Violating the Singular Cardinals Hypothesis Without Large Cardinals^{*}

BY MOTI GITIK AND PETER KOEPKE

Version of August 20, 2010

Abstract

We extend a transitive model V of ZFC + GCH cardinal preservingly to a model N of ZF + "GCH holds below \aleph_{ω} " + "there is a surjection from the power set of \aleph_{ω} onto λ " where λ is an arbitrarily high fixed cardinal in V. The construction can roughly be described as follows: add \aleph_{n+1} many COHEN subsets of \aleph_{n+1} for every $n < \omega$, and adjoin λ many subsets of \aleph_{ω} which are unions of ω -sequences of those COHEN subsets; then let N be a choiceless submodel generated by equivalence classes of the λ subsets of \aleph_{ω} modulo an appropriate equivalence relation.

In [1], ARTHUR APTER and the second author constructed a model of ZF + "GCH holds below \aleph_{ω} " + "there is a surjection from $[\aleph_{\omega}]^{\omega}$ onto λ " where λ is an arbitrarily high fixed cardinal in the ground model V. This amounts to a strong *surjective* violation of the *singular cardinals hypothesis* SCH. The construction assumed a measurable cardinal in the ground model. It was also shown in [1] that a measurable cardinal in some inner model is necessary for that combinatorial property, using the DODD-JENSEN covering theorem [2].

The first author then noted that one can work without measurable cardinals if one considers surjections from $\mathcal{P}(\aleph_{\omega})$ onto λ instead of surjections from $[\aleph_{\omega}]^{\omega}$ onto λ :

Theorem 1. Let V be any ground model of ZFC + GCH and let λ be some cardinal in V. Then there is a cardinal preserving model $N \supseteq V$ of the theory ZF + "GCH holds below \aleph_{ω} " + "there is a surjection from $\mathcal{P}(\aleph_{\omega})$ onto λ ".

Note that in the presence of the axiom of choice (AC) the latter theory for $\lambda \ge \aleph_{\omega+2}$ has large consistency strength and implies the existence of measurable cardinals of high MITCHELL orders in some inner model (see [3] by the first author). The pcf-theory of SAHARON SHELAH [4] shows that the situation for $\lambda \ge \aleph_{\omega_4}$ is incompatible with AC. Hence Theorem 1 yields a choiceless violation of pcf-theory without the use of large cardinals.

^{*.} The second author was partly supported by ISF Grant 234/08.

The forcing

Fix a ground model V of ZFC + GCH and let λ be some regular cardinal in V. We first present two building blocks of our construction. The forcing $P_0 = (P_0, \supseteq, \emptyset)$ adjoins one COHEN subset of \aleph_{n+1} for every $n < \omega$.

$$P_0 = \{ p \mid \exists (\delta_n)_{n < \omega} \ (\forall n < \omega : \delta_n \in [\aleph_n, \aleph_{n+1}) \land p : \bigcup_{n < \omega} \ [\aleph_n, \delta_n) \to 2) \}$$

A standard product analysis proves that forcing with P_0 does not collapse cardinals. Adjoining one COHEN subset of \aleph_{n+1} for every $n < \omega$ is equivalent to adjoining \aleph_{n+1} -many by the following "two-dimensional" forcing $(P_*, \supseteq, \emptyset)$:

$$P_* = \{ p_* \mid \exists (\delta_n)_{n < \omega} \ (\forall n < \omega : \delta_n \in [\aleph_n, \aleph_{n+1}) \land p_* : \bigcup_{n < \omega} \ [\aleph_n, \delta_n)^2 \to 2) \}.$$

For $p_* \in P_*$ and $\xi \in [\aleph_0, \aleph_\omega)$ let $p_*(\xi) = \{(\beta, p_*(\xi, \zeta)) | (\xi, \zeta) \in \operatorname{dom}(p_*)\}$ be the ξ -th section of p_* .

The forcing employed in the subsequent construction is a kind of finite support product of λ copies of P_0 where the factors are eventually coupled via P_* .

Definition 2. Define the forcing (P, \leq_P, \emptyset) by:

$$\begin{split} P &= \{ (p_*, (a_i, p_i)_{i < \lambda}) \mid \exists (\delta_n)_{n < \omega} \exists D \in [\lambda]^{<\omega} \, (\forall n < \omega : \delta_n \in [\aleph_n, \aleph_{n+1}), \\ p_* : \bigcup_{n < \omega} [\aleph_n, \delta_n)^2 \to 2, \\ \forall i \in D : p_i : \bigcup_{n < \omega} [\aleph_n, \delta_n) \to 2 \land p_i \neq \emptyset, \\ \forall i \in D : a_i \in [\aleph_\omega \setminus \aleph_0]^{<\omega} \land \forall n < \omega : \operatorname{card}(a_i \cap [\aleph_n, \aleph_{n+1})) \leqslant 1, \\ \forall i \notin D \, (a_i = p_i = \emptyset)) \}. \end{split}$$

If $p = (p_*, (a_i, p_i)_{i < \lambda}) \in P$ then $p \in P_*$ and $p_i \in P_0$, with all but finitely many p_i being \emptyset . Extending p_i is controlled by linking ordinals $\xi \in a_i$. More specifically extending p_i in the interval $[\aleph_n, \aleph_{n+1})$ is controlled by $\xi \in a_i \cap [\aleph_n, \aleph_{n+1})$ if that intersection is nonempty. Let $\sup p(p) = \{i < \lambda | p_i \neq \emptyset\}$ be the support of $p = (p_*, (a_i, p_i)_{i < \lambda})$, i.e., the set D in the definition of P. P is partially ordered by

$$p' = (p'_*, (a'_i, p'_i)_{i < \lambda}) \leq_P (p_*, (a_i, p_i)_{i < \lambda}) = p$$

iff

- a) $p'_* \supseteq p_*, \forall i < \lambda (a'_i \supseteq a_i \land p'_i \supseteq p_i),$
- b) (Linking property) $\forall i < \lambda \forall n < \omega \forall \xi \in a_i \cap [\aleph_n, \aleph_{n+1}) \forall \zeta \in \operatorname{dom}(p'_i \setminus p_i) \cap [\aleph_n, \aleph_{n+1}):$ $p'_i(\zeta) = p'_*(\xi)(\zeta), and$
- c) (Independence property) $\forall j \in \operatorname{supp}(p) : (a'_j \setminus a_j) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a'_i = \emptyset.$
- $1 = (\emptyset, (\emptyset, \emptyset)_{i < \lambda})$ is the maximal element of P.

One may picture a condition $p \in P$ as

and an extension $(p'_*, (a'_i, p'_i)_{i < \lambda}) \leq_P (p_*, (a_i, p_i)_{i < \lambda})$ as

The gray areas indicate new 0-1-values in the extension $p' \leq_P p$, and the black areas indicate equality of new values forced by linking ordinals ξ .

Let G be a V-generic filter for P. Several generic objects can be extracted from G. It is easy to see that the set

$$G_* = \{ p_* \in P_* \mid (p_*, (a_i, p_i)_{i < \lambda}) \in G \}$$

is V-generic for the partial order P_* . Set $A_* = \bigcup G_*: \bigcup_{n < \omega} [\aleph_n, \aleph_{n+1})^2 \to 2$. For $\xi \in [\aleph_n, \aleph_{n+1})$ let

$$A_*(\xi) = \{(\zeta, A_*(\xi, \zeta)) | \zeta \in [\aleph_n, \aleph_{n+1})\} : [\aleph_n, \aleph_{n+1}) \to 2$$

be the (characteristic function of the) ξ -th new COHEN subset of \aleph_{n+1} in the generic extension.

For $i < \lambda$ let

$$A_i = \bigcup \{ p_i \mid (p_*, (a_j, p_j)_{j < \lambda}) \in G \} : [\aleph_0, \aleph_\omega) \to 2$$

be the (characteristic function of the) *i*-th subset of \aleph_{ω} adjoined by the forcing *P*. A_i is *V*-generic for the forcing P_0 .

By the linking property b) of Definition 2, on a final segment, the characteristic functions $A_i \upharpoonright [\aleph_n, \aleph_{n+1})$ will be equal to some $A_*(\xi)$. The independence property c) ensures that sets $A_i, A_j \subseteq \aleph_{\omega}$ with $i \neq j$ correspond to eventually disjoint, "parallel" paths through the forcing P_* .

The generic filter and the extracted generic objects may be pictured as follows. Black colour indicates agreement between parts of the A_i and of A_* ; for each $i < \lambda$, some end-segment of $A_i \cap \aleph_{n+1}$ occurs as an endsegment of some vertical cut in $A_* \cap \aleph_{n+1}^2$.

Lemma 3. *P* satisfies the $\aleph_{\omega+2}$ -chain condition.

Proof. Let $\{(p_*^j, (a_i^j, p_i^j)_{i < \lambda}) | j < \aleph_{\omega+2}\} \subseteq P$. We shall show that two elements of the sequence are compatible. Since

$$\operatorname{card}(P_*) = \operatorname{card}(P_0) \leq 2^{\aleph_\omega} = \aleph_{\omega+1}$$

we may assume that there is $p_* \in P_*$ such that $\forall j < \aleph_{\omega+2}: p_*^j = p_*$. We may assume that the supports $\operatorname{supp}((p_*, (a_i^j, p_i^j)_{i < \lambda})) \subseteq \lambda$ form a Δ -system with a finite kernel $I \subseteq \lambda$. Finally we may assume that there are $(a_i, p_i)_{i \in I}$ such that $\forall j < \aleph_{\omega+2} \forall i \in I: (a_i^j, p_i^j) = (a_i, p_i)$. Then $(p_*^0, (a_i^0, p_i^0)_{i < \lambda})$ and $(p_*, (a_i^1, p_i^1)_{i < \lambda})$ are compatible since

$$(p_*, (a_i^0 \cup a_i^1, p_i^0 \cup p_i^1)_{i < \lambda}) \leq_P (p_*^0, (a_i^0, p_i^0)_{i < \lambda})$$

and

$$(p_*, (a_i^0 \cup a_i^1, p_i^0 \cup p_i^1)_{i < \lambda}) \leq_P (p_*^1, (a_i^1, p_i^1)_{i < \lambda}).$$

By Lemma 3, cardinals $\geq \aleph_{\omega+2}^V$ are absolute between V and V[G].

Fuzzifying the A_i

We want to construct a model which contains all the A_i and a map which maps every A_i to its index *i*. An *injective* map $\lambda \rightarrow \mathcal{P}(\aleph_{\omega})$ for some high λ would imply large consistency strength (see [1]). To disallow such maps, the A_i are replaced by their equivalence classes modulo an appropriate equivalence relation.

The exclusive or function $\oplus: 2 \times 2 \to 2$ is defined by

$$a \oplus b = 0$$
 iff $a = b$.

Obviously, $(a \oplus b) \oplus (b \oplus c) = a \oplus c$. For functions

$$A, A': \operatorname{dom}(A) = \operatorname{dom}(A') \to 2$$

define the *pointwise exclusive or* $A \oplus A': \operatorname{dom}(A) \to 2$ by

$$(A \oplus A')(\xi) = A(\xi) \oplus A'(\xi).$$

For functions $A, A': (\aleph_{\omega} \setminus \aleph_0) \to 2$ define an equivalence relation \sim by

$$A \sim A' \text{ iff } \exists n < \omega \left((A \oplus A') \upharpoonright \aleph_{n+1} \in V[G_*] \land (A \oplus A') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V \right).$$

This relation is clearly reflexive and symmetric. We show transitivity. Consider $A \sim A' \sim A''$. Choose $n < \omega$ such that

$$(A \oplus A') \upharpoonright \aleph_{n+1} \in V[G_*] \land (A \oplus A') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V$$

and

$$(A' \oplus A'') \upharpoonright \aleph_{n+1} \in V[G_*] \land (A' \oplus A'') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V.$$

Then

$$(A \oplus A'') \upharpoonright \aleph_{n+1} = ((A \oplus A') \upharpoonright \aleph_{n+1} \oplus (A' \oplus A'') \upharpoonright \aleph_{n+1}) \in V[G_*]$$

and

$$(A \oplus A'') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) = ((A \oplus A') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \oplus (A' \oplus A'') \upharpoonright [\aleph_{n+1}, \aleph_{\omega})) \in V.$$

Hence $A \sim A''$.

For $A: (\aleph_{\omega} \setminus \aleph_0) \to 2$ define the ~-equivalence class $\tilde{A} = \{A' | A' \sim A\}$.

The symmetric submodel

Our final model will be a model generated by the following parameters and their constituents

 $- \quad T_* = \mathcal{P}(<\!\kappa)^{V[A_*]}, \text{ setting } \kappa = \aleph_{\omega}^V;$

$$- \quad \vec{A} = (\tilde{A}_i \mid i < \lambda).$$

The model

$$N = \mathrm{HOD}^{V[G]}(V \cup \{T_*, \vec{A}\} \cup T_* \cup \bigcup_{i < \lambda} \tilde{A}_i)$$

consists of all sets which, in V[G] are hereditarily definable from parameters in the transitive closure of $V \cup \{T_*, \vec{A}\}$. This model is *symmetric* in the sense that it is generated from parameters which are invariant under certain (partial) isomorphisms of the forcing P.

Lemma 4. N is a model of ZF, and there is a surjection $f: \mathcal{P}(\kappa) \to \lambda$ in N.

Proof. Note that for every $i < \lambda$: $A_i \in N$. (1) Let $i < j < \lambda$. Then $A_i \approx A_j$. *Proof*. Assume instead that $A_i \sim A_j$. Then take $n < \omega$ such that $v = (A_i \oplus A_j) \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V$. The set

$$D = \{(p_*, (a_k, p_k)_{k < \lambda}) \mid \exists \xi \in [\aleph_{n+1}, \aleph_{\omega}) (\xi \in \operatorname{dom}(p_i) \cap \operatorname{dom}(p_j) \land v(\xi) \neq p_i(\xi) \oplus p_j(\xi))\} \in V$$

is readily seen to be dense in P. Take $(p_*, (a_k, p_k)_{k < \lambda}) \in D \cap G$. Take $\xi \in [\aleph_{n+1}, \aleph_{\omega})$ such that

$$\xi \in \operatorname{dom}(p_i) \cap \operatorname{dom}(p_j) \land v(\xi) \neq p_i(\xi) \oplus p_j(\xi)).$$

Since $p_i \subseteq A_i$ and $p_j \subseteq A_j$ we have $v(\xi) \neq A_i(\xi) \oplus A_j(\xi)$ and $v \neq (A_i \oplus A_j) \upharpoonright [\aleph_{n+1}, \aleph_{\omega})$. Contradiction. qed(1)

Thus

$$f(z) = \begin{cases} i, \text{ if } z \in \tilde{A}_i; \\ 0, \text{ else}; \end{cases}$$

is a well-defined surjection $f: \mathcal{P}(\kappa) \to \lambda$, and f is definable in N from the parameters κ and \vec{A} .

The main theorem will be established by showing that, in N, the situation below κ is largely as in V, in particular $\kappa = \aleph_{\omega}^{N}$. This requires an analysis of sets of ordinals in N.

Lemma 5. Every set $X \in N$ is definable in V[G] in the following form: there are an \in -formula φ , $x \in V$, $n < \omega$, and $i_0, ..., i_{l-1} < \lambda$ such that

$$X = \{ u \in V[G] \, | \, V[G] \vDash \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}) \}.$$

Proof. By the original definition, every set in N is definable in V[G] from finitely many parameters in

$$V \cup \{T_*, \vec{A}\} \cup T_* \cup \bigcup_{i < \lambda} \tilde{A}_i.$$

To reduce the class of defining parameters to

$$V \cup \{T_*, \vec{A}\} \cup \{A_* \upharpoonright (\aleph_{n+1}^V)^2 \, | \, n < \omega\} \cup \{A_i | i < \lambda\}$$

observe:

- Let $x \in T_*$ be a bounded subset of \aleph_{ω}^V with $x \in V[A_*]$. A standard product analysis of the generic extension $V[G_*] = V[A_*]$ of V yields that $x \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$ for some $n < \omega$.
- Let $y \in \tilde{A}_i$. Then $y \sim A_i$, i.e.,

$$(y \oplus A_i) \upharpoonright \aleph_{m+1} \in V[G_*] \land (y \oplus A_i) \upharpoonright [\aleph_{m+1}, \aleph_{\omega}) \in V$$

for some $m < \omega$. Let $z = (y \oplus A_i) \upharpoonright \aleph_{m+1} \in V[A_*]$. By the previous argument $z \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$ for some $n < \omega$. Let $z' = (y \oplus A_i) \upharpoonright [\aleph_{m+1}, \aleph_{\omega}) \in V$. Then

$$y = (y \upharpoonright \aleph_{m+1}) \cup (y \upharpoonright [\aleph_{m+1}, \aleph_{\omega}))$$

= $((z \oplus A_i) \upharpoonright \aleph_{m+1}) \cup ((z' \oplus A_i) \upharpoonright [\aleph_{m+1}, \aleph_{\omega}))$
 $\in V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_i].$

Finitely many parameters of the form $A_* \upharpoonright (\aleph_{n+1}^V)^2$ can then be incorporated into a single such parameter taking a sufficiently high $n < \omega$.

Approximating N

Concerning sets of ordinals, the model N can be approximated by "mild" generic extensions of the ground model. Note that many set theoretic notions only refer to ordinals and sets of ordinals.

Lemma 6. Let $X \in N$ and $X \subseteq \text{Ord.}$ Then there are $n < \omega$ and $i_0, \ldots, i_{l-1} < \lambda$ such that

$$X \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}].$$

Proof. By Lemma 5 take an \in -formula φ , $x \in V$, $n < \omega$, and $i_0, \ldots, i_{l-1} < \lambda$ such that

$$X = \{ u \in \operatorname{Ord} | V[G] \vDash \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}) \}.$$

By taking n sufficiently large, we may assume that

$$\forall j < k < l \forall m \in [n, \omega) \forall \delta \in [\aleph_m, \aleph_{m+1}) \colon A_{i_j} \upharpoonright [\delta, \aleph_{m+1}) \neq A_{i_k} \upharpoonright [\delta, \aleph_{m+1}).$$

For j < l set

$$a_{i_j}^* = \{\xi \, | \, \exists m \leqslant n \, \exists \delta \in [\aleph_m, \aleph_{m+1}) \colon A_{i_j} \upharpoonright [\delta, \aleph_{m+1}) = A_*(\xi) \upharpoonright [\delta, \aleph_{m+1}) \}$$

where $A_*(\xi) = \{(\zeta, A_*(\xi, \zeta)) | (\xi, \zeta) \in \text{dom}(A_*)\}$. By the properties of Q, $a_{i_j}^* \subseteq \aleph_{n+1}$ is finite and $\forall m \leq n : \text{card}(a_{i_j}^* \cap [\aleph_m, \aleph_{m+1})) = 1$.

Now define

$$\begin{split} X' &= \{ u \in \mathrm{Ord} \mid \text{ there is } p = (p_*, (a_i, p_i)_{i < \lambda}) \in P \text{ such that} \\ p_* \upharpoonright (\aleph_{n+1}^V)^2 \subseteq A_* \upharpoonright (\aleph_{n+1}^V)^2, \\ a_{i_0} \supseteq a_{i_0}^*, \dots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^*, \\ p_{i_0} \subseteq A_{i_0}, \dots, p_{i_{l-1}} \subseteq A_{i_{l-1}}, \text{ and} \\ p \Vdash \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}) \}, \end{split}$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_0}, ..., \dot{A}_{i_{l-1}}$ are canonical names for $T_*, \vec{A}, A_*, A_{i_0}, ..., A_{i_{l-1}}$ resp. Then $X' \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}].$ (1) $X \subseteq X'.$ *Proof*. Consider $u \in X$. Take $p = (p_*, (a_i, p_i)_{i < \lambda}) \in G$ such that

$$p \Vdash \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}).$$

Then $p_* \upharpoonright (\aleph_{n+1}^V)^2 \subseteq A_* \upharpoonright (\aleph_{n+1}^V)^2$ and $p_{i_0} \subseteq A_{i_0}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}$. Using a density argument we may also assume that $\operatorname{card}(a_{i_0} \cap \aleph_{n+1}) = \ldots = \operatorname{card}(a_{i_{l-1}} \cap \aleph_{n+1}) = n$. Then $a_{i_0} \supseteq a_{i_0}^*, \ldots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^*$. Thus $u \in X'$. qed(1)

The converse direction, $X' \subseteq X$, is more involved and uses an isomorphism argument. Suppose for a contradiction that there were $u \in X' \setminus X$. Then take a condition $p = (p_*, (a_i, p_i)_{i < \lambda}) \in P$ as in the definition of X', i.e.,

- (2) $p_* \upharpoonright (\aleph_{n+1}^V)^2 \subseteq A_* \upharpoonright (\aleph_{n+1}^V)^2$,
- (3) $a_{i_0} \supseteq a_{i_0}^*, \dots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^*,$
- (4) $p_{i_0} \subseteq A_{i_0}, \dots, p_{i_{l-1}} \subseteq A_{i_{l-1}}$, and
- (5) $p \Vdash \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, ..., \dot{A}_{i_{l-1}}) \}.$
- By $u \notin X$ take $p' = (p'_*, (a'_i, p'_i)_{i < \lambda}) \in G$ such that
- (6) $p' \Vdash \neg \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}).$

By genericity we may assume that

(7)
$$p'_* \upharpoonright (\aleph_{n+1}^V)^2 \subseteq A_* \upharpoonright (\aleph_{n+1}^V)^2$$

- (8) $a'_{i_0} \supseteq a^*_{i_0}, \dots, a'_{i_{l-1}} \supseteq a^*_{i_{l-1}}$, and
- (9) $p'_{i_0} \subseteq A_{i_0}, \dots, p'_{i_{l-1}} \subseteq A_{i_{l-1}}.$

By strengthening the conditions we can arrange that p and p' have similar "shapes" whilst preserving the above conditions (2) to (9):

(10) ensure that $\operatorname{supp}(p) = \operatorname{supp}(p')$; choose some \aleph_{m+1} such that $\forall i \in \operatorname{supp}(p) (a_i \subseteq \aleph_{m+1} \land a'_i \subseteq \aleph_{m+1})$;

(11) extend the a_i and a'_i such that

$$\forall i \in \operatorname{supp}(p) \forall k \leqslant m : \operatorname{card}(a_i \cap [\aleph_k, \aleph_{k+1})) = \operatorname{card}(a'_i \cap [\aleph_k, \aleph_{k+1})) = 1;$$

(12) also extend the conditions so that they involve the same "linking" ordinals, possibly at different positions within the conditions:

$$\bigcup_{i<\lambda}\,a_i\!=\!\bigcup_{i<\lambda}\,a_i'$$

(13) extend the p_* and p_i 's in p and p' resp. so that for some sequence $(\delta_k | k < \omega)$:

$$\operatorname{dom}(p_*) = \operatorname{dom}(p'_*) = \bigcup_{k < \omega} [\aleph_k, \delta_k)^2$$

and

$$\forall i \in \operatorname{supp}(p) \colon \operatorname{dom}(p_i) = \operatorname{dom}(p_i') = \bigcup_{k < \omega} [\aleph_k, \delta_k)$$

The following picture tries to capture some aspects of the shape similarity between p and p'; corresponding components of p and p' are drawn side by side

Now define a map

$$\pi: (P \upharpoonright p, \leqslant_P) \to (P \upharpoonright p', \leqslant_P),$$

where the restricted partial orders are defined as $P \upharpoonright p = \{q \in P \mid q \leq_P p\}$ and $P \upharpoonright p' = \{q' \in P \mid q' \leq_P p'\}$. For $q = (q_*, (b_i, q_i)_{i < \lambda}) \leq_P (p_*, (a_i, p_i)_{i < \lambda}) = p$ define $\pi(p) = \pi(q_*, (b_i, q_i)_{i < \lambda}) = (q'_*, (b'_i, q'_i)_{i < \lambda})$ by the following three conditions:

(14) $q'_* = (q_* \setminus p_*) \cup p'_*$; note that this is a legitimate function since dom $(p_*) = \text{dom}(p'_*)$;

(15) for $i < \lambda$ let $b'_i = (b_i \setminus a_i) \cup a'_i$; so if $i \in \text{supp}(p)$, the m + 1 ordinals in a_i are substituted by the m + 1 ordinals in a'_i ; if $i \notin \text{supp}(p)$, we have $b'_i = b_i$;

(16) for $i \in \lambda \setminus \text{supp}(q)$ let $q'_i = \emptyset$, and for $i \in \text{supp}(q)$ define $q'_i: \text{dom}(q_i) \to 2$ by

$$q_i'(\zeta) = \begin{cases} p_i'(\zeta), \text{ if } \zeta \in \operatorname{dom}(p_i);\\ q_*(\xi', \zeta), \text{ if } \zeta \notin \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i' \cap [\aleph_k, \aleph_{k+1}) = \{\xi'\};\\ q_i(\zeta), \text{ if } \zeta \notin \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i' \cap [\aleph_k, \aleph_{k+1}) = \emptyset. \end{cases}$$

Here is a picture of (some features of) π .

We verify that $\pi: (P \upharpoonright p, \leq_P) \to (P \upharpoonright p', \leq_P)$ is an *isomorphism*.

(17) $(q'_*, (b'_i, q'_i)_{i < \lambda}) \in P$, since it has the same structure as $(q_*, (b_i, q_i)_{i < \lambda})$, with some function values altered.

(18) $(q'_*, (b'_i, q'_i)_{i < \lambda}) \leq_P (p'_*, (a'_i, p'_i)_{i < \lambda}).$

Proof. $q'_* \supseteq p'_*$ since $q'_* = (q_* \setminus p_*) \cup p'_*$, see (14). Similarly we get $b'_i \supseteq a'_i$ and $q'_i \supseteq p'_i$. To check the linking property (Definition 2, b)), consider $i < \lambda$, $n < \omega$, and $\xi' \in a'_i \cap [\aleph_n, \aleph_{n+1})$. For $\zeta \in \operatorname{dom}(q'_i \setminus p'_i)$ we have

$$q'_i(\zeta) = q_*(\xi', \zeta) = q'_*(\xi', \zeta).$$

Finally we have to show the independence property (Definition 2, c)) within the linking ordinals. Consider $j \in \operatorname{supp}(p') = \operatorname{supp}(p)$. We claim that $(b'_j \setminus a'_j) \cap \bigcup_{i \in \operatorname{supp}(p'), i \neq j} b'_i = \emptyset$. Assume for a contradiction that $\xi' \in (b'_j \setminus a'_j) \cap b'_i$ for some $i \in \operatorname{supp}(p'), i \neq j$. Then $\xi' \in (b_j \setminus a_j) \cap ((b_i \setminus a_i) \cup a'_i)$. The case $\xi' \in (b_j \setminus a_j) \cap (b_i \setminus a_i)$ is impossible by the independence property in $q \leq_P p$. And

$$(b_j \setminus a_j) \cap \bigcup_{i \in \operatorname{supp}(p'), i \neq j} a'_i = (b_j \setminus a_j) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a_i = \emptyset$$

by the independence property in $q \leq_P p$ and by (12). qed(18)

(19) π is order-preserving. *Proof*. Consider

$$r = (r_*, (c_i, r_i)_{i < \lambda}) \leqslant_P q = (q_*, (b_i, q_i)_{i < \lambda}) \leqslant_P p = (p_*, (a_i, p_i)_{i < \lambda})$$

and $\pi(r) = r' = (r'_*, (c'_i, r'_i)_{i < \lambda}), \ \pi(q) = q' = (q'_*, (b'_i, q'_i)_{i < \lambda})$. We show that $r' \leq_P q'$. Concerning the inclusions:

- $r'_* = (r_* \setminus p_*) \cup p'_* \supseteq (q_* \setminus p_*) \cup p'_* = q'_*;$
- $c_i' = (c_i \setminus a_i) \cup a_i' \supseteq (b_i \setminus a_i) \cup a_i' = b_i';$
- if $i \in \lambda \setminus \text{supp}(q)$, then $q'_i = \emptyset$ and hence $q'_i \subseteq r'_i$. If $i \in \text{supp}(q)$ then $i \in \text{supp}(r)$, and $\text{dom}(r'_i) = \text{dom}(r_i)$ and $\text{dom}(q'_i) = \text{dom}(q_i)$. So we have

$$\operatorname{dom}(p_i) = \operatorname{dom}(p'_i) \subseteq \operatorname{dom}(q'_i) \subseteq \operatorname{dom}(r'_i).$$

For $\zeta \in \operatorname{dom}(q'_i)$ we have to show that $q'_i(\zeta) = r'_i(\zeta)$. In case $\zeta \in \operatorname{dom}(p_i)$ we have

$$q_i'(\zeta) = p_i'(\zeta) = r_i'(\zeta)$$

In case $\zeta \notin \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a'_i \cap [\aleph_k, \aleph_{k+1}) = \{\xi'\}$ we have

$$q'_i(\zeta) = q_*(\xi', \zeta) = r_*(\xi', \zeta) = r'_i(\zeta).$$

In case $\zeta \in \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a'_i \cap [\aleph_k, \aleph_{k+1}) = \emptyset$ we have

$$q_i'(\zeta) = q_i(\zeta) = r_i(\zeta) = r_i'(\zeta).$$

For the linking property consider $i < \lambda$, $n < \omega$, and $\xi' \in b'_i \cap [\aleph_n, \aleph_{n+1})$. We have to check that $\forall \zeta \in \operatorname{dom}(r'_i \setminus q'_i) \cap [\aleph_n, \aleph_{n+1}): r'_i(\zeta) = r'_*(\xi, \zeta)$. So consider $\zeta \in \operatorname{dom}(r'_i \setminus q'_i) \cap [\aleph_n, \aleph_{n+1})$. Note that $b'_i = (b_i \setminus a_i) \cup a'_i$. In case $\xi' \in a'_i$ we get:

$$r'_{i}(\zeta) = r_{*}(\xi', \zeta) = r'_{*}(\xi', \zeta).$$

If $\xi' \in b_i \setminus a_i$, $\xi' \notin a'_i$ and so $a'_i \cap [\aleph_n, \aleph_{n+1}) = \emptyset$. Hence

$$r'_{i}(\zeta) = r_{i}(\zeta) = r_{*}(\xi', \zeta) = r'_{*}(\xi', \zeta).$$

For the linking property consider $j \in \text{supp}(q')$. We have to show that

$$(c'_j \setminus b'_j) \cap \bigcup_{i \in \operatorname{supp}(q'), i \neq j} c'_i = \emptyset.$$

Suppose for a contradiction that $\xi' \in (c'_j \setminus b'_j) \cap \bigcup_{i \in \text{supp}(q'), i \neq j} c'_i$. Then $\xi' \in c'_j \setminus b'_j = c_j \setminus b_j$. Take $i \in \text{supp}(q'), i \neq j$ such that $\xi' \in c'_i$. If $i \in \text{supp}(p')$ this contradicts the property $r' \leq_P p'$. So $i \in \text{supp}(q') \setminus \text{supp}(p')$. Then $c'_i = c_i$ and $\xi' \in (c_j \setminus b_j) \cap c_i$. But this contradicts the independence property for $r \leq_P q$. qed(19)

The definition of the map π only uses properties of p and p' which are the same for both of p and p'. So we can similarly define a map

$$\pi': (P \upharpoonright p', \leqslant_P) \to (P \upharpoonright p, \leqslant_P),$$

where for $q' = (q'_{*}, (b'_{i}, q'_{i})_{i < \lambda}) \leq_{P} (p'_{*}, (a'_{i}, p'_{i})_{i < \lambda}) = p'$ the image $\pi'(q') = (q_{*}, (b_{i}, q_{i})_{i < \lambda})$ is defined by

(20) $q_* = (q'_* \setminus p'_*) \cup p_*;$ (21) for $i < \lambda$ let $b_i = (b'_i \setminus a'_i) \cup a_i;$

(22) for $i \in \lambda \setminus \text{supp}(q')$ let $q_i = \emptyset$, and for $i \in \text{supp}(q')$ define $q_i: \text{dom}(q'_i) \to 2$ by

$$q_i(\zeta) = \begin{cases} p_i(\zeta), \text{ if } \zeta \in \operatorname{dom}(p'_i), \\ q'_*(\xi, \zeta), \text{ if } \zeta \notin \operatorname{dom}(p'_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i \cap [\aleph_k, \aleph_{k+1}) = \{\xi\}, \\ q'_i(\zeta), \text{ if } \zeta \notin \operatorname{dom}(p'_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i \cap [\aleph_k, \aleph_{k+1}] = \emptyset. \end{cases}$$

The maps π and π' are inverses:

(23) $\pi' \circ \pi$: $(P \upharpoonright p, \leq_P) \to (P \upharpoonright p, \leq_P)$ is the identity on $(P \upharpoonright p, \leq_P)$. *Proof*. Let $(q_*, (b_i, q_i)_{i < \lambda}) \leq_P p = (p_*, (a_i, p_i)_{i < \lambda})$ and let $\pi(q_*, (b_i, q_i)_{i < \lambda}) = (q'_*, (b'_i, q'_i)_{i < \lambda})$. Concerning the first component,

$$q_* \stackrel{\pi}{\longmapsto} (q_* \setminus p_*) \cup p'_* \stackrel{\pi'}{\longmapsto} (((q_* \setminus p_*) \cup p'_*) \setminus p'_*) \cup p_* = q_*.$$

For $i < \lambda$,

$$b_i \stackrel{\pi}{\longmapsto} (b_i \setminus a_i) \cup a'_i \stackrel{\pi'}{\longmapsto} (((b_i \setminus a_i) \cup a'_i) \setminus a'_i) \cup a_i = b_i.$$

For $i \in \lambda \setminus \text{supp}(q)$, $q_i = q'_i = \emptyset$ and so

$$q_i \xrightarrow{\pi} q'_i \xrightarrow{\pi'} q_i$$
.

Now consider $i \in \operatorname{supp}(q) = \operatorname{supp}(q')$. Then $\operatorname{dom}(q_i) = \operatorname{dom}(q'_i)$. Let $\zeta \in \operatorname{dom}(q_i)$. In case $\zeta \in \operatorname{dom}(p_i) = \operatorname{dom}(p'_i)$ we have

$$q_i(\zeta) = p_i(\zeta) \xrightarrow{\pi} p'_i(\zeta) = q'_i(\zeta) \xrightarrow{\pi'} p_i(\zeta) = q_i(\zeta).$$

In case $\zeta \notin \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i \cap [\aleph_k, \aleph_{k+1}) = \{\xi\}$ let $a'_i \cap [\aleph_k, \aleph_{k+1}) = \{\xi'\}$. Then $q_i(\zeta) = q_*(\xi, \zeta)$ and $q'_i(\zeta) = q'_*(\xi', \zeta)$. Then

$$q_i(\zeta) \xrightarrow{\pi} q'_*(\xi', \zeta) \xrightarrow{\pi'} q_*(\xi, \zeta) = q_i(\zeta).$$

Finally, if $\zeta \notin \operatorname{dom}(p_i) \land \exists k < \omega : \zeta \in [\aleph_k, \aleph_{k+1}) \land a_i \cap [\aleph_k, \aleph_{k+1}) = \emptyset$ then $q_i(\zeta) = q_i(\zeta)$ and so

$$q_i(\zeta) \xrightarrow{\pi} q'_i(\zeta) \xrightarrow{\pi'} q_i(\zeta).$$

Thus

$$p \stackrel{\pi}{\longmapsto} p' \stackrel{\pi'}{\longmapsto} p.$$

qed(23)

Similarly,

(24) $\pi \circ \pi': (P' \upharpoonright p', \leq_P) \to (P' \upharpoonright p', \leq_P)$ is the identity on $(P' \upharpoonright p', \leq_P)$.

Hence $\pi: (P \upharpoonright p, \leq_P) \to (P \upharpoonright p', \leq_P)$ is an isomorphism. Before we apply π to generic filters and objects defined from them, we note some properties of π .

(25) Let $q = (q_*, (b_i, q_i)_{i < \lambda}) \leq_P p$ and $\pi(p) = (q'_*, (b'_i, q'_i)_{i < \lambda})$. Then $q'_* \upharpoonright (\aleph_{n+1}^V)^2 = q_* \upharpoonright (\aleph_{n+1}^V)^2$, and $q'_{i_0} = q_{i_0}, \dots, q'_{i_{l-1}} = q_{i_{l-1}}$.

Now let H_0 be a V-generic filter for $(P \upharpoonright p, \leq_P)$ with $p \in H_0$. Then

$$H = \{ r \in P \mid \exists q \in H_0 : q \leq_P r \}$$

is a V-generic filter for P with $p \in H$.

Moreover, $H'_0 = \pi[H_0]$ is a V-generic filter for $(P \upharpoonright p', \leq_P)$ with $p' \in H'_0$ and

$$H' = \{ r \in P \mid \exists q \in H'_0 \colon q \leqslant_P r \}$$

is a V-generic filter for P with $p' \in H'$.

(26) V[H] = V[H'] since the generic filters can be defined from each other using the isomorphism $\pi \in V$.

Now define the parameters used in the definition of the model N from the generic filters H and H':

$$H_* = \{q_* \in P_* \mid (q_*, (b_i, q_i)_{i < \lambda}) \in H\}, T_* = \sigma^H, \vec{A} = \tau^H, A_* = \dot{A}^H, \text{ and } A_i = \dot{A}_i^H \text{ for } i < \lambda$$

and

$$H'_{*} = \{q_{*} \in P_{*} \mid (q_{*}, (b_{i}, q_{i})_{i < \lambda}) \in H'\}, T'_{*} = \sigma^{H'}, \vec{A}' = \tau^{H'}, A'_{*} = \dot{A}^{H'}, \text{ and } A'_{i} = \dot{A}^{H'}_{i} \text{ for } i < \lambda.$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}$ are the canonical names for T_*, \vec{A}, A_*, A_i resp. used before. The symbols G_*, \vec{A}, \dots are only used within the current proof, they do not conflict with their use before and after this proof.

(27) $V[H_*] = V[H'_*]$. *Proof.* Since H_* is V-generic for P_* and $p_* \in P_*$, $H_* \cap \{q_* \in P_* \mid q_* \supseteq p_*\}$ is, over the ground model V, equidefinable with H_* . Hence

$$V[H_*] = V[H_* \cap \{q_* \in P_* | q_* \supseteq p_*\}]$$

$$\supseteq V[\{(q_* \setminus p_*) \cup p'_* | q_* \in H_* \cap \{q_* \in P_* | q_* \supseteq p_*\}]$$

$$= V[H'_* \cap \{q_* \in P_* | q_* \supseteq p'_*\}]$$

$$= V[H'_*]$$

qed(27)

This implies

(28) $T_* = T'_*$.

Let $A_* = \bigcup H_*$ and $A'_* = \bigcup H'_*$.

(29) $A_* \upharpoonright (\aleph_{n+1}^V)^2 = A'_* \upharpoonright (\aleph_{n+1}^V)^2$. *Proof*. Note that the map π is the identity on the *-component below \aleph_{m+1}^V . qed(29)

(30) For $i < \lambda$: $A_i \sim A'_i$.

Proof. Recall $A_i = \bigcup \{q_i \mid (q_*, (b_j, q_j)_{j < \lambda}) \in H\}$: $[\aleph_0, \aleph_{\omega}^V) \to 2$. Since the map π maps the set b_i of linking ordinals to $(b_i \setminus a_i) \cup a'_i$ the linking ordinals in the relevant sets b_i are equal to the linking ordinals in the sets b'_i with possibly finitely many exceptions. This means that the characteristic functions A_i and A'_i will be equal above p_i and p'_i respectively in all cardinal intervals $[\aleph_k, \aleph_{k+1})$ with k > m. In other words,

$$(A_i \oplus A'_i) \upharpoonright [\aleph_{m+1}^V, \aleph_{\omega}^V) \in V.$$

The functions $A_i \upharpoonright \aleph_{m+1}^V$ and $A'_i \upharpoonright \aleph_{m+1}^V$ are determined in the cardinal intervals $[\aleph_k^V, \aleph_{k+1}^V)$ for $k \leq m$ by $p_i \upharpoonright [\aleph_k^V, \aleph_{k+1}^V)$ and $p'_i \upharpoonright [\aleph_k^V, \aleph_{k+1}^V)$ and some cuts $A_*(\xi)$ and $A_*(\xi')$ respectively. Hence $A_i \upharpoonright [\aleph_k^V, \aleph_{k+1}^V), A'_i \upharpoonright [\aleph_k^V, \aleph_{k+1}^V) \in V[A_* \upharpoonright (\aleph_{m+1}^V)^2] = V[A'_* \upharpoonright (\aleph_{m+1}^V)^2]$. Thus

$$(A_i \oplus A'_i) \upharpoonright \aleph_{m+1}^V \in V[H_*] \text{ and } (A_i \oplus A'_i) \upharpoonright [\aleph_{m+1}^V, \aleph_{\omega}^V) \in V,$$

i.e., $A_i \sim A'_i$. qed(30)

This implies immediately that the sequences of equivalence classes agree in both models:

(31)
$$\vec{A} = \vec{A}'$$
.

(32) $A_{i_0} = A'_{i_0}, ..., A_{i_{l-1}} = A'_{i_{l-1}}$. *Proof*. Note that the isomorphism π is the identity at the indices $i_0, ..., i_{l-1}$. qed(32)Since $p \Vdash \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, ..., \dot{A}_{i_{l-1}})$ } and $p \in H$ we have

$$V[H] \vDash \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}).$$

Since $p' \Vdash \neg \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}) \}$ and $p' \in H'$ we have

$$V[H'] \vDash \neg \varphi(u, x, T'_*, \vec{A}', A'_* \upharpoonright P_* \upharpoonright (\aleph_{n+1}^V)^2, A'_{i_0}, \dots, A'_{i_{l-1}}).$$

But the various equalities proved above imply

$$V[H] \vDash \neg \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright P_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}),$$

which is the desired contradiction.

Wrapping up

We show that the approximation models are mild generic extensions of V.

Lemma 7. Let $n < \omega$ and $i_0, ..., i_{l-1} < \lambda$. Then cardinals are absolute between V and $V[A^* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}]$.

Proof. Take $p^0 = (p^0_*, (a^0_i, p^0_i)_{i < \lambda}) \in G$ such that $\{i_0, ..., i_{l-1}\} \subseteq \operatorname{supp}(p^0)$. Since the models $V[A^* \upharpoonright (\aleph^V_{n+1})^2, A_{i_0}, ..., A_{i_{l-1}}]$ are monotonely growing with n we may assume that n is large enough such that

$$\forall i \in \operatorname{supp}(q) \forall \xi \in a_i^0 \colon \xi \in \aleph_{n+1}.$$

Since every $A_{i_j} \cap \aleph_{n+1}^V$ can be computed from $A^* \upharpoonright (\aleph_{n+1}^V)^2$, we have

$$V[A^* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}] = V[A^* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)].$$

Let $P' = (P', \supseteq, \emptyset)$ be the forcing

$$P' = \{ r \mid \exists (\delta_m)_{n < m < \omega} (\forall m \in (n, \omega) : \delta_m \in [\aleph_m^V, \aleph_{m+1}^V) \land r : \bigcup_{n < m < \omega} [\aleph_m^V, \delta_m) \to 2) \},\$$

which adjoins COHEN subsets to the \aleph_m 's with m > n.

(2) $(A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), ..., A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V))$ is V-generic for $(P')^l = \underbrace{P' \times ... \times P'}_{l \text{ times}}$. *Proof.* Let $D \subseteq (P')^l$ be dense open, $D \in V$. We have to show that D is met by $(A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), ..., A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V))$. Let

$$D' = \{ (p_*, (a_i, p_i)_{i < \lambda}) \in Q \mid (p_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, p_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)) \in D \}.$$

This set is dense in P below p^0 : consider $p^1 = (p^1_*, (a^1_i, p^1_i)_{i < \lambda}) \leq_P (p^0_*, (a^0_i, p^0_i)_{i < \lambda}) = p^0$. Take $(\delta_m)_{n < m < \omega}$ such that

$$p_*^1 \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)^2 : \bigcup_{n < m < \omega} [\aleph_m^V, \delta_m)^2 \to 2.$$

Take $p_{i_0}, \ldots, p_{i_{l-1}}$ such that

$$(p_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, p_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)) \in D,$$

and such that $p_{i_0}, ..., p_{i_{l-1}}$ have the same domains. Through some ordinals in $a_{i_0}^1, ..., a_{i_{l-1}}^1$, the choice of $p_{i_0}, ..., p_{i_{l-1}}$ determines some values of p_* by the linking property b) of Definition 2:

$$\forall i < \lambda \forall m < \omega \forall \xi \in a_i \cap [\aleph_m, \aleph_{m+1}) \forall \zeta \in \operatorname{dom}(p_i \setminus p_i^1) \cap [\aleph_m, \aleph_{m+1}) : p_i(\zeta) = p_*(\xi)(\zeta).$$

The independence property implies that the linking sets $a_{i_0}^1, ..., a_{i_{l-1}}^1$ are pairwise disjoint above \aleph_{n+1}^V , i.e., the sets

$$a_{i_0}^1 \cap [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, a_{i_{l-1}}^1 \cap [\aleph_{n+1}^V, \aleph_{\omega}^V)$$

are pairwise disjoint. So the linking requirements can be satisfied simultaneously. Then we can amend the definition of the other components of $p \leq p^1$ and obtain $p \in D'$.

By the genericity of G take $(p_*, (a_i, p_i)_{i < \lambda}) \in D' \cap G$. Then

$$(p_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), ..., p_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)) \in D$$

with

$$p_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V) \subseteq A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, p_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)) \subseteq A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V),$$

as required. qed(2)

The forcing $(P')^l$ is $\langle \aleph_{n+2}$ -closed. $A_* \upharpoonright (\aleph_{n+1}^V)^2$ is V-generic for the forcing

$$P_* \upharpoonright (\aleph_{n+1}^V)^2 = \{ r \upharpoonright (\aleph_{n+1}^V)^2 \mid r \in P_* \}.$$

By the GCH in V, $\operatorname{card}(P_* \upharpoonright (\aleph_{n+1}^V)^2) = \aleph_{n+1}$. Hence every dense subset of $P_* \upharpoonright (\aleph_{n+1}^V)^2$ which is in $V[A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)]$ is already an element of V. Thus $A_* \upharpoonright (\aleph_{n+1}^V)^2$ is $V[A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)]$ -generic for $P^* \upharpoonright (\aleph_{n+1}^V)^2$.

This means that

$$V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), ..., A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)]$$

is equal to the two-stage iteration

$$V[A_{i_0} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V), \dots, A_{i_{l-1}} \upharpoonright [\aleph_{n+1}^V, \aleph_{\omega}^V)][A_* \upharpoonright (\aleph_{n+1}^V)^2],$$

which does not destroy cardinals.

Lemma 8. Cardinals are absolute between N and V, and in particular $\kappa = \aleph_{\omega}^{V} = \aleph_{\omega}^{N}$.

Proof. If not, then there is a function $f \in N$ which collapses a cardinal in V. By Lemma 6, f is an element of some model $V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}]$ as above. But this contradicts Lemma 7.

Lemma 9. GCH holds in N below \aleph_{ω} .

Proof. If $X \subseteq \aleph_n$ and $X \in N$ then X is an element of some model $V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}]$ as above. Since $A_{i_0}, ..., A_{i_{l-1}}$ do not adjoin new subsets of \aleph_n we have that

$$X \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2].$$

Hence $\mathcal{P}(\aleph_n^V) \cap N \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$. GCH holds in $V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$. Hence there is a bijection $\mathcal{P}(\aleph_n^V) \cap N \leftrightarrow \aleph_{n+1}^V$ in $V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$ and hence in N.

Discussion and Remarks

The above construction straightforwardly generalises to other cardinals κ of cofinality ω . In that extension, cardinals $\leq \kappa$ are preserved, GCH holds below κ , and there is a surjection from $\mathcal{P}(\kappa)$ onto some arbitrarily high cardinal λ . To work with singular cardinals κ of *uncountable* cofinality, finiteness properties in the construction have to be replaced by the property of being of cardinality $< \operatorname{cof}(\kappa)$. This yields results like the following choiceless violation of SILVER's theorem [6].

Theorem 10. Let V be any ground model of ZFC + GCH and let λ be some cardinal in V. Then there is a cardinal preserving model $N \supseteq V$ of the theory ZF + "GCH holds below \aleph_{ω_1} " + "there is a surjection from $\mathcal{P}(\aleph_{\omega_1})$ onto λ ". Moreover, the axiom of dependent choices DC holds in N.

Note that in [5], SAHARON SHELAH studied uncountably singular cardinal arithmetic under DC, without assuming AC. The "local" GCH below \aleph_{ω_1} in the conclusion of the above Theorem cannot be changed to the property $\operatorname{card}(\bigcup_{\alpha < \aleph_{\omega_1}} \mathcal{P}(\alpha)) = \aleph_{\omega_1}$ since Theorem 4.6 of [5] basically implies that then $\mathcal{P}(\aleph_{\omega_1})$ would be wellorderable of ordertype $\geq \lambda$. By results of [1] an *injective* failure of SCH with big λ has high consistency strength. But here we are working without assuming any large cardinals.

Bibliography

- [1] Arthur Apter and Peter Koepke. The consistency strength of choiceless failures of SCH. To appear in: The Journal of Symbolic Logic, 75, 2010.
- [2] Anthony Dodd and Ronald Jensen. The covering lemma for K. Annals of Mathematical Logic, 22:1–30, 1982.
- [3] Moti Gitik. The strength of the failure of the singular cardinal hypothesis. Annals of Pure and Applied Logic, 51:215–240, 1991.
- [4] Saharon Shelah. Cardinal Arithmetic. Oxford Logic Guides. Oxford University Press, 1994.
- [5] Saharon Shelah. Set theory without choice: not everything on cofinality is possible. Archive for Mathematical Logic, 36:81–125, 1996.
- [6] Jack Silver. On the singular cardinals problem. In Proceedings of the International Congress of Mathematicians (Vancouver, British Columbia 1974), volume 1, pages 265–268, 1975.