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1 Introduction and Preliminaries

One of the longest standing open questions in large cardinals and forcing, dat-
ing back to Silver’s 1965 thesis (see the published version [12]), is whether the
theory “ZFC + ℵω is a Rowbottom cardinal” is relatively consistent. In spite of
numerous attempts to obtain a solution to this vexing and intriguing problem,
by Shelah, Foreman, and others, no solution in either a positive or negative vein
is in sight.

If we are willing to drop the Axiom of Choice from our assumptions, i.e., if we
are willing to settle for the relative consistency of the theory “ZF + ¬AC + ℵω

is a Rowbottom cardinal”, then the situation is quite different. Everett Bull
(unpublished, see [4]) showed that, relative to “ZFC + There exists a mea-
surable cardinal”, the theory “ZF + ¬ACω + GCH holds below ℵω + ℵω is
a Rowbottom cardinal carrying a Rowbottom filter” is consistent.1 The first
author improved the amount of choice in Bull’s model [2] to show that, relative
to “ZFC+ There is an ω sequence of measurable cardinals”, for an arbitrary
n < ω, the theory “ZF + DCℵn + ℵω is a Rowbottom cardinal carrying a Row-
bottom filter” is consistent.

The purpose of this paper is to obtain equiconsistency results concerning
the theory “ZF + ¬AC + ℵω is a Rowbottom cardinal carrying a Rowbottom
filter” and some generalizations thereof. Specifically, we prove the following
two theorems.

Theorem 1 The theories “ZFC+ There exists a measurable cardinal” and “ZF +
¬AC + DCℵn + ℵω is a Rowbottom cardinal carrying a Rowbottom filter” are
equiconsistent for every n < ω.

Theorem 2 The theories “ZFC+ There exist ω1 measurable cardinals” and
“ZF + ¬AC + ω1 is regular + ℵω1 is an ω2-Rowbottom cardinal carrying an
ω2-Rowbottom filter” are equiconsistent.

In showing the forward direction of Theorem 2, we will indicate how to con-
struct different models in which various weak forms of the Axiom of Choice
are true. Also, Theorems 1 and 2 above represent our main focus. We will in
addition discuss at various junctures throughout the course of the paper gen-
eralizations of the theorems mentioned above, along with proving some other
related results.

We work using forcing and core model theory. We will force to construct
the relevant choiceless inner models in which ℵω, ℵω1 , etc. satisfy the desired
properties. The construction of these choiceless inner models will be based
in large part on the techniques set forth in [2]. As such, we will be assuming
some familiarity with the methods of this paper, to which we will refer when
appropriate.

1 By GCH holding below ℵω , we literally mean, as in the situation when the Axiom of Choice is
true, that for every n < ω, there is a bijection between the power set of ℵn and ℵn+1.
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An overview of the proof of Theorem 1 is as follows. For the forward direc-
tion, if a measurable cardinal κ is made singular of cofinality ω by Prikry forc-
ing, an end segment of the Prikry sequence 〈λ0, λ1, . . .〉, which we denote by
〈κ0, κ1, . . .〉, is a coherent sequence of Ramsey cardinals as defined in [9]. (Note
that the definition of a coherent sequence of Ramsey cardinals can be found in
the statement of Theorem 3.) The supremum κ of such a sequence is a Row-
bottom cardinal carrying a Rowbottom filter. It is then turned into ℵω by a
product of Lévy collapses which collapses the Ramsey cardinals κ0, κ1, . . . to
ℵi, ℵi+2, . . . for i < ω, i > 0 a fixed but arbitrary natural number. We then as
in [2] define a symmetric submodel of the generic extension in which ZF holds
and in which κ = ℵω is still a Rowbottom cardinal carrying a Rowbottom filter.
For the converse, we use the Dodd–Jensen core model K as presented in the
original articles [6] and [7] and in the monograph [5] to get an inner model with
a measurable cardinal from ℵω being Jonsson.

The proof of Theorem 2 is handled slightly differently, since when ω1 is regu-
lar, ℵω1 has uncountable cofinality. For the forward direction, if 〈κi | i < ω1〉 is a
sequence of ω1 measurable cardinals with supremum κ , then κ is turned into ℵω1

as before by a product of Lévy collapses which collapses κ0, the first measurable
cardinal in the sequence, to some fixed but arbitrary ℵi for i < ω1, i > 0. The
remaining measurable cardinals are collapsed in a manner to be described later,
depending on how much of the Axiom of Choice we wish to be true in our final
symmetric submodel of the generic extension in which ω1 is regular and ℵω1

is ω2-Rowbottom and carries an ω2-Rowbottom filter. The proofs necessary to
establish the converse are based on short core models as presented in [8]. Short
core models are constructed from short sequences Ū = 〈Uκ | κ ∈ dom(Ū)〉 of
normal measures Uκ with measurable cardinal κ . Note that we say the sequence
Ū is short if its order type satisfies otp(dom(Ū)) < min(dom(Ū)).

The structure of this paper is as follows. Section 1 contains our introductory
comments and preliminary remarks concerning notation and terminology. Sec-
tion 2 contains a discussion of coherent sequences of Ramsey cardinals that
will be critical to the proof of the forward direction of Theorem 1. Section 3
contains our proof of Theorem 1. Section 4 contains our proof of Theorem 2, as
well as a brief discussion of a generalization of this theorem. Section 5 contains
a further generalization of our work, along with our final comments.

We conclude Sect. 1 with a few brief words concerning the conventions we
will be following. Basically, our notation and terminology are standard. Excep-
tions to this will be duly noted. We do wish, however, to state explicitly that
for α < β ordinals, [α, β], [α, β), (α, β], and (α, β) are as in standard inter-
val notation. For κ < λ cardinals with κ regular, Coll(κ , <λ) is the standard
Lévy partial ordering for collapsing every δ ∈ (κ , λ) to κ . For such a δ and any
S ⊆ Coll(κ , <λ), we define S � δ = {p ∈ S | dom(p) ⊆ κ × δ}.

We also wish to recall for the benefit of readers the definitions of what it
means for a cardinal to be Jonsson or Rowbottom. The cardinal κ is said to
be Jonsson if it satisfies the partition relation κ → [κ]<ω

κ , i.e., given a partition
f : [κ]<ω → κ , there is a homogeneous set X ⊆ κ such that f ′′[X]<ω �= κ . The
filter F is called a Jonsson filter if some homogeneous set X for f may always be
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chosen so that X ∈ F . The definition of Jonsson cardinal is equivalent in ZF to
saying that any structure in a countable language whose domain has cardinality
κ has a proper elementary substructure of cardinality κ .

The cardinal κ is said to be Rowbottom if for every cardinal λ < κ , it satisfies
the partition relation κ → [κ]<ω

λ,ω, i.e., given a partition f : [κ]<ω → λ, there
is a homogeneous set X ⊆ κ such that |f ′′[X]<ω| ≤ ω. The filter F is called a
Rowbottom filter if some homogeneous set X for f may always be chosen so
that X ∈ F . The definition of Rowbottom cardinal is equivalent in ZF to saying
that for any structure 〈A, R, . . .〉 in a countable language such that |A| = κ and
R is a unary relation having cardinality λ < κ , there is a (proper) elementary
substructure 〈A′, R′, . . .〉 such that |A′| = κ and |R′| ≤ ω.

The notion of what it means for a cardinal κ to be δ-Rowbottom for some
uncountable cardinal δ < κ is a generalization of the definition of Rowbottom
cardinal given in the preceding paragraph. This will hold if for every λ with
δ ≤ λ < κ , κ satisfies the partition relation κ → [κ]<ω

λ,<δ , i.e., given a partition
f : [κ]<ω → λ, there is a homogeneous set X ⊆ κ such that |f ′′[X]<ω| < δ. The
definition of δ-Rowbottom cardinal is equivalent in ZF to saying that for any
structure 〈A, R, . . .〉 in a countable language such that |A| = κ and R is a unary
relation having cardinality λ < κ , there is a (proper) elementary substructure
〈A′, R′, . . .〉 such that |A′| = κ and |R′| < δ. By this definition, a Rowbottom
cardinal is ω1-Rowbottom. Also, the notion of δ-Rowbottom filter is defined as
in the preceding two paragraphs. Further, note that for an uncountable cardinal
δ < κ , we have the chain of implications κ is Rowbottom 
⇒ κ is δ-Rowbottom

⇒ κ is Jonsson.

To prove lower bounds on consistency strength, we employ the theory of
short core models [8], which extends the theory of the Dodd–Jensen core model
[5–7]. The theory of short core models is developed under the assumption that
a certain object 0long, which transcends short core models in the same way
0� transcends the constructible universe, does not exist. 0long will be described
further before the proof of Theorem 9. Under the assumption 0long does not
exist, which is denoted by ¬0long, the core model has the form K = L[E],
where E is some canonical sequence of total and partial measures. One also
writes K = K[Ūcan], where Ūcan is the sequence consisting of the total mea-
sures in E. For each ordinal α, we define the αth level of the core model by
Kα = Kα[Ūcan] = Lα[E].

Core model theory is usually developed assuming the Axiom of Choice. For
our study of choiceless combinatorics, we employ some workarounds which are
based on building core models within the inner model HOD of hereditarily ordi-
nal definable sets or some variants. Such methods were used, e.g., by Schindler
in [11].

If a ⊆ HOD is a set, let HOD[a] be the smallest inner model such that
HOD ∪ {a} ⊆ HOD[a]. We then have the following (see also Lemmas 3 and 4
of [11]).

Proposition 1.1 (ZF) Let a ⊆ HOD be a set. Then

1. HOD[a] is a set-generic extension of HOD, so HOD[a] � ZFC.
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2. If ¬0long, and if K is (the canonical term for) the core model, then KHOD[a] =
KHOD. This equality holds for every level of the K-hierarchy, i.e., KHOD[a]

α =
KHOD

α for every α ∈ Ord.

Proof Clause (1) follows from Vopěnka’s genericity theorem (see page 142 of
[11]). Clause (2) follows from the absoluteness of (small) core model construc-
tions with respect to set-generic extensions. �

2 Coherent sequences of Ramsey cardinals

Assume κ is a measurable cardinal with normal measure U . Let

P = {〈a, X〉 | a ∈ [κ]<ω, X ∈ U , max(a) < min(X)
}

be the set of Prikry conditions for κ and U with the usual order. Let G be
P-generic over V, with 〈λi | i < ω〉 the Prikry sequence induced by G. In [9],
the following was proved as Theorem 3.2.

Theorem 3 In V[G], there is an ascending sequence 〈κi | i < ω〉 of regular car-
dinals cofinal in κ which forms a coherent sequence of Ramsey cardinals, i.e., for
every regressive f : [κ]<ω → κ , there is 〈Ai | i < ω〉 such that:

1. Ai ⊆ κi \ κi−1 is cofinal in κi, where for convenience, we set κ−1 = 0.
2. If x, y ∈ [κ]<ω, x, y ⊆ ⋃{Ai : i < ω}, and |x ∩ Ai| = |y ∩ Ai| for i < ω, then

f (x) = f (y).

Note that f : [κ]<ω → κ is regressive if f (x) = 0 if 0 is the minimal member of
x, or f (x) < min(x) for every x ∈ [κ]<ω for which 0 is not the minimal member
of x. Also, Lemma 3.1 of [9] tells us that 〈κi | i < ω〉 is actually of the form
〈λi | j ≤ i < ω〉, i.e., the coherent sequence of Ramsey cardinals is an end
segment of the Prikry sequence induced by G. Lemma 3.1 of [9] further tells
us that 〈Ai | i < ω〉 can be taken so that the Ai’s are mutually disjoint and
A = ⋃

i<ω Ai ∪ {κi | i < ω} ∈ U .
We shall use a slightly different technical characterization of coherent Ram-

seyness.

Proposition 2.1 〈κi | i < ω〉 is a coherent sequence of Ramsey cardinals with
supremum κ if for all regressive f : [κ]<ω → κ , there is 〈Ai | i < ω〉 such that:

1. Ai ⊆ κi \ κi−1 is cofinal in κi, where for convenience, we set κ−1 = 0.
2. For every m < ω, if x, y ∈ [κ]<ω, x, y ⊆ ⋃

i<m Ai, and ∀i < m[|x ∩ Ai| =
|y ∩ Ai| = m], then f (x) = f (y).

Proof Property (2) of Proposition 2.1 is a special case of property (2) in The-
orem 3 in which only arguments with m elements in the first m sets Ai are
considered.

Conversely it implies the original definition. To see this, let f : [κ]<ω → κ

be a regressive function. Given x ∈ [κ]<ω, define x’s type to be the countable



726 A. W. Apter, P. Koepke

sequence of integers whose ith member is given by |x ∩ [κi−1, κi]|. Since for any
x ∈ [κ]<ω, there is some m < ω such that ∀i ≥ m[x ∩ [κi−1, κi] = ∅], we may
infer that there are only countably many types. For any x ∈ [κ]<ω of some fixed
type, let m < ω and y ⊆ ⋃

i<m[κi−1, κi] be such that ∀i < m[|y ∩ Ai| = m], ∀i <

m[x∩[κi−1, κi] is an initial segment of y∩[κi−1, κi]], and ∀i ≥ m[x∩[κi−1, κi] = ∅].
Note that the finiteness of x ensures that m and y as just stipulated exist. In addi-
tion, the fact there are only a countable number of different types implies that
a unique m may be chosen for each distinct type. One can find g : [κ]<ω → κ

regressively such that for each x ∈ [κ]<ω of some fixed type, there are m and y
as just described with g(y) = f (x). A homogeneous sequence for g in the sense
of property (2) of Proposition 2.1 will also be fully homogeneous for f . �
Proposition 2.2 If 〈κi | i < ω〉 is a coherent sequence of Ramsey cardinals with
supremum κ , then κ is a Rowbottom cardinal.

Proof Suppose λ < κ and f : [κ]<ω → λ. Without loss of generality, replace κ

with B = κ \ λ. f : [B]<ω → λ is regressive, so let 〈Ai | i < ω〉 be homogeneous
for f in the sense of Theorem 3. Define A = ⋃

i<ω Ai. Since by homogeneity,
f ′′[A]<ω depends only upon the number of distinct sequences 〈|x ∩ Ai| | i <

ω〉 for x ∈ [κ]<ω, and since there are only countably many such sequences,
|f ′′[A]<ω| ≤ ω. Thus, A is homogeneous for f in the sense of Rowbottomness.

�
The following preservation result for coherent sequences of Ramsey cardi-

nals will be essential for the construction to be given in Sect. 3.

Theorem 4 Let 〈κi | i < ω〉 be a coherent sequence of Ramsey cardinals with
supremum κ . Let 〈δi | i < ω〉 be a sequence of inaccessible cardinals such that
∀i < ω[δi ∈ (κ+

i−1, κi)], where κ−1 = ω� for some � < ω. Let P = {〈pi | i < ω〉 |
pi ∈ Coll(κ+

i−1, <δi) for i < ω}, ordered componentwise. Let G be P-generic over
V. Then in V[G], 〈κi | i < ω〉 is a coherent sequence of Ramsey cardinals.

Proof Let p = 〈pi | i < ω〉 ∈ P and p � “ġ : [κ]<ω → κ is regressive”. It
suffices to show that some extension of p forces the existence of a homogeneous
sequence for ġ in the sense of the characterization of coherent Ramseyness given
in Proposition 2.1.

For m < ω, let Rm = {r ∈ [κ]m·m | ∀i < m[|r ∩ (κi \ δi)| = m]}. R = ⋃
m<ω Rm

is then the set of all arguments relevant for the characterization of coherent
Ramseyness given in Proposition 2.1. Well-order R by r <′ s iff either (a)
|r| < |s|, or (b) |r| = |s| and ∃β[r \ β = s \ β and β �∈ r and β ∈ s]. Part (b)
corresponds to the usual well-ordering of [Ord]<ω by largest difference. 〈R, <′〉
has order type κ . We construct by recursion on <′ a sequence 〈p(r) | r ∈ R〉,
p(r) = 〈pi(r) | i < ω〉 ∈ P, and a sequence 〈ω(r) | r ∈ R〉 such that the following
“growth condition” holds:

(1) If s <′ r and ∀j ≥ i[s ∩ [δj, κj] is an initial segment of r ∩ [δj, κj]], then
pi ⊆ pi(s) ⊆ pi(r).
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The growth condition will be essential for the compatibility requirements of the
subsequent construction.

Assume that r ∈ R and that for s <′ r, the condition p(s) is constructed so
that (1) holds. Define p̄i(r) = pi ∪ ⋃{pi(s) | s <′ r and for j ≥ i, s ∩ [δj, κj]
is an initial segment of r ∩ [δj, κj]}. p̄i(r) is a condition, since Coll

(
κ+

i−1, <δi

)
is

closed under unions of ⊆-increasing sequences of length κi−1, and we are taking
a union of a ⊆-increasing chain of conditions having size at most κi−1. Choose
ω(r) ∈ κ and p(r) = 〈pi(r) | i < ω〉 ≤ p̄(r) such that p(r) � “ġ(r) = ω(r)”. The
definition of p(r) is consistent with property (1), and so the recursion works.

For i < ω and t ⊆ ⋃
i≤j<ω[δj, κj], we take the union of all the pi(r) where

t = r \ δi and define p′
i(t) = ⋃{pi(r) | r ∈ R and t = r \ δi}. p′

i(t) ∈ Coll(κ+
i−1, <δi),

since Coll(κ+
i−1, <δi) is κi−1-closed, and we are taking a union of at most κi−1

many compatible forcing conditions. Note that p′
i can be viewed as a regressive

function.
Since 〈κi | i < ω〉 is a coherent sequence of Ramsey cardinals, by coding ω

partitions into one in (3) below and then applying Theorem 3 twice, there is
〈Ai | i < ω〉, each Ai cofinal in κi, such that for A = ⋃

i<ω Ai, the following
homogeneity properties hold:

(2) If r, s ∈ R, r, s ⊆ A, ∀j < ω[|r ∩ Aj| = |s ∩ Aj|], then ω(r) = ω(s).
(3) For i < ω, if r, s ∈ R, r, s ⊆ A, r, s ⊆ ⋃

i≤j<ω[δj, κj], ∀j < ω[|r ∩ Aj| = |s ∩ Aj|],
then p′

i(r) = p′
i(r \ δi) = p′

i(s) = p′
i(s \ δi).

Now, for i < ω, define p̄i = ⋃{p′
i(r \ δi) | r ∈ R, r ⊆ A}. By (3), this is just a

countable union. Consequently, p̄i ∈ Coll(κ+
i−1, <δi). Set p̄ = 〈p̄i | i < ω〉. It is

then the case that p̄ ∈ P and p̄ ≤ p.
We show that p̄ forces that 〈Ai | i < ω〉 is homogeneous for ġ in the sense

of the characterization of coherent Ramseyness given in Proposition 2.1. To do
this, let r ∈ R, r ⊆ ⋃

i<m Ai, where ∀i < m[|r ∩ Ai| = m]. It is then the case that
for every i < ω, pi(r) ⊆ p′

i(r \ δi) ⊆ p̄i. Hence, p̄ = 〈p̄i | i < ω〉 ≤ 〈pi(r) | i <

ω〉 = p(r), and p̄ � “ġ(r) = ω(r)”. If s ∈ ⋃
i<m Ai, where ∀i < m[|s ∩ Ai| = m],

then the same calculation yields p̄ � “ġ(s) = ω(s)”. Thus, p̄ � “ġ(r) = ġ(s)”. �
Take λ < κ and g : [κ]<ω → λ. Consider the first-order structure B =

〈κ , R, g, κ0, κ1, . . .〉, where we have distinguished as constants each member of
a coherent sequence of Ramsey cardinals 〈κi | i < ω〉 generated via a Prikry
sequence with respect to the normal measure U over κ , and R is the unary
relation composed of g′′[κ]<ω. By Proposition 2.2, let A ≺ B be a Rowbottom
elementary substructure. By the proof of Proposition 2.2 and the remarks made
in the paragraph immediately following the statement of Theorem 3, we may
take A′ = dom(A) to be such that A = A′ ∪ {κi | i < ω} ∈ U . Since each
member of the set {κi | i < ω} was a distinguished constant in B, it is the case
that |g′′[A]<ω| ≤ ω, i.e., A ∈ U is Rowbottom homogeneous for g. The proof of
Theorem 4 therefore yields that if we first do Prikry forcing and follow this by
the forcing indicated by Theorem 4, then not only is κ a Rowbottom cardinal,
but U generates a Rowbottom filter over κ . This will be critical in the proof of
Theorem 5 to be given in the next section.
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3 The proof of Theorem 1

In this section, we will prove Theorem 1. We break the proof up into both its
forward and reverse directions, which we will establish separately. We begin
with the forward direction, which we state as a separate theorem.

Theorem 5 Let V0 � “ZFC + κ is a measurable cardinal”. Let n < ω be fixed but
arbitrary. There is then a generic extension V of V0, a notion of forcing P, and a
symmetric inner model N ⊆ VP such that N � “ZF + DCℵn + ℵω is a Rowbottom
cardinal carrying a Rowbottom filter”.

We note that Theorem 5 represents a significant reduction in consistency
strength of the hypotheses used for the main result (Theorem 1) of [2]. As was
mentioned in Sect. 1, in that paper, a model witnessing the same conclusions
as in Theorem 5 was constructed, but assuming the consistency of the theory
“ZFC + There is an ω sequence of measurable cardinals”.

We turn now to the proof of Theorem 5.

Proof Let V0 � “ZFC + κ is a measurable cardinal”. We assume that V0 has
been extended generically via Prikry forcing using a normal measure U over κ

to a model, which we denote by V, containing a Prikry sequence 〈κi | i < ω〉
through κ .

Take V as our ground model. Let n < ω be fixed but arbitrary. Let P0 =
Coll(ℵn+1, <κ0), and for 1 ≤ i < ω, let Pi = Coll(κ+

i−1, <κi). We then define
P = ∏

i<ω Pi with full support.
Let G be P-generic over V. V[G], being a model of AC, is not our desired

model N. In order to define N, we first note that by the Product Lemma,
Gi, the projection of G onto Pi, is V-generic over Pi. Next, working in V, let
F = (ℵn+1, κ0) × (κ+

0 , κ1) × (κ+
1 , κ2) × · · · . For each f ∈ F , f = 〈f (0), f (1), . . .〉,

define G � f = G0 � f (0) × G1 � f (1) × · · · . By the Product Lemma and the
properties of the Lévy collapse, G � f is

∏
i<ω(Pi � f (i))-generic over V. N

can now intuitively be described as the least model of ZF extending V which
contains, for each f ∈ F , the set G � f .

In order to define N more formally, we let L1 be the ramified sublanguage
of the forcing language L with respect to P which contains symbols v̌ for each
v ∈ V, a unary predicate symbol V̌ (to be interpreted V̌(v̌) ↔ v ∈ V), and
symbols Ġ � f for each f ∈ F . N is then defined as follows.

N0 = ∅.

Nλ =
⋃

α<λ

Nα if α is a limit ordinal.

Nα+1 =
{

x ⊆ Nα

∣
∣
∣

x is definable over the model 〈Nα , ∈, c〉c∈Nα

via a term τ ∈ L1 of rank ≤ α

}
.

N =
⋃

α∈OrdV

Nα .
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The standard arguments show N � ZF. Further, by Lemmas 1.1, 1.2, and 1.4
of [2], which remain valid in the context of this paper, N � “DCℵn + κ = ℵω”.
The proof of Theorem 5 will thus be complete once we have shown that N � “ℵω

is a Rowbottom cardinal carrying a Rowbottom filter”.
To do this, fix λ < κ , and suppose g ∈ N is such that g : [κ]<ω → λ. By Lemma

1.1 of [2], there is f ∈ F such that g ∈ V[G � f ]. Consequently, by Theorem 4
and the remarks immediately following its proof, there is a set A ∈ U ∈ V ⊆ N
which is Rowbottom homogeneous for g. Thus, N � “κ is a Rowbottom cardinal
and U generates the Rowbottom filter U∗ = {X ⊆ κ | ∃Y ∈ U[X ⊇ Y]} for κ”.

�

We continue now with the reverse direction of Theorem 1. We state this as a
separate, stronger theorem which implies our desired result.

Theorem 6 Let κ be a singular Jonsson cardinal in a model V of ZF. Then κ is
measurable in some inner model of ZFC.

Proof Since HOD is a model of the Axiom of Choice, take H ∈ HOD to be
a sufficiently elementary submodel of HOD such that κ + 1 ⊆ H. Let X be
a Jonsson substructure of H, i.e., let X ≺ H be such that |X ∩ κ| = κ and
X ∩ κ �= κ .

The remainder of the argument will be carried out in the inner model M =
HOD[X, a], where a ⊆ κ is cofinal in κ with order type less than κ . Note that
Proposition 1.1 applies to M.

Let π : 〈H̄, ∈〉 ∼= 〈X, ∈〉 ≺ 〈H, ∈〉 be the Mostowski collapse of X, where H̄
is transitive. We then have that π � κ �= id � κ and π(κ) = κ .

Let K̄ = KH̄ , where K is the Dodd–Jensen core model. Consider the follow-
ing two cases.

Case 1 Kκ ⊆ K̄. Then Kκ = KH̄
κ , and the elementary map π � Kκ : 〈Kκ , ∈〉 →

〈Kκ , ∈〉 can be extended to an elementary map π̃ : 〈K, ∈〉 → 〈K, ∈〉. The rigidity
theorem for the Dodd–Jensen core model implies that there is an inner model
with a measurable cardinal less than κ . Iterating that model, one obtains an
inner model with measurable cardinal κ .

Case 2 Kκ � K̄. Then we can take a mouse N with |N| < κ and N �∈ K̄.
N has exactly one (active) measure, by which it may be iterated. We there-
fore let 〈κi | i ∈ Ord〉 be the sequence of iteration points in the iteration of
N. {κi | i ∈ Ord} ∩ K̄ is a set of order-indiscernibles for K̄ which is closed,
unbounded in every sufficiently large cardinal less than or equal to κ . Each
element κi of that set is strongly inaccessible in K̄. In particular, κ is a limit of
the iteration points, and hence is regular in K̄.

We claim now that κ is regular in K. To see this, first note that because κ is
regular in K̄ = KH̄ and π is elementary, κ = π(κ) is regular in KH . Since H is
a sufficiently elementary substructure of HOD formed in the original universe,
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κ is consequently regular in the original KHOD. By clause (2) of Proposition
1.1, KHOD is the Dodd–Jensen core model K of M, the present universe of
discourse.

By the facts that κ is singular in M but is regular in K, the covering property
fails for K at κ . By the Dodd–Jensen Covering Theorem, there exists an inner
model with a measurable cardinal less than or equal to κ . By eventually iterat-
ing that inner model, one obtains an inner model with a measurable cardinal
exactly equal to κ . �

Theorem 6 clearly implies the reverse direction of Theorem 1. Thus, the proof
of Theorem 1 is now complete. �

We remark that Bull’s result of [4], together with Theorem 6, yield the fol-
lowing theorem.

Theorem 7 The theories “ZFC+ There exists a measurable cardinal” and “ZF +
¬ACω + ℵω is a Rowbottom cardinal carrying a Rowbottom filter” are equicon-
sistent.

4 The proof of Theorem 2

In this section, we will prove Theorem 2. As in Sect. 3, we break the proof up
into both its forward and reverse directions, which we will establish separately.
We begin with the forward direction, which we once again state as a separate
theorem.

Theorem 8 Let V � “ZFC + 〈κi | i < ω1〉 is a sequence of ω1 measurable car-
dinals with supremum κ”. There is then a notion of forcing P and a symmetric
inner model N ⊆ VP such that N � “ZF + ¬AC + ω1 is regular + ℵω1 is an
ω2-Rowbottom cardinal carrying an ω2-Rowbottom filter”.

Proof Suppose V � “ZFC + 〈κi | i < ω1〉 is a sequence of ω1 measurable
cardinals”. Without loss of generality, we assume in addition that V � GCH.

We will give two proofs of Theorem 8, one in which the desired model satis-
fies DCℵ�

for a fixed but arbitrary � < ω1, and one in which the desired model
satisfies only DC but also witnesses that GCH holds below ℵω1 . Our arguments
are slight generalizations of those given in [2] and [4].

For the first of these models, we proceed in analogy to the proof of Theo-
rem 5. Specifically, let � < ω1 be fixed but arbitrary. Take 〈λi | i < ω1〉 as the
sequence 〈κi | i < ω1〉, together with its limit points. Let I = {i < ω1 | i is either
a successor ordinal or 0}. For i ∈ I, let Pi = Coll(λ+

i−1, <λi), where we take
λ+

−1 = ℵ�+1. We then define P = ∏
i∈I Pi with full support, and take G as being

P-generic over V. By the definition of P and the properties of the Lévy collapse,
V[G] � “ω1 = ωV

1 ”.
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V[G], being a model of AC, is once again not our desired model N. In order
to define N, we first note that by the Product Lemma, for i ∈ I, Gi, the projec-
tion of G onto Pi, is V-generic over Pi. Next, let F = ∏

i∈I(λ
+
i−1, λi). For each

f ∈ F , define G � f = ∏
i∈I(Gi � f (i)). Once again, by the Product Lemma and

the properties of the Lévy collapse, G � f is
∏

i∈I(Pi � f (i))-generic over V. As
before, N can now intuitively be described as the least model of ZF extending
V which contains, for each f ∈ F , the set G � f .

In order to define N more formally, we let L1 be the ramified sublanguage
of the forcing language L with respect to P which contains symbols v̌ for each
v ∈ V, a unary predicate symbol V̌ (to be interpreted V̌(v̌) ↔ v ∈ V), and
symbols Ġ � f for each f ∈ F . N is then defined in the same way as in the proof
of Theorem 5, i.e., as follows.

N0 = ∅.

Nλ =
⋃

α<λ

Nα if α is a limit ordinal.

Nα+1 =
{

x ⊆ Nα

∣
∣
∣

x is definable over the model 〈Nα , ∈, c〉c∈Nα

via a term τ ∈ L1 of rank ≤ α

}
.

N =
⋃

α∈OrdV

Nα .

As earlier, N � ZF. Since V ⊆ N ⊆ V[G] and V[G] � “ω1 = ωV
1 ”, N �

“ω1 = ωV
1 ”. Further, by Lemmas 1.1, 1.2, and 1.4 of [2], which remain valid

even when our sequence 〈λi | i < ω1〉 is uncountable, N � “DCℵ�
+ κ = ℵω1 ”.

In addition, since N � DC, N � “ω1 is regular”. The first proof of Theorem 8
will thus be complete once we have shown that N � “ℵω1 is an ω2-Rowbottom
cardinal carrying an ω2-Rowbottom filter”.

To do this, let 〈µi | i < ω1〉 ∈ V be such that µi is a normal measure over κi.
In N, define F = {A ⊆ κ | ∃i < ω1∀j ∈ [i, ω1)[A ∩κj ∈ µj]. By Lemma 1.3 of [2],
which again remains valid working with an uncountable sequence of cardinals
〈λi | i < ω1〉, F is in N an ω2-Rowbottom filter over κ = ℵω1 . This completes
our first proof of Theorem 8. �

For our second proof of Theorem 8, let 〈κi | i < ω1〉, 〈λi | i < ω1〉, λ−1, I, Pi,
and P be as in the first proof of Theorem 8. (The exact value of � < ω1 will be
irrelevant.) Let G be P-generic over V, and for i ∈ I, let Gi be the projection
of G onto Pi. For j ∈ I, let Qj = ∏

i≤j,i∈I Pi and Hj = ∏
i≤j,i∈I Gi. It is again the

case, by the properties of the Lévy collapse and the Product Lemma, that Hj
is Qj-generic over V. The N for our second proof of Theorem 8 can now be
intuitively described as the least model of ZF extending V which contains, for
every j ∈ I, the set Hj.

In order to define N more formally, we let L1 be the ramified sublanguage
of the forcing language L with respect to P which contains symbols v̌ for each
v ∈ V, a unary predicate symbol V̌ (to be interpreted V̌(v̌) ↔ v ∈ V), and
symbols Ḣj for every j ∈ I. N is then defined as follows.
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N0 = ∅.

Nλ =
⋃

α<λ

Nα if α is a limit ordinal.

Nα+1 =
{

x ⊆ Nα

∣
∣
∣

x is definable over the model 〈Nα , ∈, c〉c∈Nα

via a term τ ∈ L1 of rank ≤ α

}
.

N =
⋃

α∈OrdV

Nα .

As earlier, N � ZF. Also, in analogy to our first proof of Theorem 8, for j ∈ I,

ωV
1 = ω

V[Hj]
1 = ωN

1 = ω
V[G]
1 . In addition, Lemma 1 of [3] (using the homoge-

neity properties of the Lévy collapse instead of the homogeneity properties of
Cohen forcing) or Lemma 1.4 of [4] (for an uncountable sequence of cardinals)
gives us the fundamental homogeneity property that if x ∈ N is a set of ordi-
nals, then x ∈ V[Hj] for some j ∈ I. (The proofs of) Lemmas 1.2 and 1.4 of [2],
which again remain valid even when our sequence of cardinals 〈λi | i < ω1〉
is uncountable, then once more tell us that N � “DC + κ = ℵω1 ”. Further, as
before, since N � DC, N � “ω1 is regular”. Our second proof of Theorem 8 will
thus be complete once we have shown that N � “GCH holds below ℵω1 + ℵω1

is an ω2-Rowbottom cardinal carrying an ω2-Rowbottom filter”.
To see that the first of these facts is true, by the properties of the Lévy col-

lapse, since P is a full support product, if j ∈ I and x ⊆ λj, x ∈ V[G], then
x ∈ V[Hj]. Since V � GCH, we may once again use the properties of the Lévy
collapse and the fact j < ω1 to infer that V[Hj] � “There are no cardinals in any
of the open intervals (λ+

i−1, λi) for 0 ≤ i ≤ j + λ+
i−1 and λi remain cardinals for

0 ≤ i ≤ j + GCH holds for any cardinal less than or equal to λj + λj < ℵω1 ”.
Since V[Hj] ⊆ N ⊆ V[G], these facts remain true in N as well. Consequently,
since N � “ℵω1 = κ = sup(〈λi | i < ω1〉)”, N � “GCH holds below ℵω1”.

To see that the second of these facts is true, as before, let 〈µi | i < ω1〉 ∈ V
be such that µi is a normal measure over κi. In N, define F = {A ⊆ κ | ∃i <

ω1∀j ∈ [i, ω1)[A ∩ κj ∈ µj]. By the fundamental homogeneity property men-
tioned above, since any f : [κ]<ω → λ for any λ < κ can be coded as a set of
ordinals, for some j ∈ I, f ∈ V[Hj]. Since by the definition of Qj, there is some
j′ > j, j′ ∈ I such that |Qj| < κj′ , by the Lévy-Solovay results [10], the sequence
〈κi | j′ ≤ i < ω1〉 is composed of cardinals which are measurable in V[Hj], and
for any i with j′ ≤ i < ω1, µ∗

i = {X ⊆ κi | ∃Y ∈ µi[X ⊇ Y]} is a normal measure
over κi in V[Hj]. As in the last paragraph of the proof of Lemma 1.3 of [2],
which still remains valid working with the uncountable sequence of cardinals
〈κi | j′ ≤ i < ω1〉, we may infer that there is A ⊆ κ , A ∈ V[Hj] ⊆ N which is
ω2-Rowbottom homogeneous for f such that ∀i ∈ [j′, ω1)[A ∩ κi ∈ µ∗

i ]. Without
loss of generality, as in [2], we may further assume that ∀i ∈ [j′, ω1)[A ∩ κi ∈ µi].
It then immediately follows that A ∈ F . Thus, F is in N an ω2-Rowbottom filter
over κ = ℵω1 . Our second proof of Theorem 8 is now complete. �
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We continue now with the reverse direction of Theorem 2. As before, we
state this as a separate, stronger theorem which implies our desired result.

Theorem 9 Let κ be a singular Jonsson cardinal of uncountable cofinality in a
model V of ZF. Then there is an inner model whose class of measurable cardinals
is cofinal in κ .

The proof of Theorem 9 will use the theory of short core models, but in the
context of models not satisfying the Axiom of Choice. We therefore briefly men-
tion now some terminology and notation attendant to this theory. The smallest
mouse which is not an element of a short core model is uniquely determined
and is the set 0long mentioned in Sect. 1. It is a countable iterable structure of
the form 0long = Lδ[Ū long], in which the measure sequence Ū long is not short.
Indeed, it is the case that otp(dom(Ū long)) = min(dom(Ū long)). The existence
of 0long is a large cardinal axiom.

We begin our discussion of the proof of Theorem 9 with a useful preliminary
result.

Proposition 4.1 Assume that 0long exists. Then for any singular cardinal κ , there
is an inner model whose class of measurable cardinals is cofinal in κ .

Proof Let λ = cof(κ) < κ . Choose a strictly monotone sequence 〈κi | i < λ〉
which is cofinal in κ such that κ0 = λ. Construct a minimal iterate Lη[Ū] of 0long

such that for every i < λ, it is the case that the ith measurable cardinal of Ū is
greater than κi. Since Ū has a λth measurable cardinal greater than or equal to
κ which can be iterated out of the ordinals, one gets that L[Ū � κ] � “Ū � κ is a
sequence of measures”. The model L[Ū � κ] is as desired. �

We turn now to the proof of Theorem 9.

Proof If 0long exists, Theorem 9 holds by the previous proposition. Conse-
quently, we assume ¬0long. Then the theory of short core models of [8] is
adequate for models of the form HOD[a] with a ⊆ HOD. Let K[Ūcan] be
the canonical short core model formed in HOD, with measure sequence Ūcan.
K[Ūcan] � “Ūcan is a sequence of measures”, so it suffices to show that dom
(Ūcan � κ) is cofinal in κ . We therefore assume towards a contradiction that
dom(Ūcan � κ) is bounded below κ . Set λ = cof(κ) and θ = sup(dom(Ūcan � κ)).

We begin by showing there is a closed, unbounded D ⊆ κ such that every
element of D is singular in K[Ūcan]. For this, we consider two cases.

Case 1 κ is a singular successor cardinal. Then let κ̄ be the cardinal predecessor
of κ , so κ = κ̄+. Choose a strictly monotone sequence 〈κi | i < λ〉 which is
closed, unbounded in κ . Let κ ′ = (κ̄+)HOD[〈κi|i<λ〉] ≤ κ̄+ = κ . Since κ ′ is regular
in HOD[〈κi | i < λ〉] and κ is singular in HOD[〈κi | i < λ〉], we have κ ′ < κ .
Since κ ′ > κ̄ ≥ cofV(κ) = λ ≥ ωV

1 , we have HOD[〈κi | i < λ〉] � “κ ′ ≥ ω2”.
Work in HOD[〈κi | i < λ〉]. Let D = {κω·i | i < λ and κω·i > κ ′ and

κω·i > θ}. Consider κω·i ∈ D. It is then the case that cof(κω·i) ≤ ω · i < λ ≤
κ̄ ≤ |κω·i|, κω·i > ω2, and κω·i > sup(dom(Ūcan � (κω·i + 1))). By the Cover-
ing Theorem 3.20(i) of [8], κω·i is singular in K[Ūcan]. The claim follows, since
K[Ūcan]HOD[〈κi|i<λ〉] = K[Ūcan]HOD.
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Case 2 κ is a singular limit cardinal. Choose a closed, unbounded set D ⊆ κ of
order type λ. Since the limit cardinals are closed, cofinal in κ , we may assume
that, in HOD[D], every τ ∈ D is a limit cardinal of cofinality less than or equal
to λ < τ which is greater than max(ω2, θ , λ). Then, by the Covering Theorem
3.20(ii) of [8], τ is singular in K[Ūcan]HOD[D] = K[Ūcan]HOD. D is hence as
desired.

Continuing with the proof of Theorem 9, take H ∈ HOD to be a sufficiently
elementary submodel of HOD such that κ + 1 ⊆ H. Let X be a Jonsson sub-
structure of the first-order structure H = 〈H, ∈, D〉, where D is taken as above.
By the choice of X, X ≺ 〈H, ∈, D〉, |X ∩ κ| = κ , and X ∩ κ �= κ .

The remainder of the argument will be carried out inside the structure
HOD[D, X]. Note that by Proposition 1.1, notions of short core model the-
ory are absolute between HOD and HOD[D, X].

Let π : 〈H̄, ∈, D̄〉 ∼= 〈X, ∈, X ∩ D〉 ≺ 〈H, ∈, D〉 be the Mostowski collapse of
X, where H̄ is transitive. As in the proof of Theorem 6, it is then the case that
π � κ �= id � κ and π(κ) = κ .

Let Ū = π−1(Ūcan � κ), and let K̄ = K[Ū]H̄ be the short core model over Ū
as defined in H̄. Since being closed, unbounded can be defined absolutely in the
∈-language, D̄ is closed, unbounded in κ .

We note now that ∀γ ∈ D̄[K̄ � “γ is singular”]. To see this, recall that
∀γ ∈ D[K[Ūcan] � “γ is singular”], from which it follows by the definition of
π and elementarity that ∀γ ∈ D[K[Ūcan � κ] � “γ is singular”]. Here, the core
model can be considered as being defined in the model HOD. Since H is a suffi-
ciently elementary submodel of HOD, we have ∀γ ∈ D[(K[Ūcan � κ])H � “γ
is singular”]. This is downwards absolute to H̄, so ∀γ ∈ D̄[(K[Ū])H̄ � “γ is
singular”].

It is also easily seen that Kκ [Ū] ⊆ K̄. This is verified by checking the Con-
densation Criterion 3.24(ii) of [8]. Consider a closed, unbounded set C ⊆ κ .
Since cof(κ) = λ > ω, there is γ ∈ C ∩ D̄. By the preceding paragraph, K̄ � “γ
is singular”, as required.

In addition, it is easily shown that Ū is a strong measure sequence, i.e.,
K[Ū] � “Ū is a sequence of measures”. To see this, by elementarity, Ū is a
sequence of measures in K̄. If ξ ∈ dom(Ū), then Ūξ is a measure in K̄. By the fact

that Kκ [Ū] ⊆ K̄, Ūξ is a measure in Kκ [Ū]. Since Kκ [Ū] = HK[Ū ]
κ , Ūξ is a measure

in K[Ū]. Further, since Kκ [Ū] = HK̄
κ and π � HK̄

κ : HK̄
κ → HK[Ūcan]H

κ = Kκ [Ūcan],
we have that π � Kκ [Ū] : Kκ [Ū] → Kκ [Ūcan] is elementary.

By Theorem 3.16 of [8], there is an iterated ultrapower σ : K[Ūcan] → K[U ′]
such that Ū is an initial segment of the measure sequence U ′. We may assume
that Ū = U ′ � κ , by possibly further iteration of measures in U ′ above Ū . Then
Kκ [U ′] = Kκ [Ū], and π � Kκ [U ′] : Kκ [U ′] → Kκ [Ūcan] is elementary.

Since cof(κ) is uncountable, the upward extension embeddings techniques
known from the standard proof of the Covering Theorem (see Theorem 3.25
of [8]) may be applied to lift the map π � Kκ [U ′] up to K[U ′]. In particular,
there is a map π̃ and a transitive inner model W such that π̃ : K[U ′] → W is
elementary, π̃ ⊇ π � Kκ [Ū], and π̃(κ) = κ .
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By Theorem 3.13 of [8], W = K[Ũ], where Ũ = π̃(U ′). Hence, π̃ : K[U ′] →
K[Ũ] is elementary. In addition, Ũ � κ = Ūcan � κ . This is since by the choice of
U ′, we have Ū = U ′ � κ . Thus, Ũ � κ = π̃(U ′) � κ = π̃(U ′) � π̃(κ) = π̃(U ′ � κ) =
π̃(Ū) = Ūcan � κ . It then immediately follows that π̃ ◦ σ : K[Ūcan] → K[Ũ] is
elementary.

By Theorem 3.17 of [8], π̃ ◦ σ is a normal iterated ultrapower of K[Ūcan]
which, since π � κ �= id � κ , is not the identity on κ . Let α < κ be the critical
point of π̃ ◦ σ . Then α is measurable in K[Ūcan], and α ∈ dom(Ūcan). Since
Ūcan(α) is the first measure used in the normal iteration, α �∈ dom(Ũ). This,
however, contradicts that Ũ � κ = Ūcan � κ , thereby completing the proof of
Theorem 9. �

Theorem 9 clearly implies the reverse direction of Theorem 2. Thus, the proof
of Theorem 2 is now complete. �

We conclude this section by noting that our methods of proof for Theorem 2
routinely generalize to the situation where α is an ordinal such that ωα > α and
ωα is regular. More specifically, the methods of this section allow us to prove
the following theorem.

Theorem 10 Suppose α is a definable ordinal whose definition is absolute be-
tween transitive models of ZF. Suppose further that for any transitive model V of
ZFC, V � “ωα > α and ωα is regular”. The theories “ZFC + There exist ωα mea-
surable cardinals” and “ZF + ¬AC + ωα is regular + ℵωα is an ωα+1-Rowbottom
cardinal carrying an ωα+1-Rowbottom filter” are then equiconsistent.

5 Some generalizations and additional remarks

We begin this section by noting that in Theorem 2, we require for our equicon-
sistency that ω1 be regular. That this is not a superfluous requirement is shown
by the following theorem.

Theorem 11 Let V � “ZFC + κ is a measurable cardinal”. There is then a notion
of forcing P and a symmetric inner model N ⊆ VP such that N � “ZF + ¬ACω

+ ω1 is singular + ℵω1 is a Rowbottom cardinal carrying a Rowbottom filter”.

Proof As in the proof of Theorem 5, we assume that the ground model V for
the hypotheses of Theorem 11 has been extended generically via Prikry forc-
ing using a normal measure U over κ to a model, which we also denote by V,
containing a Prikry sequence 〈κi | i < ω〉 through κ .

Let P−1 = Coll(ω, <ℵω), P0 = Coll(ℵω+1, <κ0), and for 1 ≤ i < ω, let
Pi = Coll(κ+ℵi−1+1

i−1 , <κi). We then define P = P−1 × ∏
i<ω Pi with full support.

Let G be P-generic over V. To define our desired model N witnessing the
conclusions of Theorem 11, we first note that as before, by the Product Lemma,
for −1 ≤ i < ω, Gi, the projection of G onto Pi, is V-generic over Pi. Next, let
F = (ω, ℵω) × (ℵω+1, κ0) × (κ

+ℵ0+1
0 , κ1) × (κ

+ℵ1+1
1 , κ2) × · · · . For each f ∈ F ,
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f = 〈f (−1), f (0), f (1), . . .〉, define G � f = G−1 � f (−1) × G0 � f (0) × G1 �
f (1) × · · · . By the Product Lemma and the properties of the Lévy collapse,
G � f is (P−1 � f (−1)) × ∏

i<ω(Pi � f (i))-generic over V. N can now intuitively
be described as the least model of ZF extending V which contains, for each
f ∈ F , the set G � f .

In order to define N more formally, we let L1 be the ramified sublanguage
of the forcing language L with respect to P which contains symbols v̌ for each
v ∈ V, a unary predicate symbol V̌ (to be interpreted V̌(v̌) ↔ v ∈ V), and
symbols Ġ � f for each f ∈ F . N is then defined as follows.

N0 = ∅.

Nλ =
⋃

α<λ

Nα if α is a limit ordinal.

Nα+1 =
{

x ⊆ Nα

∣
∣
∣

x is definable over the model 〈Nα , ∈, c〉c∈Nα

via a term τ ∈ L1 of rank ≤ α

}
.

N =
⋃

α∈OrdV

Nα .

The standard arguments show N � ZF. Further, by Lemmas 1.1 and 1.2 of
[2], which remain valid even with the current definition of P, N � “κ = ℵ(ℵω)V ”.
Since by Lemmas 1.1 and 1.2 of [2], N � “(ℵω)V = ℵ1”, it is actually the case
that N � “κ = ℵω1 and cof(κ) = ω”. As a consequence of this, N � “¬ACω”.
Further, the proof of Theorem 4, as well as the remarks in the succeeding par-
agraph, remain valid and show that for any f ∈ F and any g ∈ V[G � f ] with
g : [κ]<ω → λ for λ < κ , there is A ∈ U which is Rowbottom homogeneous
for g. The proof that N � “ℵω1 is a Rowbottom cardinal carrying a Rowbottom
filter” is therefore the same as the one given in Theorem 5. Hence, the proof of
Theorem 11 is now complete. �

From Theorems 11 and 6, we may consequently now immediately infer the
following theorem.

Theorem 12 The theories “ZFC+ There exists a measurable cardinal” and
“ZF + ¬AC + ℵω1 is a Rowbottom cardinal carrying a Rowbottom filter” are
equiconsistent.

One might also wonder if it is possible to have additional instances of the
Axiom of Choice holding in our aforementioned models in which ℵω is Row-
bottom or ℵω1 is ω2-Rowbottom and GCH holds below either ℵω or ℵω1 . In
particular, in Bull’s model of [4], ACω fails, and in the model constructed for
the second proof of Theorem 8, we can only show that DC is true. In fact,
the degree of the Axiom of Choice in these models appears to be optimal for
the large cardinal strength available in the relevant ground models. If one had
models, e.g., in which ℵα were Jonsson for α = ω or ω1, ACα were true, and for
each i < α, it were possible to well-order ℘(ℵi), then it would be possible to
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well-order
⋃

i<α ℘(ℵi) as well. This would then allow us to run the argument of
Theorem 5.2 of [8] and infer the existence of 0long.

In conclusion, we ask what the consistency strength is for the theory “ZF +
¬AC+ The least regular cardinal is both a limit and Jonsson cardinal”. By
the results of [1], by forcing over a model of AD, we may establish an upper
bound of ω Woodin cardinals. Is it possible to lower this upper bound, and even
establish an equiconsistency result, in analogy to what is done in this paper?
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