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Abstract

For (κn)n<ω a strictly increasing sequence of regular cardinals > ℵ2,
Foreman and Magidor showed: if every sequence (Sn)n<ω of sets Sn, which
are stationary in κn with ∀ξ ∈ Sn cof(ξ) = ω1, is mutually stationary
then V 6= L. We show that the existence of a sequence (κn)n<ω with this
property is equiconsistent with the existence of a measurable cardinal.
In case (κn)n<ω=(ℵn+3)n<ω the property implies the existence of inner
models with many measurable cardinals .

1 Introduction

The concept of mutual stationarity was introduced by M. Foreman and M.
Magidor [4] in order to transfer some combinatorial aspects of stationary sub-
sets of regular cardinals to singular cardinals. Together with J. Cummings they
further investigated the status of such sequences in [3].

Definition 1 Let (κn)n<ω be a strictly increasing sequence of regular cardinals
> ℵ2 with κω =supn<ωκn. A sequence (Sn)n<ω is called mutually stationary in
(κn)n<ω if every first-order structure A of countable type with κω ⊆ A has an
elementary substructure B ≺ A such that ∀n < ω sup |B| ∩ κn ∈ Sn.

Note that if (Sn)n<ω is mutually stationary in (κn)n<ω then each Sn ∩κn is
stationary in κn. In the following we shall denote the class {ξ ∈ Ord|cf(ξ) = λ}
by Cofλ. For X ⊆ Ord a set, we write ot(X) for its order type.

Definition 2 Let (κn)n<ω be a strictly increasing sequence of regular cardinals
and λ < κ0, λ regular. The mutual stationarity property MS((κn)n<ω, λ) is the
statement: if (Sn)n<ω is a sequence of sets Sn ⊆ Cofλ which are stationary in
κn then (Sn)n<ω is mutually stationary in (κn)n<ω.
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M. Foreman and M. Magidor [4] proved the following two theorems:
Theorem. For (κn)n<ω a strictly increasing sequence of uncountable regu-

lar cardinals, MS((κn)n<ω, ω) holds.

Theorem. MS((κn)n<ω, ω1) implies V 6= L.
In fact, they proved much more in the latter theorem: assuming V = L they

exhibited a double-indexed sequence Sh
n ⊆ ωn+2(n < ω, 1 ≤ h < ω), where each

Sh
n = Defcol(h) ∩ Cofω1 . For α not a cardinal, let β(α) + 1 be the least level of

the L-hierarchy where α is singular, and let h(α) be the least level of definability,
so that there is a Σh(Lβ(α)) definable function witnessing the singularity of α.
Then Defcol(h) = {α ∈ Ord|h(α) = h}. Their result then is: For any function
f : ω −→ ω, 〈Sf(n)

n 〉 is mutually stationary if and only if f is eventually constant.
We strengthen this to:

Theorem 1 The theories ZFC + ∃(κn)n<ωMS((κn)n<ω, ω1) and ZFC + ∃κ(κ
measurable) are equiconsistent.

The implication from right to left was proved by J. Cummings, Foreman,
and Magidor [3] via Prikry forcing. Again they proved more than this: they
showed that a tail of the Prikry generic sequence satisfies MS((κn)n<ω, λ) for
any λ < κ0 (or indeed the mutual stationarity of any sequence of stationary
sets Sn ⊆ κn irrespective of the cofinalities of the ordinals in the Sn.) This
is essentially obtained by utilising the fact that a tail of the Prikry generic
sequence remains coherently Ramsey in the generic extension. The converse
which we prove here uses the core model K of A. J. Dodd and R. B. Jensen
(see [2]). We deduce the existence of O] from MS((κn)n<ω, ω1) in detail. The
proof involves the global square principle � in L and techniques from the Jensen
Covering theorem for L (see [1]). Fine structural details will be presented in
the hyperfine structure theory of S. D. Friedman and the first author [5].
Although the hyperfine structure for the Dodd-Jensen Core Model is not yet
published we shall nevertheless indicate how to transfer the arguments from L
to the Dodd-Jensen K for the proof of the full theorem.

In case (κn)n<ω consists of “small” cardinals we can obtain higher consis-
tency strengths:

Theorem 2 If MS((ℵn+3)n<ω, ω1) holds then there is an inner model with in-
finitely many measurable cardinals κ of Mitchell order o(κ) = ω1.

Better results than the above are obtainable, but we leave the precise state-
ment (and a proof of Theorem 2) to a later paper. For these results, the hyperfine
structure theory has not been developed, and so there recourse is made to more
standard fine structure.

2 Order types of Square Sequences

Definition 3 Let Sing = {β ∈ Ord | lim(β)∧cf(β) < β} be the class of singular
limit ordinals. Global square (�) is the assertion: there is a system (Cβ)β∈Sing
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satisfying:
(a) Cβ is a closed cofinal subset of β;
(b) ot(Cβ) < β;
(c) if β is a limit point of Cβ then β ∈ Sing and Cβ = Cβ ∩ β.

Jensen [6] introduced the principle � and proved it in L. The second author
[8] proved � in the Dodd-Jensen core model K. From the order types of the
square sequences Cξ we shall define stationary sets Sn to which we shall apply
the MS-principle.

Theorem 3 Let κ be a regular cardinal ≥ ℵ2 and λ a regular cardinal < κ.
Then for every ordinal θ such that θ+ < κ the set

{β ∈ Cofλ ∩ κ | ot(Cβ) ≥ θ}

is stationary in κ.

Proof Let C ⊆ κ be closed unbounded in κ. Let µ = max(λ, θ+) which is
an uncountable regular cardinal < κ. Take a singular limit point γ of C of
cofinality µ. Then C ∩Cγ is closed unbounded in γ of ordertype ≥ µ. Take β to
be a singular limit point of C ∩Cγ such that cof(β) = λ and ot(C ∩Cγ ∩β) ≥ θ.
By the coherency property 3 (c), Cβ = Cγ ∩ β. Thus β ∈ C ∩ {β ∈ Cofλ ∩ κ |
ot(Cβ) ≥ θ} 6= ∅. �

Note that (Sn)n<ω with

Sn = {β ∈ Cofω1 ∩ ℵn+3 | ot(Cβ) ≥ ℵn+1}

is a sequence of stationary sets to which we could apply the MS-principle.

3 Hyperfine Singularizations

Let β be a singular ordinal in L. We shall assign to β a level of the fine structural
hierarchy and a parameter which canonically witness the singularity of β. We
use the hyperfine hierarchy of S. D. Friedman and the first author [5] where
the same singularizations were used in the proof of global square.

The hyperfine structural hierarchy refines Gödel’s Lα-hierarchy. The lev-
els of the hierarchy are indexed by locations s = (α, ϕm, ~x) where α ∈ Ord,
ϕm(v0, . . . , vk−1) is an ∈-formula, and ~x = x1, . . . , xk−1 ∈ Lα. (ϕm)m<ω is an
appropriate list of all ∈-formulas. Then

Ls = (Lα,∈, <L, I, N, S, SLα
ϕ0

, . . . , SLα
ϕm

� ~x, ∅, ∅, . . .);

Here, <L is the canonical well-ordering of L, I,N, S are an interpretation
function, a naming function, and a Skolem function respectively for L; SLα

ϕi
is

a Skolem function for ϕi computed in Lα. Moreover the last function SLα
ϕm

is
restricted to arguments ~y which are lexicographically smaller than ~x, where the
lexicographical order <lex is derived from <L.
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The locations are well-ordered lexicographically by <̃. For each Ls there is a
hulling operator Ls{.}; Ls{X} is the smallest substructure of Ls which contains
X. The basic fine structural laws of (Ls) and the associated hulling operations
are described in [5].

For a given limit ordinal β which is singular in L we describe its singular-
ization; in view of the intended applications we also assume that cof(β) ≥ ω1.
There is a location s = (γ, ϕ, ~x) and a finite set p ⊆ Lγ such that γ ≥ β and

(1) {β < β | β = β ∩ Ls{β ∪ p}} is bounded below β.

We say that β is semi-singularized at (Ls, p). Let s = s(β) be the <̃-minimal
location such that β is semi-singularized at (Ls, p) for some p. Then let p = p(β)
be a finite set such that (Ls(β), p) semi-singularizes β where p is minimal with
respect to the <∗-wellordering of finite subsets of L: p <∗ q ↔ ∃z ∈ q\p∀u(u <L

z → (u ∈ p ↔ u ∈ q)).

(2) (Ls(β), p(β)) exists and semi-singularizes β; it is called the L-singularization
of β.

We give some more information about the L-singularization. Note that by
cof(β) ≥ ω1 we are in the “generic case” of [5].

(3) s(β) = (γ, ϕ, ~x) 6= (γ, ϕ0,~0).

(4) There is α0 = α0(β) < β minimal such that Ls{α0 ∪ p} is unbounded
below s, i.e., for all ~y <lex ~x, |~y| = |~x| there is ~z ∈ Ls{α0 ∪ p}, |~z| = |~x| such
that ~y <lex ~z; in case that ~x = ~0 we have to require instead that Ls{α0 ∪ p} is
cofinal in (Ls, <L).

In the construction of the canonical �-sequence Cβ some ordinal α ≤ α0

will be used as a “steering ordinal”. As a brief sketch, we want to define the Cβ

sequence with reference to a cofinalising sequence in the location s. If α0 is a
limit ordinal, then we shall take α0 itself as α. Otherwise α0 = α′0 + 1, and we
have some α1 < α′0 so that Ls{α1 ∪ {p, α′0}} is unbounded below s; if α1 > 0
but is α′1 + 1, we repeat, and see that Ls{α2 ∪ {p, α′0 α′1}} is unbounded below
s for some α2 < α1. After a finite number k of steps we find that αk is zero
(in which case we deduce that the cofinality of β = ω) or a limit. In the latter
case, by recursion on ι ≤ αk we define an increasing sequence of hulls in the
location whose suprema below β will be the elements of what will ultimately
contain the Cβ We thus have bounded the order type of Cβ by this “steering
ordinal” αk(β) ≤ α0. Hence

(5) otp(Cβ) ≤ α0 < β.

This restriction on order types will later conflict with the choice of (Sn)n<ω

described in section 2 and conclude a proof by contradiction.
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4 Lifting up Singularizations

The following argument is an upward extensions of embeddings construction as
known from the proof of Jensen’s Covering Theorem:

Theorem 4 Let π : (Lβ ,∈) → (Lβ∗ ,∈) be an elementary cofinal map between
ZF−-models. Let β be singular in L and cof(β) ≥ ω1, let (Ls, p) be the L-
singularization of β as described in the previous paragraph. Then there are a
uniquely defined structure preserving map π∗ : Ls → Ls∗ and a parameter p∗

satisfying:

a) π∗ � Lβ = π, π∗“p = p∗;

b) (Ls∗ , p
∗) is the L-singularization of β∗.

Proof. The proof of � in L shows that Ls can be represented as Ls =⋃
i<τ Lsi

{βi∪p} for strictly increasing sequences (βi)i<τ and (si)i<τ converging
to β and s resp., such that each transitive collapse σi : Mi

∼= (Lsi
{βi ∪ p}, p) is

the singularization of βi.
For i ≤ j < τ let σij = σ−1

j ◦ σi : Mi → Mj . The minimality of s implies
that each Mi ∈ Lβ and σij ∈ Lβ . (Mi)i<τ , (σij)i≤j<τ is a directed system of
L-singularizations all of whose components are elements of Lβ .

We can now map the directed system pointwise to Lβ∗ : for i < τ let M∗
i =

π(Mi) and σ∗ij = π(σij). (M∗
i )i<τ , (σ∗ij)i≤j<τ is a commutative system of L-

singularizations for the ordinals β∗i = π(βi).
(1) The direct limit of (M∗

i )i<τ , (σ∗ij)i≤j<τ is well founded.
Proof. The indexing ordinal τ has cofinality ≥ ω1. So any descending ω-

sequence in the direct limit is already represented in some M∗
j with j < τ . But

M∗
j is transitive. �(1)
Let M∗, (σ∗i )i<τ be the direct limit of the system (M∗

i ), (σ∗ij). An argument
similar to the proof of the condensation theorem in [5] shows that M∗ is a level
of the hyperfine hierarchy, say M∗ = Ls∗ . Define the map π∗ : Ls → Ls∗ by
σi(z) 7→ σ∗i (π(z)). π∗ is a homomorphism by general facts about direct limits.
If z ∈ Lβ , then σi(z) = z for sufficiently high i < τ , and so
(2) π∗ ⊇ π.
Let p∗ = π∗“p.
(3) π∗ : Ls → Ls∗ is cofinal with respect to the well-ordering <̃ of locations.
Proof. The location s∗ is determined as the <̃-minimal location such that
σ∗i : M∗

i → M∗ is a well-defined homomorphism. This property is equiva-
lent to: for all i < τ and M∗

i = Ls∗i
and for all t<̃s∗ holds σ∗i (t)<̃s∗.

Consider r∗<̃s∗. Then take i < τ, M∗
i = Ls∗i

and some t0<̃s∗i such that
r∗≤̃σ∗i (t0).
Take j, i < j < τ such that si ∈ Lsj

{βj ∪ p}. Let si = σj(s′j),Mi = Ls̃i
.

Then

∀t<̃s̃i : σij(t)<̃s′i, ∀t<̃s∗i : σ∗ij(t)<̃π(s′i); ∀t<̃s∗i : σ∗i (t)<̃σ∗j (π(s′i)) = π∗(si).
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In particular: r∗≤̃σ∗i (t0)<̃π∗(si), as required. �(3)

(4) (Ls∗ , p
∗) is the L-singularization of β∗.

Proof. Take δ < β such that {β < β | β = β ∩ Ls{β ∪ p}} ⊆ δ. Set δ∗ = π(δ).
We claim that {η < β∗ | η = β∗ ∩ Ls∗{η ∪ p∗}} ⊆ δ∗. Let η ≥ δ∗. Take β < β
minimal such that π(β) ≥ η. Then β ≥ δ and β * β ∩ Ls{β ∪ p}. Take an
Ls-term t and ~x ⊆ β such that β ≤ tLs(~x, p) < β. Since π∗ is a homomorphism,

η ≤ π(β) ≤ tLs∗ (π(~x), p∗) < β∗, and π(~x) ⊆ π′′β ⊆ η.

Hence η 6= β∗ ∩ Ls∗{η ∪ p∗}, and s∗ satisfies the semi-singularity property for
β∗.
To show that s∗ is minimal semi-singularizing β∗ consider r∗<̃s∗. By the co-
finality property (3) take r<̃s such that r∗<̃π∗(r). By the minimality of s,
{β < β | β = β∩Lr{β∪p}} is unbounded in β. Let β < β, β = β∩Lr{β∪p}}.
Take i < τ such that r<̃si, β < β, r ∈ Lsi

{βi ∪ p}. Then:
Lsi |= β = β ∩ Lr{β ∪ p},
Mi |= β = βi ∩ Lσ−1

i (r){β ∪ σ−1
i “p},

M∗
i |= π(β) = π(βi) ∩ Lπ(σ−1

j (r)){π(β) ∪ π(σ−1
i “p)}.

Apply σ∗i :
π(β) = β∗ ∩ Lπ∗(r){π(β) ∪ p∗}, and
π(β) = β∗ ∩Lr∗{π(β)∪ p∗}. Since the set of such π(β) is cofinal in β∗, r∗

does not semi-singularize β∗, as required.
Now we examine the properties of p∗. By construction:

(∗)Ls∗ = Ls∗{β∗ ∪ p∗}.
Suppose that some q∗ <∗ p∗ also satisfies (∗). Then p∗ = t(~x, q∗) for some term
t and ~x < β∗.
Ls∗ |= ∃~x < β∗∃q∗ <∗ p∗ p∗ = t(~x, q∗).
This existential property can be pulled back to Ls via the directed systems:
Ls |= ∃~x < β∃q <∗ p p = t(~x, q),
which contradicts the minimal choice of p. �

The previous proof shows that π∗ is cofinal in the locations. This affects the
“steering ordinal” α0 as follows:

Lemma 1 In the situation of the previous theorem, α0(β∗) ≤ π(α0(β)) and
otp(Cβ∗) ≤ π(α0(β)).

5 Getting O]

Theorem 5 If MS((κn)n<ω, ω1) holds then O] exists.

Proof. Assume ¬O]. Without loss of generality we may assume that κ0 ≥ ℵ3.
Set κω = supn<ω κn. Define a sequence (Sn)n<ω of stationary sets as in section
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2: S0 = Cofω1 ∩ κ0, S1 = Cofω1 ∩ κ1, and for n ≥ 2 :

Sn = {β ∈ Cofω1 ∩ κn | otp(Cβ) ≥ κn−2}.

Take a first-order structure A = (Lκ+
ω
, · · · ) with countable language which has

a family of Skolem functions fi for Lκ+
ω
, constants κ0, κ1, · · · , κω and functions

gi, n :
gi,n(~x) = sup{fi(~x, ~y) | ~y < ℵ2} ∩ κn.

Applying MS((κn)n<ω, ω1) to (Sn)n<ω and the structure A yields some X ≺ Lκ+
ω

such that {κn | n ≤ ω} ⊆ X, ∀n < ω sup(X ∩ κn) ∈ Sn, and ω2 ⊆ X. Let
π : (Lδ,∈) ∼= (X,∈), and βn = π−1(κn) for n ≤ ω. For each n < ω : βn ≥ ℵ2

and cf(βn) = ω1. The Jensen Covering Theorem for L implies that every βn is
a singular ordinal in L. For n < ω let (Lsn

, pn) be the singularization of βn.

(1) If sn = (γ,−,−) then γ ≥ βω, since inside Lβω , βn is a regular cardinal.

(2) sn+1≤̃sn.
Proof. We show that sn singularizes βn+1 as well as βn :
Lsn = Lsn{βn ∪ pn} ⊇ βω ⊇ βn+1 , and so
{β < βn+1 | β = βn+1 ∩ Lsn{β ∪ pn}} ⊆ βn. �(2)

Since <̃ is a well-order there is n0 < ω such that sn0 = sn0+1 = sn0+2 = . . ..
Set s = sn0 .

(3) For n0 ≤ n < ω : pn+1 ≤∗ pn.
Proof. We show that pn satisfies the property in the definition of pn+1.
Ls = Ls{βn ∪ pn} and so Ls = Ls{βn+1 ∪ pn}. �(3)

Since <∗ is a well-order there is some n1 < ω, n1 ≥ n0 such that pn1 =
pn1+1 = pn1+2 = . . .. Set p = pn1 . Then (Ls, p) is the L-singularization
of βn1 , βn1+1, . . . . Let α = α0(βn1) < βn1 as defined in section 3. As the
location s for singularization of the βm is the same for m ≥ n1, the definition
of α0(βm) is independent of m ≥ n1. Thus α = α0(βm) for n1 ≤ m < ω. For
β = βn1+2, β

∗ = sup(X ∩ κn1+2), we have

π � Lβ : Lβ → Lβ∗

cofinally as required in Theorem 4. Then Lemma 1 yields

otp(Cβ∗) ≤ π(α0(β)) = π(α) < π(βn1) = κn1 .

But β∗ ∈ Sn1+2 and otp(Cβ∗) ≥ κn1 . Contradiction! �

6 Singularizations in Core Models

For stronger results, we have to apply core models instead of the inner model
L. We use models of the form K = L[E] where E is a sequence of measures
on ordinals. For Theorem 1 we use the Dodd-Jensen core model below one
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measurable cardinal [2], (and for Theorem 2 we should have to use core model for
sequences of measures [7], where E is a sequence of total and partial measures on
K, together with the more usual fine structure - rather than hyperfine structure).
Since our proofs are dependent on a range of results and techniques from core
model theory the further presentation has to omit many details and tries to
convey basic ideas. We are forced to make several simplifying assumptions and
have to argue by analogy with the L-case. The general reference to core model
theory is the book [9] by Martin Zeman.

We use the fine structure as developed by Jensen, For small core models,
where the only measures that appear are of Mitchell order 0, an extender E
with critical point κ is a filter indexed by some ν which will be the successor
cardinal of κ in the ultrapower of the model by E. For higher core models
containing sequences of measures, or extenders proper, then larger indices are
used (see [9], Chapter 8 for details).

Subsequently, the letter K stands for the Dodd-Jensen core model. Global
Square is proved in K by carefully assigning singularizing sequences to singular
ordinals in K. We describe the singularization of an ordinal β in terms of the
Jensen fine structure for measure sequences (“mice”). It will consist of a level
of the fine structural hierarchy and a parameter(-sequence) which canonically
witness the singularity of β.

Definition 4 Let M = Jα[E] be a mouse and let p ∈ M be some finite pa-
rameter. Then (M,p) semi-singularizes β, if {β < β | β = β ∩ M{β ∪ p}} is
bounded below β. Here M{X} denotes the fine structural hull of X in M . For
simplicity, we shall say “singularize” instead of “semi-singularize”. M as above
is called a canonical singularization of β if

a) M |=“β is regular” or β = ωα;

b) M = M{β ∪ pM};

c) (M,pM ) singularizes β where pM is the standard parameter of M .

Again, we only say “K-singularization” instead of “canonical singulariza-
tion”.

From a K-singularization M of β one can readily define a subset Cβ of β
as in the proof of � which is cofinal in β of ordertype < β. Let us indicate
some elements of that definition. In view of the intended applications we also
assume that cof(β) ≥ ω1. For simplicity we may assume that the first projectum
ρ1

M < β so that we can use the relatively simple Σ1-finestructure. There is
α0 = α0(β) < β minimal such that M{α0 ∪ pM} is unbounded in M . In the
construction of the canonical �-sequence Cβ some ordinal α ≤ α0 will be used
as a “steering ordinal” which will imply that otp(C) ≤ α0 < β. This restriction
on order types will later conflict with the choice of (Sn)n<ω described above
and conclude a proof by contradiction. The coherency property of � is due to
the coherency between various K-singularizations.
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Lemma 2 If M and N are K-singularizations of β and M � β = N � β then
M = N. Also pM is the least parameter p such that {β < β | β = β∩M{β∪p}}
is bounded below β.

Proof Coiterate M and N up to M̃and Ñ . As M � β = N � β, and we are
here dealing with measure filters, no critical point of any measure used in this
coiteration is below β. Thus if M̃ ∈ Ñ then Ñ contains a code for M and hence
N |=“β is singular” which contradicts the definition of a K-singularization.
Hence M̃ = Ñ . By the preservation of standard parameters, pM and pM are
both mapped to the standard parameter of M̃ . Therefore M and N are both
the β-core of M̃ and thus equal. Assume there is some p < pM such that
{β < β | β = β ∩ M{β ∪ p}} is bounded below β. Let (Q, p̄) ∼= (M{β ∪ p}, p)
be the transitivization. Then (Q, p̄) singularizes β. The uniqueness argument
above shows that Q = M and M = M{β ∪ p̄ } with p̄ < pMwhich contradicts
the minimality of pM . �

7 Lifting up K-Singularizations

We transfer the upward extensions of embeddings technique to the core model
situation:

Theorem 6 Let π : (Jβ [Ē],∈) → (Jβ∗ [E],∈) be an elementary cofinal map
between ZF−-models with cof(β) ≥ ω1 . Let M = Jα[Ẽ] be a K-singularization
of β which end extends Jβ [Ē], i.e., α > β and Ẽ � β = Ē � β. Then there
is a uniquely defined structure preserving map π∗ : M → M∗, M∗ = Jα∗ [Ẽ∗]
satisfying:

a) π∗ � Jβ [Ē] = π, π∗“pM = pM∗ ;

b) M∗ is the unique K-singularization of β∗ satisfying Ẽ∗ � β = E � β.

Proof The proof of � in K shows that M can be represented as M =⋃
i<τ Jαi [Ẽ]{βi ∪ pM} for strictly increasing sequences (βi)i<τ and (αi)i<τ con-

verging to β and α respectively, such that each transitive collapse σi : Mi
∼=

Jαi
[Ẽ]{βi∪pM} is the K-singularization of βi. For i ≤ j < τ let σij = σ−1

j ◦σi :
Mi → Mj . Since β is a cardinal in M and by acceptability, each Mi ∈ Jβ [Ē] and
each σij ∈ Jβ [Ē]. (Mi)i<τ , (σij)i≤j<τ is a directed system of K-singularizations
all of whose components are elements of M .

We can now map the directed system pointwise to Jβ∗ [E]: for i < τ let
M∗

i = π(Mi) and σ∗ij = π(σij). (M∗
i )i<τ , (σ∗ij)i≤j<τ is a commutative system of

singularizations for the ordinals β∗i = π(βi).
(1) The direct limit of (M∗

i )i<τ , (σ∗ij)i≤j<τ is well founded.
Proof. The indexing ordinal τ has cofinality≥ ω1. So any descending ω-sequence
in the direct limit is already represented in some M∗

j with j < τ . But M∗
j is

transitive. �(1)
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Let M∗, (σ∗i )i<τ be the direct limit of the system (M∗
i ), (σ∗ij). M∗ is a level

of a J-hierarchy, say M∗ = Jα∗ [Ẽ∗].
(2) M∗ is a mouse.

Proof. This runs similar to the proof of (1): if M∗ were not iterable fine struc-
turally then this would be testified in some M∗

j with j < τ . But M∗
j is iterable

since Mj is iterable and π is elementary. �(2)
Define the map π∗ : M → M∗ by σi(z) 7→ σ∗i (π(z)). π∗ is a homomorphism

by general facts about direct limits. If z ∈ Jβ , then σi(z) = z for sufficiently
high i < τ , and so

(3) π∗ ⊇ π.
(4) π∗ : M → M∗ is ∈-cofinal.

Let p∗ = π∗“pM . By the direct limit construction:
(5) M∗ = M∗{β∗ ∪ p∗}.
(6) p∗ = pM∗ .

Proof. p∗ ≥ pM∗ If p∗ > pM∗ then this would be reflected in some M∗
j with

j < τ but then the elementarity of π would yield the contrary. �(6)
(7) (M∗, pM∗) singularizes β∗.

Proof. Take δ < β such that {β < β | β = β ∩M{β ∪ pM}} ⊆ δ. Set δ∗ = π(δ).
We claim that {η < β∗ | η = β∗ ∩M∗{η ∪ pM∗}} ⊆ δ∗. Let η ≥ δ∗. Take β < β
minimal such that π(β) ≥ η : then β ≥ δ and β * β ∩M{β ∪ pM}. Take a term
t and ~x ⊆ β such that β ≤ tM (~x, pM ) < β. Since π∗ is a homomorphism,

η ≤ π(β) ≤ tM
∗
(π(~x), pM∗) < β∗, and π(~x) ⊆ π′′β ⊆ η.

Hence η 6= β∗ ∩M∗{η ∪ p∗}, and M∗ satisfies the semi-singularity property for
β∗. �(7)

The uniqueness of the K-singularization M∗ follows from Lemma 2. �

We saw in the previous proof that π∗ : M → M∗ is cofinal. This again
affects the “steering ordinal” α0 as follows.

Lemma 3 In the situation of the previous theorem, α0(β∗) ≤ π(α0(β)) and
thus ot(Cβ∗) ≤ π(α0(β)).

8 Getting an Inner Model with a Measurable
Cardinal

We modify the proof of Theorem 5 to yield the existence of an inner model
with a measurable cardinal. We assume MS((κn)n<ω, ω1) and work with the
Dodd-Jensen core model K under the assumption that there is no inner model
with a measurable cardinal. By the Dodd-Jensen covering theorem for K every
ordinal β ≥ ω2 with cof(β) ≤ ω1 is singular in K. In particular κω = supn<ω κn

is singular in K. Take the sequence (Sn)n<ω of stationary sets Sn ⊆ κn as
in the proof of Theorem 5. Define the first-order structure A = (HK

κ+
ω
, · · · ) in

analogy to that proof. The mutual stationarity property yields some X ≺ HK
κ+

ω
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such that
{κn | n ≤ ω} ⊆ X, ∀n < ω (supX ∩ κn) ∈ Sn, and ω2 ⊆ X.

Let π : (K̄,∈) ∼= (X,∈) where K̄ is transitive, and βn = π−1(κn) for n ≤ ω.
K̄ is a mouse without a total measure. For n < ω take Mn = (Jsn

[E], pn) to
be the K-singularization of βn (by which we mean the least location sn in the
K-hierarchy where we take E = EK).

Coiterate the mice K̄ and Mn. K̄ comes out below Mn because Mn has in-
formation for singularizing βn whereas βn is regular in K̄. So in the coiteration
there is no truncation on the K̄-side and Mn either is an end-extension of K̄,
or will coiterate up to one.

(1) If Mn is not an end-extension of K̄, let (λi | i ≤ θ) be the sequence of critical
points of the Mn-side of the coiteration. Then λθ ≥ βω and βω 6∈ {λi | i ≤ θ}.

Proof. Suppose Mn is not an end-extension of K̄. If λθ < βω then either
the Mn-side had a total measure on λθ which K̄ does not have, or Mn were a
proper initial segment of K̄. Both possibilities lead to a contradiction.
If βω = λi, then the i-th iterate M i

n of Mn would contain P(βω) ∩ K̄. Since βω

is singular in K̄, M i
n would contain a cofinal subset of βω of small ordertype.

But λi is regular in M i
n. �(1)

So the coiterate Mθ
n is the minimal iterate of Mn whose critical point is

> βω, or is Mn itself. In the former case, by (1) there is some maximal i < θ
such that λi < βω. Then the iterate M i+1

n is generated from λi + 1 together
with some finite parameter, and the critical point of M i+1

n is > βω. So in this
former case, M i+1

n semi-singularizes all βm such that λi+1 < βm < βn. However
in the latter case, since Mn = Mn{βn ∪ pMn} and OnMn ≥ βω it is clear that
Mn itself semi-singularizes all βm for m ≥ n. This implies:

(2) For all n < ω there exists n′ < ω, n′ ≥ n such that for all m,n′ ≤ m < ω :
Mm ≤∗ Mn.

Since ≤∗ is a pre-wellorder of mice, one can choose a ≤∗-minimal element of
{Mn | n < ω}. Choose n0 < ω such that

(3) for all m,n0 ≤ m < ω : Mm ≤∗ Mn0 and Mn0 ≤∗ Mm.
By the properties of the ≤∗-relation:

(4) Mm+1 is an iterate of Mm, for m ≥ n0.
Then (Mm)m≥n0 is a subsequence of the Mn0-side of the coiteration of K̄ and
Mn0 .

By (1), βω is not a critical point in that iteration of Mn0 . So there must be
some n1 < ω, n1 ≥ n0, so that

(5) Mm+1 = Mm, for m ≥ n1.

11



Set M = Mn1 . As in the L-case:

(6) pm+1 ≤∗ pm, for m ≥ n1.

By the wellfoundedness of ≤∗ take n2 < ω, n2 ≥ n1 such that p = pn2 =
pn2+1 = . . .. So (M,p) is a common K-singularization of βn2 , βn2+1, . . .. We
can then conclude the proof by contradiction as in the proof of Theorem 5.
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