An Iteration Model violating the Singular Cardinals Hypothesis

Peter Koepke University of Bonn

1 Introduction

Models of Set Theory showing exotic behaviour at singular cardinals are usually constructed via forcing. The archetypical method is Prikry-Forcing [Pr1970], which has been generalized in various ways, as for example by Gitik and Magidor [GiMa1992]. It was observed early that Prikry generic sequences can be obtained as successive critical points in an iteration of the universe V by a normal ultrafilter ([Ka1994], see [De1978] for an exhausting analysis). In this paper iterations by stronger extenders are studied similarly and yield the following theorem:

Main Theorem:

Assume there is an elementary embedding $\pi: V \to M, V \models GCH, M$ transitive, $\pi \upharpoonright \kappa = id, \pi(\kappa) \ge \kappa^{++}, \kappa M \subseteq M$. Then there is an inner model N of

 $\mathbf{ZF} \wedge \neg \mathbf{AC} \wedge \forall \nu < \lambda \ 2^{\nu} = \nu^{+} \wedge \neg 2^{\lambda} = \lambda^{+} \wedge \lambda \ has \ cofinality \ \omega.$

This says that N violates, in a choiceless way, the Singular Cardinals Hypothesis (SCH), since SCH implies that the generalized continuum hypothesis is true at singular strong limit cardinals. The model N will roughly be defined as the intersection of all models obtained by finitely iterating the embedding π .

The proof of the Main Theorem stretches over the rest of this paper. In section 2 we investigate iterations of elementary embeddings. In section 3 the intersection model N is defined and shown to be a model of **ZF**. Sections 4 and 5 are used to establish the cardinality properties and the negative result about choice in N, respectively.

From now on let us assume that $\pi: V \to M$ is as above. We may also assume that π is \in -definable from some parameters.

2 Iterations

To analyze the intersection model it is advantageous to have efficient representations of the elements of M and further iterates. Therefore we may have to modify π a bit:

Lemma 1 There is an elementary map $\pi' : V \to M'$, M' transitive, $\pi' \upharpoonright \kappa = id$, $\pi'(\kappa) = \pi(\kappa) \ge \kappa^{++}$, $\kappa M' \subseteq M'$ with the added property:

$$M' = \{\pi'(f)(x)|f\colon (\kappa)^{<\omega} \to V, \ x \in (\pi'(\kappa))^{<\omega}\}$$

Proof: Let $X = \{\pi(f)(x) | f: (\kappa)^{<\omega} \to V, x \in (\pi(\kappa))^{<\omega}\}$. Since the functions $f: (\kappa)^{<\omega} \to V$ can be used as Skolem functions for V, X is an elementary submodel of $M: X \prec M$. Let $\sigma: X \simeq M', M'$ transitive, $\pi' = \sigma \circ \pi$:

$$V \xrightarrow{\pi} X \prec M$$

$$\xrightarrow{\pi'} \sigma \wr \parallel$$

$$M'$$

We show that M' is κ -closed, the other properties are easily verified for $\pi' \colon V \to M'$. It suffices to show:

Claim: ${}^{\kappa}X \subseteq X$

For $i < \kappa$ consider $\pi(f_i)(x_i) \in X$ as above. Let $g: \kappa \leftrightarrow H_{\kappa}$ be a bijection, then $(x_i)_{i < \kappa} \in H^M_{\pi(\kappa)} = \pi(g)''\pi(\kappa)$. Let $\xi_0 < \pi(\kappa)$, such that $(x_i)_{i < \kappa} = \pi(g)(\xi_0)$ and define a function $h: \kappa \to V$ by cases: if $g(\xi): \kappa_{\xi} \to V$ for some $\kappa_{\xi} < \kappa$, then

$$h(\xi) \colon \kappa_{\xi} \to V, \ h(\xi)(i) = f_i(g(\xi)(i)).$$

Otherwise set $h(\xi) = \emptyset$. Then $\pi(f_i)(x_i) = (\pi(f_i))((\pi(g)(\xi_0))(i)) = (\pi(h)(\xi_0))(i)$ and so $(\pi(f_i)(x_i))_{i < \kappa} = \pi(h)(\xi_0) \in X$ as required.

By the Lemma we may assume that π already satisfies the

Assumption: $M = \{\pi(f)(x) | f \colon (\kappa)^{<\omega} \to V, x \in (\pi(\kappa))^{<\omega} \}.$

A definable elementary embedding of V may be applied to its own definition and thus be iterated. This process can be iterated transfinitely along the ordinals. All iterates will be transitive inner models. For A a definable class define its image under π as $\pi(A) = \bigcup \{\pi(A \cap V_{\alpha}) | \alpha \in \text{On}\}$. Then $\pi(A)$ is definable in M just like A is definable in V with all parameters mapped by π .

Definition 1 The iteration $(M_i, \pi_{ij})_{i \leq j < \theta}$, $\theta \leq \infty$ of V by π is defined recursively until breakdown: $M_0 = V$, $\pi_{0,0} = id$;

 $\begin{array}{l} M_{i+1} = \pi_{0,i}(M), \ \pi_{i,i+1} = \pi_{0,i}(\pi), \ \pi_{j,i+1} = \pi_{i,i+1} \circ \pi_{j,i} \ for \ j < i, \ \pi_{i+1,i+1} = id \upharpoonright M_{i+1}; \\ if \ j \ is \ a \ limit \ ordinal \ then \ (M_j, \pi_{i,j})_{i < j} \ is \ a \ direct \ limit \ of \ (M_i, \pi_{i,i'})_{i \leq i' < j}, \ and \ \pi_{j,j} = id \upharpoonright M_j. \end{array}$

If any of these M_i is wellfounded we also require it to be transitive. If there exists a minimal i with M_i non-wellfounded set $\theta = i + 1$ and stop the construction; otherwise let $\theta = \infty$. The M_i for $i \leq \theta$ are the iterates of V by π .

Indeed this construction does not break down:

Theorem 1 The embedding π is iterable, i.e., every iterate of V by π is transitive, and $\theta = \infty$.

Proof: Assume not. Then there is a unique last iterate $M_j = (M_j, \epsilon')$ of V that is illfounded. By the construction j cannot be a successor ordinal. The image range $(\pi_{0,j})$ lies ϵ' -cofinally in M_j . Let $\alpha \in On$ be minimal such that $\pi_{0,j}(\alpha)$ is in the illfounded part of (M_j, ϵ') . There is $\eta \in \pi_{0,j}(\alpha)$ such that η is still in the illfounded part of (M_j, ϵ') . Let

i < j and $\beta \in On$ be the preimage of $\pi_{i,j}(\beta) = \eta \in \pi_{0,j}(\alpha)$. In M_i , M_j is the unique illfounded iterate of M_i by $\pi_{i,i+1}$. By absoluteness properties of iterations as defined above, β witnesses the existential statement:

$$M_i \models \exists \gamma < \pi_{0,i}(\alpha)$$
: " $\pi_{i,j}(\gamma)$ is in the illfounded part of the unique non-wellfounded iterate of M_i by $\pi_{i,j+1}$ "

Since $\pi_{0,i}: V \mapsto M_i$ is elementary, the corresponding statement holds in $V: \exists \gamma < \alpha : "\pi_{0,j}(\gamma)$ is in the illfounded part of the unique non-wellfounded iterate of V by $\pi_{0,1} = \pi$ ". This contradicts the minimality of α .

The critical points of the maps $\pi_{i,i+1}$ are given by $\kappa_i = \pi_{0,i}(\kappa)$. The following facts are proved by a straightforward induction along the iteration (see also [Je1978]):

Lemma 2 For $i, j \in On, i < j$:

- (a) $\kappa_i < \kappa_j$
- (b) $\pi_{i,j} \upharpoonright \kappa_i = id, \ \pi_{i,j}(\kappa_i) = \kappa_j.$
- (c) $V_{\kappa_i} \cap M_i = V_{\kappa_i} \cap M_j$.
- (d) $\mathcal{P}(\kappa_i) \cap M_i = \mathcal{P}(\kappa_i) \cap M_j$.
- (e) $M_i \supseteq M_j, M_i \neq M_j$.
- (f) κ_i is a cardinal in M_j .
- (g) If j is a limit ordinal, then $\kappa_j = \lim_{i < j} \kappa_i$.
- (h) If $i < \omega$, then M_i is κ -closed: $\kappa M_i \subseteq M_i$.

The representation property of Lemma 1 can be generalized to all iterates.

Lemma 3 For all $i < \infty$: $M_i = \{\pi_{0,i}(f)(x) | f \colon (\kappa)^{<\omega} \to V, x \in (\kappa_i)^{<\omega}\}$

Proof: By induction. The initial cases i = 0, 1 are trivial by our Assumption. The limit case is easy because M_i is a direct limit of earlier iterates.

For the succesor step assume the claim for i and let $z \in M_{i+1} = \pi_{0,i}(M)$. By the Assumption and the elementarity of $\pi_{0,i}$ we may assume $z = \pi_{i,i+1}(g)(y)$ for some $g \in M_i, g: (\kappa_i)^{<\omega} \to M_i, y \in (\kappa_{i+1})^{<\omega}$. By the induction hypothesis $g = \pi_{0,i}(h)(z)$ for some $h: (\kappa)^{<\omega} \to V, z \in (\kappa_i)^{<\omega}$. Hence $z = \pi_{i,i+1}(g)(y) = \pi_{i,i+1}(\pi_{0,i}(h)(z))(y) = (\pi_{0,i+1}(h)(z))(y) = \pi_{0,i+1}(f)(x)$ with $x = z^{-}y$ and $f: (\kappa)^{<\omega} \to V$ defined by $f(v^{-}u): = (h(v))(u)$ if this is welldefined and length(v) = length(z), length(u) = length(y), $f(v^{-}u) = \emptyset$ otherwise.

We shall need the following "algebraic" facts about the system of iteration maps (see [De1978] for more general statements of this kind):

Lemma 4 (a) If $i < \omega$ then $\pi_{i,\omega}(\pi_{i,\omega}) = \pi_{\omega,\omega+\omega}$.

(b) If $x \in M_{\omega}$ then $\pi_{i,\omega}(x) = \pi_{\omega,\omega+\omega}(x)$ for almost all $i < \omega$.

 $^{^{1}}$ = all but finitely many

Peter Koepke

Proof: (a) $M_i \models \pi_{i,\omega}$ is the iteration map from V [which is M_i here] to its ω -th iterate." By $\pi_{i,\omega}$ this is mapped elementarily to $M_{\omega} \models \pi_{i,\omega}(\pi_{i,\omega})$ is the iteration map from V [which is M_{ω} now] to its ω -th iterate." By the absoluteness properties of iterations this map is just $\pi_{\omega,\omega+\omega} \colon M_{\omega} \to M_{\omega,\omega+\omega}$.

(b) Let $x \in M_{\omega}, x = \pi_{j,\omega}(y)$ for some $j < \omega, y \in M_j$. For $j < i < \omega$ we see:

$$\pi_{i,\omega}(x) = \pi_{i,\omega}(\pi_{j,\omega}(y))$$

$$= \pi_{i,\omega}(\pi_{i,\omega}(\pi_{j,i}(y)))$$

$$= (\pi_{i,\omega}(\pi_{i,\omega}))(\pi_{i,\omega}(\pi_{j,i}(y))) \qquad (*)$$

$$= \pi_{\omega,\omega+\omega}(\pi_{j,\omega}(y))$$

$$= \pi_{\omega,\omega+\omega}(x),$$

in (*), $\pi_{i,\omega}$ is applied to the term " $\pi_{i,\omega}$ evaluated at the argument $\pi_{j,i}(y)$ "

3 The Intersection Model

From the iteration of V by π we can define the intersection model $N := \bigcap_{i \leq \omega} M_i$.

Lemma 5 For $i < \omega$: $M_{\omega} \subseteq N \subseteq M_i$ and N is uniformly definable in M_i from π_i as the intersection of the finite iterates of M_i .

Theorem 2 N is an inner model of Zermelo-Fraenkel set theory **ZF**.

Proof: N is transitive and contains the class On, which implies extensionality and foundation in N. For the other axioms the existence of certain abstraction terms $t = \{x \in N | \varphi^N(x, \bar{a})\}$ for $\bar{a} \in N$ has to be shown in N. For all $i < \omega$, N is definable in M_i . Hence t exists in all M_i and $t \in N = \bigcap_{i < \omega} M_i$.

The status of the Axiom of Choice (**AC**) will be discussed later. N and its inner model M_{ω} are in some close relationship reminiscent of Prikry- or Gitik-Magidor generic extensions.

Set $\lambda = \kappa_{\omega}$. Then

Lemma 6 (a) $N \cap V_{\lambda} = M_{\omega} \cap V_{\lambda}$.

(b) $N \models \lambda$ is a strong limit cardinal, $N \models \forall \nu < \lambda \ 2^{\nu} = \nu^+$.

Proof: (a) \supseteq is clear by Lemma 5. Let $x \in N \cap V_{\lambda}$. For some $i < \omega$: $x \in N \cap V_{\kappa_i}$. Then by Lemma 2(c), $x \in M_i \cap V_{\kappa_i} = M_\omega \cap V_{\kappa_i}$.

(b) is true since the corresponding statements hold in M_{ω} and are absolute between M_{ω} and N by (a).

Every $z \in M_{\omega}$ is the limit of a *thread* $\pi_{0,\omega}^{-1}(z), \pi_{1,\omega}^{-1}(z), \pi_{2,\omega}^{-1}(z), \ldots$ These threads provide us with natural Prikry sequences for M_{ω} ; N can see the system of these sequences modulo finite changes.

Definition 2 Let $k < \omega$. For $\alpha < \kappa_{\omega+1}$ set $c_{\alpha}^k := \{\pi_{i,\omega}^{-1}(\alpha) | k \leq i < \omega \text{ and } \alpha \in \operatorname{rge}(\pi_{i,\omega})\}$. Define $C^k := (c_{\alpha}^k | \alpha < \kappa_{\omega+1})$. This definition can be carried out inside M_k , hence $C^k \in M_k$. $\pi_{i,\omega}^{-1}(\alpha) < \kappa_{i+1} < \lambda$ and so $c_{\alpha}^k \subseteq \lambda$. For any $x \subseteq \lambda$ define $\tilde{x} = \{y \subseteq \lambda | x \Delta y \text{ is finite}\}$. We call $\tilde{C} := (\tilde{c}_{\alpha}^0 | \alpha < \kappa_{\omega+1})$ the Prikry-System derived from iterating V by π . Obviously $\tilde{c}^0_{\alpha} = \tilde{c}^k_{\alpha}$ and $\tilde{C} := (\tilde{c}^k_{\alpha} | \alpha < \kappa_{\omega+1})$, so \tilde{C} can be defined from $C^k \in M_k$ for all k and we obtain $\tilde{C} \in N = \bigcap_{k < \omega} M_k$.

Lemma 7 (a) If $\alpha < \beta < \kappa_{\omega+1}$, then $\tilde{c}^0_{\alpha} \neq \tilde{c}^0_{\beta}$

(b) There is a surjective map $s \colon \mathcal{P}(\lambda) \to \kappa_{\omega+1}, s \in N$.

(c) $N \models \lambda$ is singular of cofinality ω .

Proof: (a) The threads c_{α}^{k} and c_{β}^{k} differ on an endsegment.

(b) For $x \subseteq \lambda$ let s(x) be the unique α such that $x \in \tilde{c}^0_{\alpha}$, if this exists, and 0 otherwise. (c) The sequence $(\kappa_i | i < \omega)$ is cofinal in κ_{ω} (by Lemma 2(g)) and $(\kappa_i | i < \omega) \in \tilde{c}^0_{\lambda} \in N$. \Box

4 Cardinal Preservation

Our assumptions on π imply that $\kappa_{\omega+1} \ge (\lambda^{++})^{M_{\omega}}$. If $(\lambda^{++})^{M_{\omega}} = (\lambda^{++})^N$ then Lemma 7(b) provides us with the desired negation of **SCH**. Therefore we show cardinal preservation between M_{ω} and N. The proof of the following "covering theorem" is based on "naming" elements of N by the normal form given in Lemma 3 and counting "names".

Lemma 8 Let $f: \eta \to \theta, \eta, \theta \in \text{On}, f \in N$. Then there is a function $F: \eta \to M_{\omega}, F \in M_{\omega}$ such that

- (a) $\forall \xi < \eta \colon f(\xi) \in F(\xi)$.
- (b) $\forall \xi < \eta : card^{M_{\omega}}(F(\xi)) \leq \lambda.$

Proof: By Lemma 3, f can be represented in the various M_i , $i < \omega$, as: $f = \pi_{0,i}(f_i)(x_i)$ with $f_i: [\kappa]^{<\omega} \to V$, $x_i \in [\kappa_i]^{<\omega}$. For $\xi < \eta$, $\zeta < \theta$ we have

$$\begin{aligned} (\xi,\zeta) &\in f &\leftrightarrow \quad \pi_{i,\omega}(\xi,\zeta) \in \pi_{i,\omega}(f) = \pi_{0,\omega}(f_i)(x_i) \\ &\leftrightarrow \quad \pi_{\omega,\omega+\omega}(\xi,\zeta) \in \pi_{0,\omega}(f_i)(x_i), \text{ for almost all } i < \omega \end{aligned}$$

Define $F: \eta \to V$ by

 $F(\xi) = \{\zeta < \theta | \exists i < \omega, x \in [\lambda]^{<\omega} : \pi_{0,\omega}(f_i)(x) \text{ is a function and } \pi_{\omega,\omega+\omega}(\xi,\zeta) \in \pi_{0,\omega}(f_i)(x) \}.$ Then $F \in M_{\omega}$ since it is definable in M_{ω} using the parameters η, θ, λ and $(\pi_{0,\omega}(f_i))_{i < \omega} = \pi_{0,\omega}((f_i)_{i < \omega}).$ Property (a) holds by the preceding equivalences, (b) is immediate from the definition of F.

Theorem 3 $card^{M_{\omega}} = card^{N}$.

Proof: The inclusion \supseteq is clear since $M_{\omega} \subseteq N$.

If $\theta \leq \lambda$ is a cardinal in M_{ω} , then it is a cardinal in N by Lemma 6(a). If $\theta > \lambda$ is not a cardinal in N, there is $f: \eta \to \theta$ onto, $\eta < \theta, f \in N$. Take $F: \eta \to M_{\omega}, F \in M_{\omega}$ as in Lemma 8. By Lemma 8(a) $\theta \subseteq \bigcup_{\xi < \eta} F(\xi)$, and by (b) M_{ω} satisfies $\operatorname{card}(\bigcup_{\xi < \eta} F(\xi)) \leq \eta \cdot \lambda < \theta \cdot \theta = \theta$. So θ is not a cardinal in M_{ω} .

Concerning the proof of our main theorem this yields

Theorem 4 $N \models \neg 2^{\lambda} = \lambda^+$

Proof: Assume $N \models 2^{\lambda} = \lambda^{+}$ instead. In N, there is a surjective map $\lambda^{+} \stackrel{\text{onto}}{\longrightarrow} \mathcal{P}(\lambda)$ and by Lemma 7(b) there is a surjective map $\mathcal{P}(\lambda) \stackrel{\text{onto}}{\longrightarrow} \kappa_{\omega+1}$. So $N \models \operatorname{card}(\kappa_{\omega+1}) \leq \lambda^{+}$ and by the preceding cardinal absoluteness $M_{\omega} \models \operatorname{card}(\kappa_{\omega+1}) \leq \lambda^{+}$. This can be pulled back by $\pi_{0,\omega}$ to V where we get $\operatorname{card}(\kappa_{1}) = \operatorname{card}(\pi(\kappa)) \leq \kappa^{+}$ contradicting our assumptions on π .

Peter Koepke

5 No Choice

Theorem 5 In N, $\tilde{C} \upharpoonright \lambda^{++}$ has no choice function, hence in N the Axiom of Choice fails for sequences of length λ^{++} .

Proof: Assume for a contradiction, that $h: \lambda^{++} \to \mathcal{P}(\lambda)$, $h \in N$ is a choice function for $\tilde{C} \upharpoonright \lambda^{++}$. Then $\forall \xi < \lambda^{++} : h(\xi) \in \tilde{C}(\xi) = \tilde{c}_{\xi}^{0}$. We use λ^{++} to denote $(\lambda^{++})^{N} = (\lambda^{++})^{M_{\omega}}$. Since $h \in M_{i}$ for all *i* we get by our normal form result of section 2: $h = \pi_{0,i}(f_{i})(x_{i})$ for $i < \omega$, with $f_{i}: (\kappa)^{<\omega} \to V$, $x_{i} \in (\kappa_{i})^{<\omega}$. Consider $\xi < \xi' < \lambda^{++}$. By Lemma 7(a) $h(\xi) \neq h(\xi')$. There is $i < \omega$ such that $\kappa_{i} \cap h(\xi) \neq \kappa_{i} \cap h(\xi')$ and by Lemma 4(b) we can assume (increasing *i* if necessary) that $\pi_{i,\omega}(\xi) = \pi_{\omega,\omega+\omega}(\xi)$ and $\pi_{i,\omega}(\xi') = \pi_{\omega,\omega+\omega}(\xi')$. Then $\kappa_{i} \cap (\pi_{0,i}(f_{i})(x_{i}))(\xi) \neq \kappa_{i} \cap (\pi_{0,i}(f_{i})(x_{i}))(\xi')$. Applying $\pi_{i,\omega}$ we get

(*)
$$\kappa_i \cap (\pi_{0,\omega}(f_i)(x_i))(\pi_{\omega,\omega+\omega}(\xi)) \neq \kappa_i \cap (\pi_{0,\omega}(f_i)(x_i))(\pi_{\omega,\omega+\omega}(\xi')).$$

In M_{ω} , we define the function $H: \lambda^{++} \to M_{\omega}$, $H(\xi) = (h_i^{\xi}|i < \omega)$, where $h_i^{\xi}: (\lambda)^{<\omega} \to \mathcal{P}(\lambda)$ is defined by $h_i^{\xi}(x) = (\pi_{0,\omega}(f_i)(x))(\pi_{\omega,\omega+\omega}(\xi))$, if this is a subset of λ , and $h_i^{\xi}(x) = \emptyset$ else. By (*) H is injective and its domain is λ^{++} . But this contradicts $M_{\omega} \models \operatorname{card}(\operatorname{rge} H) \leq ((2^{\lambda})^{\lambda})^{\omega} = 2^{\lambda} = \lambda^+$, using **GCH** inside M_{ω}

6 Further Aspects

- 1. More detailed studies of the choice situation show $N \models \lambda^+ \mathbf{AC}$, the axiom of choice for λ^+ -sequences and $N \models < \lambda^+ - \mathbf{DC}$, the axiom of dependent choice for sequences shorter than λ^+ . This is not true for sequences of length λ^+ , i.e. $N \models \neg \lambda^+ - \mathbf{DC}$. Indeed it is not possible to force over N with partial choice functions for \tilde{C} of size $\leq \lambda$ without collapsing λ^+ and thus destroying the $\neg \mathbf{SCH}$ -situation.
- 2. $N = M_{\omega}[\tilde{C}]$, i.e., N is the smallest transitive model of **ZF** containing M_{ω} and \tilde{C} .
- 3. Gitik-Magidor forcing over M_{ω} with the canonical extender at λ derived from $\pi_{\omega,\omega+1}$ yields a model $N^* = M_{\omega}[(c_{\alpha}|\alpha < \kappa_{\omega+1})]$, where each c_{α} is an ω -sequence cofinal in κ . It is possible in the context of countable ground models to find N^* such that $\forall \alpha < \kappa_{\omega+1} : c_{\alpha} \in \tilde{C}(\alpha)$. Then N is a natural submodel of N^* and the generic object for Gitik-Magidor forcing is basically a choice function for the Prikry system \tilde{C} . We shall discuss this in a subsequent article.
- 4. Ideas from this paper can be applied to other "Prikry-like" forcings as e.g. Magidor forcing [Ma1975] and Radin forcing.

References

[De1978]	 P. Dehornoy, <i>Iterated Ultrapowers and Prikry forcing</i> Annals of Math. Logik 15 (1978) pp. 109-160
[GiMa1992]	M. Gitik, M Magidor, <i>The singular cardinal hypothesis revisited</i> in Set Theory of the Continuum, Ed.:Judah, Just, Woodin Springer, Berlin 1992
[Je1978]	T. Jech: Set Theory, Academic Press, New York 1978
[Ka1994]	A. Kanamori, The higher infinite, Springer, Berlin 1992

- [Ma1975] M. Magidor, *Changing cofinality of cardinals* Fundamenta Mathematicae **99** (1978) pp. 61-71
- [Pr1970] K. Prikry, Changing measurable cardinals into accessible cardinals Dissertationes Mathematicae 68 (1970) pp. 5-52