in X is a Krull-Remak-Schmidt category,
see [A56].

A ring R is semiperfect if RR is a direct sum of indecomposable modules
with local endomorphism ring.

For example, finite-dimensional algebras are semiperfect.

A proof of the following characterization of Krull-Remak-Schmidt categories can
be found in [Kr15].

Proposition A.2. For an additive category C the following are equivalent:

(i) C is a Krull-Remak-Schmidt category.

(ii) C is idempotent complete and the endomorphism ring of each object in
C is semiperfect.

Corollary A.3. For a Hom-finite K-linear category C the following are equiv-
alent:

(i) C is a Krull-Remak-Schmidt category.

(ii) C is idempotent complete.

A.17. Yoneda Lemma.
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Let A be a skeletally small abelian category. The functor category (A,Ab)
has the additive functors A → Ab as objects and natural transformations as
morphisms.

For F,G ∈ Ob(A,Ab), we denote the set of morphisms F → G by (F,G). (There
are some set theoretic issues with (F,G), but we will not discuss this.)

The functor category (A,Ab) is abelian.

A diagram

F → G→ H

in (A,Ab) is exact if

F (X)→ G(X)→ H(X)

is exact for all X ∈ Ob(A).

Lemma A.4 (Yoneda Lemma). For X ∈ Ob(A) and F ∈ Ob(A,Ab) there is
an isomorphism

(Hom(X,−), F ) ∼= F (X)

defined by η 7→ ηX(1X). This isomorphism is natural in X and F .

A functor F ∈ Ob(A,Ab) is representable if

F ∼= Hom(X,−)

for some X ∈ Ob(A).

Corollary A.5 (Yoneda embedding). The contravariant functor

Y : A → (A,Ab)

X 7→ Hom(X,−)

is full, faithful and left exact.

The functor Y in the previous corollary is called the Yoneda embedding.

A.18. Auslander functors. All results mentioned in this section are due to Aus-
lander. Let A be a skeletally small abelian category. The representable functors
are projective in (A,Ab). They generate (A,Ab), i.e. for each F ∈ (A,Ab) there
exists a family (Xi)i∈I of objects Xi in A and an exact sequence⊕

i∈I

Hom(Xi,−)→ F → 0.
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A functor F ∈ (A,Ab) is finitely presented if there exist X, Y ∈ Ob(A) and
an exact sequence

Hom(Y,−)→ Hom(X,−)→ F → 0.

Such an exact sequence is called a presentation of F .

Let fp(A,Ab) be the subcategory of finitely presented functors in (A,Ab).

fp(A,Ab) is an abelian subcategory which is closed under extensions. It has
enough projectives, and these are exactly the representable functors.

The finitely presented functors have projective dimension at most two, i.e. for
each functor F in fp(A,Ab) there are X, Y, Z ∈ Ob(A) and an exact sequence

0→ Hom(Z,−)→ Hom(Y,−)→ Hom(X,−)→ F → 0.

Let F ∈ fp(A,Ab), and let

Hom(Y,−)→ Hom(X,−)→ F → 0

be a presentation of F . By the Yoneda Lemma, the morphism Hom(Y,−) →
Hom(X,−) comes from a unique morphism X → Y . We get an exact sequence

0→ w(F )→ X → Y.

Up to isomorphism, the object w(F ) does not depend on the choice of the presen-
tation of F .

This yields an exact functor

w : fp(A,Ab)→ A.
The functor w is the Auslander functor associated with A.

We have w(Hom(X,−)) ∼= X.

Take a projective resolution

0→ Hom(Z,−)→ Hom(Y,−)→ Hom(X,−)→ F → 0.

Applying w yields an exact sequence

0→ w(F )→ X → Y → Z → 0.

The following are equivalent:

(i) w(F ) = 0.

(ii) There exists a short exact sequence

0→ X → Y → Z → 0
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in A such that

0→ Hom(Z,−)→ Hom(Y,−)→ Hom(X,−)→ F → 0

is a projective resolution of F .

A.19. Functor categories for module categories. Let A be a finite-dimensional
K-algebra. The results in this section are due to Auslander. Then each F ∈
fp(mod(A),Ab) has a minimal projective resolution.

A functor S ∈ (mod(A),Ab) is simple if S 6= 0 and if any non-zero morphism
F → S in (mod(A),Ab) is an epimorphism.

In this case, we have S ∈ fp(mod(A),Ab).

For a simple functor S ∈ (mod(A),Ab) there is a unique indecomposable X ∈
mod(A) such that S(X) 6= 0. There is a projective cover

Hom(X,−)→ S → 0.

Let SX := S.

Theorem A.6. The map X 7→ SX yields a bijection between the isomorphism
classes of indecomposable modules in mod(A) and the isomorphism classes of
simple functors in fp(mod(A),Ab).

If X ∈ mod(A) is indecomposable and non-injective, then w(SX) = 0. Thus there
is a short exact sequence

0→ X → Y → Z → 0

in mod(A) such that

0→ Hom(Z,−)→ Hom(Y,−)→ Hom(X,−)→ SX → 0

is a minimal projective resolution.

This short exact sequence is the Auslander-Reiten sequence starting in X.

A.20. Categories of complexes. Let A be an additive category. A complex over
A is a diagram

· · · → Xn+1

dXn+1−−−→ Xn
dXn−→ Xn−1 → · · ·

of morphisms in A such that

dXn ◦ dXn+1 = 0

for all n ∈ Z. For such a complex we write X = (Xn, d
X
n ).
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The category C(A) of complexes over A has the complexes over A as ob-
jects. For complexes X = (Xn, d

X
n ) and Y = (Yn, d

Y
n ) over A a morphism

f : X → Y in C(A) is a tuple f = (fn) of morphisms in A such that

dYn ◦ fn = fn−1 ◦ dXn
for all n ∈ Z.

· · · // Xn

fn
��

dXn
// Xn−1

fn−1

��

// · · ·

· · · // Yn
dYn

// Yn−1
// · · ·

The category C(A) is again additive.

We say that a complex X = (Xn, d
X
n ) is concentrated in degree d if Xn = 0

for all n 6= d. The canonical embedding functor

A → C(A)

sends X ∈ A to the complex

· · · → 0→ X → 0→ · · ·

which is concentrated in degree 0.

The category Cb(A) of bounded complexes over A is the full subcategory of
C(A) of all complexes X = (Xn, d

X
n ) with Xn 6= 0 for only finitely many n ∈ Z.

Let f, g : X → Y be morphisms in C(A). We say that f and g are homotopic
and write f ∼ g if there is a tuple s = (sn) of morphisms sn : Xn → Yn+1 in A
such that

hn := fn − gn = dYn+1 ◦ sn − sn−1 ◦ dXn
for all n ∈ Z.

· · · // Xn+1

}}

hn+1

��

dXn+1
// Xn

sn
||

hn

��

dXn
// Xn−1

hn−1

��

//

sn−1

||

· · ·

}}

· · · // Yn+1
dYn+1

// Yn
dYn

// Yn−1
// · · ·

A morphism f : X → Y in C(A) is a homotopy equivalence if there is a
morphism g : Y → X in C(A) with

g ◦ f ∼ 1X and f ◦ g ∼ 1Y .
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Let A be abelian. For X = (Xn, d
X
n ) and n ∈ Z let

Hn(X) := Ker(dXn )/ Im(dXn+1)

be the nth homology group of X.

There is an obvious functor

Hn(−) : C(A)→ Ab

which sends a complex X to Hn(X).

A morphism f : X → Y in C(A) is a quasi-isomorphism if

Hn(f) : Hn(X)→ Hn(Y )

is an isomorphism for all n ∈ Z.

Proposition A.7. Let A be abelian. Then the following hold:

(i) For morphisms f, g : X → Y in C(A) with f ∼ g we have

Hn(f) = Hn(g) : Hn(X)→ Hn(Y )

for all n ∈ Z.

(ii) If a morphism f : X → Y in C(A) is a homotopy equivalence, then f
is a quasi-isomorphism.

We define the shift functor

[−] : C(A)→ C(A)

as follows: For a complex X = (Xn, d
X
n ) let

[−](X) := X[1] := (Yn, d
Y
n )

where Yn := Xn−1 and dYn := −dXn−1. For a morphism f = (fn) of complexes set

[−](f) := f [1] := (gn)

where gn := fn−1. The functor [−] is an isomorphism of categories.

A.21. Homotopy categories. Let X and Y be complexes in C := C(A). Let
I(X, Y ) be the morphisms f ∈ C(X, Y ) with f ∼ 0. Then (X, Y ) 7→ I(X, Y )
defines an ideal I(A) in C(A).

Let
K := K(A) := C(A)/I(A)

be the homotopy category of A. Thus the objects in K(A) are the
same as the objects in C(A). For objects X and Y we have K(X, Y ) :=
C(X, Y )/I(X, Y ).
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The bounded homotopy category Kb(A) is the full subcategory of K(A) of
all complexes X ∈ Cb(A).

Let

F : C(A)→ K(A)

be the obvious canonical functor.

Proposition A.8. For a morphism f in C(A) the following hold:

(i) F (f) = 0 if and only if f ∼ 0.

(ii) F (f) is an isomorphism if and only if f is a homotopy equivalence.

For a morphism f : X → Y in C(A) we construct a standard triangle

X
f−→ Y

α(f)−−→M(f)
β(f)−−→ X[1]

where for n ∈ Z we have

M(f)n := Xn−1 ⊕ Yn, dM(f)
n :=

(
−dXn−1 0
fn−1 dYn

)
,

α(f)n :=

(
0

1Yn

)
, β(f)n :=

(
1Xn−1 0

)
.

By definition, a diagram

X → Y → Z → X[1]

in K(A) is a distinguished triangle if it is isomorphic (in K(A)) to a standard
triangle. With this set of distinguished triangles we get the following:

Theorem A.9. K(A) is a triangulated category.

A.22. Derived categories.
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Theorem A.10. Let A be an abelian category. Then there exists a category
D(A) and a functor

L : K(A)→ D(A)

such that the following hold:

(i) L maps quasi-isomorphism to isomorphism.

(ii) Let F : K(A)→ D be a functor such that F maps quasi-isomorphisms
to isomorphisms. Then there exists a unique functor G : D(A) → D
such that GL = F .

K(A)

F
��

L
// D(A)

G
zz

D

Here “L” stands for localization functor.

The category D(A) is the derived category of A.

Let is now construct D(A). The objects in D(A) are the same as the objects in
K(A). For each quasi-isomorphisms q in K(A) we introduce a formal variable q−1.

Consider a diagram

X1

q1

~~

f1

  

X2

q2

~~

f2

  

· · · Xr

qr

||

fr

  

Y0 Y1 Y2 · · · Yr−1 Yr

with qi : Xi → Yi−1 a quasi-isomorphism and fi : Xi → Yi a morphism for 1 ≤ i ≤ r.
We write this as a tuple

(fr, q
−1
r , · · · , f2, q

−1
2 , f1, q

−1
1 ) : Y0 → Yr.

Some of the qi or fi are identity morphisms, and then are deleted from this tuple.
If X = Y0 = Yr, then the empty tuple () stands for the identity morphism 1X .

Two such tuples Y0 → Yr are equivalent if one can be obtained from the other
by a finite sequence of the following operations:

(i) Replace (· · · , fi, fi−1, · · · ) by (· · · , fifi−1, · · · ).
(ii) Replace (· · · , q−1

i , q−1
i−1, · · · ) by (· · · , (qi−1qi)

−1, · · · ).

(iii) If fi = qi, replace (· · · , fi, q−1
i , · · · ) by (· · · , 1Yi , · · · ). If fi−1 = qi, replace

(· · · , q−1
i , fi−1, · · · ) by (· · · , 1Xi , · · · ).

There are some set theoretical issues here, but they have been taken care of by the
experts, see for example the short discussion on this in Neeman’s book [N01].
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The morphisms f : X → Y in D(A) are by definition equivalence classes of
tuples

(fr, q
−1
r , · · · , f2, q

−1
2 , f1, q

−1
1 ) : X → Y

The composition is defined by the obvious concatenation of tuples.

By definition, a diagram

X → Y → Z → X[1]

in D(A) is a distinguished triangle if it is isomorphic (in D(A)) to a standard
triangle. With this set of distinguished triangles we get the following:

Theorem A.11. D(A) is a triangulated category.

One can formalize this and gets that the derived category D(A) is a localization
of the triangulated category K(A) (and is therefore also a triangulated category).

Using the canonical functors

A → C(A)→ K(A)→ D(A)

we can see A as a subcategory of D(A).

For X, Y ∈ A we get

D(A)(X, Y [n]) ∼= ExtnA(X, Y )

for all n ≥ 0.

The bounded derived category Db(A) is the full subcategory of D(A) of all
complexes X ∈ Cb(A).

A.23. K-categories.

A category C is a K-category if C(X, Y ) is a K-vector space for all X, Y ∈ C
and if the composition

C(X, Y )× C(Y, Z)→ C(X,Z)

(f, g) 7→ g ◦ f
is K-bilinear for all X, Y, Z ∈ C.

A functor F : C → D between K-categories is K-linear if

FX,Y : C(X, Y )→ D(X, Y )

is K-linear for all X, Y ∈ C.

Analogously one defines a K-linear contravariant functor.
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If not mentioned otherwise, we always assume that a (covariant or contravariant)
functor between K-categories is K-linear.

An additive K-category is called a K-linear category.

A.24. dg categories.

Let C be a preadditive category. Then C is a differential graded category
(or dg category for short) if the following hold: For each pair (X, Y ) of
objects we have a direct sum decomposition

HomC(X, Y ) =
⊕
n∈Z

Homn(X, Y )

of abelian groups and a differential d on Hom(X, Y ) which consists of mor-
phisms

dn : Homn(X, Y )→ Homn+1(X, Y )

such that dn+1dn = 0 for all n ∈ Z. Thus HomC(X, Y ) can be seen as a
cochain complex. One also demands that d(1X) = 0 for all X, and that the
composition

HomC(X, Y )⊗ HomC(Y, Z)→ HomC(X,Z)

is a map of complexes for all objects X, Y, Z.

A dg K-category is a K-category C which is a dg category as above such
that the Homn(X, Y ) are subspaces, the maps dn are K-linear.

A dg K-category with a single object is nothing else than a dg algebra.

(Recall that by an algebra we always mean a K-algebra.)

For an excellent introduction to dg categories we refer to [J21].
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length of a filtration, 234
length of a module, 234
length of an object, 347
local ring, 235
locally finite quiver, 258
locally hereditary algebra, 186
loop, 259

maximal Cohen-Macaulay modules, 152
maximal green sequence, 330
mesh category, 260
minimal approximation, 321
minimal representation-infinite, 90
monomial algebra, 174
morphism of representations of a poset, 176
multiplicative basis, 172
multiplicative Cartan basis, 173

Nagase P -minimal algebra, 205
Nakayama algebra, 157
Nakayama Conjecture, 242
Nakayama functor, 257
Nakayama functors, 108
noetherian category, 347
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twisted periodic, 144

uniserial length category, 347
uniserial module, 157

valuation of a translation quiver, 261
valued translation quiver, 261
variety of d-dimensional modules, 293
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weakly n-representation-finite algebra, 109
weakly Gorenstein algebra, 150
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217
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