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Abstract

We give a proof of a theorem of Jensen and Zeman on the existence
of Global � in the Core Model below a measurable cardinal κ of Mitchell
order (“oM (κ)”) equal to κ++, and use it to prove the following theorem on
mutual stationarity at the ℵn.

Let ω1 denote the first uncountable cardinal of V and set Cof(ω1) to be
the class of ordinals of cofinality ω1.

Theorem: If every sequence (Sn)n<ω of stationary sets Sn ⊆ Cof(ω1)∩
ℵn+2, is mutually stationary, then there is an inner model with infinitely
many inaccessibles (κn)n<ω so that for every m the class of measurables λ
with oM (λ) ≥ κm is stationary in κn for all n > m. In particular, there is
such a model in which for all sufficiently large m < ω the class of measurables
λ with oM (λ) ≥ ωm is, in V , stationary below ℵm+2.

1 Introduction

This paper extends previous investigations into the nature of mutual stationarity,
a concept introduced by M. Foreman and M. Magidor [6] in order to transfer
some combinatorial aspects of stationary subsets of regular cardinals to singular
cardinals. They made particular use of this in investigating the non-saturation
of the non-stationary ideals of the form Pκ(λ).

∗The second author would like to express his gratitude to the Deutsche Forschungsgemein-
schaft for the support of a Mercator Gastprofessur and to the Mathematics Department of the
University of Bonn where it was held.
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Our purpose here is to establish that the mutual stationarity property at ℵω
(or more precisely at the sequence of the first ω-many uncountable cardinals,
〈ℵn | 0 < n < ω〉), is a large cardinal property, that is, it entails the consistency
of strong axioms of infinity which concern measurable cardinals. The definition
of mutual stationarity is more general than this however:

Definition 1.1 Let (κn)n<ω be a strictly increasing sequence of regular cardinals
> ℵ2 with κω =supn<ωκn. A sequence (Sn)n<ω is called mutually stationary in
(κn)n<ω if every first-order structure A of countable type with κω ⊆ A has an
elementary substructure B ≺ A such that

∀n < ω sup |B| ∩ κn ∈ Sn.

M. Foreman and M. Magidor, together with J. Cummings further in-
vestigated the status of such sequences in [2]. Note that if (Sn)n<ω is mutually
stationary in (κn)n<ω then each Sn ∩ κn is stationary in κn. In the following we
shall denote the class {ξ ∈ Ord|cf(ξ) = λ} by Cofλ.

Definition 1.2 Let (κn)n<ω be a strictly increasing sequence of regular cardinals
and λ < κ0, λ regular. The mutual stationarity property MS((κn)n<ω, λ) is the
statement: if (Sn)n<ω is a sequence of stationary sets Sn ⊆ Cofλ ∩ κn, then
(Sn)n<ω is mutually stationary in (κn)n<ω.

M. Foreman and M. Magidor [6] proved the following two theorems:

Theorem. For (κn)n<ω be any strictly increasing sequence of uncountable regu-
lar cardinals:
(i) MS((κn)n<ω, ω) holds.
(ii) MS((κn)n<ω, ω1) implies V 6= L.

This did not yet say that MS was a large cardinal property. That it was is
the left to right direction of the following equivalence, proven in [12]:

Theorem 1.3 The theories ZFC+∃(κn)n<ωMS((κn)n<ω, ω1) and ZFC+∃κ(κ
measurable) are equiconsistent.

The implication from right to left was first proven by Cummings, Foreman,
and Magidor [3] via Prikry forcing. They proved more than this: they showed
that a tail of the Prikry generic sequence satisfies MS((κn)n<ω, λ) for any λ <
κ0 (or indeed the mutual stationarity of any sequence of stationary sets Sn ⊆
κn irrespective of the cofinalities of the ordinals in the Sn). This is essentially
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obtained by utilising the fact that a tail of the Prikry generic sequence remains
coherently Ramsey in the generic extension. The forward direction was proven
in [12] using the core model K of A. J. Dodd and R. B. Jensen (see [5]). The
deduction of the existence of 0] from MS((κn)n<ω, ω1) was done in detail, and
the extension to proving the existence of the inner model with a measurable was
sketched, using the hyperfine structure of S.Friedman and the first author ([7]).
The proof involved the global square principle � in L and techniques from the
Jensen Covering theorem for L (see [4]). The purpose of this paper is to give
a full account of the interaction of the proof of global � with the MS property,
(insofar as we are able) thus filling in the details of the above argument, but
significantly strengthening the result to obtain models with many measures of
high Mitchell order, in the case (κn)n<ω consists of consecutive sequences of
cardinals mentioned in the abstract:

Theorem 1.4 If MS((ℵn)0<n<ω, ω1) holds then there is an inner model, K, and
there is 2 < k < ω so that for any n with k < n < ω each ℵn is a Mahlo limit (in
V ) of ordinals κ which are, in K, measurable of Mitchell order oM (κ) = ωn−2.
In fact, for such ℵn the ordinals α ∈ Cof(ωn−2) which are singular in K are, in
V , non-stationary below ℵn.

One might wonder whether increasing the cofinality of the independently cho-
sen stationary sets might yield increased Mitchell order. Well, perhaps, but seem-
ingly not by our methods. The following is a corollary to the proof of the above
theorem.

Corollary 1.5 Let m be fixed, 1 ≤ m < ω. Then if MS((ℵn+m)0<n<ω, ωm)
holds, exactly the same conclusion as that of Theorem 1.4 may be drawn.

The methods here seem just short of allowing us to conclude that there is an
inner model with a measurable κ with Mitchell order of κequal to κ : (“oM (κ) =
κ”).

It is important in the above statement that we use all the alephs below ℵω
(from some point on) since the first author has shown that omitting a cardinal
above each one for which we wish to consider arbitrary stationary sets, has a
much weaker consistency strength, (see [11]).

Theorem 1.6 The theories ZFC + MS((ℵ2n+1)n<ω, ω1) and ZFC + ∃κ(κ a
measurable cardinal) are equiconsistent.

The model K in Theorem 1.4 can be taken to be the core model built using
measures (partial or full) only on its constructing extender sequence.
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We shall need the following formulation of the Weak Covering Lemma due to
W.Mitchell (cf. [13])

Theorem 1.7 (Weak Covering Lemma) Assume there is no inner model with
a measurable cardinal κ with oM (κ) = κ++. Let α be regular in K with ω1 ≤ γ =
cf(α) < card(α). Then in K we have oM (α) ≥ γ.

We shall assume a development of the fine structure of such a core model K,
as can be found in M. Zeman [17]. K is thus a model of the form L[E] with E
a sequence of partial or full extenders in the manner of Zeman’s book. However
no such extender requires any generator beyond that of its critical point. We
shall need to consider the proof of the existence of global square � in such a
model. This is known to hold, cf [10]. The fine structural notation we shall
adopt is that of the book (which is also that of the paper cited). The indexing
of extenders will be the Friedman-Jensen indexing whereby an extender is placed
on the E sequence of a hierarchy at precisely the successor cardinal of the image
of the critical point by that extender. Again this is following [10].

Jensen and Zeman’s method of proof for global � is to define a “smooth
category” of structures and maps from which it is known that a global � sequence
can be derived. This latter derivation is purely combinatorial and so requires no
inspection of the fine structure of the original model. The burden of their proof
is the construction of the smooth category itself. However that construction does
not yield an explicit computation for the order types of the various Cν sequences.
(It is the latter derivation that does that). For our proof we need to have a
construction of global � where we can see (i) what those order types will be and
how they are arrived at; and (ii) that order types for certain Cν-like sequences
will (on a tail) not be prolonged by iterations of the mouse from which they are
defined. We give a proof of Global � ab initio directly without going through
the smooth category. This is done in Section 3. In section 2 we give some fine
structural lemmas that form the hard work of Jensen and Zeman’s account in
[10] which establish the right forms of parameter preservation and appropriate
condensation lemmata. We merely quote these as Condensation Lemmas (I) and
(II). However in order to prove that the order types of Cν sequences are not
prolonged by iterations of the structure over which they are defined we need to
prove the preservation of the d-parameters of [10]. This is at Lemma 2.8. The
analysis of the Condensation Lemmata apart, we try to keep the rest of the proof
as self-contained as possible. The proofs of Lemmas 3.9 and 3.11 in particular
repeat the proofs of [10] 4.3 and 4.5. These are key lemmata on the relationships
between singularising structures and the maps between them, and are, in the
Σ∗ terminology, the successors to [1] Lemmas 6.15 and 6.18. From Definition
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3.17 onwards this is an account very much following that of [1] (and which will
be in the forthcoming [15]), but modestly dressed in the appropriate Js mouse
notation. In Section 4 we see how to use features of this proof to get the main
Theorem 1.4; the reader who is completely familiar with the � proof and wants
to discover the ideas in the application to mutual stationarity may wish to go
straight there.

2 Fine structural prerequisites

For an acceptable J -structure M we assume familiarity with the notions of the
uniformly defined Σ1-Skolem function for M , hM ,and of the class of parameter
sequences ΓM , and the parameter sets P n

M , PM , P
∗,
M , R

n
M , RM , and R∗M . We shall

write ρM as usual for the Σ1-projectum of M . Similarly we shall write for the
n+1’st projectum ρn+1

M =df min{ρMn,p | p ∈ ΓnM}. We may assume that parame-
ters are finite sets of ordinals. This applies as well to the n’th-standard parameter
and the standard parameter denoted here pnM , pM respectively for a structure M
as above. We wellorder [On]<ω by u <∗ v ↔ max(u∆v) ∈ v. For X ⊆ Ord a set,
we write ot(X) for its order type, and by X∗ we mean the set of limit points of

X. Our discussion of fine structure is entirely in the language of Σ
(n)
k relations

due to Jensen (for which see [17] or [15]). Boldface relations such as Σ
(n)
1 (M)

denote those definable using parameters (in this case from M .)

Definition 2.1 (Σ
(n)
1 -Skolem Functions) Let M be an acceptable J-structure,

and let p ∈ ΓnM .
(i) hn,pM = hMn,p ;

(ii) h̃nM (wn, x0) = g0(g1 · · · gn−1((wn)0, 〈(wn)1, x
0(n − 1)〉) · · · x0(0)〉) where,

for i ≤ n
gi(〈j, yi+1〉, p) = hM i,p�i(j, 〈yi+1, p(i)〉).

Then gi is uniformly lightface Σ
(i)
1 (M) in the variables shown. Thus h̃nM

is Σ
(n−1)
1 uniformly over all M . The Σ1 hull of a set X ⊆ Mn,p we shall de-

note by hn,pM (X) (and is thus the set {hn,pM (i, x)) | i ∈ ω, x ∈ X}). Note that

h̃1
M (〈j, y0〉, p(0)) = g0(j, 〈y, p(0)〉) = hM (j, 〈y, p(0)〉). If p ∈ RnM then every
x ∈ M is of the form h̃nM (z, p) for some z ∈ Hn

M . We may similarly form hulls

using h̃nM : again if X ⊆Mn,p say, and q ∈M then the Σ
(n−1)
1 hull of X ∪ {q} is

the set {h̃nM (x, q)) | x ∈ X} (we again may write h̃nM (X ∪{q}) for this hull here).
The following states some of these facts and are easy to establish (see [17] p.29):
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Lemma 2.2 Let M be acceptable, and p ∈ Rn
M ;

(i) If ωρnM ∈ M and p ∈ RnM then h̃nM is a good, uniformly defined, Σ
(n−1)
1 (M)

function mapping ωρnM onto M.

(ii) (a) every A ⊆ Hn
M which is Σ

(n)
1 (M) is Σ1(Mn,p);

(b) ρn+1
M = ρMn,p

Lemma 2.3 Let M be an acceptable J-structure. Then (i) Σ∗(M) ⊆ Σω(M).
(ii) Let p ∈ R∗M . Then Σ∗(M) = Σω(M).

Lemma 2.4 Let M,M be acceptable structures, and suppose π : M −→ M is

Σ
(n)
1 -preserving, and is such that π � ωρn+1

M = id and ran(π) ∩ P ∗M 6= ∅. Then π
is Σ∗-preserving.

Proof: This is [17] 1.11.2. Q.E.D.

Recall that a premouse M is sound above ν if ωρn+1
M ≤ ν means that h̃n+1

M (ν∪
{pM}) = |M |. We also say that it is k-sound if it is sound above ωρkM .

In the next lemma there are various concepts that we shall quickly gloss:
oN (κ) is the extender order of κ in the hierarchies under consideration (and
roughly corresponds to Mitchell order of measures); the hat over a premouse, as
in N̂ , indicates the expansion of the premouse structure N , to which extenders are
usually applied (as, for example, when coiterations of premice are formed). The
premice then act as bookkeeping premice for the indices that are being used, whilst
the actual extenders are applied to these hatted expansions. We simply follow
the conventions of [10] and we ignore the differences between these structures.
The reader worried about these details may consult [10] Sect. 2 or Ch. 8 of [17].

Theorem 2.5 (Condensation Lemma I) (cf [10] 2.1). Suppose there is no in-
ner model for oM (κ) = κ++. Let N be a premouse, M a mouse and σ : N̂ −→

Σ
(n)
0

M̂ with σ � ωρn+1
N = id; Then N is a mouse; moreover if N is sound above

ν = crit(σ) then one of the following holds:
(i) N is the core of M above ν and σ is the iteration map, which is the

corresponding core map;
(ii) N is a proper initial segment of M ;
(iii) For some κ < ν β =df o

N (κ) ≥ ν, and if ζ < κ+M is maximal so that
EMβ measures all subsets of κ = crit(EM

β ) which lie in M‖ζ, then N is an initial

segment of M+ where π : M̂‖ζ −→∗
EMβ

M+.

In order to have sufficient further condensation Jensen and Zeman require
certain parameters associated with canonical witness structures to be in the range
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of their maps. We only remind the reader of this definition here, and refer to the
paper for a full discussion of their significance.

Definition 2.6 Suppose γ ∈ pnM and let σMγ be the canonical witness map corre-

sponding to W γ
M ; if sup(ran(σMγ )) ∩ ωρnM < ωρnM we set δ(γ) = sup(ran(σMγ ) ∩

ωρnM ).
We set p̃nM =df {γ ∈ pnM | δ(γ) is defined}, and appropriately p̃M =df

⋃
n p̃

n
M .

Further set dnM =df {δ(γ) | γ ∈ p̃M , k ≤ n} etc.

This finite (possibly empty) set dnM then collects together all those sups of
those canonical witness maps σγ just for those γ for which the map is non-
cofinal at the k’th levels for k ≤ n. This allows for an appropriate form of the
Condensation Lemma for hierarchies below mice M with any κ with (oM (κ) =
κ++)M . The following is again taken from [10].

Theorem 2.7 (Condensation Lemma II) (cf [10] 3.1) Suppose there is no
inner model for oM (κ) = κ++. Let N,M be mice and σ : N̂ −→

Σ
(n)
1

M̂ . Suppose

further that σ(ᾱ) = α, σ(p̄) = pM\α, and
(i) ωρn+1

M ≤ α < ωρnM and M is sound above α;
(ii) dnM ⊆ ran(σ).
Then p̄ = pN\ᾱ ; N is sound above ᾱ, σ(p̃N\ᾱ) = pM\α and σ(δN (γ)) =

δM (σ(γ)) whenever γ ∈ p̃N\ᾱ.

We shall need a lemma on preservation of these d-parameters under normal
iterations. We prove this here.

Lemma 2.8 Suppose π : M −→ N is a normal iteration of M . Then π(dM ) =
dN .

Proof: This would be by induction on the length of the iteration, but we simply
do a one step ultrapower by an extender E with critical point κ and the reader
can form the general and direct limit argument herself. This does not follow
quite immediately from Condensation Lemma II as the latter assumes dN is in
the range of the map. We know that π(pM ) = pN . We may express

pM = {ν ∈ pM | If ν ∈ [ωρk+1
M , ωρkM ) then the canonical witness map is

non-cofinal into ωρkM}.
And: dM = {δM (ν)|ν ∈ pM}.
Then if δ(ν) ∈ dM with ν ∈ [ωρk+1

M , ωρkM ) we have as in [10]:

(∗) ∀ξk∀ζk(ξk < ν ∧ ζk = h̃k+1
M (ξk, pM\(ν + 1)) −→ ζk ≤ δ(ν)).

This is Π
(k)
1 in ν, δ(ν), and pM . If crit(E) = κ ∈ [ωρn+1

M , ωρnM ) then π is Σ
(n)
0

preserving and cofinal into ωρnM , hence Σ
(n)
1 -preserving. If k < n then it is
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Σ
(k)
2 preserving. Consequently wherever ν lies we have from these preservation

properties:
(1) ν ∈ p̄M −→ π(ν) ∈ p̄N ∧ π(δM (ν)) ≥ δN (π(ν)) .

We want equality here. For k < n Σ
(k)
2 preservation suffices to guarantee this: if

∃δk < π(δM (ν))[∀ξk∀ζk(ξk < π(ν) ∧ ζk = h̃k+1
N (ξk, π(pM )\(π(ν) + 1))

−→ ζk ≤ δk]
then this would go down to M and give a contradiction. For k = n we can reason
as follows. Suppose δ̄ = π(f)(κ) = δN (π(ν)) < π(δM (ν)). As at (∗):
∀ξn∀ζn(ξn < π(ν) ∧ ζn = h̃n+1

N (ξn, pN\(π(ν) + 1)) −→ ζn ≤ δ).
By using a  Loš Lemma we should have that:
{α < κ|∀ξn∀ζn(ξn < ν ∧ ζn = h̃n+1

M (ξn, pM\(ν + 1)) −→ ζn ≤ f(α))}
was of E-measure 1. But on a set of measure 1 f(α) < cδM (ν)(α) = δM (ν) so this

contradicts the definition of δM (ν). Hence
(3) ν ∈ p̄M −→ π(δM (ν)) = δN (π(ν)).

Now note:
(4) π(ν) ∈ p̄N −→ ν ∈ pM and hence again π(δM (ν)) = δN (π(ν)).

For k < n this follows from Σ
(k)
2 preservation. For k = n this follows from the

cofinality of π into ωρnN : if δN (π(ν)) is defined, then it is less than some π(δ) and
the formula (∗) written out for N and π(δ) then goes down to M , so this suffices.

Q.E.D.

We shall also be assuming familiarity with the construction of fine-structural
pseudo-ultrapowers, for which see [17] or [15]. We shall be using various “lift-up”
lemmas. These are in the following form.

Definition 2.9 Let M be an acceptable J-structure, and ν ∈M a regular cardi-
nal of M. Then k(M,ν) is defined to be the least k (if it exists) so that there is

a good Σ
(k)
1 -definable function whose domain is a bounded subset of ν and whose

range is unbounded in ν. (Such a function is said to singularize ν and we say

that ν is Σ
(k)
1 (M)-singularized over M .)

Definition 2.10 Let M̄, ν̄, k = k(M̄ , ν̄) be as above with ν̄ regular in M̄ . Let
Q =df J

M̄
ν̄ . Define Γk

M̄,ν̄
=df

{f | dom(f) ∈ Q ∧ ran(f) ⊆M) ∧ (n < k ∧ f ∈ Σ
(n)
1 (M) ∧ ωρn+1

M
≥ ν)}.

Theorem 2.11 (Pseudo-Ultrapower Theorem) Let M̄ be an acceptable J-
structure, ν̄ a regular cardinal of M̄ but with k = k(M̄ , ν̄) defined. Let Q =df J

M̄
ν̄ .

Then there is a map σ̃ : M̄ −→Σ0 M (the “canonical k-extension” of σ : Q −→Σ0

Q) satisfying:
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(i) σ̃ is Q-preserving, M is an acceptable end extension of Q, and
M = {σ̃(f)(u) | u ∈ σ(dom(f)), f ∈ Γ}.
(ii)a) σ̃ is Σ

(n)
2 preserving for n < k;

b) ρk = ρkM , and σ̃ is Σ
(k)
0 preserving and cofinal (thus Σ

(k)
1 -preserving);

(iii) σ̃(ν̄) = ν and the latter is regular in M ;

(iiv) k = k(M,ν): k is least so that there is a Σ
(k)
1 (M) map cofinalising ν.

Lemma 2.12 (Interpolation Lemma) Suppose M = 〈JA
β
, B〉 is a structure

such that ν is regular in M , but with k = k(M̄ , ν̄) defined. Suppose further
that f : M −→

Σ
(k)
1

M = 〈JAβ , B〉. Let ν̃ = sup f“ν̄. Then there is a structure

M̃ = 〈J eAeβ , B̃〉, a map f̃ : M −→ M̃ with f̃ ⊇ f � JAν and f̃ ,Σ
(k)
0 -cofinal (and

hence Σ
(k)
1 -preserving), and a unique f ′ : M̃ −→

Σ
(k)
0

M , with f = f ′ ◦ f̃ and

f ′ � ν̃ = id � ν̃.

3 Global � in K.

Definition 3.1 Let Sing = {β ∈ Ord | lim(β) ∧ cf(β) < β} be the class of
singular limit ordinals. Global � is the assertion: there is a system (Cβ)β∈Sing

satisfying:
(a) Cβ is a closed cofinal subset of β;
(b) ot(Cβ) < β;
(c) if β is a limit point of Cβ then β ∈ Sing and Cβ = Cβ ∩ β.

Jensen [8] introduced the principle and proved it held in L. The format of
the proof we shall follow will be that of [1], which was a proof in the setting
of generalised L[A] hierarchies suitable for use Jensen’s Coding Theorem. The
second author [14] proved in the Dodd-Jensen core model K. The first proof of
� which used the Baldwin-Mitchell arrangement of the L[E] hierarchy, was for
Jensen’s model for K with measures of order zero, and was by Wylie [16]. From
the order types of the square sequences Cξ we shall define stationary sets Sn to
which we shall apply the MS-principle.

We consider how a global � sequence can be derived in K. For clarity we shall
assume there is no inner model with a measure of Mitchell order oM (κ) = κ++

(see [10]) and that K is built under this assumption. We assume for the rest of
this section V = K. Jensen and Zeman prove (more than) the following.

Theorem 3.2 Let S be the class of all singular limit ordinals that are limits of
admissibles. There is a uniformly definable class 〈Cν |ν ∈ S〉 so that:
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(i) Cν is a set of ordinals closed below ν and, if cf(ν) > ω, then it is also
unbounded;

(ii) ot(Cν) < ν;
(iii) ν ∈ Cν −→ ν ∈ S ∧ Cν̄ = ν ∩ Cν ;

It is well known that once one has a global sequence defined on the singular
ordinals of some cub class that contains all singular cardinals and is cub beneath
each successor cardinal, then this can be filled out to a global sequence on all
singular ordinals to satisfy Definition 3.1. Hence proving the above theorem
suffices. As V = K = L[E] for E = EK a fixed sequence of extenders, if ν
is a singular ordinal, then there will be a least level JEβ(ν) of the JE-hierarchy

over which ν is definably singularised, i.e. there will be a partial Σω(JEβ(ν))
definable good function mapping a subset of some γ cofinally into ν. This level
of the hierarchy JEβ(ν) will also be our main singularising structure Mν . Note
that by Lemma 2.3 and the soundness of the K hierarchy, any such function is

also Σ
(n)
1 (JEβ(ν)) for some n. That is, k(ν, JEβ(ν)) in the sense of Definition 2.9 is

defined.
However there will be many other mice over which ordinals are singularized

and we must consider these in addition.

Definition 3.3 S+ is the class of s = 〈νs,Ms〉 where
(a) νs ∈ Sing;
(b) Ms is a mouse satisfying the following:

(i) νs is regular in Ms and Js =df J
EMs
νs is a union of admissible sets JE

Ms

τ ;

(ii) for some m, νs is Σ
(m)
1 (Ms) singularised, that is k(νs,Ms) is defined;

(iii) Msis sound above νs, and if νs = κ+Ms where κ ∈ CardMs , then Ms is
sound above κ.

Recall that if M = 〈JEα ,∈〉 and ν ≤ α then M ||ν =df 〈JEν ,∈ Eν〉. We then
note the following facts:

Lemma 3.4 (i) If 〈ν,M〉, 〈ν,N〉 satisfy (b)(i),(ii) above but are both sound
above ν, with M ||ν = N ||ν, then M = N .

(ii) If 〈ν,M〉, 〈ν,N〉 ∈ S+and JE
M

ν = JE
N

ν then M = N .

Proof: Straightforward iteration and comparison. Q.E.D.

The following definition encapsulates the essential concepts associated with
singularising structures.
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Definition 3.5 Let s ∈ S+. Then we associate the following to νs:

a) ns =df k(νs,Ms), the least n ∈ ω so that νs is Σ
(n)
1 (Ms) singularised over Ms.

b) M l
s =df M

l, pMs�l
s for l ≤ ks, ns.

c) hls =df h
l, pMs�l
Ms

; hs =df h
ns
s ; h̃s =df h̃

ns+1
Ms

.

d) κs ' the largest cardinal of Js, if such exists; ωρs =df On ∩Mns
s ;

β(s) =df On ∩Ms.

e) ps =df pMs\νs if νs is a limit cardinal of Js; ps =df pMs\κs otherwise;
qs =df ps ∩ ωρnsMs

;
ds =df dMs

f ) αs =df max{α < ν|ν ∩ h̃s(α ∪ {ps}) = α}, setting max Ø = 0.

g) γs ' min{γ < ν|∃f(f a good Σ
(ns)
1

Ms({ps}) function singularising ν with
domain ⊆ γ)}.

Thus if νs = κ+
s , we may have κs in ps. Note that the closure of the set in

f ) ensures that αs is always defined; note also that αs must be strictly less than
the first ordinal γs partially mapped by h̃s (with parameter ps) cofinally into νs.
Note also that if we set γ ′ = max{γs, (pMs ∩νs)+1} (max{γs, (pMs ∩κs)+1} if κs
is defined), and then h̃s(γ

′ ∪ ps) must be cofinal in νs since we shall have enough
parameters in the domain of this hull to define our cofinalising map).

Lemma 3.6 ωρnsMs
≥ ν ≥ ωρns+1

Ms

Proof Let n = ns, ν = νs. Suppose the first inequality failed. Then n > 0, and

we have some parameter q with a Σ
(n−1)
1 (Ms)({q}) partial map f of some γ < ν

cofinal into ν.
Pick such a γ > ωρnMs

. Let π : M̃ −→Ms have range h̃
n

s (γ ∪{q, ps}), with M̃
transitive. By the leastness of n, ran(π) cannot be unbounded in ν. By Lemma
2.4, since π � ωρnMs

= id and pMs ∈ ran(π), π is Σ∗ elementary. However then
ran(f) ⊆ ran(π), with the former unbounded in ν. A contradiction! If the second

inequality failed, then the partial function Σ
(n)
1 (Ms) singularising ν would be a

subset of ν and thus a bounded subset of ωρn+1
Ms

belonging to Ms. Q.E.D.

Definition 3.7 For s, s̄ ∈ S+ :(i) We set f : s̄ =⇒ s if there is |f | with |f | :
Js −→Σ1 Js, and |f | is the restriction of some f ∗ : Ms̄ −→Σ

(n)
1

Ms where n =
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ns, νs = f∗(νs̄)(if νs ∈ Ms);κs ∈ ran(|f |) (if κs is defined); αs, ps, ds are all in
ran(f∗).

(ii) F = {〈s̄, |f |, s〉|f : s̄ =⇒ s}; we write here s̄ = d(f), s = r(f);
(iii) If νs ∈Ms, we set:
p(s) =df ps ∪ {ds,αs, νs, κs} (if κs is defined); otherwise
p(s) =df ps ∪ {ds, αs, κs} (again including κs only if it is defined).

(iv) f(δ,q,s) is the inverse of the transitive collapse of the hull h̃s(δ, {p(ν)}) in
Ms.

(Lemma 3.9 will justify in the final clause (iv) that there is some s̄ so that
〈s̄, |f(δ,q,s)|, s〉 ∈ F).

Lemma 3.8 If ∃s̄(f : s̄ =⇒ s) then |f | and f ∗ are uniquely determined by
ran(|f |) ∩ νs.

Proof: As Ms is sound above νs, we have by our definitions, that h̃s(ωνs∪{ps}) =
Ms. We have a ∆1(Js) onto map g : ωνs � Js. Thus, if Y = h̃s(ωνs ∩ ran(|f |)∪
{ps}), then Y = h̃s(ran(|f |) ∪ {ps})=ran(f ∗). Q.E.D.

Lemma 3.8 justifies us in calling f ∗ the canonical extension of f , (or rather
|f |) and sometimes we abuse notation and write f ∗ : Js −→Σ1 Js where more
correctly we should write f ∗ � Js : Js −→Σ1 Js. By virtue of the last lemma, this
does not cause any ambiguity.

The next two lemmata are fundamental and concern relationships between
singularising structures, and associated maps between them.

Lemma 3.9 Let f : M −→
Σ

(n)
1

Ms; suppose f(d̄, ᾱ, p̄) = ds, αs, ps, and (where

appropriate) f(κ̄, ν̄) = κs, νs. (The latter if νs ∈ Ms ; if νs = On ∩Ms then
we take s̄ = On ∩Ms̄.) Then s̄ = (ν̄,M ) ∈ S+

, and thus f : s̄ =⇒ s; moreover
n, d̄, ᾱ, p̄, κ̄ (the latter defined if κs is) are ns̄, ds̄, αs̄, ps̄, κs̄.

Proof We shall show that M is a singularising structure for ν̄ =df νs̄ and the
other mentioned parameters have the requisite properties to satisfy the relevant
definitions, and are moved correctly by f . We set ν = νs.

(1) p̄ = pM̄\ν; d̄ = dn
M̄
\ν̄ and M is sound above ν̄.

Proof: Directly by the Condensation Lemma II Theorem 2.7 Q.E.D. (1)

Let h have the same functionally absolute definition over M as h̃s does over

Ms. h is thus Σ
(n)
1 (M ).

(2) α is defined from M as α was defined from Ms.

12



Proof: Set H(ξn, ζn)←→ h̃s(ωξ
n ∪ {ps}) ∩ ν ⊆ ζn

H(ξn, ζn)←→ h̄(ωξn ∪ {p̄}) ∩ ν̄ ⊆ ζn.
Then H is Π

(n)Ms
1 ({ps}), and H Π

(n)M̄
1 ({p̄}), by the same definition. As Ms |=

H(α, α) it follows that M |= H(ᾱ, ᾱ). However for any ξ with ᾱ < ξn < ν̄ we must
have M |= ¬H(ξn, ξn), because Ms |= ¬H(f(ξn), f(ξn)) since α < f(ξn) < ν.
Hence ᾱ is defined in the requisite way. Q.E.D. (2)

(3) ∃ξn < ν̄(h̃s(f(ξ̄n) ∪ {ps}) is unbounded in ν).

If (3) were to hold for some ξ then h̄(ξ ∪ {p̄}) would be cofinal in ν̄, since the

following is a Π
(n)
2 expression which thus would go down to M . It would then be

a statement about the parameters p̄, h̄, ξ̄ and ν̄ (the latter if ν = f(ν̄) < ωρs):
Ms |= (∀ζn < ν)(∃δn < f(ξ̄n))(∃i < ω)(ζn < h̃s(i, 〈δn, ps〉) < ν).

This would show that h̄ is a singularising function for ν̄ over the structure M
and that n ≥ ns̄. We need to show that (3) holds. Suppose not. This has the
consequence that τ =df sup f“ν̄ ≤ γs < ν. As αs ∈ ran(f � ν̄) we have that
αs < τ . So by definition of αs itself:

(4) τ 6= ν ∩ h̃s(τ ∪ {ps}).

Hence the following is true in Ms:

∃i ∈ ω∃ξn < τ(ν > h̃s(i, 〈ξn, ps〉) ≥ τ).

Let i, ξn witness this, and pick δ̄ < ν̄ so that f(δ̄) > ξn. Then for any µ̄ < ν̄, as
f(µ̄) < τ :

Ms |= (∃ζn < f(δ̄))(ν > h̃s(i, 〈ζn, ps〉) ≥ f(µ̄)).

This is Σ
(n)
1 and hence, for all µ̄ < ν̄, goes down to M , yielding:

M |= ∀µ̄ < ν̄∃ζn < δ̄(ν̄ > h̄(i, 〈ζn, p̄〉 ≥ µ̄).
Hence h̄ is a singularising function for ν̄. Thus whether (3) holds or not we

have established the existence of suitable Σ
(n)
1 (M) singularising function.

(5) n = ns̄.
We are left with showing n ≤ ns̄, as the above shows that n ≥ ns̄. Sup-

pose m < n and that ḡ is a Σ
(m)
1 (M) good function in the parameter r̄. Let g

be Σ
(m)
1 (Ms) using the same functionally absolute definition and the parameter

f(r̄). Suppose δ̄ < ν̄. By the Σ
(n)
1 -elementarity of f we have the following Σ

(n)
1

statement holds in Ms (as ran(g � f(δ̄)) is bounded in ν):

(∃ξn < ν)(∀ζm < f(δ̄))(∀ηm < ν)(g(ζm) = ηm −→ ηm < ξn)

13



(assuming ν < β; otherwise drop the bound ν.) As f is Σ
(n)
1 -preserving, we have

in M :
(∃ξn < ν̄)(∀ζm < δ̄)(∀ηm < ν̄)(ḡ(ζm) = ηm −→ ηm < ξn)

As δ̄ was arbitrary, we conclude ran(ḡ � ξ) is bounded on any ξ < ν̄. Hence
n ≤ ns̄. Q.E.D.(5) and Lemma.

Definition 3.10 Suppose f : s̄ =⇒ s. Then let λ(f) =df sup f“ν; ρ(f) =df

sup f“ρν̄ .

Lemma 3.11 Suppose f : s̄ =⇒ s, and let λ = λ(f). Then λ ∈ Sing and there
exists a unique f0 : s̄ =⇒ s′ = s|λ with f � ν = f0 � ν.

Proof: Let n = ns. We apply directly the Interpolation Lemma with λ as
ν̃, Ms̄, Ms as M,M respectively, and using f ∗ : Ms −→Σ

(n)
1

Ms (where f ∗ is

the canonical extension of f) we have the structure M̃ = Ms′ and maps f̃ , f ′ as
specified.

(1) s′ = 〈λ, M̃ 〉 ∈ S+, n = ns′.
By the comment above γs̄ is defined and n = ns̄. As h̃s̄(γs̄ ∪ {pMs̄ , r}) is

cofinal in ν for some parameter r then λ ∩ h̃n+1
fM (f̃(γ̄s) ∪ {p′, f̃(r)}) is cofinal in

λ (setting p′ = f̃(ps) = f ′−1(ps)). Thus λ is Σ
(n)
1 -singularised over M̃ . Hence

n ≥ ns′ . We need to show that λ is not Σ
(n−1)
1 -singularised over M̃ . Suppose

this fails and thus that {α| sup(λ ∩ h̃nfM (α ∪ {r})) = α} is bounded in λ, by α′

say, for some choice of a parameter r ∈ M̃ = Ms′ . By the construction of the
pseudo-ultrapower we may assume that r is of the form f̃(ḡ0)(η) for some good

Σ
(n−1)
1 (Ms) function g0 and some η < λ. Define

H̃(ξn, ζn, d)←→ h̃
n

M̃ (ωξn∪{d})∩λ ⊆ ζn; H̄(ξn, ζn, d)←→ h̃ns̄ (ωξn∪{d})∩ν̄ ⊆ ζn.

These are (uniformly defined) Π
(n)
1 relations over their respective structures -

in the parameters λ, ν̄. By the leastness in the definition of ns̄ we have that there
are arbitrarily large τ̄n < ν̄ with h̃ns̄ (ωτ̄n ∪ {ps̄}) ∩ ν̄ ⊆ τ̄n; using the soundness
of Ms̄ above ν̄, this implies that for arbitrary ζn < τ̄ : h̃ns̄ (i, ξ

n
, ḡ0(ζn)) ∩ ν̄ ⊆ τ̄n.

In other words:
∀ζn < τ̄nH(τ̄n, τ̄n, ḡ0(ζn)).

As the substituted ḡ0 is good Σ
(n−1)
1 we have that this is a Π

(n)
1 statement,

and so is preserved upwards to Ms′ :
∀ζn < f̃(τ̄n)H̃(f̃(τ̄n), f̃(τ̄n), f̃(ḡ0)(ζn)).
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However as f̃ � ν̄ is cofinal into λ, we may choose τ̄n so that f̃(τ̄n) >
max{α′, η}. This contradicts our definition of α′. Q.E.D.(1)

(2) p′ = ps′ .

By the pseudo-ultrapower construction, we have M̃ = h̃
n+1
fM (λ∪p′) = h̃

n+1
fM (κ̃∪

p′) (where κ̃ = f̃(κs) if κs is defined) and is sound above λ (or κ̃). The solidity

of ps above ν̄ transfers via the Σ
(n)
1 -preserving map f ′ to show that p′ is solid

above λ (see [17] 3.6.8). Then the minimality of the standard parameter and the
definition of ps′ shows that ps′ ≤∗ p′. However if ps′ <

∗ p′ held, we should have

for some i ∈ ω, ~ξ that p′ = h̃
n+1
fM (i, 〈~ξ, ps′〉), and thus ps = h̃

n+1

s (i, 〈f ′(~ξ), f ′(ps′)〉)
whence Ms = h̃

n+1

s (ν∪f ′(ps′)). This is a contradiction as f ′(ps′) <∗ ps. Q.E.D.(2)

(3) If d̃ =df f̃(ds) then d̃ = ds′ .

Proof: This is very similar to Lemma 2.8, using the Σ
(n)
1 -preservation prop-

erties of f̃ , and is left to the reader. Q.E.D.(3)

(4) If α̃ =df f̃(αs) then α̃ = αs′ .
That α̃ is sufficiently closed, and hence α̃ ≤ αs′ , is proven as in (2) of Lemma

3.9 using: H̃(ξn, ζn) ←→ hs′(ωξ
n ∪ {pλ}) ∩ λ ⊆ ζn; H̄(ξn, ζn) ←→ hs̄(ωξ

n ∪
{ps̄}) ∩ ν̄ ⊆ ζn. For α̃ < ηn < λ we set η̄ = f−1“ηn. Then we have ¬H̃(η̄, η̄)
(as η̄ > αs̄). Hence for some i ∈ ω, some ξ̄ < η̄ we have η ≤ hs̄(i, 〈ξ̄, ps̄〉) < ν̄.

As f(η̄) ≥ ηn and as f̃ is Σ
(n)
0 -preserving we have ηn ≤ hs′(i, 〈f̃(ξ̄), ps′〉) < λ.

Q.E.D.(4)
We have shown enough now to set that f ∗0 = f̃ . Q.E.D.(Lemma)

Lemma 3.12 Suppose f : s̄ =⇒ s and ks = ns. Then λ(f) < νs ←→ ρ(f) < ρs.

Proof: (→) Suppose ρ(f) = ρs. Let λ = λ(f). Then, in the notation of the

previous Lemma the map f ′ is not only Σ
(n)
0 but is cofinal at the n’th level, and

thus Σ
(n)
1 -preserving. We also have that f ′(〈λ, ps′〉) = 〈ν, ps〉. This implies that

ν ∩ f ′“hs′(λ ∪ ps′) ⊆ ν ∩ hs(λ ∪ ps) = λ. Were λ < ν this would contradict the
fact that λ > αs as the latter is by supposition, in ran(f).

(←) Suppose λ =df λ(f) = ν. Again in the same notation, suppose ρ′ =df

ρ(f) < ρs, It is then easy to see that a good Σ
(n)
1 function, F say, singularizing

ν definable in some parameter q is taken by the Σ
(n)
0 -preserving f ∗ to a good

Σ
(n)
1 (Ms) function F in q = f(q) singularizing λ, with all the parameters of the

form xn needed to define the values F (ξ) in ran(f ∗). However if ρ′ =< ρs we
should have that F ∈Ms. However λ = ν! Contradiction! Q.E.D.
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The construction of the Cs-sequences attached to s = (νs,Ms) will follow in
essence the construction in [15]. The main point is that we can give an estimate
to the length of the Cs sequence.

We may state immediately what the Cs-sequences for s = (νs,Ms) ∈ S+ will
be:

Definition 3.13 Let s ∈ S+; C+
s =df {λ(f) | s};Cs =df C

+
s \{νs}.

Definition 3.14 Let f : s̄ =⇒ s. Then β(f) =df max{β ≤ ανs | f � β = id � β}.

By elementary closure considerations show that β(f) is defined, and that
β(f) = ανs iff f = idνs iff f(β) ≯ β. if β(f) were singular in Mν̄ using some
cofinal function g : β ′ −→ β with β ′ < β, we should have that then β(f) >
sup(ran(g)) = β. Hence Mν̄ |=“β(f) is a regular cardinal”.

The next lemma lists some properties of f(γ,q,s) which were defined at 3.7.
Firstly a minimality property of f(γ,q,s).

Lemma 3.15 (i) If γ ≤ νs then f(γ,q,s) is the least f such that f � γ = id � γ
with q, p(s) ∈ ran(f ∗), in that if g is any other such with these two properties,
(meaning that g =⇒ s with extension g∗ so that γ ∪ {q, p(s)} ⊆ ran(g∗)) then
g−1f(γ,q,νs) ∈ F.

(ii) f(γ,q,s) = f(β,q,s) where β = β(f(γ,q,s)).
(iii) f(ν,0,s) = ids;
(iv) Let f : s̄ =⇒ s with γ̄ ≤ νs̄, f“γ̄ ⊆ γ ≤ αν , q̄ ∈ Js, f∗(q̄) = q, then
ran(f∗f∗(γ̄,q̄,s̄)) ⊆ ran(f ∗(γ,q,s)).
With (i) this implies: if β(f) ≥ γ then ff(γ̄,q̄,s̄) = f(γ,q,s).
(v) Set g = f(γ,q,s); λ = λ(g) and g0 = red(g). Then q ∈ Js|λ and g0 =

f(γ,q,s|λ).

Proof: (i) -(iv) are easy consequences of the definitions. (For (i) note this
makes sense since we have specified in effect that ran(g∗) ⊇ ran(f(γ,q,s)).) We
establish (v). We know that g0 =⇒ s|λ. Set g′0 = f(γ,q,s|λ) and we shall ar-

gue that g0 = g′0. Let k = g−1
0 g′0. The argument of Lemma 3.11 shows that

d(g0) = d(g); as g0 � γ = id � γ, and q ∈ ran(g0) by (i) the minimality of
g′0 =⇒ s|λ implies we have such a k defined. Thus k ∈ F. But k =⇒ d(g0) so we
conclude, as d(g0) = d(g), that gk ∈ F. But ran((gk)∗) ∩ λ = ran(g∗) ∩ λ. So,
using that gk � γ = id � γ, and q, p(s) ∈ ran(gk), and then (i) again, we have
(gk)−1g = k−1 ∈ F. Hence k = idd(g′0) and thus g0 = g′0. Q.E.D.

Our definitions are preserved through =⇒ when a map f is cofinal , meaning
that |f | is cofinal into r(f):
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Lemma 3.16 Let f : s̄ =⇒ s with λ(f) = ν. Set ν̄ = νs̄, ν = νs, and let
γ̄ < ν̄, γ = f(γ̄), q ∈ Js̄, f(q̄) = q. Set

ḡ = f(γ̄,q̄,s̄); g = f(γ,q,s). Then
(i) λ(ḡ) < ν̄ ←→ λ(g) < ν ;
(ii) If λ(ḡ) < ν̄ then f(λ(ḡ)) = λ(g) and f(β(ḡ)) = β(g).

Proof: Assume λ(ḡ) < ν̄. Set h = h̃s̄, λ
′ = f(λ(ḡ)). The following is Π

(n)Ms̄

1 ({λ(ḡ), γ̄, p(s̄)}):
∀xn∀ξn < γ̄∀i < ω(xn = h(i, 〈ξn, q, p(s̄)〉) ∧ xn < ν̄ −→ xn < λ(ḡ)); if

ν̄ = On ∩Ms̄ then we drop the conjunct xn < ν̄. Then
∀xn∀ξn < γ∀i < ω(xn = h̃s(i, 〈ξn, q, p(s)〉) ∧ xn < ν −→ xn < λ′)

as f is Π
(n)
1 -preserving. Hence λ′ ≥ λ(g).

Claim 1: λ′ ≤ λ(g).
As λ(ḡ) < ν̄ we have ωρ(ḡ) < ωρs̄ by Lemma 3.12. Hence if we set A =

An,ps̄�n, and N̄ = 〈JAρ(ḡ), A ∩ Jρ(ḡ)〉 we have that N ∈ Ms̄ and is an amenable

structure, with λ(ḡ) = sup(ν̄ ∩ hN (γ̄ ∪ {q̄, p(s̄) ∩ ωρs̄}).
Applying f ∗, and with N = f(N), we have λ′ = sup(ν ∩ hN (γ ∪ {q, p(s)∩ωρν}).

For amenable structures (such as N) we have a uniform definition of the
canonical Σ1(N) Skolem function hN . From 〈N,AN 〉 ⊆ 〈Mn

s , A
n
s 〉, we have that

hN ⊆ hs, and thus

λ′ = sup(ν ∩ hs(γ ∪ {q, p(s) ∩ ωρs})) = sup(ν ∩ h̃s(γ ∪ {q, p(s)})).

Thus λ′ ≤ λ(g) and Claim 1 is finished.
Claim 2 f(β(ḡ)) = β(g)
Let β = f(β(ḡ)); as ḡ = f(β(ḡ),q̄,s̄) we have β(ḡ) /∈ ran(g). β = f(β(ḡ)) =

f(sup{δ̄ < ν̄ | δ̄ ⊆ ran(g)})= f(sup{δ̄ < ν̄ | δ̄ ⊆ hN (δ̄ ∪ {q̄, p(s̄) ∩ ωρ})})=
sup{δ < ν | δ ⊆ hN̄ (δ ∪ {q, p(s) ∩ ωρs})}. By the above β ≤ sup{δ < ν | δ ⊆
hν(δ ∪{q, p(s)∩ωρs}) = β(g). Suppose however β < β(g). Then in Ms we have:
∀βn ≤ β∃ξn < γ∃i < ω(βn = h̃s(i, 〈ξ, q, p(s)〉).

However f is Σ
(n)
1 -preserving, so this goes down to Ms̄ as:

∀β̄n ≤ β(ḡ)∃ξ̄n < γ̄∃i < ω(β̄n = h̃s̄(i, 〈ξ̄n, q̄, p(s̄)〉).
But this, with β̄n ≤ β(ḡ) implies β(ḡ) ∈ ran(ḡ) which is a contradiction! This fin-
ishes Claim 2 and (ii). Finally, just note for (←) of (i) as ρ(f) = ρs, if λ(g) < ν
then by Lemma 3.12 there is η = f(η̄) < ρ(f) with h̃s(γ ∪ {q, p(s)}) ∩ ωρs ⊆ η.

This Π
(n)
1 statement goes down to Ms̄ as h̃s̄(γ̄ ∪ {q̄, p(s̄)}) ∩ ωρs̄ ⊆ η̄. Hence

λ(ḡ) < λ. Q.E.D.

From this point onwards in the proof we are very much following, almost
verbatim, the development of [1]: the fine structural arguments specific to our
level of mice have all been dealt with, and the rest is very much combinatorial
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reasoning that is common to whatever model we are trying to define a � sequence
for.

Definition 3.17 Let s = 〈νs,Ms〉 ∈ S+, q ∈ Jνs . B(q, s) =df B+(q, s)\{νs}
where

B+(q, s) =df {β(f(γ,q,s)) | γ ≤ νs}.

B(q, s) is thus the set of those β < νs so that β = β(f) where f = f(β,q,s).

Lemma 3.18 Let f abbreviate f(γ,q,s). Assume q ∈ Js. (i) Suppose γ ∈ B(q, s)∗.
Then ran(f) =

⋃
β∈B(q,s)∩γ ran(f(β,q,s)).

(ii) Let γ ≤ αs. Suppose s̄ is such that f : s̄ =⇒ s with f(q̄) = q. Then
γ ∩B(q, s) = B(q̄, s̄).
(iii) Let λ = λ(f); f0 = red(f). Then γ ∩B(q, s|λ) = γ ∩B(q, s).

Proof: (i) is clear; (ii) follows from Lemma 3.15(iv), and (iii) from (ii) and
Lemma 3.15(v). Q.E.D.

Definition 3.19 Let s ∈ S+, q ∈ Js.
Λ+(q, s) =df {λ(f(γ,q,s))|γ ≤ νs}; Λ(q, s) =df Λ+(q, s)\{νs}.

The sets Λ(q, s) ⊆ Cs are first approximations to Cs if q is allowed to vary.
We first analyse these sets.

Lemma 3.20 Let s ∈ S+, q ∈ Js. (i) Λ(q, s) is closed below νs; (ii) ot(Λ(q, s)) ≤
νs; (iii) if λ ∈ Λ(q, s) then q ∈ Js|λ and Λ(q, s|λ) = λ ∩ Λ(q, s).

Proof: Set Λ = Λ(q, s). (i): Let η ∈ Λ∗. We claim that η ∈ Λ+(q, s). For each
λ ∈ Λ(q, s)∩η pick βλ ∈ B(q, s) with λ(f(β,q,s)) = λ. Clearly λ ≤ λ′ −→ βλ′ ≤ βλ.
Let γ be the supremum of these βλ. As B(q, s) is closed (by (i) of Lemma 3.18),
λ(f(γ,q,s)) = supλ λ(f(βλ,q,s)) = η.

(ii) is obvious; (iii): Let λ ∈ Λ,and g = λ(f(γ,q,s)), where we take β = β(g).
Suppose g : s̄ =⇒ s. Let g(q) = q and set g0 = red(g). Then by Lemma 3.15(v)
g0 = λ(f(β,q,s))). If γ ≥ β then λ = λ(f(γ,q,s|λ)) ≤ λ(f(γ,q,s)). If γ ≤ β then
|f(γ,q,s|λ))| = |g0||f(γ,q̄,s̄)| = |g||f(γ,q̄,s̄)| = |f(γ,q,s)|

where the first equality is justified by Lemma 3.15(v). Q.E.D.

Lemma 3.21 If f : s̄ =⇒ s, µ = λ(f), q ∈ Js̄, f(q̄) = q, then:
(i) Λ(q, s̄) = ∅ −→ µ ∩ Λ(q, s) = ∅,
(ii) f“Λ(q, s̄) ⊆ Λ(q, s|µ),
(iii) If λ = max Λ(q, s̄) and λ = f(λ̄) then λ = max(µ ∩ Λ(q, s)).
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Proof: (i) By its definition, if Λ(q, s̄) = ∅ then f(0,q,s̄) is cofinal into ν̄.
Hence ran(ff(0,q,s̄)) is both cofinal in µ, and contained in ran(f(0,q,s)) by Lemma
3.15(iv), thus µ ∩ Λ(q, νs) = ∅. This finishes (i). Note that By 3.20(iii)
Λ(q, s|µ) = µ ∩ Λ(q, s). Let f0 = red(f).

(ii) Let λ = λ(f(β̄,q,s̄)) ∈ Λ(q, s̄), and let f(β, λ) = β, λ = f0(β, λ). Then
f0(λ(f(β̄,q̄,s̄))) = λ(f(β,q,s|µ)) ∈ Λ(q, s|µ).

(iii) Let β = sup{γ|λ(f(γ,q̄,s̄)) ≤ λ}. Then λ(f(β̄,q̄,s̄)) = λ, and by the as-

sumed maximality of β we have λ(fβ̄+1,q̄, s̄)) = ν̄. Set β = f(β̄) = f0(β̄), then
by (IV)(2), λ = f0(λ̄) = λ(fβ,q,s|µ). However λ(fβ+1,q,s|µ) ≥ µ, since, again by
Lemma 3.15(iv), ran(f0f(β̄+1,, q̄, s̄)) ⊆ ran(f(β+1,q,s|µ)). Thus λ = max(Λ(q, s|µ)) =
max(µ ∩ Λ(q, s)). Q.E.D.

The p.r. definitions of λ(f), B(q, s), Λ(q, s), are uniform in the appropriate pa-
rameters. If s = 〈µ,Mµ〉 ∈ S+, then if we may define Fs = {f(γ,q,s|ν)|ν ∈ S∩µ, q ∈
Js|ν , γ ≤ ν}, Es = {〈ν,Ms|ν , p(s|ν), h̃s|ν〉|ν ∈ S ∩ µ}, Gs = {〈〈s|ν, q〉,Λ(q, s|ν〉|q ∈
Js|ν , ν ∈ S ∩ µ}. We then have:

Lemma 3.22 (i) Es, Fs, Gs are uniformly ∆1(Js) for s ∈ S+;
(ii) µ′ < µ =⇒ Eµ′ , Fµ′ , Gµ′ ∈ Js.

Lemma 3.23 Let f : s̄ =⇒ s with q ∈ Js̄, f(q̄) = q. Then
(i) If f is cofinal then |f | : 〈Js̄,Λ(q̄, s̄)〉 −→Σ1 〈Js,Λ(q, s)〉;
(ii) Otherwise: |f | : 〈Js̄,Λ(q̄, s̄)〉 −→Σ0 〈Js,Λ(q, s)〉

Proof: (i) It suffices to show that |f |(Λ(q̄, s̄)∩ τ̄) = Λ(q, s)∩ f(τ) for arbitrarily
large τ < νs̄. However this follows from the last lemma and 3.21.

However, if λ̄ ∈ Λ(q̄, s̄), then Λ(q̄, s̄) ∩ λ̄ = Λ(q̄, s̄|λ̄) by Lemma 3.20, and
by the last lemma, if f(λ̄) = λ, we have f(Λ(q̄, s̄|λ̄)) = Λ(q, s|λ) = λ ∩ Λ(q, s)
(with the latter equality by Lemma 3.20 again). If Λ(q̄, s̄) is unbounded in ν s̄,
this suffices; if it is empty or bounded, then the Lemma 3.21 takes care of these
cases.

For non-cofinal maps (ii) we still have, if λ(f) = µ, that

|f0| : 〈Js̄,Λ(q̄, s̄)〉 −→Σ1 〈Js|µ,Λ(q, s|µ)〉

where f0 = red(f). But Λ(q, s|µ) = µ ∩ Λ(q, s), and |f0| = |f |. Q.E.D.

The Cs sets may be decomposed into a finite sequence of sets of the form
Λ(lis, s).
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Definition 3.24 Let s ∈ S+, η ≤ νs. liηs < νs is defined for i < mηs ≤ ω by
induction on i :

l0ηs = 0; li+1
ηs ' max(η ∩ Λ(liηs, s)).

We also write li for liηs if the context is clear; also we set lis ' liνss; ms = mνss.

Some facts about this definition may be easily checked:
Fact • liηs ≤ li+1

ηs (i < mηs) is monotone • i > 0 −→ liηs ∈ η ∩ Cs.
• Let liηs be defined, and suppose liηs < µ ≤ η. Then liηs = liµs.

(The last here is by induction on i.)

Lemma 3.25 Let f : s̄ =⇒ s. (i) If λ = λ(f) then liλs ' f(lis̄);
(ii) let η < νs̄, f(η̄) = η; then liηs ' f(liη̄s̄).

Proof (i) By induction on i. If i = 0 this is trivial. Suppose i = j + 1.
Then, as inductive hypothesis ljλs = f(ljs̄), and thus |f | : 〈Js̄,Λ(ljs̄, s̄)〉 −→Σ1

〈Js|λ,Λ(ljλs, s|λ)〉, by the last lemma, as |red(f)| = |f |. However Λ(ljλs, s|λ) =

λ ∩ Λ(ljλs, s), by 3.20. Hence: f(lis̄) ' f(max Λ(ljs̄, s̄)) ' max(λ ∩ Λ(ljλs, s)) ' liλs
with the middle equality holding by Lemma 3.21(iii). (ii) is proved similarly.
Q.E.D.

Corollary 3.26 (i) Let f : s̄ =⇒ s cofinally. Then lis ' f(lis̄).
(ii) Let λ ∈ Cs. Then liλs ' lis|λ.

Proof (i) is immediate. For (ii) choose f : s̄ =⇒ s with λ = λ(f), and set
f0 = red(f). Then liλs ' f(lis̄) ' f0(lis̄) ' lis|λ with the last equality holding from

(i). Q.E.D.

Lemma 3.27 Let η ≤ ν, λ = min(C+
s \η). Then lis ' liλs ' liηs (for any i < ω for

which either side is defined).

Proof Induction on i, again i = 0 is trivial. Suppose ljs = ljηs = ljλs and i = j+ 1.

Set l = ljηs, then we have: Λ(l, s) ∩ η = Λ(l, s) ∩ λ, since Λ(l, s) ⊆ Cs and
Cs ∩ [η, λ) = ∅. Suppose, without loss of generality that liηs is defined. Then
liηs = max(η ∩ Λ(l, s)) = max(λ ∩ Λ(l, s)) = liλs = lis|λ. Q.E.D.

Lemma 3.28 Let j ≤ i < ms. Set l = lis. Then ljs ∈ ran(f0,l,s).

Proof Set f = f(0,l,s). Suppose f : s̄ =⇒ s, and λ = λ(f). Then ljλs ' f(ljs̄)

by Lemma 3.25(i). But ljs exists, and ljs < λ ≤ νs. Hence ljs = ljλs = f(ljs̄). Q.E.D.

Importantly the 〈ljλs〉 sequences are finite.
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Lemma 3.29 Let s ∈ S+, η ≤ νs. Then mηs < ω.

Proof Suppose this fails. Then for some η ≤ νs we have that liηs is defined for
i < ω. Let λ = min(C+

s \η). then liλs = liηs by Lemma 3.27. Choose f : s̄ =⇒ s
with λ = λ(f). Then liλs = lis|λ = f(lis̄) for i < ω by Cor. 3.26(ii) & Lemma

3.25(i). Taking λ for νs, we assume, without loss of generality, that lis is defined
for i < ω for some s ∈ S. We obtain an infinite descending chain of ordinals by
showing that as i increases, and with it lis, the maximal βi that must be contained
in the range of any f :=⇒ s together with lis in order for ran(f) to be unbounded
in s strictly decreases. This is absurd.

Set l = lis. Define: βi = βis =df max{β|λ(f(β,l,s)) < νs}. By the definition
of li+1

s we have that λ(f(β,l,s)) < νs ←→ λ(f(β,l,s)) ≤ li+1
s . Furthermore, by the

definition of βi :
(1) λ(f(βi,l,s)) ≤ li+1

s ;
(2) λ(f(βi+1,l,s)) = νs.

Claim βi+1 < βi for i < ω.
Proof Set f = f(βi+1,li+1,s). Then λ(f) = li+2, dropping the subscript ν. Let

f : s̄ =⇒ s. Then ljs̄ exists and f(ljs̄) = lj
li+1,s

= ljsfor j ≤ i+ 1 since lj < li+1 < νs
(with the first equality from Lemma 3.25(i) and (1), the second from Lemma
3.27).

(3) βi ≥ βi+1.
Proof of (3): Suppose not, then (β i+1)∪{li} ⊆ ran(f). Hence ran(f(βi+1,li,s)) ⊆
ran(f). hence by (2), λ(f) = νs > li+2. Contradiction!

(4) βi 6= βi+1.
Proof of (4): Suppose not. As β i+1 is the first ordinal moved by f we conclude
that f(βi) > βi. Set g = f(βi,l,s), ḡ = f(βi,l̄,s̄) where l̄ = lis̄ . Then g = fḡ,

since f � βi = id, f(l̄) = l(= lis̄). Hence li+1 = λ(g) = λ(fḡ) < li+2 = λ(f).
Hence λ(ḡ) < νs̄. Now we set: g′ = f(f(βi),l,ν) and g0 = f(βi,l,s|li+2). If further

f0 = red(f), then we have also g0 = f0g by 3.15(iv). As li+1 = λ(g) < li+2,
Lemma 3.16(ii) applies and:

f(β(ḡ)) = f0(β(ḡ)) = β(g0) = β(g) = βi.
Hence βi ∈ ran(f) which is a contradiction. This proves the Claim and hence
the Lemma. Q.E.D.

We now set lηs = lm−1
ηs , where m = mηs. Again we write ls for lνss. Notice

that then Λ(lηs, νs)∩η is either unbounded in η or is empty. We first analyze the
latter case.

Lemma 3.30 Suppose Λ(lηs, s) ∩ η = ∅. Set l = lηs. Then:

21



(i) l = 0 −→ Cs ∩ η = ∅,
(ii) l > 0 −→ l = max(Cs ∩ η),
(iii) η ∈ C+

s −→ η = λ(f(0,l,s)).

Proof Set ρ = min(C+
s \(l + 1).

(1) l = lρs.
Proof: Set n = mηs − 1. Then l = lnηs < l + 1 < η. Hence (by Fact after 3)

l = lnl+1,s. But Λ(l, s)∩(l+1) = ∅. Hence ln+1
l+1,s is undefined and l = ll+1,s. Hence

l = lρ,s by Lemma 3.27. Q.E.D.(1)

(2) λ(f(0,l,s)) = ρ.
Proof: Choose f : s̄ =⇒ s, with λ(f) = ρ witnessing that ρ ∈ Cs. Then,
by Lemma 3.25(i), f(ls̄) = lρs = l. Set l̄ = ls̄. Now note that we must
have that λ(f(0,l̄,s̄)) = s̄. For, if this failed then f(λ(f(0,l̄,s̄))) = λ(f(0,l,s)) < ρ

by Lemma 3.16 and so the latter is in C+
s ∩ (l, ρ), which is absurd! Then

λ(f(0,l,s)) = λ(ff(0,l̄,s̄)) = λ(f) = ρ. Q.E.D.(2)

From (2) and the definition of l as lηs) it follows that ρ ≥ η . There are thus
three alternatives:

If l = 0 then (i) holds: ρ = min(C+
s \1) = min(C+

s ) ≥ η. If l > 0 then
l = max(Cs ∩ η) since (Cs ∩ η)\(l + 1) ⊆ (Cs ∩ ρ)\(l + 1) = ∅ and thus we have
(ii); finally for (iii) if η ∈ C+

s −→ η = max(C+
s \(l + 1) = ρ = λ(f(0,l,s)). Q.E.D.

We now get a characterisation of the closed sets C+
s .

Lemma 3.31 Let λ be an element or a limit point of C+
s . Let l = lλs. Then there

is β such that λ = λ(f(β,l,s)). Hence Cs is closed in νs, and C+
s = {λ(f(β,l,s)) |

β ≤ νs, l < νs}.

Proof Case 1 λ ∩ Λ(l, s) = ∅
Then Cs ∩ λ = ∅ or l = max(Cs ∩ λ) by the last lemma. Hence λ is not a

limit point of C+
s . Hence λ ∈ C+

s , and thus λ = λ(f(0,l,s)) by (iii) of that lemma.
Case 2 λ ∩ Λ(l, s) is unbounded in λ.
Given µ ∈ Λ(l, s)∩λ, let βµ be such that λ(f(βµ,l,s)) = µ. Then λ(f(β,l,s)) = λ

where β = supµ βµ.
The last sentence is immediate from the previous one. Q.E.D.

We remark that we have just shown that the first conjunct of (i) of Theorem
3.2 holds. We move towards proving the other clauses. The following is (iii).

Lemma 3.32 λ ∈ Cs −→ λ ∩ Cs = Cs|λ.
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Proof Assume inductively the result proven for all ν ′ with ν ′ < νs and s|ν ′ ∈ S,
(that is, the lemma is proven with s|ν ′ replacing s) and we prove the lemma for
νs by induction on λ. Let l = lλs. Hence by Cor.3.26 l = ls|λ. By Lemma 3.31
λ ∈ Λ(l, s). Set Λ = λ ∩ Λ(l, s). Then by Lemma 3.20(ii) Λ = Λ(l, s|λ).

Case 1 Λ = ∅.
If l = 0, then Cs|λ ⊆ λ ∩ Cs = ∅ (the latter by Lemma 3.30). If l > 0,

then l = ls|λ = max(Cs|λ ∩ λ) = max(Cs|λ) = lλs = max(λ ∩ Cs) by the same
lemma. As l < λ, we use the inductive hypothesis on λ: l ∩ Cs = Cs|l = l ∩ Cs|λ
where the second equality is the inductive hypothesis taking λ = ν ′ < νs. Hence
Cs|λ = λ ∩ Cs = Cs|l ∪ {l}.

Case 2 Λ is unbounded in λ.
Then µ ∈ Λ −→ µ ∈ Cs ∩ Cs|λ. Hence by the overall inductive hypothesis

Cs|µ = µ∩Cs|λ and (as µ < λ) Cs|µ = µ∩Cs. Hence Cs|λ = λ∩Cs =
⋃
µ∈ΛCs|µ.

Q.E.D.

Now (i) of the Theorem follows easily:

Lemma 3.33 sup(Cs) < νs −→ cf(νs) = ω.

Proof Let l = sup(Cs) = ls. Then ran(f(0,l,νs)) is countable, and cofinal in νs.
Q.E.D.

Lemma 3.34 Let f : s̄ =⇒ s. Then |f | : 〈Js̄, Cs̄〉 −→Σ0 〈Js, Cs〉.

Proof: It suffices to show that for arbitrarily large τ < νs̄ that |f |(Cs̄ ∩ τ) =
Cs ∩ |f |(τ). As usual we continue to write “f” for “|f |”. Set ls̄ = l̄.

Case 1 Λ(l̄, νs̄) is unbounded in Cs̄.
If λ̄ ∈ Cs̄ and λ = f(λ̄) then by 3.21 (and 3.20) λ ∈ Λ(f(l̄), s) ⊆ Cs. By

Lemma 3.22 we have Es̄|λ̄ ∈ Js̄ and f(Es̄|λ) = Es|λ. By Lemma 3.30 C
s̄|λ̄ =

{λ(f(0,l,s̄)) < λ̄|l < λ̄} ∈ Js̄ and is uniformly Σ0 from Es̄|λ̄over Js̄. Consequently

|f |(Cs̄|λ) = Cs|λ, by Σ1-elementarity of |f |. But Cs̄|λ = λ ∩ Cs̄|ν̄ , Cs|λ = λ ∩Cs.
Case 2 Λ(l̄, ν̄) = ∅.
Let f(l̄) = l. Then l = lλν where λ = λ(f). However λ(f0,l̄,s̄) = νs̄ by our

case hypothesis. Thus λ(f(0,l,s)) = λ(ff(0,l̄,s̄)) = λ. Hence Λ(l, ν) ∩ λ = ∅. By
Lemma 3.30 we are reduced to the following two subcases:

Case 2.1 l̄ = l = 0. Then, Cs̄ = Cs ∩ λ = ∅, and so the result is trivial.
Case 2.2 l̄ = maxCs̄. Then l > 0 and thus l = max(Cs ∩ λ). Hence for

sufficiently large τ̄ > l̄ f(τ̄ ∩ Cs̄) = f(Cs̄) = f(Cs̄ ∩ l̄ ∪ {l̄}) = (Cs ∩ l) ∪ {l} =
Cs ∩ λ = f(τ̄) ∩Cs. Q.E.D.
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We now proceed towards calculating the order types of the Cs-sequences. This
is done (in a somewhat speedy manner) in [1], but the following comes from [9].
We first generalise the definition of β i.

Definition 3.35 For η ≤ νsset : βiηs ' max{β|λ(f(β,liηs,s)
) < η}.

In very close analogy to the βi = βis we have parallel properties for the β iηs:

1. λ(f(β,liηs,s)
) < νs ←→ λ(f(β,liηs,s)

) ≤ li+1
ηs .

2. βiηs is defined if and only if li+1
ηs is defined - i.e. i+ 1 < mηs.

3. βiηs ' βiλs if λ = min(C+
s \η). λ(f(β,liηs,s)

) < η ←→ λ(f(β,liηs,s)
) < λ.

4. βi+1
ηs < βiηs when defined. (By the same argument as for β i+1 < βi.)

Now we set bη = bηs =df {βiηs|i+ 1 < mηs}. For η ∈ Cs we then set dη = dηs =df

bη+s where η+ = min(C+
s \(η+1)). The subscript s on ordinals remains unaltered

throughout the rest of the proof so we shall drop it. Then we have:

5. Let η ∈ Cs, with liη+ < η. Then by induction on i: liη+ = liη.

6. Let η ∈ Cs, with liη+ < η then:

li+1
η+ = η if η ∈ Λ(liη, s), and = li+1

s otherwise .

Proof of 6: liη+ = liη by 5. If η ∈ Λ(liη, s) then η is maximal in this set below

η+. So the first alternative holds. Note that i 6= mηs − 1 (otherwise by Lemma
3.31 for some β, η = λ(f(β,liηs,s)

) ∈ Λ(liη , s)). Thus li+1
η is defined and li+1

η+ must
equal this.

Lemma 3.36 Let η, µ ∈ Cs, with η < µ. Then dη <
∗ dµ.

Proof Let η+ = min(C+
s \(η+ 1)), µ+ = min(C+

s \(µ+ 1)). Let i be maximal so
that liµ+ = liη+ .Then βj

µ+ = βj
η+ for j < i. As liµ+ ≤ η < µ, we have by 6. above

that li+1
µ+ is defined and li+1

µ+ = µ or li+1
µ . Moreover then βiµ+ is defined, and by

maximality of i, li+1
η+ 6= li+1

µ+ .

Claim li+1
η+ < li+1

µ+ .

That li+1
µ+ < η+ is ruled out: otherwise li+1

η+ = li+1
µ+ again). So li+1

η+ < η+ ≤ li+1
µ+ .

Q.E.D. Claim.
As βiµ+ is defined, if βiη+ is undefined, then we’d be finished. Set l = liµ+ = liη+ .

Then λ(f(βi
η+ ,l,s)

) = li+1
η+ and λ(f(βi

µ+ ,l,s)
) = li+1

µ+ . Hence βiη+ < βiµ+ and thus

dη <
∗ dµ as required. Q.E.D.

24



Lemma 3.37 Let α be p.r. closed so that for some α0 < α λ(f(α0,0,s)) = νs.
Then ot(Cs) < α.

Proof: First note that ot(〈[α]<ω, <∗〉) = α. Let α0 < α be such, with the
property that λ(f(α0 ,0,s)) = νs. Then {βiηs | η ≤ νs, i + 1 < mηs} ⊆ α0. Thus
ot〈{dη | η ∈ Cs}, <∗〉 ≤ ot(〈[α]<ω , <∗〉) < α. Thus ot(Cs) < α. Q.E.D.

To obtain the requisite 〈Cν | ν ∈ S〉 for a Global sequence in K, we assign
the appropriate level Kβ(ν) as Ms over which ν is definably singularised. Then
s = 〈ν,Kβ(ν)〉 ∈ S+. Q.E.D.(Global �)

4 Obtaining Inner Models with measurable cardinals

We assume that we have a Global � sequence 〈Cν |ν ∈ S〉 in K constructed as in
the last section. We have:

Theorem 4.1 Assume n > 3 and {α < ωn | α ∈ Cof(ωn−2)∩K-Sing} is, in V ,
stationary below ωn. Then

Tn =df {β ∈ Cof(ω1) ∩ ωn | ot(Cβ) ≥ ωn−3}

is stationary in ωn.

Proof Let C ⊆ ωn be an arbitrary closed and unbounded set in ωn. Take
γ ∈ C∗ ∩ Cof(ωn−2) with γ a K-singular; in other words with Cγ defined. As
cf(γ) > ω, Cγ is cub in γ. Then C ∩ Cγ is closed unbounded in γ of ordertype
≥ ωn−2. Take β ∈ (C ∩ Cγ)∗ such that cf(β) = ω1 and ot(C ∩ Cγ ∩ β) ≥ ωn−3.
By the coherency property 3.1(c), Cβ = Cγ ∩ β. Thus β ∈ C ∩ Tn 6= ∅. �

Note that (Tn)3<n<ω as above would be a sequence of sets to which we could
apply the MS-principle, if we knew that they were (in V ) stationary beneath the
relevant ℵn. This is what the assumption in the above theorem achieves. The
following is essentially our main Theorem 1.4.

Theorem 4.2 If MS((ℵn)1<n<ω, ω1) holds then there exists k < ω so that for
all n > k, there is Dn, closed and unbounded in ωn, so that

Dn ∩ Cof(ωn−2) ⊆ {α < ωn | oK(α) ≥ ωn−2}.

Proof: We suppose not. Then for arbitrarily large n < ω S0
n =df {α < ωn |

α ∈ Cof(ωn−2) ∧ SingK(α)} is stationary in ωn by appealing to Mitchell’s Weak
Covering Lemma for K, 1.7.

25



We shall define a sequence (Sn)1<n<ω of stationary sets. By Theorem 4.1, for
arbitrarily large n < ω, Tn is stationary in ωn; for such n (which we shall call
relevant) let Sn = Tn; for all other n > 1 take Sn = Cof(ω1) ∩ ωn.

Define the first-order structure A = (Hωω+1
,Kωω+1 ,∈,C, 〈fn〉n<ω, · · · ) with

a wellordering C of the domain of A, and the sequence of finitary functions fn
including a complete set of skolem functions for A. The mutual stationarity
property yields some X ≺ Hωω+1

such that

{ωn | n ≤ ω} ⊆ X, ∀n > 2 (supX ∩ ωn) ∈ Sn, and ω2 ⊆ X.

(We may assume without loss of generality the latter clause, since a direct
argument shows that all ordinals less than, say, ωk may be added to the hull X
without increasing the supX ∩ ωn for any n > k. (This goes as follows: let X0

be a hull that satisfies the MS property and the first two requirements above:
{ωn | n ≤ ω} ⊆ X0, ∀n > 2 (supX0 ∩ ωn) ∈ Sn. We now consider the enlarged
hull of X =df X0 ∪ωk in A. Let n > k. Consider for each m, and each ~x ∈ [X0]p,

sup{fm(~ξ, ~x) ∩ ωn | ~ξ ∈ [ωk]
l} where we have assumed that fm is l + p-ary. But

this is a supremum definable in X0 from fn, ~x, ωn, and ωk. Hence it is less than
sup(X0 ∩ ωn). By choice of 〈fn〉, every y ∈ X is of the form fm(~ξ, ~x) so this
suffices.)

Let π : (H̄,K,∈, . . .) ∼= (X,K ∩ X,∈, . . .), be the inverse of the transitive
collapse, and βn =df π

−1(ωn) for n ≤ ω. For each 2 < n < ω : βn > ℵ2 and
cof(βn) = ω1. Let β∗n =df sup(π“βn). We now consider the coiteration of K
with K. Let ((Mi, πi,j , νi)i≤j≤θ , (Ni, σi,j , νi)i≤j≤θ) be the resulting coiteration
of (K,K).

(1) The first ultrapower on the K side is taken after a truncation. In fact
π0,1 : M∗0 −→M1, where π 6= id and M ∗0 is a proper initial segment of K.
Proof: Note that β3 is a cardinal of H, whilst Kβ3 = K̄β3 as X ∩ ω3 is transi-
tive. However cf(β3) = ω1 and is thus not a true cardinal of K (by the Covering
Lemma for K). Hence the first action of the comparison will be a truncation on
the K side to a structure M ∗0 in which β3 is a cardinal., and thence the ultrapower
map π0,1 as stated. Q.E.D.(1)

(2) On the K side of the coiteration all the maps σi,j are the identity:
∀i ≤ θNi = K.
Proof: Suppose this is false for a contradiction and let ιbe the least index where
an ultrapower of Nι = K is taken by some EN

νι with critical point κι. On the K
side let ζ be least so that P(κι) ∩Mι‖ζ = P(κι) ∩Nι. Let us set M ∗ to be this
Mι‖ζ. (Note that no truncation is taken in the comparison on the K side.). Note
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that since M ∗0 was a truncate of K, we have that thereafter each Mi is sound
above κi and that ωρn+1

Mi
≤ κi < ωρnMi

for some n = n(i).

As ENνι is a total measure on Nι = K we have that Ẽ =df E
K
π(νι)

= π(ENνι ) is

a full measure in K with critical point κ̃ =df π(κι).
We apply the measure EN

νι to M∗ itself and form the fine structural ultrapower

M̃ = Ult∗(M∗, ENνι ) with map t : M ∗ −→ M̃ . Note that by the weak amenability

of ENνι , M̃ ∩ P(κι) = M∗ ∩ P(κι), and that t is Σ
(n)
0 and cofinal.

We should like to compare M ∗ with M̃ but for this we need the following
Claim.

Claim 1 M̃ is normally iterable above κι.
Proof: First note:
(i) M∗ and K agree up to νι, hence if Eι is the extender sequence on Mι we

have that π � JEινι : JEινι −→ JE
K

eν cofinally for ν̃ =df supπ“νι.
(ii) cf(νι) > ω and hence we have a canonical extension π∗ ⊇ π � JEινι with

π∗ : M∗ −→ M ′ with ωρn+1
M∗ ≤ κι < ωρnM∗ implying that ωρn+1

M ′ ≤ κ̃ < ωρnM ′ ,

M ′ sound above κ̃, and π∗ Σ
(n)
0 preserving.

Proof: Note that cf(νι) = cf(κ+Mι
ι ) > ω since otherwise we have that κ+Mι

ι is
a K cardinal, which H will think, by Weak Covering, has uncountable cofinality
equal to some βi. As cf(βi) = ω1 it would be a contradiction to have cf(νι) = ω.
By the definition of ζ we have that ωρn+1

M∗ ≤ κι < ωρnM∗ for some n and that M ∗

is sound above κι. Consequently νι is definably singularized over M ∗ and we have
the right conditions to apply 2.11 with the other properties mentioned following
from that. Q.E.D.(ii)

(iii) κ̃ a K-cardinal, ωρn+1
M ′ ≤ κ̃, and M ′ sound above κ′ imply that M ′ is an

initial segment of K.
Applying the full measure Ẽ yields σ : K −→Ẽ K̃. Let M̃ ′ = σ(M ′), and this

is also an initial segment of K̃. As π∗ ⊇ π � JEινι we have:

(iv) X ∈ EN
νι ←→ π∗(X) = π(X) ∈ Ẽ.

Defining D(M ∗, ENνι ) the term model for the ultrapower we have:
(v) (a) The map d([f ]) = σ ◦ π∗(f)(κ̃) is a structure preserving map d :

D(M∗, ENνι ) −→ M̃ ′. (a) The map k : M̃ −→ M̃ ′ is Σ
(n)
0 -preserving with

k(κι) = κ̃.
Proof: This is a standard computation for (a), and for (b) note that ωρn+1

M̃ ′
≤

σ(κ̃) < ωρnfM ′ by (ii) and the elementarity of σ. Q.E.D.(v)

By (v)(b) since M̃ ′ is normally iterable above κ̃ M̃ will be normally iterable
above κι, as required. Q.E.D. Claim 1 .
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Claim 2 EN
νι = EM

∗
νι .

Proof: Since M ∗ and M̃ agree up to νι the coiteration of these two is above
κι. By Claim 1 this coiteration is successful with iterations i : M̃ −→ M̃θ and
j : M∗ −→M∗θ say.

(vi) The iteration i of M̃ is above (κ+
ι )
fM = (κ+

ι )M
∗
.

Proof: K,M ∗, M̃all agree up to νι and forming W̃ = Ult(JE
M∗

νι , ENνι ) we see

therefore that it is an initial segment of M̃ . From coherence of our extender
sequences we know that

E
fM � νι = EK � νι = EM

∗ � νι and E
fM
νι = Ø = E

fW
νι .

By the initial segment property of extender sequences we have that there are no

further extenders on the E
fM sequence with critical point κι. Hence all critical

points used in forming the iteration map i are above (κ+
ι )
fM . Q.E.D. (vi)

The rest of the argument is fairly standard.
(vii) M̃θ = M∗θ .

Proof: Let A ∈ Σ
(n)
1 (M∗) in pM∗ be such that A ∩ κι /∈ M∗, and then note

that A ∩ κι /∈ M̃ as they agree about subsets of κι. Hence if the iteration j is
simple, then M ∗θ is not a proper initial segment of M̃θ. But if j is non-simple

then we reach the same conclusion as no proper initial segment of M̃θ can be
unsound. Hence M̃θ is an initial segment of M ∗θ . But again we cannot have that

it is a proper initial segment, since using the Σ
(n)
0 preservation property of t we’d

have A ∩ κi in M∗θ a contradiction as before. Q.E.D. (vii)

(viii) (i) ωρn+1
fM = ωρn+1

M∗ = ωρn+1
M∗θ

.

(ii) If p = pM∗\ωρn+1
M∗ then i ◦ t(p) = pM∗θ ,n+1.

(iii) t is Σ∗-preserving.
Proof: These are standard arguments from the proof of solidity for mice - cf.

[17] p153-4. In (ii) one first sees that i ◦ t(p) ∈ P n+1
M∗θ

; a solidity argument on

witnesses W α,p
M∗ shows that in fact i ◦ t(p) = pM∗θ ,n+1.

(ix) j � κ = id = i ◦ t � κ; however crit(j) = κι.
Proof: As the first clause is immediate, we argue that j(κι) > κι. As j

is an iteration map j(p) ∈ P n+1
M∗θ

. By the Dodd-Jensen Lemma (cf. [17] The-

orem 4.3.9) j(p) ≤∗ i ◦ t(p), and hence by (8)(ii) we have j(p) = i ◦ t(p).
By the soundness of above κι we have that κ = h̃n+1

M∗ (i, ξ, p) for some i < ω,

some ξ < κι. Hence j(κι) = h̃n+1
M∗θ

(i, ξ, j(p)). As j(p) = i ◦ t(p) we have
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j(κι) = i ◦ t(h̃n+1
M∗ (i, ξ, p)) = i ◦ t(κι) > κι. Q.E.D. (ix)

Hence κι is the first point moved by j and thus some measure EM∗
γ is applied

as the first ultrapower on the M ∗ side of the coiteration with crit(EM∗
γ ) = κι

and γ least with EM∗
γ 6= E

fM
γ . As EM

∗ � νι = E
fM � νι and (see the proof of (vi))

E
fM
νι = Ø we must have γ = νι here. But then

X ∈ EM∗νι ←→ κι ∈ j(X)←→ κι ∈ i ◦ t(X)←→ κι ∈ t(X)←→ X ∈ EN
νι .

Hence EN
νι = EM

∗
νι which is our Claim 2 . Q.E.D. (2)

At the θ’th stage therefore, Mθ is an end extension of K. For n < ω, let in
be the least stage i where κi ≥ βn if such an i exists, otherwise set in = θ. Let
k0 < ω be the least k such that any truncations performed on the K iteration
have been performed before stage ik. We may also assume that from this point
ik0 on then, that the least m > 0 with ωρmMι

< κι is fixed for all ι ≥ ik0 ; for
this m then, we set ρ = ωρmMι

for any ι ≥ ik0 , and we shall have that any Mi

is sound above κi for ι ≥ ik0 , and thus that Mι = h̃
m

Mι
(κι ∪ {pMι}). Further by

choice of m note that for n > k0, ρm−1
Min

> κin ≥ βn. As we have in the iteration

that πi,j(〈dMi , pMi〉) = 〈dMj , pMj 〉, and parameters are finite sequences, we may
further assume that k0 has also been chosen sufficiently large so that for any
n ≥ k0: (i) dMin

, pMin
∩ [βn−1, βn) = Ø, (ii) k0 is itself relevant.

(3) Suppose 〈κi|i < in〉 is unbounded in βn, where n is relevant . Then for no
i0 < in do we have πi0,i(κi0) = κi for unboundedly many κi < κin .

Proof: If the conclusion failed then we should have πi,j(κi) = κj for an ω1-
sub-sequence of the sequence of critical points 〈κi|i < in〉; let us choose such
an ω1-sub-sequence, and call the set of its elements D with the choice of D en-
suring that D is closed below βn. These are all inaccessible in K. Applying π,
if we set D = π“D, then we have that D is a cub set of order type ω1 below
β∗n of K-inaccessibles. Note that π is continuous on D since H is correct about
whether any ordinal α has cofinality ω or not, since all the βn(n < ω) have
uncountable cofinality; hence, easily, if κλ is a limit point of D, then it has co-
finality ω in H. If f : ω −→ κλ is the least function in H witnessing this, then
π(κλ) = π(sup{f“ω}) = sup{π(f(n))|n ∈ ω}. (We are using here that the MS
property is formulated using all the ℵn’s and not just a subsequence.) But n
is relevant so β∗n is singular in K, but of uncountable cofinality. Thus the closed
Cβ∗n sequence of K of K-singular ordinals, has non-empty intersection with D,
which is absurd.
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(4) If n ≥ k0 is relevant then βn is Σ
(m)
1 singularised over Min and the latter

is sound above βn.
Proof: The last conjunct follows from the definition of in : Min is sound above

κ̃ =df sup〈κi|i < in〉 Divide into the two cases of κ̃ < βn or κ̃ = βn. In the first

case then Min = h̃
m

Min
(κ̃ ∪ {pMin

}) and hence βn is so singularised over Min ; in
the second case take δ < βn, δ ≥ ωρMin

. Take i minimal such that κi ∈ [δ, βn).

Then Mi = h̃
m

Mi
(δ ∪ {pMi}) and in particular κi ∈ h̃

m

Mi
(δ ∪ {pMi}). By (3) take

γ < βn such that whenever κj ∈ (γ, βn) then κj 6= πij(κi), and take some index

j such that κj ∈ (γ, βn). By elementarity, πij(κi) ∈ h̃
m

Mj
(δ ∪ {pMj}). Since

κj > πij(κi), the point πij(κi) is not moved in the further iteration past stage j,

and so πij(κi) ∈ h̃
m

Min
(δ ∪ {pMin

}). We thus have that

(∗) ρ > αβn =df max{α | sup(h̃
m

Min
(α ∪ {pMin

}) ∩ βn) = α}.

But now there must be some γ < βn with sup(h̃
m

Min
(γ ∪ {pMin

}) ∩ βn) = βn.
Because if this failed we could choose a sequence

γ0 = ρ, γi+1 = sup(h̃
m

Min
(γi ∪ {pMin

}) ∩ βn) < βn, and take γ = sup
i
γi.

As cf(βn) > ω, γ < βn. However we have then that

γ = sup(h̃
m

Min
(γ ∪ {pMin

}) ∩ βn) < βn

and simultaneously γ > αβn . Contradiction! (4) is thus proven. Q.E.D.(4)

(5) If n is relevant, then in the notation of (4), if m > 1 then for no smaller

m′ < m is βn Σ
(m′−1)
1 singularised over Min .

Proof: Just note that as ρm
′−1

Min
≥ ρm−1

Min
> βn, any purported Σ

(m′−1)
1 -

singularisation over Min yields a cofinalising function in Min . This is absurd
as βn is regular in Min . Q.E.D.(5)

We thus have, by (4), that for relevant n, sn =df 〈βn,Min〉 ∈ S+. We therefore
have Csn sequences associated to such sn as in the Global � proof of the previous
section.

(6) For relevant n ≥ k0, we have ot(Csn) ≤ β̃ where β̃ is the least p.r.closed
ordinal above βk0 .

Proof: Set i = ik0 ; j = in. Then by the usual property of ultrapowers
πi,j“ωρ

m−1
Mi

is cofinal in ωρm−1
Mj

.
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Set s = sk0 and let δ = δk0 be least such that λ(f(δ,0,s)) = βk0(= νs) where
f(δ,0,s) =⇒ s. Then δ < βk0 . Let Y =df πi,j“ran(f ∗(δ,0,s)). As ran(f ∗(δ,0,s)) is

a Σ
(m−1)
1 hull in Ms(= Mi) we have that Y is a Σ

(m−1)
1 hull in Mj(= Msn).

We note that αs , αsn (in the sense of Definition 3.5 f)) are below ρ by (∗) of

(4). Consequently if we define Ỹ =df ran(f∗(βk0
+1,0,sn)) then Ỹ is a Σ

(m−1)
1 hull

of Mj. However Ỹ ⊇ Y , as πi,j(ps, ds) = psn , dsn , πi,j is Σ
(m−1)
1 -preserving,

and πi,j � βk0 = id. (We need Lemma 2.8 here on the preservation of the ds
parameters under iteration.)

By choice of δ and Lemma 3.12 ρ(f(δ,0,s)) = ωρs. Hence Y is cofinal in ωρsn .

However then Ỹ is also so cofinal. That is ρ(f(βk0
+1,0,sn)) = ωρsn which again

by Lemma 3.12 implies λ(f(βk0
+1,0,sn)) = νsn = βn. By Lemma 3.37 this implies

ot(Csn) ≤ β̃. Q.E.D.(6)

For relevant n we form the “lift-up” map π∗n : Min −→ M∗n which extends

π � (K|β+
n ) (where β+

n = (β+
n )K). We obtain the structure M ∗n and the map π∗n

as a pseudo-ultrapower.

(7)(a) For relevant n, π∗n is Σ
(m−1)
1 -preserving, and β∗n is Σ

(m−1)
1 -singularised

over M∗n; further, if m > 1, then for no smaller m′ < m, is β∗n is Σ
(m′−1)
1 -

singularised over M ∗n.
(b) M∗n is normally iterable above β∗n.

Proof : (a) The Pseudo-Ultrapower Theorem 2.11 (with k = m − 1) shows

the right degree of elementarity of π∗n, i.e. that it is Σ
(m−1)
0 preserving. It

further states that the map is cofinal and thus Σ
(m−1)
1 -preserving, and that

it yields that β∗n is Σ
(m−1)
1 -singularised over M ∗n, whilst β∗n is Σ

(m′−1)
1 -regular

over M∗n for any m′ < m (if m > 1). For (b) this is a standard argument
about canonical extensions defined from pseudo-ultrapowers using the fact that
cf(βn) = cf((βn)+Mn) > ω. (Note cf(β+

n )K = ω1, either because (β+
n )K =

(β+
n )H = βn+1, or otherwise by applying the Weak Covering Lemma inside

H : H |=“cf(β+
n )K = βn” , and βn of course has cofinality ω1.) See [17] Lemma

5.6.5. Q.E.D.(7)

(8) M∗n is an initial segment of K.
Proof: Note that by construction M ∗n � β∗n = K � β∗n. By 7(i) ρmM∗n ≤ β

∗
n; again

the pseudo-ultrapower construction shows M ∗n is sound above β∗n and hence is

coded by a Σ
(m−1)
1 (M∗n) subset of β∗n, A say. An elementary iteration and com-

parison argument shows that, when K is compared with M ∗n, to models Nη,M
∗
η
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then A is Σ
(m−1)
1 definable over Nη, and thus is in K itself. As M ∗n is a mouse in

K, its soundness above β∗n implies that after any supposedly necessary coitera-
tion, we must have Nη = M∗η and hence core(N1) = core(Nη) = core(M ∗η ) = M∗n.
Hence M ∗n is an initial segment of K. Q.E.D.(8)

(9)(a) s∗n = 〈β∗n,M∗n〉 ∈ S+;
(b) M∗n is the assigned K-singularising structure for β∗n; hence in K, Cβ∗n

is defined over M ∗n, that is Cβ∗n =df Cs∗n .
Proof: For (a), by (7)(a) M ∗n singularises appropriately, it is sound above β∗n,

and by (8) it is a mouse. For (b) we have shown that M ∗n is an initial segment
of K, and thus conforms to the definition of the segment chosen to define the
canonical C-sequence associated to β∗n in K. Q.E.D.(9)
We thus conclude:

(10) For relevant n ≥ k0 ot(Cβ∗n) ≤ π(β̃) < π(βk0+1) = ωk0+1.

Proof: By (6) ot(Csn) ≤ β̃ because h̃sn(βk0 + 1, p(sn)) is cofinal in ωρsn =

ωρm−1
Min

. Set β′ = π∗n(βk0 +1).By the Σ
(m−1)
1 -elementarity of π∗n we shall have that

π∗n“h̃sn(βk0 + 1, p(sn)) ⊂ h̃s∗n(β′, p(s∗n)). As π∗n � ωρsn is cofinal into ωρs∗n , we
deduce that ρ(f(β′,0,s∗n)) = ωρs∗n . By Lemma 3.12 this ensures that λ(f(β′,0,s∗n)) =
νs∗n = β∗n. This in turn implies by Lemma 3.37, that ot(Cs∗n) is less than the least
p.r. closed ordinal greater than β ′. However π∗n � β+

n extends π � β+
n , and thus

this ordinal is π(β̃). The final inequality is clear.

Now (10) yields the final contradiction, as for relevant n, Sn was chosen to
consist of points β where ot(Cβ) ≥ ωn−3, whereas (10) establishes an ultimate
bound on such order types of ωk0+1. Q.E.D.(Theorem 4.2)

We finally remark that the Corollary 1.5 is immediate: after shifting our
attention to cardinals above ℵk we still use the same hypothesis concerning suf-
ficient singular ordinals in K in order to establish the stationarity of the Tn now
contained in Cof(ωk). We take ωk ⊆ X and now the analogues of the ordinals
βn have cofinality ωk; H is correct about the cofinality of any ordinal whose V -
cofinality is less than ωk. The proof of (3) now shows that there is no closed ωk
subsequence of critical points κi unbounded in such a βn, as the map π is now
continuous at points of cofinality less than ωk. Hence we can deduce (4) that the
iterates are indeed singularizing structures for the βn as required.
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