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Abstract

Motivated by a talk of S . D. Friedman at BIWOC we show that the α-recur-
sive and α-recursively enumerable sets of G. Sacks ’ s α-recursion theory are
exactly those sets that are recursive and recursively enumerable by an
ordinal Turing machines with tapes of length α and time bound α .

1 Introduction.
α-Recursion theory is a branch of higher recursion theory that was developed by
G. Sacks and his school between 1 965 and 1 980. Sacks gave the following char-
acterization [4] :

α-recursion theory lifts classical recursion theory from ω to an arbi-
trary Σ 1 admissible ordinal α . Many of the classical results lift to
every α by means of recursive approximations and fine structure
techniques.

The lifting is based on the observation that a set A ⊆ ω is recursively enumer-
able iff it is Σ 1 definable over (Hω , ∈ ) , the set of all hereditarily finite sets. By
analogy, a set A ⊆ α is called α-recursively enumerable iff it is Σ 1 (Lα) , i . e. , defin-
able in parameters over (Lα , ∈ ) where Lα is the α-th level of Gödel ’ s con-
structible hierarchy. Consequently a set A ⊆ α is said to be α-recursive iff it is
∆ 1 (Lα) . Sacks discusses the “computational character” of Σ 1 (Lα) -definitions [ 4] :

The definition of f can be thought of as a process . At stage δ it is
assumed that all activity at previous stages is encapsulated in an α-
finite object, s � δ . In general it will be necessary to search through
Lα for some existential witness . . . [ emphases by P.K. ] .

In this note we address the question whether it is possible to base α-recursion
theory on some idealized computational model.

Let us fix an admissible ordinal α , ω < α 6 ∞ for the rest of this paper. A
standard Turing computation may be visualized as a time-like sequence of ele-
mentary read-write-move operations carried out by “heads” on “tapes”. The
sequence of actions is determined by the initial tape contents and by a finite
Turing program . We may assume that the Turing machine acts on a tape
whose cells are indexed by the set ω ( = N) of natural numbers 0 , 1 , � and contain
0 ’ s or 1 ’ s. A computation takes place in ω × ω “spacetime”:
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S P A C E
0 1 2 3 4 5 6 7 � �

0 1 0 0 1 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0

T 2 0 0 0 1 1 1 0 0
I 3 0 0 1 1 1 1 0 0
M 4 0 1 1 1 1 1 0 0
E

�

n 1 1 1 1 0 1 1 1
n + 1 1 1 1 1 1 1 1 1

�

A standard Turing computation. Head positions are indicated by shading.

Let us now generalize Turing computations from ω × ω to an α × α space-
time: consider Turing tapes whose cells are indexed by α ( = the set of all ordi-
nals < α) and calculations which are sequences of elementary tape operations
indexed by ordinals < α . For successor times, calculations will basically be
defined as for standard Turing machines. At limit times tape contents, program
states and head positions are defined by inferior limits .

S p a c e α

0 1 2 3 4 5 6 7 � � ω � θ θ � �

0 1 1 0 1 0 0 1 1 � � 1 � 1 0 0 0
1 0 1 0 1 0 0 1 1 1

T 2 0 0 0 1 0 0 1 1 1
i 3 0 0 0 1 0 0 1 1 1
m 4 0 0 0 0 0 0 1 1 1
e

�

n 1 1 1 1 0 1 0 1 1
α n+1 1 1 1 1 1 1 0 1 1

� � � � � �

ω 0 0 1 0 0 0 1 1 � � 1
ω + 1 0 0 1 0 0 0 1 1 0

�

θ < α 1 0 0 1 1 1 1 0 � � � � 0 � � �

� � � � �

�

A computation of an α-Turing machine .

This leads to an α-computability theory with natural notions of α-computable
and α-computably enumerable subsets of α . We show that α-computability largely
agrees with α-recursion theory:
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Theorem 1 . Consider a set A ⊆ α . Then

a ) A is α-recursive iffA is α-computable .

b ) A is α-recursively enumerable iffA is α-computably enumerable .

One can also define what it means for A ⊆ α to be α-computable in an oracle B ⊆
α and develop a theory of α-degrees . The reduction by α-computation is coarser
than the standard reducibility used in α-recursion theory:

Theorem 2. Consider sets A , B ⊆ α such that A is weakly α-recursive in B .
Then A is α-computable in B .

The relationship between ordinal Turing machines and the constructible
model L was studied before [ 2 ] . We shall make use of those results by restricting
them to α . It should be noted that we could have worked with ordinal register
machines instead of Turing machines to get the same results [ 3] . The present
work was inspired by S . D. Friedman ’ s talk on α-recursion theory at the BIWOC
workshop.

2 α -Turing Machines

The intuition of an α-Turing machine can be formalized by restricting the defi-
nitions of [ 2 ] to α .

Definition 3.

a ) A command is a 5-tuple C= ( s , c , c ′, m , s ′) where s , s ′ ∈ ω and c , c ′, m ∈ {0 ,
1 } ; the natural number s is the state of the command C. The intention of
the command C is that if the machine is in state s and reads the symbol c
under its read-write head, then it writes the symbol c ′ , moves the head left
if m = 0 or right if m = 1 , and goes into state s ′. States correspond to
the “line numbers” of some programming languages.

b ) A program is a finite set P of commands satisfying the following structural
conditions:

i. If ( s , c , c ′, m , s ′) ∈ P then there is ( s , d , d ′ , n , t ′) ∈ P with c � d; thus
in state s the machine can react to reading a “ 0” as well as to
reading a “ 1 ”.

ii. If ( s , c , c ′ , m , s ′) ∈ P and ( s , c , c ′′, m ′ , s ′′) ∈ P then c ′ = c ′′ , m = m ′,
s ′ = s ′′ ; this means that the course of the computation is completely
determined by the sequence of program states and the initial cel l
contents.

c ) For a program P let

states(P ) = { s | ( s , c , c ′, m , s ′) ∈ P }
be the set of program states .

α -Turing Machines 3



Definition 4. Let P be a program. A triple

S : θ→ ω , H : θ→ α , T : θ→ ( α2 )

is an α- computation by P iff the following hold:

a ) θ is a successor ordinal < α or θ = α; θ is the length of the computation.

b ) S( 0) = H ( 0) = 0 ; the machine starts in state 0 with head position 0 .

c ) If t < θ and S ( t) � state(P) then θ = t + 1 ; the machine stops if the
machine state is not a program state ofP.

d ) If t < θ and S( t) ∈ state(P ) then t + 1 < θ; choose the unique command ( s ,
c , c ′ , m , s ′) ∈ P with S( t) = s and T( t)H( t) = c; this command is executed as
follows:

T( t + 1 ) ξ =

{
c ′ , if ξ = H ( t) ;
T( t) ξ , e lse;

S( t + 1 ) = s ′ ;

H ( t + 1 ) =




H ( t) + 1 , ifm = 1 ;
H ( t) − 1 , ifm = 0 and H( t) is a successor ordinal;
0 , e lse .

e ) If t < θ is a limit ordinal, the machine constel lation at t is determined by
taking inferior limits:

∀ξ ∈ Ord T( t) ξ = liminf
r→ t

T( r) ξ ;

S( t) = liminf
r→ t

S( r) ;

H ( t) = liminf
s→ t , S( s ) =S( t)

H( s ) .

The α-computation is obviously recursively determined by the initial tape contents
T( 0) and the program P. We call it the α- computation by P with input T( 0) . If
the α-computation stops, θ = β + 1 is a successor ordinal and T( β) is the final
tape content. In this case we say that P computes T( β) from T( 0) and write P :
T( 0) � T( β) .

Sets A ⊆ α may be coded by their characteristic functions χA : α→ 2 , χx( ξ) = 1
iff ξ ∈ A .

Definition 5. A partial function F : α ⇀ α is α- computable iff there is a program
P and a finite set p⊆ α of parameters such that for all δ < α :

− if δ ∈ dom(F) then the α-computation with initial tape contents T( 0) =
χp∪ {2 · δ } stops and P : χp∪ {2 · δ } � χ {F( δ) } ; note that we use “even” ordinals to
code the input δ, the parameter set p would typical ly consist of “odd” ordi-
nals;

− if δ � dom(F) then the α-computation with initial tape contents T( 0) =
χp∪ {2 · δ } does not stop.
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A set A ⊆ α is α- computable iff its characteristic function χA : α → 2 is α-com-
putable . A set A ⊆ α is α- computably enumerable iff A = dom(F) for some α-
computable partial function F : α⇀ 2 .

3 α-computations inside Lα
In general, recursion theory subdivides recursions and definitions into minute ele-
mentary computation steps. Thus computations are highly absolute between
models of (weak) set theories and we get:

Lemma 6. Let P be a program and let T( 0) : α → 2 be an initial tape content
which is Σ 1 -definable in (Lα , ∈ ) from parameters. Let S : θ→ ω , H : θ→ α , T : θ→
( α2 ) be the α-computation by P with input T( 0) . Then:

a ) S , H , T is the α-computation by P with input T( 0) as computed in the
model (Lα , ∈ ) .

b ) S , H , T are Σ 1 -definable in (Lα , ∈ ) from parameters.

c ) IfA ⊆ α is α-recursively enumerable then it is Σ 1 (Lα) in parameters.

d ) IfA ⊆ α is α-recursive then it is ∆ 1 (Lα) in parameters.

So we have proved one half of the Equivalence Theorem 1 .

4 The bounded truth predicate for Lα
For the converse we have to analyse Kurt Gödel ’ s constructible hierarchy using
ordinal computability. The inner model L of constructib le sets is defined as the
union of a hierarchy of levels Lδ :

L =
⋃

δ∈Ord

Lδ

where the hierarchy is defined by: L0 = ∅ , Lδ =
⋃

γ< δ
Lγ for limit ordinals δ , and

Lγ+1 = the set of all sets which are first-order definable with parameters in the
structure (Lγ , ∈ ) . The standard reference to the theory of the model L is the
book [ 1 ] by K. Devlin . We consider in particular the model

Lα =
⋃

γ< α

Lγ

To make Lα accessible to an α-Turing machine we introduce a language with
symbols ( , ) , { , } , | , ∈ , = , ∧ , ¬ , ∀, ∃ and variables v0 , v1 , � . Define ( bounded ) for-
mulas and ( bounded ) terms by a common recursion on the lenghts of words
formed from these symbols:

− the variables v0 , v1 , � are terms;

− if s and t are terms then s = t and s ∈ t are formulas;
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− if ϕ and ψ are formulas then ¬ϕ , ( ϕ ∧ ψ) , ∀vi ∈ vj ϕ and ∃vi ∈ vj ϕ are for-
mulas;

− if ϕ is a formula then {vi ∈ vj | ϕ } is a term.

For terms and formulas of this language define free and bound variab les :

− free( vi) = {vi} , bound( vi) = ∅ ;
− free( s = t) = free( s ∈ t) = free( s ) ∪ free( t) ;
− bound( s = t) = bound( s ∈ t) = bound( s ) ∪ bound( t) ;

− free(¬ϕ ) = free( ϕ ) , bound(¬ϕ ) = bound( ϕ ) ;

− free( ( ϕ ∧ ψ) ) = free( ϕ ) ∪ free( ψ) , bound( ( ϕ ∧ ψ) ) = bound( ϕ ) ∪ bound( ψ) ;

− free(∀vi ∈ vjϕ ) = free( ∃vi ∈ vjϕ ) = free( {vi ∈ vj | ϕ } ) = ( free( ϕ ) ∪ {vj} ) \ {vi} ;
− bound(∀vi ∈ vjϕ ) = bound( ∃vi ∈ vjϕ ) = bound( {vi ∈ vj | ϕ } ) =

= bound( ϕ ) ∪ {vi} .
For technical reasons we will be interested in terms and formulas in which

− no bound variable occurs free,

− every free variable occurs exactly once.

Such terms and formulas are called tidy ; with tidy formulas one avoids having to
deal with the interpretation of one free variable at different positions within a for-
mula.

An assignment for a term t or formula ϕ is a finite sequence a : k → V so that
for every free variable vi of t or ϕ we have i < k ; a( i) will be the interpretation of
vi . The value of t or the truth value of ϕ is determined by the assignment a . We
write t[a ] and ϕ [ a ] for the values of t und ϕ under the assignment a .

Concerning the constructible hierarchy L , it is shown by an easy induction on
γ that every element of Lγ is the interpretation t[ (Lγ0

, Lγ1
, � , Lγk − 1

) ] of some tidy
term t with an assignment (Lγ0 , Lγ1 , � , Lγk − 1

) whose values are constructible
levels Lγi with γ0 , � , γk− 1 < γ . This will allow to reduce bounded quantifications
∀v ∈ Lγ or ∃v ∈ Lγ to the substitution of terms of lesser complexity. Moreover, the
truth of ( bounded) formulas in L is captured by tidy bounded formulas of the
form ϕ [ (Lγ0 , Lγ1 , � , Lγk − 1

) ] .
We shall code an assignment of the form (Lγ0

, Lγ1
, � , Lγk − 1

) by its sequence of
ordinal indices, i. e. , we write t[ ( γ0 , γ1 , � , γk− 1 ) ] or ϕ [ ( γ0 , γ1 , � , γk− 1 ) ] instead of
t[ (Lγ0 , Lγ1 , � , Lγk − 1

) ] or ϕ [ (Lγ0 , Lγ1 , � , Lγk − 1
) ] . The relevant assignments are thus

elements of Ord<ω.
We define a bounded truth function W for the constructible hierarchy on the

class

A = { ( a , ϕ ) | a ∈ Ord<ω , ϕ is a tidy bounded formula , free( ϕ ) ⊆ dom( a) }

of all “tidy pairs” of assignments and formulas. Define the bounded constructib le
truth function W : A→ 2 by

W ( a , ϕ ) = 1 iff ϕ [ a ] .
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In [ 2 ] we showed:

Lemma 7. The bounded truth function W for the constructib le universe is ordinal
computable .

Restricting all considerations to α yields

Lemma 8. The bounded truth function W � Lα for Lα is α-computable .

This yields the Equivalence Theorem 1 :

Lemma 9. IfA ⊆ α is Σ 1 (Lα) in parameters then A is α-computably enumerable .
IfA ⊆ α is ∆ 1 (Lα) in parameters then A is α-computable .

Proof. Consider a Σ 1 (Lα) -definition of A ⊆ α :
ξ ∈ A↔ ∃ y ∈ Lα Lα � ϕ [ ξ , y , a� ]

where ϕ is a bounded formulas. This is equivalent to

ξ ∈ A↔ ∃β < αLβ � ∃ yϕ [ ξ , y , a� ]

and

ξ ∈ A↔ ∃β < αW ( ( ξ , β , a� ) , ϕ∗)

where ϕ∗ is an appropriate tidy formula.
Now A is α-computably enumerable, due to the following “search procedure”:

for ξ < α search for the smallest β < α such that

W ( ( ξ , β , a� ) , ϕ∗) ;

if the search succeeds, stop, otherwise continue.
For the second part, let A ⊆ α be ∆ 1 (Lα) in parameters. Then A and α \ A are

α-computably enumerable. By standard arguments, A is α-computable. �

5 Reducibilities

The above considerations can all be relativized to a given oracle set B ⊆ α . One
could, e. g. , provide B on an extra input tape. This leads to a natural reducibility

A ≺ B iff A is α-computable in B.

Note that so far we have not really used the admissibility of α but only that α is
closed under ordinal multiplication. We obtain:

Proposition 10. A ≺ B iffA is ∆ 1 (Lα(B ) ) in parameters, where (Lδ(B ) ) δ∈Ord is
the constructib le hierarchy relativized to B .

The α-recursion theory of [4] uses the following two reducibilities for subsets
of α :

Reducibilities 7



Definition 1 1 .

a ) A is weakly α-recursive in B , A 6 wα B, iff there exists an α-recursively
enumerable set R ⊆ Lα such that for all γ < α

γ ∈ A iff ∃H ⊆ B∃J ⊆ α \ B (H, J , γ , 1 ) ∈ R
and

γ � A iff ∃H ⊆ B∃J ⊆ α \ B (H, J , γ , 0) ∈ R.

b ) A is α-recursive in B, A 6 α B , iff there exist α-recursively enumerable sets
R0 , R1 ⊆ Lα such that for all K ∈ Lα

K ⊆ A iff ∃H ⊆ B∃J ⊆ α \ B (H, J , K) ∈ R0

and

K ⊆ α \ A iff ∃H ⊆ B∃J ⊆ α \ B (H, J , K ) ∈ R1 .

It is easy to see that A 6 α B implies A 6 wα B . If A 6 wα B then an inspection of
the conditions an part a) of the definition shows immediately that A is
∆ 1 (Lα(B ) ) , i . e. , A ≺ B , which proves Theorem 2.

We conjecture that Post ’ s problem holds for ≺ : there are α-computably enu-
merable sets A , B ⊆ α such that

A ⊀ B and B ⊀ A .

This would immediately yield the Sacks-Simpson theorem [5]

A 
 wα B and B 
 wα A

which is the positive solution to Post ’ s problem in α-recursion theory.

Bibliography
[ 1 ] Keith Devlin. Constructib ility . Perspectives in Mathematical Logic. Springer-Verlag,

Berlin, 1 984.

[ 2 ] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic ,
1 1 : 377–397, 2005 .

[ 3] Peter Koepke and Ryan Siders. Register computations on ordinals. submitted to :
Archive for Mathematical Logic , 1 4 pages, 2006.

[ 4] Gerald E. Sacks. Higher Recursion Theory . Perspectives in Mathematical Logic.
Springer-Verlag, Berlin Heidelberg, 1 990.

[ 5 ] Gerald E. Sacks and Stephen G. Simpson. The α-finite injury method. Annals ofMath-
ematical Logic , 4: 343–367, 1 972 .

8 Section


