α-Recursion Theory and Ordinal Computability

by Peter Koepke
University of Bonn

13.2.2007

Abstract

Motivated by a talk of S.D.Friedman at BIWOC we show that the α-recursive and α-recursively enumerable sets of G. SACKS's α-recursion theory are exactly those sets that are recursive and recursively enumerable by an ordinal Turing machines with tapes of length α and time bound α.

1 Introduction.

α-Recursion theory is a branch of higher recursion theory that was developed by G. Sacks and his school between 1965 and 1980. SaCKS gave the following characterization [4]:
α-recursion theory lifts classical recursion theory from ω to an arbitrary Σ_{1} admissible ordinal α. Many of the classical results lift to every α by means of recursive approximations and fine structure techniques.

The lifting is based on the observation that a set $A \subseteq \omega$ is recursively enumerable iff it is Σ_{1} definable over $\left(H_{\omega}, \in\right)$, the set of all hereditarily finite sets. By analogy, a set $A \subseteq \alpha$ is called α-recursively enumerable iff it is $\Sigma_{1}\left(L_{\alpha}\right)$, i.e., definable in parameters over $\left(L_{\alpha}, \in\right)$ where L_{α} is the α-th level of Gödel's constructible hierarchy. Consequently a set $A \subseteq \alpha$ is said to be α-recursive iff it is $\boldsymbol{\Delta}_{1}\left(L_{\alpha}\right)$. Sacks discusses the "computational character" of $\boldsymbol{\Sigma}_{1}\left(L_{\alpha}\right)$-definitions [4]:

The definition of f can be thought of as a process. At stage δ it is assumed that all activity at previous stages is encapsulated in an α finite object, $s \upharpoonright \delta$. In general it will be necessary to search through L_{α} for some existential witness ... [emphases by P.K.].

In this note we address the question whether it is possible to base α-recursion theory on some idealized computational model.

Let us fix an admissible ordinal $\alpha, \omega<\alpha \leqslant \infty$ for the rest of this paper. A standard Turing computation may be visualized as a time-like sequence of elementary read-write-move operations carried out by "heads" on "tapes". The sequence of actions is determined by the initial tape contents and by a finite Turing program. We may assume that the Turing machine acts on a tape whose cells are indexed by the set $\omega(=\mathbb{N})$ of natural numbers $0,1, \ldots$ and contain 0 's or 1's. A computation takes place in $\omega \times \omega$ "spacetime":

		S P A C E									
		0	1	2	3	4	5	6	7	\ldots	\ldots
	0	1	0	0	1	1	1	0	0	0	0
	1	0	0	0	1	1	1	0	0		
	2	0	0	0	1	1	1	0	0		
	3	0	0	1	1	1	1	0	0		
	4	0	1	1	1	1	1	0	0		
	\vdots										
	n	1	1	1	1	0	1	1	1		
	$n+1$	1	1	1	1	1	1	1	1		
	\vdots										

A standard TURING computation. Head positions are indicated by shading.
Let us now generalize TURING computations from $\omega \times \omega$ to an $\alpha \times \alpha$ spacetime: consider Turing tapes whose cells are indexed by $\alpha=$ the set of all ordinals $<\alpha$) and calculations which are sequences of elementary tape operations indexed by ordinals $<\alpha$. For successor times, calculations will basically be defined as for standard Turing machines. At limit times tape contents, program states and head positions are defined by inferior limits.

A computation of an α-TURING machine.

This leads to an α-computability theory with natural notions of α-computable and α-computably enumerable subsets of α. We show that α-computability largely agrees with α-recursion theory:

Theorem 1. Consider a set $A \subseteq \alpha$. Then
a) A is α-recursive iff A is α-computable.
b) A is α-recursively enumerable iff A is α-computably enumerable.

One can also define what it means for $A \subseteq \alpha$ to be α-computable in an oracle $B \subseteq$ α and develop a theory of α-degrees. The reduction by α-computation is coarser than the standard reducibility used in α-recursion theory:

Theorem 2. Consider sets $A, B \subseteq \alpha$ such that A is weakly α-recursive in B. Then A is α-computable in B.

The relationship between ordinal Turing machines and the constructible model L was studied before [2]. We shall make use of those results by restricting them to α. It should be noted that we could have worked with ordinal register machines instead of Turing machines to get the same results [3]. The present work was inspired by S.D.Friedman's talk on α-recursion theory at the BIWOC workshop.

$2 \boldsymbol{\alpha}$-Turing Machines

The intuition of an α-Turing machine can be formalized by restricting the definitions of [2] to α.

Definition 3.

a) A command is a 5-tuple $C=\left(s, c, c^{\prime}, m, s^{\prime}\right)$ where $s, s^{\prime} \in \omega$ and $c, c^{\prime}, m \in\{0$, $1\}$; the natural number s is the state of the command C. The intention of the command C is that if the machine is in state s and reads the symbol c under its read-write head, then it writes the symbol c^{\prime}, moves the head left if $m=0$ or right if $m=1$, and goes into state s^{\prime}. States correspond to the "line numbers" of some programming languages.
b) A program is a finite set P of commands satisfying the following structural conditions:
i. If $\left(s, c, c^{\prime}, m, s^{\prime}\right) \in P$ then there is $\left(s, d, d^{\prime}, n, t^{\prime}\right) \in P$ with $c \neq d$; thus in state s the machine can react to reading a " 0 " as well as to reading a " 1 ".
ii. If $\left(s, c, c^{\prime}, m, s^{\prime}\right) \in P$ and $\left(s, c, c^{\prime \prime}, m^{\prime}, s^{\prime \prime}\right) \in P$ then $c^{\prime}=c^{\prime \prime}, m=m^{\prime}$, $s^{\prime}=s^{\prime \prime}$; this means that the course of the computation is completely determined by the sequence of program states and the initial cell contents.
c) For a program P let

$$
\operatorname{states}(P)=\left\{s \mid\left(s, c, c^{\prime}, m, s^{\prime}\right) \in P\right\}
$$

be the set of program states.

Definition 4. Let P be a program. A triple

$$
S: \theta \rightarrow \omega, H: \theta \rightarrow \alpha, T: \theta \rightarrow\left({ }^{\alpha} 2\right)
$$

is an α-computation by P iff the following hold:
a) θ is a successor ordinal $<\alpha$ or $\theta=\alpha$; θ is the length of the computation.
b) $S(0)=H(0)=0$; the machine starts in state 0 with head position 0 .
c) If $t<\theta$ and $S(t) \notin \operatorname{state}(P)$ then $\theta=t+1$; the machine stops if the machine state is not a program state of P.
d) If $t<\theta$ and $S(t) \in \operatorname{state}(P)$ then $t+1<\theta$; choose the unique command (s, $\left.c, c^{\prime}, m, s^{\prime}\right) \in P$ with $S(t)=s$ and $T(t)_{H(t)}=c$; this command is executed as follows:

$$
\begin{aligned}
T(t+1)_{\xi} & =\left\{\begin{array}{l}
c^{\prime}, \text { if } \xi=H(t) ; \\
T(t)_{\xi}, \text { else; }
\end{array}\right. \\
S(t+1) & =s^{\prime} ; \\
H(t+1) & =\left\{\begin{array}{l}
H(t)+1, \text { if } m=1 ; \\
H(t)-1, \text { if } m=0 \text { and } H(t) \text { is a successor ordinal; } \\
0, \text { else. }
\end{array}\right.
\end{aligned}
$$

e) If $t<\theta$ is a limit ordinal, the machine constellation at t is determined by taking inferior limits:

$$
\begin{aligned}
\forall \xi \in \operatorname{Ord} T(t)_{\xi} & =\liminf _{r \rightarrow t} T(r)_{\xi} ; \\
S(t) & =\liminf _{r \rightarrow t}^{\liminf } S(r) \\
H(t) & =\underset{s \rightarrow t, S(s)=S(t)}{\liminf ^{2}} H(s) .
\end{aligned}
$$

The α-computation is obviously recursively determined by the initial tape contents $T(0)$ and the program P. We call it the α-computation by P with input $T(0)$. If the α-computation stops, $\theta=\beta+1$ is a successor ordinal and $T(\beta)$ is the final tape content. In this case we say that P computes $T(\beta)$ from $T(0)$ and write P : $T(0) \mapsto T(\beta)$.

Sets $A \subseteq \alpha$ may be coded by their characteristic functions $\chi_{A}: \alpha \rightarrow 2, \chi_{x}(\xi)=1$ iff $\xi \in A$.

Definition 5. A partial function $F: \alpha \rightharpoonup \alpha$ is α-computable iff there is a program P and a finite set $p \subseteq \alpha$ of parameters such that for all $\delta<\alpha$:

- if $\delta \in \operatorname{dom}(F)$ then the α-computation with initial tape contents $T(0)=$ $\chi_{p \cup\{2 . \delta\}}$ stops and $P: \chi_{p \cup\{2 . \delta\}} \mapsto \chi_{\{F(\delta)\}}$; note that we use "even" ordinals to code the input δ, the parameter set p would typically consist of "odd" ordinals;
- if $\delta \notin \operatorname{dom}(F)$ then the α-computation with initial tape contents $T(0)=$ $\chi_{p \cup\{2 . \delta\}}$ does not stop.
A set $A \subseteq \alpha$ is α-computable iff its characteristic function $\chi_{A}: \alpha \rightarrow 2$ is α-computable. A set $A \subseteq \alpha$ is α-computably enumerable iff $A=\operatorname{dom}(F)$ for some α computable partial function $F: \alpha \rightharpoonup 2$.

3α-computations inside L_{α}

In general, recursion theory subdivides recursions and definitions into minute elementary computation steps. Thus computations are highly absolute between models of (weak) set theories and we get:

Lemma 6. Let P be a program and let $T(0): \alpha \rightarrow 2$ be an initial tape content which is Σ_{1}-definable in $\left(L_{\alpha}, \in\right)$ from parameters. Let $S: \theta \rightarrow \omega, H: \theta \rightarrow \alpha, T: \theta \rightarrow$ $\left({ }^{\alpha} 2\right)$ be the α-computation by P with input $T(0)$. Then:
a) S, H, T is the α-computation by P with input $T(0)$ as computed in the model $\left(L_{\alpha}, \in\right)$.
b) S, H, T are Σ_{1}-definable in $\left(L_{\alpha}, \in\right)$ from parameters.
c) If $A \subseteq \alpha$ is α-recursively enumerable then it is $\Sigma_{1}\left(L_{\alpha}\right)$ in parameters.
d) If $A \subseteq \alpha$ is α-recursive then it is $\Delta_{1}\left(L_{\alpha}\right)$ in parameters.

So we have proved one half of the Equivalence Theorem 1.

4 The bounded truth predicate for L_{α}

For the converse we have to analyse Kurt Gödel's constructible hierarchy using ordinal computability. The inner model L of constructible sets is defined as the union of a hierarchy of levels L_{δ} :

$$
L=\bigcup_{\delta \in \mathrm{Ord}} L_{\delta}
$$

where the hierarchy is defined by: $L_{0}=\emptyset, L_{\delta}=\bigcup_{\gamma<\delta} L_{\gamma}$ for limit ordinals δ, and $L_{\gamma+1}=$ the set of all sets which are first-order definable with parameters in the structure $\left(L_{\gamma}, \in\right)$. The standard reference to the theory of the model L is the book [1] by K. Devlin. We consider in particular the model

$$
L_{\alpha}=\bigcup_{\gamma<\alpha} L_{\gamma}
$$

To make L_{α} accessible to an α-TURING machine we introduce a language with symbols $(),,\{\},, \mid, \in,=, \wedge, \neg, \forall, \exists$ and variables v_{0}, v_{1}, \ldots. Define (bounded) formulas and (bounded) terms by a common recursion on the lenghts of words formed from these symbols:

- the variables v_{0}, v_{1}, \ldots are terms;
- if s and t are terms then $s=t$ and $s \in t$ are formulas;
- if φ and ψ are formulas then $\neg \varphi,(\varphi \wedge \psi), \forall v_{i} \in v_{j} \varphi$ and $\exists v_{i} \in v_{j} \varphi$ are formulas;
- if φ is a formula then $\left\{v_{i} \in v_{j} \mid \varphi\right\}$ is a term.

For terms and formulas of this language define free and bound variables:

- $\operatorname{free}\left(v_{i}\right)=\left\{v_{i}\right\}$, bound $\left(v_{i}\right)=\emptyset$;
$-\quad$ free $(s=t)=$ free $(s \in t)=$ free $(s) \cup$ free (t);
$-\quad \operatorname{bound}(s=t)=\operatorname{bound}(s \in t)=\operatorname{bound}(s) \cup \operatorname{bound}(t)$;
$-\quad \operatorname{free}(\neg \varphi)=\operatorname{free}(\varphi), \operatorname{bound}(\neg \varphi)=\operatorname{bound}(\varphi)$;
$-\quad \operatorname{free}((\varphi \wedge \psi))=\operatorname{free}(\varphi) \cup \operatorname{free}(\psi), \operatorname{bound}((\varphi \wedge \psi))=\operatorname{bound}(\varphi) \cup \operatorname{bound}(\psi)$;
$-\quad \operatorname{free}\left(\forall v_{i} \in v_{j} \varphi\right)=\operatorname{free}\left(\exists v_{i} \in v_{j} \varphi\right)=\operatorname{free}\left(\left\{v_{i} \in v_{j} \mid \varphi\right\}\right)=\left(\right.$ free $\left.(\varphi) \cup\left\{v_{j}\right\}\right) \backslash\left\{v_{i}\right\}$;
$-\quad \operatorname{bound}\left(\forall v_{i} \in v_{j} \varphi\right)=\operatorname{bound}\left(\exists v_{i} \in v_{j} \varphi\right)=\operatorname{bound}\left(\left\{v_{i} \in v_{j} \mid \varphi\right\}\right)=$ $=\operatorname{bound}(\varphi) \cup\left\{v_{i}\right\}$.
For technical reasons we will be interested in terms and formulas in which
- no bound variable occurs free,
- every free variable occurs exactly once.

Such terms and formulas are called tidy; with tidy formulas one avoids having to deal with the interpretation of one free variable at different positions within a formula.

An assignment for a term t or formula φ is a finite sequence $a: k \rightarrow V$ so that for every free variable v_{i} of t or φ we have $i<k ; a(i)$ will be the interpretation of v_{i}. The value of t or the truth value of φ is determined by the assignment a. We write $t[a]$ and $\varphi[a]$ for the values of t und φ under the assignment a.

Concerning the constructible hierarchy L, it is shown by an easy induction on γ that every element of L_{γ} is the interpretation $t\left[\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)\right]$ of some tidy term t with an assignment $\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)$ whose values are constructible levels $L_{\gamma_{i}}$ with $\gamma_{0}, \ldots, \gamma_{k-1}<\gamma$. This will allow to reduce bounded quantifications $\forall v \in L_{\gamma}$ or $\exists v \in L_{\gamma}$ to the substitution of terms of lesser complexity. Moreover, the truth of (bounded) formulas in L is captured by tidy bounded formulas of the form $\varphi\left[\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)\right]$.

We shall code an assignment of the form $\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)$ by its sequence of ordinal indices, i.e., we write $t\left[\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}\right)\right]$ or $\varphi\left[\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}\right)\right]$ instead of $t\left[\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)\right]$ or $\varphi\left[\left(L_{\gamma_{0}}, L_{\gamma_{1}}, \ldots, L_{\gamma_{k-1}}\right)\right]$. The relevant assignments are thus elements of Ord ${ }^{<\omega}$.

We define a bounded truth function W for the constructible hierarchy on the class

$$
A=\left\{(a, \varphi) \mid a \in \operatorname{Ord}^{<\omega}, \varphi \text { is a tidy bounded formula, } \operatorname{free}(\varphi) \subseteq \operatorname{dom}(a)\right\}
$$

of all "tidy pairs" of assignments and formulas. Define the bounded constructible truth function $W: A \rightarrow 2$ by

$$
W(a, \varphi)=1 \text { iff } \varphi[a] .
$$

In [2] we showed:
Lemma 7. The bounded truth function W for the constructible universe is ordinal computable.

Restricting all considerations to α yields
Lemma 8. The bounded truth function $W \upharpoonright L_{\alpha}$ for L_{α} is α-computable.
This yields the Equivalence Theorem 1:
Lemma 9. If $A \subseteq \alpha$ is $\Sigma_{1}\left(L_{\alpha}\right)$ in parameters then A is α-computably enumerable. If $A \subseteq \alpha$ is $\Delta_{1}\left(L_{\alpha}\right)$ in parameters then A is α-computable.

Proof. Consider a $\Sigma_{1}\left(L_{\alpha}\right)$-definition of $A \subseteq \alpha$:

$$
\xi \in A \leftrightarrow \exists y \in L_{\alpha} L_{\alpha} \vDash \varphi[\xi, y, \vec{a}]
$$

where φ is a bounded formulas. This is equivalent to

$$
\xi \in A \leftrightarrow \exists \beta<\alpha L_{\beta} \vDash \exists y \varphi[\xi, y, \vec{a}]
$$

and

$$
\xi \in A \leftrightarrow \exists \beta<\alpha W\left((\xi, \beta, \vec{a}), \varphi^{*}\right)
$$

where φ^{*} is an appropriate tidy formula.
Now A is α-computably enumerable, due to the following "search procedure": for $\xi<\alpha$ search for the smallest $\beta<\alpha$ such that

$$
W\left((\xi, \beta, \vec{a}), \varphi^{*}\right) ;
$$

if the search succeeds, stop, otherwise continue.
For the second part, let $A \subseteq \alpha$ be $\Delta_{1}\left(L_{\alpha}\right)$ in parameters. Then A and $\alpha \backslash A$ are α-computably enumerable. By standard arguments, A is α-computable.

5 Reducibilities

The above considerations can all be relativized to a given oracle set $B \subseteq \alpha$. One could, e.g., provide B on an extra input tape. This leads to a natural reducibility

$$
A \prec B \text { iff } A \text { is } \alpha \text {-computable in } B \text {. }
$$

Note that so far we have not really used the admissibility of α but only that α is closed under ordinal multiplication. We obtain:

Proposition 10. $A \prec B$ iff A is $\Delta_{1}\left(L_{\alpha}(B)\right)$ in parameters, where $\left(L_{\delta}(B)\right)_{\delta \in \operatorname{Ord}}$ is the constructible hierarchy relativized to B.

The α-recursion theory of [4] uses the following two reducibilities for subsets of α :

Definition 11.

a) A is weakly α-recursive in $B, A \leqslant_{w \alpha} B$, iff there exists an α-recursively enumerable set $R \subseteq L_{\alpha}$ such that for all $\gamma<\alpha$

$$
\gamma \in A \text { iff } \exists H \subseteq B \exists J \subseteq \alpha \backslash B(H, J, \gamma, 1) \in R
$$

and

$$
\gamma \notin A \text { iff } \exists H \subseteq B \exists J \subseteq \alpha \backslash B(H, J, \gamma, 0) \in R .
$$

b) A is α-recursive in $B, A \leqslant{ }_{\alpha} B$, iff there exist α-recursively enumerable sets $R_{0}, R_{1} \subseteq L_{\alpha}$ such that for all $K \in L_{\alpha}$

$$
K \subseteq A \text { iff } \exists H \subseteq B \exists J \subseteq \alpha \backslash B(H, J, K) \in R_{0}
$$

and

$$
K \subseteq \alpha \backslash A \text { iff } \exists H \subseteq B \exists J \subseteq \alpha \backslash B(H, J, K) \in R_{1} .
$$

It is easy to see that $A \leqslant_{\alpha} B$ implies $A \leqslant_{w \alpha} B$. If $A \leqslant_{w \alpha} B$ then an inspection of the conditions an part a) of the definition shows immediately that A is $\Delta_{1}\left(L_{\alpha}(B)\right)$, i.e., $A \prec B$, which proves Theorem 2.

We conjecture that Post's problem holds for \prec : there are α-computably enumerable sets $A, B \subseteq \alpha$ such that

$$
A \nprec B \text { and } B \nprec A .
$$

This would immediately yield the Sacks-Simpson theorem [5]

$$
A \not \nless w \alpha B \text { and } B \not \star_{w \alpha} A
$$

which is the positive solution to Post's problem in α-recursion theory.

Bibliography

[1] Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984.
[2] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic, 11:377-397, 2005.
[3] Peter Koepke and Ryan Siders. Register computations on ordinals. submitted to: Archive for Mathematical Logic, 14 pages, 2006.
[4] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin Heidelberg, 1990.
[5] Gerald E. Sacks and Stephen G. Simpson. The α-finite injury method. Annals of Mathematical Logic, 4:343-367, 1972.

