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Abstract

We prove that in a Prikry generic extension for a measure U on κ every
subset of the measurable cardinal κ in the Prikry extension is constructibly
equivalent, over the ground model, to a subsequence of the Prikry sequence.

Introduction

Generic extensions by Cohen or Solovay-random reals display a rather amorphous
structure of the constructibility degrees over the ground universe. Some other
extensions, notably Sacks forcing and its iterations, allow to control the structure
of the constructibility degrees at least to some extent, see, for instance, [1]. In this
note, we study the degrees of V-constructibility in Prikry extensions of the ground
model V with a measurable cardinal κ. The partial order of V-constructibility
is defined by: X 6V Y iff X ∈ V[Y ]; in terms of the Gödel constructibility,
X 6V Y means that there is a set z ∈ V, z ⊆ Ord, such that X ∈ L[z, Y ]. The
equivalence X ≡V Y means that both X 6V Y and Y 6V X.

The Prikry forcing [3] produces a generic cofinal function h : ω → κ. Our
main result says that every subset of κ in the Prikry extension is V-constructibly
equivalent to a subsequence of h.

Theorem 1 (the main theorem). Suppose that h : ω → κ is Prikry-generic over
the ground model V. Then in the Prikry extension V[h] of V for every set
X ⊆ κ there exists a set d ⊆ h satisfying X ≡V d.

In addition, in V[h], if c, c′ ⊆ h then c′ 6V c iff c′ r c is finite.

We give two very different proofs of the main theorem. The first proof (sections
1 – 6) is combinatorial, based on indiscernible subsets of κ. It makes use of
a representation of subsets of κ in the Prikry extension by means of certain
functions defined on [κ]fin in the ground universe. This is similar to some extent
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to the analysis of degrees of constructibility in iterated Sacks extensions, but the
mechanism is absolutely different.

The second proof (sections 7 – 9) is model-theoretic, using iterated ultrapowers
of the ground model.

1 Good indiscernible sets

A normal ultrafilter U on a measurable cardinal κ is fixed thoughout the paper.
Recall that a set ∅ 6= I ⊆ κ is an indiscernible set w.r. t. a family of sets F

iff for any set B ∈ F and any n ≥ 1 either every s ∈ [I]n belongs to B or every
s ∈ [I]n does not belong to B. It is known since the early 1960s that if κ and U
are as above then for any family F of cardinality < κ there exists a set I ∈ U
which is an indiscernible set w.r. t. F . (The Rowbottom theorem.) We employ ←−

ref?
this basic result to find a slightly more convenient type of indiscernible sets.

Proposition 2. Suppose that F is a family of cardinality < κ .
Then there exists a good set of indiscernibles I ∈ U w.r. t. F , that is, for

any n ≥ 1, any B ∈ F and any sets a ∈ [κ]fin and x, y ∈ [I]n, if max a < minx
and max a < min y then a ∪ x ∈ B ⇐⇒ a ∪ y ∈ B .

Note that the ordinals in a are not assumed to be members of the set I.

Proof. For any ordinal α < κ the family Fα of all sets of the form

{x ∈ [κ]n : a ∪ x ∈ B ∧ max a 6 α < minx}, where a ∈ [α]fin and B ∈ F ,

has cardinality < κ. Therefore there exists a set Iα ∈ U, Iα ⊆ κ r α that is
an indiscernible set w.r. t. Fα. Consider the diagonal intersection I = ∆

α<κ
Iα of

these sets Iα. Thus ξ ∈ I iff ξ > 0 and ξ ∈
⋂
α<ξ Iα. By the normality of U,

I still belongs to U. To check the good indiscernibility, let n,B, a, x, y be as in
Proposition 2. Then µ = max a < minx, and hence x ⊆ Iµ by the definition of I.
Similarly y ⊆ Iµ. Then a ∪ x ∈ B ⇐⇒ a ∪ y ∈ B for any B ∈ F by the choice
of Iµ . (If a = ∅ then we take µ = 0 in this argument.)

2 Canonization of functions

The next theorem will be our main technical tool. For any sets x, s ⊆ Ord we
define x //s ⊆ x as follows. Put elements of x in the increasing order: x = {ξγ :
γ < δ}. Now define x //s = {ξγ : γ ∈ s}. Note that if y ⊆ x ∈ [Ord]n then there
is a unique set s ⊆ n such that y = x //s.

Theorem 3. Suppose that F is a function defined on [κ]fin. Then for any n ≥ 1
and a ∈ [κ]fin there exist sets Jn(a) ∈ U and basn(a) ⊆ n such that for all
x, y ∈ [Jn(a)]n with max a < minx, min y we have F (a ∪ x) = F (a ∪ y) if and
only if x //basn(a) = y //basn(a) .
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Proof. Let ϑ be any cardinal bigger than κ such that Vϑ (the ϑ-th level of the
von Neumann hierarchy) contains F. Let F be the collection of all sets z ∈ Vϑ

definable in Vϑ by an ∈-formula with F as the only parameter; F is countable.
Let I ∈ U be given by Proposition 2 for such an F .

We prove the theorem by induction on n.
Suppose that n = 1. Fix a ∈ [κ]fin. Put J1(a) = I. Take any ξ 6= η ∈ I

bigger than max a. If F (a ∪ {ξ}) = F (a ∪ {η}) then by the choice of I we have
F (a ∪ {ξ}) = F (a ∪ {η}) for every pair of ξ 6= η ∈ I. (Indeed take the set

{a ∪ {ξ, η} : a ∈ [κ]fin ∧ min a < ξ, η < κ ∧ F (a ∪ {ξ}) = F (a ∪ {η})}

as B in Proposition 2.) Therefore bas1(a) = ∅ is as required. If F (a ∪ {ξ}) 6=
F (a ∪ {η}) then similarly bas1(a) = {0} works.

Now the induction step n → n + 1. The idea is to reduce the level n + 1 to
n for bigger sets a. Fix a ∈ [κ]fin. Take any ξ < κ, max a < ξ. By the induction
hypothesis there exist sets Jn(a ∪ {ξ}) ∈ U and basn(a ∪ {ξ}) ⊆ n such that

F (a ∪ {ξ} ∪ x) = F (a ∪ {ξ} ∪ y) iff x //basn(a ∪ {ξ}) = y //basn(a ∪ {ξ})

holds for any pair of sets x, y ∈ [Jn(a ∪ {ξ})]n with ξ < minx, min y.
Obviously there exist sets J ∈ U and s ⊆ n such that max a < min J and

basn(a ∪ {ξ}) = s for all ξ ∈ J. The set J ′ = I ∩ J ∩ ∆
γ∈J

Jn(a ∪ {γ}) 1 belongs

to U since U is a normal filter. Moreover we have

F (a ∪ {ξ} ∪ x) = F (a ∪ {ξ} ∪ y) iff x //s = y //s (1)

for any ξ ∈ J ′ and any pair of sets x, y ∈ [J ′]n with ξ < minx, min y.
We put Jn+1(a) = J ′. To define basn+1(a), take any α 6= γ ∈ J ′ bigger than

max a. Also take any z ∈ [J ′]n with min z > α, γ.
Case 1 : F (a∪ {α} ∪ z) = F (a∪ {γ} ∪ z). We show that basn+1(a) = 1 + s =

{1 + k : k ∈ s} works. Take any x′, y′ ∈ [J ′]n+1 with ξ = minx′ > max a and
η = min y′ > max a. Then x = x′ r {ξ} and y = y′ r {η} belong to [J ′]n.

Suppose, for instance, that η 6 ξ. Then still η < minx. Therefore, by the case
assumption, the choice of I, and the fact that J ′ ⊆ I, the equality F (a ∪ x′) =
F (a ∪ x′′) holds, where x′′ = {η} ∪ x. Further by (1) F (a ∪ y′) = F (a ∪ x′′)
iff x //s = y //s. And finally the equality x′ //basn+1(a) = y′ //basn+1(a) is
equivalent to x //s = y //s.

Case 2 : F (a ∪ {α} ∪ z) 6= F (a ∪ {γ} ∪ z). A pretty similar argument shows
that setting basn+1(a) = {0} ∪ (1 + s) = {0} ∪ {1 + k : k ∈ s} works.

The case when m = 0 and a = ∅ is of special interest. Define J =
⋂
n Jn(∅)

and basn = basn(∅). Then J belongs to U together with all sets Jn(a), and
basn ⊆ n. Note that the construction of sets J and basn depends also on F and
the choice of a cardinal ϑ, and a set I ∈ U in accordance with Proposition 2.

Corollary 4. For all n and x, y ∈ [J ]n we have the equivalence F (x) = F (y)
iff x //basn = y //basn .

1 Note that ξ ∈ J ′ iff ξ ∈ I ∩ J, ξ > 0, and ξ ∈ Jn(a ∪ {γ}) for all γ ∈ J, γ < ξ .
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3 Prikry extension

Recall that the Prikry forcing P = Pκ(U) accociated to a normal ultrafilter U on
a measurable cardinal κ consists of all pairs p = 〈ap, Ap〉 of sets ap ∈ [κ]fin and
Ap ∈ U (where U is a fixed normal ultrafilter on κ ) such that max ap < minAp.
The order is as follows: p 6 q (meaning that p is stronger) iff aq ⊆end ap
(meaning that ap is an end-extension of aq , that is, max aq < min (ap r aq) ),
Ap ⊆ Aq , and ap r aq ⊆ Aq . See [3] on the Prikry forcing.

P-generic extensions are called Prikry extensions.
The proof of the following (well-known) result will be given in the next Section.

Proposition 5. Suppose that p ∈ P and ϕ is a closed formula of the P-forcing
language, possibly with P-terms as parameters. Then there is a condition q ∈ P,
q 6 p which decides ϕ and satisfies ap = aq .

The following is an immediate corollary. (Use the fact that U is ϑ-complete
for any cardinal ϑ < κ .)

Corollary 6. In a Prikry extension V[G] of the ground universe V, if X ⊆
α < κ then X ∈ V. In particular any V-cardinal ϑ < κ remains a cardinal in
the extension, with the same cofinality.

Moreover, κ itself remains a cardinal, too, but its cofinality changes to ω .
Finally all cardinals ϑ > κ remain cardinals, and the cofinality does not

change provided it was > κ.

Given a set G ⊆ P, we let hG =
⋃
p∈G ap , a subset of κ. If G is a generic

then hG is a set of order type ω, called the Prikry sequence associated to G.
By G we denote a name for the canonical generic subset of P. Let h be a

name for hG. Then P forces that h ⊆ κ̌ is a set of order type ω̌ cofinal in κ̌, and
G = {p ∈ P̌ : ap ⊂end h ∧ h r ap ⊆ Ap}. Thus h can be vieved as an increasing
ω-sequence cofinal in κ̌. Such sequences are called Prikry sequences.

4 Coding subsets of κ in the Prikry extension

Blanket agreement 7. Let, in the notation of Section 3, X be a P-name of a
subset of κ̌.

Our goal is to code X by a subset of the canonical Prikry sequence h. We are
going to find a set I ∈ U and a P-name d such that the condition 〈∅, I〉 forces
d ⊆ h ∧ d ≡V X, where ≡V means equivalence over the ground model V.

Definition 8. First of all define, for each x ∈ [κ]fin ,

F (x) = {ξ < κ : ∃p ∈ P (ap = x ∧ p ||−− ξ̌ ∈ X)}. (2)

It follows from Corollary 4 that there exist a set J ∈ U and a sequence {basn}n∈ω
of sets basn ⊆ n such that the equivalence F (x) = F (y) iff x //basn = y //basn
holds for all n and x, y ∈ [J ]n.
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Now fix a cardinal ϑ > κ. Then V = Vϑ is a transitive set containing κ, F,
P, J, the ultrafilter U, the sequence {basn}n∈ω, and the relation p ||−− ξ̌ ∈ X
(of two arguments p and ξ ). Let F be the family of all subsets of V definable
in V by an ∈-formula with those seven sets involved as parameters. Let I ∈ U
satisfy Proposition 2 with these initial conditions. We can assume that I ⊆ J.

The following is the key technical instrument.

Lemma 9. If ξ < γ < κ, p, q ∈ P, ap ∩ γ = aq ∩ γ, (ap ∪ aq) r γ ⊆ I,
γ 6 minAp , minAq , and Ap ∪Aq ⊆ I. Then p ||−− ξ̌ ∈ X iff q ||−− ξ̌ ∈ X.

In particular if p forces ξ̌ ∈ X then so does q = 〈ap ∩ γ, I r γ〉 .

Proof. Suppose this is not the case. Then (as Aq ⊆ I !) we can w. l. o. g. assume
that q forces ξ̌ /∈ X. Put a = ap ∩ γ = aq ∩ γ. The remaining parts y = aq r a
and x = ap r a are finite subsets of I r γ. We can assume that |x| = |y| as
otherwise the condition with the shorter part can be appropriately strengthened.

Now put m = |a| and n = |x| = |y|. Consider the set B of all unions of
the form {ν} ∪ u ∪ v such that ν < κ, u ∈ [κ]m, v ∈ [κ]n, and there is a
condition r ∈ P such that ar = u∪ v and r ||−− ν̌ ∈ X. Then B ∈ F . Moreover
{ξ} ∪ a∪ x ∈ B is witnessed by r = p. It follows that {ξ} ∪ a∪ y ∈ B as well by
the choice of I. (Note that x ∪ y ⊆ I. But a ⊆ I and ξ ∈ I are not assumed.)
Thus there is a condition r ∈ P with ar = a ∪ y = aq and r ||−− ξ̌ ∈ X. Thus
conditions q, r with sq = sr are incompatible. But this is a contradiction.

Proof (Prop. 5). Define, in the Prikry extension, X = {0} if ϕ is true, otherwise
X = ∅. Choose I ∈ U for this particular X as in Definition 8. Consider any
p ∈ P. We may assume that Ap ⊆ I. There is a condition q ∈ P, q 6 p that
decides ϕ, i. e., either forces 0 ∈ X or forces 0 /∈ X. Let γ = max ap+1. Then the
condition r = 〈aq ∩ γ, I r γ〉 still decides ϕ by Lemma 9. However ar = ap .

Lemma 10. For any γ < κ, p0 = 〈∅, I〉 forces X ∩ γ̌ = F̌ (h ∩ γ̌) ∩ γ̌ .

Proof. Fix any ξ < γ. Suppose that a condition p ∈ P, p 6 p0 forces ξ̌ ∈ X.
We may w. l. o. g. assume that γ 6 minAp. Then h ∩ γ̌ is obviously forced by p
to be equal to ǎ, where a = ap ∩ γ, and hence we have to show that ξ ∈ F (a),
that is, there exists a condition q ∈ P with aq = a which forces ξ̌ ∈ X. Yet
q = 〈a, I r γ〉 is such a condition by Lemma 9.

Conversely suppose that a condition p ∈ P, p 6 p0 forces ξ̌ /∈ X. Still
assuming that γ < minAp , we have to prove that ξ /∈ F (a), where a = ap ∩ γ.
Otherwise there is a condition q ∈ P with aq = a such that q ||−− ξ̌ ∈ X. It can
be assumed that γ 6 minAq. Then Lemma 9 leads to contradiction.

For any α ∈ I let α† be the next element of I.

Corollary 11. If p = 〈a,A〉 ∈ P, A ⊆ I, and γ = (max a)† then p forces
X ∩ γ̌ = F̌ (ǎ) ∩ γ̌ .

It is interesting to figure out whether basn = bask∩n is true. But fortunately
the result of the next lemma will suffice for our goals.
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Lemma 12. If n < k then basn ⊆ bask .

Proof. It suffices to show that F (x) = F (y) holds for any sets x, y ⊆ I satisfying
|x| = |y| = n and x //s = y //s, where s = basn+1 ∩ n. Suppose otherwise:
F (x) 6= F (y). Let say ξ ∈ F (x) r F (y). Then there exists a condition p ∈ P
with ap = x that forces ξ̌ ∈ X, and by Proposition 5 there is a condition
q ∈ P with aq = y that forces ξ̌ /∈ X. We may assume that Ap = Aq ⊆ I
and ξ < µ = minAp. Then the sets x′ = x ∪ {µ} and y′ = y ∪ {µ} satisfy
|x′| = |y′| = n+ 1 and x′ //basn+1 = y′ //basn+1. It follows that F (x′) = F (y′).

Consider conditions p′ = 〈x′, Ap r {µ}〉 and q′ = 〈y′, Aq r {µ}〉. Obviously
p′ 6 p in P, therefore p′ forces ξ̌ ∈ X, and then ξ ∈ F (x′) = F (y′). It follows
that there is a condition r ∈ P with ar = y′ that still forces ξ̌ ∈ X. This is a
contradiction because q′ ||−− ξ̌ /∈ X (indeed q′ 6 q ) and aq′ = ar = y′.

5 Getting the set from a subsequence

Put S =
⋃
n basn. It follows from Lemma 12 that for any n there exists a number

k = kn such that S∩n = bask∩n for all k ≥ kn, in particular S∩n = baskn∩n.
Put sn = |basn| and σn = |S∩n|; these are numbers in ω and sn 6 σn. There is a
unique set wn ⊆ σn such that basn = (S ∩ n) //wn. (If occasionally basn = S∩n
then wn = σn, of course.)

Let d be a name for h // Š. This is a subsequence of h in the extension.

Lemma 13. The condition 〈∅, I〉 Prikry-forces X 6V d .

Proof. Arguing in the Prikry extension V[G] of the ground universe V, we define
h = hG, X = X[G], and d = h //S. We have to prove that X 6V d. Say that a
finite set x ⊆ I is compatible with d, iff x //S ⊂end d. In particular, if x ⊂end h
is a finite initial segment of h then x is compatible with d because d = h //S.
However, in the ground universe, if x, y ⊆ I are finite sets, |x| = |y| = n, and
both of them are forced to be compatible with d by one and the same p ∈ P
with |ap| ≥ n then easily x //S = y //S, therefore x //basn = y //basn because
basn ⊆ S, and finally F (x) = F (y). Thus, by Lemma 10, X can be defined, in
the Prikry extension, as

⋃
x(F (x)∩maxx), where the union is taken over all finite

sets x ⊆ I compatible with d. And this witnesses X 6V d .

The next simple lemma on subsets of h in the Prikry extension proves the
additional claim of Theorem 1.

Lemma 14. In the Prikry extension V[G] ,

(i) for every c ⊆ h = hG there is a unique P ⊆ ω in V such that c = h //P ;

(ii) if c, c′ ⊆ h then c′ 6V c iff c′ r c is finite.

Proof. (i) Obviously in V[G] there is a unique set P ⊆ ω satisfying c = h //P .
That it belongs to V follows from Corollary 6.

(ii) Let, by (i), c = h //P and c′ = h //P ′, where P, P ′ ⊆ ω are sets in V.
Suppose on the contrary that P ′ r P is infinite but a condition p ∈ P forces
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h // P̌ ′ 6V h // P̌ , and moreover, there exist a concrete absolute set theoretic
function f(·, ·) and a set x ∈ V such that p forces h // P̌ ′ = f(x̌, h // P̌ ). Let
n ∈ P ′r p be bigger than |ap|. We can easily define a pair of conditions q, r ∈ P,
stronger than p and such that |aq| = |ar| > n, aq //P = ar //P , but ξ = the
n th element of aq is strictly smaller than η = the n th element of ar. These
conditions can be extended usual way to Prikry sequences with the same · //P
but different · //P ′, leading to a contradiction.

6 Getting the subsequence from the set

Here we prove the opposite reduction d 6V X .
We consider a Prikry-generic extension of the form V[G] , where G ⊆ P is a

generic set containing 〈∅, I〉 .
In the extension, say that a finite set x ⊆ I is compatible with a set Y ⊆ κ

iff Y ∩ γ = F (x) ∩ γ, where γ = (maxx)†. It follows from Corollary 11 that, in
the Prikry extension, any finite initial segment of h = hG is compatible with the
set X = X[G].

The next lemma is a warmup for a much more complicated Lemma 17 below.

Lemma 15. Suppose that 0 ∈ bas1. Then, in the extension, {µ}, where µ =
h(0), is the only 1-element set compatible with X = X[G] .

Proof. By Corollary 11 the existence of two compatible singletons leads us to
the existence, in the ground universe, of a pair ξ < η of elements of I such that
F ({ξ}) ∩ ξ† = F ({η}) ∩ ξ†.

Case 1 : η = ξ†, so that in fact F ({ξ})∩η = F ({η})∩η. By the indiscernibility
of I this holds then for every pair of ξ < η in I. It follows that F ({ξ}) =
F ({η}) for all ξ < η in I. (Indeed take any ζ ∈ I bigger than max{ξ, η}. Then
F ({ξ})∩ ζ = F ({ζ})∩ ζ = F ({η})∩ ζ. ) But this contradicts the assumption that
0 ∈ bas1. Therefore, we have

Case 2 : γ = ξ† < η. Still by the indiscernibility we have F ({ξ}) ∩ γ =
F ({η}) ∩ γ for all ξ < γ < η in I. And once again we have F ({ξ}) = F ({η})
for all ξ < η in I. (Indeed take any γ < ζ ∈ I with γ > max{ξ, η}. Then
F ({ξ}) ∩ γ = F ({ζ}) ∩ γ = F ({η}) ∩ γ. )

Lemma 16. Suppose that n ≥ 2, x, y ∈ [I]n, maxx = max y, and F (x) 6= F (y).
Then F (x) ∩ γ 6= F (y) ∩ γ where γ = (maxx)† .

Proof. Otherwise by the indiscernibility of I we would have F (x)∩γ = F (y)∩γ
for all γ ∈ I, γ > maxx .

Lemma 17. Suppose that n ≥ 2, x, y ∈ [I]n, and, in the extension, x, y are
compatible with X. Then x //basn = y //basn .

Proof. If generally basn = ∅ then x //basn = y //basn is obvious. If maxx =
max y = µ then F (x) ∩ µ† = F (y) ∩ µ† by the compatibility, hence F (x) = F (y)
by Lemma 16, and so we have x //basn = y //basn . Thus we shall assume that
basn 6= ∅ and µ = maxx < max y = ν.
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Then still F (x) ∩ µ† = F (y) ∩ µ†. By the indiscernibility we can assume that
all elements of x and y have limit indices in the sense of the natural increasing
order of I — this allows us to move them, if necessary, without any change in
their common configuration in the order of I. We have several cases.

Case 1 : {n−1} /∈ basn. Then the sets u = x //basn and v = y //basn do not
contain elements resp. µ and ν. Thus z = x∪{ν}r{µ} satisfies F (x) = F (z) but
max z = max y = ν. But then F (y) = F (z) by the above, therefore F (x) = F (y) .

Case 2 : {n− 1} ∈ basn. Then the sets u and v are different (since µ < ν ).
Here we have to obtain a contradiction. Our plan is to show that F (x) = F (y) .

Case 2a: basn = {n− 1}. Then u = {µ} and v = {ν}. In this case the value
of F (y) does not depend on the values of ordinals in y r {ν}, and hence we can
assume that µ < min y. In this assumption, the same argument as in the proof of
Lemma 15 shows that F (x) = F (y), contrary to u 6= v .

Case 2b: the set basn contains both the number n− 1 and at least one more
element. Accordingly the sets u and v contain both resp. µ and ν and elements
other than resp. µ and ν.

Case 2b1 : u r {µ} = v r {ν}. To prove F (x) = F (y) fix any δ < κ and
show that F (x) ∩ δ = F (y) ∩ δ. Let ξ1, . . . , ξk be the list of all elements ξ ∈ y
such that µ < ξ < ν, in the order of increase. (If there is no such ξ then k = 0 .)
Note that none of ξi is a member of v by the case assumption. Put γ = µ†.
Then F (x)∩γ = F (y)∩γ due to the compatibility of x, y with X. Fix any tuple
γ′ 6 ξ′1 < · · · < ξ′k < ν ′ of elements of I such that µ < γ′ and δ < γ′, and in
addition γ′ = ξ′1 iff γ = ξ1. Let y′ be obtained from y by changing of ξ1, . . . , ξk, ν
to ξ′1, . . . , ξ

′
k, ν
′. The order configuration of the complex x, y′, γ′ is then similar to

the configuration of the complex x, y, γ, and hence F (x)∩ γ′ = F (y′)∩ γ′ by the
indiscernbility. On the other hand, using the Case 2b1 assumption, it is easy to see
that the order configuration of y, y′, γ′ is also similar to the order configuration
of x, y, γ, and hence F (y′) ∩ γ′ = F (y) ∩ γ′. Thus F (x) ∩ γ′ = F (y) ∩ γ′, as
required.

Case 2b2 : otherwise. Then there is α ∈ u r v, α < µ. According to the
assumption in the beginning of the proof, the ordinal α′ = α† does not occur in
x and/or y. Put x′ = x ∪ {α′} r {α}, and if α ∈ y then y′ = y ∪ {α′} r {α}
as well. Consider the pair of x and x′. Obviously x //basn 6= x′ //basn, hence
F (x) 6= F (x′), moreover F (x)∩ γ 6= F (x′)∩ γ by Lemma 16. On the other hand,
y //basn 6= y′ //basn, because the substitution of α′ for α does not alter the
set v = y //basn. Therefore F (y) = F (y′). And finally the order configuration of
the complex x, y, γ is clearly similar to the configuration of x′, y′, γ, and hence
the equalities F (x) ∩ γ = F (y) ∩ γ and F (x′) ∩ γ = F (y′) ∩ γ hold or fail
simultaneously, contradiction to the above.

Lemma 18. In the Prikry extension, d 6V X .

Proof. Fix a number m ≥ 1 and, arguing in the Prikry extension, show how the
set Dm = d //m of m first elements of d = h //S can be recovered starting from
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X. We assume that d is infinite as otherwise there is nothing to prove. Then
there is a least number n = nm ≥ m such that |S ∩ n| ≥ m, and further there is
a least number k = km ≥ nm such that sk ∩ n = S ∩ n.

Consider, still arguing in the Prikry extension, the set Ck of all k-element
sets x ⊆ κ compatible with X. In particular the set xk = {h(i) : i < k} of
first k elements of the whole Prikry sequence h = hG belongs to C. (See the
beginning of this Section.) Suppose that x, y ∈ Ck . Then x //bask = y //bask
by Lemma 17, and hence the first m elements of the sets x //S and y //S are
the same by the choice of k and n. In other words, for any x ∈ Ck the first m
elements of the sets x //S and xk //S are the same. But the first m elements of
the set xk = {h(i) : i < k} are equal to the the set Dm of the first m elements
of d.

Thus the following plan of computing Dm in the Prikry extension works:
compute n = nm and k = km as above, take any x ∈ Cm and take the first m
elements of the set x //S .

Lemmas 13 and 18 end the proof of Theorem 1.

7 Second proof: iterated ultrapowers

Beginning the alternative proof of Theorem 1, we suppose that κ0 is a measurable
cardinal in the ground model V and U0 ∈ V is a normal ultrafilter on κ0 in V.
(Note that κ is used instead of κ0 in the first proof of Theorem 1 above.)

Put M0 = V. Following [2] we define the iteration

{Mα, Uα, κα, παβ}α6β∈Ord

of (M0, U0) by recursion:

− π00 = id ;

− πα,α+1 : Mα →Mα+1 = Ult(Mα, Uα) is the ultrapower of Mα by Uα ;

− πδ,α+1 =

{
πα,α+1 ◦ πδα if δ 6 α

id if δ = α+ 1
;

− Uα+1 = πα,α+1(Uα) , κα+1 = πα,α+1(κα) ;

− for limit λ : Mλ, (παλ)α6λ is the transitive direct limit of the system
{Mα, παβ}α6β<λ , and Uλ = π0λ(U0) , κλ = π0λ(κ0) .

Thus Mα, α ∈ Ord, is a system of transitive classes in the universe V = M0.
Moreover if α < β then Mβ ⊆ Mα and παβ : Mα → Mβ is an elementary
embedding, κβ = παβ(κα) = π0β(κ) is a measurable cardinal in Mβ with κα <
κβ, and Uβ = παβ(Uα) = π0β(U) is a normal ultrafilter on κβ in Mβ . This
allows us to define Pα = (Pκα(Uα))Mα , the Prikry forcing in the universe Mα

associated to κα and Uα (see above).
The next proposition contains several more special but still well known (see,

e.g., [2]) facts regarding the iterated sequence.
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Proposition 19. (i) παβ � κα = id ;

(ii) for n < ω , Mn = {π0n(f)(κ0, . . . , κn−1) : f ∈M0, f : κn0 →M0} ;

(iii) if λ is a limit ordinal then κλ = supα<λ κα ;

(iv) for A ∈Mω, A ⊆ κω : A ∈ Uω iff {κm : m < ω}rA is finite ; ,

(v) {κm}m<ω is a Prikry sequence for Uω and Mω , that is, there exists a
set G ⊆ Pω, Pω-generic over Mω and such that {κm}m<ω is its Prikry
sequence ;

(vi) moreover, the Prikry extension Mω[{κm}m<ω] is equal to
⋂
n<ω Mn ;

(vii) for any α, the sequences of Mβ, κβ, Uβ, β > α, are definable in Mα .

Claim (v) is the key ingredient of the following proof of Theorem 1: it will
allow is to infer properties of Prikry generic extensions of the ground universe V
from properties of the sequence of iterated ultrapowers Mα . Claim (vi) (a really
nontrivial one established in [2]) will not be used in the proof.

We continue with a couple of technical lemmas.

Lemma 20. If x ∈ Mω then πmω(x) = πω,ω+ω(x) for all but finitely many
m < ω .

Proof. Let x = πm0ω(y) , m0 < ω , y ∈Mm0 . Then for m ∈ [m0, ω) :

πmω(x) = πmω(πm0ω(y))
= πmω(πmω(πm0m(y))) (3)
= (πmω(πmω))(πmω((πm0m(y)))) (4)
= πω,ω+ω(πm0ω(y)) (5)
= πω,ω+ω(x).

Line (4) arises from (3) by applying the map πmω to both terms in the functional
application πmω(πm0m(y)) . For (5) note that πmω(πmω) = πω,ω+ω because πmω
is the ω -fold iteration starting from Mm whereas πω,ω+ω is the ω -fold iteration
starting from Mω .

Wellorder ascending finite sequences of ordinals 〈α0 < . . . < αm−1〉 lexico-
graphically from the top: 〈α0, . . . , αm−1〉 ≺ 〈β0, . . . , βn−1〉 iff there is some i
such that: αm−1 = βn−1, . . . , αm−i = βn−i , βn−i−1 exists, and if αm−i−1 exists
then αm−i−1 < βn−i−1 .

Lemma 21. (i) Suppose that u ∈ Mn . Let 〈α0 < . . . < αm−1〉 be a ≺-least
tuple such that there is a function f ∈M0, f : κm0 →M0 , satisfying

u = π0n(f)(α0, . . . , αm−1).

(To see that such tuples exist, take m = n and 〈α0, . . . , αm−1〉 = 〈κ0, . . . , κn−1〉
and apply Proposition 19(ii).) Then {α0, . . . , αm−1} ⊆ {κ0, . . . , κn−1} .
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(ii) If 〈α0 < . . . < αm−1〉 is ≺-minimal such that

u = π0n(f)(α0, . . . , αm−1)

and if moreover u ⊆ κn then 〈α0 < . . . < αm−1〉 is ≺-minimal such that

u = π0ω(f)(α0, . . . , αm−1) ∩ κn.

Proof. (i) Assume towards the contrary that {α0, . . . , αm−1} 6⊆ {κ0, . . . , κn−1}
and let i be maximal such that αi /∈ {κ0, . . . , κn−1} . Let κ` be minimal such
that αi < κ`. As obviously αi ∈ M` , by the representation theorem (Proposi-
tion 19(ii)) there is g ∈M0 , g : κ`0 →M0 such that

αi = π0`(g)(κ0, . . . , κ`−1).

Note that ` < n, and hence applying π`n we obtain

αi = π0n(g)(κ0, . . . , κ`−1).

Let β0 < . . . < βr−1 enumerate the set

{κ0, . . . , κ`−1} ∪ {α0, . . . , αi−1, αi+1, . . . , αm−1}.

Note that 〈β0, . . . , βr−1〉 ≺ 〈α0, . . . , αm−1〉 .
Let 〈κ0, . . . , κ`−1〉 = 〈βj0 , . . . , βjl−1

〉 in this enumeration, and

〈α0, . . . , αi−1, αi+1, . . . , αm−1〉 = 〈βk0 , . . . , βki−1
, βki+1

, . . . , βkm−1〉.

Define h : κr0 →M0 by

h(ξ0, . . . , ξr−1) = f(ξk0 , . . . , ξki−1
, g(ξj0 , . . . , ξjl−1

), ξki+1
, . . . , ξkm−1).

Then

u = π0n(f)(α0, . . . , αm−1)
= π0n(f)(α0, . . . , αi−1, π0n(g)(κ0, . . . , κl−1), αi+1, . . . , αm−1)
= π0n(f)(βk0 , . . . , βki−1

, π0n(g)(βj0 , . . . , βjl−1
), βki+1

, . . . , βkm−1)
= π0n(h)(β0, . . . , βr−1)

contradicting the minimality of 〈α0, . . . , αm−1〉 .
(ii) Apply πnω .

8 Second proof: auxiliary model

To prove Theorem 1 means to establish a certain property of Prikry-generic ex-
tensions of the ground set universe V = M0 with a measurable cardinal κ = κ0 .
As an auxiliary result, we prove the same fact with respect to the extension of
Mω, as the ground set universe, by the sequence h = {κm : m < ω} of succes-
sive images of κ in the iteration scheme. That this indeed leads to the proof of
Theorem 1 see below.
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Theorem 22. Let h = {κm : m < ω} . For every Z ∈ Mω[h], Z ⊆ κω, there
exists h′ ∈Mω[h] such that h′ ⊆ h and Mω[Z] = Mω[h′] .

Proof. For Z ∈ Mω the theorem is obvious. Thus assume that Z /∈ Mω . We
prove two auxiliary lemmas.

Lemma 23. κω is singular in Mω[Z] .

Proof. Assume not. For m < ω let

Z = π0m(fm)(κ0, . . . , κm−1) ∈Mm.

Then Z ∩ κm = π0m(fm)(κ0, . . . , κm−1) ∩ κm and

Z ∩ κm = π0ω(fm)(κ0, . . . , κm−1) ∩ κm.

So in the model Mω[Z] ,

∀ζ < κω ∃m < ω ∃ξ0, . . . , ξm−1 < ζ (Z ∩ ζ = π0ω(fm)(ξ0, . . . , ξm−1) ∩ ζ).

This defines regressive functions, and there are values m0 and η0, . . . , ηm0−1

such that for a stationary set S ⊆ κω

∀ζ ∈ S (Z ∩ ζ = π0ω(fm0)(η0, . . . , ηm0−1) ∩ ζ).

But then
Z = π0ω(fm0)(η0, . . . , ηm0−1) ∩ κω ∈Mω.

Contradiction.

Lemma 24. In Mω[Z] , there is an infinite subset h0 ⊆ h.

Note that any such set h0 is cofinal in κω .

Proof. Let {αν : ν < γ} ∈Mω[Z] be cofinal in κω where γ < κω . Without loss
of generality, γ < κ0 .

Work in M0 . For ν < γ consider the minimal mν such that αν < κmν and
a ≺-minimal finite sequence ~κν ⊆ h such that for some fν

αν = π0mν (fν)(~κν).

Since γ < κ0 , we have

{π0ω(fν)}ν<γ = π0ω({fν}ν<γ) ∈Mω .

By Lemma 21 we can, in Mω[Z] , define ~κν as the ≺-minimal sequence such that

αν = π0ω(fν)(~κν).

Let h0 =
⋃
ν<γ ~κν , so that h0 ∈Mω[Z] and h0 ⊆ h . If h0 were finite then

{αν : ν < γ} ⊆ {π0ω(fν)(~κ) : ν < γ ∧ ~κ ⊆ h0} ∈Mω

would make κω singular in Mω , contradiction to the measurability of κω in
Mω .
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To prove Theorem 22, let λ0 < λ1 < . . . enumerate h0 . For m < ω let
~κm ⊆ D be the ≺-minimal tuple such that there is a function fm ∈ M0, fm :
κ

length(~κm)
0 →M0 satisfying

Z ∩ λm = π0ω(fm)(~κm) ∩ λm. (6)

Let h′ = h0 ∪
⋃
m<ω ~κm ⊆ h . Observe that

{π0ω(fm)}m<ω = π0ω({fm}m<ω) ∈Mω. (7)

By (6) and (7), Z ∈Mω[h′] .
Conversely, h0 ∈Mω[Z] , and {~κm}m<ω can be defined in Mω[Z] by: ~κm is

≺-minimal such that
Z ∩ λm = π0ω(fm)(~κm) ∩ λm.

Hence h′ ∈Mω[Z] .
Thus Mω[Z] = Mω[h′] as required. (Theorem 22 )

9 Second proof: finalization

Let Φ(h, κ) be the formula

h ⊆ κ ∈ Ord ∧ ∀Z ⊆ κ ∃h′ ⊆ h (V[h′] = V[Z]).

We want to show that the top condition 〈∅, κ0〉 in P = Pκ0(U0) forces Φ(h, κ0),
where h is a canonical name for the Prikry sequence hG . Assume not, and let a
condition 〈a,A〉 ∈ P force ¬ Φ(h, κ0), in M0 as the ground model.

Then by elementarity, it is true in Mω that the condition 〈π0ω(a), π0ω(A)〉 in
Pκω(Uω) forces ¬ Φ(h, κω) in Mω . Clearly π0ω(a) = a, a finite subset of κ0 by
Proposition 19(i), while A′ = π0ω(A) ∈Mω belongs to Uω .

Let, by Proposition 19(iv), n < ω satisfy {κm : n 6 m < ω} ⊆ A′. Recall
that h = {κn : n < ω} is a Prikry sequence by Proposition 19(v), and hence so
is h̃ = a ∪ {κm : n 6 m < ω} since the notion of a Prikry sequence is invariant
under finite changes. And the condition 〈a,A′〉 is obviously compatible with h̃.
Therefore we have ¬ Φ(h̃, κω) in Mω[h̃] .

Finally Mω[h̃] = Mω[h] and the formula Φ(h, κω) is obviously invariant under
finite changes in h. We conclude that ¬ Φ(h, κω) holds in Mω[h] . But this
contradicts Theorem 22. (Theorem 1, alternative proof )

10 Larger sets

We don’t know whether Theorem 1 remains true for arbitrary sets X in the Prikry
extension (that is, not necessarily subsets of κ ), or at least for sets X ⊆ κ+. This
is an interesting open problem. The following theorem can be a first step in this
direction.

Theorem 25. Suppose that h : ω → κ is Prikry-generic over the ground model
V. Then in the Prikry extension V[h] of V, every set X ⊆ κ+ satisfying
X ∩ ξ ∈ V for all ξ < κ+ belongs to V .

13



Proof. The result can be obtained by a rather direct (but lengthy) argument.
We prefer to follow the basic plan of the 2nd proof of Theorem 1, that yields a
comparably shorter proof. The result is a corollary of the next lemma, and the
derivation of the theorem from the lemma (similar to the argument in Section 9)
is left to the reader.

Lemma 26. Suppose that Z ∈ Mω[h] , Z ⊆ (κω+)Mω [h], and Z ∩ ξ ∈ Mω for
all ξ < (κω+)Mω [h]. Then Z ∈Mω .

Proof (Lemma). We have Mω[h] ⊆ Mm for all m < ω by Proposition 19(vii).
Therefore by the representation property of Proposition 19(ii) there exists a se-
quence of functions {fm}m∈ω ∈M0 such that

Z = π0m(fm)(κ0, . . . , κm−1).

for m < ω . If ξ < (κω+)Mω [h] , then

Z ∩ ξ = π0m(fm)(κ0, . . . , κm−1) ∩ ξ ,

πmω(Z ∩ ξ) = π0ω(fm)(κ0, . . . , κm−1) ∩ πmω(ξ) .

Noting that Z ∩ ξ ∈ Mω we may use Proposition 20 to replace πmω(Z ∩ ξ) by
πωω+ω(Z ∩ ξ) for almost all (except for finitely many) indices m . Similarly for
πmω(ξ) . So for almost all m < ω ,

πωω+ω(Z ∩ ξ) = π0ω(fm)(κ0, . . . , κm−1) ∩ πωω+ω(ξ).

So for every ξ < (κ+)Mω [h] we can find m < ω and α0, . . . , αm−1 < κ such that

πωω+ω(Z ∩ ξ) = π0ω(fm)(α0, . . . , αm−1) ∩ πωω+ω(ξ).

This defines regressive functions on (κω+)Mω [h] inside Mω[Z] and so there are a
cofinal set S ⊆ (κω+)Mω [h] and m0 < ω and ordinals β0, . . . , βm0−1 < κω such
that for all ξ ∈ S

πωω+ω(Z ∩ ξ) = π0ω(fm0)(β0, . . . , βm0−1) ∩ πωω+ω(ξ).

Then

Z = {ζ < (κω+)Mω : ∃ξ < (κω+)Mω
(
πωω+ω(ζ) ∈ πωω+ω(Z ∩ ξ)

)
}

= {ζ < (κω+)Mω : πωω+ω(ζ) ∈ π0ω(fm0)(β0, . . . , βm0−1)}

is a definition of Z in Mω . (Lemma )

(Theorem 25 )
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