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Abstract. We give a proof of 

Theorem 1. Let x be the smallest cardinal such that the free subset property 
Fr~,(x, coO holds. Assume ~ is singular. Then there is an inner model with co~ 
measurable cardinals. 

1. Introduction 

The well-known notions of Ramsey and Erd6s cardinals can be weakened in 
various ways, to yield e.g., Rowbottom and J6nsson cardinals, or cardinals having 
a free subset property. Usually our interest is in the smallest cardinal having such a 
property. Now whereas the original large cardinal notion implied that this smallest 
cardinal was at least strongly inaccessible, the weak versions do not rule out that 
their smallest instances are easily accessible. Often cardinals of the order of 
measurability suffice to force such properties for accessible cardinals, and some 
equiconsistencies have been proved. In this paper we show that the following 
theories are equiconsistent: "ZFC + the smallest x such that Fr~,(x, coo is singular" 
and "ZFC + there are col measurable cardinals". 

Let us define the free subset property Fru(x, 2). By a structure we understand a 
first order structure S which usually includes the e-relation. The cardinality of S is 
the cardinality of the underlying set ]$1, the length of S is the number of constants, 
functions, and relations of S. For  X c= S, S[X] is the substructure of S generated 
from X by the constants and functions of S. X ____ S is free in S, if for every x ~ X, 
x ~ S[Xk{x}]. For  cardinals x, 2, #, Fru(x, 2) denotes the property: every structure 
of cardinality > K and length < # has a free subset of cardinality > 2. Basic 
information on Fru(x, 2) is contained in Devlin [1] and Koepke [4]. In [4] we 
showed that if ~: is minimal with Fro~(x, coO then x>coo,,, and cof(~:)=col or 
cof(x) = x. Shelah [7] showed that one can force Fr,o(coo,1, col) starting from col 
measurable cardinals. Conversely we proved in [6] that Fr,o(co,o,, col) implies the 
existence of co x measurable cardinals in an inner model. Here we strengthen this 
result to: 
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Theorem 1. Let ~c be the smallest cardinal such that Fro~(~,cot) holds. Let ~c be 
singular. Then there is an inner model with cot measurable cardinals. 

An inspection of the proof will yield the generalized 

Theorem 2. Let 2 be an uncountable regular cardinal. Let t~ be the least cardinal such 
that Fr~o(tr 2). Let ~c be singular. Then there is an inner model with 2 measurable 
cardinals. 

The proof of Theorem 1 is quite involved. We will first prove the existence of an 
inner model with one measurable cardinal from the assumptions, using the Dodd- 
Jensen core model K (see [3]). We will then indicate how we get the full result (cot 
measurables) using the short core models of [6]. 

For the reader's convenience let us give a sketch of the proof: We assume that 
there is no inner model with a measurable cardinal and work for a contradiction. 
Let Z be an uncountable free subset for the structure K~+. We consider transitive 
collapses/~r of the substructures of K~ + generated by uncountable subsets Y of Z. 
By a suitable choice of Z we can ensure that all these/~r are equal to one single 
structure/( .  

The collapses embed canonically, and this allows to define measures on them. 
We show that for suitable Y,/~r=/~ is iterable by such a measure, and that the 
countable iterates are equal to / ( .  If g is the cot-st iteration point of this iteration 
where ff is the largest cardinal in /s  we get a contradiction: ff must be regular in /s  
because it is an iteration point, but it is singular in/s  using the Covering Theorem 
of Dodd and Jensen. 

So the col-st iteration point is always smaller than if, call it 2~1. The 
cot-sequence of iteration points allows to define a mouse M r at 2~1 which lies 
outside of/( .  We can define M r for various Y's, so that the 2~, are cofinal in ff and 
the /~r  are all equal to some/s The M r descend in the <-wellordering of mice, 
when their critical points increase towards ft. So eventually these mice are all 
mouse-iterates of a single mouse M. The iteration points of M are cofinal in if, 
hence ff is an iteration point of M. M must lie outside/( ,  so ff is regular in/~. But 
this is a contradiction as above. 

We should remark that the proof of iterability for sufficiently many /~r 
combines ideas of Devlin and Paris [2] and of the proof of Kunen's result that a 
non-trivial elementary embedding rc:L-~eL yields O *, as presented in [3, 
Sect. 12]. 

2. Getting One Measurable Cardinal 

Assume that ~ is minimal such that Fr~(K, coO, and assume that cof(•)= col (By 
Koepke [4], we have either cof(~c) = ~c or cof(~c) = co 0. We will show in this chapter 
that there is an inner model with one measurable cardinal. 

We proceed by contradiction and assume that there is no inner model with a 
measurable cardinal. Then by the Covering Theorem for K [3, 19.26], 

(1) ~c + =(K+) K, and K~+ ~ c  is singular, where K~+ is (H~+) K. 
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Let 6=cofK(x). From now on we denote by K~+ the structure 
(K~ +, (~la < 6) . . . .  ), where the a are constants, and . . ,  stands for a countable set of 
Skolem functions for the structure K~ + without the added constants. 

By Sect. 1 of Koepke [4] there exists a good free subset Z of K~ +, i.e., 

(2) Z is a cofinal subset of x, opt(Z)=col ,  and 

w e z  zr 
So the elements of Z are also free relative to smaller ordinals. Note that every 
uncountable subset of Z also satisfies (2). 

For  uncountable Y= Z define: K r : = K~ + [Y], ar : K r ~- F, r, where/~r  is transi- 
tive. For  uncountable X _  y_c Z define a xr : = a r o (aX) - 1 : F x~eF~r; the subscript 
"e" signifies that the embedding is elementary; we also write A <eB if A is an 
elementary substructure orB. Every/~r  is a model o f Z F C -  + V= K. The notion of 
"mouse" is absolute between/~r and V, because co, =c/~r. A proof  of the following 
proposition is contained in the proof of [3, 14.19]" 

(3) Let S, T be transitive models of Z F C -  + V= K. Let a : S ~ T, 
and oJ 1 c S. Then S____ T. 

We say that an uncountable Y E Z  is cute it for all uncountable XC Y:/~x =/~r.  

(4) There exists a cute y c  Z. 

Proof  Assume not. There exists an m-sequence Z ~ Yo 23.- I71 =.. . ,  such that Ym is 
uncountable and such that /s163247 for re<co, ar"r":Kr"--~F~ r", for 
m_-< n < co. So the ordinal height Onc~K r" decreases monotonely with n growing. 
We can hence assume that Onc~F, r" = Onc~K r" for all m, n < co. (3) implies tha t /~r ,  
is a proper subset of/~r,, for m < n < co. For  m < co pick a mouse Mm �9 § 1. 
M ~ + ,  < M~ in the canonical order of mice defined in [3,1 5.7]; it is easy to see that 
this order can be extended to the class of all mice. But < is a well-ordering 
[3,15.10], contradiction. QED (4) 

By (4), we can assume that Z is cute. Set / ( : = / ~ z  and if: = az(~:). For  every 
uncountable yc= Z,  (a r ) - "  K ~ K ,  + and ar(~c) = ft. For  uncountable X c__ y _  Z, 
~xY: R--,~/L 

The following construction of an iteration o f / (  is dependent on Z. Set a : = a z. Let 
Z : =  a"Z and 20:= min(Z). Let S : =  R[2oW(Z\{2o})], q" g---S < e/(, g transitive. 

(5) S = K ,  and 0 : /s  has critical point 2 o. 

Proof  2o=CS. 2o~S, since by (2): 

~- '(20) r K.+ E~- '(,~o)~(z\ {~- '(Zo)})3 �9 

So 2 0 is the critical point of 0. We can define 0 : / ( ~ $ - b y  0: = 0 - '  ~ ax~ where 

X o = Z \ { a - ' ( 2 o )  }. T h e n / (  ~ - Q - ,~S-Z--~e K, and by (3), S = K .  QED (5) 

Define U o : = {x �9 P(2o)C~/(12 o �9 q(x)}. 

(6) (/(Z+o,Uo) is amenable, and ( F ~ z ~ , U o ) ~ U  o is a normal 
measure on 2 o, where/(zo+ :=  (Hz~) K. 
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Proof Standard, see I-3, 12.14]. QED (6). 

In the following we will define an iteration (/( ,  Ui)i< ptz) of (/( ,  Uo) with iteration 
maps (rcij)i<=j<ptz) and critical points (2~)~<ptz). Simultaneously, we will define 
sequences (Xili < fl(Z)), (Qili <_ fl(z)), where each X~ is a subset of Z, and each Qi is 
a set of subsets of Z. fl(Z) is an ordinal <co 1 and will be determined in the 
construction; if fl(Z) = e) 1 then (K', Uo) is iterable, and if fl(Z) < o) 1, then the Xi, Qi 
will be used to analyse the non-iterability of (/(,  Uo). We will ensure that the 
following property holds 

(7) Forfl<fl(Z), and for i<j<fl:  Xic=Z, card(Xi) = co 1, Xi~=Xj, and 
for v ~ X j: ~oj ~ a(v) = a(v). 

We construct the iteration and the X i, Qi by recursion. Let fl <col, and assume that 
(K, Ui), nij, 2i, Xi, Qi are defined for i<j<fl,  obeying (7). We continue the 
construction at fl according to various cases: 

fl = 0: (/( ,  Uo), 2 0 are already fixed. Set X o := Z\{min(Z)}, and Qo := {{min(Z)}}. 
f l= 1: Let rCol :/(~Vo/s be the ultrapower o f / (  by U o, where/~ is transitive if it is 
well-founded. 

Define an embedding ~ : g -~ /~  by 7:o1(f)(2o) ~ Q(f)(2o), for f :  2o~/( ,  f ~ / ( .  
Lo~ Theorem shows that ff is well-defined and elementary. Hence/~ is transitive. 

Note that ~ = ~ o ZOo1. K ~e K )e/(, and by (3),/~ = / ( .  Let 21 : = rc o 1(2o), and 

u~ := U {~o~(xc~Uo)lXeK~}. 
Then 7:oI"(_K, Uo)--*(_K, UI)  is the one-step iteration of ( / ( ,Uo) .  Set 
X 1 : = { y  e X o l f f X ~  = if(v)}. 
(8) If v e X1, then rCol(a(v)) = a(v). 

Proof We had ~=~OrCol. In the proof of (5), we defined 0 : / ( ~ e / (  such that 
O o 0 = a  x~ ax~ and so if ax~ then 7:ol(a(v)) 
= a(v). QED (8) 

If card(X0=col ,  set Ql:={Xo \X1}  and continue. If card(X1)<o~ 1, set 
Q1 := {Xo\X1, x1}, and finish the construction by setting fl(Z) : = 1. We note that 

(9) If Ye Q1 has cardinality col, then Y= Xo\X1, and for v eY: 
~(v) > o~(v). 

Proof aZ(v)=ax~176 by definition of cr x~ aZ(v)< ax~ since v r X 1. 
Hence ~rZ(v) > aX~ > o'r(v), since Y= X o. QED (9) 

f l = f f + l ,  i f > l :  Let rca,p:/(~v~,/~ be the ultrapower o f / (  by Uo where /s  is 
transitive if it is well-founded. Every element of /~ is, in /~, of the form 
rCop(f ) (2i(1) . . . . .  2i(n) , 2a,), where f :  2~) + ~ ~ / ( ,  f e / ( ,  i(1) < . . .  < i(n) < fl'. 

We want to establish a relation between such representations of elements of/s 
and elements of /( :  Since rCo 1 :/(--* Vo/(, every element o f / (  is of the form 7:o ~ (g) (2o), 
where g : 2o ~ / ( ,  g e / ( .  rCo~, :/(--*/( is an iterated ultrapower, so every element o f / (  
is of the form 

~o~ ,(Z~o ~(g) (;to)) (;t,~),..., ;t,.)), 

where g:2o--*/(, g~/ ( ,  VV<2o g(v): v"~/ ( ,  and i(1)< ... <i(n)<fl'. 
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N o w  this can be rewritten as: U op, orc o l(f)(2,~),  ..., 2i(,), 2p,), if we define 
f :  2~+ 1--+K by: 

f ( x l , . . . , x , ,  x,+ 1):= g(x.+ 1)(xl . . . .  ,x , ) ,  

if xl,  ..., x.  < x,+ 1, and f ( x l ,  ..., x,, x.  + 1) : = 0 else. These representat ions are 
homolog:  

(10) Let ~o be a No-formula, with one free variable for notat ional  
simplicity. Let f : 2 ~  + 1 __+/~, f ~/~, i(1) < . . .  < i(n) < fl'. Then: 

/ ( D  rp(ltop(f)(2io ) . . . .  ,21(,), 2/v)) 

iff 

g ~ ~o(%~,o rc o l ( f )  (2i(1),..., 2i(,), 2p,)). 

Proof  We introduce a quantifier Q with the intension "there are measure  one 
many":  

(K., Ui)DQx~p iff { x < 2 i l ( / s  

Then: 

/ ( D  ~o(Ztop(f) (2i(1), ..., 2i(,), 2~,)) 

iff ( K,  U ~, ) ~ Qx,  + 1 q~(~Zo~'(f) ( 2 i ( 1 ) ,  �9 " " ,  2i(n), Xn + 1 )) 

iff (R,, U o ) D O x l  ... Qx,+ lqg(f(xl, . . . , x , , x .+  x)) 

We reduce the right hand side of (10) to the same form: 

/ ( ~  ga(zr o~, ~ fro l ( f )  (2/(1) . . . .  ,2i(,), 2~,)) 

iff ( R ,  Ui(n) ) ~ QxntP(TZo, i(n) o 7~ 0 l ( f )  (2i(1) . . . .  ,2i(n - 1), Xn, 2i(n)) 

(,K., U o) ~ Qx,  . . . Qx,/p(Trol ( f  ) (xl  . . . .  , x,,, 20)) 

(K., U o) ~ Qx 1...  Qx ,Qx ,  + 1 qo(f(x x . . . .  , Xn, Xn + 1)), 

iff 

iff 

because 

R.Dq)(rtol( f)(x 1 . . . . .  x,,2o) iff (K,  U o ) ~ Q x n + l q ) ( f ( x l ,  ...,Xn, Xn+l)), 

for x l , . . . ,  x,  < 20. Q E D  (10) 

By (10), the assignment 

7top(f) (2~(1), ..., 2,(.), 2/r) F-+ 7top, o lrox(f ) ( 2 / ( 1 )  . . . . .  2i(n) , 2~ff,) 

defines a So-elementary embedding from R in to / ( .  By the remarks preceding (10), 
this embedding is onto. Hence:  

(11) K = K ,  and no~=Tro~,orcol. 

Set X p : =  X~,, Q~:=  0, and continue the construction.  

(12) If v e Xp, then rto~(a(v)) = a(v). 
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Proof rCo/~(o'(v)) = ~op,(rcol(a(v))) = rCo/~,(a(v)) = a(v). Q E D  (12) 

Lim(fl), and f l<col :  Set 

X : =  O X i .  
i<# 

If card(X)<co~,  set X ~ : =  O, Q~ :=  {X}, and finish the construct ion by setting 
f l(z):= ft. 

Now assume that card(X) = co t. We will show that in this case ( ( / ( ,  Ui), nij)i<_j< lq 
has a limit ( / ( ,  Ua).  

Set C : =  {xeKl~o/(X)=X, for all i<fl). 

(13) &'Xc=C, 2o__C , and C < e / ( .  

Proof Obvious.  Q E D  (13) 

For  i < fl set Ci: =/([{2i1 j < i} w C]. Let fh: gZi ~- Ci, Ki transitive. 

(14) g / = / ( ,  for i<fl. 
- -  n l  ~ ~ i  - -  "g--,eg/by: '" g/-- 1 o a o (ax) - 1. Then K--%Ki ~K, and the Proof Define ~i. ~ i .=  

result follows from (3). Q E D  (14) 

For  i-<__j < fl define gij: = g f  1 o gi : /~ ~ / ~ .  

We will show that g o =  rhj. 

(15) For  aeP(2o)C~/(, nox(a)=~o(a)c~), i. 

Proof a = g o ( a ) n 2  o, since gol ) ,o=id .  ~Zoi(a)=Z~oi(go(a)C~2o)='~o(a)c'~2i, since 
go(a)eC, and rCoi[C=id. Q E D  (15) 

(16) For  i<fl, 21c=Ci. 

Proof Let v <2i,  v = r~oi(f ) (2i(1) . . . .  ,2i(,)), f e / ( ,  f :  2~--*/(, i(1) < . . .  < i(n) < i. We can 
assume that f :  2 ~ 2  o. By (15), rCoi(f)=fCo(f)I2~. So 

v=fco(f)(2i(1) ,...,21(.))ECi. Q E D  (16) 

(17) x~Ci~Tr~k(X)-----x, for i<=j<_k<fl. 

Proof x is definable i n / (  from some 2 ~ C and 2i~1) . . . . .  2i(,), i(1) < . . .  < i(n) < ft. N o w  
r~ik maps  2, 2~tl),..., 2it,) identically. Q E D  (17) 

(18) Cin2j=2i, for i<=j<fl. 

Proof 3= by (16). _--- : Assume 7 e Cf~2j  and 7 > 2~. By (17), ~o(Y) = ~, but  r%(7) > zc(2i) 
= 2j. Contradict ion.  Q E D  (18) 

(19) gij(2i)=2j,  for i<j<fl .  

Proof ~o(2/) = gj-~o ffi(2~) = otp(Cjc~,(2~)) > otp(Cjc~2j), since 



On the Free Subset Property 49 

Now suppose that  ~o(2i)> 2j, hence otp(Cjn~i(2i) ) > otp(Cin2j).  There  is 

t(2,,) . . . .  ,2~o,))~ C j, 

such that  t E C, i(1) < . . .  < i(n) <j,  and 2j < t(2ir . . . ,  2i~,) ) < ~iO~i). 

K ~ 3 r 1 . . . .  ,4 ,  < 2i" ,~j_-__ t(r 1 . . . .  ,4.)  < ~(,~3. 

Applying z~ 1: 
g ~ 3 ~1, ..., 4, < 2~. ,~/_< t(r ~ . . . .  ,4 , )  < ~(2~). 

Such a t({~, ..., {,) would be in Ci, by (16), but, again by (16), Ci~ti(2i)=2i. 
Contradict ion.  Q E D  (19) 

(20) If a ~ P(2i)c~K then rco(a ) = fco(a ). 

Proof. a=~i(a)n2/. So 7rij(a)~-Tzij('~i(a)g32i)=~i(a)~q=('~jlo'~i(a))~J,j [by 
(16)] = ~o(a)c~2j= ~o(a), by (19). Q E D  (20) 

We compare  the systems (rcij) and (~i j) :  Recursively, define functions ~r i :K~K 
by: a o : = i d  IK'; 

ai+ l(rcii+ l(f)(2i)):= ~ii+ l(f)(2i), for f e_K , f  : 2i~K.; 

a~Orit(x)): = ~it(x), for x e K ,  i < l, where I is a limit ordinal </3. We verify inductively: 

(21) Each a~ is well-defined and is the identity on K. 

The claim is trivial for i=  0. 

Let i = j +  1, and assume (21) holds for j .  

(22) Let cp be a formula, ztji(fl) (2j),..., rcji(f, ) (2j) ~ K, and 
f~ . . . . .  f ,  eK .  Then 

K" ~ (#(Xji(fl) (~j) . . . .  , xji(fn) ()~j)) 

i f f / ( ~  cp(~j,(f 0 (2j) . . . .  , ~j,(f,) (2j)). 

Proof. ~ ~ ~o(~Af O (~), ..., ~AL) (~j)) 

iff 2j ~ 7tji({v < 2jlg(f~(v), ..., f,(v))}) 

iff ; t j e ~ ( { v < 2 ~ k o ( f d v )  . . . .  ,f,(v))}), by (20), 

iff K ~ 9(~rj~(f~) (2j),..., ~jf(f,) (2i)) . Q E D  (22) 

So a~ is well-defined and elementary. To conclude the case i=j  + 1, it suffices to 
show: 

(23) cr i is onto. 

Proof. Let x ~ K'. x = ~ -  ~ o ~i(x) = ~i- ~(t(2j)), for some t ~ Cj. So 

x = (~,- ~(t))(~,- ~(~j)) = (~,- l(t))(~j) 

=(~-~( t - ) ) (2 j ) ,  for some t~K ,  since Cj=range(~j), 

= ~ii(F) (2i) = ai(rcii(F) (2~)) ~ range(al).  Q E D  (23) 
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Finally assume Lim(i), and that (21) holds for j<i .  < ~ j i > j < i  is the limit of 
<~jk>j~k<i, and <gji>j<i is the limit of <gjk>j<=k<i" By inductive hypothesis, the 
systems <~jk>j<=k<i  and < g j k > j ~ k < i  a r e  equal. Hence ~j i - '~ -g j i  for j < i .  

So o-i is well-defined and is the identity on K, and we have verified: 

(24) ~ij= gij, for i < j  < ft. 

(25) The system <K,(z~ij>>i<=j<t~ has a well-founded direct limit 
</(, (~i~))i<~, and there is a map g" / (~eK.  

Proof Let (/~, <=ia>> be a direct limit of <K, (zcij>>, which is supposed to be 
transitive if it is well-founded. Define g:/~--%/s by g(~ip(x)):=gi(x). Since 
~i~ ----7~j~ o ~ij~ ~- 7~j~ ~ TCij , for i<j<fl ,  g is well-defined and elementary. Hence /~ is 
transitive. QED (25) 

(26) K =  K.  

Proof K "'p ,e/~ ~ ,, K'. Use (3). QED (26) 

Set U~:= U{~o~(xc~Uo)lx~K~+}- <<K, Up>,~ip>i<p is the limit of 
<</(, Ui>, nij>i<_j<a. We now have to check whether there are enough fixed points 
for noa to keep the construction going. 

Set Xp := {v ~ Xl~XZ(cr(v)) = a(v)}. 

(27) If v ~ Xp, then ZCoa(~(v)) = ~(v). 

Proof By the proof of (25), there is g such that g o ~o~ = go. In the proof of (14) we 
defined ' - - ~o : K - ~ K  by 

t ~ - 1 o G XZ ~ 0  ~--" g o  1 o (T Z o ((T X ) -  1 ~- ~ 0  

axz = go ~ % = g ~ 7top ~ ~). So ifv ~X~, a(v) is a fixed point ofo -xz, and therefore ~r(v) 
is a fixed point of Z~o~. QED (27) 

We distinguish two cases: 

If card(X~)=t~a, set Q~:={X\X~},  and continue the 
construction. 

If card(X~) < cn~, set Q~ := {X\X~, X~}, and finish the construc- 
tion by setting fl(Z): = ft. 

In either case we note: 

(28) If Y~Q~ has cardinality ~o~, then Y=X\X~,  and for 

v ~ Y: trZ(v) > trY(v). 

Proof aZ(v) = axz(aX(v)), by definition of a xz. az(v) < axz(az(v)), since v ~ X a. Hence 
aZ(v) > aX(v) >= at(v), since Y= X \ X  a ~= X. QED (28) 

Finally, we consider the case: 

fl=ogl: Set fl(Z):= ~o~, X a : =  0, Qa: = 0. Then the iterate (K, Ui> exists for all 
i<o9~, and using the ideas of [-3, Lemma 8.6], we see 

(29) If f l (Z)=ah,  then (K', Uo> is iterable. 
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This concludes the construction of our system. We note the following properties 

(30) If fl(Z)<col, then U {QtJlfl<=fl(z)} is a partition of z into 
countably many subsets. 

Proof Obvious from the construction. QED (30) 

(31) If Ye [.J {Qplfl<fl(Z)} has cardinality col, then for 

v �9 Y: GZ(v) > ~r (v) .  

Proof By (9) and (28). QED (31) 

The above construction was dependent on the cute set Z, and since we shall have to 
U z 2z r)z instead of toil, Ui, 2i, Qp ... .  vary Z, we now write ~i z, i, i, ~a,--- 

(32) There is a cute set X ~ Z  such that fl(X)=co r 

Proof Assume that/~(X)<col for all uncountable X ~ Z .  We build a tree T of 
subsets of Z. T has height co. T= U T., where T~ denotes the n-th level of T. 

n < ( O  

Set To : = {Z}. So Z is the root of T. If Y�9 T~ has cardinality < col, the unique 
successor of Y at level T,+I is Y again. If Y�9 has cardinality col, then the 
successors of Y at level T.+ 1 are all the elements of U {Q~Ifl=<~(Y)) �9 Since 
fl(Y) < col, the immediate successors of Y at level T~ + 1 partition Y into countably 
many pieces. Every level T, yields a partition of Z into pairwise disjoint sets: 
Z=UT.. 

The ordering of T coincides with reverse inclusion. T has countably many 
nodes. So we can pick v �9 Z, so that for all n < co, v is a member of an uncountable 
element of T,. Say v �9 Y, �9 T,, card(Y,) = o91 (n < co). Then Yo-_ ]'1 ~ Y2 2.-., and using 
(31) we get: 

~~ > ~'(v)  > ~2(v) > . . . .  

Contradiction. QED (32) 

Because Z was an arbitrary cute set (32) actually proves: 

(33) For every uncountable Y____ Z there exists an uncountable X c__ y 
such that fl(X) = 091. 

We conclude the proof of Theorem 1 according to two cases: 

Case 1. There exists an uncountable X__c Z such that fl(X)= col and {2x[i < col} is 
cofinal in g = az(~:). 

Let ( ( / (x ,  x x Ui ),rco)i<_~o, with iteration points 2/x be the iteration of ( /( ,  uX). 
Then 2x~ = ft. 

(34) /~x ~ ~ is singular. o)1 

Proof By (1), ~ g~ is singular. _X . e ~ x  and by (3), -x  - -x  - no,o~.~x e~X~,~, K,o~=K. Hence K , o ~ x  
is singular. QED (34) 

But this yields a contradiction since (K,o~-x . . . . .  U x "~ t.- ~,o~ Ux is a measure on ~, implying 
- - X  that Ko,~ ~ ~ is regular. This finishes the proof of Theorem 1 in Case 1. 
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Case 2. If X c = z  is cute and fl(X)=o91, then {s is bounded below g. 

Let X c = z  be uncountable with fl(X)=col. Let ( ( K  "x, UX), x rcu)i=< j~o, with iteration 
points 2 x be the iteration of (K,  uX). 

We want to associate with X a mouse M x x �9 at 2o,1, which is not an element of/~. 
Set N x : x x x - x  Jr[U,o,], where 7 is maximal such that = J~[U,ol] nP(2,o,)_-K,or 7 exists 
because otherwise x L[Uo,,] would be an inner model with a measurable cardinal 
contradicting our initial assumption. 

(35) 7 => 2~I + 1. 

Proof  Set 4:=2x1,  / ~ ' -  -x  x - x  t x da+ 1[U~1] (H~+, Uo,1) - Ko~c Then is _--- Ko,,, because 
amenable. QED (35) 

We distinguish two cases: 

x Xc/~ Case I. P(2o,1)nN = . 
Then set M x: = N x, and say that M x is of type I. 

Case II. p ( 2 x l ) n N  x ~ K. 
Then set M x : = x x x J~ + ~ [ U , J ,  where t/is maximal such that P(2,o,)nJ,[Uol]  ~ K. 

We say that this M x is of type II. 

(36) M x is a mouse at 2,olx <x.- 

X X Proo f  N X ~  uX, l is a measure at 2,ol, and Uo,, is countably complete. Mxc=N x and 
O n n M X > 2 X  1. So M X ~ U X  1 is a measure at 2xl. If M x is of type I, ~2o,(M x) 

x x projectum o f M  x drops to a point <2xl.  nP(2,o) S M , and so some 
I f M  x is of type II, then some projectum of Jn[UXl], q as in the definition of  M x, 

drops to an ordinal < 2xl. But then the first projectum 0~M" of M x is < 2xl. SO in 
both cases, M x is a mouse. QED (36) 

(37) M x r K,. 

Proo f  Because M x contains or allows to define over it a subset of 2Xl which is not 
in/s  QED (37) 

For  X as above set 2 x : = 2Xc We can find such 2 x cofinally in ~: 

(38) Let ~<ff. Then there exists an uncountable X c = z  such that 
fl(X)=co 1 and ~ < 2 x < ~ .  

Proo f  In/~, let f be the < ~-least function such that f :  cof(ff)~ff cofinally. Choose i 
such that f ( i ) >  ~, and let 

Y: = {v e ZlaZ(v) >f(i)}.  

By (33) choose an uncountable X ~  Y such that fl(X)=co v For  v e X, 

axz(aX(v)) = aZ(v) >f(i)  = axz(f( i)) ,  

since i is a constant of K; hence aX(v)>f(i).  
So 2o x = aX(min(X))  >f(i) ,  and 2 x > 2 x >f(i)  > ~. QED (38) 

(39) Let M x, M r be of type I and 2 x < h r. Then M x > M r, where < 
denotes the canonical well-ordering of mice [see the proof of 
(4)]. 
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Proof. Assume MX < M r instead. There are mouse-iterates ~tx, Mr of M x, M r 
respectively such that ~ x  E M r. Over ]~t x we can define a subset c _ 2 x which codes 
M x. c e /~r ,  and so c e M r. Then c e / (  and since we can decode c in/( ,  M x ~ K.  This 
contradicts (37). QED (39) 

(40) Let M x, M r be of type II and 2 x < 2 r. Then M x > M r. 

Proof. Assume M x < M r instead; let ~ x ,  ]~tr be mouse-iterates of  M x, M Y such that 
~ x ~  Mr_ Let M r =  J ,  +a[ U] and ]VIY= J~ + 1[0]. ~ x  contains a subset c ~ 2 x such 
that c ~K. c~ Mx~_j~[U].  The iteration map from M Y to M r maps c identically 
(since 2 r >  2x), and maps r/to ~/. Then c ~ J~[U]. By the definition of type II mice, 
c ~/(.  Contradiction. QED (40) 

Now by (38), we choose uncountable Xi_---Z, for i<  co l, such that: 

(41) 

(42) 

and 

(43) 

#(Xi) = o~ 1 ; 

{2x'1i<o91} is cofinal in ~. 

We can further assume that the mice M x' are all of type I or all of type II. By (39) or 
(40) this implies: 

(44) i < j  < ~o 1 ~ M x' > M xs . 

Since the ordering < of mice is well-founded, we can assume that 

(45) Mx' , ,~M xJ, for i,j<oa 1 (write N,,~N'  for N < N '  and N ' < N ) .  

Then, using [3, 10.16]: 

(46) M x' is a mouse-iterate of M x~ for i<  ~o 1. 

Set M : = M x~ 2 x' is the measurable of M x', and therefore every 2 x' is an iteration 
point of M. Since the 2 x' are cofinal in ~: 

(47) g is an iteration point of M in the mouse-iteration of M. 

(48) / ( ~  is singular, by (1). 

Let N ~/ (  be a mouse such that N ~ g is singular, and such that the measurable of 
N is > ~. Let/14, ~ be comparable mouse-iterates of M, N respectively. If ~r___/~t, 
t h e n / ~  g is singular, although ~ is an iteration point of M. So/~  ~ N, and there is 
ceP(~)~N,  which codes M. c e N e f f , ,  and, decoding c i n / ( ,  M ~ / ( .  But this 
contradicts (37). 

This concludes the proof of Theorem 1, as far as the existence of an inner model 
with one measurable cardinal is concerned. QED 

3. How to Get 0) 1 Measurable Cardinals 

To derive the full result, i.e., the existence of co 1 measurable cardinals in some inner 
model under the assumptions of Theorem 1, one uses the family of short core 
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models as presented in [-6]. The argument of Sect. 2 can be adapted to these larger 
core models and we indicate some of the changes necessary. The fine structure 
arguments used to prove facts (39) and (40) above have to be replaced by fine 
structure results developed in [5]. This means that we have to be very vague. 

Again our proof proceeds by contradiction. Assume ~: is minimal with 
Fro,(~,~oO, and cof(~c)=co 1, and assume there is no inner model with col 
measurable cardinals. By [6,2.14], this implies --70 x~ So the fundamental 
properties of short core models hold. Let K[Uc,n] be the canonical core model 
[6, 3.15]. By the covering theorem [-6,3.19], 

(1 ')  /~+ = (/~ +)K[Uean] , 

dora (Uoa,) is countable, because otherwise K [ U~an] would be an inner model of 
uncountably many measurable cardinals. So for any Prikry system C for K[  U~a,], 
the collection Cn~: of "Prikry points" < ~: in C is bounded below ~ (see [6, 3.22]). 
By the covering theorem with Prikry systems [-6, 3.23], 

(1") K[,U~a,] ~ ~c is singular. 

So we have established the analogue of (1) of Sect. 2. Set F:  = U~an [~:, and 

J : = max(cofKtv~ sup dom(F)) < ~c. 

Let us denote by K~ + the structure ((H~ +)Kin, F, (~l~ < 6) . . . .  ), where F and the 
are constants, and ... stands for a countable collection of Skolem functions for the 
structure K~+ without constants. For  short core models over F property (3) holds 
in the form: 

(3') Let S, T be transitive models of Z F C - +  V=K[,F], where 
F e S, T Let a: S~eT, co 1 ~ S, such that a I(sup dom(F) + 1) = id. 
Then S____ T 

With this, the arguments of Sect. 2 go through unchanged up to the consideration 
of 

Case 2. I fX~_Z is cute, and fl(X)=o h ,  then {2xli<co~} is bounded below g. 

Let Xc=Z be uncountable with/~(X) = co 1. Let ((I~ x, UX), 7zx)i<=j~o, with iteration 
points 2 x be the iteration of (K,  UX). We determine a mouse M x over F which is 
not an element of/s Set 2 : =  2x,,/~:=/~xo,1. Let F' be the predicate with dom(F') 
=dom(F)w{2} such that F' M o m ( F ) = F  and F~= UXl. 
By the definition of U .... F' is not strong and there exists an iterable premouse 
P = J~[G, F'] over F' such that P ~ "F' is not a sequence of measures". We may 
assume that the predicate G is countably complete. Set N:  = J~[G, F'] where 7 < 
is maximal such that J~[G, F'] nP(2)__c/~. We distinguish two cases: 

Case 1. P(2)c~N~/(. 
Then set M:  = N, and say that M is of type I. 

CaselI. P(2)~N ~/~. 
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Then set M : =  J~+ I[G, F'] ,  where ~/is maximal such that P(2)nJ,[G, F'] ~ K, 
and say that M is of type II. 

(36') M can be viewed as a mouse over F, and then 2 = min meas(M). 

This is the place where finestructure comes into play, and we become very sketchy. 
Basically, things behave as in Sect. 2 after some rather difficult definability and 
iterability questions are dealt with. 

Now let M x be the 2-core of M, which is defined like a core in the context of the 
ordinary core model K. We can reprove (37) and (38). The mice M x, M Y can be 
well-ordered via fine-structure preserving iterations like the core mice of K;  we 
carry over (39) and (40) to the present situation. With this we can imitate the rest of 
the argument. Notice that in establishing the analogue of (46) one uses that M x is a 
2 xl-core. 

So, finally, we get a contradiction, and the assumption that no inner model 
contains col measurable cardinals is false. Q E D  
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