
Archive for Mathematical Logic manuscript No.
(will be inserted by the editor)

Register Computations on Ordinals

Peter Koepke · Ryan Siders

the date of receipt and acceptance should be inserted later

Abstract We generalize ordinary register machines on natural numbers to
machines whose registers contain arbitrary ordinals. Ordinal register machines
are able to compute a recursive bounded truth predicate on the ordinals. The
class of sets of ordinals which can be read off the truth predicate satisfies a
natural theory SO. SO is the theory of the sets of ordinals in a model of the
Zermelo-Fraenkel axioms ZFC. This allows the following characterization
of computable sets: a set of ordinals is ordinal register computable if and only
if it is an element of Gödel’s constructible universe L.

Keywords Ordinal computability · hypercomputation · infinitary computa-
tion · register machine

1 Introduction.

There are many equivalent machine models for defining the class of intuitively
computable sets. We shall model computations on ordinals on the unlimited
register machines (URM) presented in [2]. An URM has registers R0, R1, . . .

which can hold natural numbers, i.e., elements of the set ω = {0, 1, . . .}. A
register program consists of commands to reset, increase, or copy a register.
The program may jump on condition of equality between two registers. An
obvious generalization from the perspective of transfinite ordinal theory is to
extend such calculations to the class Ord = {0, 1, . . . , ω, ω+1, . . .} of all ordinal
numbers so that registers may contain arbitrary ordinals. At limit ordinals

Peter Koepke
University of Bonn, Mathematisches Institut, Beringstraße 1, D 53115 Bonn, Germany
E-mail: koepke@math.uni-bonn.de

Ryan Siders
University of Helsinki, Department of Mathematics, P.O.Box 4, Yliopistonkatu 5, FI 00014
Helsinki, Finland
E-mail: bissell@mappi.helsinki.fi

2

one defines the program states and the registers contents by appropriate limit
operations.

This notion of ordinal (register) computability obviously extends standard
register computability. By the Church-Turing thesis recursive operations on
natural numbers are ordinal computable. The ordinal arithmetic operations
(addition, multiplication, exponentiation) and Gödel’s pairing function G :
Ord×Ord → Ord are also ordinal computable.

Using the pairing function one can interpret each ordinal α as a first-
order sentence with constant symbols for ordinals < α. One can then define a
recursive truth predicate T ⊆ Ord by:

T (α) iff (α,<,G ∩ α3, T ∩ α) ² α.

This recursion can be carried out on an ordinal register machine, using stacks
which contain finite decreasing sequences of ordinals. For ordinals µ and ν the
function T codes the set

X(µ, α) = {β < µ|T (G(α, β))}.

The class
S = {X(µ, α)|µ, α ∈ Ord}

is the class of sets of ordinals of a transitive proper class model of set theory.
Since ordinal computations can be carried out in the ⊆-smallest such model,
namely Gödel’s model L of constructible sets, we can characterize ordinal
computability:

Theorem 1 A set x ⊆ Ord is ordinal computable if and only if x ∈ L.

This theorem may be viewed as an analogue of the Church-Turing thesis:
ordinal computability defines a natural and absolute class of sets, and it is
stable with respect to technical variations in its definition. Register machines
on ordinals were first considered by the second author [1]; the results proved
in the present article were guided by the related ordinal Turing machines [7]
which generalize the infinite-time Turing machines of [5].

2 Ordinal register machines

Ordinal register machines (ORM’s) basically use the same instructions and
programs as the unlimited register machines of the standard textbook by N.

Cutland [2].

Definition 1 An ORM program is a finite list P = P0, P1, . . . , Pk−1 of in-
structions acting of registers R0, R1, The index i of the instruction Pi is
also called the state of Pi. An instruction may be of one of four kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

3

b) the successor instruction S(n) increases the ordinal contained in Rn, leav-
ing all other registers unaltered;

c) the transfer instruction T(m,n) sets the contents of Rn to the contents of
Rm, leaving all other registers unaltered;

d) the jump instruction Pi =J(m,n,q) is carried out within the program P as
follows: the contents rm and rn of the registers Rm and Rn are compared,
all registers are left unaltered; then, if rm = rn, the ORM proceeds to the
instruction Pq of P ; if rm 6= rn, the ORM proceeds to the next instruction
Pi+1 in P .

ORM programs are carried out along an ordinal timeline. At each ordinal
time t the machine will be in a configuration consisting of a program state
I(t) ∈ ω and register contents which can be viewed as a function R(t) : ω →
Ord. R(t)(n) is the content of the register Rn at time t. We also write Rn(t)
instead of R(t)(n). The machine configuration at limit times t will be defined
via inferior limits where

lim inf
s→t

αs =
⋃

s<t

⋂

s<r<t

αr.

Definition 2 Let P = P0, P1, . . . , Pk−1 be an ORM program. A pair

I : θ → ω,R : θ → ω Ord

is an ordinal (register) computation by P if the following hold:

a) θ is a successor ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;
c) If t < θ and I(t) 6∈ k = {0, 1, . . . , k − 1} then θ = t+ 1; the machine stops

if the machine state is not a program state of P ;
d) If t < θ and I(t) ∈ {0, 1, . . . , k − 1} then t+ 1 < θ; the next configuration

is determined by the instruction PS(t) :
i. if PS(t) is the zero instruction Z(n) then let I(t + 1) = I(t) + 1 and

define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

0, if k = n

Rk(t), if k 6= n

ii. if PS(t) is the successor instruction S(n) then let I(t + 1) = I(t) + 1
and define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rk(t) + 1, if k = n

Rk(t), if k 6= n

iii. if PS(t) is the transfer instruction T(m,n) then let I(t + 1) = I(t) + 1
and define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rm(t), if k = n

Rk(t), if k 6= n

4

iv. if PS(t) is the jump instruction J(m,n,q) then let R(t+ 1) = R(t) and

I(t+ 1) =

{

q, if Rm(t) = Rn(t)
I(t) + 1, if Rm(t) 6= Rn(t)

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀k ∈ ω Rk(t) = lim inf
r→t

Rk(r);

I(t) = lim inf
r→t

I(r).

The ordinal computation is obviously recursively determined by the initial
register contents R(0) and the program P . We call it the ordinal computation
by P with imput R(0). If the computation stops, θ = β + 1 is a successor
ordinal and R(β) is the final register content. In this case we say that P
computes R(β)(0) from R(0) and write P : R(0) 7→ R(β)(0).

The definition of the state I(t) for limit t can be motivated as follows. Since
a program is finite its execution will lead to some (complex) looping structure
involving loops, subloops and so forth. This can be presented by pseudo code
like:

...

17:begin loop

...

21: begin subloop

...

29: end subloop

...

32:end loop

...

Assume that for times r → t the loop (17−32) with its subloop (21−29) is
traversed cofinally often. Then at time t it seems natural to put the machine
at the start of the “main loop”. Assuming that the lines of the program are
enumerated in increasing order this corresponds to the lim inf rule

I(t) = lim inf
r→t

I(r).

The interpretation of programs by computations yields associated notions of
computability.

Definition 3 An n-ary partial function F : Ordm ⇀ Ord is ordinal (register)
computable if there are a register program P and ordinals δ0, . . . , δn−1 such
that for every m-tuple (α0, . . . , αm−1) ∈ domF holds

P : (α0, . . . , αm−1, δ0, . . . , δn−1, 0, 0, . . .) 7→ F (α0, . . . , αm−1).

A subset x ⊆ Ord is ordinal (register) computable if its characteristic function
χx is ordinal computable.

5

3 Algorithms

Since ordinal register machines are a straightforward extension of standard
register machines, all recursive functions can be computed by an ordinal reg-
ister machine. We shall now show that basic operations on ordinal numbers
are ordinal register computable. We present programs in an informal pseudo
code where variables correspond to registers.

Ordinal addition, computing gamma = alpha + beta:

0 alpha’:=0

1 beta’:=0

2 gamma:=0

3 if alpha=alpha’ then go to 7

4 alpha’:=alpha’+1

5 gamma:=gamma+1

6 go to 3

7 if beta=beta’ then STOP

8 beta’:=beta’+1

9 gamma:=gamma+1

10 go to 7

Observe that at limit times this algorithm, by the lim inf rule, will nicely cycle
back to the beginnings of loops 3 - 6 or 7 - 10 resp.

Ordinal multiplication, computing gamma = alpha * beta:

0 beta’:=0

1 gamma:=0

2 if beta=beta’ then STOP

3 beta’:=beta’+1

4 gamma:=gamma + alpha

5 go to 2

We interpret the program line gamma:=gamma + alpha as a macro, i.e., the
above addition program has to be substituted for that line with reasonable
modifications of variables, registers and line numbers. Also adequate transfer
of arguments and values between variables has to be arranged.

In general this substitution technique yields the closure under composition
for the class of ordinal computable functions:

Theorem 2 Let f(v0, . . . , vn−1) and g0(
−→w), . . . , gn−1(

−→w) be ordinal comput-
able functions. Then the composition h(−→w) = f(g0(

−→w), . . . , gn−1(
−→w)) is ordi-

nal computable.

The Gödel pairing function for ordinals is important for coding informa-
tion into single ordinals. It is defined recursively by

G(α, β) = {G(α′, β′)|max(α′, β′) < max(α, β) or

(max(α′, β′) = max(α, β) and α′ < α) or

(max(α′, β′) = max(α, β) and α′ = α and β′ < β)}.

6

We sketch an algorithm for computing γ = G(α, β), it proceeds by increasing
a pair (α′, β′) along the well-order of Ord×Ord implicit in the definition of G
until (α, β) is reached and simultaneously increasing the ordinal γ along the
ordinals.

Goedel pairing, computing gamma = G(alpha,beta):

0 alpha’:=0

1 beta’:=0

2 eta:=0

3 flag:=0

4 gamma:=0

5 if alpha=alpha’ and beta=beta’ then STOP

6 if alpha’=eta and and beta’=eta and flag=0 then

alpha’:=0, flag:=1, gamma:=gamma+1, go to 5 fi

7 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1,alpha’:=eta,beta’:=0,gamma:=gamma+1, go to 5 fi

8 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 5 fi

9 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 5 fi

The inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are also ordinal computable: compute G(α, β) for α, β < γ until you find α, β
with G(α, β) = γ; then set G0(γ) = α and G1(γ) = β. This is a special case
of the following inverse function theorem.

Theorem 3 Let the function f : Ordn → Ord be ordinal computable and
surjective. Then there are ordinal computable functions g0, . . . , gn−1 : Ord →
Ord such that

∀αf(g0(α), . . . , gn−1(α)) = α.

4 3-adic representations and ordinal stacks

We shall compute a recursive truth function using a stack that can hold a
(finite) sequence α0 > α1 > . . . > αn−2 > αn−1 of ordinals which is strictly
decreasing except possibly for the last two ordinals. This sequence of ordinals
will be coded into a single ordinal by 3-adic representations.

Proposition 1 Let δ > 1 be a fixed basis ordinal. A representation

α = δα0 · ζ0 + δα1 · ζ1 + . . .+ δαn−1 · ζn−1

with α0 > α1 > . . . > αn−1 and 0 < ζ0, ζ1, . . . , ζn−1 < δ is called a δ-adic
representation of α.

7

It is an easy exercise in ordinal arithmetic to show that every α ∈ Ord
possesses a unique δ-adic representation. So a decreasing stack α0 > α1 >

. . . > αn−2 > αn−1 of ordinals can be coded by

α = 〈α0, α1, . . . , αn−2, αn−1〉 = 3α0 + 3α1 + . . .+ 3αn−2 + 3αn−1 .

We call the natural number n the length of the stack α . The elements
αn−1, αn−2, . . . of this stack can be defined from α as follows:

αn−1 = the largest ξ such that there is ζ with α = 3ξ · ζ

αn−2 = the largest ξ such that there is ζ with α = 3ξ · ζ + 3αn−1

. . .

Since the ordinal arithmetic operations are ordinal computable, the ordinals
αn−1, αn−2 are ordinal computable by some programs last, llast resp. We
assume that these functions return a special value UNDEFINED if the stack is
too short.

The computation in the subsequent recursion theorem proceeds by ranging
over previous arguments and values in a systematic way. This can be organized
by a stack, due to the limit behaviour of stacks.

Proposition 2 Let t ∈ Ord be a limit time and t0 < t. For time τ ∈ [t0, t) let
the contents of the stack register stack be of the form

ατ = 〈α0, . . . , αk−1 , ρ(τ), . . .〉

with fixed α0, . . . , αk−1 and variable ρ(τ) 6 αk−1. Assume that the sequence
(ρ(τ)|τ ∈ [t0, t)) is weakly monotonously increasing and that the length of
stack is equal to k+1 cofinally often below t. Then at limit time t the content
of stack is of the form

αt = 〈α0, . . . , αk−1 , ρ〉

with ρ =
⋃

τ∈[t0,t) ρ(τ).

5 A recursion theorem

Theorem 4 Let H : Ord3 → Ord be ordinal computable and define F : Ord →
Ord recursively by

F (α) =

{

1 iff ∃ν < α H(α, ν, F (ν)) = 1
0 else

Then F is ordinal computable.

8

Given an algorithm for the recursion function H we compute F with a
stack as considered above and a register value which can hold a single value of
the function F : we let value = 2 stand for “undefined’. The following program
P accepts an input ordinal α on the singleton stack 〈α〉 and stops with the
output stack 〈α〉 and value= F (α). During the recursion the program will
call itself with non-empty stacks α = α0, α1, . . . , αn−1 and compute the value
F (αn−1). The main loop of the program serves to let the bounded quantifier
∃ν < α range over all ν < α. The subloop evaluates the kernel H(α, ν, F (ν)) =
1 of the quantifier and returns the result for further calculation of values.

value:=2 %% set value to undefined

MainLoop:

nu:=last(stack)

alpha:=llast(stack)

if nu = alpha then

1: do

remove_last_element_of(stack)

value:=0 %% set value equal to 0

goto SubLoop

end

else

2: do

stack:=stack + 1 %% push the ordinal 0 onto the stack

goto MainLoop

end

SubLoop:

nu:=last(stack)

alpha:=llast(stack)

if alpha = UNDEFINED then STOP

else

do

if H(alpha,nu,value)=1 then

3: do

remove_last_element_of(stack)

value:=1

goto SubLoop

end

else

4: do

stack:=stack + (3**y)*2 %% push y+1

value:=2 %% set value to undefined

goto MainLoop

end

end

The correctness of the program is established by

9

Theorem 5 The ordinal computation I,R by the program P has the following
properties

a) If I,R is in state MainLoop at time s with stack contents 〈α0, . . . , αn−1〉
where n > 1 then I,R will get into state SubLoop at a later time t with
the same stack contents 〈α0, . . . , αn−1〉 and the register value holding the
value F (αn−1). Moreover in the interval [s, t) the contents of stack will
always be at least as big as 〈α0, . . . , αn−1〉.

b) Let I,R be in state MainLoop at time s with stack contents α0 > . . . >

αn−1 where n > 1. Define ᾱ = the minimal ordinal ν < αn−1 such that
H(αn−1, ν, F (ν)) = 1 if this exists and ᾱ = αn−1 else. Then there is a
strictly increasing sequence (ti|i 6 ᾱ) of times ti > t such that I,R is in
state MainLoop at time ti with stack contents 〈α0, . . . , αn−1, i〉. Moreover
in every time interval [ti, ti+1) the stack contents are > 〈α0, . . . , αn−1, i〉.

c) If I,R is in state MainLoop with stack contents 〈α〉 then it will later stop
with stack contents 〈α〉 and the register value holding the value F (α).
Hence the function F is ordinal register computable.

Proof a) and b) are proved simultaneously by induction over the last element
αn−1 of the stack. Assume that P is in state MainLoop at time s with stack
contents 〈α0, . . . , αn−1〉 where n > 1 and that a) and b) hold for all stack
contents 〈β0, β1, . . . , βm−1〉 with βm−1 < αn−1. Define ᾱ as in b).

We first prove b) by defining an appropriate sequence (ti|i 6 ᾱ) by recur-
sion over i 6 ᾱ.
i = 0. Inspection of P shows that the computation will move to state 2

and obtain stack contents 〈α0, . . . , αn−1, 0〉 before immediately returning to
MainLoop.
i = j+1 where j < ᾱ. By recursion, P is in state MainLoop at time tj with stack
contents 〈α0, . . . , αn−1, j〉. j < ᾱ 6 αn−1 so that the inductive assumption a)
holds for 〈α0, . . . , αn−1, j〉. So there will be a later time when P is in state
SubLoop with stack contents 〈α0, . . . , αn−1, j〉 and value= F (j). Also during
that computation the stack contents will always be > 〈α0, . . . , αn−1, j〉. Inspec-
tion of the program shows that it will further compute H(αn−1, j, F (j)). This
value will be 6= 1 by definition of ᾱ. So the computation will move on to state
4 with stack contents 〈α0, . . . , αn−1, j + 1〉. At the subsequent time ti = tj+1

the computation is in state MainLoop with stack contents 〈α0, . . . , αn−1, i〉. i is
a limit ordinal. Then by the limit behaviour of the machine and in particular
by the above proposition, at time ti =

⋃

{tj |j < i} the machine will be in state
MainLoop with stack contents 〈α0, . . . , αn−1, i〉.

Now we prove a).
Case 1 : ᾱ < αn−1. Then F (ᾱ) = 1. By b) the computation will get to
state MainLoop with stack contents 〈α0, . . . , αn−1, ᾱ〉. By the inductive hy-
pothesis, the machine will then get to state SubLoop with stack contents
〈α0, . . . , αn−1, ᾱ〉 and value equal to F (ᾱ). Then the program will compute
H(αn−1, ᾱ, F (ᾱ)) = 1 and move into alternative 3. The register value obtains
the value F (αn−1) = 1 and the computation moves to state SubLoop with the
last stack element removed: stack = 〈α0, . . . , αn−1〉, as required.

10

Case 2 : ᾱ = αn−1. Then F (ᾱ) = 0. By b), the computation will get to state
MainLoop with stack contents 〈α0, . . . , αn−1, ᾱ = αn−1〉. Inspection of the
program shows that it will get into alternative 1, set stack:= 〈α0, . . . , αn−1〉,
value:= 0 and move to SubLoop, which proves a) in this case.

Finally, c) follows readily from a) and inspection of the program.

6 A recursive truth predicate

The ordinal arithmetic operations and the gödel pairing function G allow
us to code finite sequences of ordinals into single ordinals. The coding can be
made ordinal computable in the sense that usual operations on finite sequences
like concatenation or substitution are computable as well. This allows to code
formal languages in an ordinal computable way.

We shall consider a language LR appropriate for first-order structures of
the type

(α,<,G,R)

where the Gödel function G is viewed as a ternary relation on α and R is
a unary relation on α. The terms of the language are variables vn for n < ω

and constant symbols cξ for ξ ∈ Ord; the symbol cξ will be interpreted as the

ordinal ξ. The language has atomic formulas t1 ≡ t2, t1 < t2, Ġ(t1, t2, t3) and
Ṙ(t1). The symbol Ġ will be interpreted by the Gödel relation G. If ϕ and
ψ are (compound) formulas of the language, n < ω, and t is a term then

¬ϕ, (ϕ ∨ ψ), and (∃vn < t) ϕ

are also formulas; thus we are only working with bounded quantifications.
We assume an ordinal computable coding such that a bounded existential
quantification (∃vn < cξ) ϕ is coded by a larger ordinal than each of its
instances ϕ

cζ

vn
with ζ < ξ:

ϕ
cζ

vn

< (∃vn < cξ) ϕ).

An LR-formula is an LR-sentence if it does not have free variables. If ϕ is an
LR-sentence so that all constants symbols cξ in ϕ have indices ξ < α then the
satisfaction relation

(α,<,G,R) ² ϕ

is defined as usual. Bounded sentences are absolute for sufficiently long initial
segments of the ordinals. If ϕ is a bounded sentence such that every constant
symbol cξ occuring in ϕ satisfies ξ < β < α then

(α,<,G,R) ² ϕ iff (β,<,G,R) ² ϕ.

We may assume that the coding of formulas by ordinals ϕ will satisfy that
ξ < ϕ for every constant symbol cξ occuring in ϕ. So the meaning of a bounded
sentence ϕ is given by

(ϕ,<,G,R) ² ϕ.

11

This leads to the recursive definition of a bounded truth predicate T ⊆ Ord
over the ordinals

T (α) iff α is a bounded LR-sentence and (α,<,G, T ∩ α) ² α.

We shall see that T is a strong predicate which codes a model of set theory. We
first show that the characteristic function χT of T can be defined according to
the recursion scheme

χT (α) =

{

1 iff (∃ν < α) H(α, ν, χT (ν)) = 1
0 else

with an appropriate computable recursion function H.

H(α, ν, χ) = 1 iff α is an LR-sentence and

∃ξ, ζ < α (α = cξ ≡ cζ ∧ ξ = ζ)

or ∃ξ, ζ < α (α = cξ < cζ ∧ ξ < ζ)

or ∃ξ, ζ, η < α (α = Ġ(cξ, cζ , cη) ∧ η = G(ξ, ζ))

or ∃ξ < α (α = Ṙ(cξ) ∧ ν = ξ ∧ χ = 1)

or ∃ϕ < α (α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)

or ∃ϕ,ψ < α (α = (ϕ ∨ ψ) ∧ (ν = ϕ ∨ ν = ψ) ∧ χ = 1)

or ∃n < ω ∃ξ < α ∃ϕ < α

(α = (∃vn < cξ) ϕ ∧ (∃ζ < ξ) ν = ϕ
cζ

vn

∧ χ = 1).

Then χT and T are ordinal register computable by the recursion theorem 4.

7 The theory SO of sets of ordinals

It is well-known that a model of Zermelo-Fraenkel set theory with the axiom of
choice (ZFC) is determined by its sets of ordinals (see [6], Theorem 13.28). We
define a natural theory SO which axiomatizes the sets of ordinals in a model
of ZFC. The theory SO is two-sorted: ordinals are taken as atomic objects, the
other sort corresponds to sets of ordinals. Let LSO be the language

LSO := {Ord,SOrd, <,=,∈, g}

where Ord and SOrd are unary predicate symbols, <, = and ∈ are binary
predicate symbols and g is a two-place function. To simplify notation, we use
lower case greek letters to range over elements of Ord and lower case roman
letters to range over elements of SOrd.

1. Well-ordering axiom:
∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧
(α < β ∨ α = β ∨ β < α)) ∧
∀a(∃α(α ∈ a) → ∃α(α ∈ a ∧ ∀β(β < α→ ¬β ∈ a)));

12

2. Axiom of infinity (existence of a limit ordinal):
∃α(∃β(β < α) ∧ ∀β(β < α→ ∃γ(β < γ ∧ γ < α)));

3. Axiom of extensionality: ∀a, b(∀α(α ∈ a↔ α ∈ b) → a = b);
4. Initial segment axiom: ∀α∃a∀β(β < α↔ β ∈ a);
5. Boundedness axiom: ∀a∃α∀β(β ∈ a→ β < α);
6. Pairing axiom (Gödel Pairing Function):

∀α, β, γ(g(β, γ) ≤ α↔ ∀δ, ε((δ, ε) <∗ (β, γ) → g(δ, ε) < α)).
Here (α, β) <∗ (γ, δ) stands for
∃η, θ(η = max(α, β) ∧ θ = max(γ, δ) ∧ (η < θ ∨
(η = θ ∧ α < γ) ∨ (η = θ ∧ α = γ ∧ β < δ))),
where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α ≤ β ∧ γ = β);

7. g is onto: ∀α∃β, γ (α = g(β, γ));
8. Axiom schema of separation: For all LSO-formulae φ(α, P1, . . . , Pn) postu-

late:
∀P1, . . . , Pn∀a∃b∀α(α ∈ b↔ α ∈ a ∧ φ(α, P1, . . . , Pn));

9. Axiom schema of replacement: For all LSO-formulae φ(α, β, P1, . . . , Pn) pos-
tulate:
∀P1, . . . , Pn(∀ξ, ζ1, ζ2(φ(ξ, ζ1, P1, . . . , Pn) ∧ φ(ξ, ζ2, P1, . . . , Pn) → ζ1 = ζ2)
→ ∀a∃b∀ζ(ζ ∈ b↔ ∃ξ ∈ a φ(ξ, ζ, P1, . . . , Pn)));

10. Powerset axiom:
∀a∃b∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a) → ∃=1ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b)).

8 Assembling sets along wellfounded relations

In standard set theory a set x can be represented as a point in a wellfounded
relation: consider the ∈-relation on the transitive closure TC({x}) with dis-
tinguished element x ∈ TC({x}). By the Mostowski isomorphism theorem
x is uniquely determined by the pair (x,TC({x})) up to order isomorphism.

Definition 4 An ordered pair x = (x,Rx) is a point if Rx is a wellfounded
relation and x ∈ dom(Rx). Unless specified otherwise we use Rx to denote the
wellfounded relation of the point x.

Obviously, (x,∈¹ TC({x})) is a point. Conversely, any point x = (x,Rx)
can be interpreted as a standard set I(x). Define recursively

Ix : dom(Rx) → V , Ix(u) = {Ix(v)|vRu}.

Then let I(x) = Ix(x) be the interpretation of x. Note that for points x and y

Ix(u) = Iy(v) iff {Ix(u′)|u′Rxu} = {Ix(v′)|v′Ryv}

iff ∀u′Rxu ∃v′Ryv Ix(u′) = Iy(v′)) ∧

∧(∀v′Ryv ∃u′Rxu Ix(u′) = Iy(v′).

This means that the relation Ix(u) = Iy(v) in the variables u and v can
be defined recursively without actually forming the interpretations Ix(u) and

13

Iy(v). Wellfounded relations and points can be handled within the theory SO.
This will allow to define a model of ZFC within SO. So assume SO for the
following construction.

Definition 5 Define a relation ≡ on points x = (x,Rx), y = (y,Ry) by in-
duction on the product wellorder Rx ×Ry:

(x,Rx) ≡ (y,Ry) iff ∀uRxx ∃vRyy (u,Rx) ≡ (v,Ry) ∧

∧∀vRyy ∃uRxx (u,Rx) ≡ (v,Ry).

Theorem 6 ≡ is an equivalence relation on points.

Proof We only check transitivity; reflexivity and symmetry may be proved
similarly.

Transitivity . Consider points x = (x,Rx), y = (y,Ry) and z = (z,Rz). We
show by induction on the wellfounded relation Rx ×Ry ×Rz that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz) → (u,Rx) ≡ (w,Rz).

Assume that the claim holds for all u′Rxu, v
′Ryv and w′Rzw. Assume that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz).

To show that (u,Rx) ≡ (w,Rz) consider u′Rxu. By (u,Rx) ≡ (v,Ry) take
v′Ryv such that (u′, Rx) ≡ (v′, Ry). By (v,Ry) ≡ (w,Rz) take w′Rzw such
that (v′, Ry) ≡ (w′, Rz). By the inductive assumption, (u′, Rx) ≡ (v′, Ry) and
(v′, Ry) ≡ (w′, Rz) imply that (u′, Rx) ≡ (w′, Rz). Thus

∀u′Rxu ∃w′Rzw (u′, Rx) ≡ (w′, Rz).

Similarly
∀w′Rzw ∃u′Rxu (u′, Rx) ≡ (w′, Rz)

and thus (u,Rx) ≡ (w,Rz). In particular for x = (x,Rx), y = (y,Ry) and
z = (z,Rz)

x ≡ y ∧ y ≡ z → x ≡ z.

We now define a membership relation for points.

Definition 6 Let x = (x,Rx) and y = (y,Ry) be points. Then set

x J y iff ∃vRyy x ≡ (v,Ry).

Lemma 1 The equivalence relation ≡ is a congruence relation with respect to
J, i.e.,

x J y ∧ x ≡ x′ ∧ y ≡ y′ → x′ J y′.

Proof Let x J y∧x ≡ x′∧y ≡ y′ → x′ J y′. Take vRyy such that x ≡ (v,Ry).
By y ≡ y′ take v′Ry′y′ such that v ≡ v′. Since ≡ is an equivalence relation,
the relations x ≡ x′, x ≡ v and v ≡ v′ imply x′ ≡ v′. Hence x′ J y′.

14

9 The class of points satisfies ZFC

We show that the class
�

of points with the relations ≡ and J satisfies the
axioms ZFC of Zermelo-Fraenkel set theory with the axiom of choice. For
the existence axioms of ZFC we prove a lemma about combining points into
a single point.

Lemma 2 (SO) Let (xi|i ∈ A) be a set-sized definable sequence of points,
i.e., A is a set of ordinals and the function i 7→ xi ∈

�
is definable. Then

there is a point y = (y,Ry) such that for all points x holds

x J y iff ∃i ∈ A x ≡ xi.

Proof For i ∈ A let xi = (xi, Ri). Define points x′i = (x′i, R
′

i) by “colouring”
every element of dom(Ri) by the “colour” i:

x′i = (i, xi) and R′

i = {((i, α), (i, β))|(α, β) ∈ Ri}.

The points (x′i, R
′

i) and (xi, Ri) are isomorphic and so (x′i, R
′

i) ≡ (xi, Ri). We
may thus assume that the domains of the wellfounded relations Ri are pairwise
disjoint. Take some y 6∈

⋃

i∈A dom(Ri) and define the point y = (y,Ry) by

Ry =
⋃

i∈A

Ri ∪ {(xi, y)|i ∈ A}.

Consider i ∈ A. If x ∈ dom(Ri) then the iterated Ri-predecessors of x are
equal to the iterated Ry-predecessors of x. Hence (x,Ri) ≡ (x,Ry).

Assume now that x J y. Take vRyy such that x ≡ (v,Ry). Take i ∈ A

such that v = xi. By the previous remark

x ≡ (v,Ry) = (xi, Ry) ≡ (xi, Ri) = xi.

Conversely consider i ∈ A and x ≡ xi. Then x ≡ xi = (xi, Ri) ≡ (xi, Ry) and
xiRyy. This implies x J y.

We are now able to canonically interpret the theory ZFC within SO.

Theorem 7 (SO)
�

= (
�
,≡,J) is a model of ZFC.

Proof (1) The axiom of extensionality holds in
�

:

∀x∀y(∀z(z J x↔ z J y) → x ≡ y).

Proof . Consider points x and y such that ∀z(z J x↔ z J y). Consider uRxx.
Then (u,Rx) J (x,Rx) = x. By assumption, (u,Rx) J (y,Ry). By definition
take vRyy such that (u,Rx) ≡ (v,Ry). Thus

∀uRxx ∃vRyy (u,Rx) ≡ (v,Ry).

By exchanging x and y one also gets

∀vRyy ∃uRxx (u,Rx) ≡ (v,Ry).

15

Hence x ≡ y. qed(1)
(2) The axiom of pairing holds in

�
:

∀x∀y∃z∀w(w J z ↔ (w ≡ x ∨ w ≡ y)).

Proof . Consider points x = (x,Rx) and y = (y,Ry). By the comprehension
lemma 2 there is a point z = (z,Rz) such that for all points w

w J z ↔ (w ≡ x ∨ w ≡ y).

qed(2)
(3) The axiom of unions holds in

�
:

∀x∃y∀z(z J y ↔ ∃w(w J x ∧ z J w)).

Proof . Consider a point x = (x,Rx). Let

A = {i ∈ dom(Rx)|∃u ∈ dom(Rx) iRxuRxx}.

For i ∈ A define the point xi = (i, Rx). By the Comprehension Lemma 2 there
is a point y = (y,Ry) such that for all points z

z J y ↔ ∃i ∈ A z ≡ xi.

To show the axiom consider some z J y. Take i ∈ A such that z ≡ xi. Take u ∈
dom(Rx) such that iRxuRxx. Then z ≡ xi = (i, Rx) J (u,Rx) J (x,Rx) = x,
i.e., ∃w(z J w J x).

Conversely assume that ∃w(z J w J x) and take w such that z J w J x.
Take uRxx such that w ≡ (u,Rx). Then z J (u,Rx). Take iRxu such that
z ≡ (i, Rx) = xi. Then z J y. qed(3)

(4) The replacement schema holds in
�

, i.e., for every first-order formula
ϕ(u, v) in the language of ≡ and J the following is true in

�
:

∀u, v, v′((ϕ(u, v)∧ϕ(u, v′)) → v ≡ v′) → ∀x∃y∀z(z J y ↔ ∃u(u J x∧ϕ(u, z))).

Proof . Note that the formula ϕ may contain further free parameters, which
we do not mention for the sake of simplicity. Assume that ∀u, v, v′((ϕ(u, v) ∧
ϕ(u, v′)) → v ≡ v′) and let x = (x,Rx) be a point. Let A = {i|iRxx}. For each
i ∈ A we have the point (i, Rx) J (x,Rx) = x. Using replacement and choice
in SO we can pick for each i ∈ A a point zi = (zi, Rzi

) such that ϕ((i, Rx), zi)
holds if such a point exists. By the Comprehension Lemma 2 there is a point
y = (y,Ry) such that for all points z

z J y ↔ ∃i ∈ A z ≡ zi.

To show the instance of the replacement schema under consideration, assume
that z J y. Take i ∈ A such that z ≡ zi. Then (i, Rx) J (x,Rx) = x,
ϕ((i, Rx), zi) and ϕ((i, Rx), z). Hence ∃u(u J x ∧ ϕ(u, z)).

Conversely, assume that ∃u(u J x∧ϕ(u, z)). Take u J x such that ϕ(u, z).
Take iRxx, i ∈ A such that u ≡ (i, Rx). Then ϕ((i, Rx), z). By definition of

16

zi, ϕ((i, Rx), zi). The functionality of the formula ϕ implies z ≡ zi. Hence
∃i ∈ A z ≡ zi and z J y. qed(4)

The replacement schema also implies the separation schema.
(5) The axiom of powersets holds in

�
:

∀x∃y∀z(z J y ↔ ∀w(w J z → w J x)).

Proof . By the separation schema it suffices to show that

∀x∃y∀c(∀w(w J c→ w J x) → c J y).

Consider a point x = (x,Rx). Let F = dom(Rx) ∪ ran(Rx) be the field of Rx.
By the powerset axiom of SO choose some set P such that Pow(P, F):

∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ F) → ∃ξ∀β(β ∈ z ↔ (β, ξ) ∈ P)).

Choose two large ordinals δ and y such that

∀α ∈ F α < δ and ∀ξ(ξ ∈ ran(P) → (δ, ξ) < y).

Define a point y = (y,Ry) by

Ry = Rx ∪ {(β, (δ, ξ))|(β, ξ) ∈ P} ∪ {((δ, ξ), y)|ξ ∈ ran(P)}.

To show the axiom consider some point c = (c,Rc) such that ∀w(w J c →
w J x). Define a corresponding subset z of F by

z = {β ∈ F |∃vRcc (v,Rc) ≡ (β,Rx)}.

We may assume for simplicity that z 6= ∅. By the powerset axiom of SO choose
ξ ∈ ran(P) such that

∀β(β ∈ z ↔ (β, ξ) ∈ P).

We claim that ((δ, ξ), Ry) ≡ c and thus c J y.
Consider βRy(δ, ξ). By the definition of Rywe have (β, ξ) ∈ P and so β ∈ z.

By the definition of z choose vRcc such that (v,Rc) ≡ (β,Rx) ≡ (β,Ry).
Conversely, consider vRcc. Then (v,Rc) J (c,Rc) = c. The subset property

implies (v,Rc) J (x,Rx) = x. Take βRxx such that (v,Rc) ≡ (β,Rx) ≡
(β,Ry). By definition, β ∈ z, (β, ξ) ∈ P and βRy(δ, x). qed(5)

(6) The axiom of choice holds in
�

:

∀x((∀y, z(y J x ∧ z J x→ (∃u u J y ∧ (¬y ≡ z → ¬∃u(u J y ∧ u J z))))) →

→ ∃w∀y(y J x→ ∃u((u J w ∧ u J y) ∧ ∀v((v J w ∧ v J y) → u ≡ v)))).

Proof . Let x = (x,Rx) ∈
�

be a point such that

∀y, z((y J x ∧ z J x) → (∃u u J y ∧ (¬y ≡ z → ¬∃u(u J y ∧ u J z)))).

Choose an ordinal α ∈ dom(Rx) and define the point w = (α,Rw) by letting
its “elements” be least ordinals in the “elements” of x:

Rw = Rx ∪ {(ξ, α)|∃ζ(ξRxζRxx ∧

∧(∀ξ′ < ξ ∀ζ ′((ζ,Rx) ≡ (ζ ′, Rx) → ¬(ξRxξ
′Rxζ))))}.

17

To show that w witnesses the axiom of choice for x consider a point y with
y J x. We may assume that y is of the form y = (ζ,Rx) where ζRxx. By the
assumption on x there exists u J y. Take some ξ such that (ξ,Rx) ≡ u. We
may assume that ζ and ξ with these properties are chosen so that ξ is minimal
in the ordinals. Then

ξRxζRxx ∧ (∀ξ′ < ξ ∀ζ ′((ζ,Rx) ≡ (ζ ′, Rx) → ¬(ξRxξ
′Rxζ))) (1)

and so ξRwα. Thus u J w. To show the uniqueness of this u with u J w∧u J y

consider some v with v J w ∧ v J y. We may assume that v is of the form
v = (ξ′, Rw) with ξ′Rwα. By the definition of Rw we choose some ζ ′ such that

ξ′Rxζ
′Rxx ∧ (∀ξ′′ < ξ′ ∀ζ ′′((ζ ′, Rx) ≡ (ζ ′′, Rx) → ¬(ξ′Rxξ

′′Rxζ
′))). (2)

Now
v J y J x and v = (ξ′, Rw) J (ζ ′, Rw) J (x,Rx) = x.

Since the “elements” of x are “pairwise disjoint”, we have y ≡ (ζ ′, Rw). Since
y ≡ (ζ,Rx) the conditions (2) and (3) become equivalent and define the same
ordinal ξ = ξ′. Hence

u ≡ (ξ,Rx) ≡ (ξ′, Rw) ≡ v.

qed(6)
(7) The foundation schema holds in

�
, i.e., for every first-order formula

ϕ(u) in the language of ≡ and J the following is true in
�

:

∃u ϕ(u) → ∃y(ϕ(y) ∧ ∀z(z J y → ¬ϕ(z)).

Proof . Note that the formula ϕ may contain further free parameters, which
we do not mention for the sake of simplicity. Assume that ∃u ϕ(u). Take a
point x = (x,Rx) such that ϕ(x). Since Rx is wellfounded one may take an
Rx-minimal y ∈ dom(Rx) such that ϕ((y,Rx)). Letting y also denote the point
(y,Rx) then ϕ(y). To prove the axiom, consider some point z J y . Take vRxy

such that z ≡ (v,Rx). By the Rx-minimal choice of y we have ¬ϕ((v,Rx)).
Hence ¬ϕ(z). qed(7)

(8) The axiom of infinity holds in
�

, i.e.,

∃x((∃y y J x) ∧ (∀y(y J x→ ∃z(z J x ∧ ∀u(u J z ↔ (u J y ∨ u ≡ y))))))

Proof . In SO let ω be the smallest limit ordinal. We show that

x = (ω,<¹ (ω + 1)2)

witnesses the axiom. Since (0, <¹ (ω+1)2) J (ω,<¹ (ω+1)2) we have ∃y y J x.
Consider some y J x. We may assume that y = (n,<¹ (ω+1)2) for some n < ω.
Set

z = (n+ 1, <¹ (ω + 1)2).

It is easy to check that

z J x ∧ ∀u(u J z ↔ (u J y ∨ u ≡ y)).

qed(8)

18

10 T codes a model of SO

The truth predicate T contains information about a large class of sets of or-
dinals.

Definition 7 For ordinals µ and α define

X(µ, α) = {β < µ|T (G(α, β))}.

Set
S = {T (µ, α)|µ, α ∈ Ord}.

Theorem 8 (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof The axioms (1)-(7) are obvious. The proofs of axiom schemas (8) and
(9) rest on a Levy-type reflection principle. For θ ∈ Ord define

Sθ = {X(µ, α)|µ, α ∈ θ}.

Then for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord there is some limit
ordinal θ > η such that

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) ² ϕ[ξ0, . . . , ξn−1] iff

iff (θ,Sθ, <,=,∈, G) ² ϕ[ξ0, . . . , ξn−1]).

Since all elements of Sθ can be defined from the truth function T and ordinals
< θ, the right-hand side can be evaluated in the structure (θ,<,G∩ θ3, T) by
an LR-formula ϕ∗ which can be recursively computed from ϕ. Hence

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) ² ϕ[ξ0, . . . , ξn−1] iff

iff (θ,<,G ∩ θ3, T) ² ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing axioms (8) and (9) can be defined over (θ,<,G∩ θ3, T) and
are thus elements of S.

The powerset axiom of SO can be shown by a similar reflection argument.

11 Ordinal computability corresponds to constructibility

Kurt Gödel [4] defined the inner model L of constructible sets as the union
of a hierarchy of levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃

α<δ Lα for limit ordinals δ,
and Lα+1 = the set of all sets which are first-order definable in the structure
(Lα,∈). The model L is the ⊆-smallest inner model of set theory. The standard
reference for the theory of the model L is the monograph [3].

The following main result provides a characterization of ordinal register
computability which does not depend on a specific machine model or coding
of language:

19

Theorem 9 A set x of ordinals is ordinal computable if and only if it is an
element of the constructible universe L.

Proof Let x ⊆ Ord be ordinal computable by the program P from the ordinals
δ1, . . . , δn−1, so that for every α ∈ Ord:

P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

By the simple nature of the computation procedure the same computation can
be carried out inside the inner model L, so that for every α ∈ Ord:

(L,∈) ² P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

Hence χx ∈ L and x ∈ L.
Conversely consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the

theory SO there is an inner model M of set theory such that

S = {z ⊆ Ord |z ∈M}.

Since L is the ⊆-smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let
x = X(µ, α). By the computability of the truth predicate, x is ordinal register
computable from the parameters µ and α.

References

[1] Ryan Bissell-Siders. Ordinal computers. Eprint at: arXiv:math.LO/9804076, 1998.
[2] Nigel J. Cutland. Computability: An introduction to Recursive Function Theory. Per-

spectives in Mathematical Logic. Cambridge University Press, 1980.
[3] Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag,

Berlin, 1984.
[4] Kurt Gödel. The Consistency of the Continuum Hypothesis, volume 3 of Ann. of Math.

Studies. Princeton University Press, Princeton, 1940.
[5] Joel David Hamkins and Andy Lewis. Infinite Time Turing Machines. J. Symbolic Logic,

65(2):567–604, 2000.
[6] Thomas Jech. Set Theory. The Third Millennium Edition. Springer Monographs in

Mathematics. Springer-Verlag, 2003.
[7] Peter Koepke. Turing computations on ordinals. Bull. Symbolic Logic, 11(3):377–397,

2005.

