α -Recursion Theory and Ordinal Computability

BY PETER KOEPKE

University of Bonn

13.2.2007

Abstract

Motivated by a talk of S.D.FRIEDMAN at BIWOC we show that the α -recursive and α -recursively enumerable sets of G. SACKS's α -recursion theory are exactly those sets that are recursive and recursively enumerable by an ordinal TURING machines with tapes of length α and time bound α .

1 Introduction.

 α -Recursion theory is a branch of higher recursion theory that was developed by G. SACKS and his school between 1965 and 1980. SACKS gave the following characterization [4]:

 α -recursion theory lifts classical recursion theory from ω to an arbitrary Σ_1 admissible ordinal α . Many of the classical results lift to every α by means of recursive approximations and fine structure techniques.

The lifting is based on the observation that a set $A \subseteq \omega$ is recursively enumerable iff it is Σ_1 definable over (H_{ω}, \in) , the set of all hereditarily finite sets. By analogy, a set $A \subseteq \alpha$ is called α -recursively enumerable iff it is $\Sigma_1(L_{\alpha})$, i.e., definable in parameters over (L_{α}, \in) where L_{α} is the α -th level of GÖDEL's constructible hierarchy. Consequently a set $A \subseteq \alpha$ is said to be α -recursive iff it is $\Delta_1(L_{\alpha})$. SACKS discusses the "computational character" of $\Sigma_1(L_{\alpha})$ -definitions [4]:

The definition of f can be thought of as a process. At stage δ it is assumed that all activity at previous stages is encapsulated in an α finite object, $s \upharpoonright \delta$. In general it will be necessary to search through L_{α} for some existential witness ... [emphases by P.K.].

In this note we address the question whether it is possible to base α -recursion theory on some idealized computational model.

Let us fix an admissible ordinal α , $\omega < \alpha \leq \infty$ for the rest of this paper. A standard TURING computation may be visualized as a time-like sequence of elementary *read-write-move* operations carried out by "heads" on "tapes". The sequence of actions is determined by the initial tape contents and by a finite TURING *program*. We may assume that the TURING machine acts on a tape whose cells are indexed by the set ω (= N) of *natural numbers* 0, 1, ... and contain 0's or 1's. A computation takes place in $\omega \times \omega$ "spacetime":

		S P A C E									
		0	1	2	3	4	5	6	7		
	0	1	0	0	1	1	1	0	0	0	0
	1	0	0	0	1	1	1	0	0		
T I M E	2	0	0	0	1	1	1	0	0		
	3	0	0	1	1	1	1	0	0		
	4	0	1	1	1	1	1	0	0		
	:										
	n	1	1	1	1	0	1	1	1		
	n+1	1	1	1	1	1	1	1	1		

A standard TURING computation. Head positions are indicated by shading.

Let us now generalize TURING computations from $\omega \times \omega$ to an $\alpha \times \alpha$ spacetime: consider TURING tapes whose cells are indexed by α (= the set of all ordinals < α) and calculations which are sequences of elementary tape operations indexed by ordinals < α . For successor times, calculations will basically be defined as for standard TURING machines. At limit times tape contents, program states and head positions are defined by *inferior limits*.

				S	р	a	с	e		α					
		0	1	2	3	4	5	6	7		 ω	 θ	θ		
	0	1	1	0	1	0	0	1	1		 1	 1	0	0	0
	1	0	1	0	1	0	0	1	1		1				
Т	2	0	0	0	1	0	0	1	1		1				
i	3	0	0	0	1	0	0	1	1		1				
m	4	0	0	0	0	0	0	1	1		1				
е	:														
	n	1	1	1	1	0	1	0	1		1				
α	n+1	1	1	1	1	1	1	0	1		1				
	:	:	:	:	:	:									
	ω	0	0	1	0	0	0	1	1		 1				
	$\omega + 1$	0	0	1	0	0	0	1	1		0				
	:														
	$\theta < \alpha$	1	0	0	1	1	1	1	0		 	 0			
	:														

A computation of an α -TURING machine.

This leads to an α -computability theory with natural notions of α -computable and α -computably enumerable subsets of α . We show that α -computability largely agrees with α -recursion theory: **Theorem 1.** Consider a set $A \subseteq \alpha$. Then

- a) A is α -recursive iff A is α -computable.
- b) A is α -recursively enumerable iff A is α -computably enumerable.

One can also define what it means for $A \subseteq \alpha$ to be α -computable in an oracle $B \subseteq \alpha$ and develop a theory of α -degrees. The reduction by α -computation is coarser than the standard reducibility used in α -recursion theory:

Theorem 2. Consider sets $A, B \subseteq \alpha$ such that A is weakly α -recursive in B. Then A is α -computable in B.

The relationship between ordinal TURING machines and the constructible model L was studied before [2]. We shall make use of those results by restricting them to α . It should be noted that we could have worked with ordinal *register* machines instead of TURING machines to get the same results [3]. The present work was inspired by S.D.FRIEDMAN's talk on α -recursion theory at the BIWOC workshop.

2 α -TURING Machines

The intuition of an α -TURING machine can be formalized by restricting the definitions of [2] to α .

Definition 3.

- a) A command is a 5-tuple C=(s, c, c', m, s') where s, s' ∈ ω and c, c', m ∈ {0, 1}; the natural number s is the state of the command C. The intention of the command C is that if the machine is in state s and reads the symbol c under its read-write head, then it writes the symbol c', moves the head left if m = 0 or right if m = 1, and goes into state s'. States correspond to the "line numbers" of some programming languages.
- b) A program is a finite set P of commands satisfying the following structural conditions:
 - i. If $(s, c, c', m, s') \in P$ then there is $(s, d, d', n, t') \in P$ with $c \neq d$; thus in state s the machine can react to reading a "0" as well as to reading a "1".
 - ii. If $(s, c, c', m, s') \in P$ and $(s, c, c'', m', s'') \in P$ then c' = c'', m = m', s' = s''; this means that the course of the computation is completely determined by the sequence of program states and the initial cell contents.
- c) For a program P let

$$\operatorname{states}(P) = \{ s \, | \, (s, c, c', m, s') \in P \}$$

be the set of program states.

Definition 4. Let P be a program. A triple

$$S: \theta \to \omega, H: \theta \to \alpha, T: \theta \to (^{\alpha}2)$$

is an α -computation by P iff the following hold:

- a) θ is a successor ordinal $\langle \alpha \text{ or } \theta = \alpha; \theta$ is the length of the computation.
- b) S(0) = H(0) = 0; the machine starts in state 0 with head position 0.
- c) If $t < \theta$ and $S(t) \notin \text{state}(P)$ then $\theta = t + 1$; the machine stops if the machine state is not a program state of P.
- d) If $t < \theta$ and $S(t) \in \text{state}(P)$ then $t + 1 < \theta$; choose the unique command $(s, c, c', m, s') \in P$ with S(t) = s and $T(t)_{H(t)} = c$; this command is executed as follows:

$$T(t+1)_{\xi} = \begin{cases} c', & \text{if } \xi = H(t); \\ T(t)_{\xi}, & \text{else}; \end{cases}$$

$$S(t+1) = s';$$

$$H(t+1) = \begin{cases} H(t) + 1, & \text{if } m = 1; \\ H(t) - 1, & \text{if } m = 0 \text{ and } H(t) \text{ is a successor ordinal;} \\ 0, & \text{else.} \end{cases}$$

e) If $t < \theta$ is a limit ordinal, the machine constellation at t is determined by taking inferior limits:

$$\forall \xi \in \text{Ord } T(t)_{\xi} = \liminf_{\substack{r \to t \\ r \to t}} T(r)_{\xi};$$

$$S(t) = \liminf_{\substack{r \to t \\ r \to t}} S(r);$$

$$H(t) = \liminf_{s \to t, S(s) = S(t)} H(s).$$

The α -computation is obviously recursively determined by the initial tape contents T(0) and the program P. We call it the α -computation by P with input T(0). If the α -computation stops, $\theta = \beta + 1$ is a successor ordinal and $T(\beta)$ is the final tape content. In this case we say that P computes $T(\beta)$ from T(0) and write P: $T(0) \mapsto T(\beta)$.

Sets $A \subseteq \alpha$ may be coded by their characteristic functions $\chi_A: \alpha \to 2, \ \chi_x(\xi) = 1$ iff $\xi \in A$.

Definition 5. A partial function $F: \alpha \rightarrow \alpha$ is α -computable iff there is a program P and a finite set $p \subseteq \alpha$ of parameters such that for all $\delta < \alpha$:

- if $\delta \in \operatorname{dom}(F)$ then the α -computation with initial tape contents $T(0) = \chi_{p \cup \{2 \cdot \delta\}}$ stops and $P: \chi_{p \cup \{2 \cdot \delta\}} \mapsto \chi_{\{F(\delta)\}}$; note that we use "even" ordinals to code the input δ , the parameter set p would typically consist of "odd" ordinals;
- if $\delta \notin \operatorname{dom}(F)$ then the α -computation with initial tape contents $T(0) = \chi_{p \cup \{2 \cdot \delta\}}$ does not stop.

A set $A \subseteq \alpha$ is α -computable iff its characteristic function $\chi_A: \alpha \to 2$ is α -computable. A set $A \subseteq \alpha$ is α -computably enumerable iff $A = \operatorname{dom}(F)$ for some α -computable partial function $F: \alpha \to 2$.

3 α -computations inside L_{α}

In general, recursion theory subdivides recursions and definitions into minute elementary computation steps. Thus computations are highly *absolute* between models of (weak) set theories and we get:

Lemma 6. Let P be a program and let T(0): $\alpha \to 2$ be an initial tape content which is Σ_1 -definable in (L_{α}, \in) from parameters. Let $S: \theta \to \omega$, $H: \theta \to \alpha$, $T: \theta \to (^{\alpha}2)$ be the α -computation by P with input T(0). Then:

- a) S, H, T is the α -computation by P with input T(0) as computed in the model (L_{α}, \in) .
- b) S, H, T are Σ_1 -definable in (L_{α}, \in) from parameters.
- c) If $A \subseteq \alpha$ is α -recursively enumerable then it is $\Sigma_1(L_\alpha)$ in parameters.
- d) If $A \subseteq \alpha$ is α -recursive then it is $\Delta_1(L_\alpha)$ in parameters.

So we have proved one half of the Equivalence Theorem 1.

4 The bounded truth predicate for L_{α}

For the converse we have to analyse KURT GÖDEL's constructible hierarchy using ordinal computability. The inner model L of *constructible sets* is defined as the union of a hierarchy of levels L_{δ} :

$$L = \bigcup_{\delta \in \text{Ord}} L_{\delta}$$

where the hierarchy is defined by: $L_0 = \emptyset$, $L_{\delta} = \bigcup_{\gamma < \delta} L_{\gamma}$ for limit ordinals δ , and $L_{\gamma+1}$ = the set of all sets which are first-order definable with parameters in the structure (L_{γ}, \in) . The standard reference to the theory of the model L is the book [1] by K. DEVLIN. We consider in particular the model

$$L_{\alpha} = \bigcup_{\gamma < \alpha} L_{\gamma}$$

To make L_{α} accessible to an α -TURING machine we introduce a language with symbols $(,), \{, \}, |, \in , =, \land, \neg, \forall, \exists$ and variables v_0, v_1, \ldots . Define (bounded) formulas and (bounded) terms by a common recursion on the lengths of words formed from these symbols:

- the variables v_0, v_1, \dots are terms;
- if s and t are terms then s = t and $s \in t$ are formulas;

- if φ and ψ are formulas then $\neg \varphi$, $(\varphi \land \psi)$, $\forall v_i \in v_j \varphi$ and $\exists v_i \in v_j \varphi$ are formulas;
- if φ is a formula then $\{v_i \in v_j \mid \varphi\}$ is a term.

For terms and formulas of this language define *free* and *bound variables*:

- free $(v_i) = \{v_i\}$, bound $(v_i) = \emptyset$;
- $\operatorname{free}(s=t) = \operatorname{free}(s \in t) = \operatorname{free}(s) \cup \operatorname{free}(t);$
- bound(s = t) = bound $(s \in t) =$ bound $(s) \cup$ bound(t);
- free($\neg \varphi$) = free(φ), bound($\neg \varphi$) = bound(φ);
- $\operatorname{free}((\varphi \land \psi)) = \operatorname{free}(\varphi) \cup \operatorname{free}(\psi), \operatorname{bound}((\varphi \land \psi)) = \operatorname{bound}(\varphi) \cup \operatorname{bound}(\psi);$
- free $(\forall v_i \in v_j \varphi) =$ free $(\exists v_i \in v_j \varphi) =$ free $(\{v_i \in v_j \mid \varphi\}) = ($ free $(\varphi) \cup \{v_j\}) \setminus \{v_i\};$
- bound($\forall v_i \in v_j \varphi$) = bound($\exists v_i \in v_j \varphi$) = bound($\{v_i \in v_j | \varphi\}$) = = bound(φ) $\cup \{v_i\}$.

For technical reasons we will be interested in terms and formulas in which

- no bound variable occurs free,
- every free variable occurs exactly once.

Such terms and formulas are called tidy; with tidy formulas one avoids having to deal with the interpretation of one free variable at different positions within a formula.

An assignment for a term t or formula φ is a finite sequence $a: k \to V$ so that for every free variable v_i of t or φ we have i < k; a(i) will be the *interpretation* of v_i . The value of t or the truth value of φ is determined by the assignment a. We write t[a] and $\varphi[a]$ for the values of t und φ under the assignment a.

Concerning the constructible hierarchy L, it is shown by an easy induction on γ that every element of L_{γ} is the interpretation $t[(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})]$ of some *tidy* term t with an assignment $(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})$ whose values are constructible levels L_{γ_i} with $\gamma_0, ..., \gamma_{k-1} < \gamma$. This will allow to reduce bounded quantifications $\forall v \in L_{\gamma}$ or $\exists v \in L_{\gamma}$ to the substitution of terms of lesser complexity. Moreover, the truth of (bounded) formulas in L is captured by *tidy* bounded formulas of the form $\varphi[(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})]$.

We shall code an assignment of the form $(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})$ by its sequence of ordinal indices, i.e., we write $t[(\gamma_0, \gamma_1, ..., \gamma_{k-1})]$ or $\varphi[(\gamma_0, \gamma_1, ..., \gamma_{k-1})]$ instead of $t[(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})]$ or $\varphi[(L_{\gamma_0}, L_{\gamma_1}, ..., L_{\gamma_{k-1}})]$. The relevant assignments are thus elements of $\operatorname{Ord}^{<\omega}$.

We define a bounded truth function W for the constructible hierarchy on the class

 $A = \{(a, \varphi) \mid a \in \operatorname{Ord}^{<\omega}, \varphi \text{ is a tidy bounded formula, free}(\varphi) \subseteq \operatorname{dom}(a)\}$

of all "tidy pairs" of assignments and formulas. Define the *bounded constructible* truth function $W: A \rightarrow 2$ by

$$W(a, \varphi) = 1$$
 iff $\varphi[a]$.

In [2] we showed:

Lemma 7. The bounded truth function W for the constructible universe is ordinal computable.

Restricting all considerations to α yields

Lemma 8. The bounded truth function $W \upharpoonright L_{\alpha}$ for L_{α} is α -computable.

This yields the Equivalence Theorem 1:

Lemma 9. If $A \subseteq \alpha$ is $\Sigma_1(L_\alpha)$ in parameters then A is α -computably enumerable. If $A \subseteq \alpha$ is $\Delta_1(L_\alpha)$ in parameters then A is α -computable.

Proof. Consider a $\Sigma_1(L_\alpha)$ -definition of $A \subseteq \alpha$:

 $\xi \in A \leftrightarrow \exists y \in L_{\alpha} \, L_{\alpha} \vDash \varphi[\xi, y, \vec{a}]$

where φ is a bounded formulas. This is equivalent to

$$\xi \in A \leftrightarrow \exists \beta < \alpha L_{\beta} \vDash \exists y \varphi[\xi, y, \vec{a}]$$

and

 $\xi \in A \leftrightarrow \exists \beta < \alpha W((\xi, \beta, \vec{a}), \varphi^*)$

where φ^* is an appropriate tidy formula.

Now A is α -computably enumerable, due to the following "search procedure": for $\xi < \alpha$ search for the smallest $\beta < \alpha$ such that

$$W((\xi, \beta, \vec{a}), \varphi^*);$$

if the search succeeds, stop, otherwise continue.

For the second part, let $A \subseteq \alpha$ be $\Delta_1(L_\alpha)$ in parameters. Then A and $\alpha \setminus A$ are α -computably enumerable. By standard arguments, A is α -computable.

5 Reducibilities

The above considerations can all be relativized to a given oracle set $B \subseteq \alpha$. One could, e.g., provide B on an extra input tape. This leads to a natural reducibility

 $A \prec B$ iff A is α -computable in B.

Note that so far we have not really used the admissibility of α but only that α is closed under ordinal multiplication. We obtain:

Proposition 10. $A \prec B$ iff A is $\Delta_1(L_\alpha(B))$ in parameters, where $(L_\delta(B))_{\delta \in \text{Ord}}$ is the constructible hierarchy relativized to B.

The α -recursion theory of [4] uses the following two reducibilities for subsets of α :

Definition 11.

a) A is weakly α -recursive in B, $A \leq_{w\alpha} B$, iff there exists an α -recursively enumerable set $R \subseteq L_{\alpha}$ such that for all $\gamma < \alpha$

$$\gamma \in A \ i\!f\!f \ \exists H \subseteq B \exists J \subseteq \alpha \setminus B \ (H, J, \gamma, 1) \in R$$

and

$$\gamma \notin A \text{ iff } \exists H \subseteq B \exists J \subseteq \alpha \setminus B (H, J, \gamma, 0) \in R.$$

b) A is α -recursive in B, $A \leq_{\alpha} B$, iff there exist α -recursively enumerable sets $R_0, R_1 \subseteq L_{\alpha}$ such that for all $K \in L_{\alpha}$

$$K \subseteq A \text{ iff } \exists H \subseteq B \exists J \subseteq \alpha \setminus B (H, J, K) \in R_0$$

and

$$K \subseteq \alpha \setminus A \text{ iff } \exists H \subseteq B \exists J \subseteq \alpha \setminus B (H, J, K) \in R_1.$$

It is easy to see that $A \leq_{\alpha} B$ implies $A \leq_{w\alpha} B$. If $A \leq_{w\alpha} B$ then an inspection of the conditions an part a) of the definition shows immediately that A is $\Delta_1(L_{\alpha}(B))$, i.e., $A \prec B$, which proves Theorem 2.

We conjecture that POST's problem holds for \prec : there are α -computably enumerable sets $A, B \subseteq \alpha$ such that

$$A \not\prec B$$
 and $B \not\prec A$.

This would immediately yield the SACKS-SIMPSON theorem [5]

 $A \not\leq_{w\alpha} B$ and $B \not\leq_{w\alpha} A$

which is the positive solution to POST's problem in α -recursion theory.

Bibliography

- Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984.
- [2] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic, 11:377–397, 2005.
- [3] Peter Koepke and Ryan Siders. Register computations on ordinals. *submitted to:* Archive for Mathematical Logic, 14 pages, 2006.
- [4] Gerald E. Sacks. *Higher Recursion Theory*. Perspectives in Mathematical Logic. Springer-Verlag, Berlin Heidelberg, 1990.
- [5] Gerald E. Sacks and Stephen G. Simpson. The α -finite injury method. Annals of Mathematical Logic, 4:343–367, 1972.