Violating the Singular Cardinals Hypothesis Without Large Cardinals*

by Moti Gitik and Peter Koepke

Version of August 20, 2010

Abstract

We extend a transitive model V of ZFC + GCH cardinal preservingly to a model N of $\mathrm{ZF}+$ "GCH holds below \aleph_{ω} " + "there is a surjection from the power set of \aleph_{ω} onto λ " where λ is an arbitrarily high fixed cardinal in V. The construction can roughly be described as follows: add \aleph_{n+1} many Cohen subsets of \aleph_{n+1} for every $n<\omega$, and adjoin λ many subsets of \aleph_{ω} which are unions of ω-sequences of those COHEN subsets; then let N be a choiceless submodel generated by equivalence classes of the λ subsets of \aleph_{ω} modulo an appropriate equivalence relation.

In [1], Arthur Apter and the second author constructed a model of ZF + "GCH holds below $\aleph_{\omega} "+$ "there is a surjection from $\left[\aleph_{\omega}\right]^{\omega}$ onto λ " where λ is an arbitrarily high fixed cardinal in the ground model V. This amounts to a strong surjective violation of the singular cardinals hypothesis SCH. The construction assumed a measurable cardinal in the ground model. It was also shown in [1] that a measurable cardinal in some inner model is necessary for that combinatorial property, using the DodD-JEnSEN covering theorem [2].

The first author then noted that one can work without measurable cardinals if one considers surjections from $\mathcal{P}\left(\aleph_{\omega}\right)$ onto λ instead of surjections from $\left[\aleph_{\omega}\right]^{\omega}$ onto λ :

Theorem 1. Let V be any ground model of $\mathrm{ZFC}+\mathrm{GCH}$ and let λ be some cardinal in V. Then there is a cardinal preserving model $N \supseteq V$ of the theory $\mathrm{ZF}+$ " GCH holds below \aleph_{ω} " + "there is a surjection from $\mathcal{P}\left(\aleph_{\omega}\right)$ onto λ ".

Note that in the presence of the axiom of choice (AC) the latter theory for $\lambda \geqslant \aleph_{\omega+2}$ has large consistency strength and implies the existence of measurable cardinals of high Mitchell orders in some inner model (see [3] by the first author). The pcf-theory of Saharon Shelah [4] shows that the situation for $\lambda \geqslant \aleph_{\omega_{4}}$ is incompatible with AC. Hence Theorem 1 yields a choiceless violation of pcf-theory without the use of large cardinals.

[^0]
The forcing

Fix a ground model V of ZFC +GCH and let λ be some regular cardinal in V. We first present two building blocks of our construction. The forcing $P_{0}=\left(P_{0}, \supseteq, \emptyset\right)$ adjoins one CoHEN subset of \aleph_{n+1} for every $n<\omega$.

$$
P_{0}=\left\{p \mid \exists\left(\delta_{n}\right)_{n<\omega}\left(\forall n<\omega: \delta_{n} \in\left[\aleph_{n}, \aleph_{n+1}\right) \wedge p: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right) \rightarrow 2\right)\right\} .
$$

A standard product analysis proves that forcing with P_{0} does not collapse cardinals. Adjoining one COHEN subset of \aleph_{n+1} for every $n<\omega$ is equivalent to adjoining \aleph_{n+1}-many by the following "two-dimensional" forcing $\left(P_{*}, \supseteq, \emptyset\right)$:

$$
P_{*}=\left\{p_{*} \mid \exists\left(\delta_{n}\right)_{n<\omega}\left(\forall n<\omega: \delta_{n} \in\left[\aleph_{n}, \aleph_{n+1}\right) \wedge p_{*}: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right)^{2} \rightarrow 2\right)\right\}
$$

For $p_{*} \in P_{*}$ and $\xi \in\left[\aleph_{0}, \aleph_{\omega}\right)$ let $p_{*}(\xi)=\left\{\left(\beta, p_{*}(\xi, \zeta)\right) \mid(\xi, \zeta) \in \operatorname{dom}\left(p_{*}\right)\right\}$ be the ξ-th section of p_{*}.

The forcing employed in the subsequent construction is a kind of finite support product of λ copies of P_{0} where the factors are eventually coupled via P_{*}.

Definition 2. Define the forcing $\left(P, \leqslant_{P}, \emptyset\right)$ by:

$$
\begin{aligned}
P=\left\{\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \mid\right. & \exists\left(\delta_{n}\right)_{n<\omega} \exists D \in[\lambda]<\omega\left(\forall n<\omega: \delta_{n} \in\left[\aleph_{n}, \aleph_{n+1}\right),\right. \\
& p_{*}: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right)^{2} \rightarrow 2, \\
& \forall i \in D: p_{i}: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right) \rightarrow 2 \wedge p_{i} \neq \emptyset \\
& \forall i \in D: a_{i} \in\left[\aleph_{\omega} \backslash \aleph_{0}\right]<\omega \wedge \forall n<\omega: \operatorname{card}\left(a_{i} \cap\left[\aleph_{n}, \aleph_{n+1}\right)\right) \leqslant 1, \\
& \left.\left.\forall i \notin D\left(a_{i}=p_{i}=\emptyset\right)\right)\right\} .
\end{aligned}
$$

If $p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in P$ then $p \in P_{*}$ and $p_{i} \in P_{0}$, with all but finitely many p_{i} being \emptyset. Extending p_{i} is controlled by linking ordinals $\xi \in a_{i}$. More specifically extending p_{i} in the interval $\left[\aleph_{n}, \aleph_{n+1}\right)$ is controlled by $\xi \in a_{i} \cap\left[\aleph_{n}, \aleph_{n+1}\right)$ if that intersection is nonempty. Let $\operatorname{supp}(p)=\left\{i<\lambda \mid p_{i} \neq \emptyset\right\}$ be the support of $p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)$, i.e., the set D in the definition of P. P is partially ordered by

$$
p^{\prime}=\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)=p
$$

iff
a) $p_{*}^{\prime} \supseteq p_{*}, \forall i<\lambda\left(a_{i}^{\prime} \supseteq a_{i} \wedge p_{i}^{\prime} \supseteq p_{i}\right)$,
b) (Linking property) $\forall i<\lambda \forall n<\omega \forall \xi \in a_{i} \cap\left[\aleph_{n}, \aleph_{n+1}\right) \forall \zeta \in \operatorname{dom}\left(p_{i}^{\prime} \backslash p_{i}\right) \cap\left[\aleph_{n}, \aleph_{n+1}\right)$: $p_{i}^{\prime}(\zeta)=p_{*}^{\prime}(\xi)(\zeta)$, and
c) (Independence property) $\forall j \in \operatorname{supp}(p):\left(a_{j}^{\prime} \backslash a_{j}\right) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a_{i}^{\prime}=\emptyset$.
$1=\left(\emptyset,(\emptyset, \emptyset)_{i<\lambda}\right)$ is the maximal element of P.

One may picture a condition $p \in P$ as

and an extension $\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)$ as

The gray areas indicate new $0-1$-values in the extension $p^{\prime} \leqslant_{P} p$, and the black areas indicate equality of new values forced by linking ordinals ξ.

Let G be a V-generic filter for P. Several generic objects can be extracted from G. It is easy to see that the set

$$
G_{*}=\left\{p_{*} \in P_{*} \mid\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in G\right\}
$$

is V-generic for the partial order P_{*}. Set $A_{*}=\bigcup G_{*}: \bigcup_{n<\omega}\left[\aleph_{n}, \aleph_{n+1}\right)^{2} \rightarrow 2$. For $\xi \in\left[\aleph_{n}\right.$, \aleph_{n+1}) let

$$
A_{*}(\xi)=\left\{\left(\zeta, A_{*}(\xi, \zeta)\right) \mid \zeta \in\left[\aleph_{n}, \aleph_{n+1}\right)\right\}:\left[\aleph_{n}, \aleph_{n+1}\right) \rightarrow 2
$$

be the (characteristic function of the) ξ-th new COHEN subset of \aleph_{n+1} in the generic extension.

For $i<\lambda$ let

$$
A_{i}=\bigcup\left\{p_{i} \mid\left(p_{*},\left(a_{j}, p_{j}\right)_{j<\lambda}\right) \in G\right\}:\left[\aleph_{0}, \aleph_{\omega}\right) \rightarrow 2
$$

be the (characteristic function of the) i-th subset of \aleph_{ω} adjoined by the forcing $P . A_{i}$ is V generic for the forcing P_{0}.

By the linking property b) of Definition 2, on a final segment, the characteristic functions $A_{i} \upharpoonright\left[\aleph_{n}, \aleph_{n+1}\right)$ will be equal to some $A_{*}(\xi)$. The independence property c) ensures that sets $A_{i}, A_{j} \subseteq \aleph_{\omega}$ with $i \neq j$ correspond to eventually disjoint, "parallel" paths through the forcing P_{*}.

The generic filter and the extracted generic objects may be pictured as follows. Black colour indicates agreement between parts of the A_{i} and of A_{*}; for each $i<\lambda$, some endsegment of $A_{i} \cap \aleph_{n+1}$ occurs as an endsegment of some vertical cut in $A_{*} \cap \aleph_{n+1}^{2}$.

Lemma 3. P satisfies the $\aleph_{\omega+2}$-chain condition.

Proof. Let $\left\{\left(p_{*}^{j},\left(a_{i}^{j}, p_{i}^{j}\right)_{i<\lambda}\right) \mid j<\aleph_{\omega+2}\right\} \subseteq P$. We shall show that two elements of the sequence are compatible. Since

$$
\operatorname{card}\left(P_{*}\right)=\operatorname{card}\left(P_{0}\right) \leqslant 2^{\aleph_{\omega}}=\aleph_{\omega+1}
$$

we may assume that there is $p_{*} \in P_{*}$ such that $\forall j<\aleph_{\omega+2}$: $p_{*}^{j}=p_{*}$. We may assume that the supports $\operatorname{supp}\left(\left(p_{*},\left(a_{i}^{j}, p_{i}^{j}\right)_{i<\lambda}\right)\right) \subseteq \lambda$ form a Δ-system with a finite kernel $I \subseteq \lambda$. Finally we may assume that there are $\left(a_{i}, p_{i}\right)_{i \in I}$ such that $\forall j<\aleph_{\omega+2} \forall i \in I:\left(a_{i}^{j}, p_{i}^{j}\right)=\left(a_{i}, p_{i}\right)$. Then $\left(p_{*}^{0},\left(a_{i}^{0}, p_{i}^{0}\right)_{i<\lambda}\right)$ and $\left(p_{*},\left(a_{i}^{1}, p_{i}^{1}\right)_{i<\lambda}\right)$ are compatible since

$$
\left(p_{*},\left(a_{i}^{0} \cup a_{i}^{1}, p_{i}^{0} \cup p_{i}^{1}\right)_{i<\lambda}\right) \leqslant P\left(p_{*}^{0},\left(a_{i}^{0}, p_{i}^{0}\right)_{i<\lambda}\right)
$$

and

$$
\left(p_{*},\left(a_{i}^{0} \cup a_{i}^{1}, p_{i}^{0} \cup p_{i}^{1}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*}^{1},\left(a_{i}^{1}, p_{i}^{1}\right)_{i<\lambda}\right) .
$$

By Lemma 3, cardinals $\geqslant \aleph_{\omega+2}^{V}$ are absolute between V and $V[G]$.

Fuzzifying the \boldsymbol{A}_{i}

We want to construct a model which contains all the A_{i} and a map which maps every A_{i} to its index i. An injective map $\lambda \longmapsto \mathcal{P}\left(\aleph_{\omega}\right)$ for some high λ would imply large consistency strength (see [1]). To disallow such maps, the A_{i} are replaced by their equivalence classes modulo an appropriate equivalence relation.

The exclusive or function $\oplus: 2 \times 2 \rightarrow 2$ is defined by

$$
a \oplus b=0 \text { iff } a=b
$$

Obviously, $(a \oplus b) \oplus(b \oplus c)=a \oplus c$. For functions

$$
A, A^{\prime}: \operatorname{dom}(A)=\operatorname{dom}\left(A^{\prime}\right) \rightarrow 2
$$

define the pointwise exclusive or $A \oplus A^{\prime}: \operatorname{dom}(A) \rightarrow 2$ by

$$
\left(A \oplus A^{\prime}\right)(\xi)=A(\xi) \oplus A^{\prime}(\xi)
$$

For functions $A, A^{\prime}:\left(\aleph_{\omega} \backslash \aleph_{0}\right) \rightarrow 2$ define an equivalence relation \sim by

$$
A \sim A^{\prime} \text { iff } \exists n<\omega\left(\left(A \oplus A^{\prime}\right) \upharpoonright \aleph_{n+1} \in V\left[G_{*}\right] \wedge\left(A \oplus A^{\prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right) \in V\right)
$$

This relation is clearly reflexive and symmetric. We show transitivity. Consider $A \sim A^{\prime} \sim$ $A^{\prime \prime}$. Choose $n<\omega$ such that

$$
\left(A \oplus A^{\prime}\right) \upharpoonright \aleph_{n+1} \in V\left[G_{*}\right] \wedge\left(A \oplus A^{\prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right) \in V
$$

and

$$
\left(A^{\prime} \oplus A^{\prime \prime}\right) \upharpoonright \aleph_{n+1} \in V\left[G_{*}\right] \wedge\left(A^{\prime} \oplus A^{\prime \prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right) \in V
$$

Then

$$
\left(A \oplus A^{\prime \prime}\right) \upharpoonright \aleph_{n+1}=\left(\left(A \oplus A^{\prime}\right) \upharpoonright \aleph_{n+1} \oplus\left(A^{\prime} \oplus A^{\prime \prime}\right) \upharpoonright \aleph_{n+1}\right) \in V\left[G_{*}\right]
$$

and

$$
\left(A \oplus A^{\prime \prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right)=\left(\left(A \oplus A^{\prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right) \oplus\left(A^{\prime} \oplus A^{\prime \prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right)\right) \in V
$$

Hence $A \sim A^{\prime \prime}$.
For $A:\left(\aleph_{\omega} \backslash \aleph_{0}\right) \rightarrow 2$ define the \sim-equivalence class $\tilde{A}=\left\{A^{\prime} \mid A^{\prime} \sim A\right\}$.

The symmetric submodel

Our final model will be a model generated by the following parameters and their constituents

$$
\begin{aligned}
& -\quad T_{*}=\mathcal{P}(<\kappa)^{V\left[A_{*}\right]}, \text { setting } \kappa=\aleph_{\omega}^{V} ; \\
& -\quad \vec{A}=\left(\tilde{A}_{i} \mid i<\lambda\right) .
\end{aligned}
$$

The model

$$
N=\operatorname{HOD}^{V[G]}\left(V \cup\left\{T_{*}, \vec{A}\right\} \cup T_{*} \cup \bigcup_{i<\lambda} \tilde{A}_{i}\right)
$$

consists of all sets which, in $V[G]$ are hereditarily definable from parameters in the transitive closure of $V \cup\left\{T_{*}, \vec{A}\right\}$. This model is symmetric in the sense that it is generated from parameters which are invariant under certain (partial) isomorphisms of the forcing P.

Lemma 4. N is a model of ZF, and there is a surjection $f: \mathcal{P}(\kappa) \rightarrow \lambda$ in N.

Proof. Note that for every $i<\lambda: A_{i} \in N$.
(1) Let $i<j<\lambda$. Then $A_{i} \nsim A_{j}$.

Proof. Assume instead that $A_{i} \sim A_{j}$. Then take $n<\omega$ such that $v=\left(A_{i} \oplus A_{j}\right) \upharpoonright\left[\aleph_{n+1}\right.$, $\left.\aleph_{\omega}\right) \in V$. The set

$$
D=\left\{\left(p_{*},\left(a_{k}, p_{k}\right)_{k<\lambda}\right) \mid \exists \xi \in\left[\aleph_{n+1}, \aleph_{\omega}\right)\left(\xi \in \operatorname{dom}\left(p_{i}\right) \cap \operatorname{dom}\left(p_{j}\right) \wedge v(\xi) \neq p_{i}(\xi) \oplus p_{j}(\xi)\right)\right\} \in V
$$

is readily seen to be dense in P. Take $\left(p_{*},\left(a_{k}, p_{k}\right)_{k<\lambda}\right) \in D \cap G$. Take $\xi \in\left[\aleph_{n+1}, \aleph_{\omega}\right)$ such that

$$
\left.\xi \in \operatorname{dom}\left(p_{i}\right) \cap \operatorname{dom}\left(p_{j}\right) \wedge v(\xi) \neq p_{i}(\xi) \oplus p_{j}(\xi)\right)
$$

Since $p_{i} \subseteq A_{i}$ and $p_{j} \subseteq A_{j}$ we have $v(\xi) \neq A_{i}(\xi) \oplus A_{j}(\xi)$ and $v \neq\left(A_{i} \oplus A_{j}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right)$. Contradiction. qed (1)

Thus

$$
f(z)=\left\{\begin{array}{l}
i, \text { if } z \in \tilde{A}_{i} \\
0, \text { else }
\end{array}\right.
$$

is a well-defined surjection $f: \mathcal{P}(\kappa) \rightarrow \lambda$, and f is definable in N from the parameters κ and \vec{A}.

The main theorem will be established by showing that, in N, the situation below κ is largely as in V, in particular $\kappa=\aleph_{\omega}^{N}$. This requires an analysis of sets of ordinals in N.

Lemma 5. Every set $X \in N$ is definable in $V[G]$ in the following form: there are an $\in-$ formula $\varphi, x \in V, n<\omega$, and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X=\left\{u \in V[G] \mid V[G] \vDash \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\}
$$

Proof. By the original definition, every set in N is definable in $V[G]$ from finitely many parameters in

$$
V \cup\left\{T_{*}, \vec{A}\right\} \cup T_{*} \cup \bigcup_{i<\lambda} \tilde{A}_{i} .
$$

To reduce the class of defining parameters to

$$
V \cup\left\{T_{*}, \vec{A}\right\} \cup\left\{A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \mid n<\omega\right\} \cup\left\{A_{i} \mid i<\lambda\right\}
$$

observe:

- Let $x \in T_{*}$ be a bounded subset of \aleph_{ω}^{V} with $x \in V\left[A_{*}\right]$. A standard product analysis of the generic extension $V\left[G_{*}\right]=V\left[A_{*}\right]$ of V yields that $x \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$ for some $n<\omega$.
- Let $y \in \tilde{A}_{i}$. Then $y \sim A_{i}$, i.e.,

$$
\left(y \oplus A_{i}\right) \upharpoonright \aleph_{m+1} \in V\left[G_{*}\right] \wedge\left(y \oplus A_{i}\right) \upharpoonright\left[\aleph_{m+1}, \aleph_{\omega}\right) \in V
$$

for some $m<\omega$. Let $z=\left(y \oplus A_{i}\right) \upharpoonright \aleph_{m+1} \in V\left[A_{*}\right]$. By the previous argument $z \in$ $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$ for some $n<\omega$. Let $z^{\prime}=\left(y \oplus A_{i}\right) \upharpoonright\left[\aleph_{m+1}, \aleph_{\omega}\right) \in V$. Then

$$
\begin{aligned}
y & =\left(y \upharpoonright \aleph_{m+1}\right) \cup\left(y \upharpoonright\left[\aleph_{m+1}, \aleph_{\omega}\right)\right) \\
& =\left(\left(z \oplus A_{i}\right) \upharpoonright \aleph_{m+1}\right) \cup\left(\left(z^{\prime} \oplus A_{i}\right) \upharpoonright\left[\aleph_{m+1}, \aleph_{\omega}\right)\right) \\
& \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i}\right] .
\end{aligned}
$$

Finitely many parameters of the form $A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$ can then be incorporated into a single such parameter taking a sufficiently high $n<\omega$.

Approximating N

Concerning sets of ordinals, the model N can be approximated by "mild" generic extensions of the ground model. Note that many set theoretic notions only refer to ordinals and sets of ordinals.

Lemma 6. Let $X \in N$ and $X \subseteq$ Ord. Then there are $n<\omega$ and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]
$$

Proof. By Lemma 5 take an \in-formula $\varphi, x \in V, n<\omega$, and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X=\left\{u \in \operatorname{Ord} \mid V[G] \vDash \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\} .
$$

By taking n sufficiently large, we may assume that

$$
\forall j<k<l \forall m \in[n, \omega) \forall \delta \in\left[\aleph_{m}, \aleph_{m+1}\right): A_{i_{j}} \upharpoonright\left[\delta, \aleph_{m+1}\right) \neq A_{i_{k}} \upharpoonright\left[\delta, \aleph_{m+1}\right)
$$

For $j<l$ set

$$
a_{i_{j}}^{*}=\left\{\xi \mid \exists m \leqslant n \exists \delta \in\left[\aleph_{m}, \aleph_{m+1}\right): A_{i_{j}} \upharpoonright\left[\delta, \aleph_{m+1}\right)=A_{*}(\xi) \upharpoonright\left[\delta, \aleph_{m+1}\right)\right\}
$$

where $A_{*}(\xi)=\left\{\left(\zeta, A_{*}(\xi, \zeta)\right) \mid(\xi, \zeta) \in \operatorname{dom}\left(A_{*}\right)\right\}$. By the properties of $Q, a_{i_{j}}^{*} \subseteq \aleph_{n+1}$ is finite and $\forall m \leqslant n: \operatorname{card}\left(a_{i_{j}}^{*} \cap\left[\aleph_{m}, \aleph_{m+1}\right)\right)=1$.

Now define

$$
\begin{aligned}
X^{\prime}=\{u \in \text { Ord } \mid & \text { there is } p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in P \text { such that } \\
& p_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \subseteq A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, \\
& a_{i_{0} \supseteq a_{i_{0}}^{*}, \ldots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^{*},}, \\
& p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}, \text { and } \\
& \left.p \Vdash \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)\right\},
\end{aligned}
$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}$ are canonical names for $T_{*}, \vec{A}, A_{*}, A_{i_{0}}, \ldots, A_{i_{l-1}}$ resp.
Then $X^{\prime} \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$.
(1) $X \subseteq X^{\prime}$.

Proof. Consider $u \in X$. Take $p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in G$ such that

$$
p \Vdash \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right) .
$$

Then $p_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \subseteq A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$ and $p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}$. Using a density argument we may also assume that $\operatorname{card}\left(a_{i_{0}} \cap \aleph_{n+1}\right)=\ldots=\operatorname{card}\left(a_{i_{l-1}} \cap \aleph_{n+1}\right)=n$. Then $a_{i_{0}} \supseteq a_{i_{0}}^{*}, \ldots$, $a_{i_{l-1}} \supseteq a_{i_{l-1}}^{*}$. Thus $u \in X^{\prime} . \operatorname{qed}(1)$

The converse direction, $X^{\prime} \subseteq X$, is more involved and uses an isomorphism argument. Suppose for a contradiction that there were $u \in X^{\prime} \backslash X$. Then take a condition $p=\left(p_{*},\left(a_{i}\right.\right.$, $\left.\left.p_{i}\right)_{i<\lambda}\right) \in P$ as in the definition of X^{\prime}, i.e.,
(2) $p_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \subseteq A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$,
(3) $a_{i_{0}} \supseteq a_{i_{0}}^{*}, \ldots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^{*}$,
(4) $p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}$, and
(5) $\left.p \Vdash \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)\right\}$.

By $u \notin X$ take $p^{\prime}=\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right) \in G$ such that
(6) $p^{\prime} \Vdash \neg \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)$.

By genericity we may assume that
(7) $p_{*}^{\prime} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \subseteq A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$
(8) $a_{i_{0}}^{\prime} \supseteq a_{i_{0}}^{*}, \ldots, a_{i_{l-1}}^{\prime} \supseteq a_{i_{l-1}}^{*}$, and
(9) $p_{i_{0}}^{\prime} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}}^{\prime} \subseteq A_{i_{l-1}}$.

By strengthening the conditions we can arrange that p and p^{\prime} have similar "shapes" whilst preserving the above conditions (2) to (9):
(10) ensure that $\operatorname{supp}(p)=\operatorname{supp}\left(p^{\prime}\right)$; choose some \aleph_{m+1} such that $\forall i \in \operatorname{supp}(p)\left(a_{i} \subseteq \aleph_{m+1} \wedge\right.$ $\left.a_{i}^{\prime} \subseteq \aleph_{m+1}\right)$;
(11) extend the a_{i} and a_{i}^{\prime} such that

$$
\forall i \in \operatorname{supp}(p) \forall k \leqslant m: \operatorname{card}\left(a_{i} \cap\left[\aleph_{k}, \aleph_{k+1}\right)\right)=\operatorname{card}\left(a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)\right)=1 ;
$$

(12) also extend the conditions so that they involve the same "linking" ordinals, possibly at different positions within the conditions:

$$
\bigcup_{i<\lambda} a_{i}=\bigcup_{i<\lambda} a_{i}^{\prime}
$$

(13) extend the p_{*} and p_{i} 's in p and p^{\prime} resp. so that for some sequence $\left(\delta_{k} \mid k<\omega\right)$:

$$
\operatorname{dom}\left(p_{*}\right)=\operatorname{dom}\left(p_{*}^{\prime}\right)=\bigcup_{k<\omega}\left[\aleph_{k}, \delta_{k}\right)^{2}
$$

and

$$
\forall i \in \operatorname{supp}(p): \operatorname{dom}\left(p_{i}\right)=\operatorname{dom}\left(p_{i}^{\prime}\right)=\bigcup_{k<\omega}\left[\aleph_{k}, \delta_{k}\right)
$$

The following picture tries to capture some aspects of the shape similarity between p and p^{\prime}; corresponding components of p and p^{\prime} are drawn side by side

Now define a map

$$
\pi:\left(P \upharpoonright p, \leqslant_{P}\right) \rightarrow\left(P \upharpoonright p^{\prime}, \leqslant_{P}\right),
$$

where the restricted partial orders are defined as $P \upharpoonright p=\left\{q \in P \mid q \leqslant_{P} p\right\}$ and $P \upharpoonright p^{\prime}=\left\{q^{\prime} \in\right.$ $\left.P \mid q^{\prime} \leqslant_{P} p^{\prime}\right\}$. For $q=\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)=p$ define $\left.\pi(p)=\pi\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right)\right)=$ $\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right)$ by the following three conditions:
(14) $q_{*}^{\prime}=\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime}$; note that this is a legitimate function since $\operatorname{dom}\left(p_{*}\right)=\operatorname{dom}\left(p_{*}^{\prime}\right)$;
(15) for $i<\lambda$ let $b_{i}^{\prime}=\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}$; so if $i \in \operatorname{supp}(p)$, the $m+1$ ordinals in a_{i} are substituted by the $m+1$ ordinals in a_{i}^{\prime}; if $i \notin \operatorname{supp}(p)$, we have $b_{i}^{\prime}=b_{i}$;
(16) for $i \in \lambda \backslash \operatorname{supp}(q)$ let $q_{i}^{\prime}=\emptyset$, and for $i \in \operatorname{supp}(q)$ define $q_{i}^{\prime}: \operatorname{dom}\left(q_{i}\right) \rightarrow 2$ by

$$
q_{i}^{\prime}(\zeta)=\left\{\begin{array}{l}
p_{i}^{\prime}(\zeta), \text { if } \zeta \in \operatorname{dom}\left(p_{i}\right) ; \\
q_{*}\left(\xi^{\prime}, \zeta\right), \text { if } \zeta \notin \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\left\{\xi^{\prime}\right\} ; \\
q_{i}(\zeta), \text { if } \zeta \notin \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\emptyset .
\end{array}\right.
$$

Here is a picture of (some features of) π.

We verify that $\pi:(P \upharpoonright p, \leqslant P) \rightarrow\left(P \upharpoonright p^{\prime}, \leqslant P\right)$ is an isomorphism.
(17) $\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right) \in P$, since it has the same structure as $\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right)$, with some function values altered.
(18) $\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right)$.

Proof. $q_{*}^{\prime} \supseteq p_{*}^{\prime}$ since $q_{*}^{\prime}=\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime}$, see (14). Similarly we get $b_{i}^{\prime} \supseteq a_{i}^{\prime}$ and $q_{i}^{\prime} \supseteq p_{i}^{\prime}$. To check the linking property (Definition $2, \mathrm{~b})$), consider $i<\lambda, n<\omega$, and $\xi^{\prime} \in a_{i}^{\prime} \cap\left[\aleph_{n}, \aleph_{n+1}\right)$. For $\zeta \in \operatorname{dom}\left(q_{i}^{\prime} \backslash p_{i}^{\prime}\right)$ we have

$$
q_{i}^{\prime}(\zeta)=q_{*}\left(\xi^{\prime}, \zeta\right)=q_{*}^{\prime}\left(\xi^{\prime}, \zeta\right)
$$

Finally we have to show the independence property (Definition 2, c)) within the linking ordinals. Consider $j \in \operatorname{supp}\left(p^{\prime}\right)=\operatorname{supp}(p)$. We claim that $\left(b_{j}^{\prime} \backslash a_{j}^{\prime}\right) \cap \bigcup_{i \in \operatorname{supp}\left(p^{\prime}\right), i \neq j} b_{i}^{\prime}=\emptyset$. Assume for a contradiction that $\xi^{\prime} \in\left(b_{j}^{\prime} \backslash a_{j}^{\prime}\right) \cap b_{i}^{\prime}$ for some $i \in \operatorname{supp}\left(p^{\prime}\right), i \neq j$. Then $\xi^{\prime} \in$ $\left(b_{j} \backslash a_{j}\right) \cap\left(\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}\right)$. The case $\xi^{\prime} \in\left(b_{j} \backslash a_{j}\right) \cap\left(b_{i} \backslash a_{i}\right)$ is impossible by the independence property in $q \leqslant_{P} p$. And

$$
\left(b_{j} \backslash a_{j}\right) \cap \bigcup_{i \in \operatorname{supp}\left(p^{\prime}\right), i \neq j} a_{i}^{\prime}=\left(b_{j} \backslash a_{j}\right) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a_{i}=\emptyset
$$

by the independence property in $q \leqslant_{P} p$ and by (12). qed(18)
(19) π is order-preserving.

Proof. Consider

$$
r=\left(r_{*},\left(c_{i}, r_{i}\right)_{i<\lambda}\right) \leqslant_{P} q=\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \leqslant_{P} p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)
$$

and $\pi(r)=r^{\prime}=\left(r_{*}^{\prime},\left(c_{i}^{\prime}, r_{i}^{\prime}\right)_{i<\lambda}\right), \pi(q)=q^{\prime}=\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right)$. We show that $r^{\prime} \leqslant P q^{\prime}$. Concerning the inclusions:

$$
\begin{aligned}
& -\quad r_{*}^{\prime}=\left(r_{*} \backslash p_{*}\right) \cup p_{*}^{\prime} \supseteq\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime}=q_{*}^{\prime} ; \\
& -\quad c_{i}^{\prime}=\left(c_{i} \backslash a_{i}\right) \cup a_{i}^{\prime} \supseteq\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}=b_{i}^{\prime} ;
\end{aligned}
$$

- if $i \in \lambda \backslash \operatorname{supp}(q)$, then $q_{i}^{\prime}=\emptyset$ and hence $q_{i}^{\prime} \subseteq r_{i}^{\prime}$. If $i \in \operatorname{supp}(q)$ then $i \in \operatorname{supp}(r)$, and $\operatorname{dom}\left(r_{i}^{\prime}\right)=\operatorname{dom}\left(r_{i}\right)$ and $\operatorname{dom}\left(q_{i}^{\prime}\right)=\operatorname{dom}\left(q_{i}\right)$. So we have

$$
\operatorname{dom}\left(p_{i}\right)=\operatorname{dom}\left(p_{i}^{\prime}\right) \subseteq \operatorname{dom}\left(q_{i}^{\prime}\right) \subseteq \operatorname{dom}\left(r_{i}^{\prime}\right)
$$

For $\zeta \in \operatorname{dom}\left(q_{i}^{\prime}\right)$ we have to show that $q_{i}^{\prime}(\zeta)=r_{i}^{\prime}(\zeta)$. In case $\zeta \in \operatorname{dom}\left(p_{i}\right)$ we have

$$
q_{i}^{\prime}(\zeta)=p_{i}^{\prime}(\zeta)=r_{i}^{\prime}(\zeta)
$$

In case $\zeta \notin \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\left\{\xi^{\prime}\right\}$ we have

$$
q_{i}^{\prime}(\zeta)=q_{*}\left(\xi^{\prime}, \zeta\right)=r_{*}\left(\xi^{\prime}, \zeta\right)=r_{i}^{\prime}(\zeta)
$$

In case $\zeta \in \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\emptyset$ we have

$$
q_{i}^{\prime}(\zeta)=q_{i}(\zeta)=r_{i}(\zeta)=r_{i}^{\prime}(\zeta)
$$

For the linking property consider $i<\lambda, n<\omega$, and $\xi^{\prime} \in b_{i}^{\prime} \cap\left[\aleph_{n}, \aleph_{n+1}\right)$. We have to check that $\forall \zeta \in \operatorname{dom}\left(r_{i}^{\prime} \backslash q_{i}^{\prime}\right) \cap\left[\aleph_{n}, \aleph_{n+1}\right): r_{i}^{\prime}(\zeta)=r_{*}^{\prime}(\xi, \zeta)$. So consider $\zeta \in \operatorname{dom}\left(r_{i}^{\prime} \backslash q_{i}^{\prime}\right) \cap\left[\aleph_{n}, \aleph_{n+1}\right)$. Note that $b_{i}^{\prime}=\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}$. In case $\xi^{\prime} \in a_{i}^{\prime}$ we get:

$$
r_{i}^{\prime}(\zeta)=r_{*}\left(\xi^{\prime}, \zeta\right)=r_{*}^{\prime}\left(\xi^{\prime}, \zeta\right) .
$$

If $\xi^{\prime} \in b_{i} \backslash a_{i}, \xi^{\prime} \notin a_{i}^{\prime}$ and so $a_{i}^{\prime} \cap\left[\aleph_{n}, \aleph_{n+1}\right)=\emptyset$. Hence

$$
r_{i}^{\prime}(\zeta)=r_{i}(\zeta)=r_{*}\left(\xi^{\prime}, \zeta\right)=r_{*}^{\prime}\left(\xi^{\prime}, \zeta\right)
$$

For the linking property consider $j \in \operatorname{supp}\left(q^{\prime}\right)$. We have to show that

$$
\left(c_{j}^{\prime} \backslash b_{j}^{\prime}\right) \cap \bigcup_{i \in \operatorname{supp}\left(q^{\prime}\right), i \neq j} c_{i}^{\prime}=\emptyset
$$

Suppose for a contradiction that $\xi^{\prime} \in\left(c_{j}^{\prime} \backslash b_{j}^{\prime}\right) \cap \bigcup_{i \in \operatorname{supp}\left(q^{\prime}\right), i \neq j} c_{i}^{\prime}$. Then $\xi^{\prime} \in c_{j}^{\prime} \backslash b_{j}^{\prime}=c_{j} \backslash b_{j}$. Take $i \in \operatorname{supp}\left(q^{\prime}\right), i \neq j$ such that $\xi^{\prime} \in c_{i}^{\prime}$. If $i \in \operatorname{supp}\left(p^{\prime}\right)$ this contradicts the property $r^{\prime} \leqslant P p^{\prime}$. So $i \in \operatorname{supp}\left(q^{\prime}\right) \backslash \operatorname{supp}\left(p^{\prime}\right)$. Then $c_{i}^{\prime}=c_{i}$ and $\xi^{\prime} \in\left(c_{j} \backslash b_{j}\right) \cap c_{i}$. But this contradicts the independence property for $r \leqslant_{P} q . \operatorname{qed}(19)$
The definition of the map π only uses properties of p and p^{\prime} which are the same for both of p and p^{\prime}. So we can similarly define a map

$$
\pi^{\prime}:\left(P \upharpoonright p^{\prime}, \leqslant_{P}\right) \rightarrow\left(P \upharpoonright p, \leqslant_{P}\right),
$$

where for $q^{\prime}=\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right) \leqslant{ }_{P}\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right)=p^{\prime}$ the image $\pi^{\prime}\left(q^{\prime}\right)=\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right)$ is defined by
(20) $q_{*}=\left(q_{*}^{\prime} \backslash p_{*}^{\prime}\right) \cup p_{*}$;
(21) for $i<\lambda$ let $b_{i}=\left(b_{i}^{\prime} \backslash a_{i}^{\prime}\right) \cup a_{i}$;
(22) for $i \in \lambda \backslash \operatorname{supp}\left(q^{\prime}\right)$ let $q_{i}=\emptyset$, and for $i \in \operatorname{supp}\left(q^{\prime}\right)$ define $q_{i}: \operatorname{dom}\left(q_{i}^{\prime}\right) \rightarrow 2$ by

$$
q_{i}(\zeta)=\left\{\begin{array}{l}
p_{i}(\zeta), \text { if } \zeta \in \operatorname{dom}\left(p_{i}^{\prime}\right), \\
q_{*}^{\prime}(\xi, \zeta), \text { if } \zeta \notin \operatorname{dom}\left(p_{i}^{\prime}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\{\xi\}, \\
q_{i}^{\prime}(\zeta), \text { if } \zeta \notin \operatorname{dom}\left(p_{i}^{\prime}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\emptyset .
\end{array}\right.
$$

The maps π and π^{\prime} are inverses:
(23) $\pi^{\prime} \circ \pi:\left(P \upharpoonright p, \leqslant_{P}\right) \rightarrow\left(P \upharpoonright p, \leqslant_{P}\right)$ is the identity on $\left(P \upharpoonright p, \leqslant_{P}\right)$.

Proof. Let $\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \leqslant_{P} p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)$ and let $\pi\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right)=\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right)$.
Concerning the first component,

$$
q_{*} \stackrel{\pi}{\longmapsto}\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime} \stackrel{\pi^{\prime}}{\longmapsto}\left(\left(\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime}\right) \backslash p_{*}^{\prime}\right) \cup p_{*}=q_{*} .
$$

For $i<\lambda$,

$$
b_{i} \stackrel{\pi}{\longmapsto}\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime} \stackrel{\pi^{\prime}}{\longmapsto}\left(\left(\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}\right) \backslash a_{i}^{\prime}\right) \cup a_{i}=b_{i} .
$$

For $i \in \lambda \backslash \operatorname{supp}(q), q_{i}=q_{i}^{\prime}=\emptyset$ and so

$$
q_{i} \stackrel{\pi}{\longmapsto} q_{i}^{\prime} \stackrel{\pi^{\prime}}{\longrightarrow} q_{i} .
$$

Now consider $i \in \operatorname{supp}(q)=\operatorname{supp}\left(q^{\prime}\right)$. Then $\operatorname{dom}\left(q_{i}\right)=\operatorname{dom}\left(q_{i}^{\prime}\right)$. Let $\zeta \in \operatorname{dom}\left(q_{i}\right)$. In case $\zeta \in \operatorname{dom}\left(p_{i}\right)=\operatorname{dom}\left(p_{i}^{\prime}\right)$ we have

$$
q_{i}(\zeta)=p_{i}(\zeta) \stackrel{\pi}{\longmapsto} p_{i}^{\prime}(\zeta)=q_{i}^{\prime}(\zeta) \stackrel{\pi^{\prime}}{\longmapsto} p_{i}(\zeta)=q_{i}(\zeta) .
$$

In case $\zeta \notin \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\{\xi\}$ let $a_{i}^{\prime} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\left\{\xi^{\prime}\right\}$. Then $q_{i}(\zeta)=q_{*}(\xi, \zeta)$ and $q_{i}^{\prime}(\zeta)=q_{*}^{\prime}\left(\xi^{\prime}, \zeta\right)$. Then

$$
q_{i}(\zeta) \stackrel{\pi}{\longmapsto} q_{*}^{\prime}\left(\xi^{\prime}, \zeta\right) \stackrel{\pi^{\prime}}{\longmapsto} q_{*}(\xi, \zeta)=q_{i}(\zeta) .
$$

Finally, if $\zeta \notin \operatorname{dom}\left(p_{i}\right) \wedge \exists k<\omega: \zeta \in\left[\aleph_{k}, \aleph_{k+1}\right) \wedge a_{i} \cap\left[\aleph_{k}, \aleph_{k+1}\right)=\emptyset$ then $q_{i}(\zeta)=q_{i}(\zeta)$ and so

$$
q_{i}(\zeta) \stackrel{\pi}{\longmapsto} q_{i}^{\prime}(\zeta) \stackrel{\pi^{\prime}}{\longmapsto} q_{i}(\zeta) .
$$

Thus

$$
p \stackrel{\pi}{\longmapsto} p^{\prime} \stackrel{\pi^{\prime}}{\longmapsto} p .
$$

qed(23)
Similarly,
(24) $\pi \circ \pi^{\prime}:\left(P^{\prime} \upharpoonright p^{\prime}, \leqslant_{P}\right) \rightarrow\left(P^{\prime} \upharpoonright p^{\prime}, \leqslant_{P}\right)$ is the identity on $\left(P^{\prime} \upharpoonright p^{\prime}, \leqslant_{P}\right)$.

Hence $\pi:\left(P \upharpoonright p, \leqslant_{P}\right) \rightarrow\left(P \upharpoonright p^{\prime}, \leqslant_{P}\right)$ is an isomorphism. Before we apply π to generic filters and objects defined from them, we note some properties of π.
(25) Let $q=\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \leqslant_{P} p$ and $\pi(p)=\left(q_{*}^{\prime},\left(b_{i}^{\prime}, q_{i}^{\prime}\right)_{i<\lambda}\right)$. Then $q_{*}^{\prime} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}=q_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$, and $q_{i_{0}}^{\prime}=q_{i_{0}}, \ldots, q_{i_{l-1}}^{\prime}=q_{i_{l-1}}$.

Now let H_{0} be a V-generic filter for $\left(P \upharpoonright p, \leqslant_{P}\right)$ with $p \in H_{0}$. Then

$$
H=\left\{r \in P \mid \exists q \in H_{0}: q \leqslant{ }_{P} r\right\}
$$

is a V-generic filter for P with $p \in H$.
Moreover, $H_{0}^{\prime}=\pi\left[H_{0}\right]$ is a V-generic filter for $\left(P \upharpoonright p^{\prime}, \leqslant_{P}\right)$ with $p^{\prime} \in H_{0}^{\prime}$ and

$$
H^{\prime}=\left\{r \in P \mid \exists q \in H_{0}^{\prime}: q \leqslant_{P} r\right\}
$$

is a V-generic filter for P with $p^{\prime} \in H^{\prime}$.
(26) $V[H]=V\left[H^{\prime}\right]$ since the generic filters can be defined from each other using the isomorphism $\pi \in V$.

Now define the parameters used in the definition of the model N from the generic filters H and H^{\prime} :

$$
H_{*}=\left\{q_{*} \in P_{*} \mid\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \in H\right\}, T_{*}=\sigma^{H}, \vec{A}=\tau^{H}, A_{*}=\dot{A}^{H}, \text { and } A_{i}=\dot{A}_{i}^{H} \text { for } i<\lambda
$$

and

$$
H_{*}^{\prime}=\left\{q_{*} \in P_{*} \mid\left(q_{*},\left(b_{i}, q_{i}\right)_{i<\lambda}\right) \in H^{\prime}\right\}, T_{*}^{\prime}=\sigma^{H^{\prime}}, \vec{A}^{\prime}=\tau^{H^{\prime}}, A_{*}^{\prime}=\dot{A}^{H^{\prime}}, \text { and } A_{i}^{\prime}=\dot{A}_{i}^{H^{\prime}} \text { for } i<\lambda .
$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}$ are the canonical names for $T_{*}, \vec{A}, A_{*}, A_{i}$ resp. used before. The symbols G_{*}, \vec{A}, \ldots are only used within the current proof, they do not conflict with their use before and after this proof.
(27) $V\left[H_{*}\right]=V\left[H_{*}^{\prime}\right]$.

Proof. Since H_{*} is V-generic for P_{*} and $p_{*} \in P_{*}, H_{*} \cap\left\{q_{*} \in P_{*} \mid q_{*} \supseteq p_{*}\right\}$ is, over the ground model V, equidefinable with H_{*}. Hence

$$
\begin{aligned}
V\left[H_{*}\right] & =V\left[H_{*} \cap\left\{q_{*} \in P_{*} \mid q_{*} \supseteq p_{*}\right\}\right] \\
& \supseteq V\left[\left\{\left(q_{*} \backslash p_{*}\right) \cup p_{*}^{\prime} \mid q_{*} \in H_{*} \cap\left\{q_{*} \in P_{*} \mid q_{*} \supseteq p_{*}\right\}\right]\right. \\
& =V\left[H_{*}^{\prime} \cap\left\{q_{*} \in P_{*} \mid q_{*} \supseteq p_{*}^{\prime}\right\}\right] \\
& =V\left[H_{*}^{\prime}\right]
\end{aligned}
$$

qed(27)
This implies
(28) $T_{*}=T_{*}^{\prime}$.

Let $A_{*}=\bigcup H_{*}$ and $A_{*}^{\prime}=\bigcup H_{*}^{\prime}$.
(29) $A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}=A_{*}^{\prime} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$.

Proof. Note that the map π is the identity on the $*$-component below $\aleph_{m+1}^{V} \cdot q e d(29)$
(30) For $i<\lambda: A_{i} \sim A_{i}^{\prime}$.

Proof. Recall $A_{i}=\bigcup\left\{q_{i} \mid\left(q_{*},\left(b_{j}, q_{j}\right)_{j<\lambda}\right) \in H\right\}:\left[\aleph_{0}, \aleph_{\omega}^{V}\right) \rightarrow 2$. Since the map π maps the set b_{i} of linking ordinals to $\left(b_{i} \backslash a_{i}\right) \cup a_{i}^{\prime}$ the linking ordinals in the relevant sets b_{i} are equal to the linking ordinals in the sets b_{i}^{\prime} with possibly finitely many exceptions. This means that the characteristic functions A_{i} and A_{i}^{\prime} will be equal above p_{i} and p_{i}^{\prime} respectively in all cardinal intervals [\aleph_{k}, \aleph_{k+1}) with $k>m$). In other words,

$$
\left(A_{i} \oplus A_{i}^{\prime}\right) \upharpoonright\left[\aleph_{m+1}^{V}, \aleph_{\omega}^{V}\right) \in V .
$$

The functions $A_{i} \upharpoonright \aleph_{m+1}^{V}$ and $A_{i}^{\prime} \upharpoonright \aleph_{m+1}^{V}$ are determined in the cardinal intervals $\left[\aleph_{k}^{V}, \aleph_{k+1}^{V}\right.$) for $k \leqslant m$ by $p_{i} \upharpoonright\left[\aleph_{k}^{V}, \aleph_{k+1}^{V}\right)$ and $p_{i}^{\prime} \upharpoonright\left[\aleph_{k}^{V}, \aleph_{k+1}^{V}\right)$ and some cuts $A_{*}(\xi)$ and $A_{*}\left(\xi^{\prime}\right)$ respectively. Hence $A_{i} \upharpoonright\left[\aleph_{k}^{V}, \aleph_{k+1}^{V}\right), A_{i}^{\prime} \upharpoonright\left\lceil\aleph_{k}^{V}, \aleph_{k+1}^{V}\right) \in V\left[A_{*} \upharpoonright\left(\aleph_{m+1}^{V}\right)^{2}\right]=V\left[A_{*}^{\prime} \upharpoonright\left(\aleph_{m+1}^{V}\right)^{2}\right]$. Thus

$$
\left(A_{i} \oplus A_{i}^{\prime}\right) \upharpoonright \aleph_{m+1}^{V} \in V\left[H_{*}\right] \text { and }\left(A_{i} \oplus A_{i}^{\prime}\right) \upharpoonright\left[\aleph_{m+1}^{V}, \aleph_{\omega}^{V}\right) \in V,
$$

i.e., $A_{i} \sim A_{i}^{\prime} . \operatorname{qed}(30)$

This implies immediately that the sequences of equivalence classes agree in both models:
(31) $\vec{A}=\vec{A}^{\prime}$.
(32) $A_{i_{0}}=A_{i_{0}}^{\prime}, \ldots, A_{i_{l-1}}=A_{i_{l-1}}^{\prime}$.

Proof. Note that the isomorphism π is the identity at the indices i_{0}, \ldots, i_{l-1}. qed(32)
Since $\left.p \Vdash \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)\right\}$ and $p \in H$ we have

$$
V[H] \vDash \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right) .
$$

Since $\left.p^{\prime} \Vdash \neg \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\check{\aleph}_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)\right\}$ and $p^{\prime} \in H^{\prime}$ we have

$$
V\left[H^{\prime}\right] \vDash \neg \varphi\left(u, x, T_{*}^{\prime}, \vec{A}^{\prime}, A_{*}^{\prime} \upharpoonright P_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}^{\prime}, \ldots, A_{i_{l-1}}^{\prime}\right) .
$$

But the various equalities proved above imply

$$
V[H] \vDash \neg \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright P_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right),
$$

which is the desired contradiction.

Wrapping up

We show that the approximation models are mild generic extensions of V.

Lemma 7. Let $n<\omega$ and $i_{0}, \ldots, i_{l-1}<\lambda$. Then cardinals are absolute between V and $V\left[A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$.

Proof. Take $p^{0}=\left(p_{*}^{0},\left(a_{i}^{0}, p_{i}^{0}\right)_{i<\lambda}\right) \in G$ such that $\left\{i_{0}, \ldots, i_{l-1}\right\} \subseteq \operatorname{supp}\left(p^{0}\right)$. Since the models $V\left[A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$ are monotonely growing with n we may assume that n is large enough such that

$$
\forall i \in \operatorname{supp}(q) \forall \xi \in a_{i}^{0}: \xi \in \aleph_{n+1}
$$

Since every $A_{i_{j}} \cap \aleph_{n+1}^{V}$ can be computed from $A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$, we have

$$
V\left[A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]=V\left[A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right] .
$$

Let $P^{\prime}=\left(P^{\prime}, \supseteq, \emptyset\right)$ be the forcing

$$
P^{\prime}=\left\{r \mid \exists\left(\delta_{m}\right)_{n<m<\omega}\left(\forall m \in(n, \omega): \delta_{m} \in\left[\aleph_{m}^{V}, \aleph_{m+1}^{V}\right) \wedge r: \bigcup_{n<m<\omega}\left[\aleph_{m}^{V}, \delta_{m}\right) \rightarrow 2\right)\right\},
$$

which adjoins Cohen subsets to the \aleph_{m} 's with $m>n$.
(2) $\left(A_{i_{0}} \upharpoonright\left\lceil\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right)$ is V-generic for $\left(P^{\prime}\right)^{l}=\underbrace{P^{\prime} \times \ldots \times P^{\prime}}_{l \text { times }}$.

Proof. Let $D \subseteq\left(P^{\prime}\right)^{l}$ be dense open, $D \in V$. We have to show that D is met by ($A_{i_{0}} \upharpoonright$ $\left.\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right)$. Let

$$
D^{\prime}=\left\{\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in Q \mid\left(p_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, p_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right) \in D\right\} .
$$

This set is dense in P below p^{0} : consider $p^{1}=\left(p_{*}^{1},\left(a_{i}^{1}, p_{i}^{1}\right)_{i<\lambda}\right) \leqslant P\left(p_{*}^{0},\left(a_{i}^{0}, p_{i}^{0}\right)_{i<\lambda}\right)=p^{0}$. Take $\left(\delta_{m}\right)_{n<m<\omega}$ such that

$$
p_{*}^{1} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)^{2}: \bigcup_{n<m<\omega}\left[\aleph_{m}^{V}, \delta_{m}\right)^{2} \rightarrow 2
$$

Take $p_{i_{0}}, \ldots, p_{i_{l-1}}$ such that

$$
\left(p_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, p_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right) \in D
$$

and such that $p_{i_{0}}, \ldots, p_{i_{l-1}}$ have the same domains. Through some ordinals in $a_{i_{0}}^{1}, \ldots, a_{i_{l-1}}^{1}$, the choice of $p_{i_{0}}, \ldots, p_{i_{l-1}}$ determines some values of p_{*} by the linking property b) of Definition 2 :

$$
\forall i<\lambda \forall m<\omega \forall \xi \in a_{i} \cap\left[\aleph_{m}, \aleph_{m+1}\right) \forall \zeta \in \operatorname{dom}\left(p_{i} \backslash p_{i}^{1}\right) \cap\left[\aleph_{m}, \aleph_{m+1}\right): p_{i}(\zeta)=p_{*}(\xi)(\zeta)
$$

The independence property implies that the linking sets $a_{i_{0}}^{1}, \ldots, a_{i_{l-1}}^{1}$ are pairwise disjoint above \aleph_{n+1}^{V}, i.e., the sets

$$
a_{i_{0}}^{1} \cap\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, a_{i_{l-1}}^{1} \cap\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)
$$

are pairwise disjoint. So the linking requirements can be satisfied simultaneously. Then we can amend the definition of the other components of $p \leqslant p^{1}$ and obtain $p \in D^{\prime}$.

By the genericity of G take $\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in D^{\prime} \cap G$. Then

$$
\left(p_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, p_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right) \in D
$$

with

$$
\left.p_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right) \subseteq A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, p_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right) \subseteq A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)
$$

as required. qed (2)
The forcing $\left(P^{\prime}\right)^{l}$ is $\left\langle\aleph_{n+2}\right.$-closed. $A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$ is V-generic for the forcing

$$
P_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}=\left\{r \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \mid r \in P_{*}\right\} .
$$

By the GCH in $V, \operatorname{card}\left(P_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right)=\aleph_{n+1}$. Hence every dense subset of $P_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$ which is in $V\left[A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right]$ is already an element of V. Thus $A_{*} \upharpoonright$ $\left(\aleph_{n+1}^{V}\right)^{2}$ is $V\left[A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right]$-generic for $P^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}$.

This means that

$$
V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right]
$$

is equal to the two-stage iteration

$$
V\left[A_{i_{0}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right), \ldots, A_{i_{l-1}} \upharpoonright\left[\aleph_{n+1}^{V}, \aleph_{\omega}^{V}\right)\right]\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right],
$$

which does not destroy cardinals.

Lemma 8. Cardinals are absolute between N and V, and in particular $\kappa=\aleph_{\omega}^{V}=\aleph_{\omega}^{N}$.

Proof. If not, then there is a function $f \in N$ which collapses a cardinal in V. By Lemma $6, f$ is an element of some model $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$ as above. But this contradicts Lemma 7.

Lemma 9. GCH holds in N below \aleph_{ω}.

Proof. If $X \subseteq \aleph_{n}$ and $X \in N$ then X is an element of some model $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots\right.$, $\left.A_{i_{l-1}}\right]$ as above. Since $A_{i_{0}}, \ldots, A_{i_{l-1}}$ do not adjoin new subsets of \aleph_{n} we have that

$$
X \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]
$$

Hence $\mathcal{P}\left(\aleph_{n}^{V}\right) \cap N \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$. GCH holds in $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$. Hence there is a bijection $\mathcal{P}\left(\aleph_{n}^{V}\right) \cap N \leftrightarrow \aleph_{n+1}^{V}$ in $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$ and hence in N.

Discussion and Remarks

The above construction straightforwardly generalises to other cardinals κ of cofinality ω. In that extension, cardinals $\leqslant \kappa$ are preserved, GCH holds below κ, and there is a surjection from $\mathcal{P}(\kappa)$ onto some arbitrarily high cardinal λ. To work with singular cardinals κ of uncountable cofinality, finiteness properties in the construction have to be replaced by the property of being of cardinality $<\operatorname{cof}(\kappa)$. This yields results like the following choiceless violation of SiLver's theorem [6].

Theorem 10. Let V be any ground model of $\mathrm{ZFC}+\mathrm{GCH}$ and let λ be some cardinal in V. Then there is a cardinal preserving model $N \supseteq V$ of the theory ZF + "GCH holds below $\aleph_{\omega_{1}}$ " + "there is a surjection from $\mathcal{P}\left(\aleph_{\omega_{1}}\right)$ onto λ ". Moreover, the axiom of dependent choices DC holds in N.

Note that in [5], Saharon Shelah studied uncountably singular cardinal arithmetic under DC, without assuming AC. The "local" GCH below $\aleph_{\omega_{1}}$ in the conclusion of the above Theorem cannot be changed to the property $\operatorname{card}\left(\bigcup_{\alpha<\aleph_{\omega_{1}}} \mathcal{P}(\alpha)\right)=\aleph_{\omega_{1}}$ since Theorem 4.6 of [5] basically implies that then $\mathcal{P}\left(\aleph_{\omega_{1}}\right)$ would be wellorderable of ordertype \geqslant λ. By results of [1] an injective failure of SCH with big λ has high consistency strength. But here we are working without assuming any large cardinals.

Bibliography

[1] Arthur Apter and Peter Koepke. The consistency strength of choiceless failures of SCH. To appear in: The Journal of Symbolic Logic, 75, 2010.
[2] Anthony Dodd and Ronald Jensen. The covering lemma for K. Annals of Mathematical Logic, 22:1-30, 1982.
[3] Moti Gitik. The strength of the failure of the singular cardinal hypothesis. Annals of Pure and Applied Logic, 51:215-240, 1991.
[4] Saharon Shelah. Cardinal Arithmetic. Oxford Logic Guides. Oxford University Press, 1994.
[5] Saharon Shelah. Set theory without choice: not everything on cofinality is possible. Archive for Mathematical Logic, 36:81-125, 1996.
[6] Jack Silver. On the singular cardinals problem. In Proceedings of the International Congress of Mathematicians (Vancouver, British Columbia 1974), volume 1, pages 265-268, 1975.

[^0]: *. The second author was partly supported by ISF Grant 234/08.

