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1 Introduction

Models of Set Theory showing exotic behaviour at singular cardinals are usually constructed
via forcing. The archetypical method is Prikry-Forcing [Pr1970], which has been general-
ized in various ways, as for example by Gitik and Magidor [GiMa1992]. It was observed
early that Prikry generic sequences can be obtained as successive critical points in an iter-
ation of the universe V by a normal ultrafilter ([Ka1994], see [De1978] for an exhausting
analysis). In this paper iterations by stronger extenders are studied similarly and yield the
following theorem:

Main Theorem:
Assume there is an elementary embedding π : V → M, V |= GCH, M transitive, π ¹ κ =
id, π(κ) ≥ κ++, κM ⊆ M . Then there is an inner model N of

ZF ∧ ¬AC ∧ ∀ν < λ 2ν = ν+ ∧ ¬2λ = λ+ ∧ λ has cofinality ω.

This says that N violates, in a choiceless way, the Singular Cardinals Hypothesis
(SCH), since SCH implies that the generalized continuum hypothesis is true at singular
strong limit cardinals. The model N will roughly be defined as the intersection of all
models obtained by finitely iterating the embedding π.

The proof of the Main Theorem stretches over the rest of this paper. In section 2 we
investigate iterations of elementary embeddings. In section 3 the intersection model N
is defined and shown to be a model of ZF. Sections 4 and 5 are used to establish the
cardinality properties and the negative result about choice in N , respectively.

From now on let us assume that π : V → M is as above. We may also assume that π is
∈-definable from some parameters.

2 Iterations

To analyze the intersection model it is advantageous to have efficient representations of the
elements of M and further iterates. Therefore we may have to modify π a bit:

Lemma 1 There is an elementary map π′ : V → M ′, M ′ transitive, π′ ¹ κ = id, π′(κ) =
π(κ) ≥ κ++, κM ′ ⊆ M ′ with the added property:

M ′ = {π′(f)(x)|f :
(
κ
)<ω → V, x ∈ (

π′(κ)
)<ω}

1
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Proof: Let X = {π(f)(x)|f :
(
κ
)<ω → V, x ∈ (

π(κ)
)<ω}. Since the functions f :

(
κ
)<ω →

V can be used as Skolem functions for V , X is an elementary submodel of M : X ≺ M .
Let σ : X ' M ′, M ′ transitive, π′ = σ ◦ π:

V -π
X ≺ M

@
@

@Rπ′
σ o‖
M ′

We show that M ′ is κ-closed, the other properties are easily verified for π′ : V → M ′.
It suffices to show:
Claim: κX ⊆ X
For i < κ consider π(fi)(xi) ∈ X as above. Let g : κ ↔ Hκ be a bijection, then (xi)i<κ ∈
HM

π(κ) = π(g)′′π(κ). Let ξ0 < π(κ), such that (xi)i<κ = π(g)(ξ0) and define a function
h : κ → V by cases: if g(ξ) : κξ → V for some κξ < κ, then

h(ξ) : κξ → V, h(ξ)(i) = fi(g(ξ)(i)).

Otherwise set h(ξ) = ∅. Then π(fi)(xi) = (π(fi))((π(g)(ξ0))(i)) = (π(h)(ξ0))(i) and so
(π(fi)(xi))i<κ = π(h)(ξ0) ∈ X as required. 2

By the Lemma we may assume that π already satisfies the

Assumption: M = {π(f)(x)|f :
(
κ
)<ω → V, x ∈ (

π(κ)
)<ω}.

A definable elementary embedding of V may be applied to its own definition and thus
be iterated. This process can be iterated transfinitely along the ordinals. All iterates will
be transitive inner models. For A a definable class define its image under π as π(A) =⋃{π(A ∩ Vα)|α ∈ On}. Then π(A) is definable in M just like A is definable in V with all
parameters mapped by π.

Definition 1 The iteration (Mi, πij)i≤j<θ, θ ≤ ∞ of V by π is defined recursively until
breakdown: M0 = V, π0,0 = id;
Mi+1 = π0,i(M), πi,i+1 = π0,i(π), πj,i+1 = πi,i+1 ◦ πj,i for j < i, πi+1,i+1 = id ¹ Mi+1;
if j is a limit ordinal then (Mj , πi,j)i<j is a direct limit of (Mi, πi,i′)i≤i′<j, and πj,j = id ¹
Mj.
If any of these Mi is wellfounded we also require it to be transitive. If there exists a minimal
i with Mi non-wellfounded set θ = i + 1 and stop the construction; otherwise let θ = ∞.
The Mi for i ≤ θ are the iterates of V by π.

Indeed this construction does not break down:

Theorem 1 The embedding π is iterable, i.e., every iterate of V by π is transitive, and
θ = ∞.

Proof: Assume not. Then there is a unique last iterate Mj = (Mj ,∈′) of V that is
illfounded. By the construction j cannot be a successor ordinal. The image range(π0,j)
lies ∈′-cofinally in Mj . Let α ∈ On be minimal such that π0,j(α) is in the illfounded part
of (Mj ,∈′). There is η ∈′ π0,j(α) such that η is still in the illfounded part of (Mj ,∈′). Let
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i < j and β ∈ On be the preimage of πi,j(β) = η ∈′ π0,j(α). In Mi, Mj is the unique
illfounded iterate of Mi by πi,i+1. By absoluteness properties of iterations as defined above,
β witnesses the existential statement:

Mi |= ∃γ < π0,i(α) : ”πi,j(γ) is in the illfounded part of the unique
non-wellfounded iterate of Mi by πi,i+1”

Since π0,i : V 7→ Mi is elementary, the corresponding statement holds in V : ∃γ < α : ”π0,j(γ)
is in the illfounded part of the unique non-wellfounded iterate of V by π0,1 = π”. This
contradicts the minimality of α. 2

The critical points of the maps πi,i+1 are given by κi = π0,i(κ). The following facts are
proved by a straightforward induction along the iteration (see also [Je1978]):

Lemma 2 For i, j ∈ On, i < j:

(a) κi < κj

(b) πi,j ¹ κi = id, πi,j(κi) = κj.

(c) Vκi ∩Mi = Vκi ∩Mj.

(d) P(κi) ∩Mi = P(κi) ∩Mj.

(e) Mi ⊇ Mj , Mi 6= Mj.

(f) κi is a cardinal in Mj.

(g) If j is a limit ordinal, then κj = limi<j κi.

(h) If i < ω, then Mi is κ-closed: κMi ⊆ Mi.

The representation property of Lemma 1 can be generalized to all iterates.

Lemma 3 For all i < ∞:
Mi = {π0,i(f)(x)|f : (κ)<ω → V, x ∈ (κi)<ω}

Proof: By induction. The initial cases i = 0, 1 are trivial by our Assumption. The limit
case is easy because Mi is a direct limit of earlier iterates.
For the succesor step assume the claim for i and let z ∈ Mi+1 = π0,i(M). By the As-
sumption and the elementarity of π0,i we may assume z = πi,i+1(g)(y) for some g ∈
Mi, g : (κi)<ω → Mi, y ∈ (κi+1)<ω. By the induction hypothesis g = π0,i(h)(z) for
some h : (κ)<ω → V, z ∈ (κi)<ω. Hence z = πi,i+1(g)(y) = πi,i+1(π0,i(h)(z))(y) =
(π0,i+1(h)(z))(y) = π0,i+1(f)(x) with x = z_y and f : (κ)<ω → V defined by f(v_u) : =
(h(v))(u) if this is welldefined and length(v) = length(z), length(u) = length(y),
f(v_u) = ∅ otherwise. 2

We shall need the following ”algebraic” facts about the system of iteration maps (see
[De1978] for more general statements of this kind):

Lemma 4 (a) If i < ω then πi,ω(πi,ω) = πω,ω+ω.

(b) If x ∈ Mω then πi,ω(x) = πω,ω+ω(x) for almost all 1 i < ω.

1= all but finitely many
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Proof: (a) Mi |= ”πi,ω is the iteration map from V [which is Mi here] to its ω-th iterate.”
By πi,ω this is mapped elementarily to Mω |= ”πi,ω(πi,ω) is the iteration map from V
[which is Mω now] to its ω-th iterate.” By the absoluteness properties of iterations this
map is just πω,ω+ω : Mω → Mω,ω+ω.
(b) Let x ∈ Mω, x = πj,ω(y) for some j < ω, y ∈ Mj . For j < i < ω we see:

πi,ω(x) = πi,ω(πj,ω(y))
= πi,ω(πi,ω(πj,i(y)))
= (πi,ω(πi,ω))(πi,ω(πj,i(y))) (∗)
= πω,ω+ω(πj,ω(y))
= πω,ω+ω(x),

in (∗), πi,ω is applied to the term ”πi,ω evaluated at the argument πj,i(y)” 2

3 The Intersection Model

From the iteration of V by π we can define the intersection model N :=
⋂

i<ω Mi.

Lemma 5 For i < ω: Mω ⊆ N ⊆ Mi and N is uniformly definable in Mi from πi as the
intersection of the finite iterates of Mi.

Theorem 2 N is an inner model of Zermelo-Fraenkel set theory ZF.

Proof: N is transitive and contains the class On, which implies extensionality and foun-
dation in N . For the other axioms the existence of certain abstraction terms t = {x ∈
N |ϕN (x, ā)} for ā ∈ N has to be shown in N . For all i < ω, N is definable in Mi. Hence
t exists in all Mi and t ∈ N =

⋂
i<ω Mi. 2

The status of the Axiom of Choice (AC) will be discussed later. N and its inner
model Mω are in some close relationship reminiscent of Prikry- or Gitik-Magidor generic
extensions.

Set λ = κω. Then

Lemma 6 (a) N ∩ Vλ = Mω ∩ Vλ.

(b) N |= λ is a strong limit cardinal, N |= ∀ν < λ 2ν = ν+.

Proof: (a) ⊇ is clear by Lemma 5. Let x ∈ N ∩ Vλ. For some i < ω: x ∈ N ∩ Vκi . Then
by Lemma 2(c), x ∈ Mi ∩ Vκi = Mω ∩ Vκi .
(b) is true since the corresponding statements hold in Mω and are absolute between Mω

and N by (a). 2

Every z ∈ Mω is the limit of a thread π−1
0,ω(z), π−1

1,ω(z), π−1
2,ω(z), . . .. These threads provide

us with natural Prikry sequences for Mω; N can see the system of these sequences modulo
finite changes.

Definition 2 Let k < ω. For α < κω+1 set ck
α := {π−1

i,ω(α)|k ≤ i < ω and α ∈ rge(πi,ω)}.
Define Ck := (ck

α|α < κω+1). This definition can be carried out inside Mk, hence Ck ∈ Mk.
π−1

i,ω(α) < κi+1 < λ and so ck
α ⊆ λ. For any x ⊆ λ define x̃ = {y ⊆ λ|x4y is finite}. We

call C̃ := (c̃0
α|α < κω+1) the Prikry-System derived from iterating V by π.
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Obviously c̃0
α = c̃k

α and C̃ := (c̃k
α|α < κω+1), so C̃ can be defined from Ck ∈ Mk for all

k and we obtain C̃ ∈ N =
⋂

k<ω Mk.

Lemma 7 (a) If α < β < κω+1, then c̃0
α 6= c̃0

β

(b) There is a surjective map s : P(λ) → κω+1, s ∈ N .

(c) N |= λ is singular of cofinality ω.

Proof: (a) The threads ck
α and ck

β differ on an endsegment.
(b) For x ⊆ λ let s(x) be the unique α such that x ∈ c̃0

α, if this exists, and 0 otherwise.
(c) The sequence (κi|i < ω) is cofinal in κω (by Lemma 2(g)) and (κi|i < ω) ∈ c̃0

λ ∈ N . 2

4 Cardinal Preservation

Our assumptions on π imply that κω+1 ≥ (λ++)Mω . If (λ++)Mω = (λ++)N then Lemma
7(b) provides us with the desired negation of SCH. Therefore we show cardinal preservation
between Mω and N . The proof of the following ”covering theorem” is based on ”naming”
elements of N by the normal form given in Lemma 3 and counting ”names”.

Lemma 8 Let f : η → θ, η, θ ∈ On, f ∈ N . Then there is a function F : η → Mω, F ∈ Mω

such that

(a) ∀ξ < η : f(ξ) ∈ F (ξ).

(b) ∀ξ < η : cardMω (F (ξ)) ≤ λ.

Proof: By Lemma 3, f can be represented in the various Mi, i < ω, as: f = π0,i(fi)(xi)
with fi : [κ]<ω → V, xi ∈ [κi]<ω. For ξ < η, ζ < θ we have

(ξ, ζ) ∈ f ↔ πi,ω(ξ, ζ) ∈ πi,ω(f) = π0,ω(fi)(xi)
↔ πω,ω+ω(ξ, ζ) ∈ π0,ω(fi)(xi), for almost all i < ω.

Define F : η → V by
F (ξ) = {ζ < θ|∃i < ω, x∈ [λ]<ω : π0,ω(fi)(x) is a function and πω,ω+ω(ξ, ζ) ∈ π0,ω(fi)(x)}.
Then F ∈ Mω since it is definable in Mω using the parameters η, θ, λ and (π0,ω(fi))i<ω =
π0,ω((fi)i<ω). Property (a) holds by the preceding equivalences, (b) is immediate from the
definition of F . 2

Theorem 3 cardMω = cardN .

Proof: The inclusion ⊇ is clear since Mω ⊆ N .
If θ ≤ λ is a cardinal in Mω, then it is a cardinal in N by Lemma 6(a). If θ > λ is not
a cardinal in N , there is f : η → θ onto, η < θ, f ∈ N . Take F : η → Mω, F ∈ Mω as
in Lemma 8. By Lemma 8(a) θ ⊆ ⋃

ξ<η F (ξ), and by (b) Mω satisfies card(
⋃

ξ<η F (ξ)) ≤
η · λ < θ · θ = θ. So θ is not a cardinal in Mω. 2

Concerning the proof of our main theorem this yields

Theorem 4 N |= ¬2λ = λ+

Proof: Assume N |= 2λ = λ+ instead. In N , there is a surjective map λ+ onto−→ P(λ) and
by Lemma 7(b) there is a surjective map P(λ) onto−→ κω+1. So N |= card(κω+1) ≤ λ+ and
by the preceding cardinal absoluteness Mω |= card(κω+1) ≤ λ+. This can be pulled back
by π0,ω to V where we get card(κ1) = card(π(κ)) ≤ κ+ contradicting our assumptions on
π. 2
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5 No Choice

Theorem 5 In N , C̃ ¹ λ++ has no choice function, hence in N the Axiom of Choice fails
for sequences of length λ++.

Proof: Assume for a contradiction, that h : λ++ → P(λ), h ∈ N is a choice function for
C̃ ¹ λ++. Then ∀ξ < λ++ : h(ξ) ∈ C̃(ξ) = c̃0

ξ . We use λ++ to denote (λ++)N = (λ++)Mω .
Since h ∈ Mi for all i we get by our normal form result of section 2: h = π0,i(fi)(xi)
for i < ω, with fi : (κ)<ω → V, xi ∈ (κi)<ω. Consider ξ < ξ′ < λ++. By Lemma 7(a)
h(ξ) 6= h(ξ′). There is i < ω such that κi ∩ h(ξ) 6= κi ∩ h(ξ′) and by Lemma 4(b) we
can assume (increasing i if necessary) that πi,ω(ξ) = πω,ω+ω(ξ) and πi,ω(ξ′) = πω,ω+ω(ξ′).
Then κi ∩ (π0,i(fi)(xi))(ξ) 6= κi ∩ (π0,i(fi)(xi))(ξ′). Applying πi,ω we get

(∗) κi ∩ (π0,ω(fi)(xi))(πω,ω+ω(ξ)) 6= κi ∩ (π0,ω(fi)(xi))(πω,ω+ω(ξ′)).

In Mω, we define the function H : λ++ → Mω, H(ξ) = (hξ
i |i < ω), where hξ

i : (λ)<ω →
P(λ) is defined by hξ

i (x) = (π0,ω(fi)(x))(πω,ω+ω(ξ)), if this is a subset of λ, and hξ
i (x) = ∅

else. By (∗) H is injective and its domain is λ++. But this contradicts Mω |= card(rgeH) ≤
((2λ)λ)ω = 2λ = λ+, using GCH inside Mω 2

6 Further Aspects

1. More detailed studies of the choice situation show N |= λ+−AC, the axiom of choice
for λ+-sequences and N |=< λ+ −DC, the axiom of dependent choice for sequences
shorter than λ+. This is not true for sequences of length λ+, i.e. N |= ¬λ+ −DC.
Indeed it is not possible to force over N with partial choice functions for C̃ of size
≤ λ without collapsing λ+ and thus destroying the ¬SCH-situation.

2. N = Mω[C̃], i.e., N is the smallest transitive model of ZF containing Mω and C̃.

3. Gitik-Magidor forcing over Mω with the canonical extender at λ derived from πω,ω+1

yields a model N∗ = Mω[(cα|α < κω+1)], where each cα is an ω-sequence cofinal
in κ. It is possible in the context of countable ground models to find N∗ such that
∀α < κω+1 : cα ∈ C̃(α). Then N is a natural submodel of N∗ and the generic object
for Gitik-Magidor forcing is basically a choice function for the Prikry system C̃. We
shall discuss this in a subsequent article.

4. Ideas from this paper can be applied to other ”Prikry-like” forcings as e.g. Magidor
forcing [Ma1975] and Radin forcing.
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