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Preface

This manuscript covers the contents of a minicourse held at the University of
Helsinki, Finland in March 2005 . We made a fast four-day journey through con-
structibility theory, starting from first motivations and reaching the heights of
morass constructions. This was possible on the basis of hyperfine structure theory
- a simplified approach to the fine structure theory of the constructible universe.
S till , we had to concentrate on the description of fundamental ideas; only few
arguments could be carried out completely. This text fills in some more details
which are characteristic for the hyperfine theory. It should enable the reader to
complete the proofs by himself.

Hyperfine structure theory was introduced by Sy D . friedman and the pre-
sent author [ 4] . The standard reference on constructibility theory was written by
Keith J . Devlin [ 3 ] . Suggestions for further reading on constructibility theory
and simplified fine structure are contained in the bibliography.

I am grateful for a mathematically rich and very enjoyable fortnight with the
Helsinki logic group, who showed a strong interest in the sub ject of the course.
My special thanks go to Prof. Jouko Vaananen¨ ¨ ¨ and Prof. Juliette Kennedy for
their support and warm hospitality.

Peter Koepke
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1 The continuum problem

The creation of set theory by Georg Cantor was initiated and guided by his
study of sets of real numbers . In 1 873 he showed that the set � of reals is
uncountable [ 1 ] . He defined that two sets X, Y have the same cardinality,
card(X ) = card(Y ) or X ∼ Y , if there is a bijection f : X↔ Y . Thus

� � � , i . e. , ¬∃f f : � ↔ � .
Further research on the cardinality of � and its subsets lead Cantor to the for-
mulation of the continuum hypo thesis ( CH) in 1 878 [ 2 ] :

card( � ) = ℵ 1 ,

where ℵ 0 , ℵ 1 , � is the increasing sequence of infinite cardinals . The continuum
hypothesis is equivalent to

∀X ⊆ � ( ( ∃n 6 ωX ∼ n) ∨ X ∼ � ) .

In cardinal arithmetic this is usually written as

2ℵ0 = ℵ 1 ,

where 2κ = card(P( κ ) ) and � is identified with the powerset of � .
In 1 908 Felix Hausdorff [ 1 0 ] extended this to the generalized continuum

hypo thesis ( GCH) :

∀α 2ℵα = ℵα+ 1 .

Contrary to the expectations of Cantor , David Hilbert and other mathe-
maticians these hypotheses could not be proved or decided on the basis of the
usual set theoretic assumptions and intuitions. To examine unprovab ility , the
underlying axioms and logical rules have to be specified; we shall work in Zer-
melo-Fraenkel set theory ZF and usual first-order predicate logic . The system
ZF is formulated in the language { ∈ } whose only non-logical symbol is the
binary ∈ -relation.

2
�����	��
�

’ s relative consistency results

Kurt Godel¨ proved the unprovability of the negation of the continuum hypoth-
esis , i . e. , its ( relative) consistency, in notes and articles published between 1 938
and 1 940 [ 6 ] , [ 8 ] , [ 7 ] , [ 9 ] . He presents his results in various forms which we can
subsume as follows: there is an ∈ -term L such that

ZF ` ‘ ‘ (L , ∈ ) � ZF + the axiom of choice ( AC) + GCH” .

So ZF sees a model for the stronger theory ZF + AC + GCH. If the system ZF is
consistent, then so is ZF+AC+GCH. In ZF, the term L has a host of special
properties ; L is the ⊆ -minimal inner model of ZF , i . e. , the ⊆ -smallest model of
ZF which is transit ive and contains the class Ord of ordinals .
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The construction of L is motivated by the idea of recursively constructing a
minimal model of ZF . The archetypical ZF-axiom is Zermelo ’ s comprehension
schema ( axiom of sub se ts ) : for every ∈ -formula ϕ ( v , w� ) postulate

∀x∀p� { v ∈ x | ϕ ( v , p� ) } ∈ V.

The term V denotes the abstraction term { v | v = v } , i . e. , the set theoretic uni-
verse ; formulas with abstraction terms are abbreviations for pure ∈ -formulas.
E . g. , the above instance of the comprehension schema abbreviates the formula

∀x∀p� ∃ y∀v ( v ∈ y ↔ v ∈ x ∧ ϕ ( v , p� ) ) .

The basic idea for building a ( minimal) model of set theory would be to form a
kind of closure under the operations

( x , p� ) � { v ∈ x | ϕ ( v , p� ) } .
However, there is the difficulty where to evaluate the formula ϕ . The comprehen-
sion instance should be satisfied in the model to be built , i . e. , the quantifiers of ϕ
may have to range about sets which have not yet been included in the construc-
tion. To avoid this the evaluation of the formula will only refer to sets already
constructed and we shall consider the modified definability operations

( x , p� ) � { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } .
This could be termed a predicative operation whereas the strong operation would
be an impredicative one. The set { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } is determined by fixing
x , ϕ , p� . One can thus view { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } as an interpretation of the
name ( x , ϕ , p� ) . These ideas will be used in the definition of the constructib le
hierarchy .

3 The constructible hierarchy

Unlike the impredicative definability operation the predicative operation can be
defined as a single set theoretic operation in ZF . We assume that the ∈ -formulas
are godelized¨ by natural numbers in a recursive way so that every formula is < -
larger than its proper subformulas ; let Fml be the set of ∈ -formulas in that
Godelization¨ . We may assume that 0 is the smallest element of Fml. Then define
the satisfaction predicate

( x , ∈ ) � ϕ ( a� )

for ( x , ϕ , a� ) ∈ V × Fml × V and the interpretation operation

I ( x , ϕ , a� ) = { v ∈ x | ( x , ∈ ) � ϕ ( v , a� ) } .
One can view

Def( x ) = { I ( x , ϕ , p� ) | ϕ ∈ Fml , p� ∈ x }
as a definable or predicative powerse t of x . The constructible hierarchy is
obtained by iterating the Def-operation along the ordinals .

The constructible hierarchy 5



Definition 1 . Define the constructible hierarchy Lα , α ∈ Ord by recursion on
α :

L0 = ∅
Lα+ 1 = Def(Lα)

Lλ =
⋃

α< λ

Lα , for λ a limit ordinal .

The constructible universe L is the union of that hierarchy:

L =
⋃

α∈Ord

Lα .

The hierarchy satisfies natural hierarchical laws.

Theorem 2 . a ) α 6 β implie s Lα ⊆ L β
b ) L β is transitive

c ) L β ⊆ Vβ
d ) α < β implie s Lα ∈ L β
e ) L β ∩ Ord = β

f) β 6 ω implie s Lβ = Vβ

g ) β > ω implie s card(L β) = card( β)

Proof. By induction on β ∈ Ord. The cases β = 0 and β a limit ordinal are easy
and do not depend on the specific definition of the L β-hierarchy.

Let β = γ + 1 where the claims hold for γ .
a) It suffices to show that L γ ⊆ L β . Let x ∈ Lγ . By b) , L γ is transitive and
x ⊆ Lγ . Hence

x = { v ∈ L γ | v ∈ x } = { v ∈ Lγ | (L γ , ∈ ) � ( v ∈ w )
x

w
} = I (L γ , v ∈ w , x ) ∈ L γ+ 1 = L β .

b) Let x ∈ L β . Let x = I (L γ , ϕ , p� ) . Then by a) x ⊆ L γ ⊆ L β .
c ) By induction hypothesis ,

L β = Def(L γ) ⊆ P(Lγ) ⊆ P(Vγ) = Vγ+ 1 = Vβ .

d) It suffices to show that L γ ∈ L β .

L γ = { v ∈ L γ | v = v } = { v ∈ Lγ | (L γ , ∈ ) � v = v } = I (L γ , v = v , ∅ ) ∈ L γ+ 1 = L β .

e) L β ∩ Ord ⊆ Vβ ∩ Ord = β . For the converse, let δ < β . If δ < γ the inductive
hypothesis yields that δ ∈ L γ ∩ Ord ⊆ L β ∩ Ord. Consider the case δ = γ . We have
to show that γ ∈ L β . There is a formula ϕ ( v ) which is Σ 0 and formalizes being an
ordinal. This means that all quantifiers in ϕ are bounded and if z is transitive
then

∀v ∈ z ( v ∈ Ord↔ ( z , ∈ ) � ϕ ( v ) ) .

6 S ection 3



By induction hypothesis

γ = { v ∈ L γ | v ∈ Ord}
= { v ∈ L γ | (L γ , ∈ ) � ϕ ( v ) }
= I (L γ , ϕ , ∅ )
∈ L γ+ 1 = L β .

f) Let β < ω . By c) it suffices to see that Vβ ⊆ Lβ . Let x ∈ Vβ . By induction
hypothesis , L γ = Vγ . x ⊆ Vγ = Lγ . Let x = {x0 , � , xn− 1 } . Then

x = { v ∈ L γ | v = x0 ∨ v = x 1 ∨ � ∨ v = xn− 1 }
= { v ∈ L γ | (L γ , ∈ ) � ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 )

x0 x 1 � xn− 1

v0 v1 � vn− 1
}

= I (L γ , ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 ) , x0 , x 1 , � , xn− 1 )

∈ L γ+ 1 = L β .

g) Let β > ω . By induction hypothesis card(L γ) = card( γ) . Then

card( β) 6 card(L β)

6 card( { I (L γ , ϕ , p� ) | ϕ ∈ Fml , p� ∈ L γ} )
6 card( Fml) · card( < ωL γ)

6 card( Fml) · card(L γ)
< ω

= ℵ 0 · card( γ) < ω

= ℵ 0 · card( γ) , since γ is infinite,

= card( γ)

= card( β) .

�

The properties of the constructible hierarchy immediately imply the following for
the constructible universe.

Theorem 3. a ) L is transitive .

b ) Ord ⊆ L .

Theorem 4. (L , ∈ ) is a mode l of ZF .

Proof. We only demonstrate this for a few of the ZF-axioms.
Pairing Axiom . Let x , y ∈ L . Let x , y ∈ Lα . Then

{x , y } = { v ∈ Lα | (Lα , ∈ ) � ( v = v1 ∨ v = v2)
x y

v1 v2
} ∈ Lα+ 1 .

Hence {x , y } ∈ L . The following sequence of implications show that the closure
under pairs indeed entails the pairing axiom in L :

∀x , y ∈ L {x , y } ∈ L
→ ∀x , y ∈ L ∃z ∈ L z = {x , y }
→ ∀x , y ∈ L ∃z ∈ L ∀v ( v ∈ z↔ ( v = x ∨ v = y) )

→ ∀x , y ∈ L ∃z ∈ L ∀v ∈ L ( v ∈ z↔ ( v = x ∨ v = y) )

→ (L , ∈ ) � ∀x , y ∃z ∀v ( v ∈ z↔ ( v = x ∨ v = y ) ) .

The constructible hierarchy 7



Power Set Axiom . Let x ∈ L . By the power set axiom in V : P( x ) ∩ L ∈ V . Let
P( x ) ∩ L ⊆ Lα . Then

P( x ) ∩ L = { v ∈ L | v ⊆ x } = { v ∈ Lα | v ⊆ x } =

= { v ∈ Lα | (Lα , ∈ ) � ∀w (w ∈ v→ w ∈ x ) } ∈ Lα+ 1

Hence P( x ) ∩ L ∈ L . This implies the powerset axiom in L :

∀x ∈ L P( x ) ∩ L ∈ L
→ ∀x ∈ L ∃z ∈ L z = P( x ) ∩ L
→ ∀x ∈ L ∃z ∈ L ∀v ( v ∈ z↔ v ⊆ x ∧ v ∈ L )

→ ∀x ∈ L ∃z ∈ L ∀v ∈ L ( v ∈ z↔ v ⊆ x ∧ v ∈ L ) , since L is transitive;

→ ∀x ∈ L ∃z ∈ L ∀v ∈ L ( v ∈ z↔ v ⊆ x )

→ (L , ∈ ) � ∀x ∃z ∀v ( v ∈ z↔ v ⊆ x ) .

Subse t Scheme . Let ϕ ( v , v� ) be an ∈ -formula and x , p� ∈ L . Let x , p� ∈ Lα . By the
Levy reflection theorem let β > α such that ϕ is L -Lβ-absolute:

∀v , v� ∈ L β ( (L , ∈ ) � ϕ ( v , v� ) iff (L β , ∈ ) � ϕ ( v , v� ) ) .

Then

{ v ∈ x | (L , ∈ ) � ϕ ( v , p� ) } = { v ∈ L β | (L β , ∈ ) � ( v ∈ x ∧ ϕ ( v , p� ) ) } ∈ L β+ 1 .

Hence { v ∈ x | (L , ∈ ) � ϕ ( v , p� ) } ∈ L . �

4 Wellordering L

We shall now prove an external choice principle and also an external continuum
hypothesis for the constructible sets . These will later be internalized through the
axiom of constructib ility . Every constructible set x is of the form

x = I (Lα , ϕ , p� ) ;

(Lα , ϕ , p� ) is a name for x .

Definition 5 . Define the c lass of (constructible) names or locations as

L̃ = { (Lα , ϕ , p� ) | α ∈ Ord , ϕ ( v , v� ) ∈ Fml , p� ∈ Lα , length( p� ) = length( v� ) } .

This c lass has a natural stratification

L̃α = { (L β , ϕ , p� ) ∈ L̃ | β < α } for α ∈ Ord .

A location of the form (Lα , ϕ , p� ) is called an α - location .

Definition 6. Define we llo rders < α ofLα and <̃
α

of L̃α by recursion on α .

− < 0 = <̃ 0 = ∅ is the vacuous ordering on L0 = L̃0 = ∅ ;
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− if < α is a we llo rdering of Lα then define <̃
α+ 1

on L̃α+ 1 by:

(L β , ϕ , x� ) <̃ α+ 1 (L γ , ψ , y� ) iff

( β < γ) or ( β = γ ∧ ϕ < ψ ) or

( β = γ ∧ ϕ = ψ ∧ x� is lexicographically le ss than y� with

respec t to < α ) ;

− if <̃
α+ 1

is a we llo rdering on L̃α+ 1 then define < α+ 1 on Lα+ 1 by:

y < α+ 1 z iffthere is a name for y which is <̃ α+ 1 - smaller then every name for z .

− for limit λ , le t < λ =
⋃
α< λ

< α and <̃ λ =
⋃
α< λ

<̃ α .

This defines two hierarchies of wellorderings linked by the interpretation function
I .

Theorem 7. a ) < α and <̃ α are we ll-defined

b ) <̃ α is a we llo rdering of L̃α

c ) < α is a we llo rdering of Lα

d ) β < α implie s that <̃ β is an initial segment of <̃ α

e ) β < α implie s that < β is an initial segment of < α

Proof. By induction on α ∈ Ord. �

We can thus define wellorders < L and <̃ of L and L̃ respectively:

< L =
⋃

α∈Ord

< α and <̃ =
⋃

α∈Ord

<̃ α

Theorem 8. < L is a we llo rdering of L .

5 An external continuum hypothesis

Theorem 9. P(ω) ∩ L ⊆ Lℵ 1
.

‘ ‘ Proof” . Let m ∈ P(ω) ∩ L . By the downward Lowenheim¨ Skolem theorem let
K ≺ L be a ‘ ‘ sufficiently elementary” substructure such that

m ∈ K and card(K ) = ℵ 0 .

Let π : (K, ∈ )
�

(K ′, ∈ ) be the Mostowski transitivisation of K defined by

π(u) = {π( v ) | v ∈ u ∧ v ∈ K } .
π � ω = id � ω and

π(m) = {π ( i ) | i ∈ m ∧ i ∈ X } = {π( i ) | i ∈ m } = { i | i ∈ m } = m.

A condensation argument will show that there is η ∈ Ord with

An external continuum hypothesis 9



K ′= L η . card( η) 6 card(L η) = card(K ) = ℵ 0 and η < ℵ 1 . Hence

m ∈ K ′= L η ⊆ Lℵ 1
.

6 The axiom of constructibility

The constructible universe L is a model of set theory so that all the above con-
structions and arguments can be redone within L . In particular one can define a
constructible hierarchy (Lα

L) α∈Ord and a constructible universe LL within (L , ∈ ) .
By systematically studying the complexity of these definitions and its components
one can show that they yield the standard notions defined in the universe V

(Lα
L) α∈Ord = (Lα) α∈ Ord and LL = L .

The axiom of constructib ility is the statement V = L , i . e. , ∀x∃αx ∈ Lα .

Theorem 1 0 . L � V = L .

Proof. VL = L = LL . Hence (L , ∈ ) � V = L . �

The axiom of constructibility allows to internalize the wellorderability of L
and the continuum hypothesis proved above.

Theorem 1 1 . a ) V = L implie s AC and CH .

b ) L is a mode l of AC and CH .

Proof. a) Assume V = L . By Theorem 8 , < L is a wellordering of L . Hence < L

is a wellordering of V . This implies the axiom of choice. Using Theorem 9

card( � ) = card(P(ω) ) = card(P(ω ) ∩ L ) 6 card(Lℵ 1 ) = card( ℵ 1 ) = ℵ 1 .

b) follows immediately since L is a model of ZF and V = L . �

7 Condensation

There are various ways of ensuring the condensation property for the structure K
as used in the above argument for the continuum hypothesis. We shall only
require closure under some basic operations of constructibility theory, in partic-
ular the interpretation operator I . An early predecessor for this approach to con-
densation and to hyperfine structure theory can be found in Godel¨ ’ s 1 939 paper
[ 7 ] :

Proof: Define a set K of constructible sets, a set O of ordinals and a
set F of Skolem functions by the following postulates I-VII:

I . Mωµ ⊆ K and m ∈ K .

1 0 S ection 7



II . If x ∈ K , the order of x belongs to O .

III . If x ∈ K , al l constants occuring in the definition of x belong
to K .

IV. If α ∈ O and φα( x ) is a propositional function over Mα all of
whose constants belong to K , then:

1 . The subset of Mα defined by φα belongs to K .

2 . For any y ∈ K · Mα the designated Skolem functions
for φα and y or ∼ φα and y ( according as φα( y ) or ∼
φα( y) ) belong to F .

V. If f ∈ F , x 1 , � , xn ∈ K and ( x1 , � , xn) belongs to the domain
of definition of f , then f ( x1 , � , xn) ∈ K .

VI. If x , y ∈ K and x − y � Λ the first element of x − y belongs
to K .

VII. No proper subsets of K, O , F satisfy I--VI.

. . . . . . .

. . . . . . .

Theorem 5 . There exists a one-to-one mapping x ′ of K on Mη such
that x ∈ y ≡ x ′ ∈ y ′ for x , y ∈ K and x ′= x for x ∈ Mωµ .

P roof: The mapping x ′ ( . . . . ) is defined by transfinite induction on
the order, . . . .

8 Constructible operations

A substructure of the kind considered by Godel¨ may be obtained as a closure
with respect to certain constructib le operations .

Definition 1 2 . Define the constructib le operations I , N , S by:

a ) Interpretation: for a name (Lα , ϕ , x� ) le t
I (Lα , ϕ , x� ) = { y ∈ Lα � (Lα , ∈ ) � ϕ ( y , x� ) } ;

b ) Naming: for y ∈ L le t
N ( y) = the <̃ - least name (Lα , ϕ , x� ) such that I (Lα , ϕ , x� ) = y .

c ) Skolem function: for a name (Lα , ϕ , x� ) le t
S (Lα , ϕ , x� ) = the < L - least y ∈ Lα such that Lα � ϕ ( y , x� ) if such a y exists;
se t S (Lα , ϕ , x� ) = 0 if such a y does no t exist.

Constructible operations 1 1



As we do not assume that α is a limit ordinal and therefore do not have
pairing, we make the following convention.

For X ⊆ L , (Lα , ϕ , x� ) a name we write (Lα , ϕ , x� ) ∈ X to mean that Lα and
each component of x� is an element of X .

Definition 1 3. X ⊆ L is constructibly closed , X / L , iff X is c lo sed under I ,
N , S:

(Lα , ϕ , x� ) ∈ X � I (Lα , ϕ , x� ) ∈ X and S (Lα , ϕ , x� ) ∈ X,

y ∈ X � N( y ) ∈ X.

For X ⊆ L , L {X } = the ⊆ - smalle st Y ⊇ X such that Y / L is called the con-
structible hull ofX.

The constructible hull L {X } of X can be obtained by closing X under the
functions I , N , S in the obvious way. Hulls of this kind satisfy certain ‘ ‘ algebraic”
laws which will be stated later in the context of fine hulls . C learly each Lα is con-
structibly closed.

Theorem 1 4. ( Condensation Theorem) Let X be constructib ly c lo sed and le t π :
X

�
M be the Mostowski co llapse ofX onto the transitive se t M. Then there is

an ordinal α such that M = Lα , and π preserves I , N , S and < L :

π : (X, ∈ , < L , I , N , S )
�

(Lα , ∈ , < L , I , N , S ) .

Proof. We first show the legitimacy of performing a Mostowski collapse.
( 1 ) (X, ∈ ) is extensional.
Proof . Let x , y ∈ X , x � y . Let N ( x ) = (Lα , ϕ , p� ) ∈ X and N( y ) = (L β , ψ , q� ) ∈ X .
Case 1 . α < β . Then x ∈ L β and (L β , ∈ ) � ∃v ( v ∈ x= ψ ( v , q� ) ) . Let

z = S (L β , ( v ∈ u= ψ ( v , w� ) ) ,
x q�

u w�
) ∈ X

Then z ∈ x= z ∈ y . qed ( 1 )
We prove the theorem for X ⊆ L γ, by induction on γ . There is nothing to

show in case γ = 0. For γ a limit ordinal observe that

π =
⋃

α< γ

π � (X ∩ L γ)

where each π � (X ∩ L γ) is the Mostowski collapse of the constructibly closed set
X ∩ L γ which by induction already satisfies the theorem.

So let γ = β + 1 , X ⊆ Lβ+ 1 , X * L β , and the theorem holds for β . Let

π : (X, ∈ )
�

( X̄ , ∈ )

be the Mostowski collapse of X . X ∩ L β is an ∈ -initial segment of X , hence π �
X ∩ L β is the Mostowski collapse of X ∩ L β . X ∩ L β is constructibly closed and

so by the inductive assumption there is some ordinal β̄ such that

π � X ∩ L β : (X ∩ L β , ∈ , < L , I , N , S )
�

(L β̄ , ∈ , < L , I , N , S ) .
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Note that the inverse map π− 1 : L β̄ → L β is elementary since X ∩ L β is closed
under Skolem functions for L β .
( 2 ) L β ∈ X .
Proof . Take x ∈ X \ L β . Let N ( x ) = (L γ , ϕ , p� ) . Then L γ ∈ X and L γ = L β since
x

�
L β . qed ( 2 )

( 3) π(L β) = L β̄ .

Proof . π(L β) = {π( x ) | x ∈ L β ∧ x ∈ X } = {π( x ) | x ∈ X ∩ L β} = L β̄ .
( 4) X = { I (L β , ϕ , p� ) | p� ∈ X ∩ L β } .
Proof . ⊇ is clear. For the converse let x ∈ X .
Case 1 . x ∈ L β . Then x = I (L β , v ∈ v1 ,

x

v1
) is of the required form.

Case 2 . x ∈ L \ Lβ . Let N ( x ) = (L β , ϕ , p� ) , noting that the first component
cannot be smaller than L β . p� ∈ X and x = I (N ( x ) ) = I (Lβ , ϕ , p� ) is of the
required form. qed ( 4)
( 5 ) Let x� ∈ X . Then π ( I (L β , ϕ , x� ) ) = I (L β̄ , ϕ , π( x� ) ) .
Proof .

π ( I (L β , ϕ , x� ) ) = {π ( y) | y ∈ π( I (Lβ , ϕ , x� ) ) ∧ y ∈ X }
= {π ( y) | (L β , ∈ ) � ϕ ( y , x� ) ∧ y ∈ X }
= {π ( y) | (L β̄ , ∈ ) � ϕ (π( y) , π( x� ) ) ∧ y ∈ X }
= { z ∈ L β̄ | (L β̄ , ∈ ) � ϕ ( z , π( x� ) ) }
= I (L β̄ , ϕ , π( x� ) ) .

qed ( 5 )

( 6) X̄ = L β̄ + 1 .

Proof . By ( 4, 5 ) ,

L β̄ + 1 = { I (L β̄ , ϕ , x� ) | x� ∈ L β̄ }
= { I (L β̄ , ϕ , π ( p� ) ) | p� ∈ X ∩ L β } , s ince π � X ∩ L β : X ∩ L β �

L β̄ ,

= {π( I (L β , ϕ , p� ) ) | p� ∈ X ∩ L β}
= π ′′{ I (Lβ , ϕ , p� ) | p� ∈ X ∩ L β}
= π ′′X = X̄ .

qed ( 6)
( 7) Let y ∈ X . Then π(N( y ) ) = N (π ( y ) ) . This means: if N ( y) = (Lδ , ϕ , x� ) then
N (π( y) ) = ( π(Lδ) , ϕ , π( x� ) ) = (Lπ( δ) , ϕ , π( x� ) ) .

Proof . Let N ( y) = (Lδ , ϕ , x� ) . Then y = I (L δ , ϕ , x� ) and by ( 5 ) we have π( y ) =
I (Lπ( δ) , ϕ , π( x� ) ) . Assume for a contradiction that (Lπ( δ) , ϕ , π( x� ) ) � N (π( y) ) . Let

N (π( y) ) = (L η , ψ , y� ) . By the minimality of names we have (L η , ψ , y� ) <̃ (Lπ( δ) , ϕ ,

π( x� ) ) . Then (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) ) <̃ (L δ , ϕ , x� ) . By the minimality of (L δ , ϕ , x� ) =

N ( y) , I (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) ) � I (Lδ , ϕ , x� ) = y . S ince π is injective and by ( 5 ) ,

π( y ) � π ( I (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) ) )

= I (L η , ψ , y� )

= I (N( y ) ) = y .
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Contradiction. qed ( 7)
( 8 ) Let x , y ∈ X . Then x < L y iff π( x ) < L π( y) .
Proof . x < L y iff N ( x ) <̃N ( y) iff π(N ( x ) ) <̃ π(N ( y) ) ( since inductively π preserves
< L on X ∩ Lβ and <̃ is canonically defined from < L ) iff N(π ( x ) ) <̃ N( π( y) ) iff
π( x ) < L π( y) . qed ( 8 )
( 9 ) Let (L δ , ϕ , x� ) ∈ X . Then π(S (L δ , ϕ , x� ) ) = S (Lπ( δ) , ϕ , π( x� ) ) .
Proof . We distinguish cases according to the definition of S (Lδ , ϕ , x� ) .
Case 1 . There is no v ∈ I (L δ , ϕ , x� ) , i . e. , I (L δ , ϕ , x� ) = ∅ and S (Lδ , ϕ , x� ) = ∅ . Then
by ( 5 ) ,

I (Lπ( δ) , ϕ , π( x� ) ) = π ( I (Lδ , ϕ , x� ) ) = π( ∅ ) = ∅

and S (Lπ( δ) , ϕ , π( x� ) ) = ∅ . So the claim holds in this case.
Case 2 . There is v ∈ I (Lδ , ϕ , x� ) , and then S (L δ , ϕ , x� ) is the < L -smallest element
of I (Lδ , ϕ , x� ) . Let y = S (L δ , ϕ , x� ) . By ( 5 ) ,

π( y) ∈ π( I (L δ , ϕ , x� ) ) = I (Lπ( δ) , ϕ , π( x� ) ) .

So S (Lπ( δ) , ϕ , π( x� ) ) is well-defined as the < L -minimal element of I (Lπ( δ) , ϕ ,

π( x� ) ) . Assume for a contradiction that S (Lπ( δ) , ϕ , π( x� ) ) � π ( y ) . Let z = S (Lπ( δ) ,

ϕ , π( x� ) ) ∈ I (Lπ( δ) , ϕ , π( x� ) ) . By the minimality of Skolem values, z < L π( y) . By

( 8 ) , π− 1 ( z ) < L y . S ince π is ∈ -preserving, π− 1 ( z ) ∈ I (Lδ , ϕ , x� ) . But this contra-
dicts the < L -minimality of y = S (L δ , ϕ , x� ) �

9 The generalized continuum hypothesis in L

Theorem 1 5 . (L , ∈ ) � GCH .

Proof. (L , ∈ ) � V = L . It suffices to show that

ZFC + V = L ` GCH .

Let ωµ > ℵ 0 be an infinite cardinal.
( 1 ) P(ωµ) ⊆ Lωµ+ .

Proof . Let m ∈ P(ωµ) . Let K = L {Lωµ ∪ {m } } be the constructible hull of Lωµ ∪
{m } . By the Condensation Theorem take an ordinal η and and the Mostowski
isomorphism

π : (K, ∈ )
�

(L η , ∈ ) .

S ince Lωµ ⊆ K we have π(m) = m .

η < card( η) + = card(L η)
+ = card(K ) + = card(Lωµ )

+ = ωµ
+ .

Hence m ∈ L η ⊆ Lωµ+ . qed ( 1 )

Thus ωµ
+ 6 card(P(ωµ) ) 6 card(Lωµ+ ) = ωµ

+ . �
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1 0 Fine structure

The hierarchy

(Lα , ∈ , < L , I , N , S ) α∈Ord

of ( algebraic) structures satisfies condensation in the following sense: any sub-
structure of a level of a level of the hierarchy is isomorphic so some level of the
hierarchy. This allows to carry out standard arguments and constructions like
GCH, ♦ and Kurepa trees. These results belong to the ‘ ‘ coarse” theory of L .
Ronald B . Jensen [ 1 1 ] invented the fine structure theory of L , a sophisticated
theory in which the exact locations where certain sets are first generated in the
constructible universe are studied. An important fine principle with many appli-
cations in constructions of uncountable structures is Jensen ’ s glo bal square prin-
c iple � .

Theorem 1 6 . ( Jensen ) Assume V = L . Then there exists a system (Cβ | β sin-
gular ) such that

a ) Cβ is c lo sed unbounded in β;

b ) Cβ has ordertype le ss than β;

c ) (coherency) if β̄ is a limit po int ofCβ the β̄ is singular and Cβ̄ = Cβ ∩ β̄ .

To prove this one would like to choose a square sequence Cβ for a given β in a
very canonical way, say of minimal complexity or at a minimal place in L . The
coherency property is difficult to arrange, it will come out of an involved conden-
sation argument with a structure in which β is sti ll regular but over which the
singularity of β becomes apparent.

Let us consider the process of singularisation of β in L in detail . Let L � β is
singular. Let γ be minimal such that over L γ we can define a cofinal subset C of
β of smaller ordertype; we can assume that C takes the form

C = { z ∈ β � ∃x < α : z is < L -minimal such that L γ � ϕ ( z , p� , x ) }

where α < β , ϕ is a first order formula, and p� is a parameter sequence from L γ .
Using the Skolem function S we can write this as

C = {S (L γ , ϕ , p� ax ) | x < α } .

Here the locations (L γ , ϕ , p�
ax ) are <̃ -cofinal in the location (L γ , ϕ , p� aα ) . The

singularization of β may thus be carried out with the Skolem function S
restric ted to arguments smaller than (L γ , ϕ , p� aα ) . This suggests to say that β is

singularised at the location (Lγ , ϕ , p� aα ) and that the adequate singularizing
structure for β is of the form

L (Lγ , ϕ , p�
aα ) = (L γ , ∈ , < L , I , N , S � (L γ , ϕ , p� aα ) ) ;

where S � (L γ , ϕ , p� aα ) means that we have the function S � L γ available as well as

the Skolem assignments S (L γ , ψ , q� ) for (L γ , ψ , q� ) <̃ (L γ , ϕ , p� aα ) .
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These structures are indexed by locations and provide us with a fine interpola-
tion between successive L γ-levels:

L γ , � , L (Lγ , ϕ , p� α ) , � , L γ+ 1 , � .
The interpolated fine hierarchy is very slow-growing but satisfies condensation
and natural hulling properties which will allow the construction of a � -system.
The theory of the fine hierarchy is called hyperfine structure theory and was devel-
oped by Sy Friedman and the present author [ 4] .

1 1 The fine hierarchy

Definition 1 7. For a location s = (Lα , ϕ , x� ) define the restricted
����� � ���

function

S � s = S � { t ∈ L̃ | t<̃ s } .
Define the fine level

L s = (Lα , ∈ , < L , I , N , S � s ) .

Then (L s ) s ∈ L̃ is the fine hierarchy, it is indexed along the we llo rder <̃ .

This hierarchy is equipped with algebraic hulling operations. To employ the
restricted Skolem function S � s at ‘ ‘ top locations” t<̃ s of the form t = (Lα , ϕ , x� )
we pretend that Lα itself is a constant of the structure L s = (Lα , ∈ , < L , I , N , S �
s ) , i . e. considering L s and some Y ⊆ Lα we write (Lα , ϕ , x� ) ∈ Y iff x� ∈ Y .

Definition 1 8 . Let s = (Lα , ϕ , x� ) be a location. Y ⊆ Lα is closed in L s , Y C L s ,
ifY is an algebraic sub structure of L s , i . e . , Y is c lo sed under I, N, and S � s . For
X ⊆ Lα le t L s {X } be the ⊆ - smalle st Y C L s such that Y ⊇ X; L s {X } is called the
L s-hull ofX.

By our convention, Y C L s means:

L β , x� ∈ Y � I (L β , ϕ , x� ) ∈ Y and S (L β , ϕ , x� ) ∈ Y,
x� ∈ Y ∧ (Lα , ϕ , x� ) <̃ s � S (Lα , ϕ , x� ) ∈ Y

y ∈ Y ∧ N ( y) = (L β , ϕ , x� ) � L β , x� ∈ Y.
The fine hierarchy with its associated hull operators again satisfies condensation:

Theorem 1 9 . ( Condensation ) Let s = (Lα , ϕ , x� ) be a location and suppose that
X C L s . Then there is a minimal location s̄ so that there is an isomorphism

π : (X, ∈ , < L , I , N , S � s ) �
L s̄ = (L ᾱ , ∈ , < L , I , N , S � s̄ ) ;

concerning locations t ∈ X of the form t = (Lα ,ψ , y� ) this means

a ) π( t) = (L ᾱ , ψ , π ( y� ) ) ;

b ) t<̃ s iff π ( t) <̃ s̄ and then S (π ( t) ) = π(S ( t) ) .

Since π is the Mostowski co llapse of X the isomorphism π is unique ly de ter-
mined.
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Proof. Let

π : (X, ∈ , < L , I , N , S )
�

(L ᾱ , ∈ , < L , I , N , S )

be the unique isomorphism given by the coarse Condensation Theorem 1 9 . Let
S̄ = {π( t) | t ∈ X ∧ t<̃ s } .
( 1 ) S̄ is an init ial segment of ( L̃ , <̃ ) .
Proof . Let π( t) ∈ S̄ , t ∈ X , t<̃ s and r<̃ π( t) . Let r = (Lδ , ψ , y� ) . S ince π is surjec-
tive there is a location r ′ ∈ X such that r = π( r ′) . π( r ′) <̃ π( t) . S ince π preserves
< L we have r ′<̃ t<̃ s . Thus r ∈ S̄ . qed ( 1 )

Take s̄ <̃ -minimal such that s̄
�
S̄ . Then S̄ = { r ∈ L̃ | r<̃ s̄ } . We now have to

prove property b) of the theorem. Let t = (Lα ,ψ , y� ) ∈ X be a top location. Then
( 1 ) and the definition of s̄ imply
( 2 ) t<̃ s iff π( t) <̃ s̄ .

Assume that t<̃ s .
( 3 ) S (π( t) ) = π(S ( t) ) .
Proof . Let x = S ( t) , i . e. , x is the < L -smallest element of Lα such that

(Lα , ∈ ) � ψ ( x , y� ) .

S ince X C L s we have x ∈ X . One can be show by induction on the subformulas of
ψ that the map π− 1 : (L ᾱ , ∈ ) → (Lα , ∈ ) is elementary for every subformula. This
is clear for atomic formulas and for propositional connectives ; if the subformula is
of the form ∃vχ then χ < ψ 6 ϕ in Fml and X is closed under the Skolem func-
tion S (Lα , χ , . ) for the formula ∃vχ ; hence π− 1 is elementary for ∃vχ .

Therefore,

(L ᾱ , ∈ ) � ψ ( π( x ) , π( y� ) ) ,

and S (π( t) ) = S (L ᾱ , ψ , π( y� ) ) is defined as the < L -minimal z ∈ L ᾱ such that

(L ᾱ , ∈ ) � ψ ( z , π( y� ) ) .

Assume for a contradiction that z = S (π( t) ) � π( x ) . By minimality, z < L π( x ) .
Then π− 1 ( z ) < L x and again by the elementarity of ψ with respect to π− 1 :

(Lα , ∈ ) � ψ (π− 1 ( z ) , y� ) .

But this contradicts the minimal definition of x = S ( t) . �

1 2 Fine hulls

We prove a couple of further laws about the hulling operation L s { . } which can be
seen as fundamental laws of fine structure theory . It is conveivable that these laws
can be strengthened so that they alone capture the combinatorial content of L
and might allow abstract proofs of combinatorial principles . Some of our laws are
well-known for any kind of hull by generating functions. A specific and crucial
law of hyperfine structure theory is the finiteness property ( Theorem 24) . It cor-
responds to a similar property in the theory of S ilver machines ( [ 1 3 ] , see also
[ 1 2 ] ) which was an older attempt to simplify fine structure theory and which is
also characterized by hulls and condensations.
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Theorem 20. ( Monotonicity) Consider locations s = (Lα , ϕ , x� ) 6̃ t = (L β , ψ , y� )
and a se t X ⊆ Lα .

a ) If α = β then L s {X } ⊆ L t{X } .
b ) If α < β then L s {X } ⊆ L t{X ∪ {α } } .

Proof. a) holds, since all hulling functions of L s are available in L t .
b) Note that Lα ∈ L t{X ∪ {α } } , s ince N (α ) = (Lα , . , . ) . Then the hulling function
of L s of the form I (Lα , . , . ) and S (Lα , . , . ) are also available in L t{X ∪ {α } } . �

The next two theorems are obvious for hulls generated with finitary functions.

Theorem 21 . ( Compactness) Let s = (Lα , ϕ , x� ) ∈ L̃ and X ⊆ Lα . Then

L s {X } =
⋃
{L s {X0} | X0 is a finite sub se t ofX } .

Theorem 22 . ( Continuity in the generators) Let s = (Lα , ϕ , x� ) ∈ L̃ and le t
(Xi) i< λ be a ⊆ - increasing sequence of sub se ts of Lα . Then

L s {
⋃

i< λ

Xi} =
⋃

i< λ

L s {Xi} .

S ince the fine hierarchy grows discontinuously at limit locations ( i . e. , l imits in <̃ )
of the form (Lα+ 1 , 0 , ∅ ) , where 0 is the smallest element of Fml, we have to distin-
guish several constellations for the continuity in the locations.

Theorem 23. ( Continuity in the locations)

a ) If s = (Lα , 0 , ∅ ) is a limit location with α a limit ordinal and X ⊆ Lα then

L s {X } = L {X } =
⋃

β< α

L (Lβ , 0 , ∅ ){X ∩ L β } .

b ) If s = (Lα+ 1 , 0 , ∅ ) is a limit location and X ⊆ Lα then

L s {X ∪ {α } } ∩ Lα = L {X ∪ {α } } ∩ Lα
=
⋃
{L r {X } | r is an α- location } .

c ) If s = (Lα , ϕ , x� ) � (Lα , 0 , ∅ ) is a limit location and X ⊆ Lα then

L s {X } =
⋃
{Lr {X } | r is an α - location , r<̃ s } .

Proof. a) is clear from the definitions since the hull operators considered only
use the functions I , N , S .
b) The first equality is clear. The other is proved via two inclusions.
( ⊇ ) If z is an element of the right hand side, z is obtained from elements of X
by successive applications of I , N , S and S (Lα , . , . ) . S ince Lα ∈ L s {X ∪ {α } } , z
can be obtained from elements of X ∪ {α } by applications of I , N , S . Hence z is
an element of the left hand side.
( ⊆ ) Consider z ∈ L {X ∪ {α } } ∩ Lα . There is a finite sequence

y0 , y1 , � , yk = z
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which ‘ ‘ computes” z in L {X ∪ {α } } . In this sequence each yj is an element of
X ∪ {α } or it is obtained from { yi | i < j } by using I , N , S :

yj = I (L β , ϕ , y� ) or yj = S (L β , ϕ , y� ) or yj is a component of N ( y) ( 1 )

for some L β , y� , y ∈ { yi | i < j } . We show by induction on j 6 k :

if yj ∈ Lα then yj ∈ U �
⋃
{L r {X } | r is an α -location} .

Soe assume the claim for i < j and that yj ∈ Lα .
Case 1 . yj ∈ X ∪ {α } . Then the claim is obvious.
Case 2 . yj = I (Lβ , ϕ , y� ) as in property ( 1 ) above. If β < α , then β, y� ∈ U by
induction hypothesis and hence yj ∈ U .

If β = α then y� ∈ U by induction hypothesis. Setting

ψ ( v , w� ) = ∀u (u ∈ v↔ ϕ (u , w� ) )

we obtain yj = S (Lα , ψ ,
y�

w�
) ∈ U .

Case 3 . yj = S (Lβ , ϕ , y� ) as in property ( 1 ) above. If β < α , then β, y� ∈ U by
induction hypothesis and hence yj ∈ U . If β = α then y� ∈ U by induction hypoth-
esis and yj = S (Lα , ϕ , y� ) ∈ U .
Case 4 . yj is a component of N ( yi) for some i < j as in property ( 1 ) above.
Case 4 . 1 . yi ∈ Lα . Then yi ∈ U by induction hypothesis. As U is closed under N ,
we have N ( yi) ∈ U . So each component of N ( yi) and in particular yj is an ele-
ment of U .
Case 4 . 2 . yi ∈ Lα+ 1 \ Lα . S ince the values of N and S are ‘ ‘ smaller” then corre-
sponding arguments, then yi = α or it is generated by the I-function: yi = I (Lα , ψ ,
z� ) where z� ∈ { yh | h < i } , z� ∈ Lα , and by inductive assumption z� ∈ U . S ince α =
I (Lα , ‘ ‘ v is an ordinal” , ∅ ) we may uniformly assume the case yi = I (Lα , ψ , z� ) .
The name N( yi) will be of the form (Lα , χ , ( c0 , � , cm− 1 ) ) .

We claim that c0 ∈ U : if

χ0( v0 , w� ) ≡ ∃v1 � ∃vm− 1∀u( χ(u , v0 , v1 , � , vm− 1 ) ↔ ψ (u , w� ) )

with distinguished variable v0 then c0 = S (Lα , χ0 ,
z�

w�
z� ) ∈ U .

We then obtain c1 in U : if

χ1 ( v1 , w� ) ≡ ∃v2 � ∃vm− 1∀u( χ(u , v0 , v1 , � , vm− 1 ) ↔ ψ (u , w� ) )

with distinguished variable v1 then c1 = S (Lα , χ1 ,
c0
a z�

v0
aw�

) ∈ U .

P roceeding in this fashion we get that yj ∈ U .
c ) Note that any element of L s {X } is generated from X by finitely many
applications of the functions of L s and thus only requires finitely many values
S ( r ) with r<̃ s . �

Our final hull property is crucial for fine structural considerations. It states
that the fine hierarchy grows in a ‘ ‘ finitary” way. By incorporating information
into finite generators or parameters one can arrange that certain effects can only
take place at limit locations which then allows continuous approximations to that
situation.
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Theorem 24. ( F initeness Property) Let s be an α - location and le t s+ be its
immediate <̃ - successor. Then there exists a se t z ∈ Lα such that for any X ⊆ Lα :

L s+{X } ⊆ L s {X ∪ { z } } .

Proof. The expansion from L s to L s+ means to expand the Skolem function S �
s to S � s+ = (S � s ) ∪ { ( s , S ( s ) ) } . So S � s+ provides at most one more possible
value, namely S ( s ) . Then z = S ( s ) is as required. �

1 3 Definition of a gap-1 morass

Comb inatorial princ iple s are general statements of infinitary combinatorics which
yield construction principles for infinitary, mostly uncountable structures. The
continuum hypothesis or the stronger principle ♦ are enumeration principles for
subsets of ω or of ω1 which can be used in recursive constructions. These princi-
ples are provable in the model L by non-finestructural methods.

Ronald Jensen has developed his fine structure theory with a view towards
some stronger combinatorial principles . He could prove the full gap-1 two -cardinal
transfer property in L using the combinatorial principle � :

if a countable first-order theory T has a model A = (A, B , � ) with
card(A) = card(B ) + > ℵ 1 then for every infinite cardinal κ T has a
model A ′= (A ′, B ′, � ) with card(A ′) = κ+ and card(B ′) = κ .

Jensen could also prove the gap-2 transfer by defining and using gap-1
morasses in a similar way. We shall demonstrate that gap-1 morasses can be nat-
urally constructed in hyperfine structure theory.

A morass is a commutative tree-like system of ordinals and embeddings. Let
us first consider a trivial example of a system which may be used in constructions.

(ω · α , < ) α6 ω1
, ( id � ω · α ) α6 β6 ω1

is obviously a directed system whose final structure (ω1 , < ) is determined by the
previous structures , all of which are countable. If we have, e. g. , a model-theoretic
method which recursively constructs additional structure on the countable limit
ordinals (ω · α , < ) which is respected by the maps id � ω · α then the
system ‘ ‘ automatically” yields a limit structure on (ω1 , < ) . Of course this is just
the standard union-of-chains method, always available in ZFC , which is a main
tool for many kinds of infinitary constructions.

A ( gap-1 ) morass may be seen as a commutative system of directed systems.
In an (ω1 , 1 ) -morass a top directed system converges to a structure of size ω2 .
That system consists of structures of size ω1 and is itself the limit of a system of
directed systems of size ω0 . In applications one has to determine the countable
components of this system of systems. If the connecting maps between the count-
able components commute sufficiently then the morass ‘ ‘ automatically” yields
a ‘ ‘ limit of limits” of size ω2 , whose properties can be steered by appropriate
choices of the countable structures .
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Hyperfine structure theory provides us with a host of structures and structure-
preserving maps between them. Through hulls and condensation, one can approx-
imate large structures L s by countable structures L s̄ . This motivates the fol-
lowing construction: carefully select a subsystem of the large hyperfine system or
category and show that it satisfies Jensen ’ s structural axioms for an (ω1 , 1 ) -
morass . We could instead use arbitrary regular cardinals instead of ω1 . We
assume ZFC + V = L for the rest of this paper.

The following construction is due to the present author and will be published
in [ 5 ] . We approximate the structure Lω2

by structures which look like Lω2
. The

heights of those structure will be morass po ints .

Definition 25 . A limit ordinal σ < ω2 is a morass point if

− Lσ =
⋃ {Lµ | µ < σ ∧ L µ � ZF− } and

− Lσ � ‘ ‘ there is exactly one uncountab le cardinal” .

For a morass po int σ le t γσ be the unique uncountab le cardinal in Lσ . For morass
po ints σ , τ define σ ≺ τ iff σ < τ and γσ = γτ . Le t S1 be the se t of all morass po ints
and S0 = { γσ | σ ∈ S1 } .

ω2

σ τ≺
γσ

σ ′ τ ′≺ω1 = γσ ′

The structures Lσ ′ ⊆ Lτ ′ , σ ′ ≺ τ ′ approximate Lω2
; the directed

system σ ′ ≺ τ ′ will be a limit of the countable directed systems σ ≺ τ
from below.

We shall assign levels of the fine hierarchy to morass points ; the morass will
consist of those levels and of suitable fine maps between them. Finite sets of
parameters will be important in the sequel and they will often be chosen
according to a canonical wellordering ‘ ‘ by largest difference” :

Definition 26 . Define a we llo rder < ∗ of the c lass [V ] < ω of finite se ts: p < ∗ q iff
there exists x ∈ q \ p such that for all y > L x ho lds y ∈ p↔ y ∈ q .

Definition of a gap-1 morass 21



Lemma 27. Let σ be a morass po int. Then there is a <̃ - least location s (σ ) such
that there is a finite se t p ⊆ L s (σ) with L s (σ) { γσ ∪ p} be ing cofinal in σ . Le t pσ be
the < ∗ - smalle st such parameter. We call Mσ = (L s (σ) , pσ) the collapsing struc-
ture of σ .

Proof. S ince Lσ � ‘ ‘ there is exactly one uncountable cardinal” we have σ � ω1 .
Thus σ is not a cardinal in L . Let f : γσ → σ be surjective. Let f ∈ Lα . S et s =
(Lα+ 1 , 0 , ∅ ) ∈ L̃ and p= { f , Lα } .
( 1 ) σ ⊆ L s { γσ ∪ p} .
Proof . Let ζ ∈ σ . Let ζ = f ( ξ) , ξ ∈ γσ . Then

ζ = the unique set such that ( ξ , ζ ) ∈ f
= S (Lα , ‘ ‘ ( v1 , v0) ∈ v2” ,

ξ f

v1 v2
)

∈ L s { γσ ∪ p}
�

Definition 28 . Define a stric t partial order � 3 on the se t S1 of morass po ints:
σ � 3 τ if there exists a structure preserving map

π : (L s (σ) , ∈ , < L , I , N , S � s (σ ) ) → (L s ( τ) , ∈ , < L , I , N , S � s ( τ) )

such that

a ) π is e lementary for existential statements of the form ∃v0 � ∃vm− 1 ψ where
ψ is quantifier-free in the language for (L s (σ) , ∈ , < L , I , N , S � s (σ ) ) ;

b ) π � γσ = id � γσ , π ( γσ) = γτ > γσ , π(σ ) = τ , π( pσ) = pτ ;

c ) if τ possesses an immediate ≺ -predecessor τ ′ then τ ′ ∈ range π .

We shall see that the system (S1 , � 3) with connecting maps as in this definition
is a gap-1 morass. We first state some results about the ‘ ‘ collapsing structures”
(L s (σ) , pσ) .

Lemma 29. Let σ ∈ S1 be a morass po int and (L s (σ) , pσ) as defined above . Then

a ) s (σ ) is a limit location.

b ) σ ⊆ L s (σ){ γσ ∪ pσ } .
c ) L s (σ){ γσ ∪ pσ } = L s (σ) .

Proof. a) Assume for a contradiction that s (σ ) is a successor location of the form
s (σ ) = s+ . By the finiteness property ( Theorem 24) there is a z ∈ L s such that

L s (σ){ γσ ∪ pσ } = L s+{ γσ ∪ pσ } ⊆ L s { γσ ∪ pσ ∪ { z } } .

But then L s { γσ ∪ pσ ∪ { z } } is cofinal in σ , contradicting the minimality of s (σ ) .
b) Let ξ ∈ σ . S ince Lσ � ‘ ‘ γσ is the only uncountable cardinal” and L s (σ) { γσ ∪ pσ }
is cofinal in σ take ζ , L η ∈ L s (σ){ γσ ∪ pσ } such that ξ < ζ ∈ L η , η < σ , and

L η � ∃f f : ω1 � ζ is surjective ,
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where ‘ ‘ω1 ” is the ZF-term for the smallest uncountable cardinal. Then

g = S (L η , v0 : ω1 � v1 is surjective ,
ζ

v1
) ∈ L s (σ){ γσ ∪ pσ }

is a surjective map g : γσ� ζ . Now

ξ ∈ ζ = range g ⊆ L s (σ) { γσ ∪ pσ } .

c) Let X = L s (σ){ γσ ∪ pσ } C L s (σ) . By the Condensation Theorem 1 9 there is a

minimal location s̄ 4̃ s (σ ) so that there is an isomorphism

π : (X, ∈ , < L , I , N , S � s (σ ) )
�
L s̄ = (L ᾱ , ∈ , < L , I , N , S � s̄ ) .

S ince σ ⊆ X we have π � σ = id � σ . Let p̄ = π( pσ) . S ince π is a homomorphism,
L s̄ = L s̄ { γσ ∪ p̄ } . Then L s̄ { γσ ∪ p̄ } is trivially cofinal in σ and by the minimal
definition of s (σ ) and pσ we get s̄ = s (σ ) and p̄ = pσ . S o

L s (σ) = L s (σ){ γσ ∪ pσ } . �

Property a) of the preceding Lemma will be crucial ; since s (σ ) is a limit it will be
possible to continuous approximate the collapsing structure. The finiteness prop-
erty of the fine hierarchy makes the hierarchy so slow that most interesting phe-
nomena can be located at limit locations.

Lemma 30. Let σ � 3 τ witnessed by a structure preserving map

π : (L s (σ) , ∈ , < L , I , N , S � s (σ ) ) → (L s ( τ) , ∈ , < L , I , N , S � s ( τ) )

as in Definition 28. Then π is the unique map satisfying Definition 28.

Proof. Let x ∈ L s (σ) . By Lemma 29c, x = tLs (σ ) ( ξ� , p� ) for some L s (σ) -term t , ξ� <
γσ , where p� is the < L -increasing enumeration of pσ . S ince π preserves the con-

structible operations, and since π( ξ� ) = ξ� and π( pσ) = pτ we have

π( x ) = tLs ( τ ) ( ξ� , q� ) ,

where q� is the < L -increasing enumeration of pτ . Hence π( x ) is uniquely deter-
mined by Definition 28 . �

This lemma is the basis for

Definition 31 . For σ � 3 τ le t

πστ : (L s (σ) , ∈ , < L , I , N , S � s (σ ) ) → (L s ( τ) , ∈ , < L , I , N , S � s ( τ) )

be the unique map satisfying Definition 28.

1 4 Proving the morass axioms

The main theorem states that we have defined a morass in the previous section.
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Theorem 32 . The system

(S1 , σ � 3 τ , (πστ) σ � 3τ)

is an (ω1 , 1 ) -morass, i . e . , it satisfies the fo llowing axioms:

− ( M0)

a ) For all γ ∈ S0 the se t Sγ = {σ ∈ S1 | γσ = γ } is a se t of ordinals which
is c lo sed in its supremum;

b ) Sω2 is c lo sed unbounded in ω2 ;

c ) S0 ∩ ω1 is cofinal in ω1 ;

d ) � 3 is a tree -ordering on S1 .

− ( M1 ) Let σ � 3 τ. Then:

a ) Let ν < σ . Then ν is a morass po int iff πστ( ν ) is a morass po int.

b ) For all ν 4 σ ho lds: ν is ≺ -minimal, ≺ - successor, ≺ - limit iff
πστ( ν ) is ≺ -minimal, ≺ - successor, ≺ - limit, re spec tive ly.

c ) If τ ′ is the immediate ≺ -predecessor of τ then π− 1 ( τ ′) is the imme-
diate ≺ -predecessor of σ .

− ( M2) Let σ � 3 τ, σ̄ ≺ σ . Then σ̄ � 3 πστ( σ̄ ) with correponding map
πσ̄ πσ τ ( σ̄ ) = πστ � L s ( σ̄ ) .

− ( M3) Let τ ∈ S1 . Then { γσ | σ � 3 τ } is c lo sed in the ordinals < γτ .

− ( M4) Let τ ∈ S1 and assume that τ is no t ≺ -maximal. Then { γσ | σ � 3 τ }
is cofinal in γτ .

− ( M5) Let { γσ | σ � 3 τ } be cofinal in γτ . Then τ =
⋃
σ � 3τ

πστ [σ ] .

− ( M6) Let σ � 3 τ, σ a ≺ - limit, and λ = sup range πστ � σ < τ. Then σ � 3 λ
with πσλ � σ = πστ � σ .

− ( M7) Let σ � 3 τ, σ a ≺ - limit, and τ = sup range πστ � σ . Le t α ∈ S0 such
that ∀σ̄ ≺ σ ∃ ῡ ∈ Sα σ̄ � 3 ῡ � 3 πστ( σ̄ ) . Then there exists υ ∈ Sα such that
σ � 3 υ � 3 τ .

We shall show the morass axioms in a series of lemmas. The axioms can be moti-
vated by the intended applications. Assume that one want to construct a struc-
ture of size ω2 . Take ω2 as the underlying set of the structure. We present ω2 as
the limit of a system of nicely cohering countab le structures. The limit process
has a two-dimensional nature: inc lusions τ ′ ≺ τ ( which implies τ ′ ⊆ τ) from left to
right and morass maps πστ going upwards. In the following picture the structure
to be put on τ may be considered as enscribed on the vertical axis from 0 to γτ
and on the horizontal level from γτ to τ . In a supposed construction, the hori-
zontal levels are enscribed one after the other from bottom to top. To determine
the enscriptions on a level Sα first map up all the enscriptions on levels Sβ with
β < α using the morass maps πστ with σ ∈ Sβ and τ ∈ Sα . Often enough, this does
not enscribe all of Sα so that on the non-enscribed parts the structure may be
defined according to the specific aim of the construction.
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ω2

λ τ≺
γτ

≺ω1 = γρ ρρ ′

γσ

τ ′

σσ ′

� 3

� 3

The morass axioms will ensure that the general process above is possible: the
morass maps are consistent with each other and with the inclusions from left to
right, and the top level will be determined completely from the previous levels.
Let us comment on some of the easier axioms. The intention of the complicated
axioms M6 and M7 will only become apparent in actual constructions.

− M0 makes some general statements about the morass system: all of ω2 is
covered by morass points; the tree property ensures that a morass point
can only be reached by one path from below.

− M1 and M3 give some further information along these lines .

− M2 is necessary for a consistent copying process from lower to higher
levels.

− M4 says that a morass point τ which is not maximal on its level is
a ‘ ‘ l imit” of the path leading to it . Together with M5 this completely
determines the structure ( the enscription) on τ . S o the specific construc-
tion has to be performed for maximal points σ of levels which are not a
limit of the path below.

Lemma 33. ( M0) ho lds .

Proof. d) Let σ , σ ′ � 3 τ , σ 6 σ ′. Then the map πσ ′ τ
− 1 ◦ πστ : L s (σ) → L s (σ ′) witnesses

that σ � 3 σ ′. S o the � 3-predecessors of any morass point are linearly ordered.
Indeed they are wellordered since σ � 3 ν implies that σ < ν . �

Lemma 34. ( M1 ) ho lds .
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Proof. ( 1 ) Let δ ∈ Ord ∩ L s (σ) . Then π � L δ : (L δ , ∈ ) → (Lπ( δ) , ∈ ) is elementary.
Proof . For an ∈ -formula ϕ and a� ∈ L δ note

(Lδ , ∈ ) � ϕ ( a� ) iff S (Lδ , ϕ (w� ) ∧ v0 = 1 ,
a�

w�
) = 1

iff S (Lπ( δ) , ϕ (w� ) ∧ v0 = 1 ,
π( a� )

w�
) = 1

iff (Lπ( δ) , ∈ ) � ϕ (π( a� ) ) . qed ( 1 )

a) Being a morass point is absolute for transitive ZF− -models . σ is a morass point
and so Lσ is a limit of ZF− -models. Take δ , ν < δ < σ so that L δ is a ZF− -model.
By ( 1 ) , Lπ( δ) is also a ZF− -model . Now ν is a morass point iff (L δ , ∈ ) � ν is a
morass point iff (Lπ( δ) , ∈ ) � π( ν ) is a morass point iff π( ν ) is a morass point .
b) Also being a morass point which is ≺ -minimal, ≺ -successor, or ≺ -limit can
be expressed absolutely for ZF− -models and we can use the same technique as in
a) to prove preservation.
c) π− 1 ( τ ′) is defined and it is a morass point by a) . Assume for a contradiction
that there is a morass point σ ′, π− 1 ( τ ′) ≺ σ ′ ≺ σ . By a) , π(σ ′) is a morass point
and τ ′ ≺ π(σ ′) ≺ π(σ ) = τ , which contradicts the assumptions of c) . �

Lemma 35 . ( M2) ho lds

Proof. Set τ̄ = πστ( σ̄ ) . Take δ , σ̄ < δ < σ so that L δ is a ZF− -model. The col-
lapsing structure (L s ( σ̄ ) , p( σ̄ ) ) is definable in (L δ , ∈ ) from the parameter σ̄ . Then

the same terms define (L s ( τ̄ ) , p( τ̄ ) ) in (Lπσ τ ( δ) , ∈ ) from the parameter τ̄ , and the
map πστ restricted to the collapsing structure L s ( σ̄ ) witnesses σ̄ � 3 πστ( σ̄ ) by the
lementarity of πστ � Lδ : (Lδ , ∈ ) → (Lπσ τ ( δ) , ∈ ) . �

Lemma 36. ( M3) ho lds

Proof. Let ᾱ < γτ be a limit of { γσ | σ � 3 τ } . Form the hull

L s (τ) { ᾱ ∪ { pτ } }

and by condensation obtain an isomorphism

π : L s ( τ) { ᾱ ∪ { pτ } } �
L s̄ with τ̄ = π( τ ) and p̄ = π( pτ) .

( 1 ) τ̄ is a morass point .
Proof . Let ξ < τ̄ . Take σ � 3 τ such that γσ < ᾱ and

π− 1 ( ξ) ∈ (L s ( τ){ γσ ∪ { pτ } } = range πστ .

Let ξ̄ < σ such that π− 1 ( ξ) = πστ( ξ̄ ) . S ince σ is a morass point take an ordinal µ ,
ξ̄ < µ < σ such that L µ � ZF− . Then πστ(L µ) = Lπσ τ ( µ) � ZF− .

πστ(L µ) = Lπσ τ ( µ) ∈ range πστ ⊆ L s ( τ){ ᾱ ∪ { pτ } } = range π− 1 .

Then π(πστ(L µ) ) = Lπ (πσ τ ( µ) ) is a ZF− -model. Furthermore ξ̄ < µ < σ implies that

πστ( ξ̄ ) = π− 1 ( ξ) < πστ( µ) < πστ(σ ) = τ and ξ = π(π− 1 ( ξ) ) < π(πστ( µ) ) < π( τ ) = τ̄ .
S o L τ̄ is a limit of ZF− -models.
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S imilarly one can show that ᾱ is the only uncountable cardinal in L τ̄ .

Note that L s (τ) { ᾱ ∪ pτ } ∩ γτ = ᾱ , since ᾱ is the limit of L s (τ) { γσ ∪ pτ } ∩ γτ =

γσ < ᾱ . We show s̄ = s ( τ̄ ) : C learly s ( τ̄ ) <̃ s̄ , s ince L s̄ = L s̄ { ᾱ ∪ p̄ } is cofinal in
τ̄ . Now assume for a contradiction that s ( τ̄ ) <̃ s̄ . Let πσ = π ◦ πστ for σ ∈
{σ � 3 τ | γσ < ᾱ } . Choose σ large enough such that there exist s̃ , p̃ ∈ L s (σ) with

s ( τ̄ ) = πσ( s̃ ) and pτ̄ = πσ( p̃) . By s ( τ̄ ) <̃ s̄ we have s̃ <̃ s (σ ) and hence L s̃ { γσ ∪ p̃}
bounded in σ , say by β . But this bound is preserved by πστ and by π ( hence by
πσ) ; therefore, we get that L s ( τ̄ ){ ᾱ ∪ pτ̄ } ∩ τ̄ is bounded by πσ( β) < τ̄ which con-

tradicts the definition of s ( τ̄ ) and pτ̄ .

To see that π− 1 : L s ( τ̄ ) → L s (τ ) is a morass map and hence τ̄ � 3 τ with γτ̄ = ᾱ ,

we need to show, that π− 1 preserves Σ 1 ; the other properties follow by definition,
for pτ and the predecessor of τ ( if any) note that dom π contains the ranges of
morass maps as subsets.

As a collapsing map, π− 1 is structure-preserving. Σ 1 is preserved upwards.
Now assume, we have a Σ 1 -formula in L s ( τ) . It is preserved downwards by morass

maps πστ for σ ∈ {σ � 3 τ | γσ < ᾱ } and hence has a witness in range πστ ⊂
dom π . �

Lemma 37. ( M4) ho lds .

Proof. Let υ ∈ Sγτ with τ < υ . Let α < γτ be arbitrary and η between τ and υ
s . t . L s (τ) ∈ L η and L η � Z F− . Let X ≺ L η s . t . L s (τ) {α ∪ pτ } ∪ {τ } ⊂ X and ᾱ : =

X ∩ γτ ∈ γτ . Let π : X
�
L η̄ , σ = π( τ ) , and p̄ = π( pτ) . S o σ is a morass point and

π− 1 � L s (σ) : L s (σ) → L s (τ) is elementary and therefore a morass map. Hence σ � 3 τ
and α ≤ γσ = ᾱ . �

Lemma 38. ( M5) ho lds .

Proof. Let ξ ∈ τ ∈ S1 . We have L s ( τ) = L s (τ) { γτ ∪ pτ } and by cofinality there

exists a σ � 3 τ with ξ ∈ L s ( τ){ γσ ∪ pτ } = range πστ . �

Lemma 39. ( M6) ho lds .

Proof. Let s̃ = <̃ -lub {πστ( t) | t <̃ s (σ ) } . We show that L s̃ { γτ ∪ pτ } ∩ τ = λ : First
assume λ0 ∈ λ ; then there is λ 1 with λ0 < λ 1 < λ and λ 1 = πστ( λ̄ 1 ) . Then
Lσ � card( λ 1

¯ ) ≤ γσ , hence there exists f̄ ∈ Lσ s . t . f̄ : γσ→ λ̄ 1 is onto, in particular
f̄ ∈ L s (σ){ γσ ∪ pσ } . As s (σ ) is a limit location, we have f̄ ∈ L t{ γσ ∪ pσ } for some

t <̃ s (σ ) . Let f = πστ( f̄ ) ∈ Lπστ ( t){ γτ ∪ pτ } , then f : γτ→ λ 1 is onto, so λ0 ∈ range f ,
hence λ0 ∈ L s̃ { γτ ∪ pτ } . On the other hand assume λ0 ∈ L s̃ { γτ ∪ pτ } ∩ τ , then
there is a t <̃ s (σ ) s . t . λ0 ∈ Lπστ ( t) { γτ ∪ pτ } . But L t{ γσ ∪ pσ } ∩ σ is bounded below

σ ( by β say) , since t <̃ s (σ ) , hence also Lπστ ( t) { γτ ∪ pτ } ∩ τ is bounded below τ ,
namely by πστ( β) < λ . So λ0 ∈ λ as required.

Let π : L s̃ { γτ ∪ pτ } �
L s0 and p0 = π ( pτ) ( then λ = π( τ ) ) . Note that λ ∈ Sγτ . We

show L s0{ γτ ∪ p0} = L s (λ ){ γτ ∪ pλ } :
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s 0 = s ( λ ) : First note that s 0 singularizes λ , so s ( λ ) <̃ s 0 . Assume for contradic-
tion that s 0 is strictly greater. As pλ ∈ L s0{ γτ ∪ p0} , we have pλ ∈ L s 1 { γτ ∪ p0}
where s ( λ ) <̃ s 1 <̃ s 0 ( and where α ( s ( λ ) ) belongs to L s 1 { γτ ∪ p0} in case α ( s ( λ ) ) <
α ( s 0) ; of course we are using the fact that s 0 is a limit location) . S ince L s (λ) { γτ ∪
pλ } ⊂ L s 1 { γτ ∪ p0} , s 1 singularizes λ . By definition of s 0 , π

− 1 ( s 1 ) <̃ s̃ . Further, by
definition of s̃ , there is a t <̃ s ( σ ) s . t . π− 1 ( s 1 ) <̃ πστ( t) . By minimality of s (σ ) ,
L t{ γσ ∪ pσ } ∩ σ is bounded below σ ( by β say) . Hence Lπστ ( t){ γτ ∪ pτ } ∩ τ is

bounded below τ ( by πστ( β) ) . S ince π− 1 ( s 1 ) <̃ πστ( t) , Lπ− 1 ( s 1 ){ γτ ∪ pτ } ∩ τ is

bounded below τ ( still by πστ( β) ) . Apply π : L s 1 { γτ ∪ p0} ∩ λ is bounded below λ
( by π ◦ πστ( β) ) , contradiction.

p0 = pλ : L s ( λ) = L s ( λ){ γτ ∪ p0} is cofinal in λ ( as above using s 0 = s ( λ ) ) . There-
fore, pλ ≤ ∗ p0 . Assume for contradiction that p0 is strictly greater, then using p0 ∈
L s (λ) = L s ( λ) { γτ ∪ pλ } and applying π− 1 we get π− 1 ( pλ) <

∗ pτ ∈ L s̃ { γτ ∪ π− 1 ( pλ) } ⊂
L s (τ) { γτ ∪ π− 1 ( pλ) } . Therefore, L s (τ) = L s ( τ){ γτ ∪ pτ } = L s (τ) { γτ ∪ π− 1 ( pλ) } contra-
dicting the minimality of pτ .

Let π0 = π ◦ πστ : L s (σ) → L s ( λ) . π0 is well-defined as range πστ = L s̃ { γσ ∪ pτ } ⊂
dom π . Further, π0(σ ) = λ and π0( pσ) = pλ . S ince λ is a ≺ -limit , property 28c) of
the definition of a morass map is vacuous. Finally, π0 is Σ 1 -preserving: First note
that π0 is structure-preserving. Σ 1 formulas are preserved by π0 upwards, by π
upwards ( from L s ( λ) to L s̃ { γτ ∪ pτ } ) , and by πστ downwards, hence by π0 both
ways. Now π0 = πσλ is a morass map, hence σ � 3 λ as required. �

Lemma 40. ( M7) ho lds .

Proof. We first show that L s ( τ){α ∪ pτ } ∩ γτ = α , c learly α is a subset of the left
side. For the other direction note that since we assume τ = sup range πστ � σ , the
argument for ( M6) shows that s ( τ ) = <̃ -lub {πστ( t) | t <̃ s (σ ) } . Let ξ ∈ L s (τ) {α ∪
pτ } ∩ γτ , then there is s 0 <̃ s (σ ) s . t . ξ ∈ Lπστ ( s0) {α ∪ pτ } ∩ γτ . Working downstairs

we have that L s0{ γσ ∪ pσ } does not collapse σ ( by minimality of s (σ ) >̃ s 0) . Let

π0 : L s̄ = L s̄ { γσ ∪ p̄ } �
L s0{ γσ ∪ pσ } where p̄ = π0

− 1 ( pσ) . Then σ ′ : = π0
− 1 (σ ) < σ . L s̄

cannot collapse σ ′, else there would be a map from γσ onto σ ′ and hence a map
from γσ onto σ in L s0{ γσ ∪ pσ } . Therefore, L s̄ � Cardσ ′ and Lσ � ¬Cardσ ′, hence
L s̄ ∈ Lσ . Now, σ is a ≺ -limit , so there is σ̄ ≺ σ s . t . L s̄ , p̄ ∈ L s ( σ̄ ) = L s ( σ̄ ){ γσ ∪ pσ̄ } .

We shift the isomorphism π0 to L s ( τ) :

‘ ‘ πστ(π0) ” : Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } �
Lπστ ( s0) { γτ ∪ pτ }

We started with ξ ∈ Lπστ ( s0 ){α ∪ pτ } ∩ γτ . Now we apply the isomorphism and

infer ξ ∈ Lπστ ( s̄ ) {α ∪ πστ( p̄ ) } ∩ γτ ( since ξ < γτ it is not moved) . Further,

Lπστ ( s̄ ){α ∪ πστ( p̄ ) } ∩ γτ ⊂ L s (πστ ( σ̄ ) ){α ∪ pπστ ( σ̄ ) } ∩ γτ = α , where the former holds

since πστ( p̄ ) ∈ Lπστ ( σ̄ ) { γσ ∪ pπστ ( σ̄ ) } and πστ( s̄ ) <̃ s (πστ( σ̄ ) ) and the latter holds by

σ̄ � 3 ῡ � 3 πστ( σ̄ ) for some ῡ ∈ Sα . Hence ξ ∈ α as desired.

Now we define π : L s ( τ){α ∪ pτ } �
L s ′{α ∪ p′} = L s ′ where p′: = π( pτ) , υ : = π( τ ) .

By the previous argument we have π− 1 (α ) = γτ . Using the system of morass maps
we have υ ∈ Sα .
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We have to show s ′ = s ( υ ) : L s ′ = L s ′{α ∪ p′} collapses υ , hence s ( υ ) <̃ s ′.
Assume for a contradiction that s ( υ ) <̃ s ′ . S ince pυ ∈ L s ′ we have that there is an
s 0 s . t . s ( υ ) <̃ s 0 <̃ s ′ and pυ ∈ L s0{α ∪ p′} . S ince πστ and π map locations cofinally
this is also true for π0 : = π ◦ πστ ( locations <̃ s (σ ) are mapped to locations <̃ s ′) .
Hence without loss of generality, s 0 = π0( s̄ 0) where s̄ 0 <̃ s (σ ) . Therefore,
L s (σ) � ‘ ‘L s̄ 0

{ γσ ∪ pσ } is bounded below σ” . This is preserved by πστ :
L s (τ) � ‘ ‘Lπστ ( s̄ 0 ){ γτ ∪ pτ } is bounded below τ” . F inally, this is preserved by π
downwards: L s ′ � ‘ ‘L s0{α ∪ p′} is bounded below υ” , contradicting the definition
of s ( υ ) <̃ s 0 .

F inally, we have to show that π− 1 is Σ 1 -preserving, then π− 1 = πυτ and πσυ =
πυτ
− 1 ◦ πστ . F irst note that π is structure-preserving.

Σ 1 is preserved upwards by π− 1 ( i . e. , from L s ( υ) to L s (τ) {α ∪ pυ } ) . For the
other direction, assume L s ( τ) � ∃x φ( x , r� ) , where φ is quantifier-free and r� ∈
dom π = L s (τ) { γυ ∪ pτ } ; we have to show L s (υ) � ∃x φ( x , π ( r� ) ) . As before, fix

s 0 <̃ s (σ ) s . t . r� ∈ Lπστ ( s0) { γυ ∪ pτ } and w ∈ Lπστ ( s0 ){ γτ ∪ pτ } where w is the least
witness for ∃x φ( x , r� ) . Our aim is to show that γτ can be replaced by γυ in the
latter hull .

Let π1 : L s0{ γσ ∪ pσ }
�
L s̄ = L s̄ { γσ ∪ p̄ } where p̄ = π1 ( pσ) . As above using type

preservation, we shift π1 to the γτ-level, let ’ s call the resulting map π2 :
Lπστ ( s0 ) { γτ ∪ pτ } �

Lπστ ( s̄ ) { γτ ∪ πστ( p̄ ) } . Then we have π2( r� ) ∈ Lπστ ( s̄ ) { γυ ∪ πστ( p̄ ) }
and π2 (w ) ∈ Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } : Lπστ ( s̄ ) � φ(π2(w ) , π2( r� ) )

Further, also as above, there is a σ̄ ≺ σ s. t . L s̄ ∈ L σ̄ with σ̄ � 3 ῡ � 3 τ̄ : =
πστ( σ̄ ) and π2 ( r� ) , πστ( s̄ ) , πστ( p̄ ) ∈ range πῡτ̄ . Therefore, π2(w ) ∈ range πῡτ̄ and
hence by πῡτ̄ being a morass map, we can replace γτ by γυ in ‘ ‘ π2(w ) ∈
Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } ” . Applying π2

− 1 we get w ∈ range πυτ . This proves Σ 1 -preser-
vation. �
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