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Abstract

We examine combinatorial aspects and consistency strength prop-
erties of almost Ramsey cardinals. Without the Axiom of Choice, suc-
cessor cardinals may be almost Ramsey. From fairly mild supercom-
pactness assumptions, we construct a model of ZF + ¬ACω in which
every infinite cardinal is almost Ramsey. Core model arguments show
that strong assumptions are necessary. Without successors of singular
cardinals, we can weaken this to an equiconsistency of the following
theories: “ZFC + There is a proper class of regular almost Ramsey
cardinals”, and “ZF + DC + All infinite cardinals except possibly
successors of singular cardinals are almost Ramsey”.

1 Introduction

Erdös and Ramsey cardinals are defined by partition properties . A set X ⊆ δ

is homogeneous for a partition F : [δ]<ω → 2 iff ∀n(|F ′′[X]n| = 1); the

partition property δ → (α)<ω
2 is defined as

(∀F : [δ]<ω → 2)(∃X ⊆ δ)(otp(X) ≥ α ∧X is homogeneous for F ).

An infinite cardinal κ is α-Erdös iff κ → (α)<ω
2 , and it is Ramsey iff κ →

(κ)<ω
2 . This suggests a natural large cardinal notion between Erdös and

Ramsey cardinals.

Definition 1 An infinite cardinal κ is almost Ramsey iff ∀α < κ(κ →
(α)<ω

2 ).

Almost Ramsey cardinals were considered before in unpublished work of

Collaborative Incentive grants. In addition, the first author wishes to thank the members
of the mathematical logic group in Bonn for all of the hospitality shown him during his
spring 2007 sabbatical visit to the Mathematisches Institut.
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H. Friedman and by J. Vickers and P. D. Welch in [19]. These cardinals can

be viewed as “diagonal limits” in the hierarchy of Erdös cardinals.

For any uncountable almost Ramsey cardinal κ, it can be shown in ZF

that the following substructure property holds: if λ, κ′, λ′ are infinite cardi-

nals satisfying λ < κ, λ′ ≤ κ′ < κ, and λ′ ≤ λ, then (κ, λ) ⇒ (κ′, λ′). This

means that every first-order structure (κ, λ, . . . ) in a countable language has

an elementary substructure X ≺ (κ, λ, . . . ) with |X| = κ′ and |X ∩ λ| = λ′.

This can be viewed as a Chang’s Conjecture-like two-cardinal version of the

standard downward Löwenheim-Skolem theorem.

It is easy to see that many instances of (κ, λ) ⇒ (κ′, λ′), in particular

for successor cardinals κ, are incompatible with the Axiom of Choice. The

main result of this paper yields a choiceless model of ZF in which every

infinite cardinal1 is almost Ramsey and in which the generalized downward

Löwenheim-Skolem theorem holds universally. Specifically, we have the fol-

lowing.

Theorem 1 Con(ZFC + There exist cardinals κ < λ such that κ is 2λ

supercompact where λ is the least regular almost Ramsey cardinal greater

than κ) =⇒ Con(ZF + ¬ACω + Every successor cardinal is regular +

Every infinite cardinal is almost Ramsey).

In the construction, certain large cardinals are collapsed generically and

become the well-ordered cardinals of a symmetric model of ZF. Due to

1For the purposes of this paper, in a choiceless model of ZF, infinite cardinals will
always be taken as being well-ordered, i.e., as being the alephs.
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the strong indestructibility of almost Ramsey cardinals, the large cardinal

hypotheses in the ground model can be taken considerably weaker than in a

similar construction found in [5]. (We will discuss this in greater detail at

the end of Section 4.) Conversely, we use core model techniques to show that

considerable large cardinal strength is necessary for the symmetric model

constructions of this paper.

Theorem 2 Assume ZF and that every infinite cardinal is almost Ramsey.

Then there exists an inner model with a proper class of strong cardinals.

Omitting successors of singular limit cardinals, consistency strengths go

down to what we shall show is below the existence of Ramsey cardinals.

Theorem 3 The following theories are equiconsistent:

a) ZFC + There is a proper class of regular almost Ramsey cardinals;

b) ZF + DC + All successor cardinals are regular + All infinite cardinals

except possibly successors of singular limit cardinals are almost Ramsey.

Before proving our theorems, we shall show some combinatorial facts

about almost Ramsey cardinals and consider some obvious consistency

strength questions.

2 Combinatorial aspects

Almost Ramseyness is closely connected to Erdös-type partition cardinals.
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Definition 2 For α ∈ Ord, let κ(α) be the least κ such that κ → (α)<ω
2 , if

such a κ exists.

The following characterization of almost Ramsey cardinals as diagonal

limits of the Erdös hierarchy can be verified easily and does not involve the

Axiom of Choice.

Proposition 1 (ZF) An infinite cardinal κ is almost Ramsey iff κ(α) is

defined for all α < κ and κ =
⋃

α<κ κ(α).

By the classical Ramsey theorem, κ(α) is finite for α < ω. By Proposition

1, this immediately implies that ω is an almost Ramsey cardinal. Under the

Axiom of Choice, for infinite α, κ(α) is strongly inaccessible (if α is also a

limit ordinal) and κ(α + 1) > κ(α) (see [15, Propositions 7.14 and 7.15]).

Proposition 2 (ZFC) Assume κ is almost Ramsey. Then

a) ∀α < κ(κ(α) < κ);

b) κ is a strong limit cardinal.

Proof a) Let α < κ, α ≥ ω. Then κ(α) < κ(α+1) ≤ κ. b) is an immediate

consequence of a), keeping in mind that for every limit ordinal α, κ(α) is

strongly inaccessible. ¤

Propositions 1 and 2 yield an indestructibility property for almost Ramsey

cardinals κ under forcing which does not add bounded subsets of κ.
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Proposition 3 Let M be a transitive model of “ZFC + κ is almost Ramsey”.

Let N ⊇ M be a transitive model of ZF such that ∀δ < κ(P(δ) ∩ M =

P(δ) ∩N). Then κ is almost Ramsey in N .

Proof Let α < κ. By Proposition 2, (κ(α))M < κ. P((κ(α))M) ∩ M =

P((κ(α))M) ∩N implies that (κ(α))N = (κ(α))M . Hence κ =
⋃

α<κ(κ(α))N ,

so by Proposition 1, κ is almost Ramsey in N . ¤

We may also infer that almost Ramsey cardinals are preserved by small

forcing.

Proposition 4 Suppose V ² “ZFC + κ is almost Ramsey + P is a partial

ordering such that |P| < κ”. Then V P ² “κ is almost Ramsey”.

Proof By Propositions 1 and 2, write κ =
⋃

α∈[α0,κ) κ(α), where α0 is a limit

ordinal with the additional property that |P| < κ(α0). By [15, Proposition

7.15 and Exercise 10.16], for any limit ordinal α ∈ [α0, κ) and δ(α) = (κ(α))V ,

V P ² “δ(α) → (α)<ω
2 ”. Since κ therefore remains in V P a limit of cardinals

satisfying suitable partition properties, V P ² “κ is almost Ramsey”. ¤

In ZFC, a regular almost Ramsey cardinal is strongly inaccessible. Sin-

gular almost Ramsey cardinals are much weaker. Since {κ | κ =
⋃

α<κ κ(α)}
is a closed class of ordinals, we get the following.

Proposition 5 (ZFC)

a) Assume κ is an uncountable regular almost Ramsey cardinal. Then the

class of almost Ramsey cardinals is closed unbounded below κ.
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b) Assume κ is an almost Ramsey cardinal which is Mahlo. Then the class

of regular almost Ramsey cardinals is stationary below κ.

c) Assume κ is the smallest uncountable regular almost Ramsey cardinal.

Then κ is not Mahlo.

d) Assume κ is a Ramsey cardinal. Then the class of almost Ramsey cardi-

nals is closed unbounded below κ and the class of regular almost Ramsey

cardinals is stationary below κ.

As a corollary, we get some information on consistency strengths.

Proposition 6

a) ZFC + There exists an uncountable regular almost Ramsey cardinal `
Con(ZFC + There exists a proper class of (singular) almost Ramsey

cardinals).

b) Con(ZFC + There exists an uncountable regular almost Ramsey cardinal) ↔
Con(ZFC + There exists an uncountable regular almost Ramsey cardinal

which is not Mahlo).

Let us now work without the Axiom of Choice. The following theorem

of J. Silver (see [15, Theorem 9.3]) shows that homogeneous sets for parti-

tions are basically equivalent to sets of (order) indiscernibles for first-order

structures.
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Proposition 7 (ZF) For infinite ordinals α, the partition property κ →
(α)<ω

2 is equivalent to the following: for any first-order structure M =

(M, . . . ) in a countable language S with κ ⊆ M , there is a set X ⊆ κ,

otp(X) ≥ α of indiscernibles, i.e., for all S-formulas ϕ(v0, . . . , vn−1),

x0, . . . , xn−1 ∈ X, x0 < · · · < xn−1, y0, . . . , yn−1 ∈ X, y0 < · · · < yn−1,

M ² ϕ(x0, . . . , xn−1) iff M ² ϕ(y0, . . . , yn−1).

For limit α, indiscernibility can be strengthened to good indiscernibility.

Proposition 8 (ZF) Assume κ → (α)<ω
2 , where α is a limit ordinal. Then

for any first-order structure M = (M, . . . ) in a countable language S with

κ ⊆ M , there is a set X ⊆ κ, otp(X) ≥ α of good indiscernibles, i.e., for

all S-formulas ϕ(v0, . . . , vm−1, w0, . . . , wn−1), x0, . . . , xn−1 ∈ X, x0 < · · · <

xn−1, y0, . . . , yn−1 ∈ X, y0 < · · · < yn−1, and a0 < · · · < am−1 < min(x0, y0),

M ² ϕ(a0, . . . , am−1, x0, . . . , xn−1) iff M ² ϕ(a0, . . . , am−1, y0, . . . , yn−1).

Proof We may assume that the structureM contains a unary predicate Ord

for the ordinals in M (this includes all ordinals less than κ) and a collection

of Skolem functions for ordinal-valued existential statements, i.e., for every

S-formula ϕ(v, ~w), there is a function f of M such that

M ² ∀~w(∃v(Ord(v) ∧ ϕ(v, ~w)) → ϕ(f(~w), ~w)).

Choose a set X ⊆ κ, otp(X) = α of indiscernibles for M such that

its minimum, min(X), is minimal for all such sets of indiscernibles. As-
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sume towards a contradiction that X is not good. Then there is an S-

formula ϕ(v0, . . . , vm−1, w0, . . . , wn−1), x0, . . . , xn−1 ∈ X, x0 < · · · < xn−1,

y0, . . . , yn−1 ∈ X, y0 < · · · < yn−1, and a0 < · · · < am−1 < min(x0, y0) such

that

M ² ϕ(a0, . . . , am−1, x0, . . . , xn−1) and M ² ¬ϕ(a0, . . . , am−1, y0, . . . , yn−1).

Since α is a limit ordinal, we may take z0, . . . , zn−1 ∈ X, z0 < · · · < zn−1

such that xn−1 < z0 and yn−1 < z0.

In case

M ² ϕ(a0, . . . , am−1, z0, . . . , zn−1),

one has

M ² ¬ϕ(a0, . . . , am−1, y0, . . . , yn−1) and M ² ϕ(a0, . . . , am−1, z0, . . . , zn−1),

where y0 < · · · < yn−1 < z0 < · · · < zn−1. In case

M ² ¬ϕ(a0, . . . , am−1, z0, . . . , zn−1),

one has

M ² ϕ(a0, . . . , am−1, x0, . . . , xn−1) and M ² ¬ϕ(a0, . . . , am−1, z0, . . . , zn−1),

where x0 < · · · < xn−1 < z0 < · · · < zn−1. So in both cases, we have

an ascending 2n-tuble of indiscernibles such that the first half behaves dif-

ferently from the second half with respect to the formula ϕ and the pa-

rameters a0, . . . , am−1. So without loss of generality, we may assume that
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x0 < · · · < xn−1 < y0 < · · · < yn−1 and

M ² ϕ(a0, . . . , am−1, x0, . . . , xn−1) and M ² ¬ϕ(a0, . . . , am−1, y0, . . . , yn−1).

Write ~x = x0, . . . , xn−1 and ~y = y0, . . . , yn−1. Since M contains Skolem

functions, there are functions f0, . . . , fm−1 of M which compute parameters

like a0, . . . , am−1:

M ² (∃v1 < x0)(∃v2 < x0) · · · (∃vm−1 < x0)(f0(~x, ~y) < x0 ∧
ϕ(f0(~x, ~y), v1, . . . , vm−1, ~x) ∧ ¬ϕ(f0(~x, ~y), v1, . . . , vm−1, ~y)).

M ² (∃v2 < x0) · · · (∃vm−1 < x0)(f0(~x, ~y) < x0 ∧ f1(~x, ~y) < x0 ∧
ϕ(f0(~x, ~y), f1(~x, ~y), . . . , vm−1, ~x) ∧ ¬ϕ(f0(~x, ~y), f1(~x, ~y), . . . , vm−1, ~y)).

...

M ² f0(~x, ~y) < x0 ∧ · · · ∧ fm−1(~x, ~y) < x0 ∧ ϕ(f0(~x, ~y),

f1(~x, ~y), . . . , fm−1(~x, ~y), ~x) ∧ ¬ϕ(f0(~x, ~y), f1(~x, ~y), . . . , fm−1(~x, ~y), ~y).

Now consider ~z = z0, . . . , zn−1 ∈ X, z0 < · · · < zn−1 such that yn−1 < z0.

(1) There is k < m such that fk(~x, ~y) 6= fk(~y, ~z).
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Proof Assume not. Set ξ0 = f0(~x, ~y), . . . , ξm−1 = fm−1(~x, ~y). Since ~x, ~y

and ~y, ~z are ascending indiscernible sequences of the same length, we have

M ² ϕ(ξ0, ξ1, . . . , ξm−1, ~x) ∧ ¬ϕ(ξ0, ξ1, . . . , ξm−1, ~y)

and

M ² ϕ(ξ0, ξ1, . . . , ξm−1, ~y) ∧ ¬ϕ(ξ0, ξ1, . . . , ξm−1, ~z).

In particular,

M ² ϕ(ξ0, ξ1, . . . , ξm−1, ~y) ∧ ¬ϕ(ξ0, ξ1, . . . , ξm−1, ~y),

which is a contradiction. ¤(1)

So take k < m such that

(2) fk(~x, ~y) 6= fk(~y, ~z).

Let (νi | i < α) be a strictly increasing enumeration of the set X of indis-

cernibles, and let (~x(i) | i < α) be a partition of X into ascending sequences

of length n, with

~x(i) = νn·i, νn·i+1, . . . , νn·i+n−1.

We then claim that

(3) fk(~x
(0), ~x(1)) < fk(~x

(1), ~x(2)).
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Proof By indiscernibility, (2) implies that fk(~x
(0), ~x(1)) 6= fk(~x

(1), ~x(2)).

Assume towards a contradiction that fk(~x
(0), ~x(1)) > fk(~x

(1), ~x(2)). Then

again by indiscernibility, we would obtain a decreasing ∈-sequence

fk(~x
(0), ~x(1)) > fk(~x

(1), ~x(2)) > fk(~x
(2), ~x(3)) > · · · ,

which is a contradiction. ¤(3)

The above now tells us that

fk(~x
(0), ~x(1)) < fk(~x

(2), ~x(3)) < fk(~x
(4), ~x(5)) < · · ·

is an ascending α-sequence of indiscernibles for M with smallest element

fk(~x
(0), ~x(1)) < ν0. This contradicts the minimal choice of min(X). ¤

Recall that HOD is Gödel’s model of hereditarily ordinal definable sets .

Let <HOD be the canonical well-ordering of HOD, defined in the universe V

(see [14, Lemma 13.25]).

Lemma 1 (ZF) Let κ+ be almost Ramsey. Then (κ+)HOD < κ+.

Proof Assume towards a contradiction that (κ+)HOD = κ+. For γ ∈ [κ, κ+),

choose the <HOD-least bijection fγ : γ ↔ κ. Define F : [κ+ \ κ]3 → 2 by

F ({α, β, γ}) =

{
0 iff fγ(α) < fγ(β)
1 iff fγ(α) > fγ(β)

, for α < β < γ.

Take X ⊆ κ+ homogeneous for F , with otp(X) = κ + 2. Let γ = max(X).

Then define h : κ + 1 → κ by h(ξ) = fγ(αξ), where αξ is the ξ-th element of

X.
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Case 1: ∀x ∈ [X]3(F (x) = 0). Then for ξ < ζ < κ + 1, we have that

αξ < αζ < γ and {αξ, αζ , γ} ∈ [X]3. Since F ({αξ, αζ , γ}) = 0, it follows that

h(ξ) = fγ(αξ) < fγ(αζ) = h(ζ).

Thus h : κ + 1 → κ is order preserving, which is impossible.

Case 2: ∀x ∈ [X]3(F (x) = 1). Then for ξ < ζ < κ + 1, we have that

αξ < αζ < γ and {αξ, αζ , γ} ∈ [X]3. Since F ({αξ, αζ , γ}) = 1, it follows that

h(ξ) = fγ(αξ) > fγ(αζ) = h(ζ).

Thus h : κ+1 → κ is a strictly descending κ+1 chain in the ordinals, which

is a contradiction. ¤

3 Almost Ramsey cardinals and the Dodd-

Jensen core model

We shall show that almost Ramsey cardinals are almost Ramsey in appropri-

ate core models , in particular in the Dodd-Jensen core model KDJ which is

presented in [8] and [9]. Since core model theory usually assumes the Axiom

of Choice, we shall also use the inner model HOD or extensions HOD[a] of

HOD by sets a ⊆ HOD. The following proposition is found in [6].

Proposition 9 (ZF) Let a ⊆ HOD be a set. Then

a) HOD[a] is a set-generic extension of HOD, so HOD[a] ² ZFC.
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b) (KDJ)HOD = (KDJ)HOD[a]; moreover this equality holds for every level of

the hierarchy, i.e., (KDJ
α )HOD = (KDJ

α )HOD[a] for every α ∈ Ord.

By Proposition 9, we may define KDJ = (KDJ)HOD in models without

choice. The following indiscernibles lemma by T. Dodd and R. Jensen (see

[19], as well as [8] and [9]) is used to find homogeneous sets inside KDJ.

Proposition 10 Let κ be an infinite cardinal. Suppose A ∈ KDJ ∩ P(KDJ
κ )

and that I, an infinite set of good indiscernibles for A = (KDJ
κ , A), is such

that cof(otp(I)) > ω. Then there is I ′ ∈ KDJ, I ′ ⊇ I a set of good indis-

cernibles for A.

Lemma 2 (ZF) Let κ > ℵ1 be almost Ramsey. Then κ is almost Ramsey in

KDJ.

Proof Let F : [κ]<ω → 2, F ∈ KDJ be a partition. Let α < κ. Then

α + ℵ1 < κ. By Proposition 8, take a set X ⊆ κ of good indiscernibles for

the structure M = (KDJ
κ , F ), with otp(X) ≥ α + ℵ1. Let X ′ be the initial

segment of X of order type (α + ℵ1)
HOD[X]. In the model HOD[X], X ′ is a

set of good indiscernibles for M such that cof(otp(X ′)) > ω. By Proposition

10 applied inside HOD[X], there is a set Y ⊇ X ′, Y ∈ KDJ which is a set of

good indiscernibles for M. Then Y is also homogeneous for the partition F

of order type greater than or equal to α. ¤

We are now able to prove the inner model direction of Theorem 3.
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Lemma 3 Con(ZF + All infinite cardinals except possibly successors of sin-

gular limit cardinals are almost Ramsey) =⇒ Con(ZFC + There is a proper

class of regular almost Ramsey cardinals).

Proof Assume Con(ZF + All infinite cardinals except possibly successors

of singular limit cardinals are almost Ramsey). If there is a proper class

of regular almost Ramsey cardinals, then by Lemma 2, we are done. So

assume that this is not the case, and let the cardinal θ be an upper bound

for the set of regular almost Ramsey cardinals. Then θ++ and θ+++ are

not successors of limit cardinals. By assumption, θ++ and θ+++ are almost

Ramsey. By the definition of θ, θ++ and θ+++ must be singular. By [18],

this implies consistency strength far above measurable cardinals, and hence

the consistency of a proper class of regular almost Ramsey cardinals. ¤

We briefly outline now how to prove the forcing direction of Theorem

3. Specifically, we wish to show that Con(ZFC + There is a proper class

of regular almost Ramsey cardinals) =⇒ Con(ZF + DC + All successor

cardinals are regular + All infinite cardinals except possibly successors of

singular limit cardinals are almost Ramsey). To do this, we construct the

model N of Theorem 1 of [4], using the class of regular almost Ramsey

cardinals in place of the class of supercompact cardinals. (We refer readers

of this paper to [4] for the exact definition of N .) The proofs of Lemmas 1.1–

1.7 of [4] then show that N ² “ZF + DC + All successor cardinals are regular

+ All successor cardinals except possibly successors of singular limit cardinals
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are almost Ramsey”, assuming that each regular almost Ramsey cardinal is

indestructible under forcing with arbitrary Lévy collapses, and each regular

almost Ramsey cardinal is preserved by small forcing. However, these facts

just follow from Propositions 3 and 4. Finally, since by Proposition 1, ZF `
“Any limit of almost Ramsey cardinals is an almost Ramsey cardinal”, N ²

“All infinite cardinals except possibly successors of singular limit cardinals

are almost Ramsey”. This completes our discussion of Theorem 3. ¤

In the following, we apply the core model below a proper class of strong

cardinals, denoted by the class term K (see [17]). As with the Dodd-Jensen

core model, we get the following.

Proposition 11 (ZF) Let a ⊆ HOD be a set. Then KHOD = KHOD[a].

If there is no inner model with a proper class of strong cardinals and

the Axiom of Choice holds, then the core model K satisfies certain covering

properties. In particular, Theorem 8.18 of [17] tells us that if κ ≥ ω2, then

cofV ((κ+)
K

) ≥ CardV (κ).

Lemma 4 (ZF) Let κ+ be almost Ramsey, where κ is a singular cardinal.

Then there is an inner model with a proper class of strong cardinals.

Proof Assume that there is no inner model with a proper class of strong

cardinals. By Lemma 1, (κ+)HOD < κ+. Since K ⊆ HOD, (κ+)K < κ+.

Choose a bijection f : κ ↔ (κ+)K and a cofinal subset Z ⊆ κ such that

otp(Z) < κ. The class HOD[f, Z] is a model of ZFC which satisfies that κ is

16



a singular cardinal such that (κ+)K < κ+. Then inside the model HOD[f, Z],

cof((κ+)
K

) < κ. This contradicts the above mentioned covering property of

the core model. ¤

We are now able to prove Theorem 2.

Proof By assumption, ℵω+1 is almost Ramsey and the successor of the

singular cardinal ℵω. Lemma 4 now implies the desired conclusions. ¤

We conclude Section 3 by remarking that Schindler has pointed out to

us that the conclusions of Theorem 2 can be strengthened. In particular, we

have the following theorem.

Theorem 4 Suppose Φ is a large cardinal concept such that Φ(κ+) =⇒
There is no inner model of ZFC in which κ+ is a successor cardinal. Suppose

further that there is a proper class of cardinals κ such that κ is singular and

Φ(κ+) is true. Then for every n < ω and every set of ordinals x, M ]
n(x)

exists.

Thus, Theorem 4 implies that for every n < ω, there is actually an inner

model with n Woodin cardinals.

4 A model in which every infinite cardinal is

almost Ramsey

From certain fairly mild supercompactness assumptions, we construct a model

in which all infinite cardinals are almost Ramsey. We have already stated
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the relevant theorem as Theorem 1. We restate it here in the form in which

it will be proven.

Theorem 5 Let V ² “ZFC + κ < λ are such that κ is 2λ supercompact

where λ is the least regular almost Ramsey cardinal greater than κ”. There is

then a model N of height κ such that N ² “ZF + ¬ACω + Every successor

cardinal is regular + Every infinite cardinal is almost Ramsey”.

Proof Our proof uses Gitik’s techniques of [13]. As in [1], we differ from [13],

[5], and [2] only in the length of the Radin sequence of measures used. Our

presentation follows the ones given in [5], [2], and [1] (all of which are based

on [13]), suitably modified to our current context of almost Ramseyness.

As the necessary facts about Radin forcing are distributed throughout the

literature, our bibliographical citations will reflect this.

Let j : V → M be an elementary embedding witnessing the 2λ super-

compactness of κ. Our first step is to define a Radin sequence of measures

µ<ρ = 〈µα | α < ρ〉 over Pκ(λ). Specifically, if α = 0, µα is defined by

X ∈ µα iff 〈j(β) | β < λ〉 ∈ j(X), and if α > 0, µα is defined by X ∈ µα iff

〈µβ | β < α〉 =df µ<α ∈ j(X). ρ is then defined as the first ordinal such that

A ∈ µρ implies that for some α < ρ, A ∈ µα, i.e., ρ is the first repeat point.

By cardinality considerations and the fact that M2λ ⊆ M (see [7], [16], [13],

[5], [1], [2], or [12]), this definition makes sense, and ρ exists.

Next, using µ<ρ, we let R<ρ be supercompact Radin forcing defined over

Vκ×Pκ(λ). The particulars of the definition are virtually identical to the ones
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found in [5], [2], and [1], but for clarity, we repeat them here. R<ρ is composed

of all finite sequences of the form 〈〈p0, u0, C0, 〉, . . . , 〈pn, un, Cn〉, 〈µ<ρ, C〉〉
such that the following conditions hold:

1. For 0 ≤ i < j ≤ n, pi ⊂∼ pj, where for p, q ∈ Pκ(λ), p ⊂∼ q means p ⊆ q

and otp(p) < q ∩ κ.

2. For 0 ≤ i ≤ n, pi ∩ κ is a measurable cardinal.

3. otp(pi) is the least cardinal greater than pi∩κ which is a regular almost

Ramsey cardinal. In analogy to the notation of [13], [5], [2], and [1],

we write otp(pi) = (pi ∩ κ)∗.

4. For 0 ≤ i ≤ n, ui is a Radin sequence of measures over Vpi∩κ ×
Ppi∩κ(otp(pi)) with (ui)0, the 0th coordinate of ui, a supercompact

measure over Ppi∩κ(otp(pi)).

5. Ci is a sequence of measure 1 sets for ui.

6. C is a sequence of measure 1 sets for µ<ρ.

7. For each p ∈ (C)0, where (C)0 is the coordinate of C such that (C)0 ∈
µ0,

⋃
i∈{0,... ,n} pi ⊂∼ p.

8. For each p ∈ (C)0, otp(p) = (p ∩ κ)∗ and p∩κ is a measurable cardinal.

Conditions (5) and (6) are both standard to any definition of Radin forc-

ing. Conditions (1), (2), (4), and (7) are all standard to any definition of
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supercompact Radin forcing. Conditions (3) and (8) are used because of our

ultimate aim of constructing a model in which all infinite cardinals are al-

most Ramsey. That they may be included and have the Radin forcing attain

its desired goals follows by the fact that V ² “κ is 2λ supercompact where

λ is the least regular almost Ramsey cardinal above κ”. Thus, by closure,

M ² “κ is measurable and λ is the least regular almost Ramsey cardinal

above κ”. This means that by reflection, {p ∈ Pκ(λ) | p ∩ κ is a measurable

cardinal and otp(p) is the least regular almost Ramsey cardinal greater than

p∩κ} ∈ µ0. This will ensure that the Radin sequence of cardinals eventually

produced can be used in our final symmetric inner model N .

For completeness of exposition, we recall now the definition of the or-

dering on R<ρ. If π0 = 〈〈p0, u0, C0〉, . . . , 〈pn, un, Cn〉, 〈µ<ρ, C〉〉 and π1 =

〈〈q0, v0, D0〉, . . . , 〈qm, vm, Dm〉, 〈µ<ρ, D〉〉, then π1 extends π0 iff the following

conditions hold.

1. For each 〈pj, uj, Cj〉 which appears in π0, there is a 〈qi, vi, Di〉 which

appears in π1 such that 〈qi, vi〉 = 〈pj, uj〉 and Di ⊆ Cj, i.e., for each

coordinate (Di)α and (Cj)α, (Di)α ⊆ (Cj)α.

2. D ⊆ C.

3. n ≤ m.

4. If 〈qi, vi, Di〉 does not appear in π0, let 〈pj, uj, Cj〉 (or 〈µ<ρ, C〉) be the

first element of π0 such that pj ∩ κ > qi ∩ κ. Then
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(a) qi is order isomorphic to some q ∈ (Cj)0.

(b) There exists an α < α0, where α0 is the length of uj, such that vi is

isomorphic “in a natural way” to an ultrafilter sequence v ∈ (Cj)α.

(c) For β0 the length of vi, there is a function f : β0 → α0 such that

for β < β0, (Di)β is a set of ultrafilter sequences such that for

some subset (Di)
′
β of (Cj)f(β), each ultrafilter sequence in (Di)β is

isomorphic “in a natural way” to an ultrafilter sequence in (Di)
′
β.

For further information on the definition of the ordering on R<ρ (including

the meaning of “in a natural way”) and more facts about Radin forcing in

general, readers are referred to [5], [2], [1], [7], [10], [13], [12], and [16].

We are now ready to define the partial ordering P used in the proof of

Theorem 5. It is given by the finite support product ordered componentwise

∏

{〈α,β〉|α<β<κ are regular cardinals}
Coll(α, <β)× R<ρ,

where Coll(α, <β) is the Lévy collapse of all cardinals of size less than β to

α.

Let G be V -generic over P, and let G0 be the projection of G onto R<ρ.

For any condition π ∈ R<ρ, call 〈p0, . . . pn〉 the p-part of π. Let R = {p |
∃π ∈ G0[p ∈ p− part(π)]}, and let R` = {p | p ∈ R and p is a limit point

of R}. Define three sets E0, E1, and E2 by E0 = {α | For some π ∈ G0 and

some p ∈ p− part(π), p ∩ κ = α}, E1 = {α | α is a limit point of E0}, and

E2 = E1∪{ω}∪{β | ∃α ∈ E1[β = α∗]}. E2 will be the set of cardinals in our
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symmetric inner model N . Let 〈αν | ν < κ〉 be the continuous, increasing

enumeration of E2, and let ν = ν ′ + n for some n ∈ ω, where ν ′ is either

a limit ordinal or 0. For β ∈ [αν , αν+1), define sets Ci(αν , β) for i = 1, 2

according to specific conditions on ν and ν ′ in the following manner:

1. ν = ν ′ 6= 0 and n = 0, i.e., ν is a limit ordinal. Let p(αν) be the element

p of R such that p∩ κ = αν , and let hp(αν) : p(αν) → otp(p(αν)) be the

order isomorphism between p(αν) and otp(p(αν)). Then C1(αν , β) =

{hp(αν)
′′p ∩ β | p ∈ R`, p ⊆ p(αν), and h−1

p(αν)(β) ∈ p}.

2. (ν = ν ′+n and n 6= 0) or (ν = ν ′ = 0), i.e., (ν is a successor ordinal) or

(ν = 0). Let H(αν , αν+1) be the projection of G onto Coll(αν , <αν+1).

Then C2(αν , β) = H(αν , αν+1) ¹ β, i.e., C2(αν , β) = {p ∈ H(αν , αν+1) |
dom(p) ⊆ αν × β}.

C1(αν , β) is used to collapse β to αν when ν is a limit ordinal, and is also

used to generate the closed, cofinal sequence 〈αβ | β < ν〉. C2(αν , β) is used

to collapse β to αν when ν is a successor ordinal or ν = 0. Intuitively, the

symmetric inner model N ⊆ V [G] witnessing the conclusions of Theorem 5

is Vκ of the least model of ZF extending V which contains, for β ∈ [αν , αν+1),

C1(αν , β) if ν is a limit ordinal, and C2(αν , β) if ν is a successor ordinal or

ν = 0.

To define N more precisely, it is necessary to define canonical names αν

for the αν ’s and canonical names Ci(ν, β) for the two sets just described.

Recall that it is possible to decide p(αν) (and hence otp(p(αν))) by writing
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ω · ν = ωσ0 ·n0 +ωσ1 ·n1 + · · ·+ωσm ·nm (where σ0 > σ1 > · · · > σm are ordi-

nals, n0, . . . , nm > 0 are integers, and +, ·, and exponentiation are the ordi-

nal arithmetical operations), letting π = 〈〈piji
, uiji

, Ciji
〉i≤m,1≤ji≤ni

, 〈µ<ρ, C〉〉
be such that min(pi1 ∩ κ, ωlength(ui1)) = σi and length(uiji

) = min(pi1 ∩
κ, length(ui1)) for 1 ≤ ji ≤ ni, and letting p(αν) be pmnm . Further, Dν =

{r ∈ P | r ¹ R<ρ extends a condition π of the above form} is a dense open

subset of P. αν is the name of the αν determined by any element of Dν ∩G;

in the notation of [13], [5], [2], and [1], αν = {〈r, α̌ν(r)〉 | r ∈ Dν}, where

αν(r) is the αν determined by the condition r.

The canonical names Ci(ν, β) are defined in a manner so as to be invariant

under the appropriate group of automorphisms. Specifically, there are two

cases to consider. We again write ν = ν ′ + n, where n ∈ ω and ν ′ is either

a limit ordinal or 0, and let β be as before. We also assume without loss of

generality that as in [13], [5], [2], and [1], αν+1 is determined by Dν . Further,

we adopt throughout each of the two cases the notation of [13], [5], [2], and

[1].

1. ν ′ = ν 6= 0 and n = 0. C1(ν, β) = {〈r, (ř ¹ R<ρ) ¹ (αν(r), β)〉 | r ∈ Dν},
where for r ∈ P, π = r ¹ R<ρ, π ¹ (αν(r), β) = {hp(αν)(r)

′′p ∩ β | p ∈
p-part(π), p ⊆ p(αν)(r), p ∈ R` ¹ π, and h−1

p(αν)(r)(β) ∈ p}.

2. (ν = ν ′ + n and n 6= 0) or (ν = ν ′ = 0). C2(ν, β) = {〈r, (ř ¹

Coll(αν(r), <αν+1(r))) ¹ β〉 | r ∈ Dν}.
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As in [13], [5], [2], and [1], since for any r, r′ ∈ Dν ∩G, p(αν)(r) = p(αν)(r
′),

both of the definitions just given are unambiguous.

Let G be the group of automorphisms of [13], and let C(G) =
⋃

i=1,2{ψ(Ci(ν, β)) | ψ ∈ G, 0 ≤ ν < κ, and β ∈ [ν, κ) is a cardinal}.
C(G) =

⋃
i=1,2{iG(ψ(Ci(ν, β))) | ψ ∈ G, 0 ≤ ν < κ, and β ∈ [ν, κ) is a

cardinal} = iG(C(G)). N is then the set of all sets of rank less than κ of the

model consisting of all sets which are hereditarily V definable from C(G),

i.e., N = V
HVD(C(G))
κ .

The arguments of [13] allow us to conclude that N ² “ZF + ¬ACω +

〈ℵν | ν ∈ Ord〉 = 〈αν | ν ∈ Ord〉 + Every successor cardinal is regular”. In

addition, we know that for any ordinal λ and any set x ⊆ λ, x ∈ N , x =

{α < λ | V [G] ² ϕ(α, iG(ψ1(Ci1(ν1, β1))), . . . , iG(ψn(Cin(νn, βn))), C(G))},
where ij is an integer, 1 ≤ j ≤ n, 1 ≤ ij ≤ 2, each ψi ∈ G, each βi is an

appropriate ordinal for νi, and ϕ(x0, . . . , xn+1) is a formula which may also

contain some parameters from V which we shall suppress.

Let

P =
∏
ij=2

Coll(ανj
, <βj)× R<ρ.

For π ∈ R<ρ, let π ¹ λ = {〈q, u, C〉 ∈ π | q ∩ κ ≤ λ}. For p ∈ P, p =

〈p1, . . . , pm, π〉, m ≤ n, π ∈ R<ρ, let p ¹ λ = 〈q1, . . . , qm, π ¹ λ〉, where

qj = pj if ανj
≤ λ and qj = ∅ otherwise. In other words, p ¹ λ is the part of

p below or at λ. Without loss of generality, we ignore the empty coordinates

and let P ¹ λ = {p ¹ λ | p ∈ P}. Let G ¹ λ be the projection of G onto
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P ¹ λ. An analogous fact to Theorem 3.2.11 of [13] holds, using the same

proof as in [13], namely x ∈ V [G ¹ λ]. In addition, the elements of P ¹ λ

can be partitioned into equivalence classes (the “almost similar” equivalence

classes of [13]) with respect to Ci1(ν1, β1), . . . , Cin(νn, βn) via an equivalence

relation to be called ∼ such that if σ < λ, τ is a suitable term for x, and

p ° “σ ∈ τ”, then for any q ∼ p, q ° “σ ∈ τ”. It thus follows as an immediate

corollary of the work of [13] that if we define G̃ ¹ λ = {[p]∼ | p ∈ G ¹ λ},
then x ∈ V [G̃ ¹ λ] and V [G̃ ¹ λ] ⊆ N . Further, if λ = αν and either ν

is a successor ordinal or ν = 0, then the work of [13] also tells us that

G̃ ¹ λ = G0 × G1 is V -generic over a partial ordering of the form P0 × P1,

where P1 = Coll(λ,<β) for some β, and P0 is forcing equivalent to a partial

ordering P∗ such that |P∗| < λ. In what follows, we will slightly abuse

notation and denote V [G0][G1] and V [G1] by V P0×P1 and V P1 respectively.

The discussion of the proof of Theorem 5 will now be completed by the

following lemma.

Lemma 5 N ² “Every αν is an almost Ramsey cardinal”.

Proof Fix ν < κ and λ = αν . Since by Proposition 1, ZF ` “Any limit

of almost Ramsey cardinals is an almost Ramsey cardinal”, without loss of

generality, we may assume that ν is a successor ordinal. Further, by the

properties of the Radin forcing R<ρ, we may also assume without loss of

generality that in V , λ is a regular almost Ramsey cardinal.
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Suppose N ² “f : [λ]<ω → 2 is a partition”. Note that f may be coded

by a subset of λ. Therefore, as in our discussion above, f ∈ V P0×P1 , where

P0 is forcing equivalent to a partial ordering P∗ such that |P∗| < λ, and

P1 is Coll(λ,<β) for some β. Since by Proposition 3, any regular almost

Ramsey cardinal δ is automatically indestructible under Coll(δ,<β) (and

much more), V P1 ² “λ is almost Ramsey”. Since |P∗| < λ in both V and

V P1 , by Proposition 4, λ is almost Ramsey in V P1×P0 = V P0×P1 . Thus, for

every α < λ, there is X ∈ [λ]α, X ∈ V P0×P1 which is homogeneous for f .

Since V P0×P1 ⊆ N , X ∈ N as well. This completes the proof of Lemma 5. ¤

Lemma 5 completes the proof of Theorem 5. ¤

We note that the properties of Radin forcing, together with Gitik’s meth-

ods, allow us to infer that since the Radin forcing R<ρ is defined using a

long enough sequence of measures µ<ρ, N will contain regular limit cardi-

nals. Also, the arguments of [5] suitably modified tell us that N ² “Every

singular limit cardinal is a Jonsson cardinal”.

We conclude by remarking that in the models of [13] and [5], it is the

case that all infinite cardinals are almost Ramsey. The methods of proof

are similar to those found in this paper. The constructions use an almost

huge cardinal, but the consistency strength of the assumptions employed

was reduced in [3] to something in consistency strength strictly in between a

supercompact limit of supercompact cardinals and an almost huge cardinal.

Our hypotheses employed for Theorem 5, of course, are considerably

weaker than those of [13], [5], or [3]. There are two main reasons for this.
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One is that we do not have any singular successor cardinals in our desired

model N . The other is that, roughly speaking, as Proposition 3 shows, al-

most Ramsey cardinals λ are automatically indestructible under forcing not

adding any bounded subsets of λ, meaning that no additional preparation

is required prior to the construction of N . We conjecture that in Gitik’s

model of [11] in which all uncountable cardinals are singular, built using

a proper class of strongly compact cardinals, all infinite cardinals are also

almost Ramsey.
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