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(b) Let 6,, < f i f l l  < . . . < 61 be Woodin-cardinals, n 2 1,a ~ dassume that vj1 
exists. Then every II:+,-set A CR is determined. 

Part (a) is the classical theorem of Martin [9]; (b) slightly strengthens a result 
from [lo], which of course could also be proved by the methods of [lo]. 

We continue to emphasize the use of models and embeddings in contrast with 
combinatorial methods. The determinacy of a set A of reals is shown by representing 
A in an embedding normalform (ENF) which is a system of models and embeddings 
indexed by the tree '"w of finite sequences of natural numbers. ENFs are considered 
in [lo]: every set of reals which is the projection of a homogeneous tree possesses 
an ENF. The converse is false in the context of general ENFs but becomes true 
if the notion of embedding normal form is strengthened by stipulating a certain 
degree of closure of the models of the system, like, e.g., (2*0)+ closure. This was 
observed by Katrin WindDus and proved in her diplom thesis at the University 
of Bonn [14] which also contains some simplifications of the original Martin-Steel 
argument. The result of WindDus initiated my project of understanding the Martin- 
Steel-theorem in terms of elementary embeddings, without that insight this article 
would not have been written. 

In our paper we identify the notion of an embedding normal form with witnesses 
(ENFW) where the closure property is weakened to requiring that witnesses, i.e., 
certain (2No)+-sequences of ordinals, exist in the models. We shall obtain the re- 
quired ENFWs directly from branches of iteration trees which also consist of mod- 
els and elementary embeddings, so that we are able to work "model-theoretically" 
throughout. 

Our paper is structured as follows: In $2,we introduce extenders and develop the 
basic theory. In $3, strong cardinals and Woodin-cardinals are characterized. In $4, 
we consider trees of models of set theory connected by elementary embeddings and 
prove some properties which apply to embedding normal forms and iteration trees 
alike. In $5, we show that a set having an embedding normal form with witnesses is 
determined. In $6, ENFWs for IIt-sets are obtained from measurable cardinals and 
from "sharps". In $7, we define iteration trees and give a short proof of a special 
case of "Steel's Lemma" (Theorem 5.6 of [lo]) about the existence of wellfounded 
branches which is at the core of the projective determinacy proof. $8 explains a 
method for the construction of alternating iteration trees. This is used in $9 in 
the inductive argument of the Martin-Steel proof, by which-in our scenario- 
ENFWs for II:+,-sets are obtained from ENFWs for lXj,-sets in the presence of 
Woodin cardinals. 

$2. Extenders. Let us study elementary maps between transitive €-models of 
set theory. The following axiom systems will be used: Z F  denotes full Zermelo- 
Fraenkel set theory, ZF- is ZF  except the powerset axiom. ZFC and ZFC- are the 
extensions of Z F  and ZF-, respectively, by the axiom of choice in the form 

The Skolemprinciple (SP) is the schema: for all €-fo~mulae cp(x, y, 4 postulate 

'dz'da 3 f 'dx E a (3y p(x ,  y, 23 c-t cp(x,f (x),23). 



This principle is of particular interest for ultrapower-like constructions and follows 
from ZFC. All axiom systems and other model-theoretic notions are taken to be 
schemes when dealing with classes and as the corresponding Godel-sets when we 
work with set-sized structures. 

A non-trivial elementary map E :  (A, E )  -+ (B, E)  between transitive models 
of set theory can be seen as an "extension" of A via the map E since, obviously, 
B 3 EffA.  Trivially, B is generated over Ef fA by some generators from B .  If r; is 
the criticalpoint of E ,  i.e., E Tr; = id and E(r;) > r; ,  we want to consider generators 
between K and E(r;). Setting S := H; and T := E ( S )  = Hi(,) ,  we could say 
that E "extends" S to a larger set T of generators. The following definition will be 
satisfied: 

DE~NITION2.1. Let E : A + B be an elementary map where A and B are tran- 
sitive E-models of ZFC-. Let S E A, T E B. Then E extends S to T if: 

(a) S is a transitive €-model of ZFC; 
(b) E rS = id; 
( c ) E ( S )  = T # S .  

Then, if E is a set, we call E an extender from S to T ;  S is called the source of E ,  T 
is the target of E .  The criticalpoint of E is crit(E) = S nOn, and we also say that 
E is at r ; .  If M is a transitive class E is said to be an extender on M if S E M and 
(H,+)" c A = dom(E). 

We usually take letters E ,  F, . . . for extenders and write E :  S 4 T to express 
that E is an extender from S to T .  The following theorem shows that extenders 
code elementary maps which may be class-sized. 

THEOREM2.2. Let E : S + T be an extender on M where M is a transitive €-model 
of ZF- + SP. Then there is an elementary embedding 

7c : (M, E )  + (N, E f )  

such that 

n r ( ~ , A ) "  = E ~ ( H , + ) ~ .  

The proof of the theorem will occupy the rest of this section. The extension N = 

Ext(M;  E )  of M by E will be explicitly defined by an ultrapower-like construction 
which also has some similarities with the upward-mapping techniques of [I]. 

First define a structure (N,-, E )  with - interpreting equality and E interpreting 
the €-symbol: 

N := { ( f , a )  I f : S + M, f E M ,  a E T )  

( f , a ) - ( g , b ) : c - t ( a , b ) E E { ( u , v ) ~ S x Sf ( u ) = g ( v ) )  

( f , ~ )E (g,b ):o(a, b) E E{ (u, v )  E S x S f (u) E g (v)  ). 
This structure satisfies a version of to6's theorem: 

LEMMA2.3. Let cp(vl, . . . ,v,) be an E-formula and (fi ,  a l ) ,  . . . , (f , ,a,,) € fi. 
Then 

(%-,  E )  k cp((f  1, a l ) ,  . . . , ( f l l ,  all)) 

if and only if 
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PROOF.By induction on the complexity of cp. 
Let cp - vi = v j . Then 

( N >- b Vl = . . . , ( f n ,  Q ? , ) ) ,v / ( ( f1 ,  ~ l ) ,  

if and only if 

( f l > ~ l l )- ( f , , ~ , ) ,  
if and only if 

E E { ( 1 * i , u j )( a i , ~ , ~ )  E s2 f i (u i )  = f j ( u j ) ) ,  

by definition, if and only if 

( 0 1 , .  . . ,a,,)E E {  (u l , .  . . ,u,,) E S" 1 ( M ,=,€ 1  b vi = v , / ( f l ( u l ) ,  ),. . . ,f f 1 ( u 1 , ) )  

since E is an elementary map. 
The case cp - v ,  E v ,  is treated entirely similar. 
Next let cp - cpl A 9 2 ,  where cpl  and cp2  satisfy the lemma. 

( N ,-, E )  b cpl A cp2((f1 ,  a l ) ,. . . ), 

if and only if 

and(#,-, E )  + cpl((f1 ,  a l ) ,. . . ) (I?, -, E )  + pa( (fl , a l ) ,. . . ), 
if and only if 

( a l , . . . , a n )E E { ( L Q, . . . ,LL,) E S n  ( M , = , E )b p l ( f l ( u l ), . . . ) )  

and 

E E { ( u l , . . . , u l 1 )( Q I , . . . , ~ , )  E S" ( M , = , E )  b c p 2 ( f l ( u l )  , . . . ) ) ,  
by the inductive hypothesis, if and only if 

( a i , .  . . , a , , )  E E { ( u l ,. . . , u l l )E S" ( M , = , E )b cpl A cpz( f l (u l ) ,. . . ) ) ,  
since the elementary map E preserves intersections. 

The other propositional case cp - l t y  is treated analogously. 
Finally, consider cp = 3vo ty  where ty  satisfies the lemma. 
~ f ( N , - , e )k 3% v ( ( f l , a l ) , .  . . , ( f l l , a l l ) ) ,then 

( N ,-, E )  + ~ ( ( f o ,ao),( f 1 ,  a l ) ,. . . , ( f n ,  alz)), 

for some ( fo , ao) E N , then 

( [ lo ,  . . . ,a,) E E{ (uo, . . . ,~ 1 1 )E ~ " + l( M ,=,E )  b v(f  o (uo ) ,  . . . ,f n ( ~ i i ) )), 
by the inductive hypothesis, then 

( a l , . . . ,a,,) E E {  (u l ,  . . . ,u,,) E S" I ( M ,=,E )  k 3vo t y ( f 1 ( u l ) ,. . . f ,, (u , ) )), 

since E is an elementary map. 
Conversely assume 



By the Skolem principle SP there exists f : S" + M ,  f  E M so that: 

( M ,=, € 1  V (u l ,. . . ,~ I )E S" (3vo ly(vo, f  ~ ( U I ) ,. . . ,f i 2 (u i l ) )I - v ( f o ( u 1 , .. . ,~ , , ) , f l ( ~ l ) ,. . . , f rz(u,))) .  

Then 

( ~ 1 , .  ( M ,=,E ). . , a f l )E E { ( u l , .. . ,u,,) E S n  

k v ( f o ( u 1 , .  . . , ~ , , ) , f l ( ~ l ) , .  . . , f n ( u , ) ) ) ,  

and by the elementarily of E :  

( ( ~ 1 , .. . ,a , , ) ,  01,.  . , ,a,,) 

E ( uo ,u l , . . . , u , ) E s"" . . . , f , , ( u , ) ) ) .(M,=,E )  b l y ( f o (uo ) , f  ~ ( u l ) ,  

By induction hypothesis, 

(N>--> I= l y ( ( f 0 ,  ( ~ 1 , .  ( f l , [ ~ l ) , .. .>al l ) )> . . , ( f n ,  a n ) )  

and 

(8,-, E )  k 3vo v ( vo ,  ( f 1 ,  a l l , . . . ,( f , , ,a , , ) ) .  

By this lemma, the equality axioms transfer from ( M ,=,E )  to ( N ,--,E )  and we 
can form the quotient ( N / - ,  =, El-) by the congruence relation -; here we restrict 
the equivalence class of some ( f ,  a )  E N to the set of its rank-minimal members 
("Scott's trick", see [3,p. 1791): 

(f,.)-- := { ( g , b )E N I ( g , b )- ( f , a )  

A v(12,c )  E N ( ( h ,c )  -- ( f ,  a )  +rk(g,b )  < rk(h, c ) )  ). 

LEMMA2.4. The elation El-- is set-like, i.e., if (g ,  b ) ,  E N / - then 

{ ( f ,a ) - I ( f ,[ I ) - - E l - ( g ,b ) - 1E 

PROOF. If ( f ,  a ) ,  E / - (g ,b )  we may assume that 

vu  E S 3v E S f ( u )  E g ( v ) ,  

and this implies rk( f )  < rk (g) .Hence 

By Lemma 2.3, the axiom of extensionality also transfers from (M,=, E )  to 
( N ,-, E )  and (I?/-,  =,El-) .  Let a :  w f P ( N / - , El--)E N *  be the Mostowski 
transitivisation map on the wellfounded part of (I?/-, El-).  We can now define 
the desired structure ( N ,E ' ) :  

For ( f , a ) E #let 

4 
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Note that the second clause only applies if (I?/-, El-) is not wellfounded; In that 
case, N*  is a set and the formation of the ordered pair ((f ,  a),, N * )  ensures that 
[f ,  a ]  is not an element of N*.  Then let 

N := {[f>.l I (f,.) E Iv) 
and 

If,  a1 Ef  [g, bl 1- (f ,  a )  E (g, b).  
Obviously the Lo4 property Lemma 2.3 carries over to (N, E'): 
LEMMA2.5. Let p (vl, . . . ,v,,)be an formula and [ f l ,  all, . . . , [f , ,  a,] E N .  

Then 

(N, E') + ~ ( [ f  n ,  an])1, a l l , .  . . ,[f 
ifand only if 

( ~ 1 , .. .,all) E E{ ( ~ 1 , .  I . . . ,f , ( u n ) )).. . ,up , )E S" (M, E )  + p ( f  ~ ( u l ) ,  

Next we embed M into N and examine how the embedding relates to E .  For 
x E M let const, E M be the constant function const,: S -+ {x). Define 
n :  M 	+ N byn(x)  := [const,,O]. 

LEMMA2.6. rr : (M, E )  + (N, E') is elementary. 

PROOE Let p ( v l , .  . . ,v,) be an €-formula and x l ,  . . . , x, E M .  

( M E )  I= cp(x1,...,x,,) 
if and only if 

(0 , . . . ,O) E { (ui, . . .,u,,) E Sn I (M, E)  I= p(constxl (ul),  . . .,const,,, (u,,)) ) 
if and only if 

(0 , . . . ,0 )  E E{  (ul, . . . ,u,) E S"  (M, E )  p(const,, (ul) ,  . . . ,const,, (u,,)) ) 
if and only if 

(N, E') p ( [ con~ t ,~ ,01, . . . , [const,,,O]), 

by Lemma 2.5, if and only if 

(N, E)  I=~ ( r r ( x l ) , .. . ,~ ( x n ) ) .  i 

We use the identity function I = id rS, I E M to locate the generators a E T in 
the model N :  

LEMMA2.7. For all a E T, (I, a), is in the ,vellfoundedpart of E/- and [I, a ]  = a .  

PROOF. By €-induction on a E T; assume that the lemma holds for all b E a .  

(1) I f ( f , c )  E ( I , a ) t h e n ( f , c )  - ( I ,b ) forsomeb E a .  

PROOF. (c, a )  E E{ (w, u) E s2I f (w) E I ( u )  = u ). Define f ' :  S -+ S ,  
f '  E M b y  

f ' ( 4  = f (w), 
i f f  (w) E S ,  and f '(w) = 0, else. 

Then 


(c, a )  E E{  (w, u) E s21 f '(w) = f (w) ), 




i.e., ( f  ' , c )  - ( f , ~ ) ,and 

(c ,a ) E E {  ( w ,  u )  E S* f ' ( w )E u ). 
Since f '  E (H,+)M C d o m ( E ) ,we can pull E inside the set brackets: 

( c ,  a )  E { ( w ,  u )  E T* I E ( f  ' ) ( w )  E u ), 
a n d s o E ( f l ) ( c )E a .  Setb = E ( f f ( c ) ) .Then 

( c ,  b )  E { ( w ,  v )  E T 2  E (  f  l ) ( w )  = v ) = E {  ( w ,  u )  E S* f ' ( w )= I ( v ) = v ), 

andso ( f , c )- ( f f , c )- ( I , b ) ,whereb E a .  i( 1 )  
( 2 ) ( I ,  a ) ,  is in the wellfounded part of E l - .  
PROOFBy ( I ) ,every E l - predecessor of ( I ,  a ) ,  is of the form ( I ,  b ) ,  for some 

b E a .  By induction hypothesis that ( I ,  b ) ,  is in the wellfounded part of E / - and 
so ( I ,  a ) ,  is in the wellfounded part of El-. -1 ( 2 )  

( 3 ) [ I , a ]C a .  


PROOELet x E [ I ,  a ] .  Let x = [ f ,  c]  where ( f ,  c )  E N .  By ( I ) ,  [ f ,  c ]  = [I,b]for 

some b E a .  By the induction hypothesis 

x =  [ f , ~ ]  = [ I ,b]  = b  € a .  i( 3 )  

( 4 )a C [I,  a ] .  

PROOELetb E a .  


( b , a ) E { ( u , ~ )  u E V ) = E { ( ~ , V ) E S ~U E V ) , 
E T 2  I 
and so [I ,  b ]  E [ I ,  a ] .  By induction hypothesis, 

b = [I ,  b]  E [ I ,  a ] .  

LEMMA^.^. I f [ f , a ]  ~ N t h e n ( N , ~ ' )  + [ f , a ]  = n ( f ) ( a ) .  

PROOE 

'ds E S : f  ( s )  = consti ( 0 )  ( I  ( s ) )  

+'ds E S :  ( s ,  0,  s )  E { (u ,  v ,  w )  E s3 f  ( u )  = consti ( u ) ( I ( w ) )  ) 

*'ds E T :  ( s ,O , s )  E E { ( u , v , w ) E s3 f  ( u )  = c o n s t i ( v ) ( I ( w ) ) )  

+( a ,  0 ,  a )  E E {  (u ,  v ,  w )  E s3 f ( u )= cons t l ( v ) ( I  ( w ) )  ) 

* ( N ,  E l )  k [ f , a ]  [cons t j ,O] ( [ I ,a] ) n ( f ) ( a ) ,= = 

by Lemma 2.7. 

LEMMA =2.9. n r ( ~ , + ) ~E /(H,-)lM. 

PROOF.If x E (H , i ) " ,  there is a transitive set z and a map f :  K t? z ,  
f E ( H , I ) ~ ,and a relation R C tc2, R  E (H,+)M ,  such that f : ( K ,  R )  E ( z ,E )  
is the Mostowski-collapse of the relation R ,  and f  ( 0 )  = x .  Apply n and E to this 
situation: 

( N ,E ' )  n (  f )  : ( n ( ~ ) ,n ( R ) )N ( n ( z ) ,E I )  is the Mostowski-collapse of n ( R ) ,  

and n(  f  ) ( 0 )  = n ( x ) ;  

i 
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E (  f )  : ( E ( K ) ,E ( R ) )E ( E( z ) ,E )  is the Mostowski-collapse of E ( R ) ,  

and E ( f  ) ( O )  = E ( x ) .  
So n ( x )and E ( x )are determined by n ( R )and E ( R ) ,respectively, and the lemma 

will follow from: 

( 1 )  n r ( P ( S )n M )  = E r ( P ( S )  n M ) .  

Before this we show: 

(2) If X E 9 ( S )n M then n ( X ) is in the wellfounded part of ( N ,E ' ) ;  indeed 
n ( X )C T .  

PROOF. Let [ f ,  a]  E' n ( X ) ,i.e., ( f ,  a )  E (const,, 0 ) .  
Then a E E { u E S I f ( u )  E X ), and as usual we may assume that f : S -+ 

X C S and f E (H,.)" C, dom(E) .  We can now pull E inside the abstraction 
term: 

Let b = E (  f ) ( a )  E T .  Then 

( b , a )E ( ( 2 , ~ )  v E ( f ) ( u ) )  E { ( v , u )E S* f ( u ) )  E T~ = = I ( u )= 

and, by the Lo6 property and Lemma 2.7: 

[ f ,  a]  = [I,  b] = b E T. 

So any E'-predecessor of n ( X )is in T , which is in the wellfounded part of ( N ,  E ' ) .  

+ + ~ E E { u E S U E X ) = E ( X ) .  

Therefore n ( X )is in the wellfounded part of ( N ,E ' )  and n ( X )C T .  i(2)  

Wecanllowprove ( 1 ) :  forb E T :  

b E n ( X )c-t [I,  b] E [constx,O] 

The map n :  ( M ,  E )  + ( N ,E ' )  constructed so far is called the extension of M by 
E .  This is often indicated by a subscript notation 

and we also write n ,w ,~for n~ and Ext(M, E )  to denote ( N ,  E ' ) .  Let us now 
summarize our results: 

THEOREM2.10. Tlze extension n~ : ( M ,E )  +E Ext(M, E )  of M by the extender 
E : S + T satisjies: 

(a) n ~ :(M,E )  i E  Ext(M, E )  is elementary and the wellfoundedpart of Ext(M, 
E )  is tmnsitive; 

(b) Z E  r ( ~ , + ) ~= E r ( ~ , + ) " ;  
(c) Ex t (M,E) = { n ~ ( f ) ( a )f E M ,  f :  S + M ,  a E T ) ,  w l z e r e n ~ ( f ) ( a )  is 

computed ,vithin Ext(M, E )  as in Lemma 2.8. 
Moreover, (a)-(c) determine the extension up to isonzorplzism: Ifn* nrzd ( N * ,  E * )  sat-
isjy (a)-(c) inplace of nE and Ext(M, E ) ,  respectively, there is an E'-E*-isomorphism 
a : Ext(M, E )  " ( N * ,E*)suclz that n* = a on^; a is the identity on the wellfounded 
part of Ext(M, E ) .  

i 



PROOF.It remains to check the isomorphism property. 
Let cp(v1,. . . ,v,,)be an E-formula a n d n ~  ( f  l ) ( a l ) ,  . . . ,n ~  ( f  .)(a,,)E Ext (M,  E ) ,  

f i  E M ,  f i :  S  -+ M,a i  E T . Then: 

Ext(M,E) k ~ ( n E ( f l ) ( a l ) ,. . . , ~ E ( ~ I , ) ( Q I , ) )  


( ~ 1 , .  I
. . , a n )E { (u i ,. . . ,u,,)E T n  

E x t ( M , E )k cp(nE(fl)(ul),...,nE(fn)(un))) 
= n ~ { ( u l > . . . , u n )  1 ( M E )~ c p ( f l ( ~ l ) , . . . , f i i ( ~ , , ) ) )  

= n* { ( ~ 1 , .. . ,~ 1 1 )E S n  (M,E )  ( ~ ( f~ ( u l ) ,. . . ,fn(u1i))), 
Msince nE r ( ~ , + ) ~= E  r(H,+) = n* r(H,+) , 

= { ( u I , . . . , ~ , ~ )  ( N x , E x )E T" k cp(~*(fi)(~~),...,n~(f,,)(~,~)))-( N * ,E * )  t= cp(nA(f . . . , n* ( fn ) (a , , ) ) .l ) ( ~ l ) ,  

This shows that 

defines an isomorphism a : Ext(M, E )  " ( N * ,E * ) with the required properties. i 

REMARKS. 
1. The relationship between the above extenders and the Dodd-Jensen approach 

(see [2])is roughly described as follows: If E : S + T is an extender then for each 
a E T ,  

is an ultrafilter on S .  The system ( E , ,  I a E T ) is the Dodd-Jensen extender 
corresponding to E .  In it the various ultrafilters are connected via certain projection 
maps. Conversely, a Dodd-Jensen extender ( E ,  a  E T )with ultrafilters on S yields 
an extender E : S iT by: 

E ( X ) = { a  X E  E, ) .  

2. Our construction of Ext(M, E )  is quite robust and allows for all sorts of 
variations. One could weaken the extender axioms by requiring Co-elementarity for 
E : A + B instead of full elementarily. One could also work with E := E  t P ( S )  
and postulate: 

(S ,  E ,  ( X  I X E dom(E) ) )i(T,E ,  ( E ( X )  X E d o m ( ~ ))). 

3. For specific instances of the t o 6  Theorem 2.3 or the transfer property Lemma 
2.6, only a limited part of ZFC- and the Skolem principle SP is required in M .  
This is important in inner model theory where extensions of weak structures are 
considered. 

4. On the other hand, we can expand ( M ,E )  to a structure ( M ,E , F) with extra 
predicates F. If ( M ,E , F) satisfies enough set theory relative to F, we can expand 
the extension in the obvious way: 
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§3. Large cardinals. The formation of the extension Ext(M, E )  attains large 
cardinal strength if Ext(M, E )  is a transitive €-model. We shall introduce a closure 
criterion for the wellfoundedness of Ext(M, E )  and use it in a characterization of a 
couple of large cardinal axioms. 

D E ~ N I T I ~ N3.1. Let E be an extender on (M, E), where (M, E)  is a transitive 
model of ZFC- and SP. Then (M, E) is called extendable by E if Ext(M, E) is 
wellfounded, i.e., transitive. 

D E ~ N I T I ~ N3.2. A class X is q-closed if 'lX 2 X where VX = { f f : q -+ X ). 
An extender E :  S + T is q-closed if its target T is q-closed. 

THEOREM3.3. Let M be a transitive q-closedmodel of ZFC- and SP. Let E : S + 
T be an q-closed extender on M such that w < q 5 crit(E). Then M is extendable 
by E and Ext(M, E )  is q-closed. 

PROOF. Let 7 1 ~: (M, E) +E Ext (M, E). 

(1) If ( [f i, ~ i ]i < q ) E 11 Ext(M, E )  there is [f ,  a ]  E Ext(M, E )  such that for 1 
all i < q: 

Ext(M,E) [f ,a]( i)  = [fi,ai]. 

PROOF. Define f : S -+ M by: 


( f i(u(i)) 1 i < dom(u) ), if u E S is a function, domiu) E On, 

f (u)  = dom(u) 5 q; 

else. 


f ~ M b e c a u s e ( f j I i < q ) ~ W & M .  
L e t a = ( a i  / i < q ) ; a € V T &  T. 
Now let i < v .  a ( i )  = ai implies: 

(a, ai) E { (u, v) E T~ 1 u is a function A dom(u) E On 

= E{ (u, v) E s2( u is a function A dom(u) E On 

By Lemma2.5, Ext(M, E )  b [f,a]( i )= [fi, ail. 4 (1) 
(2) Ext(M, E )  is a transitive €-model. 

PROOF. Assume not. Considering Lemma 2.4, this is due to an infinite descending 
chain([f, ,a,] I n < w ) i n E 1 :  f o r n < w :  

Ext(M,E) b [fn+l,afl+ll E [ fn , an ]  
By (I) ,  there is [f,a ]  E Ext(M, E )  such that for n < w: 

Ext(M,E) k [f,a](n) = [ f , , ~ , ] .  
Then 

contradicting the axiom of foundation inside Ext(M, E ) .  



(3) "xt(M, E )  Ext(M, E ) .  

PROOF. Follows immediately from (2) and (1). -1 

LEMMA3.4. Let n : (M, E)  (N, E)  be an elementary map between transitive i 

ZFC-models with K = crit(n). Let S = HiM, T = n(S).  Then E = n r(H,;)M 
is an extender from S to T on M wlzich is called the extender induced by n. IfN is 
11-closed and 11 < n ( ~ )then E is an 11-closed extender. 

PROOF. 'IT C 'IN C N. Hence T = C T observing that N /= T is 
11-closed. -1 

We now give extender characterizations of large cardinals which usually are de- 
fined by elementary embeddings of V. For the purpose of this article the subsequent 
theorems could also be understood as definitions of those cardinals. 

THEOREM3.5. Tlze following are equivalent: 
(a) K is a measurable cardinal. 
(b) Tlzere exists an extender E : V, < T on V. 
(c) There exists a K-closed extender E : V, < T on V. 

PROOF. 
(a) + (b). K is measurable if and only if there exists an elementary embedding 

z :  V + M with M transitive and critical point K. The extender E induced by n 
satisfies (b). 

(b) + (c). Let E : V, < T be an extender on V. We can assume that dom(E) = 

H,+: E : H,+ iH elementarily. Let Z = { E ( f )  ( K )  f E H,; ). Since there are 
sufficiently many Skolem functions among the f E H,; , 

Let a:(H,E) E (Z, E)  be the Mostowski isomorphism with H transitive. Define 
an extender E :  H,+ iH by E = a-I o E ;  E :  V, < T with T = E(V,) # VK. 
We show that E satisfies (c), i.e., that T is K-closed. Since T is K-closed inside H, 
it suffices to see that H or the isomorphic structure Z are K-closed. 

Le ts  = (E(fi)(rc) / i < K )  E "2.Define 

g(y) is a y-sequence. Since E is elementary, E ( g ) ( ~ )  is a K-sequence. Let i < K. 

and as E is elementary, 

Fory = K ,  

Hence s = E (g)  (K)  E Z .  
(c) i(a). Let E be a K-closed extender satisfying (c). By Theorem 2.2 and 

Lemma 3.3 one can define an elementary map n :  V + N, N transitive, with 
critical point K.  Hence K is measurable. -1 
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THEOREM3.6. The follo~ving are equivalent: 
(a) K is a strong cardinal. 
( b )For all x E V there exists an extender E : V, < T on V such that x E T .  
(c) For all x E V there exists a &-closed extender E : V,  4 T on V silch that 

x E T .  

PROOF. 

(a) i (b). K is strong if and only if for all x E V there exists an elementary 
embedding n :  V M with M transitive, crit(n) = K and x E Thei (Vz~K))2'1.  
extenders induced by the embeddings n for varying x satisfy (b). 

(b) i (c). Let x E V be given. Take some A such that x E V, and V, is K-close?. 
By (b), take an extender E : V ,  4 T on V such that x E V, E T .  We continue as in 
the proof of Theorem 3.5. Assurne that E : H,+ + H elementarily. Define Z by: 

Let a :  ( H ,  E)  E (2,E) ,  H transitive, arV,. = id. Define E :  H,+ H byi 

E = a-I o E ;  E :  V, + T with T = E(V,) is an extender on v with x E Vj.C T .  
An easy generalisation of the argument in Theorem 3.5 shows that T is &-closed. 

(c) i (a). Let x E V .  Let E :  V, 4 T be a K-closed extender satisfying (c) 
for .u. By Theorem 2.2 and Lemma 3.3, the elementary map n~ : V + Ext (VE)  
extends E and x E T c: Ext ( E ) .  Hence K is strong. 4 

THEOREM3.7. For a class A C: V the follo~ving are equzvalent: 
(a) K is strong in A. 
(b) For all 1. E On there exists an extender E :  V, 4 T on V such that V, C T 

a n d E ( A n V , ) n V , = A n V , .  
(c) For all 1. E On there exists a K-closed extender E :  V,  < T on V such that 

V, C T a n d E ( A n  V , ) n  V, = A n  V,. 

PROOF. 
(a) + (b). K is strong in A if and only if for all 1. E On there is an elementary 

map n :  ( xA )  + (M, A') with M transitive, crit(n) = K,  V;. C V,(,) n M and 
A' n V, = A n V,. Then 

and the extender induced by satisfies (b) for A. 
(b) i (c) can be shown like the corresponding step in Theorem 3.6. 
(c) + (a). Let 1. E On and let E be an extender satisfying (c) for A. Let 

with transitive extension E x t ( x  E ) .  The construction of the extension may be 
applied to the predicate A and one obtains a class A' such that 



is elementary. Then 

A' n V, = (A' n V,(,) n Ex t (VE) ) n V, 

= n(A n V,) n V, 

= E(A n V,) n V, 

= ~n v,, 
and so n is strong in A.  

To characterize Woodin cardinals we define: 

DEFINITION3.8. n is strong in A up to 6 if ( Vd, A) /= " n  is strong in A". 

THEOREM3.9. For a cardinal 6 tlze follolving are equivalent: 
(a) 6 is a Woodin cardinal. 
(b) For all A C: V,- tlzere exists a n < 6 ~vhick is strong in A ~ l pto 6 
(c) VA C: Vd 3 n  < 6V?. < 6 3 E  E Vb 3 T  E Vb: 

( E : V, 4 T is a rc-closed extender on V 

A V;~C: T A E ( A n  V,)n V;~= A n  V,) .  

PROOF. The equivalence of (a) and (c) is in essence proved in [lo, Lemma 4.21. 
The equivalence of (b) and (c) follows from Theorem 3.7. -1 

Clauses 3.9 (b) and (c) are the characterisations of Woodin cardinals to be used 
later on. We conclude this section with some results on wellfounded extensions. 

LEMMA3.10. Let M be a transitive model of set theory ~vhiclz is extendable by 
the extender E :  S < T with criticalpoint n and extension n~ : M +E Ext(M, E ) .  
Then: 

(a) V a  E On n M  nE (a)< max(G5 T)+. 
(b) Ifz is n cardinal > T s~lclz tlzat V a  < z ct.' < z tlzen ngz C: z. 
(c) If z satisfies the assumptions of (b) and cof (z) > w tlzen tlzere is a closed 

unbounded subset C C: z such tlzat Vy E C ngy C y. 
(d)Ify E OnnM,ngy  C: y arzdc~f"~(y)> n t l z e n n ~ ( y )= y. 
(e) I f z  satisjies tlze assumptions of (b) and cof (7) > K+ tlzen tlzere is a n+-closed 

unbounded subset D z such that n~ rD = id TD. 
(f) The hypotheses of (b), (c), and (e) are satisjied for successor cardinals z = ,LL+ 

where p is a strong limit cardinal of cojinality > n .  

PROOF. Let N = Ext(M, E ) .  
(a) Let a E On n M .  Every [f ', a ]  < n~ ( a )  is equal to some [f ,  a ]  with f : S + 

a .  So 

n E ( a ) = { [ f , a ]  I f : S + a ,  T ) ,  

and 

nE(a )  5 ~ a r d ( ~ a ). 1. 
Hence nE ( a )  < max(Gn,T)+. 

(b) Property (a) yields: a < z + n ~ ( a )< z. 
(c) Follows directly from (b) . 
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(d) Clearly n~ ( y  ) > y . For the converse assume that [f ,a ]  < nE( y  ). As above, 
assume that f : S -t y , f E M .  S" = K < cofM(y) and so there is a < y such 
that f : S + a .  Then [f, a ]  < nE(a )  < y by assumption. Hence zE(y) I y. 

(e) Take C c: z as in (c) and let D = { y E C I cof(y) > K ). Then nE ID = id by 
( 4 .  

(f) We only have to check V a  < z Zz < z as in (b).  Since z = ,u+ this comes 
down to seeing that p" p < z: 

,uZ= 

5 

1.'
 since cof (p)  > rc, 

p since p is strong limit, 
i < p  

= p .  4 

LEMMA3.11. Let E : S 3 T be an extender with critical point rc and let the ZFC-
model M be extendable by E with extension map n = n ~ .Let y > K be regular in 
M .  Then Ext(Hf,  E )  is welldejined and transitive and 

PROOF.Hf is a model of ZFC- and SP so that Ext(Hf,  E) is defined 

where [ l o  denotes the collapsed equivalence classes for the extension of Hf by E .  
It is easy to check that 

1 :  [ f ,a10 -z ( f  ) ( a )  

defines an isomorphism 
Ext(M,E)EX~(H,:C',E) H,(~) . 

Then both sides are transitive and hence equal. 4 

$4. ~ r e e sof models. In the next section we shall show the determinacy of sets of 
seals that can be represented by certain embedding normal forms, which are tree-like 
systems of models of set theory connected by elementary embeddings. Such normal 
forms will be obtained from other trees of models called iteration trees. Presently 
we consider properties which apply to embedding normal forms and iteration trees 
alike. 

DEFINITION4.1. T = (rI T )  is an o-tree if ITis a non-strict partial order on 
T # 0 and if for all t E T the set { s E T I s ITt ) is linearly ordered by 5, and 
is finite. We write s < T  t if s ITt and s # t .  

b c: T is a branclz through T if b is a c -maximal subset of T which is linearly 
ordered by IT.Let [TI denote the set of all branches through T. 

DEFINITION4.2. Let T = (T,I T )  be an o-tree. A system 5 = (Ms)sET, (nst)s<rr 
is called a tree of models over T provided: 

(a) every M, is a transitive model of ZFC- and the Skolem principle SP; 
(b) s ITt ==+ n,, : M, +Mfis elementary; 



(c) r <T s ITt jn,, = nSto n,,. 
Z is 7-closed, if every M, in Z is 7-closed. 

The criticalpoint of Z is 

crit(2)= min{ crit(nSt) I s I T t ). 

If b E [TI let 

Mb, (nsb)s~b = dir l im(Ms)s~b,  (ns t ) s IT t~b  

be the direct limit of the subsystem along the branch b. We require that the 
wellfounded part of Mb is transitive. If Mb is wellfounded b is called a wellfounded 
branch of 2;otherwise b is illfounded. 

The most important o-tree is the tree T = (<"w,2 )  of finite sequences of 
natural numbers, partially ordered by inclusion. A branch through T corresponds 
canonically to a function from w to o and we may identify the set of real numbers 
with the set of branches through T :  R = [(<"w, G ) ] .We can now define the central 
notion for our presentation of the determinacy proofs: 

DE~NITION4.3. Let Z = (M,) ,  (n,,) be a tree of models over T = (<"w, c).Let 
A & R. Then Z is an embedding normal form ( E N F )for A with base model Mo if 

'db E R (b E A -Mb is transitive). 

It will be important to work with trees of models where one can locally see some 
information about descending sequences in illfounded branches. The information 
is given by "witnesses": 

DEFTNITION4.4. Let Z = (M,) ,  (n,,) be a tree of models over T = (T ,I T ) .A 
system (w,),€T is called a system of witnesses for Z if: 

(a)'ds E T :  w,: [ T I n M ,  i O n A w ,  E M , ;  
(b) 'ds < T  t E b E [TI n Mi (b  is illfounded j(n,, (w,))  ( b )  > w,  ( b ) ) .  

Condition (b) expresses that for an illfounded branch b of the form so <T sl <T  
s2 <T . . . through T the ordinals ws0 ( b ) ,  w,, ( b ) ,  w,,(b ) ,. . . give rise to an infinitely 
descending <-chain in the limit model Mb: 

Mb b ns,b(wso(b))> ns,b(wsl(b))> " '  . 
LEMMA4.5. Let Z = (M,) ,  (n,,) be a tree of ZFC-models over T = (T ,S T ) .  

Assume that for every s ITt :  [TI E M,, n,, r[T] = id and M, is card([T])-closed. 
Then Zpossesses a system of witnesses. 

PROOE Set B = { b E [TI I b is illfounded). 

(1) For b E B there is a sequence ( y,b I s E b ) of ordinals such that 

S < T  t Eb==+nSt(y,") > ?,b. 
PROOF.L e t b = { s ,  I n < o ) € B w i t h s o < ~ s l < ~ s z < ~ . . .. 
Since b is illfounded there is an infinite sequence 

and ordinals 

i M for i < w 
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sothatfor i < j < w: 

We may assume that n (0) = 0.Define for n ( i )  < n < n ( i  + 1) :  

The sequence ( $ )  satisfies the claim since we have a descent in at least one of the 
two summands in (*). -1 (1) 

Now define for s E T functions w, : [TI + On, 

w, E M ,  since [TI E M,, and M ,  is card([^])-closed. If s <T t E b,  b illfounded: 

If every infinite branch through Zis illfounded, one can improve the above lemma 
so that the illfoundedness is witnessed by single ordinals instead of ordinal-valued 
functions. 

LEMMA4.6. Let 'I= ( M , ) ,  (n , , )  be a tree of models over T = (T ,I T )lvhiclz 
satisjies the assumptions of Lemma 4.5. Assume furtlzer tlzat every injinite bmnclz 
tlzrough Z is illfounded. Tlzen there is a system ( p, s E T ) of ordinals suclz tlzat 
for s <T t :  n,, ( p , )  > p,. In tlzis case 1ve say tlzat ( p,  s E T ) witnesses that Z is 
continously illfounded. 

PROOF. There is a system ( w , ) , ~ Tof witnesses for 'Iwhich satisfies: 

The system of witnesses given by 4.5 fulfills (1) for all infinite b; this can be 
modified easily to also encompass all finite b E [TI.We can also assume: 

Define, in V, a strict partial order <" on T x I T ]  On by: 

( t ,  g )  <* ( s ,  f )  := t >T s l\ 'db E [TI g ( b )  I f ( b )  

A Vb E [TI ( t  E b -+ g ( b )  < f ( b ) )  

( 3 )<* is strongly wellfounded. 

PROOF. The second clause in the definition of <* ensures that the class of <*-
predecessors of ( s ,  f )  is a set. Assume that for n < w: (t,+l, f ,,+l) <" (t,,,f ,). 
There is a unique branch b E IT]such that { t ,  I n < w ) c b. Now the third clause 
in the definition of <* yields that for n < w: f ,,+1 ( b )  < f ,,( b ) .  Co~ltradiction. 

-1 ( 3 )  



For s E T let p, = the <"-rank of (s, w,). The definition is absolute for every M,  
in Z since Zis card([T])-closed. The system of p ,  satisfies the lemma: Let s <T t. 
By (1) and (2): 

(4) (t,wr) <" (s,ns,(ws)). 

Hence: 

nsr (P,) = nsr (<*-rank of (s, w , ~ ) )  


= the <"-rank of (s, n,,(w,)) 


> the<"- rankof ( t ,w, ) ,  by(4),  

= pt.  4 

§5. Determinacy and embedding normal forms. We consider games played on 
trees of finite sequences. Let T c '"V be closed under the formation of initial 
segments, T # 0. Then T = (T,C:) is an w-tree under the inclusion ordering. 
The elements of T are the positions of the game, the empty sequence 0 is the initial 
position. Aplay on T is a branch b E [TI; one often identifies the branch b with its 
union IJ b which is a sequence of length 5 w. The game G (T, A) on T is defined by 
a winning set A C: [TI: I wins tlze play b in G(T, A) if b E A, otherwise I1 wins the 
play b. 

The motivating idea is that two "players" I and I1 produce a play b (a, / n < I), 
1 I o,in T as follows: I plays ao, I1 plays a l ,  I plays a2, etc. such that ( a, I n < 
k ) E T for each k . Schematically: 

1 a0 a2 . . . 
I1 a 1 a3 . . . . 

The play continues until a branch b through T is completed. 1's aim is to steer that 
branch into the winning set A. 

A strategy on T is a partial function 0 : T + V so that 'dt E dom(0) tno( t )  E T .  
A play b (a ,  I n < 1) on T isplaj~ed by I according to the strategy 0 if 

'di (2i < 1+a2i = o(ao,  a l ,  . . . ,a2i-1)); 

b is played by I1 according to tlze stmtegy 0 if 

'di (2i + 1< 1==+ a2i+l = a(ao ,  a l ,  . . . ,aa i ) ) .  

0 is a winning strategy for I (respectively 11) in G(T, A) if I (respectively 11) wins 
every play b in G(T, A) which is played by I (respectively 11) according to 0. We 
say that G(T, A), or just A, is determined if I or I1 possesses a winning strategy in 
G(T,A). 

One is interested in topological or other conditions which imply the determinacy 
of a set A . There is a natural topology on [TI which is generated by the basis sets 
{ b E [TI I t E b ) for all t E T .  Gale and Stewart [5] have shown that A c [TI is 
determined in case A is open or closed. 

Descriptive set theory is particularly interested in games played on the tree T = 
('"w, c ) .  Plays on T are real numbers b E [TI = R. A set A C: R' is IIt with n > 1 
if A is of the form: 

'd2E R' ( 2 E  A ~ ' d z ,  E R ~ Z , - ~E R . . .  Qzl E R(T ,z l ,  . . . ,  z,) E B), 
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where B c R"+' is open/closed if n is oddleven; the set B can be coded by a single 
real number p which is called a dej?ningpammeter for A .  A set C C IW' is C; if IW' \ C 
is II:. A IW is projective if A is Il: for some n. Ilt-determinacy is the statement 
that all IIA-sets A C: IW' are determined. Projective determinacy (PD) states that all 
projective sets A c: R' are determined. The axiom of  determinacy (AD) requires 
that all sets of reals are determined. We shall use some basic properties of projective 
sets, in particular the absoluteness of IIi-relations and normal forms for IIf-sets 
(see [7] or [1 31). 

Sets of reals and large cardinals can be linked using embedding normal forms. 
We shall see that an embedding normal form with witnesses for a set A C: R implies 
the determinacy of A. 

DEFINITION5.1. Let A & IW. An embedding normal form with witnesses (ENFW) 
for A is a system Z= is an embedding normal (M,), (n,,), (w,) where (M,) ,  (n,,) 
form for A with witnesses (w, ) . 

Working with ENFWs is equivalent to working with projections of homogeneous 
trees: 

THEOREM5.2. A set A c IW has an ENFWs with base model V i f and  only i f A  is 
the projection of a homogeneous tree. 

A homogeneous tree yields an ENFW consisting of ultrapowers of V by the 
homogeneity measures. Conversely, given an ENFW, use the witnesses as generators 
for the required homogeneity measures. This equivalence is the key observation of 
[14] but is already implicitely proved in [lo]. In the context of ENFWs the basic 
determinacy result takes the following form: 

THEOREM5.3. Let A C IW have an ENFW (M,), (n,,), (w,) with base model Mo. 
Assume at least one of  

(a) A E Mo and IW E Mo, or 
(b) A is II: with a de$ning parameter in Mo. 

Then A is determined. 

PROOE We reduce the game G (A) to a game G on an auxiliary tree with a closed 
winning set; the definition takes place inside the base model Mo: 

with ai E o,f 2i  : R + Q where 6' E On is chosen sufficiently large, e.g., 6' = 
sup rge(w0) + 1. Player I wins the play (ao, f o, a l ,  an ,  f 2, a3 , .  . . ) if and only if the 
following rule (2)is satisfied: 

Note that in case (b) of the assumptions, = A nMo by IIi-absoluteness, as Mo 
contains a defining parameter for A .  So ( 2 )  and the definition of G make sense 
inside Mo. If a play in G violates ( 2 )  this already takes place on a finite initial 
segment of the play. The "losing set" for I in G is thus open, hence G is a closed 
game which is determined by the Gale-Stewart result. 

Let 6 E Mo be a winning strategy for I or I1 in G inside the model Mo. 

CASE1. Mo + 6 is a winning strategyy for I in G .  



Let o be the strategy derived from 6 by "hiding" the auxiliary moves f o ,  f 2 ,  . . . : 

a ( 0 )= a0 where 6 ( 0 )= (ao, f  0 ) ;  

o(ao, a1) = a2 where Z ( 0 )  = (ao,f 0 )  and 6(ao,f 0 ,  a1) = (a2,f 2 ) ;  

a(a0, a l ,  a2, a3) = a4 where a ( @ )= (ao,f 0 )  and 6(a0 ,f 0 ,  a l )  = (4,f 2 )  

and C(ao,f 0 ,  a1, as, f 2 ,  a3) = (a4,f 4 ) ;  

etc. 

Obviously a E Mo 

CLAIM1. o  is a  winning strategy for I in G  ( A )  (in V ! ) .  

PROOF. Assume not. Then 

( 1 )  V + there is a play (ao ,  a l ,  . . . ) played by I according to a so that 

( ~ 0 ,a1,. . . )  $! A.  

(2)Mo + there is a play (ao,  a l ,  . . . ) played by I according to a so that 

( ~ 0 ,a1,. . . ) $! A. 

PROOF. Clear in case (a) when R E Mo and A E Mo. 
In case (b) the statement "there is a play . . . " is in the parameter a E Mo and 

some defining parameter p E Mo for the l3:-set A. Then (2)follows from ( 1 )  by 
!Ji-absoluteness. -1 (2)  

Let x = (ao,  a l ,  . . . ) E Mo satisfy ( 2 ) . By the definition of a there is a play 

in G in which I follows the winning strategy a .  Since x $! A,  rule (9)implies: 

f o ( x )  > f 2 ( x )  > f 4 ( ~ )> . .  . , 

contradiction i(Claim 1 )  

CASE2. Mo 6 is a winning strategy for I1 in G .  

To use 6 in the original game G ( A )player I1 has to "simulate" moves f 0 ,  f 2 ,  

. . . for I. To do this, I1 uses the witnesses w,of the ENFW for A. These are 
"descending" along the ENF  and provide arbitrarily long sequences of functions 
satisfying rule (9).Define a strategy a for I1 in G ( A )  by: 

Note that in defining o  ( s )  the strategy 6 and the witnesses employed all are mapped 
up to the model M, of the tree of models where all these images "live together". 

CLAIM2. a  is a  winning strategy for I1 in G ( A )  (in V ! ) .  
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PROOF.Let x = (ao, a l ,  . . . ) E R be a play in G(A) in which I1 plays according 
to o but assume that x E A. By the normal form property, the direct limit 

M,y, (~,Y,),E, = dir l im(Ms)s~,,  (nsr)sCt~s 

is a transitive €-model. We apply the maps n,, to the defining equations of where 
we set 6" = nB, (6)  and w," = ns,(ws) for s E x: 

a1 = 6"(ao, wfo) 

a3 = CE(ao, wi0, 01, a2, wfoill(lp) 

This amounts to a play 

in no,(G) in which I1 plays according to the strategy 6". The play follows the rule 
( 9 )  for reals in M,: 

if n < o,z E (R n M,) \ A and (ao , .  . . ,ann+2)E z: 

~ , :~2n+3(~)= nx~2n+3,x(ws12n+3(~)) 

< nx1~n+3..~(nxr2n+1,x 12n+3(~.y[2r~+l)(~)),  
since the w, are witnesses, 

In general, this play according to 6" will not be an element of M, but we can find 
an analogous play in M, by an absoluteness argument. Consider, in M,, the set of 
all positions in n0, (G)  which are obtained by I1 playing according to 6"and which 
satisfy the rule ( 9 )  for all functions already played. This is a tree in M, for which 
the above play ao, wi0, a l ,  a2 ,  w ; ~ ~ ~ ~ ~ ,  . . . yields an infinite branch in V. Since M, 
is a transitive inner model, M, also contains an infinite branch through the same 
tree by the absoluteness of wellfoundedness. So in M, there is a play in which I1 
plays according to 6" and in which ( 9 )  is satisfied. That play is won by I and so 

M ,  + 6" is not a winning strategy for I1 in no, (G) .  

Since n0, is elementary, 

Mo + 6 is not a winning stategy for I1 in G ,  

contradicting the assumption of Case 2. i 

$6. Normal forms for IIi-sets. We are going to obtain embedding normal forms 
with witnesses for IIk-sets from iterated ultrapowers and from Silver indiscernibles 
("sharps"). We start from an ordinary normal form which will be lifted into the 
realm of large cardinals by an Ehrenfeucht-Mostowski technique. 
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THEOREM6.1. Let A G R be a lli-set. Then there is a system ( S  I),ET, (est)slrt 
over the tree (T, I T )  = (<"w, c )  which is a normal form for A in thefollosving sense: 

(a) s STt +e,, : I S  I --+ 1 i 1 is orderpreserving; 
(b) r ITs STt ===+ e,., = e,, o e,.,; 
(c) 'dx E R (x E A t--t (1x1, (e,t),sT,E, has a wellfoundeddirect limit). 
Such a system can be constructed recursively from any de$ningparameter for A. 

REMARK.Clauses (a) and (b) express that the system is a tree of natural numbers 
connected by orderpreserving maps, in analogy to the trees of models introduced in 
4.2, (c) corresponds to the crucial property for embedding normal forms (Definition 
4.3). 

PROOF.It is essentially shown in [13, Lemma 6G.61 that A has a representation 
of the following form: there is an assignment s H <, for s E "% such that: 

(1) <, linearly orders Isi; 
(2) s t E "b <<s c < , ;  
(3) 'dx E IIR (x E A c-, <, := Us,, <, is a wellordering of w). 

For s E T let 

h,: (1~1, <) " (1~1,< S )  


be <-<,-orderpreserving. For s STt E T define 

e,, = h,' oh,. 

By (2), e,, is orderpreserving and (a) holds. Clause (b) follows directly from the 
definition of the e,, . For (c), consider x E R.The system 

(14,<,),E~, (id T/sl)ssTt~x 

is via (h;'),,, isomorphic to 

(1~1, <)SEX, (e~l)slTtEx. 

Property (3) implies: 

x E A c-, ( I s ,  (e,l)s<rlEx has a wellfounded direct limit. 

Inspection of the proof in [13] shows that a system (<,),,T as above can be found 
recursively from any defining parameter for A.  By definition, the system (e,,),lT,Er 
is explicitly recursive in (<,),,T. -1 

Let us now recall some key facts about iterated ultrapowers. These could be 
constructed as iterated extensions but it is easier here to keep to the standard 
presentation as in [6]. 

From a normal ultrafilter U on a measurable cardinal K one defines the following 
linear system of ZFC-models. 

No = no0 = id, KO = K, UO= U; 

N,+l = Ult(N,, U,) is the ultrapower of N, by U,, 

n,,,+l: N, +ua N,+l is the natural embedding into the ultrapower, 

na+l,a+l = id, xy,,+l = x,,,+i 0 zy,, for y < a ,  
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for limit ordinals A let N,, (n,i),s; be the transitive direct limit of (N,),,;, 
(naa)a<ic<;,6; = n o . i ( ~ o ) ,Ui = no.i(Uo). 

The following two statements express that N, is the Ehrenfeucht-Mostowski 
model for the (class-sized) theory of ( K  E )  with constant symbols for every set 
x E V; that model is generated by the wellorder a .  

LEMMA6.2. The set { K ;  / i < a ) is a set oforder-indiscernibles for N,  relative to 
parameters from rng(nO,). 

LEMMA6.3. 

N, = {no , ( f ) (K i1 , .. . , ~ i , , )  I n E o,f :  + K il < . . .  < i,, < a } .  

These facts yield lifting properties for orderpreserving maps. 
LEMMA6.4. Let e : a --+ P be strictly orderpreserving, a < P E On. Then there is 

a canonical map 

e* : N, + ND 

defined by: 

e * ( n ~ c r ( f ) ( ~ i l ,. .  . , K I , , ) )  = noD(f ) (Ke( i l ) ,. . . , & e ( l , , ) ) ,  

foralln < o,f :K" + V ,  il < . . .  < i,, < a .  

LEMMA6.5. If ( e,,,, ),,,< ,,,, is a commutative system of orderpreserving maps em, : 
m n ,  then (el;,,,),,,l,,,, commutes. Moreover, the system (m),,,<,, (ernn),i,<n<c, 

,,,,,,the system (N,,) ifand only ifwellfounded direct limit ahas (e~l,,),,,l,,, has a 
ivellfounded direct limit. 

PROOF. Commutativity is trivial. For the other statement observe that the system 
(m),  (e,,,,) is orderpreservingly embedded into (N,, ,) ,  (e;,,) by the maps m + N,, 
i H K;.  SO if ( m ) ,  (e;,,,) has an illfounded direct limit so has (N,,), (e;,,,). On the 
other hand let ( m ) ,  (e,,,,) have a wellfounded direct limit, say 

a ,  (el,,)ll,<,, = dir l im(m),  (e,,,,), 

where a is an ordinal. It is straightforward to check that N,, ( e~ ) , , , , ,is the 
transitive direct limit of (N,,,), (el:,). -1 

THEOREM6.6. Assume there is a measurable cardinal K .  Then every Ili-set pos- 
sesses an embedding normal form with witnesses with base model V and criticalpoint 
> K .  

PROOF. Let A R be I l i  and let IS^)^^^, (es t ) s l rrbe the normal form for A 
given by Theorem 6.1. Let (N,),,o,,, (n,a),lBEOn be the iterated ultrapowers of 
V by a measure on K .Then define 

5= ( N l s I ) s t ~ ,(eJ*[)ssit. 

For x E R, 

x E A - IS,<)^^.^, (es,)s~rtE.~hasawellfoundeddirectlimit- (Theorem6.1 (c)) 

( N j s  (eJ?t),slrtEx- (Lemma 6.5). has a wellfounded direct limit 

Hence Z is an ENF  for A with base model No = V and critical point > K .  2 is 
built from finite iterates of V and each of these is &-closed; this is a standard fact, 
see also Theorem 3.5 (c). By Lemma 4.5, Z has a system of witnesses. -1 



An immediate corallary using Theorem 5.3 is the classic result of Martin [9]: 


THEOREM6.7. Ifthere is a measurable cardinal then II:-determinacy holds. 


The usual strengthening from measurable cardinals to "sharps" can also be car- 

ried out for embedding normal forms. This will also be used for a strong form of 
the Martin-Steel result. 

Let w = (wo, <o) consist of a transitive set wo wellordered by <o.  We want 
to define the notion "wn exists". Let No = L(w) be the smallest inner model 
containing w as an element. L(w) satisfies AC since w is a wellorder. Assume now 
that 

is a class of Silver-indiscernibles for L(w), i.e.: 
(a) i <  j + K, < K,; 

(b) I is a class of order-indiscernibles for the structure (L(w), (z I z E TC(w))):  
if cp(u', G) is an E-formula, z' E TC(w), 2, E I strictly increasing sequences of 
appropriate length then 

(c)I generates thestructure (L(w), (z 1 z E TC(w))):  thereisaZF-term ~ ( v o ,vl) 
such that 

We describe two cases of particular interest to us: 
1. wo = TC({a)) for some real a E R and < O  a natural wellorder of wo. Then 

L(w) = L(a )  and we paraphrase properties (a)-(c) as "an exists". 
2. w = (Vd,<o) for some "big" ordinal 6. We then abbreviate (a)-(c) as "V/ 

exists", although correctly speaking this depends on the choice of <o. 
In general, (a)-(c) are described as "wn exists". Note that usually one normalizes 
the indiscernible class by some minimality condition which is called "remarkabi- 
lity"; this is not necessary here. We can use the Silver-indiscernibles to define an 
"iteration" of L(w) which behaves much like iterated ultrapowers: For a E On let 
N, = L (w ); define 

by: 

for 2 E TC(w) and il < . . . < i,, E On. Conditions (b) and (c) imply that Lemmas 
6.2 and 6.3 transfer verbatim to the new situation: 

LEMMA6.8. For each a E On: 
(a) The set { K; 1 i < a ) is a set oforder-indiscernibles for N, relative toparameters 

from rng(n0,). 
( b ) N a = { n o , ( f ) ( ~ i  ~ i , , ) ( n ~ w ,f : ~ " +  K i l < . . . < i , ,  < a } .  

We can then define the liftings e H e* with the properties described in Lemmas 
6.4 and 6.5 as before. 



1160 	 PETER KOEPKE 

THEOREM6.9. Let A c R be a l3:-set in a deJiningparameter a E JR. Assume that 
w# exists where w = (wo,<o)  and a E wo. Then A possesses an embedding normal 
form with witnesses with base model L ( w )  and criticalpoint > rk(w) .  

PROOE Let '57 = ( I s I ) , ~ ~ , ( e s I ) s5r tbe a normal form for A as in Theorem 6.1, 
where '57 is recursive in a .  Hence '57 E L ( w ) .  As in the proof of Theorem 6.6, '57 
lifts to an embedding normal form 

2 = ( N l s l ) s t ~ ,(e,*t)ss,r 

for A with base model No = L ( w ) .  Since every ordinal < rk(w) is definable from 
constants in L ( w ) ,the critical point of 2 is > rk(w) .It remains to find a system of 
witnesses for 2. 

Work inside the model L ( w ) . We construct a kind of witnesses for the system '57. 
If x E R \ A,  the corresponding branch through '57 is illfounded and we can choose 
a sequence (i," I n < o)such that: 

( 1 )  i," E n,  for 0 < n < o; 

(2) e , ~lm, x In ( i i )> i,", for 0 < m < n < o; 

(3) exr,, .,,+I (i,")> i h , ,  for infinitely many n < o .  


Define a further sequence ( k i  1 n < w ) :  


k," = the smallest k such that exrn+k, ln+k+l (it+k) > i&k+l. 

By (3), there is always some "strict" descent for the (i,")or the ( k i ) :  

Now define ( w , ) , , ~in V by: 

K O ,  i f x  E R \ A ;
wo(x)= 

0, else. 

( 5 )  w ,  E N I S I= L ( w ) ,since the definition of w, refers to '57 E L ( w )and the$nite 
set { K ~ ,  E L ( w )and can be carried out in L ( w ) .. . . ,K ~ , ~ )  

(6)( w , ) , ~ ~is a system of witnesses for 2. 


PROOF. Let s <T t E x E ( J R  n L ( w ) )\ A. 

I f O < m =  Is1 < n =  Itl: 


e,; (w , ) ( x )  = e2 (w,  ( x ) )  = e; ( K P ,  + k;,) 

-
- Ke,,(i,;)+ k i  

> 61;+ k," , by (4), 
= w t ( x ) .  

I f O = m = I s 1 < n = I t l :  

es: ( W S )  ( x ) 	= 710, ( W O( x ) )= 710, ( K g )  = K n  

> Ki,:+ k," = W I  ( x ) .  



So we get the stronger theorem of Martin's: 

THEOREM6.10. 
(a) Let A C E% be a IIt-set in a dgfining pammeter a E E%, and assume that an 

exists. Then A is determined. 
(b) If V a  E R an exists then Kt:-determinacy holds. 

Let us briefly discuss the necessity of some witness property for the determinacy 
proofs. We get ENFs for any set of seals from on, hence in general ENFs without 
witnesses are not strong enough to prove determinacy. 

LEMMA6.11. Assume that 0n exists. Then every set A C R has an embedding 
normal form with base model L.  

PROOF. L = L(w) with w = (@,a) .01 yields an "iteration" 
as described in Lemma 6.8. N, = L for every a E On. Let (x,. / r < 6 )  be an 
enumeration of E% where 6 is some infinite cardinal. For s I T  t E '"o define 

where we assume r < 6 and k < w.Then 

( L ) s ~ ~ j(eJ*t)s<Tt 

is an ENF for A .  The details are left to the reader. 

$7. Iteration trees and Steel's lemma. The determinacy results of the preced- 
ing section rest on the construction of embedding normal forms from measures 
and sharps. Consistency strength considerations imply that we cannot prove Kt;-
determinacy from a measurable cardinal, and so one cannot build good ENFs for 
arbitrary Kt;-sets from ordinary iterated ultrapowers. In the proof of the Martin- 
Steel-theorem more complicated iteration mechanisms which allow to code more 
information into the iterates are employed. 

DEFINITION7.1. A system 3 = ( i * ,Ei)i+l,l is called an iteration tree if: 
(a) I < o ;  1 is the length of the tree 3; 3 isfinite if I < w and infinite otherwise; 
(b) each Mi is a transitive model of ZFC; 
(c) E; : Si < Tiis an extender on Mi; Ei  E Mi; 
(d) i* 5 i ;  

( e ) 9 ( S i ) n  Mi* = 9 ( S i )  n M i  E Ti.; 

(f) Mi+l = Ext(M;*, Ei); 
(s)Ti C Ti+l. 

3 is an q-closed iteration tree if each M; and each Ei in 3 is q-closed. 

REMARK.Our iteration trees are more usually called iteration trees of length < w. 
We imagine the iteration tree 3 as a recursive construction in I stages. At stage i ,  

where i +1< 1 ,  an extender E i  is chosen in Mi. Then a stage i* < i is chosen for the 
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application of the extender. The tree of models generated can attain a complicated 
branching structure. To form Ext(Ml*,  E l )  sufficient agreement between M; and 
Mi* is required. This is expressed in condition (e). Putting Mi+l = Ext(M,* ,  E l )  
continues the construction. The agreement between the models Mi is controlled 
by the targets Tiof the extenders. Ti is a subset of M I , of Ext(M;,  E i ) ,  and of 
Mi+l = Ext(Mi*,  E i ) .  By the growth condition (g) this implies Ti C Mi for all 
further j > i .  Condition (e) says that when we go back to the model Mi* at 
stage i ,  the necessary agreement between Mi and Mi* is already in the guaranteed 
agreement set Ti* .  

An iteration tree is also a tree of models: Let I = (1, <() be the tree order on l 
generated as the transitive reflexive closure of all pairs ( i" ,  i + 1) .  Set 

and let 

be the tree of models generated from the ni*,i+l by compositions along the 5-
ordering. For a branch b through I = (1, < I )  let 

be the direct limit along the branch with the wellfounded part of Mh being transitive. 
Later we shall piece together ENFs from branches of iteration trees. The crucial 

device for controlling the wellfoundedness of branches is the following result of 
Martin and Steel of which we present a simple but sufficient instance. The argument 
was suggested by a more general proof in [l  11. 

THEOREM7.2. Let 3 be an infinite 2%-closed iteration tree. Then 3 possesses at 
least one infinite branch b & w such that Mb is transitive. 

PROOF. Assume that 3 = (Ml ) i<w,( i " ,  E;) ,<,  is a counterexample. We use the 
notations introduced in this section so far. Let = 2"o.  By Lemma 4.6, the 
tree 3 = (Mi),,,,, (n;,i)isj, ,  is continuously illfounded with a system (p i ) ;Ewof 
ordinals satisfying nij ( p i )  > pj whenever i <I j .  By Lemma 3.10 there is a strong 
limit cardinal y = 2, which is a fixed point of all the embeddings nij and such 
that y > rk (E l )for all i < w. For i < w let y ,  = (Il++,,z,,)'Mf. yi is a successor 
cardinal inside Mi. Let M: = (H;,z)."j.The following properties of the system 
(M:, i " ,  E;)i<,, correspond to the conditions in Definition 7.1 (b)-(g): 

( 1 )  Mi' is an I?-closed transitive model of ZFC- and the Skolem principle Sp; 

(2)E; : Si 4 TI is an extender on M,', El E M,'; 

( 5 )  M:,, E Ext(M,'*, Ei); 

(6)Ti C T i t l ,  Ti E M L l .  



Therefore 

M;+, = (H,+1)lVfl+lE ( H n , *  ,+ l ( , z* ) ) 'w+l  

= E X ~ ( ( H < ! . ) ~ ' * ,  by Lemma 3.11, E,),  

= Ext(M;,, E,). -1 (5) 

By a downward Lowenheim-Skolem argument the situation (1)-(6) is reflected 
down to the hereditarily countable sets. Let H be a transitive model of suffi- 
ciently many axioms of ZFC and let (M;, i", E;)i,, E H .  Let X + H be count- 
able such that (M,', i*, Ei)i,, E X. Let a : H " X + H ,  H transitive and let 
o ( ( M ~ ,i*, Ei);<,) = (M,', i", E;)i,,, a(ij)= q. Properties (1)-(6) imply: 

(7) Mi is a countable transitive model of ZFC- + SP; 

(8) Mi b Ei : Si + Ti is an 7-closed extender on V; 

(14) a 0  : Mo + MA is elementary, where a 0  = a rMo; 

(15) MA is q-closed. 

Now we lift the countable system (M;, i*, up into the uncountable again 
so that the "descent" in (1 1) is transformed into an infinite descending €-chain (19) 
which establishes the desired contradiction. We shall construct a system (M;, ai)i<w 

by recursion satisfying: 

(16) M, is a transitive q-closed model of ZFC- + SP; 

(17) a; : M, -+ M; is elementary; 

(19) Mi E for i > 1. 
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For i = 0 let MO = MA and oo as described in (14).Then (16)-(19)are trivially 
satisfied up to i = 0. 

Assume the system ( M j ,~ , ) ~ < ihas been constructed satisfying (16)-(19)and we 
have to define and Let ( E i ,si,T i )= a i (E i ,S i ,T i ) .By (17), 

Mi + Ei : si + Ti is an q-closed extender on V.  

Since Mi is q-closed (16),the universe V satisfies 

Ei : Si + Ti is an 7-closed extender on Mi. 

(20)9(si)n Mi =9(si)nMi*. 

PROOF. 

9(si)n Mi = g i ( 9 ( S i )n M i ) ,  by ( l o ) ,  (17), 

= g i ( 9 ( S i )n Mi*) ,  by ( l o ) ,  

= g i * ( 9 ( S i )nMi*) ,  by ( l o ) ,  ( IS ) ,  

= 9(si)n Mi* ,  by (101, (18). -1 (20) 

So Ei : Si 4 Ti is also an q-closed extender on M,*. Let 

it: M,* +Ei E X ~ ( M , * ,  B i ) .  

By Theorem 3.3, ~ x t  Ei) is transitive and 9-closed. Let ( M i a ,  

n :  Mi* - + ,  E X ~ ( M ~ * ,E i )  

be the corresponding map for the countable structures. 

(21)There is an elementary embeddingo : E X ~ ( M ~ * ,  E i )defined 
by % ( f) ( a )-% ( ~ i * ( f) ) ( ~ i ( . ) ) .  

E i )+ E X ~ ( M ~ * ,  

PROOF.Letcp(vl,.. . ,v,) bean E-formulaandE(fk)(ak) E E X ~ ( M ~ * ,E i ) ,f k :  Si 
- 'Mi*, f k  E Mia,akE Ti f o r k =  1, . . . ,n .  Then 

Ext(Mi*,Ei )  + cp(e(f i ) ( a ~ ) ,  . . . ,e ( f  ,)(a,)) 

if and only if 

( ~ 1 ~ .  1 . . . ,f , (u,))  1, . . ,a , )  E E i { ( u l , .. . ,u ,)  E S: Mi* + cp( f l (u l ) ,  

by the Eo6-property of Lemma 2.5, if and only if 

gi(a1, * .  . ,an)  

E Eigi{(ul , . . . , u n )  E / Mi* + c p ( f l ( u l ) , * . . , f n ( u n ) ) )  

= Eioi*{ ( u l , .  . . ,u,) E S: / Mi* k cp( f l (u l ) ,. . . , f , ( u , ) ) ) ,  

= Ei{ ( ~ 1 , .  I l ) ( u l ) ,. . . ,gi*( fn) (un))). . ,un) E Sin Mi* + ~ ( g i * ( f  

if and only if 

~ x t ( M i * , E i )k ~ ( ? ( g i * ( fl ) ) ( o i ( a l ) ) ,. . . ,? (g i*( fn) ) (g i (an)) ) .  -1 (21) 



- - 

By ( 1 1 )  we can apply a to and then by (12),E X ~ ( M , * ,  E ; )  + a ( ~ , + ~ )is 
q-closed. Since EX^ ( M i * ,E;) is 9-closed, V satisfies: 

(22)C T ( M ! + ~ )is q-closed. 

(23)a rMi+1 : Mi+1+ a ( ~ , + ~ )is elementary. 

(24)a rMi+i E O ( M , + ~ ) ,  is a map with hereditarily countable domain since a 
and O ( M ~ + ~ )is q-closed. 

(25) CO ( M ~ + ~ ) .  

PROOE 

T; = Z ( S ; )  = Z ( a i ( s i ) )= Z ( a i * ( s i ) ) , by (10)and (18), 

= a(?t(Si))= a(T i )  o ( ~ ~ + ~ ) ,by (13). -1 (25) 

Inside E X ~ ( M ; * ,  E ; ) let Y be an 9-closed elementary substructure of a ( ~ ; + i )  
such that Y > Ti U { a r ~ ; +) and such that ~ Y is of minimal size. Y exists since 
a(Mi+i)itself is q-closed inside E X ~ ( M ; * , ~ i ) .  Ei)Since Ti is q-closed in E X ~ ( M ; * ,  
and Y has the minimal possible size: 

(26)There is a bijection T;-Y in E ~ ~ ( M ~ .,E ~ ) .  

Let p:  Y E ~ i + 1 ,  transitive, be the Mostowski collapse of Y and set M;+I 

~ i + l= p o 0 :M;+i -+ M;+i. 

We have to check (16)-(19). (16) and (17)are immediate. For (18)it suffices to 
show a; /Ti = a;+,rTj:if a E Ti ,  

ai ( a )  = a ( a ) ,  by the definition of a ,  

p ( a ( a ) ) ,  since a ( a ) E Ti c Y and T; is transitive, 

= ai+l(a).  

Finally, (26)implies that there is some Z Ti,Z E E X ~ ( M , - ,E i ) which codes 
the isomorphism type of Y and hence codes 

= 

(27)2 E Mi.  


PROOF.Z = E ( f ) ( a )for some f :  si + M i - , f E M j * ,a E T;. Since Z & 

T; = i i ( s i )we may assume that f : si+ 9 ( s j ) .Then f can be coded by a subset 
of sj and since ~ ( 3 , )  n A& E dorn(Ei). Thenn Mi* = 9(si) (20) we get f 
Z = E ( f ) ( a )= E i ( f ) ( a )E M; since Ej  E M,. -1 (27) 

In I\?; we can decode Z and obtain Mi+l E n?;. 
This concludes the recursive definition of the system (a) and (19)contradictsj,, 

the initial assumption. 

§8. Growing alternating trees. The Martin-Steel-theorem will be proved by con- 
structing embedding normal forms with witnesses for projective sets. The branches 
through those ENFs will be the main branches through certain alternating trees. 

-1 
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The wellfoundedness of the main branches will be controlled by injecting informa- 
tion from given witnesses into the side branches of the alternating trees. We shall 
construct alternating trees by recursion and the present section describes a method 
by which a finite alternating tree may be end-extended. 

Infinite alternating trees look like the "sum" of one linear main branch and a copy 
of the tree <"w. We introduce a partial order on w with the corresponding order- 
type. Let 12 : o-<"w be a recursive bijection satisfying 12 (k)  g h(1) ==+ k 5 1; 
thus initial segments are enumerated first. Then define 

where m n = max{ m - n ,  0 ). { 0,2 ,4 ,  . . . ) is called the main branch of I = 

(w, sI) .For i E o let i" be the immediate <,-predecessor of i + 1. An iteration 
tree is called an alternating tree if its i*-function is equal to a proper or improper 
initial segment of the function i*  just defined. 

We now describe a method for endextending an alternating tree of length 2n + 1 
to an alternating tree of length 2n + 3. Let us first introduce some notation for 
describing the agreement between models of set theory. For a class X and a E On 
let X ra = X n V,. If M is a transitive €-model, y < On n M ,  E M ry, and K 5 y 
let T h ( M  ry, I;;K )  be the first order theory of the structure 

where the members of the finite tuple ?and every a E M / K  are taken as constants. 
We assume some natural Godelization of the language so that for 2,  K limit ordinals, 
lb< K < y: 

(1) Th (M ry, y': 1")c M and T h ( M  ry, I;;A) = Th(M ry, I;;K )  rA.  

We shall argue in the presence of a fixed Woodin cardinal 6. We only consider 
alternating trees with base model V which are formed by extenders from vj. Let 
5 be the class of sets which are fixed points in all those trees. Lemma 3.10 shows 
that 5 is a proper class containing lots of big ordinals. Also 6 which is strongly 
inaccessible is an element of 5. 

All objects to be determined in the subsequent construction as well as in the next 
section can be found in some sufficiently high Vo.By a simple pigeonhole argument 
there are co, el, c2 E 3, 0 < co < c1 < c2 SO that: 

Let us remark already here that co, el ,  cz are not really needed when certain 
things are chosen in the construction. We rather refer to theories definable from co 
or cl but which are themselves rather small objects. 

Now let an y-closed alternating tree 

5 = (Mi)i<~n,(i*, Ei)i<~n 

of length 2n + 1be given with base model Mo = V and Vi < 2n E; E Va. Let 

2 = (Mi)i<~n,  

be the finite tree of models associated with 2. Assume that N1 5 y < 6 



Let (2n)*= 2rn - 1 be the immediate <I-predecessor of 2n + 1. We end-extend 
Z in two stages: 

I. Extend M2, ,, by an extender E2, E M2rIr6 to obtain M2i1+l. 
11. Extend M2, by an extender E2,+1 E M2n+1 r6 to obtain MZn+2. 

In our later applications we have to realize certain 1st-order properties of M2, in 
the model M2n+1and we formulate sufficient conditions for this. The resulting 
end-extension will also satisfy appropriate versions of these conditions so that a 
recursive continuation is possible. These conditions, for the particular m 5 n,  are 
as follows: 

There are K Z ? ~ ,1/2nl,I;,I;*satisfying (3)-(7): 

(3)7 < ~ 2 n 1< 6 ,6  < y2ni < o,,? E M2n1 r?/2ri7, I; E 3,I;" E M2,Pl 11 tco + 1; 

(4)M2n7k KZ,, is strong in Th(M2mr y ~ , , ~+ 1,6,I;; 6 )  up to 6;  

(6)712m.2n rQn1 + 1 = id and Mzn,r ~ 2 m+ 1 = M2,,rKZni + 1; 

(7)Th(M2,17 /yarn + 1,6,I;;~ 2 1 7 7 )= Th(M2m2 1  rco+ 1,6,I;*; ~ 2 , ~ ) .  

By (4) ,there are strong extenders in Mzn,with critical point ~ 2 , ~ .By ( 5 )  and 
(6) ,these can be mapped up to M2, and applied to M2,, ,,. Moreover we want 
to incorporate first order properties of a further parameter into the extension. Let 
this parameter be 

z E M211, with rk(:) 5 rk(y;)for all yi in y', and z E 3 .  

Let us now begin the construction by applying 7 ~ 2 ~ ~ , 2 ,to (4) ,(9 ,and (7 ) ;observe 
that most parameters are fixed by 7 ~ 2 ~ ~ , 2 , :  

(8 )M2n + KZ,,, is strong in Th(M2, Tn2171,2n ( ~ 2 n 1 )+ 1,6,,?; 6 )up to 6;  

(9) M 2 ~ 1  r ~ 2 m+ 1 = Mznl 1 t ~ 2 n 7+ 1, by ( 5 ) , (6) ;  

(10)Th(M2n rn2iii,zn(?/2n7) + 1,6,I;;~ 2 1 7 1 )= Th(M2, 1 1  r c ~+ 1,6,I;*;&am). 

( 11 )  M2, + 6 is a Woodin cardinal, since 6 is Woodin in V and no,2, (6 )  = 6.  

We apply the Woodinness of 6 also to first order properties of the new parameter 
Z: there is KZ,+I,  ~2~~ < ~ 2 , + 1  < 6 such that 

We choose an extender which injects the strongness of K Z ~ + ~into its extensions: 
by (S) ,take an g-closed extender E2, E M2n r6, E211 : SZn< T z ~ ,  = K2,i7,crit(E2,) 
T2, > M2, r ~ + w~ with the following "strength": + ~~ 

(13)E2n (Th(M2, rn~n1,2n ( ~ 2 m )  + w+ l , B 1I;;K 2 r n ) )  r ~ 2 ~ + ~  

= Th(M2n rn2n7,2n ( ~ 2 m )+ 118,9;~ 2 , , + 1  + W ). 

Letn2,7i ,l,Zn+l - 7122 , )  : Mzn1 1 1  + E ~ , ~M2n+l = Ext(M2,, - 1 ,  E2,). 

(14)Th(M2n rn~n2,2i1(?/2in) + W )+ 1,6,I;:Lizn+l 

= Th(M211+1 tco + 1,6, n2,, ,1,2,+1(I;*); )izn+l + w ) .  
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The type-equality (14)allows us to transport properties of z over to M2n+1.Let 

7 E M2, / K Z ~ + ~+ W, hence it is a constant of the structure on the left hand side of 
(14). If we use i as a canonical name for a constant x the left hand side of (14) 
contains the statement 

3u 3v ( u  is the largest ordinal A .i. 

A k2n+lis strong in T h ( V  ru, 8 ,j;,v ;8 )  up to 8). 

By (14),the same statement holds in the structure on the right hand side of the 
equality. The largest ordinal of M2n+l rco + 1 is co. As a witness for the quantifier 
3v we get a z* E M2n+l rc0 SO that ( 1 5 )  and (16)hold: 

(16)M2,+1 k ~~2n+l z r : 8 )up to is strong in Th(M2,+1 tc0,8, 712n7 -L l,2n+l(.?"), 

6 .  

Since we intend a recursive construction which continues for w stages we have to 
get back to properties similiar to the initial assumptions. In particular we have to 
"top up" co to prevent a descending sequence of ordinals. By the indiscernibility 
property (2) we may substitute cl for co in ( 1 5 )  and (16): 

(18)M2,,+1 k K K Z ~ + ~  z* ;6 )up to is strong in Th(Mzn+1 rc1,6,n2,n - L ~ , ~ , , + ~ ( . ? * ) ,  
6 .  

Since T2,,2 MZnr ~ 2 ~ + ~+ w we have 

(19)M2n+1 rQn+l + 1= M2n t ~ 2 n + l+ 1. 

The situation (17)-(19)is similiar to (8)-(10)and we continue in a parallel way. 
Choose ~ 2 n + 2 1)i2n+l < ~ 2 ~ + 2< 8 SO that 

(20)M2,+1 k ~ 2 n + 2is strong in Th(M2,+1 T C O  + 1,6, nzm L ~ , ~ ~ + ~ ( . ? * ) ,z* :8 )up 
to 6 .  

By (18),choose ang-closedextender E2,7+lE MZn+ r8 on M2,1+1,E2n+l: S2,1+l-: 
T2n+1 SO that crit(E~n+l)= K2n+lt T2n+1 2 T2n, T2n+1 2 M2n+l / ~ 2 n + 2+ W  with 
the following "strength": 

)i2n+1)v ;  ;,8 ,Th(  V tu, = 



the first equality follows by the definition of n211,2n+2> E2n+land (21) ,the second 
from (17) ,and the third by the elementarity of 7~2~,2~+2,observing that several 
parameters are fixed points of the iteration tree. Let 

The left hand side of (22)contains the statement 

3u (u is a successor ordinal A .I.' = ~ i ~ ~ + ~ )i; ;,ru,8,Th(V 

8 ) .up to i ; 8 )  ;,T h ( V  /u,8,  is strong in k2,+2A 

By (22), the same statement holds in the structure on the right hand side of the 
equality. Hence there is some yan+2 corresponding to "u  - 1"with 

such that (24)and (25)hold: 

(27)712n,2n+2r ~ 2 n+ 1= id, 

because K ~ >~ tcan.+ ~ 

This concludes the construction of [he alternating tree of length 2n + 3. Our argu- 
ment basically is a twofold application of the "One-Step-Lemma" of [ lo] .Properties 
(24)-(27)are in close analogy to the initial assumptions (4)-(7);extending M2,+~ 
later in the construction can be done just like we have extended M,, right now. 

REMARKS. 
1. The construction would yield an illfounded main branch due to (23).This will 

be mollified in the next section where the construction steps are carried out inside 
varying models. 

2. We chose objects KZ, ,+~,  in the course of the E2n,z * ,  tc2,+2, E2n+l, y2n+2 

construction. One easily checks that the conditions for choosing these objects refer 
to co or cl only via theories of the form T h ( M  rco, . . . ; G )  or T h ( M  rcl, . . . ; 6 )  
which are elements of Vo. Since Vo is nicely closed all choices can be done within 
Vo. If we also assume a fixed wellorder <o of Vo we may stipulate that all choices 
are made <#-minimal. 
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59. The Martin-Steel-theorem. We shall prove the determinacy of projective sets 
by constructing embedding normal forms with witnesses. We proceed by induction 
on the complexity of sets in the projective hierarchy. For this we have to discuss 
higher dimensional embedding normal forms since projective sets are formed by 
complementations and by projections of simpler but higher dimensional sets. 

Let T = (<"o, c)be the usual tree of finite sequences of natural numbers. For 
15 I < o,the product tree T' is defined by 

~ ' = { ( s l ,. . . , s l ) ~T x . . . x  T I l s l l = . . . = l s l l ) ,  

( s l , .  . . ,sl) < (s:, . . . ,s;) if and only if sl C s; A . . . A sl c sl. 

We usually write sl  . . . sl for (sl, . . . ,sl).  Naturally [T'] ? [T I '  = R'. On the other 
hand, T' is w-branching and of height o ,  hence T' is canonically isomorphic to T .  
This gives rise to a canonical homeomorphism 

I I I< : R =  [ T I =  [ T I  = [TI = R .  

Obviously A C R is open or II; if and only if ("A C R' is open or II:, respectively 
Definitions 4.3 and 4.4 are easily generalized to embedding normal forms (with 

witnesses) for sets A c R', so that A c R has an embedding normal form (with 
witnesses) if and only if <"A R' has an embedding normal form (with witnesses). 
We are now able to formulate the crucial theorem for the inductive proof of the 
Martin-Steel-theorem: 

THEOREM9.1. Let A C R x R have an ENFW 

= (Ns t ) s tE~~ ,(gu,sjtj)st<s/i/, (wst)stE~z, 

with V6 C Nooand critical point > 6. Let 6 be a Woodin cardinal and y < 6. Then 

~ p A = { x E ~ ( ~ ~ y E ~ ( x , y ) ~ A )  

has an y-closed ENFW with base model V and criticalpoint > y.  
Before proving this theorem let us deduce the Martin-Steel result: 

THEOREM9.2. Let 6, < < 61 be Woodin cardinals, n > 1, and assume that 
exists. Let y < 6,. Then every II:+,-set has an y-closed ENFW with base model V 
and critical point > y . 

PROOE By induction on n >. 1. Let n = 1 and let B C R be a IIi-set. Then there 
is a IIi-set A g R2 such that 

x E B ct y )  E A *1 3 y  (x, y )  E A,vy ~ ( x ,  

i.e., B = 1pA. By Theorem 6.9, A has an ENFW which satisfies the assumptions 
of Theorem 9.1 with 6 =J1. By Theorem 9.1, B has an y-closed ENFW with base 
model V and critical point > y.  

Now let n = m + 1, m > 1, and assume the theorem holds for m. Let B c R 
be I1:+,. As above, B = 1pA for some nt-set  A C R x R. Let us apply the 
inductive assumption to the Woodin cardinals 6,, < . . . < and the set A with 
y = 6, < 6,: A has an ENFW with base model V and critical point > y = 6,. 
Then the hypothesis of Theorem 9.1 with 6 = 6, is satisfied and yields an y-closed 
ENFW with base model V and critical point > y for B = 1pA. i 

With Theorem 5.3 we arrive at the Martin-Steel result: 



THEOREM9.3. 
(a) Let 6, < . . .  < dl be Woodin cardinals, n ) 1, and assume that Vj1 exists. 

Then I$+, -determinacy holds. 
(b) If there are infinitely many Woodin cardinals, projective determinacy (PD)  

Izolds. 

PROOFOF THEOREM9.1. We are going to build an ENFW 

M = ( M s ) s € ~ ,  ( n ~ t ) s < ~ f ~  

for the set 1pA. So we want that for x E R:x E 1pA if and only if the direct 
limit M,, (n,,),,, of the branch (M,),,,, (n,f),<Tt,, through M is wellfounded. 
To control the wellfoundedness of M,, (n,,),Es we make (M,),,,, (n,,),5,,,, the 
main branch of some alternating tree 2".Let us give a brief motivation for this 
procedure: If x E 1pA then tiy (x,y )  $ A and any branch 

(Nst)s~,y, ( ~ s t , s / t ~ ) s r l s / t / , s ~  

through the "x-section" of the given ENFW 3for A is illfounded. This is witnessed 
by the witnesses ( w , , ) , ~ . ~ .  In the subsequent construction, properties of these 
witnesses are reflected into the odd part of the alternating tree 2" so that any branch 
through the odd part is illfounded. By Steel's Lemma 7.2, the main branch of 2" 
which is the only other branch through 2" must be wellfounded, which establishes 
part of the ENF-property. 

Several technical problems have to be dealt with in the construction: 
1. The main branches of 2" and 2"'have to agree as long as x and x' agree. 

This is achieved by defining an increasing system of finite alternating trees 2 Y o r  
s E <"w SO that 2" is the "union" of all %%with s E x.  

2. To refer to relevant properties of a witness w,, we have to work in the model 
N,, where w,,is "living". So the construction process is spread out over the given 
system 3. 

3. When we have to choose objects in the course of the construction we always 
take the least possible choice according to some wellordering. So we assume that 
(sufficiently long initial segments of) the structures N,, are equipped with a wellorder 
<,, so that the embeddings a,,,,,,, respect the wellorders. 

4. All finite iteration trees 2"ill be determined by extenders which are elements 
of V6.Although these extenders are not moved by the maps in the given ENFW 3 
the models of the tree 2"ill depend on whether we work in V or in N,, . Therefore 
we work with certain terms M[ for the models of 2" These terms are abstraction 
terms of the language of set theory with an added relation symbol <; the terms 
may use parameters which are fixed points of the System 3.Such terms can be 
evaluated in every model N,, where < is interpreted by <,, . We introduce similiar 
terms 2f j ,w;,and 9;  for the maps in 2%the "reflections" of the witnesses, and for 
some "descending ordinals", respectively. 

5.  We assume that every strong limit cardinal of sufficiently high cofinality is a 
fixed point for all the embeddings a,,,,l,~of the system 3. If necessary, the given 
system can be modified by the formation of elementary substructures and their 
transitivisations to obtain the fixed point property. We don't want to go into any 
details since with respect to the Martin-Steel theorem the ENFs constructed in 
Theorems 6.6, 6.9 and the present proof all satisfy the fixed point property. 
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6. Fixed points are also convenient in our considerations of iteration trees. We 
shall construct iteration trees from extenders in Vd and in Section 8 a class 3 of fixed 
points for all such iteration trees was defined. Again, 3 will vary between various 
N,, and we let $ be a canonical term for the fixed point class. If v is a strong limit 
cardinal of sufficient high cofinality, N,, + v E $ for all st E T2 .  

7. Now choose 0, co, c l ,  cz strong limit cardinals of sufficiently high cofinality, 
so that property (2) of Section 8 holds: 

8. We may also assume that for st E T2:  N,, w,, E $ because otherwise we 
could replace w,, by wi, E N,,, 

wlr (x, y ) = the w,, (x, y )th element of $, computed in N,, . 
9. As a last preparation we assume that the parameter 7 of the theorem is > 2*0 

so that the resulting ENF will be sufficiently closed for the automatic existence of 
witnesses (see Lemma 4.5). 

Let us now begin the actual construction. We determine for every s E <"oterms 
for a finite alternating tree 

of length 2 / s 1 + 1with embeddings 

Moreover we determine ordinals K; for i < 21s / and terms win? and j;, forA 

m < IsI. 
For any s E '"w the following properties will hold: 

(1) ?P is the canonical term for an iteration tree constructed from M; = { x / 
x = x ) as base model with extenders E; E Va. 

For m 5 n = 1s 1 we require analogues of properties (4)-(7) of Section 8. So for 
t= h(2m I ) ,  S= s rlil postulate conditions (2)-(5): 

(2) NIT + "M&,+ K;, is strong in T~(M&,, + 1,6, (aslri,sT(wair,) i <rj;, 1 
1 ti); 6 )  up to 6"; 

These conditions correspond to the assumptions of Section 8 with 

Also the j-terms satisfy a certain descent-property along the main branch: 

(6) If 2k 1 <I 21 1 < 2n A 1 then Nsi + < 71gk,21 ( j&) .  

The construction of these terms proceeds by recursion on s E <"o: 



Let s = 0. Set M! = { x  1 x = x }, the universal term. Let jt = co. Because 
vj G Noo, 6 is a Woodin cardinal in N o o  Choose K{ < 6 so that 

Noo K! is strong in T h ( V  Tco + 1,6, woo;6) up to 6.  

Let wt be the canonical term (involving the symbol <) so that in Noo: 

Let k t ,  be the canonical term for the identity function. 
It is straightforward to check (1)-(6)for these choices of terms and parameters. 
Now let s # 0, lsl = n + 1, and assume that 

with embeddings ( ? t ~ ~ n ) i < , , j 5 2 ,is constructed satisfying (1)-(6). will be an 
endextension of @ In by two more structures Min+,and M;?~+,.Let 2m - 1 = (2n)" 
be the immediate -predecessor of 2n + 1. Let t = h (2m I ) ,  F = s r l  tl and 
i = h (2n + I ) ,  i = s to be an extension of M ~ ~ ~ , " ~ ,il. We want Min+ which 
imitates some aspects of the embedding NFt -+ NFi as regards the witness 
wsi. The subsequent construction will thus take place in Nsi, the natural habitat 
for w,;. To simplify our notation let us omit the superscripts s rn and s in this 
construction step. Properties (2)-(6)hold in NF7by our recursive assumption. Let 
us first apply the elementary map as , s ito (2)-(6).Then inside Nsi we note: 

(7)Mzn, k ~ 2 mis strong in ~ h ( ~ 2 ,  Irjam+ 1,6, (asrli,;i(wsrli) i < li1);6)up to 
6.  

(9) 7C2,,,,2, r ~ 2 ,+ 1 = id. 

( l o )  ~ h ( ~ 2 m  1 i < lil);T32n1 + l t 6 ,  (as i r i , j i (~ .7~r i )  
= ~ h ( M 2 , n1 1  T C O  + 1,6, (k7,2m 1 (wi)1 i I I  2m 11);  Kz,,,). 

1 5 2n( 1 1 )  If 2k - 1 <I 21 1 then 321 < k2k,21(?j2k). 

Now (7)-(10)correspond exactly to properties (4)-(7)in Section 8 with 

J' 
.+ 
= (a,rri,s?(wsiri)I i I I f l ) and y'* = (7ii,2n1 I i 2m 1 1 ) .  

We apply the construction of the previous section inside Nji  with z = wsi. This 
yields objects 

belonging to an endextension of 2flnby two more structures. E2, and E2,+, are 
y-closed extenders with critical points > y. We then define 
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MI = ~ ; ' " f o r i< 2n, 
M",,+,is the canonical term for Ext(Mirn ,, Earl), 

&,,,+,.? is the canonical term for ~ x t(M;,,, Earl+l), 

K: = ~f~~ for i < an, 

~ $ , + 1  = K2n+1, 

6 i r 1 + 2  = K2n+2, 

and we proceed analogously for the w%nd j,'. 
We have to show that (1)-(6)hold for the extended alternating tree. For m < n 

this is given by the recursive assumption and we only have to consider the case 
nz = n + 1. But then the properties follow from (24), (26), (27), (25) and (23)of 
Section 8 .  This concludes the recursive construction of the alternating trees Z.'. 

Now define (a term for) a tree 

= ( ( M , ) s , T ,  ( f i s I ) s s T t  

of models over T = '"o by: 

M?= M ; ~ , ~ ,kst = k;l,'l,,/tl. 

The term Dl essentially only involves the universal term M0 = { x I x = x ) and 
parameters which are extenders E vj.So Dlmay be evaluated in V and in every N,, 
of the ENFW %. We first show that Dl is an ENF for 1pA inside the base model 
NO@of %. This will later transfer to V.  

(12)Let x f 1pA. Then NO@ + " M y is illfounded", where M, is the canonical 
term for the limit model along the branch x .  

PROOF.x E pA and there is a y E R such that ( x ,  y )  E A. Since % is an ENF 
for A the limit N,, , (a,, r,,,, ) along the branch x y  is transitive. We apply the maps 
a y Lrll,\, to (1 1) and obtain: 

N,, + If h (2k - 1) <T h (21  - 1) E y then ? j 2 /  < k2k,21(hk). 

So these ' j a l  form an infinite descending €-chain in M ,  as evaluated in N.yL. AS 
N,y, is a transitive €-model, the absoluteness of illfoundedness yields that & is 
illfounded inside N ,,.. Since a00,,>, is elementary, 

NO@+ "M,  is illfounded". -1 (12) 

(13)Let x E 1pA. Then NDO + " M ,  is wellfounded". 

PROOR Proof] For all y E R, ( x ,  y )  $! A and the limit N ,?,, (a,,,r,,,?,) is 
illfounded. This is witnessed by the original witnesses wXLrfl:if Stri < T 2  St and 
St E xy  then 

~\.iri ,si(ws~~i y ) .( x ,  y ) )  > w ~ r ( x ,  

This fact is expressed on the lefthand side of equation (5)when St E xy .  By the 
equality, if j <I 2m - 1, where S = h(2m - I ) ,  then 

Nsi + fi;,al,l ( w j ( x ,  y ))  > w:n? ( x ,y ) .  



The terms can be pulled back to NO@: 


(*I NO@ fi;,,,n (W;(x, Y)) > Win, (x,Y ).
I 

Let 2" be a canonical term for the unique alternating tree of height w which end- 
extends all the %' for S E x. Since property (*) holds for every S E x and y E R: 

NO@+ "each branch through 2" 

which is not the main branch through %" is illfounded" 

Since NO@satisfies Steel's lemma 7.2, 

NO@+ "the main branch through %" is wellfounded". 

Now the main branch of %" consists of the even models M:~,for S E x and this is 

exactly the branch through Dl indexed by x.Hence 

NO@+ "M,is wellfounded". -1 (13) 

We transfer (12)and (13)from NO@to the universe V by showing: 

(14)For x E R, NO@+ "M,is transitive" if and only if V /' " M ~is transitive7'. 

PROOF.The term M.,.is defined from the sequence of extenders in the above 
recursive construction and the real x. M, is illfounded if and only if there is a 
system of functions representing, in the various extensions, an infinite descending 
sequence of ordinals. To check whether the functions represent such a descent 
is definable using only bounded quantifiers. So there is a El-formula cp(x) in 
parameters from Vdso that in ZFC: 

M, is illfounded t,cp (x). 

A straightforward transitivisation argument shows that C1-formulae in parameters 
from VJare absolute for Vd,i.e., 

t,
VJ k P("). 
Together we obtain: 

NO@+ M~ is transitive +-+ NDO+ lcp(x) 
+-+ NBO "Vd k lcp(x)" 
+-+ Va+ lcp(x), since v?@= V .d ,  

+-+ lcp(.-) 

+-+ M, is transitive. 

Now let the system Dl = (M,),(n,,) in V :M ,be the interpretation of !%I = M:, 
n,, = k,:. By (12), (13), and (14),Dl is an ENF for 1pA.  Its base model is V 
and all extenders used in defining the extension-maps n,, are g-closed with critical 
points > g. Therefore Dl is g-closed with criticai point > g. Since g 2 2% Dl has a 
system of witnesses by Lemma 4.5,which concludes the proof of Theorem 9.1. -1 

$4.) 
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