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1 Introduction and Motivation

This course is an introduction to the moduli spaces of algebraic curves. The idea behind
these spaces is that they allow us to classify algebraic curves up to isomorphism.

To get some intuition what this could mean, let’s start with a more basic and familiar
example: finite-dimensional vector spaces V over a field K. These mathematical objects
are uniquely classified by their dimension, since V ∼= V ′ if and only if dimV = dimV ′.
Thus it makes sense to write the following:

{fin. dim. vector spaces over K}/iso.
∼−→ {0, 1, 2, . . .}, (1)

[V ] 7→ dimV.

This is a great classification: the left side looks complicated and scary but we understand
the right-hand side (the natural numbers) very well!

The above was an example from linear algebra, but for an algebraic geometer, a natural
question is to try classifying algebraic varieties up to isomorphism. In this course we will
look at algebraic curves, i.e. algebraic varieties of dimension one. Why dimension one?
It turns out that varieties of dimension zero are too easy: over an algebraically closed
field K they are disjoint unions of points (i.e. Spec(K)). On the other hand, varieties of
dimension greater than one turn out to be more complicated to classify, so dimension one
is the natural place to start.

To fix some conventions, we will say that a curve is a variety of pure dimension 1 and
a variety is a reduced, separated scheme of finite type over our base field (not necessarily
irreducible). For now, let us fix the base field to be the complex numbers C and let us try
to classify smooth, irreducible, projective curves over C, i.e. look at the set

M = {C smooth, irreducible, complex projective curve}/iso. (2)

Why did we require C to have this list of properties? Some motivation:

• We ask C to be smooth since singularities add complications and can destroy some
of the nice structures that smooth curves have, which will help us classify them. We
will relax this condition below and allow so-called nodal singularities.

• Once we assume C to be smooth, being irreducible is equivalent to being connected1.
A possibly disconnected curve is the union of connected ones, so it makes sense to
classify these first.

• The assumption that C is complex is mostly for our convenience, much can be
extended to working over algebraically closed fields (sometimes of characteristic 0).
However, having C as the base field will allow us to draw some nice pictures, see
below.

• As for the assumption that the curve is projective, note that for every smooth,
irreducible, not-necessarily projective curve C ′ there exists an embedding C ′ ↪→ C
into a smooth, irreducible and projective curve C (see [Vak17, Theorem 17.4.2]). By
dimension reasons, the complement C \ C ′ is a finite union of points and it will be
easier to simply classify the data of C together with these points (from which we
can reconstruct C ′). Again, this is something we will see later, for today we just
consider curves without the additional data of marked points.

1For a connected, reducible scheme there must be a point contained in two irreducible components
(otherwise all these components would be disjoint, contradicting connectedness). Then one checks that
such a point cannot be smooth. This statement is true in more generality, see [Sta13, Tag 033M].
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What can we say about M? Is it finite or infinite? Can we hope to give a list of elements,
as in (1)?

Well, let’s start getting our hands on some elements of M. Below we will use that
apart from the Zariski topology on a complex curve C, the set C(C) of complex (or closed)
points of the scheme C also has a complex 2 topology. We’ll treat this in more detail later,
so if you haven’t seen it, dont worry; for now it just allows us to draw some nice pictures
of curves.

Example 1.1 (The projective line). The most basic example is the curve P1, the projective
line. It is covered by U0 = P1 \ {[0 : 1]} ∼= A1 and U1 = P1 \ {[1 : 0]} ∼= A1, overlapping in
U0 ∩ U1 = A1 \ {0}. This allows us to see that its complex points P1(C) are exactly given
by the two-sphere S2 (see Figure 1).

Figure 1: The complex points of the projective line and its chart U0

A second source of examples are curves which are subvarieties of the projective plane P2

cut out by a homogeneous equation. It turns out that smooth curves cut out by equations
of degree one and two (lines and quadrics) are actually isomorphic to P1, so they don’t
give new examples. Thus, let’s go to degree three.

Example 1.2 (Plane cubics). Consider the family Et of cubic curves in P2 defined by

Et =
{

[X : Y : Z] ∈ P2 : Y 2Z +X(X − Z)(X − tZ) = 0
}
, t ∈ C. (3)

One checks that for t 6= 0, 1, these curves are indeed smooth and with some work one
can show that their complex points Et(C) are isomorphic to a torus T = S1 × S1, for all
values t ∈ C \ {0, 1} = U (see Figure 2).

In the above examples, we saw that the complex points of the curves we considered
had a nice structure, being a sphere and a torus. This generalizes to arbitrary curves C in
M: the complex points C(C) are a smooth, oriented compact real surface (also known as
the surface of a donut with g holes). This number g of holes3 is called the genus of the
surface (and also of the corresponding curve C). See Figure 3 for an illustration.

2The idea behind the complex topology is that for U ⊂ An an affine variety, the complex topology on
U(C) ⊂ An(C) = Cn is the relative topology coming from Cn. For a general complex variety X with an
affine cover of Ui, the set X(C) is covered by the Ui(C) and their complex topologies glue together.

3To make this mathematically precise, one can define g as half of the dimension of the first singular
cohomology group of the surface.
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Figure 2: The complex points of Et

Figure 3: The complex points a curve C of genus g

From an algebraic geometry point of view, the genus of a curve C ∈M can be defined
as the dimension4

g(C) = dimH0(C,Ω1
C) (4)

of the space of sections of the cotangent line bundle Ω1
C of C.

Exercise 1.3. Use this definition to verify that the genus of P1 is 0 and the genus of Et
is 1.

For the problem of classifying curves up to isomorphism, the genus is important since
two curves of different genera clearly cannot be isomorphic (in particular P1 6∼= Et). Indeed
we can write down a well-defined map

M→ {0, 1, 2, . . .}, [C] 7→ g(C) (5)

and given g ∈ {0, 1, 2, . . .} defineMg as the preimage of g under this map. In other words,
we have that Mg is the set of isomorphism classes of genus g curves.

Returning to our examples above, it turns out that in genus zero our classification is
already complete:

Fact 1.4. Every smooth, irreducible complex projective curve C of genus 0 is isomorphic
to P1.

In other words M0 is the set with unique element [P1]. However, the situation is
already more complicated in genus one:

4Silly remark: note how we use the classification (1) via dimension for the vector space H0(C,Ω1
C)!
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Fact 1.5. Every smooth, irreducible complex projective curve C of genus 1 is isomorphic
to one of the curves Et (t ∈ C \ {0, 1} = U). Moreover, for t1, t2 ∈ U we have Et1

∼= Et2 if
and only if t2 satisfies

t2 ∈
{
t1,

1

t1
, 1− t1,

1

1− t1
,
t1 − 1

t1
,

t1
t1 − 1

}
. (6)

So while the topological space Et(C) is independent of t, it turns out that the algebraic
curves Et are not all isomorphic. In fact, we see that there are uncountably infinitely
many isomorphism classes of curves in M1! It turns out that the story continues similarly
for higher genus: for each g ≥ 2 the set Mg is uncountable (of the same cardinality as C).

So are we done yet? Is the course complete at this point? After all, we have classified
Mg as abstract sets. It turns out that we can ask for more!

For this, we look back at the family Et parametrized by t ∈ U . This is a very nice
family of curves (e.g. the equations defining Et depend continuously, in fact algebraically,
on the parameter t). Fact 1.5 tells us that every genus 1 curve appears as a member of
this family and gives a criterion which members of the family are pairwise isomorphic.
Starting with the family over U , we can try to get rid of this redundancy. One can define
an action of the symmetric group S3 on U such that the generators (12), (23) ∈ S3 act by

(12) · t =
1

t
, (23) · t = 1− t. (7)

Then the orbit of t1 ∈ U under S3 is exactly the set given in (6). Thus we have a natural
identification M1 = U/S3, where U/S3 is the set of orbits in U under the S3-action.
But this shows that we can hope to have more structure on M1! After all, the set
U = C \ {0, 1} is naturally a topological space, and in fact the set of complex points of
the scheme A1 \ {0, 1}. Also, the action of S3 is algebraic (e.g. the map

A1 \ {0, 1} → A1 \ {0, 1}, t 7→ 1/t

is an algebraic morphism) and in fact it turns out that the quotient (A1 \ {0, 1})/S3 also
makes sense as an scheme. This scheme is given by the affine line A1 and the quotient
morphism

j : A1 \ {0, 1} → A1, t 7→ 28 (t2 − t+ 1)3

t2(t− 1)2
(8)

is known as the j-invariant5. This is an algebraic morphism and the fibres (of closed
points in A1) are exactly the orbits of the action of S3 on U .

Looking back, we see that the scheme A1 together with the data of the j-invariant
and the family Et is a much more satisfying answer to the problem of ”classifying genus 1
curves” than just saying that M1 is an infinite set. In particular it allows us to make the
following statements about curves of genus g = 1:

• There exists an algebraic variety U = Ug and a family Ct of genus g curves
parametrized by t ∈ Ug such that every smooth, irreducible projective genus g
curve appears as a fibre Ct.

• The variety Ug is smooth and connected, so any two genus g curves can be deformed
into each other using this family.

• There exists a variety Mg and a surjective morphism Ug →Mg which identifies two
closed points t1, t2 iff Ct1

∼= Ct2 , so the closed points of Mg are in bijection with the
smooth, irreducible projective genus g curves up to isomorphism.

5There are good reasons for putting the factor 28, see the reference section below.

6



It turns out that all of these statements are still true for g ≥ 2. The spaces Mg appearing
in the statement then deserve to be called the moduli spaces of curves and those are the
objects of study in this course. However, there is also a surprising set of things which go
wrong or unexpected:

• For g ≥ 2, the variety Mg is not smooth. For g ≥ 4 its singular locus corresponds to
the isomorphism classes of curves C having a nontrivial automorphism.

• For g ≥ 1, the family Ct, t ∈ Ug, above does not descend to a family over Mg. In
other words, we cannot write down a (reasonable) family of curves parametrized by
Mg such that the member of the family associated to [C] ∈Mg is isomorphic to C.
However, there does exist such a family over the complement of the locus of curves
having a nontrivial automorphism.

Thus in both cases automorphisms of curves are the source of trouble. In the course,
we will see how the theory of algebraic stacks, a generalization of schemes, resolves this
problem by viewing Mg as a stack instead of a scheme.

The first part of our course will be to make precise what we mean by words like ”moduli
space” and ”reasonable family of curves” above and then to study the spaces Mg that can
be defined this way. We will see how modern tools of algebraic geometry (e.g. deformation
theory) can be used in this study (e.g. to determine the dimension of Mg).

The second part of the course will focus on studying the cohomology groups of the
moduli spaces of curves. Here, we will encounter a second issue, related to a quote by
Angelo Vistoli:

”Working with noncompact spaces is like trying to
keep change with holes in your pockets.”

Indeed, for g ≥ 1 the spaces Mg are not proper, so their sets of C-points are not compact.
This means that their cohomology groups lack some nice properties, such as Poincaré
duality, which hold for compact spaces. We already saw an example above: identifying
M1 with A1, its complex points are C, which is contractible and thus has the cohomology
of a point.

This issue can be resolved by finding a compactification of Mg, i.e. a space Mg

containingMg as an open subset and working onMg instead. For this compactification to
be helpful, it should itself be a moduli space of geometric objects generalizing the smooth
genus g curves which Mg classifies.

Going back to the family Et of genus 1 curves parametrized by t ∈ C \ {0, 1} can give
us a hint what these more general geometric objects could be. Indeed, why did we restrict
to t 6= 0, 1 in this family? The reason was that putting t = 0, 1 in the defining equation of
Et would give us a singular curve in P2. For instance, for t = 0 we obtain

E0 =
{

[X : Y : Z] ∈ P2 : Y 2Z +X2(X − Z) = 0
}
.

The singular point is [X : Y : Z] = [0 : 0 : 1]. Let’s see how the curve looks like
in a neighborhood of this point: going to the chart {Z 6= 0} of P2 with coordinates
[X : Y : Z] = [x : y : 1], the singular point is (x, y) = (0, 0) and the equation becomes

y2 + x2(x− 1) = 0.

Around (0, 0) we have x − 1 ≈ −1 and so in a small neighbourhood of this point6 the
equation looks like

y2 − x2 = 0⇐⇒ (y − x)(y + x) = 0,
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Figure 4: A neighbourhood of the singular point in E0 looks like the union of the lines
y = x and y = −x

which is simply two lines meeting transversally.
Such a singular point is called a nodal singularity. Using the pictures of real surfaces

from above, we can illustrate how the set of complex points Et(C) changes as t approaches
0.

Figure 5: The degeneration of the surface Et(C) as t→ 0

Generalizing the moduli space Mg of smooth curves C we will study a moduli space
Mg which allows the curve C to have such nodal singularities. This space Mg then turns
out to be proper (or compact), fixing the holes that we had in our pockets.

The goal of the second half of this lecture series is to show the beautiful structures that
appear in the cohomology groups of the spacesMg. This is an area of active research, with
connections to many parts of mathematics such as graph theory, enumerative geometry
and the theory of integrable systems (to name but a few).

References and further reading (and watching)

A nice and mostly elementary discussion of the Facts about curves of genus zero and one
stated above can be found in Sections 19.3 and 19.9 of [Vak17]. The result that the set of
complex points of a plane cubic is isomorphic to a torus (which can and should be seen as
a quotient C/Λ of the complex numbers by a lattice Λ ⊂ C) has a beautiful connection to
the so-called Weierstrass ℘-function, e.g. explained in [Hai08, Section 5].

There is a video recording of a great one-hour introductory talk to the moduli spaces
of curves given by my PhD advisor Rahul Pandharipande at the ICM in Rio in 2018. It
does not only cover essentially everything that we are going to treat in this course, but it

6This can be made precise using formal algebraic geometry and completions of local rings, let’s not
worry about this now.
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also contains the Portuguese translation of a quote by Riemann (at 10:53) and a picture
of a passion flower taken by a PhD brother of mine (at 13:39), among other things.
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2 Fine and coarse moduli spaces

2.1 Motivation

Before we discuss the moduli space of curves, we should first make sure we understand
what we even mean by ”moduli space”. To start off, let us consider a familiar example:
the projective space Pn. It classifies lines through the origin (i.e. sub-vector spaces of
dimension 1) in Cn+1. However, just writing

Pn = {` : ` line through the origin in Cn+1} (9)

is not enough: the right-hand side of (9) is a set, equal to the set Pn(C) of C-points of Pn,
but it does not have the structure of a scheme.

So what makes the usual scheme structure on Pn the right one to make it a moduli
space of lines in Cn+1? Let’s start with the topology: intuitively, for the lines

`n =

〈(
1

1/n

)〉
, `0 =

〈(
1
0

)〉
the sequence `n of lines in C2 ”converges” to the line `0.

      

Figure 6: The sequence of lines `n converging to the line `0

And indeed, the (complex) topology on Pn(C) satisfies `n
n→∞−−−→ `0. Similarly, for the

scheme structure on Pn note that the family of lines(
Lt =

〈(
1
t

)〉
: t ∈ A1

)
parametrized by the variety A1 has defining equations which are algebraic in the coordinate
t on A1. Because of this, we expect that the scheme structure on P2 should satisfy that
the map

A1 → P2, t 7→ Lt (10)

is an algebraic morphism, which again is true for the standard structure on P2. Gener-
alizing this example from X = A1 to arbitrary schemes X, there should be a bijective
correspondence

Families of lines parametrized by X ←→ Morphisms X → Pn, (11)

(Lt : t ∈ X)←→ (X → Pn, t 7→ Lt).
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The crucial insight is that knowing the sets of morphisms X → Pn for every scheme X
uniquely determines the scheme structure on Pn (see Lemma 2.1 below). Thus, by the
equivalence (11) above, we can uniquely specify the scheme Pn by making precise what we
mean with a ”family of lines parametrized by X”.

2.2 Moduli functors and fine moduli spaces

The correct way to do this is using category theory. Denote by SchC the category of
schemes over C, where for schemes X, Y ∈ Ob(SchC) the set Mor(X, Y ) of morphisms
from X to Y is the set of algebraic morphisms X → Y over C. Then, for any scheme
M ∈ Ob(SchC), we have a functor

hM : Schop
C → Sets, X 7→ Mor(X,M). (12)

Why the ”op” above? This is because Mor(−,M) is a contravariant functor, i.e. given
g : X ′ → X we get a natural map hM(X)→ hM(X ′) in the opposite direction, given by

Mor(X,M)→ Mor(X ′,M), (X
f−→M) 7→ (X ′

g−→ X
f−→M).

For M = Pn, the set hM(X) is exactly the right-hand side of (11). The statement of the
Yoneda Lemma is that the functor hM uniquely determines the scheme M .

Lemma 2.1 (Yoneda’s Lemma). The functor

h− : SchC → Functors(Schop
C → Sets), (13)

M 7→ hM

is a fully faithful embedding. In other words

• given schemes M,N , the morphisms M → N are in bijection with natural transfor-
mations hM → hN ,

• in particular M ∼= N iff hM ∼= hN .

By this Lemma, we can see the category of schemes as sitting inside the category of
functors Schop

C → Sets. Thus we will give these functors their own name.

Definition 2.2. A moduli functor h is a functor h : Schop
C → Sets. In other words, the

data we need to specify is the following:

• for every scheme X over C a set h(X) (the families parametrized by/over X),

• for every morphism f : X ′ → X a map h(f) : h(X)→ h(X ′) (the pullback of families
under f),

• satisfying that h(idX) = idh(X) and that for X ′′
g−→ X ′

f−→ X we have that the com-

position h(X)
h(f)−−→ h(X ′)

h(g)−−→ h(X ′′) equals h(X)
h(f◦g)−−−→ h(X ′′) (the compatibility

of pullback for identity and compositions).

Definition 2.3. A moduli functor h is called representable if it is of the form h ∼= hM for
a scheme M . This scheme M (which is unique up to isomorphism) is then called a fine
moduli space for h.
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Example 2.4. We return to the example of projective space Pn, showing that it is
a fine moduli space for ”lines through the origin in Cn+1”. Define a moduli functor
h : Schop

C → Sets by the following data:

• for every scheme X over C the set h(X) is given by

h(X) =


L X × Cn+1

X

i

 / ∼ (14)

where L→ X is (the total space of) a line bundle on X which is a subbundle of the
trivial bundle X × Cn+1 → X (i.e. there is an injective map i : L → X × Cn+1 of
vector bundles such that the quotient is also a vector bundle). We take this set up to

isomorphisms, i.e. (L
i−→ X × Cn+1) ∼ (L′

i′−→ X × Cn+1) iff there is an isomorphism
L
∼−→ L′ of line bundles on X making the obvious diagram commute,

• for every morphism f : X ′ → X we define the pullback by

h(f) : h(X)→ h(X ′),

(L
i−→ X × Cn+1) 7→ (f ∗L

f∗i−−→ f ∗(X × Cn+1) = X ′ × Cn+1).

The compatibility conditions of the pullback are satisfied since clearly h(idX) = idh(X) and

since for X ′′
g−→ X ′

f−→ X we have a canonical isomorphism g∗f ∗L ∼= (g ◦ f)∗L.
Finally we want to show that h is representable by Pn, i.e. that we have a natural

equivalence h ∼= hP
n

of functors. This exactly makes precise the equivalence (11) we
claimed before. Recall that to specify a natural equivalence h ∼= hP

n
we must give, for

every scheme X, a bijection h(X)→ hP
n
(X) = Mor(X,Pn) such that for f : X ′ → X the

diagram

h(X) Mor(X,Pn)

h(X ′) Mor(X ′,Pn)

h(f) hP
n

(f) (15)

commutes. What should the map h(X)→ Mor(X,Pn) do again? Given

(i : L→ X × Cn+1) ∈ h(X), (16)

for any x ∈ X we have that i(Lx) ⊂ {x} × Cn+1 is a line through the origin of Cn+1 and
so (16) should be sent to the morphism X → Pn mapping x to [i(Lx)] ∈ Pn. But a priori
it is only clear what to do at closed points x ∈ X and we should find a more algebraic
way to phrase this, allowing us to deal with more complicated X.

We take a small but interesting detour to do this. Fix a scheme X and an element

(L
i−→ X × Cn+1) in h(X). The injective map i of total spaces of vector bundles (whose

cokernel is a vector bundle) corresponds to a short exact sequence

0→ L ι−→ On+1
X → Q→ 0

of locally free sheaves on X7. Taking the dual, this is equivalent to an exact sequence

0← L∨ ι∨←− On+1
X ← Q∨ ← 0

7Alternatively, we can say it corresponds to a locally split injective morphism ι : L → On+1
X .
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of locally free sheaves. Since the kernel of a map of locally free sheaves is automatically
locally free, this is equivalent to just specifying the surjection ι∨ : On+1

X → L∨. Such a
surjection is determined by specifying sections s0, . . . , sn ∈ H0(X,L∨) without common
zero, i.e. not vanishing simultaneously anywhere on X. Then writing M = L∨ and
defining

h′(X) =

(M, s0, . . . , sn) :
M a locally free sheaf on X

s0, . . . , sn ∈ H0(X,M) sections
without common zero

 / ∼ (17)

we have just described a map h(X) → h′(X). One checks that this map is a bijection,
that h′ is in fact a moduli functor and that the maps h(X) → h′(X) define a natural
equivalence h ∼= h′. Thus we have reduced the problem to showing that h′ ∼= hP

n
.

The fact that a map ϕ : X → Pn is equivalent to the data of a line bundle M on X
together with n+ 1 sections without common zero (up to isomorphism) is proven in many
textbooks on Algebraic Geometry (see e.g. [Sch17, Corollary 12.10], [Har77, II, Theorem
7.1], [Vak17, Important Theorem 16.4.1.]). Let us recall the argument: starting with an
element (M, s0, . . . , sn) ∈ h′(X) we can write down a map X → Pn by

ϕ : X → Pn, x 7→ [s0(x) : s1(x) : . . . : sn(x)]. (18)

A priori, the expression [s0(x) : s1(x) : . . . : sn(x)] does not make sense, since the sj(x) are
not functions but elements in the fibreMx of the line bundleM on X. But we can choose
any cover X =

⋃
i Ui of X trivializing the line bundle and any isomorphism M|Ui

∼= OUi
.

Then on Ui we can identify the sections sj with regular functions and the element
[s0(x) : s1(x) : . . . : sn(x)] does not depend on the choice of trivialization. Indeed, a different
choice of trivialization differs by multiplying all components of [s0(x) : s1(x) : . . . : sn(x)]
with the same nonvanishing function, so the corresponding element of Pn does not change.

Conversely, given a map ϕ : X → Pn we define M = ϕ∗OPn(1). For the sections,
observe that OPn(1) has a space of global sections of rank n+ 1 given by

H0(Pn,O(1)) = 〈x0, . . . , xn〉

and we define sj = ϕ∗(xj) ∈ H0(X,M). One checks that the two correspondences
between (M, s0, . . . , sn) (up to isomorphism) and ϕ : X → Pn are inverse to each other
and ”functorial” (i.e. making the diagrams (15) commute). Thus they define a natural
equivalence h′ ∼= hP

n
, finishing the proof.

Remark 2.5. Instead of constructing the equivalence h ∼= hP
n

via the functor h′, a direct

construction is also possible: given an element (L
i−→ X × Cn+1) in h(X) let L′ ⊂ L be

the open set that is the complement of the zero section. Due to the assumption that i is
injective, it maps L′ to X × (Cn+1 \ 0). Consider the diagram

L′ X × (Cn+1 \ 0) Pn

X

i π

ϕ

where π is the composition of the projection X × (Cn+1 \ 0)→ Cn+1 \ 0 with the quotient
map Cn+1 \ 0→ Pn. One checks that the composition π ◦ i : L′ → Pn is constant on the
fibres of L′ → X. Intuitively, this should allow us to define a map ϕ : X → Pn completing
the diagram above by ϕ(x) = (π ◦ i)(`) for any ` ∈ L′ mapping to x. This intuition
indeed works, using the so-called fpqc descent (see [Sta13, Tag 023Q]). So starting from

(L
i−→ X ×Cn+1) ∈ h(X) we constructed ϕ ∈ Mor(X,Pn) and one checks that this induces

the same natural transformation h ∼= hP
n

as in Example 2.4.
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Definition 2.6. Given a moduli functor h and a natural isomorphism h ∼= hM for some
scheme M , define the universal family U ∈ h(M) to be the element in h(M) corresponding
to the canonical element idM ∈ Mor(M,M) = hM(M).

Exercise 2.7. Let h be a moduli functor with fine moduli space M and universal family
U ∈ h(M).

a) Show that for any scheme X and any family F ∈ h(X) parametrized by X there
exists a unique morphism f : X →M such that the pullback of U under f is F , i.e.
h(f)(U) = F .

b) Show that for the moduli functor h from Example 2.4 with moduli space Pn, the
universal family is given by the ”tautological” line bundle

{(`, v) ∈ Pn × Cn+1 : v ∈ `} = L Pn × Cn+1

Pn

i

The line bundle L above is isomorphic to OPn(−1).

c) Show that for the moduli functor h′ from Example 2.4 with moduli space Pn, the
universal family is given by

(OPn(1), x0, . . . , xn).

Easy exercise 2.8 (Fibre products as moduli spaces). Let πX : X → Z, πY : Y → Z be
morphisms of schemes. For any scheme S define

h(S) = (hX ×hZ hY )(S) =

{
(σX , σY ) :

σX : S → X, σY : S → Y
such that πX ◦ σX = πY ◦ σY

}
a) Show that h defines a moduli functor.

b) Prove that the fibre product X ×Z Y is a fine moduli space for h. What is its
universal family?

2.3 Application : The Picard scheme

Until now we only used the theory of moduli spaces to interpret known schemes as a fine
moduli space for some functor. Now let’s use it to actually define a new space. For this,
recall the definition of the Picard group of a scheme8 X:

Pic(Y ) = {L : L an invertible sheaf on Y }/iso. (19)

It classifies line bundles up to isomorphisms. A priori, the definition (19) only makes sense
as a set (or a group with respect to tensor product ⊗). But it turns out that in many
situations we can find a nice scheme structure underlying Pic(Y ) by seeing it as a fine
moduli space.

What should be the moduli functor? Given a scheme X we need to define what we
mean by a ”family of line bundles on Y over the base X”. The natural thing is to take
the product X × Y (the trivial family with fibre Y over X) and look at the data of line
bundles up to isomorphism on X × Y .

8In this section, all schemes will be schemes over C, all morphisms will be morphisms over C, all fibre
products will be fibre products over C etc.
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Definition 2.9 (Picard functor - first attempt). We define the (absolute) Picard functor
PicY : Schop → Sets of the scheme Y as

PicY (X) = Pic(X × Y ).

Given f : X ′ → X the corresponding morphism PicY (X) → PicY (X ′) is given by the
pullback L 7→ f ∗L of line bundles under f × idY .

This is a perfectly nice and reasonable moduli functor, except for the fact that it is
never representable (for Y nonempty).

Proposition 2.10. For Y 6= ∅ the functor PicY is not representable.

Proof. Let X be any scheme with a nontrivial line bundle M (e.g. X = P1 with M =
OP1(1)). Let πX : X × Y → X be the projection, then we have the object

MX = π∗XM∈ Pic(X × Y ) = PicY (X).

Note that this object is nontrivial (i.e. not isomorphic to OX×Y ). Indeed, since Y is
nonempty (and since C is algebraically closed) it has a C-point and so πX has a section.
Then the pullback of MX under this section is M, which is not trivial.

Assume that PicY were representable by a scheme P with a universal object U ∈
PicY (P ). Then by definition there exists a unique morphism g : X → P with (g×idY )∗U =
MX . Similarly, there is a unique morphism p : pt = Spec(C)→ P associated to the trivial
line bundle Opt×Y , i.e. satisfying (p× idY )∗U = Opt×Y .

Now let X =
⋃
i Ui be an open cover on whichM is trivial, then the pullbacksMUi

of
MX to Ui × Y are trivial. In other words, they are pullbacks of Opt×Y under the maps
Ui → pt to a point. This implies that the unique map Ui → P associated to MUi

must
factor through p : pt→ P . We then have a diagram of maps as follows

X P

⊔
i Ui pt

g

g′
p (20)

Since the restrictions of the map g : X → P to the covering opens Ui all factor through p,
the map g itself must factor through this morphism. But this is impossible since then we
have

MX = (g × idY )∗U = (g′ × idY )∗(p× idY )∗U = (g′ × idY )∗Opt×Y = OX×Y ,

a contradiction to the statement that MX is not trivial.

Remark 2.11. The fact that PicY does not have a moduli space is a first example of a
general slogan9 in the theory of moduli spaces:

For moduli functors h, the presence of nontrivial automorphisms
often prevents the existence of a fine moduli space.

(21)

As above, the rough idea is that automorphisms allow us to find a scheme X with an open
cover X =

⋃
i Ui such that we can construct a nontrivial family FX ∈ h(X) by gluing

trivial families FUi
∈ h(Ui) along nontrivial automorphisms FUi

|Ui∩Uj
∼= FUj

|Ui∩Uj
. We

then reach a contradiction by using a variant of the diagram (20). As we will see later,
the theory of algebraic stacks was specifically invented to be able to deal with these kinds
of moduli problems.

9As with many one-sentence slogans, this is a bit too general to be true in all contexts and hard to
make precise anyway. It is more a guideline to build some first intutions.
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In the proof of Proposition 2.10 we were able to reach a contradiction for the repre-
sentability of PicY by using the nontrivial family MX ∈ Pic(X × Y ) obtained by pulling
back a line-bundle M∈ Pic(X) from the base. Surprisingly, in this case we can solve all
our problems by just dividing out such pullback bundles in our moduli functor.

Definition 2.12 (Picard functor - second attempt). We define the (relative) Picard functor
PicY/C : Schop → Sets of the scheme Y as

PicY/C(X) = Pic(X × Y )/π∗XPic(X),

where πX : X × Y → X is the projection on the first factor and π∗XPic(X) ⊂ Pic(X × Y )
is the set of line bundles that are pullbacks from X. Given f : X ′ → X the corresponding
morphism PicY/C(X)→ PicY/C(X ′) is still given by the pullback L 7→ f ∗L of line bundles
under f × idY (and this respects the equivalence relation we divided out).

Theorem 2.13. If Y is an integral, projective variety over C, then the functor PicY/C is
representable by a separated, locally finite type scheme PicY/C.

Proof. See e.g. [Kle05, Theorem 4.8].

Remark 2.14. Assume we are given Y such that PicY/C is representable by a scheme
PicY/C.

a) A line bundle L on PicY/C×Y representing the universal family on the moduli space
is called a Poincaré line bundle. Given a C-point [M] ∈ PicY/C, the restriction of L
to [M]× Y ⊂ PicY/C × Y is isomorphic to M. The line bundle L is unique up to
tensoring with line bundles pulled back from PicY/C.

b) The set Pic(Y ) of line bundles on Y has a natural structure of an abelian group,
where multiplication is given by tensor product of line bundles. From this one can
show that PicY/C has the structure of an algebraic group, i.e. the natural maps

PicY/C ×PicY/C → PicY/C, PicY/C → PicY/C

([L1], [L2]) 7→ [L1 ⊗ L2] L 7→ L∨

are algebraic morphisms which together with the inclusion [OY ] ∈ PicY/C define
multiplication, inverse and neutral element of a group-structure on PicY/C.

c) We denote by Pic0
Y/C ⊂ PicY/C the connected component of PicY/C containing

the trivial line bundle [OY ]. It gives a subgroup of PicY/C. For Y = C a smooth,
projective algebraic curve, the scheme Pic0

C/C = Jac(C) is called the Jacobian of C.

Example 2.15. a) For a point Y = pt = Spec(C) we have that for any scheme S we
obtain

Picpt/C(S) = Pic(pt× S)/Pic(S) = {[OS]}.
This implies that

Picpt/C = Spec(C).

However, surprisingly for Y = An the same is not true (even though Pic(An) =
{OAn}). This follows from the existence [Liu] of a scheme X such that the pullback
Pic(X)→ Pic(X × A1) is not an isomorphism.

b) For any n ≥ 1 we have that

PicPn/C =
∐
m∈Z

{OPn(m)}

is a countable union of isolated points.
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c) Given an elliptic curve (E, p0), we have

Pic0
E/C = E,

and for ∆ ⊂ E × E the diagonal, the line bundle

L = OE×E(∆− E × p0) ∈ Pic(Pic0
E/C × E)

is a Poincaré line bundle over Pic0
E/C.

2.4 Coarse moduli spaces

As we have seen, even reasonable functors like PicY can fail to have fine moduli spaces.
While in this particular example we were able to fix this by considering the relative Picard
functor, in general (and in particular for the moduli functors of curves that we will consider
soon) a fine moduli space is too much to ask. Thus we need a weaker notion for a scheme
to ”approximately represent” a moduli functor.

Definition 2.16. Given a moduli functor h, a coarse moduli space is a pair (M,Φ) of a
scheme M together with a natural transformation Φ : h→ hM such that

a) (M,Φ) is initial among all such pairs, i.e. for any other scheme M ′ and natural
transformation Φ′ : h→ hM

′
there exists a unique natural transformation Ψ : hM →

hM
′

such that the following diagram commutes

h hM

hM
′

Φ

Φ′

∃!Ψ
(22)

b) the map Φ induces a bijection

Φ(Spec(C)) : h(Spec(C))
∼−→ hM(Spec(C)) = M(C) (23)

on C-points.

Easy exercise 2.17. a) Show that every fine moduli space is also a coarse moduli
space (in particular, make precise what this statement means).

b) Show that given a moduli functor h, if a pair (M,Φ) satisfying condition a) in
Definition 2.16 exists, this pair is unique up to isomorphism. In particular, coarse
moduli spaces are unique up to isomorphism.

In the next section we are going to introduce the moduli functors for families of curves
and we will see that they have a coarse moduli space, but not a fine one. A second example
of this are the absolute Picard functors PicY introduced in Section 2.3.

Proposition 2.18. For any scheme Y such that the relative Picard functor PicY/C has a
fine moduli space PicY/C, the natural map Φ : PicY → PicY/C ∼= hPicY/C makes (PicY/C,Φ)
into a coarse moduli space for PicY .

17



Proof. To show property a) from Definition 2.16, let Φ′ : PicY → hM
′

be a second natural
transformation. We need to show that given X, the map PicY (X)→ Mor(X,M ′) induced
by Φ′ factors through PicY (X)/π∗XPic(X). So let L1,L2 be line bundles on X × Y with
L2 = L1 ⊗ π∗XM for a line bundle M on X. Let g1, g2 : X → M ′ be the maps induced
from L1,L2 via Φ′. We are finished if we can show g1 = g2.

For this note that given for any open cover X =
⋃
i Ui trivializing M on X, the

pullbacks of L1,L2 to Ui × Y coincide for all i. By functoriality of Φ′, this implies that
g1|Ui

= g2|Ui
. But since morphisms are determined by their restriction to an open cover,

we conclude g1 = g2.
Property b) of Definition 2.16 follows since

PicY (Spec(C)) = Pic(Spec(C)× Y )

= Pic(Spec(C)× Y )/Pic(Spec(C)) = PicY/C(Spec(C)) = Pic(C).

Challenge 2.19. Prove or disprove that pt = Spec(C) is a coarse moduli space for PicA1/C.
See also my question on math.stackexchange.
Update: The question has been answered affirmatively within a day by two students
from the class! You can check out their answers under the link above.

Exercise 2.20. We want to study the moduli problem of classifying “two points on P1,
not necessarily distinct, up to projective linear transformations”. For this, consider the
moduli functor

h : Schop → Sets, X 7→ {s : X → P1 × P1}/ ∼ , (24)

where s ∼ s′ if there exists G : X → PGL2 such that

G(x) · s(x) = s′(x),

where PGL2 acts diagonally on P1 × P1.
Let pt = Spec(C), when we want to show that (pt,Φ) for the unique natural trans-

formation Φ : h → hpt satisfies condition a) from Definition 2.16, but not condition
b).

a) Assume we have a scheme U and s ∈ h(U) such that s : U → P1×P1 factors through
the complement P1 × P1 \∆ of the diagonal ∆. Show that then there exists an open
cover U =

⋃
i Ui of U such that the restrictions s|Ui

are equivalent under ∼ to the
constant section

s0 = ([1 : 0], [0 : 1]) : Ui → P1 × P1.

b) Let (M ′,Φ′) be a pair of a scheme and a natural transformation Φ′ : h→ hM
′
. Let

ψ : pt→M ′ be the morphism associated via Φ′ to

(i : pt
([1:0],[0:1])−−−−−−→ P1 × P2) ∈ h(pt).

Consider the family

(sP1×P1 = idP1×P1 : P1 × P1 → P1 × P1) ∈ h(P1 × P1)

and use the previous exercise part to show that the associated morphism Φ′(sP1×P1) :
P1×P1 →M ′ factors through ψ : pt→M ′. (Hint : Use the continuity of Φ′(sP1×P1).)

c) Show that given any scheme X and s ∈ h(X) there exists a morphism f : X →
P1 × P1 such that f ∗(sP1×P1) = s. Use this to finish the proof that (pt,Φ) satisfies
condition a) from Definition 2.16.
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d) Why does it not satisfy condition b)?

To summarize, we learned that the functor h− embeds the category of schemes into
the category of moduli functors. Functors in the image are called representable and have
a fine moduli space. However, there are bigger classes of moduli functors, having only a
coarse moduli space or even just a pair (M,Φ) satisfying part a) of Definition 2.16. We
illustrate this in Figure 7.

      

Figure 7: The Yoneda embedding of the category of schemes to the category of moduli
functors

Exercises

Exercise 2.21. As in Example 2.4, define a moduli functor h for ”families of k-dimensional
subspaces of Cn” and show that h is representable by the Grassmannian Gr(k, n).

References and further reading

A nice introduction to moduli spaces in general, with applications to moduli spaces of
genus 0 curves, can be found in [KV07, Section 0.2]. A short introduction can also be
found in [HM98, Chapter 1A].

See [Kle05] for further discussions of Picard functors and schemes.
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3 Families of curves and their moduli

3.1 Smooth and nodal curves

Now we want to define moduli functors and spaces for algebraic curves. We start by
recalling some basics for curves over Spec(C), which will correspond to the C-points of
our moduli space.

Definition 3.1. A (complex) curve is a one-dimensional variety10 C → Spec(C). In other
words it is a reduced, separated scheme of finite type over Spec(C) such that all irreducible
components have dimension 1.

In the following, we will mostly be concerned with projective curves. For these, the
most important invariant is their genus, coming in two flavours.

Definition 3.2. Let C be a complex projective curve.

a) If C is smooth, its geometric genus is defined to be

pg(C) = h1,0(C) = dimH0(C,Ω1
C),

where Ω1
C is the cotangent line bundle of C. For a singular curve C, its geometric

genus is defined to be the geometric genus of its normalization.

b) The arithmetic genus of C is defined as

pa(C) = 1− χ(C,OC) = 1− dimH0(C,OC) + dimH1(C,OC).

Proposition 3.3. For a smooth, irreducible projective curve we have pg(C) = pa(C).

Proof. We have H0(C,OC) = C since C is irreducible projective and H1(C,OC) ∼=
H0(C,Ω1

C)∨ by Serre duality. This implies

pa(C) = 1− 1 + dimH0(C,Ω1
C)∨ = pg(C).

Exercise 3.4. Let C ⊂ P2 be a nodal cubic curve, e.g.

C = {[X : Y : Z] ∈ P2 : ZY 2 +X3 − ZX2 = 0}. (25)

Show that pg(C) = 0 and pa(C) = 1.

Digression 3.5 (Riemann surfaces). There is a second approach for studying algebraic
curves, going via Riemann surfaces. While this is not necessary to build the theory, it is
often useful to have in mind.

To start, let C be a smooth, projective, irreducible curve. Consider its set S = C(C)
of complex points with the complex topology11. Then it turns out that S is a compact,
connected complex manifold of complex dimension 1. Thus, seen as a real manifold, it is a
compact, connected oriented real surface without boundary.

To give an idea why this is true:

10We take the convention that varieties are not necessarily irreducible.
11For any scheme X of finite type over C, there is a natural complex topology (or even the

structure of a complex analytic space) on its set X(C) of C-points. For an affine scheme X =
SpecC[x1, . . . , xn]/(f1, . . . , fm) it is given by the topology on the common zero set V (f1, . . . , fm) ⊂ Cn
induced from the complex topology on Cn. The construction for general X goes via gluing these topological
spaces for an affine cover of X. See [Har77, Appendix B.1] or [Vak17, Exercise 5.3.G] for more details.
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Figure 8: The complex points a curve C of genus g give a compact, connected oriented
real surface S without boundary with ”g holes”

• S is compact since C was assumed to be projective.

• The curve C is 1-dimensional over C and hence S = C(C) is 2-dimensional over R
(dimR C = 2).

• S is a smooth manifold since C is smooth as an algebraic variety.

• S is oriented since in fact it is a complex manifold.

There is a complete classification of compact, connected oriented real surfaces12 without
boundary. They are all of the form ”a donut with g holes” as in Figure 8 and the number
g ≥ 0 is called the topological genus of the surface. For S = C(C) it turns out that the
topological genus of S is equal to the geometric (or arithmetic) genus of the algebraic
curve C.

As mentioned in the introduction, it will turn out that moduli spaces of smooth curves
are not compact. To find a larger moduli space which will be compact, we allow curves to
have nodal singularities.

Definition 3.6. Let C be a complex curve.

a) A closed point q ∈ C is a node13 if it satisfies one of the following two equivalent
conditions:

• There exists a neighbourhood of q ∈ C(C) which is complex-analytically
isomorphic to a neighbourhood of the origin in the locus {(x, y) : x·y = 0} ⊂ C2.

• The completion ÔC,q of the local ring of C at q is isomorphic to C[[x, y]]/(x · y).

b) The curve C is called nodal if every closed point q ∈ C is either a smooth point or a
node.

Exercise 3.7. Show that the ”nodal cubic curve” (25) from Exercise 3.4 is indeed a nodal
curve.

Let C be a complex, projective and nodal curve. Then its normalization ν : C̃ → C is
a complex, projective curve which is smooth (but possibly disconnected). The morphism

12In this context, surface means a 2-dimensional topological manifold.
13Alternative names are nodal singularity or ordinary double point.
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ν is an isomorphism over the smooth locus of C and every node q ∈ C has exactly two
preimages q′, q′′ ∈ C̃. We have the normalization exact sequence14

0→ OC → ν∗OC̃ →
⊕

q node of C

Cq → 0, (26)

where the first map sends a (local) function f on C to f ◦ ν on C̃ and the second map

sends a (local) function g on C̃ to (g(q′)− g(q′′))q where q runs through nodes of C and
q′, q′′ are the preimages15 of q under ν.

Easy exercise 3.8. Use the sequence (26) to show that for a complex, projective, nodal

curve C with normalization C̃ → C we have

pa(C) = pa(C̃) + #{nodes of C}, (27)

or equivalently

pa(C) = pg(C̃) + 1−#{components of C̃}+ #{nodes of C}. (28)

      

Figure 9: A nodal curve C and its normalization C̃, with pg(C) = pg(C̃) = 5 and pa(C) = 8

Fact 3.9. The data of a complex, projective, nodal curve C together with the tuple
(qi)

`
i=1 of its nodes, is equivalent to the data of its normalization C̃ together with the sets

({q′i, q′′i })`i=1. In other words there is a unique way to ”glue” the components of C̃ together
by identifying the pairs q′i, q

′′
i to form nodes.

C, (qi)
`
i=1 C̃, ({q′i, q′′i })`i=1

normalization

gluing
(29)

In particular, the data of a morphism ϕ : C → X to some scheme X is equivalent to the
data of ϕ̃ : C̃ → X such that ϕ̃(q′i) = ϕ̃(q′′i ) for all i.

ϕ : C → X ϕ̃ : C̃ → X s.t. ϕ̃(q′i) = ϕ̃(q′′i ) ∀i
normalization

gluing
(30)

14To show exactness of this sequence, one uses that a) it suffices to check it stalkwise, i.e. after tensoring

with OC,p for p ∈ C and b) that the map OC,p → ÔC,p is faithfully flat. This last point is how the
definition of a node comes into play.

15For this we need to choose an order on the preimages, alternatively we need to replace Cq by
ν∗(Cq′ ⊕ Cq′′)/Cq.
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In the next subsection, we will define families and then moduli spaces of nodal curves.
It turns out (see Remark 3.16) that in a family of nodal curves, the arithmetic genus of
the curves stays constant, while the geometric genus can change. For instance, in the
family Et of smooth plane cubic curves from Example 1.2, the general Et was smooth of
(arithmetic and geometric) genus 1, and the nodal cubic E0 still has arithmetic genus 1
but geometric genus 0 (by Exercise 3.4).

So we see that smooth curves of genus g degenerate to nodal curves of arithmetic genus
g. However, it turns out that there are too many nodal curves of arithmetic genus g to
obtain a compact moduli space! More precisely, consider the following sequence of nodal
curves of genus 2.

      

Figure 10: An infinite sequence of nodal curves of arithmetic genus 2

If we had a compact moduli space of such curves, this would be a sequence of closed
points in this space. After taking a subsequence, this would need to converge (in the
complex topology) to some point of the moduli space, but intuitively the above sequence
of curves cannot possibly converge to a (finite type) curve! So allowing all nodal curves is
too much, but it turns out that things work out very well if we restrict ourself to so-called
stable curves. Here is the definition, including a variant for curves together with (marked)
points.

Definition 3.10. A connected, nodal, complex projective curve C is called stable if the
group

Aut(C) = {ϕ : C → C : ϕ isomorphism} (31)

of its automorphisms is finite. Moreover, given p1, . . . , pn ∈ C distinct smooth points of C,
we say that (C, p1, . . . , pn) is stable if the group

Aut(C, p1, . . . , pn) = {ϕ : C → C : ϕ isomorphism with ϕ(pi) = pi} (32)

of automorphisms of C fixing all pi is finite.

This definition makes some sense: we have seen before that automorphisms create
trouble when trying to find moduli spaces, so infinite automorphisms can create infinite
trouble! More seriously, let’s see that this definition prevents the counterexample from
Figure 10. For this we need some facts about automorphisms of curves, starting with the
case of smooth curves.

Fact 3.11. Let C be a smooth, complex, irreducible projective curve of genus g.

a) For g = 0 we have C ∼= P1 and Aut(P1) = PGL2(C), where

PGL2 =

{[
a b
c d

]
∈ P(Mat2×2,C) = P3 : ad− bc 6= 0

}
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is the projective linear group. The action of PGL2(C) on P1 is given by[
a b
c d

]
.[X : Y ] = [aX + bY : cX + dY ].

Moreover, this action is 3-transitive, i.e. for p1, p2, p3 ∈ P1 pairwise distinct closed
points there exists a unique element of PGL2(C) sending them to 0, 1,∞ ∈ P1,
respectively. Or, formulated differently, the morphism

PGL2 → (P1)3 \∆,

A 7→ (A.[0 : 1], A.[1 : 1], A.[1 : 0])

to the complement of the big diagonal ∆ ⊂ (P1)3 is an isomorphism.

b) For g = 1 the curve C = E has automorphism group is isomorphic to Aut(E) ∼=
E(C)oG for G one of the finite groups Z/2Z, Z/4Z or Z/6Z. The normal subgroup
E(C) ⊂ Aut(E) acts simply transitively, i.e. for p, p′ ∈ E closed points there exists
a unique element of E(C) sending p to p′.

c) For g ≥ 2 the automorphism group Aut(C) is finite, of order at most 84(g − 1).

Easy exercise 3.12. Let C be a smooth, complex, irreducible projective curve of genus
g and p1, . . . , pn ∈ C be distinct points. Show that Aut(C, p1, . . . , pn) is finite if and only
if 2g − 2 + n > 0.

From this we can get a very explicit criterion for a nodal and pointed curve to be
stable.

Proposition 3.13. Let C be a connected, nodal, complex projective curve C and let
p1, . . . , pn ∈ C be distinct smooth points. Then (C, p1, . . . , pn) is stable if and only if every

irreducible component C̃v ⊂ C̃ of the normalization of C satisfies

• C̃v has genus 0 and contains at least 3 special points, i.e. preimages of nodes of C or
markings pi, or

• C̃v has genus 1 and contains at least 1 special point, or

• C̃v has genus at least 2.

Proof. By Fact 3.9 together with the universal property of the normalization, an automor-
phism ϕ : C → C of C is equivalent to an automorphism ϕ̃ : C̃ → C̃ mapping each pair
q′i, q

′′
i ∈ C̃ of preimages of nodes to some other such pair. In particular, we get a group

morphism

Aut(C, p1, . . . , pn)→ Sym({components C̃v of C̃})× Sym({q′j, q′′j : j = 1, . . . , `}) (33)

sending an automorphism to the permutation on the set of components of C̃ and the set
of preimages of nodes. Since this permutation group is finite, the group Aut(C, p1, . . . , pn)
is finite if and only if the kernel K of the above map is finite.

But an element of the kernel is precisely a collection of automorphisms ϕ̃v : C̃v → C̃v
of the components of C̃ which fix all special points (i.e. the points q′j, q

′′
j and the points

pi). Comparing with Fact 3.11 (or with Easy Exercise 3.12), we see that the group of

automorphisms of C̃v fixing a number m of distinct points of C̃v is finite if and only if C̃v
is of genus 0 with m ≥ 3, of genus 1 with m ≥ 1 or of genus at least 2.
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Example 3.14. For the nodal curve in Figure 11, we see that its normalization has
three components of genus 0, 1, 2 respectively. They have 2, 1 and 3 preimages of nodes,
respectively, and the genus 0 component has also a preimage of the marked point p1 ∈ C.
Checking with the criterion above, we see that C itself is not stable (the genus 0 component
only has 2 special points), but (C, p1) is stable (together with the preimage of p1 it now
has 3 special points).

      

Figure 11: The nodal curve C and its normalization C̃ together with the special points on
C̃

Looking back at Figure 10 we see that only the first curve in the sequence is stable:
all others have components of genus 0 with only one special point on them. Thus this
sequence will not give a counterexample to the compactness of the moduli space of stable
curves!

3.2 Families and moduli spaces of smooth and stable curves

Now we define the notion of a family of curves. As we will see later, it is very natural to not
just consider the the curve C itself, but the additional data of p1, . . . , pn ∈ C of n distinct
points. Moreover, we will treat families of smooth and stable curves simultaneously.

Definition 3.15. Given g, n ≥ 0, an n-pointed family of (smooth/stable) genus g curves
over a scheme S is a tuple

(π : C → S; p1, . . . , pn : S → C) (34)

where

• π is a (smooth/flat), proper, surjective, finitely presented morphism of schemes such
that the fibre Cs over any geometric point s ∈ S is a (smooth/stable), projective,
connected curve of arithmetic genus g,

• the morphisms p1, . . . , pn are pairwise disjoint sections of π, with image in the smooth
locus of π.

We say that a second family (C ′/S; p′1, . . . , p
′
n) is isomorphic to (C/S; p1, . . . , pn) if

there exists an isomorphism ϕ : C → C ′ over S such that ϕ ◦ pi = p′i, i.e. such that the
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Figure 12: A family of stable curves

diagram

C C ′

S

π

ϕ

π′

pi p′i

commutes. Given a map f : T → S, we define the pullback of (C/S; p1, . . . , pn) under f
to be the family (CT/T ; p1,T , . . . , pn,T ) for the fibre product CT = C ×S T with induced
sections pi,T = (pi ◦ f)× idT .

CT C

T S
f

pi,T
pi

Remark 3.16. Most of the above definition should be very reasonable, but I want to
comment on two small points.

a) Over reasonable bases (i.e. locally Noetherian), the assumption of π being finitely
presented already follows from the map being proper. But we need it for technical
reasons (see point c) below).

b) Given that we ask all fibres Cs of the morphism π to be projective, it is tempting to
just require π being projective instead. However, this would lead to some technical
difficulties (e.g. being projective cannot be checked on a Zariski open cover of S).
However, it turns out to be true that for a stable family of curves, the morphism π is
locally projective, i.e. there exists a Zariski open cover of S such that π is projective
restricted to the open sets in this cover16.

16Idea of proof: we will later see that there is a so-called canonical line bundle ωπ of π and that the
family being stable guarantees that ωπ(

∑
i pi) is ample on the fibres Cs. By EGA IV3, 9.6.4 this implies

that this line bundle is π-relatively ample. Then this line bundle makes π projective locally on S.
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c) For the family of stable curves, we require the map π to be flat. In the case of
smooth curves we did not have to add this extra assumption since every smooth
morphism is automatically flat. One nice consequence is that for a flat, proper,
locally finitely presented morphism the Euler characteristic of the fibres is locally
constant ([Vak17, ,Exercise 28.2.M]). This means that even if we did not ask all
fibres to have arithmetic genus g, we would at least know that their arithmetic genus
is constant on connected components of the base.

Definition 3.17. LetMg,n andMg,n be the moduli functors sending a scheme S ∈ SchC
to the sets

Mg,n(S) = {(π : C → S; p1, . . . , pn : S → C) : smooth curve over S}/iso,
Mg,n(S) = {(π : C → S; p1, . . . , pn : S → C) : stable curve over S}/iso.

of n-pointed families of smooth (or stable) genus g curves over S, up to isomorphism.
Given a morphism f : T → S, the induced maps

Mg,n(S)→Mg,n(T ), Mg,n(S)→Mg,n(T )

are defined by the pullback of the families of curves over S to T .

Easy exercise 3.18. Convince yourself that this defines a moduli functor. In particular,
check that the pullback of a family of (smooth/stable) curves is again (smooth/stable).

Theorem 3.19 (see [DM69, Knu83b]). Let g, n ≥ 0 with 2g − 2 + n > 0.

a) There exist coarse moduli spaces Mg,n and M g,n of Mg,n and Mg,n.

b) They are normal algebraic varieties of dimension 3g − 3 + n and there is a natural
inclusion Mg,n ⊂M g,n as a nonempty, open and dense subvariety.

c) The variety M g,n is irreducible, projective and has quotient singularities17.

d) The complement ∂M g,n = M g,n \Mg,n of the locus of smooth curves, called the
boundary of M g,n, is a (Weil) divisor18.

e) The locus M
0

g,n ⊂M g,n of [(C, p1, . . . , pn)] with trivial automorphism group

Aut(C, p1, . . . , pn) = {idC}

is an open and smooth subvariety. It is a fine moduli space for the moduli functor

M0

g,n of stable curves with trivial automorphism group and thus has a universal
family

C
0

g,n

M
0

g,n M g,n

π
pi

⊂

(35)

17That means it has a Zariski open cover by varieties V/G for V smooth affine and G a finite group
acting on V . Here, if V is the spectrum of a ring R, the action of G on V induces an action of G on R
and the variety V/G is the spectrum of the ring RG of G-invariant elements in R.

18In general, the divisor Mg,n \Mg,n is not Cartier (see here). However, since Mg,n has quotient
singularities it is Q-factorial so a multiple of the divisor is Cartier.

27

https://mathoverflow.net/questions/67676/cartier-divisors-on-the-moduli-space-of-two-pointed-elliptic-curves


      

Figure 13: The moduli space of stable curves M g,n with the open set Mg,n of smooth
curves and the boundary ∂M g,n illustrated

Remark 3.20. Using Easy exercise 3.12 we see that the reason for the requirement
2g − 2 + n > 0 of the theorem is precisely that it ensures that any smooth curve
(C, p1, . . . , pn) has finite automorphism group (so that indeed ∅ 6= Mg,n ⊂ M g,n). In the
end, it is just a concise way to exclude the finite list of cases

(g, n) = (0, 0), (0, 1), (0, 2), (1, 0).

Concerning part e) of the Theorem, one can check that for 2g − 2 + n > 0 the set M
0

g,n of
curves with trivial automorphism group is nonempty if and only if (g, n) 6= (1, 1), (2, 0).

In order to help us digest this big theorem, we will start by looking at some concrete
examples of moduli spaces M g,n in low genus in the next section. Along the way we will
also introduce some general concepts, like the dual graph of a stable curve. Later we will
discuss the main ideas of how to prove the various properties of M g,n stated above.

References and further reading

A great introduction to (smooth) algebraic curves with an overview of the behaviour for
small genus is given in [Vak17, Chapter 19]. See also [Vak17, Exercise 16.4.C] for the
automorphism group of P1 and [Vak17, Section 21.7.8] for the finiteness of automorphisms
for g ≥ 2 from Fact 3.11. See this great poster about automorphism groups of smooth,
complete curves over more general algebraically closed fields.

For an introduction to nodal curves see [ACG11, Chapter X, §2]. For some more
technical results about (nodal) curves, see [Sta13, Tag 0BRV], in particular subsections
14, 15 and 19.

28

https://www.ma.tum.de/_Resources/Persistent/0/3/2/c/032cccea9b56d654921f7c440a80096ba0926a16/2019-04-09_Bachelorposter_Martin.pdf
https://stacks.math.columbia.edu/tag/0BRV


4 Examples of moduli of curves and basic construc-

tions

4.1 Smooth curves of genus 0

Let’s start with the moduli spaces M0,n of smooth curves, which is defined for

2g − 2 + n = −2 + n > 0 ⇐⇒ n ≥ 3.

From Fact 3.11 a) we know that every smooth genus 0 curve C is isomorphic to P1. Thus,
beginning with the simplest case n = 3, every curve (C, p1, p2, p3) ∈ M0,3(Spec(C)) is
isomorphic to (P1, p1, p2, p3) ∈ M0,3(Spec(C)). Again by Fact 3.11 a) there exists an
automorphism of P1, an element of PGL2(C), sending p1, p2, p3 to 0, 1,∞. Thus we have

(C, p1, p2, p3) ∼= (P1, p1, p2, p3) ∼= (P1, 0, 1,∞).

Thus, up to isomorphism, there exists a unique smooth genus 0 curve with three distinct
marked points! Therefore, we expect that the moduli space M0,3 is a point. This turns
out to be true, but the proof (without using Theorem 3.19) is actually quite involved!

Proposition 4.1. The variety M0,3 = pt = Spec(C) is a fine moduli space for the functor
M0,3 and the universal family is given by

(π : P1 → Spec(C); p1 = 0, p2 = 1, p3 =∞ : Spec(C)→ P1) (36)

For the proof we are going to use the following result. Proving it is quite technical, so
we only give the proof in the appendix in the optional Section 4.6.

Proposition 4.2. Let π : C → B be a smooth, proper, surjective, locally finitely presented
morphism of relative dimension ≤ 1 with geometric fibres isomorphic to P1.

a) If π admits a section p1 : B → C, then there exists a rank 2 vector bundle E on B
such that C is isomorphic to the projective bundle C ∼= P(E) over B.

b) If π admits two disjoint sections p1, p2 : B → C, then the bundle E splits as a direct
sum E ∼= L1 ⊕ L2 of line bundles.

c) If π admits three disjoint sections p1, p2, p3 : B → C, then we can take E = OB⊕OB
above, so that C is isomorphic to the trivial projective bundle C ∼= B × P1.

Proof of Proposition 4.1. By definition, we need to show that the functor M0,3 is isomor-
phic to hpt. Since for any scheme S the set hpt(S) = {S → pt} has a unique element, this
means we need to show that any family of smooth genus 0 curves

(π : C → S; p1, p2, p3 : S → C) ∈M0,3(S) (37)

is isomorphic to the trivial family

(S × P1 → S; 0, 1,∞ : S → S × P1), (38)

so that really there exists a unique element of M0,3(S). By Proposition 4.2 we see that
indeed C ∼= S × P1 over S. Then since the three sections p1, p2, p3 : S → S × P1 are
assumed to be disjoint, they induce a map

A = (p1, p2, p3) : S → (P1)3 \∆ ∼= PGL2 (39)
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to the complement of the big diagonal ∆ ⊂ (P1)3, which by Fact 3.11 a) is isomorphic to
PGL2. Then an isomorphism S × P1 → S × P1 sending the sections p1, p2, p3 to 0, 1,∞ is
given by

S × P1 → S × P1, (s, p) 7→ (s, A(s)−1.p).

This gives the desired isomorphism of the families (37) and (38).

It turns out that once we understand the case n = 3, the case of general n ≥ 4 is
actually not much more difficult. Indeed, given any curve (C, p1, . . . , pn) ∈ M0,n(C) we
still have C ∼= P1 and there exists a unique element B ∈ PGL2(C) of the automorphism
group of P1 sending p1, p2, p3 to 0, 1,∞. Let p′j = B.pj, then we have

(C, p1, . . . , pn) ∼= (P1, 0, 1,∞, p′4, . . . , p′n).

The elements p′4, . . . , p
′
n ∈ P1 are pairwise distinct and also distinct from 0, 1,∞ and

uniquely determine the isomorphism class of (C, p1, . . . , pn)19. This gives the following
result.

Proposition 4.3. For n ≥ 3 the moduli functor M0,n is representable by the variety

M0,n = (P1 \ {0, 1,∞})n−3 \∆, (40)

where ∆ = {(qi)i : ∃i 6= j with qi = qj} is the big diagonal.

Exercise 4.4. Give a proof of Proposition 4.3, following the proof of Proposition 4.1.
What is the universal family over M0,n?

From the concrete description above we can actually now verify several of the statements
from Theorem 3.19:

• The space M0,n exists as a coarse (even fine!) moduli space.

• It is normal (even smooth!) and irreducible of dimension 3g − 3 + n = n− 3.

• In fact one easily checks that every smooth genus 0 curve (C, p1, . . . , pn) has trivial

automorphism group, so that M0,n ⊂M
0

0,n. This explains the fact that it is a fine
moduli space and smooth instead of just normal!

Next we want to look at moduli spaces of stable curves in genus 0, to see if the nice
properties above (being smooth and a fine moduli space) extend. For this, we will now
define a very useful tool (working for any genus g), the dual/stable graph of a stable curve.

4.2 Stable graphs and gluing morphisms

Given a stable curve (C, p1, . . . , pn), we want to define a combinatorial object ΓC that
allows us to describe its shape, i.e. how many components it has, of which genus they are
and how they intersect among themselves. Consider Figure 14 for illustration.

We see there that the combinatorial object is a graph together with some decorations.
In the graph

• the vertices v correspond to irreducible components Cv of C and are decorated with
the geometric genus of the component,

19For n = 4, the value p′4 is called the cross ratio of the points p1, . . . , p4.
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Figure 14: A stable curve and the associated dual graph

• the edges correspond to nodes of the curve, where a node connecting two components
Cv, Cw (or Cv with itself) gives an edge between v and w (or from v to itself),

• there are legs attached to the vertices v, numbered 1, . . . , n, describing in which
components Cv the markings p1, . . . , pn ∈ C are contained.

Now we set up the notation how to formally encode all this data. This involves a bunch of
sets and maps satisfying properties and as you go through the definition you should check
back to Figure 14 to match the parts of the definition to the picture.

Definition 4.5. A stable graph Γ is a tuple

Γ = (V,H, L, g : V → Z≥0, v : H → V, ι : H → H, ` : L→ {1, . . . , n}) (41)

where

a) V = V (Γ) is a finite set (the vertices of Γ) and g : V → Z≥0 is a map associating a
genus g(v) to each vertex v,

b) H = H(Γ) is a finite set (the half-edges of Γ). The map v : H → V associates to
each half-edge h a vertex v(h) (the vertex incident to h). We denote by

H(v) = {h ∈ H : v(h) = v}

the half-edges incident at v and by n(v) = #H(v) the number of these half-edges.
The map ι : H → H is an involution (i.e. ι ◦ ι = idH). Thus H decomposes into
pairs of half-edges switched by ι and fixed points of ι.

c) The pairs e = {h, h′} of distinct half-edges exchanged by ι, i.e. ι(h) = h′, are called
the edges E = E(Γ) of Γ.

d) The set L = L(Γ) ⊂ H is the set of half-edges fixed by ι (the legs of Γ) and
` : L→ {1, . . . , n} is a bijective map.
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e) The graph Γ is connected, i.e. any two vertices can be connected by a path consisting
of edges20.

f) We require the stability condition that for each vertex v ∈ V we have

2g(v)− 2 + n(v) > 0.

An isomorphism φ : Γ→ Γ′ of stable graphs is a collection of bijective maps

ϕV : V → V ′, ϕH : H → H ′,

of their sets of vertices and half-edges which are compatible with the functions g, v, ι, i.e.

g′(ϕV (v)) = g(v), v′(ϕH(h)) = ϕV (v(h)), ι′(φH(h)) = φH(ι(h)), `′(ϕH(h)) = `(h).

Denote by Aut(Γ) the set of isomorphisms Γ→ Γ. This is a group, with group law given
by composition. Define the genus g(Γ) of Γ as the number

g(Γ) =
∑

v∈V (Γ)

g(v) + 1 + #E(Γ)−#V (Γ), (42)

and the number of legs/markings n(Γ) as n(Γ) = n = #L(Γ).

Example 4.6. Let’s work out all these things in an example. Consider the stable graph
Γ in Figure 15. Its data is given by

V (Γ) ={v0, v1, v2} and g(v0) = 1, g(v1) = 1, g(v2) = 2,

H(Γ) ={h1, . . . , h7} and v : H(Γ)→ V (Γ) with

v−1(v0) = {h1}, v−1(v1) = {h3}, v−1(v2) = {h2, h4, h5, h6, h7},
E(Γ) ={{h1, h2}, {h3, h4}, {h6, h7}}, in particular

ι(h1) = h2, ι(h2) = h1, . . . , ι(h7) = h6, ι(h5) = h5,

L(Γ) ={h5} and `(h5) = 1.

Concerning the automorphism group of Γ, there is an automorphism τ = (τV , τH) : Γ→ Γ
with

τV (v0) = v1, τV (v1) = v0, τV (v2) = v2, τH(h1) = h3, τH(h3) = h1, τH(h2) = h4, τH(h4) = h2.

Similarly, there is an automorphism σ, where σV , σH fix all vertices and half-edges except
for τH(h6) = h7, τH(h7) = h6. You can check that these two commute and generate the
automorphism group

Aut(Γ) = 〈τ, σ〉 ∼= Z/2Z⊕ Z/2Z.

Finally we see that

g(Γ) = (1 + 1 + 2) + 1 + 3− 3 = 5 and n(Γ) = 1.

Exercise 4.7. Define the stable graph associated to a stable curve (C, p1, . . . , pn). Check
your definition against the picture in Figure 14 and convince yourself that conditions e)
and f) of Definition 4.5 are satisfied. We give the definition below for completeness, but it
will be less confusing if you first try writing it down yourself.

20Mini-Exercise: make precise what this means.
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Figure 15: A stable graph Γ with labeled vertices and half-edges (in red) and automorphisms
τ, σ generating its automorphism group Aut(Γ) = 〈τ, σ〉 ∼= Z/2Z⊕ Z/2Z

Definition 4.8. Given a stable curve (C, p1, . . . , pn) its associated dual graph Γ = ΓC is
the stable graph defined as follows:

• The vertices v ∈ V of Γ are in one-to-one correspondence to the irreducible compo-
nents Cv of C (which canonically correspond to the components C̃v of the normal-

ization C̃).

V ∼= {Cv : component of C} = {C̃v : component of C̃}

The map g : V → Z≥0 sends a vertex v to the genus g(C̃v) of the component in the
normalization.

• The half-edges h ∈ H of Γ are in one-to-one correspondence to the union of the
preimages q′, q′′ ∈ C̃ of nodes q ∈ C under the normalization map ν : C̃ → C and
the marked points p1, . . . , pn ∈ C.

H ∼=

 ∐
q node in C

ν−1(q)={q′,q′′}

{q′, q′′}

 t {p1, . . . , pn}

The map v : H → V sends half-edges of the form q′, q′′ to the vertex v for the
component C̃v of the normalization containing them, and the half-edges of the form
pi to the vertex v for the component Cv of C containing them. The involution ι
exchanges the preimages of nodes (ι(q′) = q′′, ι(q′′) = q′) and fixes the marked points
(ι(pi) = pi).

• The legs L ⊂ H are precisely the marked points

L = {p1, . . . , pn}

and the map ` : L→ {1, . . . , n} sends pi to i.

Easy exercise 4.9. Check that the genus g(ΓC) of the dual graph of a curve (C, p1, . . . , pn)
equals the arithmetic genus of C.
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Exercise 4.10. Let (C, p1, . . . , pn) be a stable curve with dual graph Γ and let (C̃v, (qh)h∈H(v))v∈V (Γ)

be the components of the normalization of C with marked preimages of nodes and markings.
Then there is an exact sequence of groups

0→
∏

v∈V (Γ)

Aut(C̃v, (qh)h∈H(v))→ Aut(C, p1, . . . , pn)→ Aut(Γ). (43)

Can this sequence in general be extended on the right by 0, i.e. is the map to Aut(Γ)
surjective?

Exercise 4.11. a) Show that a stable graph of genus g with n legs has at most 3g−3+n
edges. (Note: This follows from Proposition 4.14 below, and you might look at the
proof for inspiration, but there is a purely combinatorial argument for this statement,
just using the definition above).

b) Show that given g, n, there are only finitely many stable graphs of genus g with n
legs, up to isomorphism.

c) For fixed genus g and number n of legs, convince yourself that there is precisely
one stable graph with no edge at all (the trivial stable graph). Compute a formula,
depending on g, n, for the number of isomorphism classes of stable graphs with
exactly one edge.

Remark 4.12. It turns out that stable graphs are incredibly useful when studying
problems related to stable curves and their moduli spaces, since they can describe important
information about the curves in a purely combinatorial fashion.

However, one issue one encounters is that the number of isomorphism classes of stable
graphs grows drastically with g, n. For instance, even for g = 1, n = 5 there are already
1576 isomorphism classes of stable graphs. How did I come up with this number? Have I
locked myself in my basement for a week, scribbling pages upon pages of stable graphs?
No, in fact a few years ago, I locked myself in my basement for 5 months and wrote a
computer program to count the graphs for me21!

With the help of Jason van Zelm and Vincent Delecroix, this has by now grown into the
software package admcycles [DSv20] for the open source mathematical software SageMath
[S+20]. This package can perform intersection theory on the spaces M g,n and as part of
this, it can enumerate stable graphs. It can be used online without installation, and you
can click on this link to see some example computations, enumerating stable graphs up to
isomorphism.

I will occasionally show some examples using this program, but this will be an entirely
optional part of the course, and in particular I will not ask anything related to this in the
exam.

*Exercise 4.13. Check your answer to Exercise 4.11 c) for small values of g, n using the
software described above. You can also verify that the graph in Figure 15 has precisely 4
automorphisms.

One reason why stable graphs are useful is that the moduli space M g,n decomposes as
a disjoint union according to possible stable graphs.

21If I had just been interested in this particular number of stable graphs, I could also have used an
existing computer program written by Aaron Pixton, but I wanted to perform some computations that
Aaron’s program could not do.
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Proposition 4.14. Let g, n ≥ 0 with 2g− 2 +n > 0, then for any stable graph Γ of genus
g with n legs, the set

MΓ = {(C, p1, . . . , pn) : ΓC ∼= Γ} ⊂M g,n

of curves with stable graph isomorphic to Γ is a nonempty, irreducible, locally closed
subset of M g,n. In particular, the space M g,n is the disjoint union

M g,n =
∐

Γ

MΓ,

where Γ runs through isomorphism classes of stable graphs. We have

dimMΓ =
∑

v∈V (Γ)

3g(v)− 3 + n(v) = dimM g,n −#E(Γ). (44)

The sets MΓ are called the strata of M g,n and the decomposition is called the stratifi-
cation according to dual graph.

To prove the Proposition, let’s recall from Fact 3.9 that a nodal curve C is uniquely
determined by its normalization together with the data of the pairs of preimages of nodes
under the normalization map. Thus the curves (C, p1, . . . , pn) ∈ MΓ can be uniquely

described by specifying the components C̃v of their normalization (v ∈ V (Γ)) together

with the preimages of nodes and markings pi under the normalization map ν : C̃ → C.
This leads to the idea of gluing morphisms.

Proposition 4.15. Let Γ be a stable graph of genus g with n legs, then there exists a
morphism

ξΓ : MΓ =
∏

v∈V (Γ)

M g(v),n(v) →M g,n (45)

sending a tuple (Cv, (qh)h∈H(v))v∈V (Γ) to the curve (C, p1, . . . , pn) obtained by gluing all
pairs qh, qh′ of points corresponding to pairs {h, h′} forming edges of Γ and setting pi ∈ C
to be the image of the marking q`−1(i) belonging to the half-edge `−1(i) ∈ H(Γ). The

morphism ξΓ is finite and its image is the closure M
Γ

of MΓ.

Remark 4.16. The fact that the strata of M g,n are parametrized under the maps ξΓ

by products of smaller-dimensional spaces M g(v),n(v) is sometimes called the recursive
boundary structure of M g,n. It is one of the most important features of the moduli space
of stable curves and the proofs of many results about M g,n use it in a very essential way.

Example 4.17. In Figure 16 we see how the gluing map ξΓ for a particular stable graph Γ
works. It identifies the markings qh, qh′ belonging to half-edges h, h′ of Γ forming an edge.

Idea of proof. For the domain of the map ξΓ, one can check that MΓ is a coarse moduli
space for the moduli functor MΓ : Schop → Sets defined by

MΓ(S) =
∏

v∈V (Γ)

Mg(v),n(v)(S). (46)

Then we can obtain the map ξΓ above by constructing a natural transformation

ξ̂Γ :MΓ →Mg,n

between moduli functors and then using the properties of coarse moduli spaces.
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Figure 16: The gluing map associated to a stable graph Γ

Given a scheme S, the natural transformation ξ̂Γ takes an element of MΓ(S), i.e. a
tuple

(πv : Cv → S, (qh : S → Cv)h∈H(Γ))v∈V (Γ)

of stable curves over S and glues them to a stable curve by identifying the sections
qh, qh′ corresponding to pairs {h, h′} forming edges of Γ. The fact that this gluing can be
performed in families requires an argument (see e.g. [ACG11, Chapter X, Section 7]). As
an illustration, in the simplest case of having two curves π1 : C1 → S, π2 : C2 → S glued
along sections q1 : S → C1, q2 : S → C2, the glued family can be obtained as the union of
the images of C1, C2 inside the fibre product C1 ×S C2 under the maps

C1

C1 ×S C2

C2

idC1
×(q2◦π1)

(q1◦π2)×idC2

Once we construct the natural transformation ξ̂Γ, we obtain the map of coarse moduli
spaces by considering the diagram

MΓ hMΓ

Mg,n hMg,n .

ξ̂Γ ξΓ (47)

Here the horizontal arrows come from the fact that MΓ and M g,n are coarse moduli spaces
of the functors on the right. By definition of a coarse moduli space, the composition
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MΓ → hMg,n of the morphisms on the left and bottom must factor through the morphism
at the top, giving the map on the right as desired. From the definition of ξ̂Γ we see that
ξΓ does what we want on C-points of MΓ.

As for the properties of ξΓ, note that it is proper since its domain is proper and its
target is separated ([Vak17, Proposition 10.3.4]). Thus to show that it is finite, it suffices
to show that it is quasifinite ([Vak17, Theorem 29.6.2]). Given (C, p1, . . . , pn) in the image
of ξΓ, what is the preimage? It is the set of tuples of curves (Cv, (qh)h∈H(v))v∈V (Γ) which
can be glued together to form (C, p1, . . . , pn).

      

Figure 17: Different choices to obtain a stable curve C by gluing according to the graph Γ,
as C = C1 t C2 or C = C ′1 t C ′2

You can check that such a tuple can be specified by making two finite lists of choices:
first you specify the subset Q of the nodes of C which are obtained by gluing markings
in the preimage. Given this, you get a (possibly disconnected) curve Ĉ by normalizing
the nodes in Q22. Then you obtain the tuple (Cv, (qh)h∈H(v))v∈V (Γ) of curves by identifying

the connected components Cv of Ĉ with the vertices v ∈ V (Γ) and the preimages qh of
nodes and markings with the half-edges h ∈ H(Γ). Both the choice of nodes Q and the
identification of components and preimages are finite choices, so there are only finitely
many possibilities23.

To show that the image of ξΓ is the closure of MΓ, first note that

MΓ = ξΓ(MΓ), where MΓ =
∏

v∈V (Γ)

Mg(v),n(v) ⊂MΓ.

Indeed, given a curve in MΓ we can certainly obtain it by gluing a tuple of smooth curves
Cv under the map ξΓ (Cv are the components of the normalization of C). Conversely, any

22Normally, you cannot choose to ”partially normalize” a variety at some points. If you want, you can
obtain the normalization Ĉ by first normalizing all of C and then gluing back together all nodes not in Q.

23Note: I am not saying that any choice of Q is allowed: if you choose the wrong set of nodes, you
won’t get the right number of connected components of Ĉ or they won’t have the right genus or markings
pi. You can check that if the stable graph of C is isomorphic to Γ, then Q must be the set of all nodes of
C and the number of choices we have in the second step is exactly the size of the automorphism group
Aut(Γ). Thus we expect that the degree of ξΓ to its image is generically #Aut(Γ).
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such gluing of smooth curves has stable graph Γ. Since ξΓ is proper, its image is closed,
hence MΓ ⊂ ξΓ(MΓ). On the other hand, since the moduli spaces of curves are irreducible,
so is the product MΓ and thus the nonempty open subset MΓ is dense in MΓ. Finally,
this implies

ξΓ(MΓ) ⊂ ξΓ(MΓ) = MΓ.

Exercise 4.18. a) Show (without using Proposition 4.14) that the variety MΓ has
dimension

dimMΓ =
∑

v∈V (Γ)

3g(v)− 3 + n(v) = dimM g,n −#E(Γ).

b) Show that the complement ∂M g,n of the locus Mg,n ⊂ M g,n of smooth curves is

given by the union of the sets M
Γ

for Γ a stable graph with exactly one edge

M g,n \Mg,n =
⋃

Γ:#E(Γ)=1

M
Γ
.

*c) Show that for any stable graph Γ, the set M
Γ

is a union of strata MΓ′ . Give a
purely combinatorial description of the Γ′ which appear. (Hint : A particularly nice
way to put the answer to the second part of the question starts with ”Consider the
category whose objects are stable graphs of genus g with n legs and whose morphisms
Γ′ → Γ are given by . . .”. We are going to see this appear later when discussing the
intersection theory of M g,n.)

By Proposition 4.14, the M
Γ

with #E(Γ) = 1 have codimension 1 in M g,n and they
are called the boundary divisors of M g,n. The stable graphs Γ with #E(Γ) = 1 are of one
of the two forms in Figure 18 (this is part of the solution of Exercise 4.11 c)).

      

Figure 18: List of stable graphs with precisely one edge; if g1 = 0 we require n1 = #N1 ≥ 2
because of the stability condition and similarly for g2 = 0 we ask n2 = #N2 ≥ 2

The corresponding gluing maps take the form

M g1,n1+1 ×M g2,n2+1 →M g,n,

M g−1,n+2 →M g,n,
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and we denote by ∆g1,N1 = ∆g2,N2 and ∆0 the images of the respective map. These are
precisely the irreducible components of the boundary of M g,n.

Thus once we prove Proposition 4.14, the exercise above completes the proof of Theorem
3.19 d), stating that the boundary is a Weil divisor (where of course we assumed all the
other parts of the Theorem).

Proof of Proposition 4.14. We saw above that MΓ is the image of MΓ =
∏

vMg(v),n(v)

under ξΓ. Since MΓ is nonempty and irreducible, so is MΓ. Also, the closure M
Γ

is the
image of MΓ and by a slight extension of the argument above, one can show

ξΓ(MΓ \MΓ) = M
Γ \MΓ.

Indeed, a tuple (Cv, (qh)h)v ∈MΓ \MΓ satisfies that one of the curves Cv has a node, and

then the curve ξΓ((Cv, (qh)h)v) ∈M
Γ

has at least #E(Γ) + 1 nodes, and thus cannot have

dual graph isomorphic to Γ. Since MΓ \MΓ is closed and ξΓ is proper, the set M
Γ \MΓ

is closed in M
Γ

and thus MΓ is locally closed inside M g,n since it is open in the closed

set M
Γ
. Finally, we have dimM

Γ
= dimMΓ since ξΓ is finite and thus the formula for

dimM
Γ

follows from Exercise 4.18.

4.3 Stable curves of genus 0

General results

Before we start looking at examples, let us use the new tool of stable graphs to prove that
automorphism groups of genus 0 stable curves are trivial.

Exercise 4.19. Let Γ be a stable graph of genus 0.

a) Show that the undirected graph with vertex set V (Γ) and edges {v(h), v(h′)} for
{h, h′} ∈ E(Γ) is a tree. (Hint: See e.g. here for the definition of a tree)

b) Show that Aut(Γ) = {idΓ} is trivial.

c) Show that any stable curve (C, p1, . . . , pn) of genus 0 has trivial automorphism group
Aut(C, p1, . . . , pn) = {idC}. (Hint: Exercise 4.10)

Corollary 4.20. For n ≥ 3, the space M0,n is a fine moduli space for the functor M0,n

and a smooth, irreducible projective variety of dimension n− 3.

Proof. By Exercise 4.19 we have M
0

0,n = M0,n, so the statement follows from Theorem
3.19, in particular part e).

Example: n = 3

Let’s turn to some examples. From Exercise 4.11 we know that a stable graph in genus 0
with n legs has at most 3g − 3 + n = n− 3 edges. Thus for n = 3 the only stable graph is
the trivial one, which shows M0,3 = M0,3 = pt is a point.
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Example: n = 4

For n = 4, every nontrivial stable graph has exactly one edge and by Exercise 4.19 above
it must have precisely two vertices v1, v2 (if it had only one, the edge would be a loop
at this vertex, so the graph would not be a tree, if it had more than two vertices, the
graph would not be connected). Each vertex is incident to one of the half-edges forming
the single edge and by stability we must have n(v1), n(v2) ≥ 3. Since we have precisely
four legs to distribute (corresponding to the four marked points), every vertex must get
exactly two of them. To make a long story short, here are the possible stable graphs Γ
with (g, n) = (0, 4):

      

Figure 19: The stable graphs of genus 0 with 4 legs

By Proposition 4.14 we know that

M0,4 = MΓ0 tMΓ1 tMΓ2 tMΓ3 , (48)

where MΓ0 = M0,4
∼= A1 \ {0, 1} and the MΓi (i = 1, 2, 3) are irreducible, locally closed

subset of M0,4 of dimension 0, i.e. points. Maybe by now you have (correctly) guessed that
M0,4

∼= P1. Indeed, this follows from Corollary 4.20 and (48) since P1 is the only smooth,
irreducible, projective variety of dimension 1 which contains M0,4 = A1 \ {0, 1} as an open
subvariety24. In Figure 20 you see a picture showing which points in P1 correspond to
which stable curves.

In fact, since M0,4 is a fine moduli space, we know that the individual curves we drew
in Figure 20 actually fit together into a universal curve π : C0,4 → M0,4, the universal
family of curves for the moduli functor M0,4. If you worked on Exercise 4.4, you know
that the universal family over M0,4 is the trivial family M0,4 × P1 → M0,4. The correct
way to fill in the missing fibres over 0, 1,∞ ∈M0,4 is shown in Figure 21.

Thus the universal curve is given by the composition

π : C0,4 = Bl(0,0),(1,1),(∞,∞)P1 × P1 → P1 × P1 → P1 = M0,4 (49)

of the blow-up map of P1 × P1 at three points and the projection from P1 × P1 to the first
factor. The sections p1, . . . , p4 : M0,4 → C0,4 are the strict transforms of the four maps

P1 → P1 × P1, q 7→ (q, 0), (q, 1), (q,∞), (q, q). (50)

24The varieties M0,4 and P1 are both smooth, irreducible projective curves, and such curves are
isomorphic if and only if they are birational. And indeed, both contain A1 \ {0, 1}.
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Figure 20: The moduli space M0,4
∼= P1 of stable curves

The singular fibres of π over 0, 1,∞ ∈ P1 are the unions of the strict transform of the fibre
of the projection P1 × P1 → P1 and the exceptional divisor of the blowup, which meet
transversally and thus form a nodal curve.

Exercise 4.21. Show that indeed the singular fibres of π over 0, 1,∞ ∈ P1 are nodal
curves according to Definition 3.6.

On the exceptional divisor over (0, 0) ∈ P1×P1, you can check that the strict transforms
p1, p4 of q 7→ (q, 0) and q 7→ (q, q) go to distinct points, since the maps (q, 0), (q, q) meet
at (0, 0) with distinct tangent vectors25.

The general case n ≥ 5

In the case n = 5 it turns out that

M0,5
∼= Bl(0,0),(1,1),(∞,∞)P1 × P1.

Sounds familiar? Indeed, we have M0,5
∼= C0,4. This is the beginning of a more general

story, which we summarize in the following theorem.

Theorem 4.22 ([Knu83a, Kee92]). Let M0,n be the moduli space of stable curves of genus
0 with n marked points and let π : C0,n →M0,n be its universal curve.

a) For n ≥ 3 we have M0,n+1
∼= C0,n and under this identification, the map

π : M0,n+1 →M0,n

is the so-called forgetful morphism26 of the marking n+ 1.

b) The universal curve C0,n →M0,n can be obtained from the projection

M0,n × P1 →M0,n

by an iterated blowup along smooth codimension 2 subvarieties (see [Kee92, Section
1] for a precise description).

25This uses the identification of the exceptional divisor with P(T(0,0)P1 × P1), see [Vak17, Section 22.3]
for details.

26See the next section for the general definition of such forgetful morphisms.
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Figure 21: The universal family of curves over the moduli space M0,4

Remark 4.23. a) Combining the two parts of the above result, we can construct
M0,n+1 from M0,n so starting with M0,3 = Spec(C) we can find all moduli spaces of
stable curves in genus 0 recursively. Alternatively, since we get a factor P1 every time
n increases starting from n = 3, we can see that the above procedure will produce
M0,n as an iterated blowup of the variety (P1)n−3.

b) If you completed Exercise 4.4, you saw already that the universal curve over M0,n is
isomorphic to M0,n × P1. This is naturally contained as an open subvariety of the
blowup C0,n of M0,n×P1 from above. The universal sections p1, . . . , pn : M0,n → C0,n

are then the unique extensions of the universal sections M0,n → M0,n × P1 from
Exercise 4.4.

The next section will introduce the forgetful morphisms π : M g,n+1 →M g,n mentioned
above for arbitrary g, n. We will see that they almost, but not quite, identify M g,n+1 as the
universal curve over M g,n. Again, our old enemies the automorphisms will ruin everything.

4.4 The forgetful morphism and the universal curve

Since M g,n parametrizes curves C together with marked points p1, . . . , pn, we might expect
that there exist morphisms π : M g,n+1 →M g,n sending (C, p1, . . . , pn, pn+1) to the curve
(C, p1, . . . , pn) obtained by forgetting the last marking. Below we will see that this certainly
works for smooth curves C, but that the condition that the resulting n-pointed curve is
stable requires some slight adjustment in our definition.

Easy exercise 4.24. For 2g−2+n > 0, show that there exists a morphism Mg,n+1 →Mg,n

of the moduli spaces of smooth curves, which on complex points is given by

Mg,n+1(C)→Mg,n(C), (C, p1, . . . , pn, pn+1) 7→ (C, p1, . . . , pn).

What goes wrong when we try to write down the same map for arbitrary stable curves
(C, p1, . . . , pn, pn+1)? Well, it can happen that (C, p1, . . . , pn) is no longer stable. Indeed,
the component Cv of C containing the marked point pn+1 has one special point less than
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before in (C, p1, . . . , pn). Thus by Proposition 3.13 it can become unstable if g(Cv) = 0
and Cv had exactly 3 special points27.

The left side of Figure 22 shows the various ways in which this situation can happen.

      

Figure 22: The map ϕ contracting the component Cv that becomes unstable by forgetting
the marking pn+1 of C to a point q ∈ C ′ ; the map in the opposite direction (taking (C ′, q)
and inserting a component Cv isomorphic to P1) is called stabilization and will appear in
the proof of Proposition 4.25

Indeed, the other two special points on Cv besides pn+1 can be

a) two preimages of nodes, or

b) one preimage of a node and one other marked point pi.

The right side of Figure 22 shows the solution to our problem of defining the forgetful
morphism - we need to construct a morphism ϕ : C → C ′ contracting the component Cv
to a point q ∈ C ′. Then our forgetful morphism π : M g,n+1 →M g,n is given by

π((C, p1, . . . , pn, pn+1)) =

{
(C, p1, . . . , pn) if (C, p1, . . . , pn) is stable,

(C ′, ϕ(p1), . . . , ϕ(pn)) otherwise.
(51)

27The case of g(Cv) = 1 does not cause problems: it would require that pn+1 was the only special point
of Cv. If C = Cv was smooth, we would be in the case (g, n+ 1) = (1, 1) which violates 2g − 2 + n > 0,
if C was singular then Cv would have to contain at least one node (otherwise it would be an isolated
component of C, so C would not be connected).
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To define the map ϕ above, we can use Fact 3.9: the curve C ′ is obtained by taking the
normalization C̃ of C, removing the normalization of the component Cv and gluing the
remaining components back together along preimages of nodes according to Figure 22.
In case a) above, the two preimages of nodes in Cv are identified, in case b) we simply
remove the component Cv. The morphism ϕ : C → C ′ is then defined via the second part
of Fact 3.9 from the natural map C̃ → C ′, which contracts the normalization of Cv to the
point where it was previously attached.

It is not a priori obvious that (51) is the right thing to do, or even that it gives a
continuous map. However, the next Proposition tells us that both are the case.

Proposition 4.25 ([Knu83a]). There exists a morphism π : M g,n+1 → M g,n defined on

C-points by (51). Over the locus M
0

g,n ⊂M g,n of curves without automorphisms, this map

is isomorphic to the universal curve of M
0

g,n. The universal sections p1, . . . , pn : M
0

g,n →
π−1(M

0

g,n) are given by the restriction of the gluing morphisms

pi = ξΓi
: M g,n = M0,3 ×M g,n →M g,n+1

associated to the stable graphs

      

Before saying something about the proof, note that the morphism π : M g,n+1 →M g,n

above is the unique extension of the morphism Mg,n+1 → Mg,n from Easy exercise 4.24
which really just forgets the marking pn+1. The uniqueness follows since the domain
M g,n+1 of π is reduced, the target M g,n is separated and since π is determined on the
open dense subset Mg,n+1 ⊂ M g,n+1 (see the ”Reduced-to-Separated Theorem” [Vak17,
Theorem 10.2.2]). Thus you can see the Proposition above as saying that the extension
exists and that (51) gives us a modular interpretation, i.e. an interpretation what this
extension does on the geometric objects (stable curves) that our moduli spaces parametrize.

For the second part of Proposition 4.25 which allows us to interpret the forgetful map
π as the universal curve over part of M g,n you can have a look at Figure 23, where for
chosen points of the fibre of the universal curve we illustrate which (n+ 1)-pointed curves
they correspond to.

Below we sketch the formal proof of Proposition 4.25, but even this sketch is rather
technical. So if you are happy with the picture and explanation above, feel free to skip it
for now.

*Sketch of proof. As in the proof of Proposition 4.15 we can construct the morphism
π by defining a corresponding natural transformation Mg,n+1 → Mg,n and using that
M g,n+1,M g,n are coarse moduli spaces of the corresponding functors.

In fact, we can do this in two steps: we define a moduli functor Cg,n sending a scheme
S to the tuples

(π′ : C ′ → S; p′1, . . . , p
′
n, q : S → C ′), (52)

such that
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Figure 23: Correspondence of points in the fibre of the universal curve over M
0

g,n with
(n+ 1)-pointed stable curves

• (π′ : C ′ → S; p′1, . . . , p
′
n : S → C) is a family of stable curves of genus g with n

marked points,

• q : S → C ′ is any section of π.

There is a natural transformation Cg,n → Mg,n which simply forgets the marking q
(and does not change the curve C). On the other hand, Knudsen [Knu83a] constructs
isomorphism of functors

Mg,n+1 Cg,n,
contraction

stabilization
(53)

and the natural transformation Mg,n+1
∼= Cg,n → Mg,n defines us the morphism π :

M g,n+1 → M g,n. For an excellent explanation of the details of the equivalence (53) see
[KV07, Section 1.3] (or look at [Knu83a, Proposition 2.1, Theorem 2.4] for the original
formulation and proof).

To summarize the sources above, the contraction map in (53) takes an (n+ 1)-pointed
family of curves

(π : C → S; p1, . . . , pn, pn+1 : S → C), (54)

constructs a morphism ϕ : C → C ′ which contracts the unstable components of fibres of
C → S as in (51). Then (54) is sent to (52) setting p′i = ϕ ◦ pi and q = ϕ ◦ pn+1.

The stabilization functor in (53) does the opposite: starting with the family (52) it
modifies the fibres C ′s of C ′ → S in which the section q collides with one of the nodes
or one of the markings p′i by inserting an extra component isomorphic to P1 at the
point of intersection. This creates a new family of curves π : C → S and the sections
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p1, . . . , pn+1 : S → C are obtained from p′1, . . . , p
′
n, q as ”strict transforms” under the map

C → C ′.
Finally, we know that the locus M

0

g,n is a fine moduli space for the functor M0

g,n. It is

easy to see that the preimage π−1(M
0

g,n) ⊂M
0

g,n+1 is also contained in the set M
0

g,n+1 which

is a fine moduli space. Defining the functor C0

g,n as the families (52) such that (C, p1, . . . , pn)

has only trivial automorphisms, this easily shows that π−1(M
0

g,n) is a fine moduli space

for C0

g,n. On the other hand, one can write down a natural transformation C0

g,n → hC
0
g,n

making the universal curve C
0

g,n a fine moduli space of C0

g,n. So both π−1(M
0

g,n) and C
0

g,n

are fine moduli spaces of the same functor C0

g,n, and thus they are isomorphic. From the
definition of the stabilization in (53) it follows that the gluing morphisms ξΓi

are obtained
from the stabilization of the family

(π : C0

g,n →M
0

g,n; p1, . . . , pn, q = pi : M
0

g,n → C
0

g,n) ∈ Cg,n(M
0

g,n).

But setting q = pi exactly corresponds to the i-th section of the universal curve, and this

completes the proof that pi = ξΓi
over M

0

g,n.

A final question remains: if π : M g,n+1 →M g,n is not the universal curve outside the
locus of curves (C, p1, . . . , pn) ∈M g,n which have only trivial automorphisms, then what
are the fibres over curves? For this let σ : C → C be such an automorphism fixing the
points p1, . . . , pn, then we have for any point q ∈ C which is smooth and does not coincide
with one of the markings p1, . . . , pn that

(C, p1, . . . , pn, q) ∼ (C, σ(p1), . . . , σ(pn), σ(q)) = (C, p1, . . . , pn, σ(q)) ∈M g,n+1. (55)

From this one can check that the closed points of the fibre π−1((C, p1, . . . , pn)) are in
one-to-one correspondence with Aut(C, p1, . . . , pn)-orbits of points in C, and so the fibre
is isomorphic to the quotient

π−1((C, p1, . . . , pn)) ∼= C/Aut(C, p1, . . . , pn). (56)

4.5 Genus 1

In comparison to the genus 0 case, the case of genus 1 is much harder: nice properties,
such as having a fine moduli space, are missing and there is - to my knowledge - no nice
recursive construction as for M0,n. We content ourselves in looking at one nontrivial
example - the case of precisely one marking28 - and in pointing out the new phenomena
that arise from the fact that we can have automorphisms.

The case n = 1

The following result makes precise some of the discussion in Section 1.

Proposition 4.26 (see Proposition 4.18 in [Ber13]). The moduli functor M1,1 has as
coarse moduli space the affine line M1,1

∼= A1.

*Sketch of proof. We must show that for any family of elliptic curves over a scheme S we
can construct a natural morphism S → A1. In the introduction we saw that this should be
related to the j-invariant of the elliptic curves. But a priori, this j-invariant only makes
sense for elliptic curves given as cubic curves in P1.

28Note that the condition 2g − 2 + n > 0 implies that n = 1 is the simplest possible case for g = 1.
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To approach this situation, note that given a (smooth) elliptic curve (E, p) one can
use Riemann-Roch and Serre Duality to show

h0(E,OE(3p)) = 3, h1(E,OE(3p)) = 0 (57)

and for any basis s1, s2, s3 of sections of OE(3p) we obtain an embedding29

E ↪→ P2, q 7→ [s1(q) : s2(q) : s3(q)]

of E as a smooth cubic curve in P2 (see [Vak17, Section 19.9] for details).
Now we need to do this for families of elliptic curves. Given such a family

(π : E → S; p : S → E) ∈M1,1(S) (58)

over some scheme S, we see as in the proof of Proposition 4.2 that (57) implies that the
pushforward V = π∗OE(3p) is a rank 3 vector bundle over S. Let V be the total space of
this vector bundle, then we have an open dense subset

U = {(s1, s2, s3) : s1, s2, s3 ∈ Vs form a basis of Vs = H0(Es,OEs(3p(s)))} ⊂ V ×SV ×SV.

Let EU = E ×S U be the pullback of E → S under the natural map U → S, then the
pullback of V to EU naturally has three sections s1, s2, s3 (given by the coordinates on U),
and they define an embedding EU ↪→ P2

U = U × P2.
For this embedding, we want to say that on each fibre there is a cubic equation on

P2, unique up to scaling, that cuts out the image of the elliptic curve in P2. And indeed,
denoting F the pushforward of OP2

U
(3) under P2

U → U , there exists a unique F ∈ P(F)

such that EU is the vanishing locus of F in P2
U . Now what data is F (u) at a point u ∈ U?

It’s just the coefficients of a cubic curve in the corresponding projective space P2
u. But from

these coefficients you can compute the j-invariant of this cubic curve (and the formula is
invariant under scaling). This means that we obtain a map ĵ : U → A1. But the value
of ĵ is constant on the fibres of the morphism U → S - different points in the fibre just
correspond to different ways to embed the same elliptic curve in P2 and the j-invariant is,
well, invariant under this. Using fpqc descent (see [Sta13, Tag 023Q]), we then obtain a
morphism j : S → A1 as desired.

U

S A1

ĵ

∃ j

We’ll not go into the details in how to verify that this natural transformation
M1,1 → hA

1
satisfies property a) of a coarse moduli space (being initial among natural

transformations M1,1 → hM for M a scheme). But concerning part b) of the definition,
the above proof showed that every elliptic curve (E, p) can be embedded as a smooth cubic
in P2, so if we accept that the j-invariant classifies those up to isomorphism, it implies
that M1,1 → hA

1
is a bijection on geometric points.

Corollary 4.27. The moduli space M1,1 is isomorphic to P1.

Proof. By Theorem 3.19, the space M1,1 is a normal, projective variety of dimension 1.
Being normal in dimension 1 means it is actually smooth, and as seen in Section 4.3, the
only such curve containing an open subset of A1 is P1.

The point∞ ∈ P1 ∼= M1,1 corresponds to the stable curve (E0, p0) obtained by starting
with p0 ∈ P1 and identifying two points (not equal to p0) to a node.

29Here we use that P2 is a moduli space of line bundles together with 3 sections not vanishing
simultaneously, just what we saw in the proof of Example 2.4!
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The case n = 2

Exercise 4.28. Figure 24 illustrates the forgetful morphism π : M1,2 → M1,1 with the
boundary of both spaces marked in red. For each of the points marked in blue, draw their
corresponding curves and their dual graphs.

      

Figure 24: The forgetful morphism π : M1,2 →M1,1

A fun construction in n = 9

Exercise 4.29. Show that for Q1, . . . , Q9 ∈ P2 general points, there exists a unique cubic
curve EQ going through Q1, . . . , Q9. Show that this gives rise to a rational map

(P2)9 99KM1,9, (Q1, . . . , Q9) 7→ (EQ, Q1, . . . , Q9). (59)

Show that this map is dominant, i.e. that the generic point of M1,9 is contained in the
image. (Hint: This last part will involve showing that for any fixed smooth genus 1 curve
E, embedded in some way as a cubic E ↪→ P2 and Q1, . . . , Q9 ∈ E general points in E,
the curve E is the unique cubic through Q1, . . . , Q9).

Remark 4.30 (*, for people interested in birational geometry). The above exercise shows
that M1,9 is unirational, i.e. that it admits a dominant rational map from a projective
space. For g = 0 we already saw that all spaces M0,n have the stronger property of being
rational, i.e. birational to a projective space. This is the start of an interesting story: for
many (small) values of (g, n) there have been rational parametrizations of Mg,n as in (59)
(see [Ben14, BV05, CF07, Far09, Log03, Ver05]). However, in general the spaces M g,n are
neither rational nor unirational:

• It turns out that in genus 1, the Hodge number h11,0(M1,11) is equal to 1, so there
exists a nonzero holomorphic 11-form on M1,11. This implies that there cannot be a
dominant rational map PN 99KM1,11.
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• Classical results by Eisenbud, Harris and Mumford [HM82, Har84, EH87] say that
M g is of general type for g ≥ 24 and has positive Kodaira dimension for g = 23.
A variant of this result by Logan [Log03] says that for g > 3 the space M g,n is of
general type for all but finitely many pairs (g, n).

The birational geometry and specifically the Kodaira dimension of the moduli spaces of
curves are still an active area of research.

Non-existence of a fine moduli space / universal curve

To show that M1,1 cannot have a fine moduli space, we will construct an explicit example
(π : E → S, p : S → E) of a family of smooth genus 1 curves over a base S, such that
the family is Zariski-locally trivial (i.e. a constant family) but not globally trivial. This
gives a contradiction: if M1,1 was a fine moduli space, the family would be the pullback of
the universal family over M1,1 under a unique map S →M1,1. The fact that π is Zariski
locally trivial would imply that on a Zariski cover of S this map to M1,1 is constant (i.e.
factors through a point). Since a map is determined by its restriction to a Zariski cover,
the map S →M1,1 itself would be constant. But the pullback of a family of curves under
a constant map is a trivial family, a contradiction.

For constructing π, since the Zariski topology is very coarse we will need a slightly ugly
base S: it is a nodal curve consisting of four rational curves forming a chain, as indicated
in Figure 25. To obtain π let (E0, p0) be a smooth elliptic curve. By Fact 3.11 there exists
a nontrivial automorphism σ : E0 → E0 which fixes p0

30. We obtain the family π : E → S
by gluing the trivial families U1 × E0, U2 × E0 over the indicated Zariski open cover of S.
The intersection U1 ∩U2 ⊂ S has two components, and we glue the families by the identity
of E0 on one component and by σ on the other. The fact that p0 is invariant under σ
shows that the sections p0 : U1 → U1 × E0 and p0 : U2 → U2 × E0 glue together over the
overlaps to a section p0 : S → E.

Exercise 4.31. Show that the sections s : S → E of the morphism π : E → S are in
bijection with the fixed points of the automorphism σ. Conclude that π : E → S is not
isomorphic to the trivial family S ×E0 → S. (Hint : Use that every morphism P1 → E0 is
constant. This follows from the more general fact that every morphism C → D of smooth,
projective, irreducible curves with g(C) < g(D) is constant.)

4.6 *Proof of Proposition 4.2

Parts of the script indexed by a * are facultative, so they can be skipped on a first reading
and are not part of the exam material. Concerning Proposition 4.2, it is mentioned in
[KV07, Section 1.1.1], but proving it in the stated generality is actually quite nontrivial!
If you spot gaps or mistakes in the proof below or find better references for the statements
I cite, I would be happy if you write me an email.

* Proof of Proposition 4.2. For part a) note that since π : C → B is proper and the
composition π ◦ p1 = idB is a closed embedding, by the cancellation theorem for properties
of morphisms ([Vak17, Theorem 10.1.19]) the map p1 is a closed embedding. Since the
image of p1 is an effective Cartier divisor when restricted to each fibre, by [Sta13, Tag
062Y] it defines a relative effective Cartier divisor. Let L = OC(p1) be the associated line
bundle on C. We claim that E = π∗L is a locally free sheaf on B of rank 2. Indeed, for any

30If we identify E0 as the quotient Eo = C/Λ of a C by a lattice Λ ⊂ C and choose p0 = 0, one such
automorphism is induced by the map C→ C, z 7→ −z.
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Figure 25: Constructing a nontrivial family over the base S by gluing trivial families on
an open cover S = U1 ∪ U2 along a nontrivial automorphism

point s ∈ B the cohomology group of the fibre H1(Cs,Ls) vanishes, since after passing to
the algebraic closure k(s) of the residue field k(s) (which is flat and thus commutes with
formation of H1) it is isomorphic to

H1(Ck(s),Lk(s)) = H1(P1
k(s)

,O(1)) = 0.

By the Cohomology and Base Change Theorem (see [Vak17, Theorem 28.1.6., Exercise
28.1.D.] and note that the hypothesis of the base B being locally Noetherian can be
removed since π is assumed locally of finite presentation, see [Vak17, Exercise 28.2.M.]),
the sheaf E = π∗L is indeed locally free. By going to a geometric fibre, we see that its
rank is

h0(Ck(s),Lk(s)) = h0(P1
k(s)

,O(1)) = 2.

As in the proof of [Har77, V, Proposition 2.2.] one then shows that C ∼= P(E), completing
the proof of a).

Now in case b) assume we have an additional section p2 : B → C. As in part a) we
obtain a line bundle L′ = OC(p2) on C and we claim that the line bundle L∨ ⊗ L is a
pullback from the base, i.e. there existsM a line bundle on B with L∨⊗L′ = π∗M. This
follows e.g. by [Vak17, Proposition 28.1.11.] (note that we can remove the assumptions
on the base being reduced and locally Noetherian with the same arguments used in the
previous part). Let s0 ∈ H0(C,L) be the section vanishing along p1 and s∞ ∈ H0(C,L′)
the section vanishing along p2. Then we have a map of locally free sheaves on B:

Ψ : OB ⊕M∨ → E , (a, b) 7→ a · s0 + b · s∞. (60)

Here the section b · s∞ makes sense since

E = π∗L = π∗(L′ ⊗ π∗M∨) =M∨ ⊗ π∗L′.
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On an open cover of B which trivializes E (so that over the open sets U ⊂ B the space CU
is isomorphic to CU = U × P1) it is easy to check that Ψ is an isomorphism. This open
cover also trivializes the line bundle M and then the sections s0, s1 restrict to a basis of
the sections of L on the fibres of π (since p1, p2 are disjoint).

Finally, in case c) we have a third section p3 and since it is disjoint from p1, p2 we have:

M = p∗3π
∗M = p∗3L∨ ⊗ L′ = p∗3OC(−p1 + p2) = OB.

Thus by the proof of part b) we can take E = OB ⊕OB.

Remark 4.32. A morphism π as in Proposition 4.2 is a special case of a Brauer-Severi
scheme. By [Gro66, Théorème 8.2] such morphisms are always étale locally isomorphic to
projective bundles, but not necessarily Zariski locally. An example for a family of smooth
genus 0 curves which is not a projective bundle is given by the universal plane conic,
defined over an open subset of P5 = P(H0(P2,O(2))), see [Vak17, Section 18.4.5].

References and further reading

A great introduction to moduli spaces of genus 0 curves is given in [KV07, Chapter 1].
You can also have a look at these lecture notes by Renzo Cavalieri. More material on
gluing and forgetful maps (though phrased in the language of stacks that we will see in
the next section) can be found in [ACG11, Chapter XII, Section 10].

The moduli problem of elliptic curves (E, p) has a much richer structure than you
would expect from the isomorphism M1,1

∼= P1 that we give above. You can have a look
at the lecture notes [Hai08] for a much more complete picture.
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5 Moduli stacks of curves

We have seen in many instances that the existence of automorphisms prevents fine
moduli spaces from existing and we mentioned that it causes unpleasant phenomena (e.g.
singularities) in the coarse moduli spaces. The solution is that we define a generalization
of the notion of a scheme, called an (algebraic) stack, such that

• any scheme S can be interpreted as an algebraic stack (similar to the Yoneda
embedding allowing us to see schemes as particular examples of moduli functors),

• tools and results from algebraic geometry can be generalized to stacks (i.e. we can
define when an algebraic stack X is smooth, when a morphism X → X′ is proper,
etc),

• there exists an algebraic stack Mg,n serving as a ”moduli stack of stable curves”
(i.e. morphisms from a scheme S to Mg,n are exactly equivalent to families of stable
curves over S),

• the algebraic stack Mg,n has many nice properties (e.g. Mg,n is smooth, the
morphism Mg,n → Spec(C) is proper, etc.).

However, defining stacks and developing the language and results to talk about them
requires some serious effort, and goes beyond the scope of this course. So what I will do is
to give an outline of the ideas of the definition together with a guide where to learn more.
We’ll then go on to treat the stacks essentially as a black-box, pretending that they are
schemes, with occasional remarks where we need to be more careful.

5.1 An outline of the theory of algebraic stacks

In Lemma 2.1 we saw that we can embed the category of schemes into the category of
moduli functors by sending M to the functor hM = Mor(−,M). But we saw that the
moduli functorsMg,n are not of the form hM for some M . The main reason is that given a
scheme S and an open cover S = U1 ∪ U2, a morphism S →M to a scheme M is uniquely
determined by its restriction to U1 and U2, but a family of curves up to isomorphism is
not necessarily uniquely determined by its restrictions to U1, U2. As we saw in Exercise
4.31, we can obtain a nontrivial family by taking two trivial families of curves over U1, U2

and gluing them along a nontrivial automorphism on the overlap U1 ∩ U2.
So we are looking for a definition of a new mathematical object Mg,n such that

• it makes sense to speak of a morphism S →Mg,n from a scheme S to Mg,n, and
such morphisms are in bijective correspondence to isomorphism classes of families of
stable curves over S,

• given two morphism f1, f2 : S →Mg,n corresponding to families π1 : C1 → S and
π2 : C2 → S of curves, we have a notion of isomorphisms f1 → f2 corresponding to
the set of isomorphisms C1

∼−→ C2 of families of curves over S.

Then in the example above, for the scheme S = U1 ∪ U2, a morphism S → Mg,n is
determined by its restrictions f1 : U1 → Mg,n and f2 : U2 → Mg,n together with an
isomorphism f1|U1∩U2

∼−→ f2|U1∩U2 (telling us how to glue the families on the overlap).
Looking at the requirements above, I claim that we have already seen mathematical

objects with such ”morphisms between morphisms”, namely categories! Given categories
C1, C2 we have a notion of a functor f : C1 → C2, and given two functors f1, f2 : C1 → C2

we have the notion of a natural transformation (or a natural equivalence) f1 → f2.
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So the idea is that a stack is a category (with some extra data, satisfying suitable
properties). In our favorite example, the stack31 Mg,n is the category whose objects are
families of stable curves over a scheme:

Ob(Mg,n) : (π : C → S; p1, . . . , pn : S → C) family of stable genus g curves. (61)

The morphisms in the category are a bit peculiar (we’ll see in a few lines why this makes
sense): they are given by fibre diagrams (or pullbacks) of families of curves32.

Mor(π′ : C ′ → S ′, π : C → S) =


C ′ C

S ′ S

π′

f̂

π

f

: (f̂ , f) make C ′/S ′ a pullback of C/S


(62)

Note that there is a functor F : Mg,n → SchC to the category of schemes, sending

π : C → S to the scheme S and sending the morphism (f̂ , f) in (62) to the morphism
f : S ′ → S. This functor has some very nice properties:

• the preimage of S ∈ SchC (i.e. the objects of Mg,n mapping to S) are precisely the
families (61) of stable genus g curves over S,

• given π : C → S and any morphism f : S ′ → S of schemes, there exists π′ : C ′ → S ′

and a morphism (f̂ , f) mapping to the given morphism f under F ,

• given the family π : C → S, the set of morphisms (f̂ , f) from this family to itself
which map to the morphism f = idS : S → S are precisely the automorphisms of
the family π : C → S of stable curves. This requires the small check that a map
f̂ : C → C such that (f̂ , idS) makes the diagram in (62) into a fibre diagram is an
isomorphism. This is the reason why we chose the morphisms inMg,n to be pullback
diagrams.

We see that the fibre F−1(S) of F over S, defined as the category whose objects are the

objects of Mg,n mapping to S and whose morphisms are the morphisms (f̂ , f) sitting
over the identity f = idS, is a groupoid, i.e. a category in which all morphisms are
isomorphisms. Together with some more technical assumptions (see [Fan01, Section 3])
this makes (Mg,n, F :Mg,n → SchC) into a category fibred in groupoids over SchC.

Note that given a scheme M over C, the category SchM of schemes over M is also a
category fibred in groupoids: its map SchM → SchC sends X →M to X and a morphism
f : X ′ → X of schemes over M to the morphism f : X ′ → X of schemes over C. Note
that the fibre of SchM over a scheme X ∈ SchC is precisely the category of morphisms
X →M . This allows us to draw a diagram as follows:

categories fibred in groupoids

SchC moduli functors

(M,F )7→(S 7→F−1(S)/iso)

M 7→hM

M 7→SchM (63)

31From now on, the symbolMg,n stands for the category we describe here, no longer the moduli functor
from before.

32Below we omit the sections p1, . . . , pn from the notation since it becomes too complicated otherwise,
but they are always part of the data and need to satisfy similar compatibilities.
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Here F−1(S)/iso is the set33 of objects in the category F−1(S) up to (iso)morphisms of
the category. With what we said before, this immediately makes obvious that the diagram
(63) commutes. So we see that, extending the Yoneda embedding from Lemma 2.1, the
category of schemes can be embedded in the category34 of categories fibred in groupoids.
A morphism from a scheme S to a category (M, F ) fibred in groupoids is then a functor
f fitting in the diagram

SchS M

SchC

f

F

and you can check that a morphism f : S → Mg,n is exactly equivalent to specifying
a family π : C → S of curves over S. So the fundamental idea of fine moduli spaces
(that morphisms to them are equivalent to families for the moduli functor) is already
baked into the category theory above. But now, we also have a notion of morphisms
between morphisms: given f, f ′ : SchS →Mg,n corresponding to families π : C → S and
π′ : C ′ → S, we say that an isomorphism from f to f ′ is a natural equivalence of functors
f ′ → f making the diagram above commute. This can be seen to be equivalent to giving
an isomorphism C → C ′ of families of stable curves over S.

To be useful, we need to make sure that we can ”do algebraic geometry with the
categories above”. It turns out that looking at arbitrary categories fibred in groupoids is
too general to do this. Therefore, we only look at particular types of such categories, called
(algebraic) stacks. These are categories fibred in groupoids that satisfy some additional
conditions (which allow us to do reasonable algebraic geometry with such categories).
The category Mg.n above turns out to be an algebraic stack, and instead of giving the
definition in full generality, let me just describe them in the specific example of Mg,n.
Mg,n is a stack: Being a stack means thatMg,n has a ”sheaf-like” property. Assume

we are given a scheme S and an (étale) cover (Ui → S)i together with families (πi : Ci →
Ui)i of curves. Assume moreover that we have a family (ϕij : Ci|Ui∩Uj

→ Cj|Ui∩Uj
)ij of

isomorphisms of the families of curves on the overlaps Ui ∩ Uj = Ui ×S Uj, which are
compatible on overlaps (i.e. they satisfy the cocycle condition ϕjk ◦ ϕij = ϕik on triple
overlaps). Then these glue to a family π : C → S over S and the family is unique up to
unique isomorphism35, see Figure 26.

Given stacks X,Y,Z and morphisms X → Y and Z → Y, one can define the fibre
product X ×Y Z. Then we say that a morphism ϕ : X → Y is representable if for every
scheme U and morphism U → Y, the fibre product X×Y U in the diagram

X×Y U U

X Y

ϕU

ϕ

(64)

is isomorphic to a scheme X ×Y U ∼= S. Let P be a property of morphisms of schemes
invariant under pullback/base change (e.g. being a smooth morphism). Then we say

33If you like general nonsense: one probably has to restrict to small categories fibred in groupoids, let’s
ignore this here.

34There is a natural notion of a functor between two categories (M1, F1), (M2, F2) fibred in groupoids:
it is a functor G :M1 →M2 between the underlying categories such that F2 ◦G = F1.

35In the general definition of a stack M, the families of curves over the Ui are replaced by functors
SchUi

→M and the isomorphisms ϕij correspond to natural equivalences between the restrictions of
these morphisms to SchUi∩Uj

.
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Figure 26: Gluing two families of curves on an open cover S = U1∪U2 along an isomorphism
of the restrictions of the families on the overlap U1 ∩ U2

that a representable morphism ϕ : X→ Y of stacks has property P if for all U → Y the
morphism ϕU (of schemes) in (64) has property P .

If you know something about manifolds, you should see the morphism U → Y as a
type of chart for Y by objects we understand well (we cover a stack using schemes, and a
manifold using open subsets of Rn). Then the above says that we can check properties of
morphisms between stacks by checking them on all charts (and representable morphisms
have the magic property that the preimage of a chart of Y is a chart of X).
Mg,n is an algebraic stack: Being an algebraic stack means that X has a particularly

nice chart: there exists a scheme U and a representable, smooth and surjective morphism
U → X (smooth and surjective are both properties invariant under pullback, so this
statement makes sense). To check this forMg,n, note that a morphism U →Mg,n is given
by a family π : C → U of stable curves over the scheme U . The fact that this is surjective
means that every stable curve appears as a fibre in the morphism π, while smoothness is
slightly harder to interpret36. Proving the existence of such a U →Mg,n requires some
work (see [DM69, Section 5]), but we have seen an example of this at the very start of the
course: the family Et of cubic curves parametrized by t ∈ C from (3) gives rise to a family
of 1-pointed stable curves of genus 1

E {([X : Y : Z], t) ∈ P2 × A1 : Y 2Z +X(X − Z)(X − tZ) = 0}

A1

π
p1 (65)

where the section p1 is given by p1(t) = ([0 : 1 : 0], t). The corresponding map A1 →M1,1

36If you know the definition of formal smoothness: the property of U →Mg,n being smooth requires that
for a ring R and an R-point R→ U with fibre CR under π and a deformation CR′ of CR over a square-zero
extension R ⊂ R′ of R, we can find a morphism R′ → U such that the composition R′ → U →Mg,n is
induced by the family CR′ of curves.
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is a representable, smooth, surjective morphism.
Given an algebraic stack X with a representable, smooth, surjective cover U → X,

we say that X is smooth if we can choose the scheme U to be smooth (over C). More
generally, given any property Q of schemes that can be checked on a smooth cover, we say
that X has Q if and only if U has Q.

For Mg,n we can indeed choose U to be smooth, so Mg,n is a smooth stack. In fact,
the cover U →Mg,n can be chosen to be étale (not just smooth). An algebraic stack with
this stronger property is called a Deligne-Mumford stack. Such stacks are ”really close to
being a scheme” and for the most part this will allow us to pretend that Mg,n behaves
just like a scheme which is a fine moduli space for the functor of families of stable curves.
One can show that for a Deligne-Mumford stack M and a point x : Spec(C)→M, the
stabilizer group Stabx of x (defined as the set of isomorphisms x→ x from the morphism
to itself) is finite. Under mild conditions (M separated and in characteristic 0) it is
conversely true that an algebraic stackM with finite stabilizer groups at geometric points
is Deligne-Mumford. This exactly brings us back to the definition of Mg,n, since we asked
that the automorphism group Aut(C, p1, . . . , pn) of a stable curve is finite. It was the
insight of Deligne and Mumford that this condition exactly ensures that the resulting
stack Mg,n has nice properties.

Finally, there exists a morphism Mg,n → M g,n from the stack Mg,n to the coarse
moduli space M g,n we talked about earlier. This morphism is proper, induces a bijection
on geometric points and has the property that any other morphism Mg,n → M to a
scheme M must factor throughMg,n →M g,n (this is the augmented version of the notion
of a coarse moduli space for a moduli functor).

Where to learn more about stacks

Here is a list of resources, ordered in increasing comprehensiveness, which you can use to
learn more about stacks:

• the paper ”Stacks for Everybody” [Fan01] by Barbara Fantechi (11 pages, a few
hours to work through, highly recommended),

• the course on the topic given by Prof. Georg Oberdieck in the Winter semester 2020
(one semester, also highly recommended),

• the book ”Algebraic Stacks” (in preparation, by Behrend, Conrad, Edidin, Fantechi,
Fulton, Göttsche und Kresch), found on the website of an old course by Andrew
Kresch (220 pages, a few months, a great resource for self-study),

• the Stacks project [Sta13] (about 7000 pages, several years of intense study, great
to look up results and particular topics, highly non-recommended to read from
beginning to end).

5.2 Upgrades of previous results

By using the language of stacks, many results about the moduli spaces of curves that we
saw before have a better version (i.e. nicer properties) when talking about the moduli
stacks. One caveat: of course, the brief and informal introduction to stacks given in
Section 5.1 is not enough to give a precise meaning to all the properties listed below. I
still hope you get an idea of their meaning, but you can take those as black boxes for now
(we will make them more precise as we need them).

Theorem 5.1. Let g, n ≥ 0 with 2g − 2 + n > 0.
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a) The categories fibred in groupoids Mg,n and Mg,n are (algebraic) Deligne-Mumford
stacks.

b) They are irreducible, proper and smooth of dimension 3g − 3 + n and there is a
natural inclusion Mg,n ⊂Mg,n as a nonempty, open substack.

c) The boundary ∂Mg,n =Mg,n\Mg,n is an effective Cartier divisor and even a normal
crossings divisor 37.

d) The forgetful morphism π :Mg,n+1 →Mg,n makes Mg,n+1 the universal curve over
Mg,n. In particular, this morphism is representable, proper, flat and of relative
dimension 1.

e) For a stable graph Γ of genus g with n legs, the gluing morphism

ξΓ :MΓ =
∏

v∈V (Γ)

Mg(v),n(v) →Mg,n

is representable, finite and a local complete intersection38. It has generic degree

#Aut(Γ) onto its image MΓ
.

Note that e.g. for the forgetful morphism, we originally constructed it by first giving a
natural transformation of the corresponding moduli functors (e.g. how to take am (n+ 1)-
pointed family of curves and construct an n-pointed family from this). You can check
that the same construction defines a functor Mg,n+1 →Mg,n between the corresponding
categories. The same discussion applies to the gluing morphisms ξΓ.

References and further reading

The origin of the notion of a (Deligne-Mumford) stack is the original paper [DM69] by
Deligne and Mumford and Section 4 of this paper gives an introduction to this notion.

37Essentially, this means that étale locally the boundary looks like a union of some coordinate hyperplanes
in CN , but see [Sta13, Tag 0CBN] for a formal definition.

38This means it can be factored into a regular embedding followed by a smooth morphism.
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6 Intersection theory on the moduli of stable curves

As the genus g and the number n of markings increase, the spaces M g,n quickly become
extremely complicated geometric objects. One way to study such complicated spaces is by
computing some topological invariants and in particular to study their singular cohomology
groups. By this last part we mean that you consider the set M g,n(C) of complex points of
the moduli space, with its complex topology, and study the cohomology groups

H∗(M g,n) = H∗(M g,n(C),Q). (66)

In Section 6.2 we will see that given a closed algebraic subset S ⊂ M g,n of complex
codimension c, we can associate to S a cohomology class [S] ∈ H2c(M g,n). For a second
algebraic set S ′ meeting S transversally39, we then have that the class [S ∩ S ′] associated
to the intersection of S, S ′ is equal to the cup product [S] ^ [S ′] of their classes [S], [S ′].
We will introduce these notions carefully in Section 6.2, but this is the origin of the word
”intersection theory”. We will also see a few places where it is more convenient to work
with the smooth stacks Mg,n instead of the moduli spaces M g,n, but we’ll stick with M g,n

for the most part and only use the stacks when we need them.

One class of examples of closed subsets S ⊂ M g,n are the closures S = M
Γ

of the
strata of M g,n associated to a given stable graph Γ. So we begin by studying these sets
and their intersections in more detail.

6.1 Intersections of strata

In Section 4.2 we saw that the moduli spaces M g,n admit a stratification by locally closed
subsets

M =
⋃
Γ

MΓ

according to stable graphs Γ. In Proposition 4.15 we showed that the closures M
Γ

are
parametrized by the gluing maps

ξΓ : MΓ =
∏

v∈V (Γ)

M g(v),n(v) →Mg,n.

In this section we want to answer two natural questions concerning the sets M
Γ
:

a) Given a stable graph Γ, what are the stable graphs Γ′ of curves in the closure M
Γ
?

b) Given two stable graphs Γ1,Γ2, what is the intersection M
Γ1 ∩MΓ2 ⊂M g,n?

As we saw above, question b) in particular will be related to the computation of the

intersection product [M
Γ1

] ^ [M
Γ2

]. A good reference for these questions is [GP03,
Appendix A], where the answers were worked out in a formal way for the first time.

For question a) we can use that M
Γ

= ξΓ(MΓ), so we need to understand how the
stable graph of the curve

ξΓ((Cv, p1,v, . . . , pn(v),v)v∈V (Γ)) (67)

depends on Γ and the stable graphs Γv of the curves (Cv, p1,v, . . . , pn(v),v). In Figure 27
you see an example of this.

39If S, S′ are smooth, this means that at any point p ∈ S ∩ S′ we have TpMg,n = TpS + TpS
′.
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Figure 27: The stable graph Γ′ of a curve obtained by gluing curves with stable graphs
Γv1 ,Γv2 via ξΓ is obtained by inserting the graphs Γv1 ,Γv2 at the vertices of Γ

Intuitively, it is quite clear what happens: you start with the dual graph Γ and glue
the graphs Γv into the vertices v of Γ. Making this precise in the formal language of stable
graphs is a bit of a headache, which is why I give it as an exercise40.

Exercise 6.1. Let Γ be a stable graph and for v ∈ V (Γ) let Γv be a stable graph of genus
g(v) with n(v) legs together with an identification h : L(Γv)

∼−→ H(v) of the legs of Γv
with the half-edges H(v) of v in Γ. Define the graph Γ′ obtained by gluing the Γv into
the vertices of Γ and show that it is a stable graph. Convince yourself that for curves
(Cv, p1,v, . . . , pn(v),v)v∈V (Γ) with stable graphs Γv, the dual graph of the curve (67) is equal
to Γ′.

Instead of describing the gluing of the graphs Γv into Γ explicitly, we define the notion
of a morphism Γ′ → Γ of stable graphs which makes precise the notion that Γ′ can be
obtained from Γ by gluing some graphs Γv at the vertices v of Γ.

Definition 6.2. Let Γ,Γ′ be stable graphs of genus g with n legs. A morphism ϕ : Γ′ → Γ
is defined by two maps41

ϕV : V (Γ′)→ V (Γ), ϕH : H(Γ)→ H(Γ′), (68)

satisfying the following conditions:

a) the map ϕH is injective,

40Bwahaha.
41Notice the direction of the maps: ϕV goes from vertices of Γ′ to vertices of Γ while ϕH goes from

half-edges of Γ to half-edges of Γ′!
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b) ϕH sends edges of Γ to edges of Γ′

{h, h′} ∈ E(Γ) =⇒ {ϕH(h), ϕH(h′)} ∈ E(Γ′).

Below we will denote by ϕE : E(Γ)→ E(Γ′) the corresponding (injective) map of
edges.

c) ϕH sends the legs of Γ to the corresponding legs of Γ′

`Γ′(ϕH(h)) = `Γ(h) for h ∈ L(Γ),

d) the map ϕV is surjective and compatible with ϕH

ϕV (vΓ′(ϕH(h))) = vΓ(h) for h ∈ H(Γ),

e) given v0 ∈ V (Γ), the preimage of v0 under ϕV is a stable graph Γ′v0
of genus g(v0)

with n(v0) legs. More precisely, the vertices Vv0 = ϕ−1
V (v0) mapping to v0 under ϕV

together with the half-edges Hv0 = v−1
Γ′ (Vv0) incident to these vertices and all edges

{h, h′} ∈ E(Γ′) \ ϕE(E(Γ)) with h, h′ ∈ Hv0 form a stable graph Γv0 and this graph
has genus g(v0) and a number n(v0) of legs.

We illustrate a morphism Γ′ → Γ of stable graphs in Figure 28.

      

Figure 28: The data of a morphism Γ′ → Γ illustrated; this is the morphism coming from
the gluing in Figure 27

Remark 6.3. a) The existence of a morphism Γ′ → Γ is precisely equivalent to saying
that Γ′ can be obtained from Γ by gluing some stable graphs at the vertices of Γ
(and these are the stable graphs Γ′v0

appearing in part e) of Definition 6.2).
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b) Given a morphism ϕ : Γ′ → Γ, there exists a natural gluing morphism

ξϕ :MΓ′ →MΓ,

where for each v ∈ V (Γ) the component of ξϕ to the factorMg(v),n(v) ofMΓ is given
by the gluing map ξΓ′v (defined on the factors of MΓ′ associated to vertices of Γ′ in
ϕ−1
V (v)). See Figure 30 for two examples of such gluing morphisms ξϕ.

c) In the literature, a morphism Γ′ → Γ is sometimes called a Γ-structure on Γ′. Other
names you might find are that Γ′ is a specialization of Γ or that Γ is a contraction
of Γ′.

d) You can check that there is a category whose objects are stable graphs Γ of genus
g with n legs and whose morphisms Γ′ → Γ are as described in Definition 6.2. In
particular there is a natural way to compose morphisms ϕ, ϕ′ of stable graphs, by
setting

(ϕ ◦ ϕ′)V = ϕV ◦ ϕ′V , (ϕ ◦ ϕ′)H = ϕ′H ◦ ϕH .

You can also check that the notion of an isomorphism of stable graphs defined in
Definition 4.5 is equivalent to the notion of an isomorphisms of this category42. This
makes precise the hint given in Exercise 4.18 *c).

Exercise 6.4. a) Given a stable graph Γ′ and a set E0 ⊂ E(Γ) of edges of Γ, show
that there exists a stable graph Γ and a morphism ϕ : Γ′ → Γ with ϕE(E(Γ)) = E0.

Show that for a second graph Γ̃ and morphism ϕ̃ : Γ′ → Γ̃ with ϕ̃E(E(Γ̃)) = E0,

there exists a unique isomorphism Γ→ Γ̃ fitting into the diagram

Γ

Γ′

Γ̃

∼

ϕ

ϕ̃

In other words, the map Γ′ → Γ is unique up to isomorphism. It is called the
contraction of the edges in E(Γ′) \ E0.

b) Show that every morphism Γ′ → Γ can be factored as a composition

Γ′ = Γ0
ϕ1−→ Γ1

ϕ2−→ · · · ϕd−→ Γd = Γ

of morphisms ϕ1, . . . , ϕd such that each ϕi contracts a single edge of Γi−1.

Proposition 6.5. Let Γ be a stable graph in genus g with n legs. Then a curve

(C, p1, . . . , pn) ∈ M g,n with stable graph Γ′ lies in the closed set M
Γ

if and only if
there exists a morphism Γ′ → Γ. In particular, we have

M
Γ

=
⋃

Γ′→Γ

MΓ′ . (69)

42Unfortunately, the map ϕH now goes in the opposite direction compared to the convention of Definition
4.5, sorry about that.
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Proof. By Proposition 4.15, the set M
Γ

is the image of the gluing morphism ξΓ. By
Exercise 6.1 the stable graphs Γ′ of curves in the image of ξΓ are precisely those obtained
by gluing stable graphs Γv into the vertices of Γ and by Remark 6.3 a) this is equivalent
to the existence of a morphism Γ′ → Γ.

Since the closures M
Γ

are union of strata MΓ′ , it is now easy to answer question b)
above.

Corollary 6.6. Let Γ1,Γ2 be two stable graphs of genus g with n legs. Then we have

M
Γ1 ∩MΓ2

=
⋃
Γ′

∃ Γ′→Γ1,Γ′→Γ2

MΓ′ , (70)

where the union goes over stable graphs Γ′ admitting a morphism to Γ1 and Γ2.

Example 6.7. For g = 1, n = 2 we show in Figure 29 all isomorphism classes of stable
graphs and which morphisms exist between them. Note the cases where there are two or
four morphisms between these graphs (can you write them all down?). You can compare
this to the picture of M1,2 from Figure 24 and check that these morphisms precisely tell
you how the closures of the strata intersect. As an example of the statement of Corollary
6.6, we see that

M
Γ1 ∩MΓ2

= MΓ3 .

      

Figure 29: The stable graphs Γ0, . . . ,Γ4 in genus g = 1 with n = 2 legs and morphisms
between them. There are four morphisms Γ4 → Γ2 uniquely determined by the image
φH(h) of one of the half-edges h of Γ2, which can map to each of the four half-edges of Γ4.
Note that we did not draw automorphisms of the graphs.

We answered questions a) and b) above to our satisfaction, but in the following sections
we will see that it’s useful to answer a refined version of question b).
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b’) Given two stable graphs Γ1,Γ2, what is the fibre product

FΓ1,Γ2 MΓ2

MΓ1 Mg,n

ξΓ2

ξΓ1

Notice how I sneakily formulated question b’) for the moduli stacks instead of the moduli
spaces? There is a good reason for this, which we will see below. To answer the question,
we will need to consider in more detail the stable graphs Γ′ and maps Γ′ → Γ1,Γ2 above.

Definition 6.8. Given stable graphs Γ1,Γ2,Γ, a (Γ1,Γ2)-structure on Γ is a tuple

(Γ, ϕ1, ϕ2) = (ϕ1 : Γ→ Γ1, ϕ2 : Γ→ Γ2) (71)

of morphisms from Γ to Γ1 and Γ2. The (Γ1,Γ2)-structure is called generic if

E(Γ) = ϕ1,E(E(Γ1)) ∪ ϕ2,E(E(Γ2)), (72)

i.e. every edge e ∈ E(Γ) is the image of an edge in Γ1 or Γ2 under the morphisms ϕ1, ϕ2.
Given a second stable graph Γ′ with a (Γ1,Γ2)-structure (Γ′, φ′1, φ

′
2) we say that this

structure is isomorphic to (71) if there exists an isomorphism Γ → Γ′ fitting into the
diagram

Γ1

Γ Γ′

Γ2

ϕ1

ϕ2

∼

φ′1

φ′2

Denote by GΓ1,Γ2 the set of generic (Γ1,Γ2)-structures (Γ, ϕ1, ϕ2) up to isomorphism.

Example 6.9. In Figure 29, let ϕ3→1 : Γ3 → Γ1 and ϕ3→2 : Γ3 → Γ1 be morphisms as
indicated (we have two choices for ϕ3→2). Then

(Γ3, ϕ3→1, ϕ3→2)

is a generic (Γ1,Γ2)-structure on Γ3.

Now we can answer question b’).

Theorem 6.10. Given stable graphs Γ1,Γ2 of genus g with n legs, the fibre product

FΓ1,Γ2 MΓ2

MΓ1 Mg,n

ξΓ2

ξΓ1

(73)

of the gluing morphisms ξΓ1 , ξΓ2 is given by

FΓ1,Γ2 =
∐

(Γ,ϕ1,ϕ2)∈GΓ1,Γ2

MΓ. (74)
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The restriction of the diagram (73) to the connected component MΓ of FΓ1,Γ2 associated
to (Γ, ϕ1, ϕ2) ∈ GΓ1,Γ2 is given by

MΓ MΓ2

MΓ1 Mg,n

ξϕ1

ξϕ2

ξΓ1

ξΓ1

(75)

Proof. We are going to explain how the proof works on the level of C-points. For the more
general treatment of families of curves (which you need to define the isomorphism (74)),
see e.g. [Sv18, Proposition 2.14].

What is a point in the fibre product (73) above? It is the data of points

((C ′v, (q
′
h)h∈H(v)))v∈V (Γ1) ∈MΓ1 and ((C ′′v , (q

′′
h)h∈H(v)))v∈V (Γ2) ∈MΓ2 (76)

together with an isomorphism

ξΓ1((C ′V , (q
′
h)h)v)

∼−→ ξΓ2((C ′′V , (q
′′
h)h)v) = (C, p1, . . . , pn) ∈Mg,n. (77)

Note that here we use that we take the fibre diagram of stacks! If we had written everything
with the coarse moduli spaces MΓ1 ,MΓ2 and M g,n, the data of a point in the fibre product
would be given by two points (76) such that there exists some isomorphism (77). For the
stacky fibre product, the isomorphism (77) is part of the data! For more on the slightly
subtle definition of stacky fibre products, see [Fan01, Section 6.1].

We illustrate the data that we have so far on the left side of Figure 30 (we know so far
the collections of curves on the bottom left and top right and how to identify their images
under the gluing maps ξΓ1 and ξΓ2).

      

Figure 30: An illustration how starting from curves inMΓ1 andMΓ2 and an identification
of their images under ξΓ1 , ξΓ2 with (C, p1, . . . , pn), we construct a graph Γ (on the right)
and an element of MΓ (top left)
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Now observe that there is a particular subset NΓ1,Γ2 of the nodes of the curve C which
is the set of those nodes n{h,h′} ∈ C created either by identifying two markings q′h, q

′
h′ in

the map ξΓ1 (for {h, h′} ∈ E(Γ1)) or from markings q′′h, q
′′
h′ under ξΓ2 (for {h, h′} ∈ E(Γ2)).

These are the purple nodes in Figure 30 (which are the images of the red, green and blue
nodes).

We claim that there is a unique stable graph Γ whose edges correspond to the nodes
in NΓ1,Γ2 . It is the graph obtained from the dual graph of C by contracting all edges not
corresponding to nodes of NΓ1,Γ2 (according to Exercise 6.4). The vertices v of Γ correspond
to the connected components Cv of the partial normalization of C at the nodes in NΓ1,Γ2

(you see this partial normalization at the top left of Figure 30). The genus g(v) is the
arithmetic genus of the nodal curve Cv. The graph Γ has natural morphisms ϕ1 : Γ→ Γ1,
ϕ2 : Γ → Γ2. For instance, on the level of edges the morphism ϕ1,E : E(Γ1) → E(Γ)
sends {h, h′} ∈ E(Γ1) to the edge of Γ corresponding to the node n{h,h′} as above. Clearly,
the (Γ1,Γ2)-structure (Γ, ϕ1, ϕ2) is generic: the edges of Γ were defined to correspond to
nodes of the form n{h,h′}, so each is either in the image of ϕ1,E or ϕ2,E. Moreover, the
(Γ1,Γ2)-structure (Γ, ϕ1, ϕ2) we constructed is unique up to isomorphism.

Finally, the curves Cv (for v ∈ V (Γ)) together with all marked preimages q̃h̃ of nodes
in NΓ1,Γ2 and markings p1, . . . , pn give an element

((Cv, (q̃h̃)h̃∈H(Γ)))v∈V (Γ) ∈MΓ. (78)

To summarize, what we described above is how to start with the data (76, 77) of a point in
FΓ1,Γ2 and use it to construct (Γ, ϕ1, ϕ2) ∈ GΓ1,Γ2 and the point (78) of MΓ. This recipe
defines you a map from the left-hand side of (74) to the right. On the other hand, the
maps ξϕ1 , ξϕ2 together with the universal property of the fibre diagram FΓ1,Γ2 define you
a morphism MΓ → FΓ1,Γ2 . In this way, you define a map from the right to the left side
of (74). Using a finite amount of work (which you find in the proof of [Sv18, Proposition
2.14]) you can check that these maps are inverse to each other, finishing the proof.

6.2 A crash course in intersection theory of complex algebraic
varieties

In this section we give an overview of the intersection theory (formulated in the language of
singular (co)homology) for algebraic varieties X over the complex numbers. For simplicity,
we will formulate things in the setting where X is a smooth, proper variety.

In the end we want to apply this to X =Mg,n, which is not a variety. Now it is possible
to define singular cohomology groups for stacks (see these lecture notes by Behrend) and
then one finds that e.g. for X =Mg,n the map Mg,n →M g,n induces (via pushforward,
see below) an isomorphism of cohomology groups H∗(Mg,n)

∼−→ H∗(M g,n). So in the end
it does not matter where you do your computations, but many of them are nicer on the
smooth stack Mg,n. However, instead of learning about cohomology groups of stacks
properly, we will essentially pretend that they work just like those for schemes, with a
few minor adaptions that we will point out. I realize this is not optimal, but it does work
surprisingly well and in the references section I’ll point out where you can learn how to fill
in the missing pieces.
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Singular homology and cohomology

Let X be a connected, smooth, proper variety over the complex numbers of complex
dimension d. We define its singular homology43 and singular cohomology groups as

H∗(X) = H∗(X(C),Q) and H∗(X) = H∗(X(C),Q),

where the set X(C) of C-points of X is equipped with the complex topology. The fact
that X is smooth means that X(C) actually has the structure of a smooth manifold, of
dimension dimRX(C) = 2d. In particular, we have

Hk(X) = 0, Hk(X) = 0 for k < 0 or k > 2d.

The fact that X is defined over the complex numbers implies that X(C) has a natural
orientation.

Cap product and cup product

Given a homology class σ ∈ Hk(X) and a cohomology class α ∈ H`(X), we can form their
cap product σ _ α ∈ Hk−`(X) and often say that α acts on σ via this cap product. This
gives rise to a perfect pairing

Hk(X)⊗Hk(X)→ H0(X) ∼= Q, σ ⊗ α 7→ σ _ α, (79)

allowing us to identify Hk(X) ∼= Hk(X)∨ in a natural way. Here the isomorphism
H0(X) ∼= Q is given by the degree map

deg : H0(X)→ Q,
N∑
i=1

ai[Pi] 7→
N∑
i=1

ai, (80)

where we use the connectedness of X to conclude that all points Pi ∈ X(C) are homologous.
On the other hand, the group H∗(X) has a natural ring structure with multiplication

given by the cup product ^. This product respects the cohomological grading, i.e. we
have

Hk(X)⊗H`(X)→ Hk+`(X), α⊗ β 7→ α ^ β. (81)

The cap and cup-product satisfy the compatibility

σ _ (α ^ β) = (σ _ α) _ β.

Remark 6.11. For Deligne-Mumford stacks such as X = Mg,n, the degree map (80)
needs to be slightly adapted. It turns out that for a point P = (C, p1, . . . , pn) ∈Mg,n, the
class [P ] of P should have degree

deg([P ]) =
1

#Aut(P )
=

1

#Aut(C, p1, . . . , pn)
,

and thus the degree map (80) becomes

deg : H0(X)→ Q,
N∑
i=1

ai[Pi] 7→
N∑
i=1

ai
#Aut(Pi)

. (82)

Example 6.12. For n ≥ 0 consider the projective space X = Pn. Its cohomology ring is
isomorphic to

H∗(Pn) = Q[H]/(Hn+1), (83)

generated by H ∈ H2(Pn). Thus H2j(Pn) = Q · Hj for j = 0, . . . , n and all other
cohomology groups vanish. We’ll see several interpretations for the generator H below.

43When talking about non-compact varieties, it is often more natural to consider the so-called Borel-
Moore homology, see [Ful84, Chapter 19.1] for a discussion.
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Poincaré duality

Our assumptions on X (connected, smooth, proper) imply that the cup-product of cycles
of complementary dimension

Hk(X)⊗H2d−k(X)→ H2d(X) ∼= Q, α⊗ β 7→ α ^ β (84)

is a perfect pairing. Here the isomorphism H2d(X) ∼= Q is given by sending a 2d-class α to∫
X

α := deg(α) := deg([X] _ α),

where [X] is the fundamental class of X (see the next paragraph).
The pairing (84) allows us to identify Hk(X) ∼= H2d−k(X)∨ and combining with the

pairing (79), we have a natural isomorphism Hk(X) ∼= H2d−k(X). Tracing through the
definitions, it is easy to check that this isomorphism is given by

Hk(X)
∼−→ H2d−k(X), α 7→ [X] _ α. (85)

Example 6.13. In our example of X = Pn the pairing (84) is given by

(Q ·Hj)⊗ (Q ·Hn−j)→ Q ·Hn, (λHj)⊗ (µHn−j) 7→ λµHn

for k = 2j ∈ {0, . . . , 2n} even (and Hk(Pn) = 0 for k odd).

Fundamental classes of subvarieties

The fact that X(C) is a connected, closed and oriented manifold allows us to define a
fundamental class [X] ∈ H2d(X), which is a generator of the one-dimensional vector space
H2d(X).

This can be generalized to (not-necessarily smooth) subvarieties Z ⊂ X. Any such
Z admits a finite triangulation in which the singular locus is a subcomplex (see [EH16,
Section C.2.1] and references there for details, see Figure 31 for a picture). This can be
used to define a fundamental class [Z] ∈ H2e(X), where e = dimC Z. Combining this with
the Poincaré duality isomorphism (85) we obtain

[Z] ∈ H2c(X), for c = codimC Z = d− e. (86)

Note that the fundamental class [X] ∈ H0(X) is the neutral element for the cup product,
i.e.

[X] ^ α = α for all α ∈ H∗(X).

If Z ⊂ X is not a subvariety, but a closed subscheme (i.e. possibly nonreduced), we can
still define the cycle [Z]. For this, let Z1, . . . , Zr be the irreducible components of the
reduced scheme Zred, and for i = 1, . . . , r let

mi = lengthOZi,Z
OZi,Z

be the multiplicity of Z at Zi (see [Ful84, Appendix A.1] for a definition, for Z = V (f) a
hypersurface the number mi is just the order of vanishing of f at the generic point of Zi).
Then we define

[Z] =
r∑
i=1

mi[Zi] ∈ H∗(X).

Example 6.14. The generatorH ∈ H2(Pn) from Example 6.12 is given by the fundamental
class H = [Pn−1] of any linear codimension 1 hyperplane Pn−1 ⊂ Pn. More generally, we
have Hj = [Pn−j ] for a linear codimension j subspace Pn−j ⊂ Pn. See Example 6.16 below
for an argument why all linear subspaces Pn−1 ⊂ Pn are homologous.
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Figure 31: A triangulation of a complex variety X can be used to define a fundamental
class as the sum over the singular simplices of the triangulation; the orientation of X
tells you how the triangles need to be oriented, if X has singularities you can choose the
triangulation in such a way, that the singular locus is a subcomplex

Proper pushforward and flat pullback

Let X, Y be connected, smooth, proper varieties of dimensions d, e and let f : X → Y be
a morphism. Since the induced map f : X(C)→ Y (C) is continuous, we have

• a pushforward
f∗ : Hk(X)→ Hk(Y ) (87)

of homology classes under f and

• a pullback
f ∗ : H`(Y )→ H`(X) (88)

of cohomology classes under f . Note that pullback is compatible with the cup
product, i.e. f ∗(α ^ β) = f ∗(α) ^ f ∗(β).

Using the isomorphism of homology and cohomology groups from (85), we can also see
the pushforward as a map

f∗ : H`(X)→ H`+2(e−d)(Y ). (89)

Note that pushforward and pullback are functorial, i.e. for morphisms X
f−→ Y

g−→ Z we
have

g∗(f∗α) = (g ◦ f)∗α, for α ∈ H∗(X),

f ∗(g∗β) = (g ◦ f)∗β, for β ∈ H∗(Z).

The most important basic compatibility between those operations is the projection for-
mula44. It says that for α ∈ H∗(X) and β ∈ H∗(Y ) we have

f∗(f
∗β ^ α) = β ^ f∗α. (90)

44Note that for arbitrary maps f : X → Y of topological spaces with σ ∈ H∗(X) and β ∈ H∗(Y )
it is true that f∗(α _ f∗β) = (f∗α) _ β and the projection formula follows from this by inserting
σ = [X] _ α.
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For arbitrary topological spaces X, Y the story would end here. However, in our algebraic
setting and assuming some additional properties of f , we can write down more explicitly
how the maps f∗, f

∗ act on fundamental classes [Z] of subvarieties of X, Y . A reference
for the statements below is [Ful84, Chapter 1].

Assume45 that f : X → Y is proper. In this case, given a subvariety Z ⊂ X the image
Z ′ = f(Z) ⊂ Y is a subvariety of Y and we have

f∗[Z] =

{
deg(Z/Z ′) · [Z ′] if dimZ = dimZ ′,

0 otherwise.
(91)

Here deg(Z/Z ′) is the degree of Z over Z ′, which can be defined as the degree of the field
extension C(Z ′) ⊂ C(Z) induced by the restriction of f to Z. It is also the number of
preimages in Z of a general point z′ ∈ Z ′.

On the other hand, for f : X → Y flat and Z ⊂ Y a closed subvariety, let f−1(Z) =
X ×Y Z → X be the closed subscheme46 obtained by pullback via f . Then we have

f ∗[Z] = [f−1(Z)], (92)

where [f−1(Z)] is the fundamental class associated to the subscheme f−1(Z) ⊂ X.
The operations of proper pushforward and flat pullback satisfy the following compati-

bility condition.

Proposition 6.15 (Proposition 1.7 in [Ful84]). Assume we have X,X ′, Y, Y ′ connected,
smooth, proper and a fibre diagram

X ′ X

Y ′ Y

g′

f ′ f

g

(93)

with g flat and f proper. Then g′ is flat and f ′ is proper and for all α ∈ H∗(X) we have

g∗f∗α = (f ′)∗(g
′)∗α ∈ H∗(Y ′).

Example 6.16. Given F ∈ C[X0, . . . , Xn]d a homogeneous degree d polynomial, let’s
show that the hypersurface S = V (F ) ⊂ Pn cut out by F has class [S] = dH. For this,
consider the universal hypersurface H over the space PN = P(H0(Pn,O(d))):

H = {([F ], p) ∈ PN × Pn : p ∈ V (F )} Pn

PN

π2

π1
(94)

The variety H is smooth, projective and connected (since π2 is a projective bundle) and
π1, π2 are both flat and proper. Then we see that the composition (π2)∗(π1)

∗ sends the
class of a point [F ] ∈ H2N (PN ) to the fundamental class [V (F )] ∈ H2(Pn) of its vanishing
locus. Since PN is connected, we have [F ] = [Xd

0 ] ∈ H2N(PN) and thus

[V (F )] = (π2)∗(π1)∗[F ] = (π2)∗(π1)∗[Xd
0 ] = [V (Xd

0 )] = d · [X0] = d ·H ∈ H2(Pn).

45Given that we assume X,Y to be proper, this is actually automatic! I still write the condition since
you can generalize this story to non-proper varieties, see [Ful84, Chapter 1.4].

46Note that indeed f−1(Z) can be non-reduced, e.g. for f : P1 → P1, [X0 : X1] 7→ [X ′0 : X ′1] = [X2
0 : X2

1 ]
and Z = V (X ′0) we have f−1(Z) = V (X2

0 ).
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Chern classes of line bundles

Given a line bundle L on X, we can associate a cohomology class c1(L) ∈ H2(X) called
the first Chern class of L. While this makes sense for arbitrary complex line bundles on
manifolds (see [BT82, Chapter IV]), in our situation the map is particularly easy.{

line bundles
L on X

} {
divisors

D =
∑

i aiDi on X

}
H2(X)

OX(D) D =
∑

i aiDi

∑
i ai[Di]

(95)

Easy exercise 6.17. Show that given line bundles L1,L2 we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Show that the dual L∨ of a line bundle L on X has first Chern class

c1(L∨) = −c1(L).

Higher Chern classes of vector bundles

The construction above can be generalized to vector bundles V of arbitrary ranks r, giving
us Chern classes ck(V) ∈ H2k(X) for k = 1, . . . , r (see [Ful84, Chapter 3]). We will
only need the case k = r applied to vector bundles V which are sums of line bundles
V = L1 ⊕ · · · ⊕ Lr. In this case, the top Chern class is given by the cup product

ctop(V) = cr(V) = c1(L1) ^ · · ·^ c1(Lr) (96)

of the first Chern classes of the line bundles Li.

Excess intersection formula

In the next section we will be interested in computing intersection products of cycles of
the form (ξΓ)∗α for Γ a stable graph and α ∈ H∗(MΓ). The following (general) result
will be essential for this. Recall that a local complete intersection (l.c.i.) is a morphism
that can be factored into a regular embedding followed by a smooth morphism, see [Ful84,
Appendix B.7.6]. If the domain of a morphism is smooth, this condition is automatic (in
particular, the morphisms ξΓ are local complete intersection morphisms (of stacks)).

Proposition 6.18 (Proposition 17.4.1 in [Ful84]). Assume we have X,X ′, Y, Y ′ con-
nected47, smooth, proper and a fibre diagram

X ′ X

Y ′ Y

g′

f ′ f

g

(97)

with g, g′ l.c.i. morphisms of codimensions d, d′ and f proper. Then for α ∈ H∗(X) we
have

g∗f∗α = (f ′)∗ (ctop(E) ^ (g′)∗α) ∈ H∗(Y ′), (98)

where E is the rank d− d′ bundle on X ′ given as the quotient

E = (f ′)∗NY ′/Y /NX′/X (99)

of the pullback of the normal bundle NY ′/Y of g by the normal bundle NX′/X of g′.

47It’s easy to see how you can drop the assumption of X ′ being connected, and we will use the result in
this form.
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Concerning the definition of the excess bundle E: we are slightly cheating here, since the
definition for general l.c.i. morphisms g, g′ is slightly more involved (see [Ful84, Proposition
6.6]). However, if f, g are unramified the above definition makes sense, where the (duals
of the) normal bundles NY ′/Y and NX′/X can be defined via

N ∨Y ′/Y = g∗Ω1
Y /Ω

1
Y ′ and N ∨X′/X = (g′)∗Ω1

X/Ω
1
X′ .

Example 6.19. Let i : P1 → P2 be the inclusion of a line in P2, then we know i∗[P1] = H
and H2 = [pt] is the class of a point. Let’s try to find the most complicated way to prove
this, by using Proposition 6.18. One sees that the fibre diagram (97) becomes

P1 P1

P1 P2

id

id i

i

(100)

Then we obtain (using the projection formula (90) and the fact that the fundamental class
[P1] ∈ H0(P1) is the neutral element with respect to the cup product on P1)

H2 = (i∗[P1]) ^ (i∗[P1]) = i∗(i
∗i∗[P1] ^ [P1]) = i∗(i

∗i∗[P1]) (101)

By the excess intersection formula (98) we compute the term i∗i∗[P1] as

i∗i∗[P1] = (id)∗
(
ctop(E) ^ (id)∗[P1]

)
= ctop(E) ^ [P1] = ctop(E), (102)

with E = NP1/P2/NP1/P1 = NP1/P2 the excess bundle. It remains to compute this normal
bundle, associated to the inclusion i : P1 → P2. We can make our lives easy and use the
fact (see [Ful84, Example 2.5.5]) that for an effective Cartier divisor D ⊂ X we have
ND/X = OX(D)|D, and obtain

NP1/P2 = OP2([P1])|P1 = OP2(1)|P1 = OP1(1) = OP1(pt). (103)

If you instead like your life to be hard, you can also compute this normal bundle using the
Euler sequence of P2 (see Exercise 6.21 c)). In any case, we see

ctop(E) = c1(OP1(pt)) = [pt] ∈ H2(P1)

and pushing this forward via i : P1 → P2 we indeed obtain [pt] ∈ H4(P2).

Exercise 6.20. Assume that X, Y ′ ⊂ Y are smooth subvarieties of a connected, smooth,
proper variety Y . Assume the intersection of X, Y ′ is transversal, i.e. for every x′ ∈ X ∩Y
we have

Tx′Y = Tx′X + Tx′Y
′.

Show that the scheme-theoretic intersection X ∩ Y ′ = X ×Y Y ′ is reduced and of pure
codimension codimY (X) + codimY (Y ′). Conclude that

[X] ^ [Y ] = [X ∩ Y ].

In the example of Y = P2 and X, Y ′ ⊂ Y curves of degree d, e meeting transversally, use
this to show that X, Y ′ intersect in precisely d · e points (this is a variant of Bézout’s
theorem).
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Exercise 6.21 (hard, but rewarding). The morphism

A1 → A2, t 7→ (t2 − 1, t3 − t)

extends to the normalization f : P1 → E0 of the nodal cubic curve

E0 = {Y 2 · Z −X2(X + Z)} ⊂ P2,

see Figure 32.

a) Show that f∗[P1] = 3 ·H ∈ H2(P2) so that (f∗[P1])2 = 9 ·H2 = 9[pt] ∈ H4(P2).

b) Now let’s show this the hard way. First, compute the fibre product P1 ×P2 P1 of the
map f with itself.

c) Use the Euler sequence of P2 and the conormal exact sequence for the map f to
show that the normal bundle NP1/P2 of the map f has degree 7 on P1.

d) Conclude that (f∗[P1])2 = 9[pt] ∈ H4(P2).

      

Figure 32: The normalization of the nodal cubic curve E0

6.3 The tautological ring of the moduli space of stable curves

Now we have all the ingredients we need to start our study of the cohomology groups of
the moduli spaces of stable curves. Our first goal here is to write down some interesting
cycle classes in H∗(Mg,n). For this, we have a bunch of tools at our disposal.

• As a modest start, we always have the fundamental class [Mg,n] ∈ H0(Mg,n).

• More generally, for every stable graph Γ we have the fundamental class

[MΓ
] ∈ H2e(Mg,n),

for e = #E(Γ), of the corresponding closed stratum in Mg,n.
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• If we find some natural line bundle48 L on Mg,n, we can take its Chern class

c1(L) ∈ H2(Mg,n).

• Once we built a collection of classes αi on various spaces Mgi,ni
, we can obtain even

more classes by

– taking cup products of existing classes,

– taking pushforwards and pullbacks of (products of) classes αi under the gluing
morphisms ξΓ and forgetful morphisms π.

The next definition makes precise what we mean by the system RH∗(Mg,n) ⊂ H∗(Mg,n)
of classes that you can obtain using the ingredients above. Its history goes back to the
original paper [Mum83] by Mumford, though the formulation presented below was first
given in [FP00] by Faber and Pandharipande. Due to the last point in the above list (we
can combine classes αi on different spaces Mgi,ni

via the gluing and forgetful maps), it
will be natural to define the sets RH∗(Mg,n) ⊂ H∗(Mg,n) simultaneously for all g, n.

Definition 6.22. The tautological rings (RH∗(Mg,n))g,n are the smallest system of Q-
subalgebras

RH∗(Mg,n) ⊂ H∗(Mg,n)

containing the units 1 = [Mg,n] ∈ H0(Mg,n) and which are closed under pushforward by
all gluing morphisms

ξΓ :MΓ =
∏

v∈V (Γ)

Mg(v),n(v) →Mg,n (104)

and all forgetful morphisms49

π :Mg,n+1 →Mg,n. (105)

The elements α ∈ RH∗(Mg,n) are called tautological classes.

Remark 6.23. Let’s look more closely at the various parts of the definition and make a
couple of comments. In particular, while it might look that the definition omits some of

the ingredients we mentioned above (e.g. the classes [MΓ
]), we’ll see that all of those are

nonetheless contained in RH∗(Mg,n).

a) The fancy word ”Q-subalgebra” just means that RH∗(Mg,n) is a Q-subvector space
of H∗(Mg,n) which is invariant under cup product. In other words, given tautological
classes α, β and λ ∈ Q, we have that

α + β, λ · α and α ^ β

are again tautological.

48A similar story works for natural vector bundles V and their Chern classes c`(V) ∈ H2`(Mg,n), though
unfortunately we won’t have time to see good examples of this.

49Note: instead of the classical morphism forgetting marking n+ 1, we must allow morphisms forgetting
arbitrary markings i, i.e. defined by (C, p1, . . . , pn+1) 7→ (C, p1, . . . , pi−1, pi+1, . . . , pn+1) when C is
smooth.
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b) Let’s also expand what we mean by being ”closed under pushforward by all gluing
morphisms”. For this let Γ be a stable graph and assume we are given some
cohomology classes αv ∈ H∗(Mg(v),n(v)) for v ∈ V (Γ). We can then form the class

α =
∏
v∈V

(πv)
∗αv, for the projections πv :MΓ →Mg(v),n(v). (106)

In other words, we pull back the classes αv from the factor Mg(v),n(v) to MΓ and
then take their cup product (this is sometimes called the box product of the classes
αv). Then we require that if all αv are tautological, the pushforward

(ξΓ)∗α ∈ H∗(Mg,n) (107)

is also tautological. Applying this to the fundamental classes αv = [Mg(v),n(v)], which
are tautological by assumption, we have α = [MΓ] is the fundamental class of MΓ.
Combining the formula (91) for the proper pushforward of fundamental classes with

Theorem 5.1 e), stating that ξΓ has degree #Aut(Γ) onto its imageMΓ
, we see that

[MΓ
] =

1

#Aut(Γ)
ξ∗[MΓ] (108)

is a tautological class.

The above definition of the tautological ring is short and elegant, but not very explicit
(it does not give a convenient way to write down an arbitrary tautological class). Our
main goal for the remainder of this section is to give an explicit, finite set of generators of
RH∗(Mg,n) as a Q-vector space. To state the corresponding result, we’ll need two more
ingredients : the so-called ψ- and κ-classes. Their definition uses in a crucial way the
universal curve over Mg,n.

Cg,n =Mg,n+1

Mg,n

π pi (109)

Definition 6.24. For i = 1, . . . , n, the i-th cotangent line bundle Li on Mg,n is defined
as

Li = p∗iΩ
1
π, (110)

where Ω1
π is the sheaf of relative differentials for the morphism π and pi :Mg,n → Cg,n is

the section of π corresponding to the i-th marked point. We define the i-th ψ-class

ψi = c1(Li) ∈ H2(Mg,n) (111)

to be the first Chern class of this line bundle.

To explain the name, consider Figure 33.
The preimage of (C, p1, . . . , pn) ∈ Mg,n under π is isomorphic to C, and for q ∈ C a

smooth50 point of C, the sheaf Ω1
π has fibre

Ω1
π|q = T ∗q C.

50The assumption that q is a smooth point is important: the rank 1 sheaf Ω1
π is not even locally free

(i.e. a line bundle) at the nodes of C.
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Figure 33: The fibre of the sheaf Ω1
π at the image of the section pi is equal to the cotangent

space

Thus, pulling back Ω1
π by setting q = pi, we see that at a point (C, p1, . . . , pn) ∈Mg,n the

line bundle Li has fibre
Li|(C,p1,...,pn) = T ∗piC

equal to the cotangent space of C at pi. This is the kind of natural line bundle L onMg,n

we were talking about at the start of the section. And even though we did not mention the
classes ψi in the definition of the tautological ring, it turns out that they are nonetheless
contained in it.

Proposition 6.25. The ψ-classes ψi are tautological.

Proof. Remember from Proposition 4.25 that the morphisms pi above are actually special
cases of gluing morphisms (for the graph Γi having two vertices of genus 0, g connected
by a single edge, with legs i, n+ 1 at the genus 0 vertex and all other legs at the genus g
vertex). Thus we have

[∆i] = (pi)∗[Mg,n] ∈ RH2(Mg,n+1). (112)

We claim that
ψi = −π∗ ([∆i] ^ [∆i]) , (113)

which would finish the proof (the tautological ring is invariant under cup products and
pushforwards by forgetful morphisms). To compute the cup product [∆i] ^ [∆i] we use
the excess intersection formula from Proposition 6.18. We start by computing the fibre
product of pi with itself. Since pi is a section of the separated morphism π, it is a closed
embedding (see [Vak17, Exercise 10.1.M]). Thus the fibre product is just given by Mg,n

itself.

Mg,n Mg,n

Mg,n Mg,n+1

id

id pi

pi

(114)

Alternatively, you can find the diagram (114) as a special case of Theorem 6.10 for
Γ1 = Γ2 = Γi. In any case, since the normal bundle NMg,n,Mg,n

of the identity is trivial,
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the excess bundle E is given by the normal bundle NMg,n,Mg,n+1
of the map pi. But the

dual of this bundle is precisely given by

N ∨Mg,n,Mg,n+1
= p∗iΩ

1
Mg,n+1

/Ω1
Mg,n

= p∗iΩ
1
π = Li. (115)

Now we’re in business and we can first apply the excess intersection formula to obtain

(pi)
∗[∆i] = (pi)

∗(pi)∗[Mg,n] = c1(NMg,n,Mg,n+1
) = c1(L∨i ) = −c1(Li) = −ψi,

and then conclude as follows

π∗ ([∆i] ^ [∆i]) = π∗
(
(pi)∗[Mg,n] ^ [∆i]

)
= π∗(pi)∗ ((pi)

∗[∆i])

= −(π ◦ pi)∗ψi = −(idMg,n
)∗ψi = −ψi.

Definition 6.26. For a ≥ 0 define the a-th κ-class κa as the pushforward

κa = π∗((ψn+1)a+1) ∈ RH2a(Mg,n). (116)

Note that (ψn+1)a+1 has cohomological degree 2(a+ 1) on Mg,n+1 and since

dimCMg,n+1 − dimCMg,n = 1,

we indeed have κa in cohomological degree 2a. Since ψn+1 is tautological, it follows that
κa is tautological.

Now that we have ψ- and κ-classes, we combine them with the gluing maps ξΓ to
obtain the generating set of RH∗(Mg,n).

Definition 6.27. Let Γ be a stable graph. A decoration on Γ is a class α ∈ H∗(MΓ)
which is a product of κ- and ψ-classes pulled back from the factorsMg(v),n(v) ofMΓ. More
formally, it is a class

α =
∏

v∈V (Γ)

π∗vαv, for αv = κev,1av,1
· · ·κev,`vav,`v · ψ

fv,1
1 · · ·ψfv,n(v)

n(v) ∈ RH∗(Mg(v),n(v)). (117)

Given Γ and a decoration α on Γ, we define the decorated stratum class [Γ, α] to be the
pushforward

[Γ, α] = (ξΓ)∗α ∈ RH∗(Mg,n). (118)

Clearly, since all αv are tautological, the definition of the tautological ring implies that
also the [Γ, α] are tautological. Note that for dimension reasons we have Hk(Mg(v),n(v)) = 0
for k > 2(3g(v)− 3 + n(v)). This implies that there are only finitely many nonzero classes
αv of the form above, since they vanish unless∑

j

av,j · ev,j +
∑
i

fv,i ≤ 3g(v)− 3 + n(v).

Note that since ξΓ is of relative dimension equal to the number e = #E(Γ) of edges of Γ,
we have [Γ, α] ∈ RH2(d+e)(Mg,n) for α ∈ H2d(MΓ). We can represent a decorated stratum
class by a picture of a stable graph decorated by powers of ψ-classes at half-edges and a
monomial in κ-classes at vertices, as illustrated in Figure 34.

Theorem 6.28. The decorated stratum classes [Γ, α] form a finite generating set, as a
Q-vector space, of the tautological ring RH∗(Mg,n).
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Figure 34: A tautological class in RH20(M8)

Proof. In Definition 6.22 we defined the tautological rings as the minimal system of
subspaces of H∗(Mg,n) satisfying a bunch of properties. So, to conclude we need to show
that the Q-vector subspaces Sg,n ⊂ H∗(Mg,n) spanned by classes [Γ, α] have all these
properties. Indeed, then they must contain the minimal system RH∗(Mg,n), but as we
saw they are themselves contained in RH∗(Mg,n), proving equality.

Some parts are straightforward: the Sg,n are closed under addition and scalar multipli-
cation with elements of Q, they contain the units [Mg,n] (taking Γ the trivial graph and
α = 1 the trivial product). Also, they are closed under pushforward by gluing maps ξΓ:
given Γ and decorated classes [Γw, αw] ∈ Sg(w),n(w) on the vertices w ∈ V (Γ), we have

(ξΓ)∗
∏
w

[Γw, αw] = [Γ′, α], (119)

where Γ′ is the graph obtained from Γ by gluing in the Γw at vertices of Γ (see Exercise
6.1) and the decoration α is obtained by distributing the decorations αw to the vertices of
Γ′ (remember that the vertices of Γ′ are the union of the vertices of all Γw). Thus we see
that the class (119) is again a decorated stratum class.

The only parts of Definition 6.22 that require serious work are showing that the spaces
Sg,n are

a) closed under cup products,

b) closed under pullbacks by forgetful morphism π :Mg,n+1 →Mg,n.

We will prove part a) in Corollary 6.32 below, and you will show part b) in *Exercise 6.36.
Thus, modulo these results, the proof is finished.

For the proof of Corollary 6.32 we’ll need a few more preparations.

Exercise 6.29. Prove that for Γ a stable graph, and i = 1, . . . , n we have

ξ∗Γψi = (πv)
∗ψh ∈ H∗(MΓ), (120)

where h ∈ H(Γ) is the half-edge corresponding to the marking i, incident to vertex
v ∈ V (Γ). Likewise, for a ≥ 0 show that

ξ∗Γκa =
∑

v∈V (Γ)

π∗vκa ∈ H∗(MΓ). (121)

Hint : In particular for the statement about κ-classes, you should have a look at Proposition
6.34 below.
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For the proof of Proposition 6.31 below we will need one more fact, about the normal
bundle for the gluing morphisms ξΓ. It can be proved using deformation theory (we’ll
discuss this in the optional section about the proof of Theorem 5.1), but for now we’ll
have to take it as a black box.

Fact 6.30. Given a stable graph Γ, the gluing morphism ξΓ is unramified with normal
bundle

NξΓ =
⊕

{h,h′}∈E(Γ)

L∨h ⊗ L∨h′ (122)

being the direct sum over the edges {h, h′} of Γ of the tensor products of the tangent
bundles L∨h ,L∨h′ associated to the half-edges h, h′.

You find the proof that the ξΓ are unramified in [Knu83a, Corollary 3.9].

Proposition 6.31. Let Γ1 be a stable graph of genus g with n legs and let [Γ2, α] be a
decorated stratum class on Mg,n. Then the pullback ξ∗Γ1

[Γ2, α] is given by

ξ∗Γ1
[Γ2, α] =

∑
(Γ,ϕ1,ϕ2)∈GΓ1,Γ2

(ξϕ1)∗
(
ξ∗ϕ2

(α) · γex

)
, (123)

where γex (depending on (Γ, ϕ1, ϕ2)) is the top Chern class of the excess bundle on MΓ

given by

γex =
∏

{h,h′}∈ϕ1,E(E(Γ1))∩ϕ2,E(E(Γ2))

(−ψh − ψh′). (124)

In particular, the class ξ∗Γ1
[Γ2, α] is contained in the tautological ring of MΓ1 , i.e. a sum of

terms ∏
v∈V (Γ1)

π∗vαv, for αv ∈ RH∗(Mg(v),n(v)).

Proof. This result is an application of the excess intersection formula from Proposition
6.18. Indeed, the maps ξΓ1 , ξΓ2 are proper and l.c.i. by Theorem 5.1. We computed
their fibre product in Theorem 6.10 to be the disjoint union over spaces MΓ for generic
(Γ1,Γ2)-structures (Γ, ϕ1, ϕ2). They fit in diagrams

MΓ MΓ2

MΓ1 Mg,n

ξϕ1

ξϕ2

ξΓ2

ξΓ1

(125)

This explains the corresponding sum in the formula above. Applying Proposition 6.18, the
only part of the result left to show is that γex is indeed the top Chern class of the excess
bundle restricted to MΓ.

Using Fact 6.30, we have

NξΓ1
=

⊕
{h,h′}∈E(Γ1)

L∨h ⊗ L∨h′ . (126)

Using that ξϕ2 is a product of gluing maps (see Remark 6.3 b)), for graphs whose edges
correspond to edges in E(Γ) \ ϕ2,E(E(Γ2)), we obtain

Nξϕ2
=

⊕
{h,h′}∈E(Γ)\ϕ2,E(E(Γ2))

L∨h ⊗ L∨h′ . (127)
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Pulling back the normal bundle (126) under the map ξϕ1 and forming the quotient E of
this pullback by (127), we obtain

E = ξ∗ϕ1
NξΓ1

/Nξϕ2
=

⊕
{h,h′}∈E(Γ1)∩E(Γ2)

L∨h ⊗ L∨h′ . (128)

The fact that γex is the top Chern class of this vector bundle follows from Easy exercise
6.17, using that ψh = c1(Lh) and ψh′ = c1(Lh′). Finally, it is also clear that the expression
(123) is contained in the tautological ring ofMΓ: the map ξϕ1 is a product of gluing maps,
and by Exercise 6.29, the term ξ∗ϕ2

(α) · γex is a combination of κ- and ψ-classes on the

factors of MΓ.

Corollary 6.32. The product of two decorated stratum classes [Γ1, α1] and [Γ2, α2] on
Mg,n is tautological, and given by

[Γ1, α1] · [Γ2, α2] =
∑

(Γ,ϕ1,ϕ2)∈GΓ1,Γ2

[
Γ, ξ∗ϕ1

(α1) · ξ∗ϕ2
(α2) · γex

]
, (129)

with γex as in (124).

Proof. By the projection formula we have

[Γ1, α1] · [Γ2, α2] = (ξΓ1)∗α1 · [Γ2, α2] = (ξΓ1)∗ ((ξΓ1)∗[Γ2, α2]α1) .

Thus the result follows by taking the formula from Proposition 6.31, multiplying by α1,
and pushing forward again. In the process we also use the projection formula for ξϕ1

together with the fact that ξΓ1 ◦ ξϕ1 = ξΓ.

Exercise 6.33. Verify the computations in the tautological ring of M3,1 shown in Figure
35.

The formula from Corollary 6.32 has been implemented in the software package
admcycles [DSv20]. You can check out some example computations here.

Proposition 6.34. Given a stable graph Γ and v ∈ V (Γ) let Cv be the pullback

Cv Cg(v),n(v)

MΓ Mg(v),n(v)
πv

(130)

of the universal curve on the factor Mg(v),n(v) to MΓ. Then we have an isomorphism

Cv ∼=MΓ(v) (131)

where Γ(v) is the stable graph with n+ 1 legs obtained from Γ by adding the leg n+ 1 at
vertex v. There exists a commutative diagram∐

v∈V (Γ) Cv CΓ Cg,n

MΓ Mg,n

Φ

πΓ π

ξΓp′i

pi (132)
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Figure 35: Products in the tautological ring of M3,1

where the square on the right is a fibre diagram and the map Φ is the map gluing the
families Cv along sections corresponding to half-edges of Γ. In particular, the map Φ is
surjective, proper, birational and an isomorphism over the locus in CΓ where the map πΓ

is smooth. In terms of fundamental classes, we have

Φ∗
∑
v

[
Cv
]

=
[
CΓ

]
. (133)

Proof. Looking back at the proof (sketch) of Proposition 4.15 and using our new language
of stacks, we can see that we defined the morphism ξΓ by constructing the family CΓ →MΓ

of stable curves over MΓ. The fact that Mg,n is the moduli stack of stable curves then
told us there is a unique map ξΓ such that CΓ is the pullback of the universal curve over
Mg,n. This explains the fibre diagram on the right side of (132). But the construction of
CΓ precisely started with the disjoint union of curves Cv and glued them together under a
map Φ. This map is surjective and an isomorphism away from the locus of nodes in CΓ

(in particular, it is birational) and since all Cv are proper, the map Φ is proper as well.
For the equality (133) note that the Cv map birationally (in particular of generic degree 1)
to the set of irreducible components of CΓ, so (133) follows from the definition of proper
pushforward51.

See Figure 36 for an illustration of the diagram (132).

51Here we are lying a bit more than usual: the stack CΓ is not smooth, so to make full sense of this
statement one should use Chow groups (in the sense of [Ful84] or [Vis89]).
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Figure 36: The commutative diagram (132) from Proposition 6.34 illustrated

Proposition 6.35. There exists a commutative diagram

Mg,n+2

Mg,n+1 ×Mg,n
Mg,n+1 Mg,n+1

Mg,n+1 Mg,n

G

πn+1

πn+2

π

π

(134)

where π, πn+1 are the forgetful morphisms of marking n+ 1, πn+2 is the forgetful morphism
of marking n+ 2 and the map G is proper and birational and in particular satisfies

G∗[Mg,n+2] =
[
Mg,n+1 ×Mg,n

Mg,n+1

]
. (135)

Proof. The proof is very similar to the proof of Proposition 6.34, where now we use that
the stable curve

Mg,n+1 ×Mg,n
Mg,n+1 →Mg,n+1

defining the forgetful morphism π :Mg,n+1 →Mg,n can be constructed by starting with
the universal curve Mg,n+2 → Mg,n+1 and contracting some components of its fibres
(which become unstable after forgetting the marking n + 1) under the morphism G, as
outlined in the proof of Proposition 4.25.

*Exercise 6.36. Let π :Mg,n+1 →Mg,n be the forgetful morphism of the marking n+ 1.

a) Show that
π∗ψi = ψi − [∆i] and π∗κa = κa − ψan+1, (136)

where ∆i = (pi)∗[Mg,n] is again the section of π associated to the i-th marked point.
(Hint : You can show these formulas using Proposition 6.35 together with the formula
(113) for the ψ-class.)
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b) Show that the pushforward

π∗

(
κe1a1
· · ·κe`a` · ψ

f1

1 · · ·ψfnn
)

(137)

of a monomial in κ- and ψ-classes is again a polynomial in κ- and ψ-classes onMg,n.
(Hint : Use the projection formula together with part a)).

c) Show that the pullback π∗[Γ, α] of a decorated stratum class onMg,n is a combination
of decorated strata classes on Mg,n+1.

d) Show that the pushforward π∗[Γ, α] of a decorated stratum class on Mg,n+1 is a
combination of decorated strata classes on Mg,n.

This exercise not only finishes the proof of Theorem 6.28, but together with Propo-
sition 6.31 also shows that the tautological rings are invariant under pullback (not just
pushforward) by gluing and forgetful morphisms.

To summarize the content of this section: we defined the tautological ring RH∗(Mg,n),
a subring of the cohomology H∗(Mg,n) of Mg,n. It is genererated by decorated strata
classes [Γ, α] and we obtained explicit formulas for

• the product [Γ1, α1] ^ [Γ2, α2] of two decorated strata classes and

• the pushforward and pullback of decorated strata classes under gluing morphisms ξΓ

and forgetful morphisms π.

So inside the a priori mysterious cohomology ring H∗(Mg,n) we have found a subring
in which we can do computations, described purely in terms of combinatorics of stable
graphs.

6.4 *A panorama of results about the tautological rings

The definition of the tautological ring from the last section opens up a whole box of
interesting questions: is every cohomology class on Mg,n tautological? Can we give the
relations between the generators [Γ, α] of RH∗(Mg,n)? While we won’t have time to
explore these in detail, I wanted to finish by giving you a bit of an overview of the field.

The tautological ring in low genus

For g = 0 it is known that every cohomology class on M0,n is tautological. In fact, it is
shown in [Kee92] that the vector space H∗(M0,n) is generated by undecorated strata classes
[Γ, 1] and that all relations between these classes can be obtained from the WDVV-relation
in H2(M0,4), illustrated in Figure 37, using forgetful and gluing morphisms.

For g = 1 it was shown in [Pet14] that every cohomology class of even degree on M1,n

(i.e. those in H2d(M1,n) for some d) is tautological, but it was known before that there
are nonzero odd cohomology groups, the first one being H11(M1,11) = Q (see [GP03,
Section 4.1]). Since all tautological classes have even degree, this shows that there can be
non-tautological cohomology classes on Mg,n.

Finally, for g = 2 the paper [GP03] gives an (explicit) closed algebraic subset B ⊂M2,20

of complex codimension 11, such that its fundamental class [B] ∈ H22(M2,20) is not
tautological. On the other hand, [Pet16] shows that this is the first possible example in
genus 2: all even cohomology classes on M2,n are tautological for n ≤ 19.

82



      

Figure 37: The WDVV relation on M0,4; can you see how to prove it?

Remark 6.37. In fact, we know (almost) everything to understand their proof that [B]
is not tautological: for the boundary divisor gluing map

ξ :M1,11 ×M1,11 →M2,20

it is shown in [GP03] that the preimage of B under ξ is precisely the diagonal ∆ ⊂
M1,11 × M1,11. Since this has the correct complex codimension 11, it follows from
Proposition 6.18 that ξ∗([B]) is a nonzero multiple of [∆]. But it is a general result from
cohomology that the class [∆] of the diagonal has a formula

[∆] =
∑
ei

ei ⊗ ei ∈ H∗(M1,11 ×M1,11),

where (ei)i and (ei)i are Poincaré dual bases of H∗(M1,11). Since H11(M1,11) 6= 0 by
the remark above, we have a nonzero term from H11(M1,11) ⊗ H11(M1,11) appearing
above. This shows that [B] is not tautological: otherwise, by Proposition 6.31 the pullback
ξ∗[B], a multiple of [∆], would have to lie in the tautological ring of M1,11 ×M1,11. But
this only has terms coming from RH2d1(M1,11) ⊗ RH2d2(M1,11), so that no term from
H11(M1,11)⊗H11(M1,11) could appear.

See [FP13] for more results about tautological and non-tautological cohomology classes
on Mg,n.

Tautological relations

From Theorem 6.28 we know that the decorated strata classes [Γ, α] generate the tauto-
logical ring RH∗(Mg,n) as a Q-vector space. However, in general they will not form a
basis, but there will be linear relations between them (as we saw in the example of the
WDVV-relation in Figure 37). To verify if two tautological classes are equal, we need to
understand these.

A first set of relations (for the restrictions of the generators [Γ, α] to the moduli space
Mg ⊂Mg of smooth curves, for n = 0) was conjectured by Faber and Zagier and proved
by Pandharipande and Pixton (see [PP13]). Later Pixton proposed a generalization of
these relations to all Mg,n ([Pix12]). These have by now been verified to hold first in
cohomology ([PPZ15]) and later in the Chow rings52 ([Jan17]). It is conjectured that the
system of relations proposed by Pixton is complete, e.g. that it contains all tautological
relations. However, as of now this conjecture is still quite open!

52If you know about Chow rings: analogous to Definition 6.22, the tautological rings R∗(Mg,n) in Chow
can be defined as the smallest system of subrings of the Chow rings ofMg,n closed under pushforwards by
gluing and forgetful maps. All the proofs we presented can still be carried out in this setting, in particular
R∗(Mg,n) is generated by decorated stratum classes [Γ, α]. The cycle class map R∗(Mg,n)→ RH∗(Mg,n)
is surjective (essentially by definition) and we do not know a single example where it is not injective.
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The intersection pairing and integrals of ψ-classes

While we have seen in Corollary 6.32 how to express the intersection products [Γ1, α1] ·
[Γ2, α2] of tautological classes in terms of decorated strata classes [Γ, α], we haven’t yet
seen how to compute the intersection pairing

RH2d(Mg,n)⊗RH2(3g−3+n−d)(Mg,n)→ Q, [Γ1, α1]⊗ [Γ2, α2] 7→
∫
Mg,n

[Γ1, α1] · [Γ2, α2],

(138)
since this requires a formula for the degree∫

Mg,n

[Γ, α] ∈ Q

of a decorated stratum class [Γ, α]. Since [Γ, α] is a pushforward of a product of monomials
αv in κ- and ψ-classes on the factors Mg(v),n(v) of MΓ, it follows that∫

Mg,n

[Γ, α] =
∏

v∈V (Γ)

∫
Mg(v),n(v)

αv.

Thus we are reduced to computing integrals of the form∫
Mg,n

κe11 · · ·κ
e`
` · ψ

f1

1 · · ·ψfnn . (139)

But κ-classes are essentially forgetful pushforwards of powers of ψ-classes, and using
Exercise 6.36 b) you can verify that it is possible to write (139) as a linear combination of
integrals

〈τf1 · · · τfN 〉 :=

∫
Mg,N

ψf1

1 · · ·ψ
fN
N (140)

involving only ψ-classes, for some N ≥ n. In [Kon92], Kontsevich proved an earlier
conjecture of Witten about the intersection numbers (140), essentially giving a way to
determine all of them recursively. See [Koc01, Section 3.3] for a nice introduction.

Tautological formulas for interesting cycle classes on Mg,n

One of the nice things about the tautological ring is that many cohomology classes on
Mg,n arising from some geometric construction happen to be tautological. In this case,
we can find a formula for them, i.e. express them as a linear combination of clases [Γ, α].
Having such a formula makes it easier to perform computations with them (e.g. compute
intersection numbers, compare them with other classes, etc.).

A first example are the so-called λ-classes. They are obtained from the Hodge-bundle
E, a vector bundle of rank g on Mg,n whose fibres are given by

E|(C,p1,...,pn) = H0(C,Ω1
C), (141)

for C smooth53. We define the λ-classes as the Chern classes

λi = ci(E) ∈ H2i(Mg,n), for i = 1, . . . , g.

In [Mum83], Mumford uses the Grothendieck Riemann-Roch formula (a vast generalization
of the classical Riemann-Roch formula we applied to line bundles on curves) to calculate

53For a nodal curve C, the cotangent sheaf Ω1
C in (141) must be replaced by the canonical line bundle

ωC .
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an explicit formula for the λi, showing that they are indeed contained in the tautological
ring.

A second method for obtaining interesting cohomology classes is to find some algebraic
subset of Mg,n and to take its fundamental class. A particularly nice example are the
hyperelliptic loci Hypg ⊂Mg. They are defined as the (Zariski) closure of the locus

Hypg = {C : C is hyperelliptic} ⊂ Mg (142)

of smooth hyperelliptic curves54. It turns out that Hypg is an irreducible, closed algebraic
subset of Mg of codimension g − 2, so that we obtain

[Hypg] ∈ H2(g−2)(Mg). (143)

For g = 2 we find that every smooth genus 2 curve C is hyperelliptic, so that [Hyp2] = [M2].
For g = 3, the cycle [Hyp3] was first computed by Eisenbud and Harris in [EH87]. Their
method was very simple: it was known that H∗(M3) = RH∗(M3) and so by Poincaré
duality, the intersection pairing

RH2(M3)⊗RH10(M3)→ Q

is perfect. Hence the class [Hyp3] ∈ RH2(Mg,n) is uniquely determined by its intersection
with a generating set of RH10(M3). Using different techniques, Faber and Pandharipande
compute the class [Hyp4] in [FP05] and in fact show that [Hypg] is tautological for all g!

Finally, explicit formulas for [Hyp5] and [Hyp6] were found in the paper [Sv18] by myself
and van Zelm, using essentially the same technique as Eisenbud and Harris, but now aided
by our computer program [DSv20].

References and further reading (and rewatching)

A great reference for morphisms of stable graphs, fibre products of gluing maps and the
formula for the intersection product of tautological classes is [GP03, Appendix A]. See
also Section 2 of my own paper [Sv18] for a slightly more detailed discussion of the same
material.

Good references for intersection theory are the classical book [Ful84] by Fulton and
a more modern treatment [EH16] by Eisenbud and Harris. Reading them, you will
notice that what we do in Section 6.2 is actually just a slightly disguised version of
algebraic intersection theory, the theory of the Chow groups A∗(X) of an algebraic variety
X. It can be formulated purely in terms of algebraic geometric notions (no need for a
complex topology). Roughly, for X smooth, the group A∗(X) is generated by classes
[S] of subvarieties S ⊂ X and you divide by an equivalence relation called rational
equivalence. These groups have an intersection product (defined algebraically) and in the
setting of Section 6.2 (X connected, smooth and proper and defined over C) admit a ring
homomorphism

cl : A∗(X)→ H2∗(X)

sending the class [S] ∈ A∗(X) to the fundamental class [S] ∈ H2∗(X) we discussed above.
Many of the operations we introduced (proper pushforward, flat pullback, etc) can be
defined already on the level of Chow groups A∗(X).

The theory of Chow groups has also been generalized to algebraic stacks (see [Vis89]
for the treatment of Deligne-Mumford stacks and [Kre99] for more general algebraic
stacks). This is the appropriate theory to use when studying intersection theory on Mg,n.

54Recall that C is hyperelliptic if it admits a map C → P1 which is generically of degree 2.

85



Starting July 6th 2020 there will be an online reading group ”Intersection theory on stacks”
organized by Reinier Kramer from the MPI Bonn. If you are interested, you can write an
email to Reinier.

For a much more comprehensive overview about the tautological rings, see the survey
paper [Pan18] by Pandharipande. Now that you are more familiar with the moduli spaces
of curves, you can also consider rewatching his ICM lecture, which I recommended in
Section 1.
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7 *Ideas of proof for the main theorem

Until now, we have treated the two main theorems about the properties of the moduli
spaces M g,n and the moduli stacks Mg,n (Theorems 3.19 and 5.1) essentially as black
boxes, without discussing how to prove them. In this optional section, we’ll try to see the
main ingredients of the proofs. These require advanced techniques from different areas of
modern algebraic geometry, each of which merits their own lecture course. So we’ll focus
on the global picture and give references which contain the details.

7.1 Construction of the coarse moduli space of curves

Let’s start by explaining how to construct the moduli space M g of curves of genus g ≥ 2
using Geometric Invariant Theory (GIT). A reference for this section is [HM98, Section
4.C].

The basic idea is that we first construct an auxilliary moduli space Kg, parametrizing
a stable curve C together with some additional data, then form a quotient of Kg by the
action of an algebraic group, dividing out all possible choices of this extra data. We’ll
explain most of the story starting with the case of smooth curves C, and in the end
comment what needs to be done for stable curves. Fixing an integer k ≥ 5, the auxilliary
space for the moduli Mg of smooth curves is

Kg =

{
(C,ϕ : C → Pr) :

C smooth, irreducible curve of genus g
ϕ non-degenerate embedding, ϕ∗OPr(1) ∼= ω⊗kC

}
,

where ωC = Ω1
C is the canonical line bundle of C and

r = (2k − 1)(g − 1)− 1.

Also recall that C ⊂ Pr is non-degenerate if C is not contained in any hyperplane of Pr.
Now why should we like Kg better than Mg? The reason is that Kg parametrizes

subschemes C ⊂ Pr of the fixed variety Pr and Grothendieck ([Gro61]) constructed55 a
fine moduli space Hilb(Pr), the Hilbert scheme of Pr, parametrizing all subschemes of Pr.
Then Kg is simply a locally closed subscheme56 of Hilb(Pr) and forms a fine moduli space
parametrizing tuples (C,ϕ : C → Pr) as above.

Now let’s see how to recover Mg from Kg. First we have

deg(ω⊗kC ) = 2k(g − 1).

Since k ≥ 5, the line bundle ω⊗kC has degree greater than 2g + 1 and thus it is very ample
([Vak17, Section 19.2.11]), its first cohomology vanishes ([Vak17, Section 19.2.5]) and we
have

h0(C, ω⊗kC ) = 2k(g − 1) + 1− g = r + 1.

Thus the morphism ϕ : C → Pr is a non-degenerate embedding with ϕ∗OPr(1) ∼= ω⊗kC
if and only if ϕ is given by a complete linear system of ω⊗kC . In other words (see also
Example 2.4), the data of ϕ is equivalent to the choice of a basis s0, . . . , sr ∈ H0(C, ω⊗kC )

55If you are unhappy that we construct the space Mg by using the existence of yet another moduli
space Hilb(Pr): after a long and technical proof, the existence of the Hilbert scheme follows from the
existence of the Grassmannian variety Gr(m,n), and this can really be constructed by hand, gluing affine
spaces along explicit open subschemes.

56Roughly, being smooth, irreducible and non-degenerate is an open condition and satisfying OPr (1)|C ∼=
ω⊗kC is a closed condition.
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up to scaling. The fact that ω⊗kC is very ample automatically implies that any such ϕ is a
closed embedding. Thus we see

Kg =

(C, [s0 : . . . : sr]) :
[s0 : . . . : sr] ∈ P(H0(C, ω⊗kC )⊕r+1)

s0, . . . , sr form a basis of
H0(C, ω⊗kC )

 .

The group PGLr+1 acts on Kg by leaving the curve C invariant and acting in a natural
way on the tuples [s0 : . . . sr]. This action comes from a bigger action PGLr+1 y Hilb(Pr)
associated to the natural action PGLr+1 y Pr. Inside Kg, for a fixed C this action is
simply transitive on the set of all possible choices [s0 : . . . sr] (any two choices of basis are
related by a unique base change in PGLr+1). Thus, if we manage to define a reasonable
notion of ”quotient” in algebraic geometry, we should have

Kg/PGLr+1 = Mg.

The fact that Kg indeed admits such a quotient which is again a scheme can be proved using
Geometric Invariant Theory. This is a theory developed by Mumford (see [MFK94]) to
prove the existence of such quotients under suitable conditions. Checking these conditions
for Kg is the hard technical core of the proof, which we will not discuss further.

To go from the case of smooth curves to the case of stable curves C, we should take
ωC above to be the canonical sheaf of C (see [Vak17, Chapter 30]). The canonical sheaf is
a coherent sheaf associated to any projective variety. For a nodal, connected projective
curve C it turns out to be a line bundle ωC and it has the amazing property that ωC is
ample if and only if C is stable. Moreover, in this case ω⊗kC is very ample for n ≥ 3. Then
we can define Kg ⊂ Hilb(Pr) similar as above and the argument still works.

Several properties of the coarse moduli space M g now follow from this construction. For
instance, the fact that each component of the Hilbert scheme is projective together with
the machinery of Geometric Invariant Theory implies that the quotient M g = Kg/PGLr+1

is in fact also a projective variety.
The above construction is also interesting from the perspective of algebraic stacks: it

turns out that Kg is smooth (this can be shown using methods from Section 7.2 below,
see [HM98, Claim (4.39)]) and the morphism Kg → Mg is representable, smooth and
surjective (see [DM69, Section 5]). So the construction of Kg is part of the proof thatMg

is an algebraic stack. Moreover, this atlas Kg →Mg shows that the stack Mg is smooth
since Kg is smooth.

7.2 Dimension and smoothness

To understand why the stack Mg,n has dimension 3g − 3 + n, a powerful tool is given by
deformation theory. This is a theory developed for understanding the local structure (e.g.
dimension and smoothness) of moduli spaces or stacks M. Its core idea is to consider the
functor of points of M on schemes of the form Spec(A) for A a local Artinian57 C-algebra
with residue field C. The simplest such algebra (apart from C itself) is given by the dual
numbers

A = C[ε]/(ε2).

The following exercise shows that for the dual numbers A, understanding the A-points of
M (for M a scheme) allows us to understand the Zariski tangent spaces at points of M.

57Recall that a finitely generated C-algebra is Artinian if it is of finite dimension as a C-vector space.
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Exercise 7.1 (see Exercise 12.1.I in [Vak17]). Let M be a complex scheme and let
p : Spec(C)→M be a C-point ofM. Show that the elements of the Zariski tangent space

TpM = (mM,p/m
2
M,p)

∨, with mM,p ⊂ OM,p the maximal ideal

are in bijection with the space

MorC(Spec(C[ε]/(ε2)),M)p

of morphisms Spec(C[ε]/(ε2))→M such that the composition with

Spec(C[ε]/(ε2))→ Spec(C), ε 7→ 0

equals the inclusion p : Spec(C)→M.

So let’s try to see why for a smooth curve C ∈ Mg (for g ≥ 2) the tangent space
TCMg has dimension 3g − 3. By the exercise, elements of this tangent space correspond
to maps Spec(A)→Mg with image {C}, for A = C[ε]/(ε2). Since Mg is a moduli stack
of smooth genus g curves, these are equivalent to families C → Spec(A) of smooth genus g
curves such that the pullback C0 → Spec(C) by the closed embedding Spec(C)→ Spec(A)
is isomorphic to C.

C C

Spec(C) Spec(A)

(144)

Actually, this is a special case of a so-called first order deformation, and it makes sense
to treat it in some more generality. For this, let X be a complex variety, then a first
order deformation of X is a flat morphism X → Spec(A) together with an identification
X0
∼= X of X with the fibre X0 of X over Spec(C)→ Spec(A). We illustrate the situation

in Figure 38.
To understand the set of first-order deformations of a smooth variety X, we’ll make a

bunch of observations.

a) Since (ε) ⊂ A is the unique prime ideal, the underlying topological space of Spec(A) is
a single point, and Spec(C)→ Spec(A) is an isomorphism on the level of topological
spaces. Similarly, since X0 ⊂ X is cut out by the square-zero ideal (ε), it is not
difficult to see that the morphism X0 → X is also an isomorphism of topological
spaces. So the Zariski-open subsets U of C0 are in bijection with the open subsets
U of C. Moreover, it is true that U is affine if and only if U is affine (see [Ser06,
Lemma 1.2.3]).

b) It turns out that first-order deformations U → Spec(A) of smooth, affine schemes
U are very simple: each such deformation is isomorphic to the trivial deformation
U ∼= U × Spec(A) → Spec(A) (see [Ser06, Theorem 1.2.4]). Thus if we choose an
affine open cover Ui of X, each element of the corresponding affine cover Ui of X will
be the trivial deformation Ui = Ui × Spec(A) of Ui. Note that this is independent of
the particular first-order deformation X : we can first choose the cover Ui of X and
know that every deformation X will be trivial on each of the patches Ui of X .

Thus all the information of the deformation X → Spec(A) is contained in the data
of the isomorphisms

ϕij : Uij × Spec(A)
∼−→ Uij × Spec(A) (145)
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Figure 38: A first order deformation X of the smooth variety X/C together with an open,
affine cover Ui of X and the induced cover Ui = Ui × Spec(C[ε]/(ε2)) of X

describing how the trivial deformations Ui × Spec(A) are glued on the overlaps58.
Apart from the usual cocycle condition ϕjk ◦ ϕij = ϕik, the morphisms ϕij must also
satisfy

ϕij|Uij×Spec(C) = idUij

since this is how they are glued in the special fibre X over Spec(C).

c) Since X is separated, the intersection Uij = Ui ∩ Uj of the affine opens Ui, Uj ⊆ X
is again affine. Then Uij = Spec(B) and Uij × Spec(A) = Spec(B[ε]/(ε2)). One can
check (see [Ser06, Lemma 1.2.6]) that the isomorphisms ϕij above are exactly given
by ring morphisms

B[ε]/(ε2)→ B[ε]/(ε2), (x+ εy) 7→ (x+ ε(y + ηij(x)),

where ηij ∈ DerC(B,B) is a C-linear derivation on B. Such derivations ηij are
equivalent to vector fields vij ∈ H0(Uij, TUij

).

d) To summarize: for the fixed affine cover Ui of X, we can associate a system

(vij ∈ H0(Uij, TUij
))ij

of vector fields on the overlaps Uij to any first-order deformation of X. The fact
that the gluing maps ϕij satisfy a cocycle condition is equivalent to requiring a

58As you see, the idea of obtaining non-trivial objects by taking a collection of trivial objects and gluing
them along a compatible system of isomorphisms on overlaps is quite pervasive.
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corresponding cocycle condition for the fields vij. Tracing through the construction,
one can check that the data of the first-order deformation X → Spec(A) (up to
isomorphism) is equivalent to the corresponding element

(vij)ij ∈ H1(X,TX)

in the first Čech cohomology of the tangent bundle TX of X.

Going back to the case X = C ∈Mg we conclude

TCMg
∼=
{
C → Spec(A) first order

deformation of C

}
∼= H1(C, TC). (146)

Finally, by Serre duality we have

h1(C, TC) = h1(C, ω∨C) = h0(C, (ω∨C)∨ ⊗ ωC) = h0(C, ω⊗2
C )

= deg(ω⊗2
C ) + 1− g = 2(2g − 2) + 1− g = 3g − 3 ,

where again we use that the higher cohomology of ω⊗2
C vanishes since it has sufficiently

high degree. So that’s the magic formula for the dimension of Mg that we have been
looking for!

Let’s discuss some extensions of the story above.

Pointed curves

Looking at pointed curves (C, p1, . . . , pn) ∈ Mg,n is not much more difficult: similar
arguments as above (see [HM98, Section 3B]), show that

T(C,p1,...,pn)Mg,n
∼= H1(C, TC(−p1 − . . .− pn)),

and by an analogous computation to above we get the dimension 3g − 3 + n.

Stable curves

The deformation theory of stable curves C is slightly more involved: the first-order
deformations of C are given by the Ext-group Ext1

OC
(Ω1

C ,OC). Let Γ be the stable graph
of C and let

(Cv, (qh)h∈H(v))v∈V (Γ)

be the set of components of the normalization of C with qh the preimages of the nodes.
Then the Ext-group above fits into an exact sequence

0→
⊕
v∈V (Γ)

H1(Cv, TCv(−
∑

h∈H(v)

qh))→ Ext1
OC

(Ω1
C ,OC)→

⊕
{h,h′}∈E(Γ)

Tqh(Cv)⊗Tqh′ (Cv′)→ 0.

(147)
Here the subspace space on the left corresponds to locally trivial first order deformations
of C (which preserve all singularities), whereas for each node q ∈ C (corresponding to the
edge {h, h′} ∈ E(Γ)) the one-dimensional space Tqh(Cv)⊗ Tqh′ (Cv′) detects whether the
deformation smoothes the node infinitesimally. Note that the direct sum of the spaces
Tqh(Cv)⊗ Tqh′ (Cv′) is precisely the fibre of the normal bundle

NξΓ =
⊕

{h,h′}∈E(Γ)

L∨h ⊗ L∨h′
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of the gluing morphism ξΓ that we presented in Fact 6.30. This is no coincidence: in the
exact sequence (147), we have that the tangent space of MΓ at the point

(Cv, (qh)h)v = (Cv, (qh)h∈H(v))v∈V (Γ) ∈MΓ

is given by ⊕
v∈V (Γ)

H1(Cv, TCv(−
∑

h∈H(v)

qh)) = T(Cv ,(qh)h)vMΓ

and
Ext1

OC
(Ω1

C ,OC) = TCMg

so indeed the direct sum of the Tqh(Cv) ⊗ Tqh′ (Cv′) is equal to the fibre of the normal
bundle of ξΓ.

Higher-order deformations and obstructions

We saw that first-order deformations (over A = Spec(C[ε]/(ε2))) allow us to compute the
tangent space of a moduli space M. By looking at higher-order deformations (over more
general Artinian C-algebras A), we can also say something about its local structure, and
for instance detect if M is smooth.

For this recall that a scheme (or stack) M of finite type over C is formally smooth if
for every surjective map A′ → A of Artinian local C-algebras with kernel I of C-dimension
1 and every map Spec(A)→M there exists a map Spec(A′)→M such that the diagram

Spec(A) Spec(A′)

M
∃

commutes (see [Sta13, Tag 02HY]). Applying this to M = Mg, we need to show that
every family of smooth curves over Spec(A) can be extended to Spec(A′).

In this case, we can use a criterion which is valid in a more general situation: if X is a
smooth variety such that H2(X,TX) = 0, then any deformation of X over Spec(A) can
be extended to Spec(A′), for A,A′ as above (see [Ser06, Section 1.2.5]). One says that
deformations of X are unobstructed in this case. For X = C a smooth curve, we clearly
have the vanishing H2(C, TC) for dimension reasons, which shows that Mg is formally
smooth.

Infinitesimal automorphisms

Now we saw that given a smooth, projective variety X, the first and second cohomology
group of X told us important things about deformations of X. But it seems we skipped
a case here: what about the zeroth cohomology? Indeed, it tells us something about
(infinitesimal) automorphisms of X!

To make this precise, we note that the group Aut(X) of automorphisms of X can be
given a natural scheme structure. This works by identifying an automorphism ϕ : X → X
with its graph Γϕ ⊂ X×X and then realizing Aut(X) as an open subscheme of the Hilbert
scheme Hilb(X ×X) parametrizing all subschemes Γ ⊂ X ×X. Then it turns out that at
the identity idX ∈ Aut(X) we have

TidX
Aut(X) = H0(X,TX).
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Looking at the example of X = C a smooth curve of genus g, we check

dimH0(C, TC) =


3 for g = 0,

1 for g = 1,

0 for g ≥ 2.

Comparing with Fact 3.11, this corresponds to the statements that PGL2 = Aut(P1) has
dimension 3, the automorphism group of a genus 1 curve E had dimension 1 (containing
E itself), and the automorphism group of a curve of genus at least 2 is discrete.

Summarizing again, for X a smooth projective variety, we saw that there exist corre-
spondences

H0(X,TX)←→ infinitesimal automorphisms of X,

H1(X,TX)←→ first-order deformations of X,

H2(X,TX)←→ obstructions to extending deformations of X.

To conclude this section, here are two fun exercises which show that deformation theory
can also be applied to other moduli spaces that we have already seen before.

Exercise 7.2 (Dimension of the Jacobian). Fix a smooth genus g curve C and consider
the Jacobian Jac(C) = Pic0

C/C, the moduli space of degree 0 line bundles on C. In analogy
with (146) above, show that there exists a correspondence

TOC
Jac(C) ∼=

{
L first order deformation
of OC on C × Spec(A)

}
∼= H1(C,OC). (148)

Note that you need to define what a first order deformation of OC on the trivial family
C × Spec(A) → Spec(A) means. Conclude that the tangent space of Jac(C) at OC is
g-dimensional. Since Jac(C) is a group scheme and we are in characteristic zero, it is
automatically smooth (see [Sta13, Tag 047N]), so this actually implies that Jac(C) is
smooth of dimension g.

Exercise 7.3. Show that the tangent space TpPn of Pn at any closed point p is n-
dimensional, by using the description of Pn as a moduli space together with Exercise
7.1.

7.3 Density of the locus of smooth curves and local structure of
the boundary

Let’s start with something basic that we never checked carefully: that the set Mg,n of
smooth curves is open in Mg,n.

Proposition 7.4. Let π : C → B be a family of stable curves. Then the locus B0 ⊆ B of
b such that the fibre Cb is smooth is an open subset of B.

Proof. By definition, the locus Csm ⊆ C of points where the morphism π is smooth is open
in C. Its complement, the set of nodes in C, is closed and since π is proper by assumption,
the locus

Bsing = π(C \ Csm) ⊆ B

is also closed. But then B0 = B \Bsing is indeed open.

Corollary 7.5. The inclusion i :Mg,n →Mg,n is representable and an open embedding.
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Proof. For any B → Mg,n, corresponding to a family π : C → B of stable curves over
B, the pullback of i under B → Mg,n is precisely the open embedding B0 ⊆ B from
Proposition 7.4. Thus i is representable (since B0 is a scheme) and an open embedding
(since this property can be checked on a smooth cover of Mg,n by schemes).

Another fact we haven’t discussed yet is that Mg,n is nonempty for every g, n with
2g − 2 + n > 0. For this it suffices to show that for every g ≥ 0 there exists a smooth
curve C of genus g, since then (by Easy Exercise 3.12) the curve (C, p1, . . . , pn) has finite
automorphisms for 2g − 2 + n for any distinct p1, . . . , pn ∈ C.

To construct a curve of any genus g ≥ 0 let

λ1, . . . , λ2g+2 ∈ C

be 2g + 2 distinct values, then the unique smooth projective curve C containing the affine
curve

C0 = {(x, y) : y2 = (x− λ1) · · · (x− λ2g+2)} ⊂ C2

is smooth of genus g (see [Vak17, Section 19.5]). In fact, the morphism C0 → C, (x, y) 7→ x
extends to a double cover C → P1, making C a hyperelliptic curve.

To summarize, we have now seen that Mg,n ⊆Mg,n is nonempty and open. If we also
knew that Mg,n is irreducible, this clearly would imply that Mg,n is dense in Mg,n. On
the other hand, it would be nice to see explicitly how, given a stable curve C0, we can
”approximate” it by smooth curves. In other words, we would like to find a family C → B
over a (small) irreducible base B such that C0 = Cb0 appears as the fibre of some b0 ∈ B
and such that the set

U = {b ∈ B : Cb is smooth} ⊆ B

is nonempty and dense in B. Indeed, such a family would correspond to a morphism
ϕ : B →Mg,n and we have

C0 = ϕ(b0) ∈ ϕ(B) = ϕ(U) ⊆ ϕ(U)︸ ︷︷ ︸
⊆Mg,n

⊆Mg,n.

Such a family C → B was constructed in [DM69, Section 1] over a base of the form

B = SpecC[[t1, . . . , t3g−3+n]],

with C0 appearing as the fibre over the maximal ideal b0 = (x1, . . . , x3g−3+n) and the
general fibre over B being smooth. The construction is based on ideas of (higher-order)
deformation theory and in fact it gives a small, formal neighborhood of C0 in Mg,n.

Instead of working with these complete local rings and formal schemes, let’s explain
what happens in the related language of complex-analytic spaces. Assume first that C0

has a single node q, then by the definition of a node we can find a small (complex) open
neighbourhood W of q of the form

W = {(x, y) ∈ Bε(0) : xy = 0} ⊂ C2.

But the singularity (xy = 0) can be smoothed in a 1-parameter family. Let ∆ ⊂ C be a
small disc around 0, then we have a family

W = {(x, y, t) ∈ Bε(0)×∆ : xy = t} → ∆, (x, y, t) 7→ t

such that all fibres (xy = t) for t 6= 0 are smooth.
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Figure 39: A deformation C → ∆ of the curve C0 over the disc ∆ obtained by gluing the
scheme W cut out by xy = t (in blue) and the trivial family V ×∆ (in red)

To get a global deformation of C0, let V ⊂ C0 be an open subset not containing a
small ball around the node q, such that W ∪ V = C0 and such that W,V overlap in two
small annuli, as illustrated in Figure 39.

Then, in the complex-analytic world, we can glue the family W smoothing the node q
to the trivial family V ×∆→ ∆, obtaining a family C → ∆ with smooth fibres away from
{t = 0} ⊂ ∆.

The story for curves with multiple nodes is similar: you get a coordinate te for every
edge e ∈ Γ(C0) in the dual graph and a family C → ∆E(Γ) such that locally around the
node corresponding to e the curve has an equation (xeye = te).

The above family C → ∆E(Γ) defines a map ∆E(Γ) → Mg,n whose image meets the
boundary of Mg,n transversally in the point C0. This can be upgraded to get a full set of
complex-analytic coordinates59 of Mg,n in a small neighborhood of C0. For this, we need
to choose additional coordinates parametrizing deformations of the normalization of C0

(with the marked preimages of nodes). Such deformations can be made (painfully) explicit
using Schiffer variations (see [HM98, Section 3.B]). For now, you should just think of
them as coming from a local, holomorphic chart of the corresponding spaces Mg(v),n(v)

parametrizing the components of the normalization. We illustrate the situation in Figure
40.

After having described this in the language of complex analysis, let us finish this section
by returning to the algebraic world and giving a well-defined statement there. For this, we
define the completed local ring ÔC0,Mg,n

of Mg,n at a point C0 to be the completed local

ring ÔC′0,U of any étale cover U →Mg,n at a preimage point C ′0 ∈ U of C0. The fact that
étale maps induce isomorphisms on completed local rings implies that this is independent

59Here we need to be slightly careful: Mg,n is of course still a stack and C0 might have automorphisms.
What we describe in the following can be seen as a local complex-analytic chart of an étale cover of Mg,n

by a scheme (which exists since Mg,n is a Deligne-Mumford stack.
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Figure 40: Holomorphic coordinates around the point C0 ∈M4 arising from coordinates
te, te′ smoothing the two nodes of C0 and coordinates sv,j deforming the two components
of the normalization of C0. Note that the boundary ∂M4 is cut out by the equations
te = 0 and te′ = 0 around C0

of choices.

Theorem 7.6. Let C0 ∈ Mg,n be a closed point, let Γ = Γ(C0) be the stable graph
associated to C0 and let (Cv, (qh)h∈H(v))v∈V (Γ) be a preimage of C0 under the gluing map
ξΓ. Then we have an isomorphism

ÔC0,Mg,n
∼= C[[te, sv,j : e ∈ E(Γ), v ∈ V (Γ), j = 1, . . . , 3g(v)− 3 + n(v)]]. (149)

Here the coordinates te cut out the preimage of the boundary ∂Mg,n under the natural

map Spec(ÔC0,Mg,n
)→Mg,n, so that

∂Mg,n|Spec(ÔC0,Mg,n
) =

⋃
e∈E(Γ)

V (te). (150)

On the other hand, for the boundary gluing map ξΓ, the functions sv,j pull back to generators

of the completed local rings ÔCv ,Mg(v),n(v)
of the moduli spacesMg(v),n(v) occuring as factors

of MΓ at the points (Cv, (qh)h)v.

The fact that the boundary ∂Mg,n pulls back to a union of coordinate hyperplanes
150 exactly shows that the boundary is indeed a normal crossings divisor on Mg,n. On
the other hand, it is also clear that the preimage of Mg,n, which is the complement of

these hyperplanes, is dense in Spec(ÔC0,Mg,n
).

References and further reading

A very comprehensive references for deformation theory is the book [Ser06] by Sernesi.
You can also have a look at the book [Har10] by Hartshorne, in particular Section 27,
where he discusses the moduli space of curves.
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There are two more properties of Mg,n that we have not discussed yet: irreducibility
and properness.

For irreducibility, you can use the fact that Mg,n is smooth to conclude that it is
enough to show that the stack is connected. For this, one strategy is to start with any
curve and degenerate it to the boundary of Mg,n in a connected family. Then it suffices
to show that the boundary is connected, which follows by an induction argument (the
boundary is covered by lower-dimensional spaces). This strategy is described in [HM98,
Section 6.A]. A different strategy is to use Teichmüller theory to study the moduli space
Mg,n of smooth curves (see [ACG11, Chapter XV]) and show its irreducibility. Since
we described an independent proof that Mg,n ⊆ Mg,n is dense in the last section, the
irreducibility of Mg,n implies the irreducibility of Mg,n.

For properness, you can use the valuative criterion of properness (see [Sta13, Tag
0CL9]). Essentially you have to show that for a valuation ring Λ with fraction field K and
a morphism Spec(K)→Mg,n there is a unique extension of this morphism to Spec(Λ).
This translates to saying that you have a family of stable curves CK → Spec(K) and want
to complete it (uniquely) to a family CΛ → Spec(Λ). This construction is known as stable
reduction, and described in [HM98, Section 3.C] or [ACG11, Chapter X.4].
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8 Solutions to selected exercises

Solution 8.1 (Solution of Exercise 2.20). a) The morphism s : U → P1 × P1 \ ∆ is
given by s = ([s1,1 : s1,2], [s2,1, s2,2]), for line bundles L1,L2 together with sections
s1,1, s2,1 of L1 and s1,2, s2,2 of L2. The fact that s factors through the complement of
∆ implies that the matrix

A =

(
s1,1 s1,2

s2,1 s2,2

)
(151)

is invertible at every point of U (i.e. its determinant, which is a section of L1 ⊗ L2

is nowhere zero on U).

On an open cover U =
⋃
i Ui trivializing both line bundles, we can identify all

sections above with actual functions, so that the formula A gives a well-defined map
Ui → PGL2 (here we use the non-vanishing of the determinant). Then s and s0 are
equivalent since A · s0 = s.

b) The restriction of sP1×P1 to U = P1 × P1 \∆ satisfies the conditions of part a), so
that on an open cover Ui of U it is equivalent to the constant morphism s0. But
s0 ∈ h(Ui) is itself a pullback of i ∈ h(pt) under the map Ui → pt. Thus we have a
diagram of schemes and elements of h on these schemes which are pullbacks under
the morphisms

P1 × P1 U
∐

i Ui pt

sP1×P1 sP1×P1|U
∐

i sP1×P1|Ui
i

Applying the natural transformation Φ′ we obtain a diagram of morphisms to M ′ as
follows:

P1 × P1 U
∐

i Ui pt

M ′
Φ′(sP1×P1 ) ψ

As all maps Ui →M ′ factor through pt→M ′ and the Ui form a Zariski cover, also
U → M ′ factors through pt. Since the image of pt → M ′ is closed and the map
Φ′(sP1×P1) is continuous, it must factor (as a set map) through the image point of
pt. We claim that it also factors as a scheme morphism. Indeed, it must factor
through any affine open neighborhood of the image point of pt, but since P1 × P1 is
projective, such a map is constant as a map of schemes and thus factors through pt.

c) The map f = s has the desired property for the first part of the exercise. Given
such X and s ∈ h(X), the natural transformation Φ′ sends s to a morphism
Φ′(s) : X → M ′. We show that Φ′ factors via Φ and the natural transformation
Ψ : hpt → hM

′
associated to ψ : pt→M ′ above. This is equivalent to showing that

Φ′(s) factors through ψ. But we have a diagram

h(P1 × P1) h(X)

Mor(P1 × P1,M ′) Mor(X,M ′)

h(f)

Φ′ Φ′

◦f
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For the element sP1×P1 in the upper left, going down and right sends it to the
morphism

X
f−→ P1 × P1 → pt

ψ−→M ′

by part b). On the other hand, the map h(f) sends sP1×P1 to s by the choice of f and
going down to Mor(X,M ′) we obtain Φ′(s). Thus this morphism factors through ψ
as desired.

d) The element

(i′ : pt
([1:0],[1:0])−−−−−−→ P1 × P2) ∈ h(pt).

is not equivalent to i ∈ h(pt) and in fact h(pt) = {i, i′} has two elements, whereas
Mor(pt, pt) has exactly one element.
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9 Questions

Question 9.1 (see Exercise 2.8). Let πX : X → Z, πY : Y → Z be morphisms of schemes.
For any scheme S define

h(S) = (hX ×hZ hY )(S) =

{
(σX , σY ) :

σX : S → X, σY : S → Y
such that πX ◦ σX = πY ◦ σY

}
a) Show that h defines a moduli functor.

b) Prove that the fibre product X ×Z Y is a fine moduli space for h (you can use
standard properties of the fibre product). What is its universal family?

Question 9.2 (see Exercise 2.17). a) Show that every fine moduli space is also a coarse
moduli space (in particular, make precise what this statement means).

b) Show that given a moduli functor h having a coarse moduli space (M,Φ), this space
is unique up to isomorphism.

Question 9.3. Let E ⊂ P2 be a smooth, irreducible cubic curve.

a) Compute the geometric and arithmetic genus of E.

b) Let L ⊂ P2 be a line in general position and consider the curve C = E ∪L. You can
use without proof that C is a nodal curve. Is C stable? If so, draw its dual graph
and compute its arithmetic and geometric genus.

Question 9.4 (see Exercise 3.12). Let C be a smooth, complex, irreducible projective
curve of genus g and p1, . . . , pn ∈ C be distinct points.

a) Show that Aut(C, p1, . . . , pn) is finite if and only if 2g − 2 + n > 0.

b) For C = P1 and n = 3, compute the orders of the groups Aut(P1, p1, p2, p3) and

Aut(P1, {p1, p2, p3}) = {ϕ ∈ Aut(P1) : ϕ({p1, p2, p3}) = {p1, p2, p3}}.

Question 9.5 (see Exercise 4.4). Explain the isomorphism

M0,n = (P1 \ {0, 1,∞})n−3 \∆ (152)

that we discussed in the lecture. In particular, for n = 4 compute which point of
P1 \ {0, 1,∞} is associated to the point

(P1,∞, 42, 0, π) ∈M0,4.

What is the universal family over M0,n = (P1 \ {0, 1,∞})n−3 \∆?

Question 9.6 (see Exercise 4.11). a) Show that a stable graph of genus g with n legs
has at most 3g − 3 + n edges.

b) Compute the number of isomorphism classes of stable graphs with exactly one edge
for g = 5, n = 4.
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Question 9.7 (see Exercise 4.19). a) Show that the graph Γ from Figure 41 has trivial
automorphism group.

b) Compute the order of the automorphism group Aut(Γ′) of Γ′. Let (C, p1) be a stable
curve with dual graph Γ′. Does the automorphism group Aut(C, p1) have the same
order as Aut(Γ′)?

      

Figure 41: Stable graphs Γ and Γ′

Question 9.8 (see Exercise 4.28). Figure 42 illustrates the forgetful morphism π : M1,2 →
M1,1 with the boundary of both spaces marked in red. For each of the points marked in
blue, draw their corresponding curves and their dual graphs.

      

Figure 42: The forgetful morphism π : M1,2 →M1,1
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Question 9.9. Let f : P1 → P1 be a morphism of degree d. Compute

f∗ : H∗(P1)→ H∗(P1) and f ∗ : H∗(P1)→ H∗(P1)

on the basis 1, H of H∗(P1).

Question 9.10. Consider the stable graphs Γ1,Γ2 in Figure 43.

a) What is the genus g and number of legs n of these graphs. What are the cohomological
degrees k1, k2 ∈ Z≥0 such that the decorated stratum classes [Γi, 1] (with α = 1 ∈
H0(MΓi

)) are contained in Hki(Mg,n)?

b) The set GΓ1,Γ2 of generic (Γ1,Γ2)-structures (Γ, ϕ1, ϕ2) has precisely 3 elements.
Draw the three possible graphs Γ that appear. You don’t have to prove that these
are the only ones.

c) Compute the cup product [Γ1, 1] ^ [Γ2, 1] as a sum of decorated stratum classes.

      

Figure 43: Two stable graphs
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