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FORCING A MUTUAL STATIONARITY PROPERTY
IN COFINALITY ω1

PETER KOEPKE

(Communicated by Julia Knight)

Abstract. We show that the consistency strength, relative to the system
ZFC, of the mutual stationarity property MS(ℵ3,ℵ5,ℵ7, . . . ; ω1) is equal to

the existence of one measurable cardinal. We also discuss mutual stationarity
for some other configurations of small cardinal parameters.

1. Introduction

The concept of mutual stationarity, introduced by M. Foreman and M. Magidor
[1], allows us to transfer some combinatorial aspects of stationary sets to singular
cardinals.

Definition 1.1. Let (κn)n<ω be a strictly increasing sequence of regular cardinals
� ℵ2 with κω =supn<ωκn. A sequence (Sn)n<ω is called mutually stationary in
(κn)n<ω if every first-order structure A of countable type with κω ⊆ A has an
elementary substructure B ≺ A such that ∀n < ω sup B ∩ κn ∈ Sn.

If (Sn)n<ω is mutually stationary in (κn)n<ω, then, by a standard model-theore-
tic characterisation of stationarity, each Sn ∩ κn is stationary in κn. For the study
of the converse one formulates a mutual stationarity property MS. This property
is dependent on the cofinalities of the ordinals in the stationary sets Sn; we denote
the class {ξ ∈ Ord | cof(ξ) = λ} by Cofλ.

Definition 1.2. Let (κn)n<ω be a strictly increasing sequence of regular cardinals
and let (λn)n<ω be a sequence of regular cardinals such that ∀n < ω λn < κn. The
mutual stationarity property MS((κn)n<ω; (λn)n<ω) is the statement: if (Sn)n<ω is
a sequence of sets Sn ⊆ Cofλn

each of which is stationary in κn, then (Sn)n<ω is
mutually stationary in (κn)n<ω. If (λn)n<ω is the constant sequence λn ≡ λ we
also write MS((κn)n<ω; λ).

In cofinality ω there is a remarkable ZFC result by M. Foreman and M. Magi-
dor [1], whereas in higher cofinalities, and for accessible cardinals κn, the mutual
stationarity property gains large cardinal strength.

Theorem 1.3. For (κn)n<ω a strictly increasing sequence of uncountable regular
cardinals, MS((κn)n<ω; ω) holds.
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Theorem 1.4 (J. Cummings, M. Foreman and M. Magidor [2]; P. Koepke and
P. Welch [5]). The theories ZFC + ∃(κn)n<ωMS((κn)n<ω; ω1) and ZFC + ∃κ κ
measurable are equiconsistent.

Theorem 1.5 (Koepke and Welch [5]).
a) The property MS(ℵ2,ℵ3,ℵ4, . . . ; ω1) implies that there is an inner model with

an inaccessible limit of measurable cardinals. b) The property MS(ℵ3,ℵ5,ℵ7, . . . ; ω2)
implies that there is an inner model with an inaccessible limit of measurable cardi-
nals.

The main result of this paper says that there are, nevertheless, some mutual
stationarity properties in cofinality ω1 for particular sequences of ℵn’s which are
equiconsistent with one measurable cardinal:

Theorem 1.6. Let κ be a measurable cardinal. Then there is a forcing extension
of V in which MS(ℵ3,ℵ5,ℵ7, . . . ; ω1) holds.

In the construction we adapt an argument of Silver’s for forcing Chang’s conjec-
ture with the help of Martin’s axiom MAℵ1 (see paragraph 19 of [3]). Other mutual
stationarities hold in the extension. Previous authors have forced the following from
much stronger large cardinals; see e.g. [6], [7], or [2].

Theorem 1.7. In the above forcing extension (Cofω, Cofω1 , Cofω, Cofω1 , . . .) is
mutually stationary in (ℵ2,ℵ3,ℵ4,ℵ5, . . .).

2. The forcing construction

In our forcing extension, we shall prove a combinatorial principle which is equiv-
alent to the model-theoretic characterisation of our mutual stationarity property.
A standard coding of a structure A ⊇ ℵω by a (Skolem) function F : [ℵω]<ω → ℵω

yields:

Proposition 2.1. MS(ℵ3,ℵ5,ℵ7, . . . ; ω1) is equivalent to the property: for every
function F : [ℵω]<ω → ℵω and every sequence (Sn)n<ω, Sn stationary in ℵ2n+3,
Sn ⊆ cofω1 there exists a set X ⊆ ℵω such that

∀n < ω sup((F ′′[X]<ω) ∩ ℵ2n+3) � sup(X ∩ ℵ2n+3) ∈ Sn.

The following partition property will be crucial in the subsequent proof:

Definition 2.2. Let κ0 < κ1 < . . . be a sequence of infinite cardinals with supre-
mum κ.
a) For x ∈ [κ]<ω let type(x) = (card(x ∩ κn)|n < ω) ∈ ωω; type(x) is called the

type of x. We say that t ∈ ωω is a type if t is of the form type(x) for some
x ∈ [κ]<ω.

b) If t is a type, let [κ]t = {x ∈ [κ]<ω| type(x) = t}.
c) For a ⊆ ω define a projection function � a : [κ]<ω → [κ]<ω by

x � a = {ξ ∈ x| otp(ξ ∩ x) ∈ a}.

d) Let F : [κ]<ω → κ. A sequence (In)n<ω is mutually homogeneous for F if for all
x, y ∈ [

⋃
n<ω In]<ω with type(x) = type(y):

if x ∩ (F (x) + 1) = y ∩ (F (x) + 1), then F (x) = F (y).
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e) The sequence (κn)n<ω is mutually Ramsey if for every function F : [κ]<ω → κ
there exists a mutually homogeneous sequence (In)n<ω such that card(Xn) = κn

for all n < ω.

Obviously, every element of a mutually Ramsey sequence (κn)n<ω is a Ramsey
cardinal. The consistency strength of the existence of a mutually Ramsey sequence
(κn)n<ω is that of one measurable cardinal. Theorem 3.2 of [4] shows:

Proposition 2.3. Let κ be a measurable cardinal. Let (κn)n<ω be a Prikry sequence
adjoined by Prikry forcing with a measure on κ. Then there is an endsegment of
(κn)n<ω which is mutually Ramsey in the Prikry generic extension V [(κn)n<ω].

We can now turn to the

Proof of Theorem 1.6. By the previous proposition we may generically extend the
ground model to a model in which there is a sequence (κn)n<ω of mutually Ramsey
cardinals with supremum κ. Using “small forcing” we may also assume that Mar-
tin’s Axiom MAℵ1 holds in the ground model V . We shall turn κ0 < κ1 < κ2 . . . < κ
into ℵ3,ℵ5,ℵ7, . . . ,ℵω respectively by an appropriate product of Levy collapses. Set
κ−1 = ℵ1. Let

P =
∏
n<ω

Col(κ+
n−1, < κn),

where Col(κ+
n−1, < κn) is the Levy collapse for collapsing κn to κ++

n−1; every condi-
tion r ∈ Col(κ+

n−1, < κn) satisfies dom(r) ⊆ κ+
n−1 × κn. For p ∈ P and n < ω write

pn instead of p(n). P is partially ordered by coordinatewise reverse inclusion:

p � q iff ∀n < ω pn ⊇ qn.

Let G be P -generic over V . V [G] is the intended generic extension, which we
describe by a sequence of claims. The preservation of certain cardinals is proved
by a product analysis of P . Let m < ω and define

P<m =
∏

n<m

Col(κ+
n−1, < κn) and P�m =

∏
m�n<ω

Col(κ+
n−1, < κn),

both ordered by coordinatewise reverse inclusion �. If p ∈ P , then p � m ∈ P<m

and p � (ω \ m) ∈ P�m. Obviously, P�0 = P .
(1) (P�m, �) is < κ+

m−1-complete.
(2) (P<m, �) satisfies the κm−1-chain condition. �

Proof. This is obvious in case m = 0. Let m > 0 and let A ⊆ P<m with card(A) =
κm−1. Every p ∈ P<m may be split into p � (m − 1) ∈ P<m−1 and p(m − 1) ∈
Col(κ+

m−2, < κm−1). Since card(P<m−1) < κm−1 we may assume that p � (m−1) is
the same for all p ∈ A. Since Col(κ+

m−2, < κm−1) satisfies the κm−1-chain condition
there must be p, q ∈ A, p �= q such that p(m − 1) and q(m − 1) are compatible in
Col(κ+

m−2, < κm−1). Since p � (m − 1) = q � (m − 1), p and q are compatible in
(P<m, �). This proves (2). �

(3) Let p ∈ P , p � α̇ ∈ Ord. Then there is some w ⊆ Ord, card(w) < κm−1 and
some q � p such that

q � α̇ ∈ w and q � m = p � m.
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Proof. Define a sequence (pi|i < θ) recursively such that

θ � κm−1 and ∀i < j < θ (pi � p ∧ pj � (ω \ m) � pi � (ω \ m)).

Let k < κm−1 and let (pi|i < k) be defined satisfying the recursive condition. Define
a condition qk ∈ P by

qk
n =

{
pn, if n < m;⋃

i<k pi
n, if n � m.

qk is a condition by the closure properties of P�m. If there is p′ � qk and some
γ ∈ Ord such that p′ � α̇ = γ̌ and ∀i < k p′ � m is incompatible with pi � m, then
let pk be such a p′ and continue. If not set θ = k and stop the recursion.

By construction, (pi � m | i < θ) is an antichain in P<m. Since P<m satisfies the
κm−1-chain condition, θ < κm−1. Define a condition q ∈ P by

qn =
{

pn, if n < m;⋃
i<θ pi

n, if n � m.

Let w = {γ ∈ Ord |∃i < θ pi � α̇ = γ̌}. Then card(w) � θ < κm−1. We show that
q � α̇ ∈ w. Note that q = qθ in the above recursion. Let r � q. Let s � r and
δ ∈ Ord such that s � α̇ = δ̌. Since pθ is not defined there is i < θ such that s � m
and pi � m are compatible. Then s and pi are compatible. Let γ ∈ w such that
pi � α̇ = γ̌. By the compatibility of s and pi we have δ = γ ∈ w and so s � α̇ ∈ w̌.
Thus {s|s � α̇ ∈ w̌} is dense below q and q � α̇ ∈ w̌. This proves (3). �

(4) Let m < ω. Then κm−1 and κ+
m−1 are cardinals in V [G].

Proof. Assume that p ∈ P and p � (ḣ : θ̌ → κm−1 is surjective) for some θ <
κm−1. By the previous claim we can recursively define a �-decreasing sequence of
conditions (qi|i < θ) and sets wi ⊆ Ord such that

card(wi) < κm−1, qi � p, qi � ḣ(̌i) ∈ wi and qi � m = p � m.

By the < κ+
m−1-completeness of (P�m, �) take q ∈ P such that ∀i < θ q � qi. Let

w =
⋃

i<θ wi. Since κm−1 is regular we have card(w) � κm−1 and sup(w) < κm−1.
Then q � range(ḣ) ⊆ w ⊆ sup(w) < κm−1, contradicting that p forces ḣ to be onto
κm−1. Thus κm−1 is a cardinal in V [G].

The argument for κ+
m−1 being a cardinal is virtually the same. This proves

(4). �

(5) Let m < ω. Then no ordinal ξ ∈ (κ+
m−1, κm) is a cardinal in V [G]. This

follows immediately from the basic properties of a Levy collapse.
Hence we obtain the following cardinality pattern in V [G]:
(6) ℵV [G]

1 = ℵV
1 , ℵV [G]

2 = ℵV
2 , ℵV [G]

3 = κ0, ℵV [G]
4 = κ+

0 , . . ., ℵV [G]
2n+3 = κn,

ℵV [G]
2n+4 = κ+

n , . . ., ℵV [G]
ω = κ.

To prove MS(ℵ3,ℵ5,ℵ7, . . . ; ω1) in V [G] consider, in V [G], an F : [ℵω]<ω → ℵω

and a sequence (Sn)n<ω of sets Sn ⊆ cofω1 stationary in κn. Take names Ḟ and
Ṡn and a condition p ∈ P such that

p � (Ḟ : [ℵω]<ω → ℵω and ∀n < ω (Ṡn ⊆ cofω1 ∧ Ṡn is stationary in κn)).

It suffices to “densely show” the existence of a set X ⊆ ℵω such that

∀n < ω sup((F ′′[X]<ω) ∩ ℵ2n+3) � sup(X ∩ ℵ2n+3) ∈ Sn.
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We shall fix the values Ḟ (x) for a large set of x ∈ [κ]<ω. We shall define conditions
p(x) ∈ P such that p(x) � Ḟ (x) = α̌ for some ordinal α < κ. The recursive
definition of the function p(x) will proceed along the well-ordering <∗ of [Ord]<ω

by largest differences :
x <∗ y iff max(xy) ∈ y.

Let t be a type (relative to the sequence κ0 < κ1 < . . . < κ). A sequence (p(x)|x ∈
[κ]t) is called partially constant (p.c.) (below p) if the following two conditions are
satisfied:

(7) ∀x ∈ [κ]t p(x) � p;
(8) ∀x, y ∈ [κ]t ∀n < ω (x \ κn−1 = y \ κn−1 → pn(x) = pn(y)).
By (8), the n-th component of p(x) is determined by x \ κn−1. Later we shall

use mutual indiscernibility to make pn(x) only dependent on x ∩ (κn−1, κn).
We shall construct a countable family of partially constant sequences which

decide certain values of Ḟ and which witness some compatibilities. Note that the
constant sequence p(x) ≡ p is partially constant. The following two extension
properties yield new partially constant sequences starting from given ones.

(9) Let t, t̄ be types and a ⊆ ω such that for all z ∈ [κ]t type(z � a) = t̄ holds.
Let (p(x)|x ∈ [κ]t̄) be a p.c. sequence. Define (q(z)|z ∈ [κ]t) by qn(z) = pn(z � a).
Then (q(z)|z ∈ [κ]t) is p.c.

Proof. Let x, y ∈ [κ]t and x \κn−1 = y \κn−1. Then (x � a) \κn−1 = (y � a) \κn−1

and
qn(x) = pn(x � a) = pn(y � a) = qn(y),

which proves (9). �

(10) Let t be a type and let (p(x)|x ∈ [κ]t) be a p.c. sequence. Then there is a
p.c. sequence (q(x)|x ∈ [κ]t) and a sequence (v(z)|z ∈ [κ]t) of finite sets of ordinals
< κ such that

∀x ∈ [κ]t (q(x) � p(x) and ∀z ⊆ x ∃α ∈ v(x) q(x) � Ḟ (z) = α̌).

Proof. Define sequences (r(x)|x ∈ [κ]t) and (v(x)|x ∈ [κ]t) by simultaneous induc-
tion on <∗ such that the following two properties hold:

(11) r(x) � p(x);
(12) ∀u, x ∈ [κ]t, u <∗ x ∀n < ω (u \ κn−1 = x \ κn−1 → rn(u) � rn(x)).
Let x ∈ [κ]t and let r(u), v(u) be adequately defined for u <∗ x, x ∈ [κ]t. Then

define r̄ ∈ P by

r̄n = pn(x) ∪
⋃

{rn(u)|u <∗ x, u \ κn−1 = x \ κn−1}.

r̄ is a properly defined condition in P by the growth condition (12) and the closure
conditions of the Levy collapses. Also r̄ � p(x). Then choose r(x) � r̄ and
v(x) ∈ [κ]<ω such that

∀z ⊆ x ∃α ∈ v(x) r(x) � Ḟ (z) = α̌.

Note that the recursive condition (12) is satisfied at x: if u ∈ [κ]t, u <∗ x and
u \ κn−1 = x \ κn−1, then rn(x) � r̄n � rn(u).

Finally define the sequence (q(x)|x ∈ [κ]t) by

qn(x) = pn(x) ∪
⋃

{rn(u)|u ∈ [κ]t, u \ κn−1 = x \ κn−1}.

(q(x)) is p.c. by construction and satisfies claim (10). �
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(13) Let t, t̄ be types and a0, a1 ⊆ ω be such that for all y ∈ [κ]t: type(y � a0) =
type(y � a1) = t̄. Let (p(x)|x ∈ [κ]t̄) be a p.c. sequence. Then there is a p.c.
sequence (q(y)|y ∈ [κ]t) such that for all y ∈ [κ]t, if p(y � a0) and p(y � a1) are
compatible in P , then

q(y) � p(y � a0) and q(y) � p(y � a1).

Proof. For y ∈ [κ]t define q(y) by qn(y) = pn(y � a0) ∪ pn(y � a1) if the right-hand
side is a condition in Col(κ+

n−1, < κn), and qn(y) = pn(y � a0) otherwise.
We only have to check that (q) is p.c. Let x, y ∈ [κ]t and x \ κn−1 = y \ κn−1.

By definition
q(x) � p(x � a0) � p.

x \ κn−1 = y \ κn−1 implies that (x � a0) \ κn−1 = (y � a0) \ κn−1 and
(x � a1) \ κn−1 = (y � a1) \ κn−1. Since (p) is p.c., pn(x � a0) = pn(y � a0)
and pn(x � a1) = pn(y � a1).

Case 1. pn(x � a0), pn(x � a1) are compatible in Col(κ+
i−1, < κi). Then

qn(x) = pn(x � a0) ∪ pn(x � a1) = pn(y � a0) ∪ pn(y � a1) = qn(y).

Case 2. pn(x � a0), pn(x � a1) are incompatible in Col(κ+
i−1, < κi). Then

qn(x) = pn(x � a0) = pn(y � a0) = qn(y).

This proves (13). �

Properties (9), (10) and (13) are construction principles for p.c. sequences q(x)
from p.c. sequences p(x). By an appropriate organisation one can construct a
sequence of p.c. sequences

p0, p1, v1, p2, v2, . . .

such that p0 is the constant sequence p0(x) ≡ p and such that for any given pk and
any constellation of types as in (9), (10) or (13) there are sequences pl and possibly
vl which relate to pk as q and v relate to p in (9), (10) or (13) respectively. We
may also assume that every pk, vk is definable over some common sufficiently large
structure

(Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p), where θ ⊇ κ.

By the mutual Ramseyness of κ0, κ1, . . . take a mutually homogeneous system
I0, I1, . . . for the structure (Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p) such that Ii ⊆ κi and such
that card(Ii) = κi. One can check that each of these indiscernibles is inaccessible.

Consider any sequence I ′0, I
′
1, . . . such that each I ′i is a subset of Ii of order type

ω1. We shall later choose such a sequence appropriately for the mutual stationarity
property. We view I ′ =

⋃
i<ω I ′i as a system of generating indiscernibles for a

substructure of (Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p). Let

P ′ = {pk(z)|z ⊆ I ′, k < ω} ⊆ P.

We intend to apply MAℵ1 to P ′ to produce a sufficiently generic condition in P .
This requires the countable chain condition and certain densities.

(14) (P ′, �) satisfies the countable chain condition.

Proof. Let A ⊆ P ′ be uncountable. By possibly thinning out A we may assume
that there is some k < ω such that every q ∈ A is of the form q = pk(z) for some
z ⊆ I ′, i.e.,

A = {pk(z)|z ∈ Z},
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where Z ⊆ [I ′]t is uncountable and t is the appropriate argument type for pk. By
a ∆-system argument one can assume that Z is an uncountable ∆-system of finite
sets with kernel a:

∀z ∈ Z : a ⊆ z and ∀z, z′ ∈ Z, z �= z′ : (z \ a) ∩ (z′ \ a) = ∅.
Since the set

⋃
n<ω[I ′ ∩ (κn−1, max(a ∩ (κn−1, κn)))] is countable there is an un-

countable Z ′ ⊆ Z such that

∀z ∈ Z ′ ∀n < ω : max(a ∩ (κn−1, κn)) < min((z \ a) ∩ (κn−1, κn)).

Choose x ∈ Z ′. Again, there is an uncountable Z ′′ ⊆ Z ′ such that

∀z ∈ Z ′′ ∀n < ω : max(x ∩ (κn−1, κn)) < min((z \ a) ∩ (κn−1, κn)).

Choose y ∈ Z ′′. We shall show that pk(x) and pk(y) are compatible in P . Let
n < ω. It suffices to show that pk

n(x) and pk
n(y) are compatible in Col(κ+

n−1, < κn).
Since pk is p.c. we have

pk
n(y) = pk

n((x ∩ κn−1) ∪ (y ∩ (κn−1, κn))),

i.e., we can assume for the compatibility argument that x ∩ κn−1 = y ∩ κn−1.
Case 1. (x \ a) ∩ (κn−1, κn) = ∅, i.e., x ∩ (κn−1, κn) = a ∩ (κn−1, κn). Since

x and y have the same type, also y ∩ (κn−1, κn) = a ∩ (κn−1, κn). The term
pk

n(x) is an element of Vκn
and can thus be viewed as a term of the structure

(Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p) mapping x to an ordinal < κn. Similarly, pk
n(y) can be

viewed as the same term mapping y to an ordinal < κn. Since x∩ κn = y ∩ κn the
mutual homogeneity of the system I implies that

pk
n(x) = pk

n(y);

hence both sides are trivially compatible in Col(κ+
n−1, < κn).

Case 2. (x \ a) ∩ (κn−1, κn) �= ∅. Then let β = min((x \ a) ∩ (κn−1, κn)) and
γ = min((y \ a) ∩ (κn−1, κn)). As in Case 1 , the terms pk

n(x) � (κ+
n−1 × β) and

pk
n(y) � (κ+

n−1 × γ) can be viewed as ordinals < β and < γ respectively. Since
x ∩ β = y ∩ β = y ∩ γ the mutual homogeneity of the sytem I implies

pk
n(x) � (κ+

n−1 × β) = pk
n(y) � (κ+

n−1 × γ)

and
dom(pk

n(x)) ⊆ κ+
n−1 × γ.

Hence pk
n(x) and pk

n(y) are compatible in Col(κ+
n−1, < κn).

So in both cases, we obtain compatibility of pk
n(x) and pk

n(y) for all n < ω;
hence pk(x) and pk(y) are compatible in P . By construction of the sequence
p0, p1, v1, p2, v2, . . . P ′ contains a compatibility element for pk(x) and pk(y), and
so pk(x) and pk(y) are compatible in P ′. Thus no uncountable subset of P ′ is an
antichain in P ′, which proves (14). �

Let W =
⋃
{vk(z)|z ⊆ I ′, k < ω} be the set of possible values Ḟ (z) on the

indiscernibles I ′.
(15) Let y ⊆ I ′, y finite. Then the set

Dy = {r ∈ P ′|∃α ∈ W r �P Ḟ (y) = ǎ}
is dense in P ′. Observe that the forcing �P in the definition of Dy is done with
respect to the full partial order P .
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Proof. Let pk(x) ∈ P ′, x ⊆ I ′. Let z = x ∪ y ⊆ I ′. By the construction of the
sequence p0, p1, v1, p2, v2, . . . according to property (9) there is l < ω such that
pk(x) = pl(z). Furthermore, according to (9) there is some m < ω and some finite
z ⊆ I ′ such that x, y ⊆ z and

pl(z) � pk(x) and pl(z) � Ḟ (y) = ˇvl(z) ∈ W̌ .

This proves (15). �

By MAℵ1 take a generic filter H ′ ⊆ P ′ for the family {Dy|y ⊆ I ′, y finite}.
Define a condition p′ ∈ P by p′n =

⋃
{rn|r ∈ H ′}. Observe that all rn for r ∈ H ′

are compatible by the genericity of H ′. Also p′ � p.
(16) p′ � Ḟ ′′[I ′]<ω ⊆ W̌ .

Proof. Let y ∈ I ′, y finite. By the genericity of H ′ there is r ∈ H ′ ∩ Dy. Take
α ∈ W such that r � Ḟ (y) = α̌. Then r � Ḟ (y) ∈ W̌ and p′ � r. This proves
(16). �

(17) ∀n < ω, sup(W ∩ κn) � sup I ′n.

Proof. Let α = vk(z) ∈ W ∩ κn, z ∈ I ′. Since In is cofinal in κn there is some
ζ ∈ In such that α < ζ < κn. Since I ′n has limit order type there is ζ ′ ∈ I ′n such
that max(z ∩ κn) < ζ ′. By the indiscernibility properties α = vk(z) < ζ implies
α = vk(z) < ζ ′ < sup I ′n, proving (17). �

In the following we shall isomorphically shift the indiscernible sets I ′0, I
′
1, . . . to

some other such sets I ′′0 , I ′′1 , . . . so that the stationarity property sup I ′′n ∈ Ṡn is
also forced. If I ′′0 , I ′′1 , . . . is another sequence such that each I ′′i is a subset of Ii of
order type ω1, set I ′′ =

⋃
i<ω I ′′i . These sets of generating indiscernibles are order-

isomorphic by some isomorphism π : I ′ ∼= I ′′. The isomorphism can canonically be
extended to an isomorphism π̃ of the substructures of (Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p)
generated by the indiscernible sets I ′ and I ′′ respectively: π̃ is defined by t(z) �→
t(π′′z) for Skolem terms t of (Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p) and z ⊆ I ′. In particular,
π̃ preserves all components of the previous construction.

Let P ′′ = {pk(z)|z ⊆ I ′′, k < ω} ⊆ P . Then π̃ � P ′ : (P ′, �) ∼= (P ′′, �) is a
well-defined isomorphism. π̃ � W : W ∼= W ′′ = {vk(z)|z ⊆ I ′′, k < ω} takes the
sets of possible values into each other. For each y ⊆ I ′, y finite, the set D′′

y = π̃′′Dy

satisfies
D′′

y = {r ∈ P ′′|∃α ∈ W ′′ r �P Ḟ (y) = ǎ}.
The set H ′′ = π̃′′H ′ is generic in P ′′ for the family {D′′

y |y ⊆ I ′′, y finite}. Then
the condition p′′ defined by p′′n =

⋃
{rn|r ∈ H ′′} satisfies the analogue of (16):

p′′ � Ḟ ′′[I ′′]<ω ⊆ W̌ ′′. Finally the analogue of (17) holds: ∀n < ω sup(W ′′∩κn) �
sup I ′′n .

We show that the domains of the condition p′ are closely positioned around the
generating indiscernibles in I ′.

(18) Let r = pk(z), z ⊆ I ′, and n < ω. Let ξ ∈ In \ I ′n. Then

dom pk
n(z) ∩ κ+

n−1 × [ξ, min(In \ (ξ + 1))) = ∅.

Proof. Assume not. Let ξ′ = min(In \ (ξ + 1)) and

s(z, ξ′) = sup{β < ξ′|∃α < κ+
n−1(α, β) ∈ dom pk

n(z)}.
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Since card(pk
n) � κn−1 and by the inaccessibility of the indiscernibles,

ξ � s(z, ξ′) < ξ′.

Let ξ′′ = min(In \ (ξ′ + 1)). Let z′′ ⊆ In with type(z′′) = type(z), z′′ ∩ ξ′ = z ∩ ξ′

and
ξ′ ∈ z → ξ′′ = min(z′′ \ ξ′) and ξ′ �∈ z → ξ′′ < min(z′′ \ ξ′).

By indiscernibility, s(z′′, ξ′′) = s(z, ξ′) and so s(z′′, ξ′′) < ξ′. Again by indiscerni-
bility, observing that ξ �∈ z: s(z, ξ′) < ξ. But this contradicts ξ � s(z, ξ′), proving
(18). �

Since the condition p′ is a union of conditions pk
n(z) as in (18) it follows that:

(19) Let n < ω and ξ ∈ In \ I ′n. Then

dom p′n ∩ κ+
n−1 × [ξ, min(In \ (ξ + 1))) = ∅

and hence

dom p′n ⊆ κ+
n−1 × (min In ∪

⋃
ξ∈I′

n

[ξ, min(In \ (ξ + 1)))).

Define p̄ ∈ P by
p̄n = p′n � (κ+

n−1 × min In).
Since the elements of I ′ are indiscernible with respect to the constant p we have
that pn is “below” the minimum of In. Hence p̄ � p. The above isomorphism
π : I ′ ∼= I ′′ of indiscernibles also shows that for any I ′′ as above we obtain:

(20) p̄n = p′′n � (κ+
n−1 × min In).

Consider a P -generic filter Ḡ � p̄ over V . In V [Ḡ], S̄n = ṠḠ
n ⊆ κn is stationary

in κn and S̄n ⊆ cofω1 . We need elements of S̄n which are high-level limits of
indiscernibles. It is easy to see that:

(21) For all n < ω the set I∗n = {β < κn|∀δ < β, otp(In ∩ (δ, β)) > κ+
n−1} is

closed unbounded in κn.
Take βn ∈ I∗n ∩ S̄n. Since the forcing P is < ℵ2-complete, (βn|n < ω) ∈ V and

every βn has cofinality ω1 in V . Let q � p̄ such that q � ∀n < ωβn ∈ Ṡn.
The following argument takes place in the ground model V . For each n < ω

choose a strictly increasing sequence (βi
n|i < ω1) converging to βn such that

∀i < ω1 card(In ∩ (βi
n, βi+1

n )) � κ+
n−1.

Since card(qn) < κ+
n−1 there exists ξi

n ∈ In ∩ (βi
n, βi+1

n ) such that:
(22) dom qn ∩ κ+

n−1 × [ξi
n, min(In \ (ξi

n + 1))) = ∅.
We can now define appropriate sets I ′′n of indiscernibles for the mutual station-

arity property. Let I ′′n = {ξi
n|i < ω1} and I ′′ =

⋃
n<ω I ′′n . Define p′′ and W ′′ from

I ′′ as above. Then
p′′ � Ḟ ′′[I ′′]<ω ⊆ W̌ ′′.

(23) The conditions q and p′′ are compatible in P .

Proof. Let n < ω. By (19) transferred to I ′′ we have

dom p′′n ⊆ κ+
n−1 × (min In ∪

⋃
ξ∈I′′

n

[ξ, min(In \ (ξ + 1)))).

By (20), p′′n � (κ+
n−1 × min In) = p̄n � qn. Hence q and p′′ are compatible on the

rectangle κ+
n−1×min In. By (22), the other rectangles κ+

n−1× [ξi
n, min(In\(ξi

n+1)))
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where p′′n might be defined do not intersect the domain of qn. So there is no conflict
between qn and p′′n. This proves (23). �

Let r � q, p′′. By the analogues of (16) and (17) for I ′′,

r � ∀n < ω sup((Ḟ ′′[I ′′]<ω) ∩ ℵ2n+3) � sup(I ′′ ∩ ℵ2n+3) = β̌n ∈ Ṡn.

So one can densely force the mutual stationarity of (Ṡn|n < ω), i.e., the mutual
stationarity property MS(ℵ3,ℵ5,ℵ7, . . . ; ω1) holds in V [G]. �

3. Variants and discussion

The principle MS(. . .) allows many variations of parameters. We shall discuss
some typical instances which are also true in the above or similar forcing extensions.

In the construction a mutual stationarity substructure of size ℵ1 is constructed
from ℵ1 indiscernibles using MAℵ1 . The indiscernibles, among other things, ensure
that the supremum of the substructure below certain cardinals lies in a given sta-
tionary set. The point of the previous construction was that this is possible if the
stationary set consists of ordinals of cofinality ω1 but the argument goes through
a fortiori for ordinals of countable cofinality. So one may freely alternate between
the cofinalities ω1 and ω to obtain

Theorem 3.1. Let κ be a measurable cardinal. Then in the forcing extension of the
main Theorem 1.6, MS(ℵ3,ℵ5,ℵ7, . . . ; (λn)n<ω) holds for every sequence (λn)n<ω

with ∀n < ωλn ∈ {ω, ω1}. E.g., MS(ℵ3,ℵ5,ℵ7,ℵ9, . . . ; ω1, ω0, ω1, ω0, . . .) is true in
the extension.

For the proof of Theorem 1.7 consider the suprema γn = sup((F ′′[I ′′]<ω)∩ℵ2n+2)
of the mutual stationary substructure below the cardinals ℵ2,ℵ4, . . .. Since ℵ2n+2

is a regular cardinal we may assume that the structure

(Vθ,∈, . . . , Ḟ , Ṡ0, Ṡ1, . . . , p)

contains functions wl which code suprema of the value function vk below ℵ2n+2: if
dom(vk) = [κ]t, then

(3.1) ∀z ∈ [κ]t (vk(z) < ℵ2n+2 → vk(z) < wl(z \ ℵ2n+1)).

We claim that then cof(γn) = ω. By claim (15) of the main proof, every element
ξ ∈ F ′′[I ′′]<ω is of the form ξ = vk(z) for some z ⊆ I ′′ and k < ω. By (3.1),
ξ = vk(z) < wl(z \ ℵ2n+1). Since z \ ℵ2n+1 are indiscernibles for values < ℵ2n+2

the countable set
{wl(x)|x ⊆ I ′′ \ ℵ2n+2}

bounds every element of (F ′′[I ′′]<ω) ∩ ℵ2n+2. On the other hand, we may also
assume that all the values in {wl(x)|x ⊆ I ′′ \ ℵ2n+2} are realised as values in
F ′′[I ′′]<ω. Hence cof(γn) = ω. This means that in the generic extension we can
find mutually generic substructures whose suprema below the even ℵ2n+2 have
cofinality ω and below the odd ℵ2n+3 have cofinality ω1. This proves Theorem 1.7.

In view of this theorem it is natural to ask whether even the mutual stationarity
property MS(ℵ2,ℵ3,ℵ4,ℵ5, . . . ; ω0, ω1, ω0, ω1, . . .) holds in the model. By the meth-
ods of [5] one can however show that the consistency strength of that property is
strictly larger than the existence of one measurable cardinal.

The combinatorics of our forcing construction will also go through for product
forcings of the form Q =

∏
n<ω Col(λn, < κn) where each λn is a regular cardinal in
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the interval [κ+
n−1, κn). So from one measurable cardinal, one can force properties

such as

MS(ℵ4,ℵ9,ℵ16,ℵ25, . . . ; ω1) orMS(ℵω+2,ℵω·2+2,ℵω·3+2, . . . ; ω1).
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