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AN ELEMENTARY APPROACH TO THE FINE STRUCTURE OF L 

SY D FRIEDMAN AND PETER KOEPKE 

We present here an approach to the fine structure of L based solely on 
elementary model theoretic ideas, and illustrate its use in a proof of Global 
Square in L. We thereby avoid the Levy hierarchy of formulas and the sub- 
tleties of master codes and projecta, introduced by Jensen [3] in the original 
form of the theory. Our theory could appropriately be called "Hyperfine 
Structure Theory", as we make use of a hierarchy of structures and hull op- 
erations which refines the traditional La- or J,-sequences with their C,-hull 
operations. 

$1. Introduction. In 1938, K. Godel defined the model L of set theory 
to show the relative consistency of Cantor's Continuum Hypothesis. L is 
defined as a union 

L =  u L, 
,cord 

of initial segments which satisfy: Lo = 0, Li~= Ua<nL, for limit ordinals 
A, and, crucially, La+, = the collection of 1st order definable subsets of L,. 
Since every transitive model of set theory must be closed under 1st order 
definability, L turns out to be the smallest inner model of set theory. Thus it 
occupies the central place in the set theoretic spectrum of models. 

The proof of the continuum hypothesis in L is based on the very uniform 
hierarchical definition of the L-hierarchy. The Condensation Lemma states 
that if n : M -+ L, is an elementary embedding, M transitive, then M = L, 
for some C ; the lemma can be proved by induction on a.  If a real, i.e.. 
a subset of co, is definable over some L,, then by a Lowenheim-Skolem 
argument it is definable over some countable M as above, and hence over 
some L,, z i  < co,. This allows one to list the reals in L in length col and 
therefore proves the Continuum Hypothesis in L. 

This type of argument has been refined in a striking way in R. Jensen's Fine 
Structure Theory [3]. Roughly speaking, Jensen was able to find, uniformly, 
a Skolem function for C,-formulae over L, which itself has a C,-definition 
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over L,. If an interesting phenomenon like the collapse or the singularisa-
tion of an ordinal is C,-definable over La we can use the C,-Skolem function 
to achieve that effect canonically. Simultaneously, the C,-Skolem function 
produces substructures which condense down to L,'s, preserving the defi-
nition of the Skolem function. So the construction over L, will "cohere" 
nicely with an analogous construction over L, which is essential for the 
coherence properties in Jensen's principles and "morass''. These princi-
ples have proved to be central to the resolution of a number of important 
questions in set theory, not necessarily connected to the constructible uni-
verse. 

The method of Jensen presents a veritable tour de force even by today's 
standards of set theoretical sophistication. The La's, or rather the J,'s, have 
to be expanded by (iterated)projecta, standard parameters, mastercodes and 
reducts to ensure the preservation of higher levels of the Levy-hierarchy of 
formulae in condensation arguments. Only after understanding those fine-
structural notions can one turn to the combinatorial aspects of a 0-proof, 
for example. These complications have motivated attempts to simplify fine 
structure theory. Silver and then Magidor [4] work with Skolem functions 
for C,-formulae which are not quite &-definable but are still preserved in 
condensations. Such "approximations" to fine structure theory were partic-
ularly successfull in mild applications of the theory as, e.g., in the proof of 
the famous Jensen Covering Theorem. Earlier, Silver had employed "ma-
chines" on ordinals which compute the truth predicate for the La-hierarchy 
and which allow one to concentrate on the combinatorics of Jensen's con-
structions (Silver [6], Devlin [I] and Richardson [5]). The approach of 
Friedman [2], based on Jensen's C* approach, eliminates certain unnatu-
ral parameters, but is otherwise very close in spirit to Jensen's original fine 
structure theory. 

In this article we present a natural alternative to fine structure theory, 
employing elementary concepts from model theory rather than ideas derived 
from recursion theory. The approach shares some technical properties with 
Silver machines but we are solely working on the basis of the familiar La-
hierarchy which we shall expand by restricted Skolem functions. 

As a motivation let us consider the process of singularisation of an ordinal 
p in L.  Suppose L + j? is singular. Let y be minimal such that over L; we 
can define a cofinal subset C of j? of smaller ordertype; we can assume that 
C takes the form 

C = { z  E j? I 3x < a : z is <L-minimal such that L, t= cp(z,p',x)} 

where a < p, cp is a first order formula, p'is a parameter sequence from L, . 
If 

S,(y', x)= the <L-minimal z such that cp(z,y', x) 
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is the term for the Skolem function for cp, then 

and j? is singularised by S: restricted to arguments lexicographically smaller 
than the tuple p'-a, where the lexicographical order <Iex is derived from the 
cL-order. The foregoing suggests saying that j? is singularised at the location 
(?, cp, (3,a ) ) ,  and that the right singularising structure for j? is of the form 

L , ,  = L ,  , , < - .  ,s ,s . s { 1 5 < I e h  p'-a), . . . ); 

where cpo, cpl, . . . is a fixed o-enumeration of the €-formulae, and where 
cp, = cp. The inclusion of the Skolem functions for all subformulae of cp, 
will ensure the condensation property for such singularising structures. 

These structures provide us with a very fine interpolation between succes- 
sive L..-levels: 

The enriched hierarchy satisfies Condensation and a Finiteness Property 
which is reminiscent of the key property of Silver machines. 

In the present article we apply the method to establish a Global Square 
principle in L, incorporating ideas of J. Silver (see Devlin [I]) and S. Fried- 
man [2] into the proof. We have also found very natural arguments for 
( K ,  1)-morasses and for the Covering Theorem which we plan to publish in 
a subsequent article. 

It is our hope that our approach will make the Fine Structure of L more 
accessible to a wide audience of set-theorists, and separate definability issues 
from the combinatorial content of Jensen's arguments. 

52. Names and locations. For any a E ORD, cp (u,  17) a first-order formula 
with n + 1 free variables, and 2 a sequence from La of length n ,  let I (a ,  cp, 2) 
denote { y  E L, / L, + cp(y, 2)).  Thus we can think of the above triples 
(a ,  cp, 2)as names for elements of L. A central idea in our theory is to 
also view ( a ,  cp, 2)as a location for the structure Li, in the fine hierarchy 
with an associated hull operation L(, ,,-,{.) which approximates the usual 
Skolem hull operation on subsets of La. Before we define these notions we 
first discuss the ordering of names (=locations) and prove a condensation 
result for "constructibly-closed" subsets of L,. 

Wellorder names and constructible sets in the standard way as follows: 
Consider E-formulae built using 1,A, V and the existential quantifier 3. 
We agree that every formula cp has a distinguished variable used for the 
I-operation and for existential quantifications. When we write cp(u,x'), we 
intend that u is distinguished in cp; then 3ucp with any choice of distinguished 
variable is a new permitted formula. Let cpo,cpl, 9 ,  . .. be an co-ordering of 



456 SY D. FRIEDMAN AND PETER KOEPKE 

permitted formulas, subformulas appearing earlier, which we assume to be 
fixed throughout this article. 

We take <o to be the vacuous ordering on Lo = 0. If <, is defined 
as a wellordering of L, <: x'then order sequences from La by y' iff 2 
is lexicographically less then y', using <, on the components of 2 and y'. 
Names (j?,cp, 2)where j? 5 a are ordered by: 

And for y E La+, let N(y )  denote the ? -least (P, cp, 2)such that I (P,  cp, 2)= 

y . Then define y <,+I z iff N (y ) ? N (2). Finally for limit A set <;.= 
Ua<j-<,. Thus we obtain a wellordering <L= UaEORD<, of L and a 
wellordering ? of names ( a ,  cp, 2)used to denote elements of L. 

By an a-location we understand a location s of the form s = (a ,  cp, 2). 
The ? -smallest a-location is ( a ,  cpo,6) with 6 a vector of 0's of appropriate 
length. The ? -successor of s is denoted by s+. 

2.1. Constructible operations and basic constructible closures. The basic 
constructible operations are I and N as defined above and a Skolem function: 

Interpretation. For a name (a,cp, x'), set I(a,cp, 2) = {y E La I La + 
P(Y, 2) ) .  

Naming. For y E L, let N(y )  be the ?-least name ( a ,  cp, 2) such that 
I ( %  cp, 2) = Y .  

Skolem Function. For a name ( a ,  cp, x'), let S(a,cp, 2) be the CL-least 
y E L, such that La + p(y,  x'), and set S ( a ,  cp, 2) = 0 if such a y does not 
exist. 

As we do not assume that a is a limit ordinal and therefore do not have 
pairing, we make the following nonstandard definition. 

DEFINITION.For X g L and x' a finite sequence we write 2 E X if each 
component of 2 belongs to X. If ( a ,  cp, 2) is a name we write (a ,  cp, 2) E X 
to mean that a E X and 2 E X.  

A set or class X & L is constructibly closed, written X a L, iff X is closed 
under I ,  N and S ,  i.e., 

For X g L let L{X) denote the c-smallest Y > X such that Y a L.  

Clearly each L, is constructibly closed. 
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PROPOSITION1. Let X be constructibly closed and let n :  X E M be the 
Mostowski collapse of X onto the transitive set M .  Then there is an ordinal cr 
such that M = L,, and n preserves I,N, S and <L:  

PROOF. We prove this for X c L; , ,by induction on y . The cases y = 0 
and y limit are easy. Let y = /?+ 1 and X & Lij+lbut X if L P .  Closure 
under N and I implies that X = {I(P, cp, 2) I 2 from X nL P ) .  Inductively 
let n : X nL ,  E L,. Closure under S and the fact that p belongs to X imply 
that X nL p  is elementary in L P .  It follows that n extends to it: X 2 

Preservation of I ,  N ,  S and cLfollows also from the elementarity of X nL ,  
in Lil --

2.2. The fine hierarchy. 

DEFINITION. = , 2 ) .  Set Let s be a location, s (a , cp, 

where S i n  (j7)= S(Q, cp, y'), Si,; r 2 is the restricted Skolem function Sk 1 
{y' I y' <E 2) and 0,0,. . . are empty functions. 

(L ,  I s is a location) is thefine constructible hierarchy. 

Each structure of the fine hierarchy possesses an associated hull operator. 

DEFINITION.Let s = (a,cp, ,  2) be a location. A set Y C L ,  is closed in 
L , ,  written Y a L , ,  if Y is an algebraic substructure of L , ,  i.e., if Y is closed 
under I ,  N,  S ,  Sk;, Si;,. . . ,Si; 1 2. 

For a set X c L ,  let L ,  { X )  be the c-smallest set Y such that Y a  L ,  and 
Y > X. We call L , { x )  the L,-hull of X. 

The fine hierarchy is a very slow growing hierarchy which nonetheless sat- 
isfies full condensation. This is the basis for its applications to fine structure 
theory. 

PROPOSITION = , 2 )  be a location and sup- 2 (Condensation). Let s (a , cp, 
pose X is a set such that X a L,\. 

Then there is a unique isomorphism 

PROOF. Let n :  X " L ,  be given by Proposition 1. Note that X is 9;- 
elementary in L ,  for i < m, since X is closed under the Skolem func- 
tions for every proper subformula of p i .  Hence n-I : L ,  + L ,  is 9;- 
elementary for i < m. Let r = ( E ,cpi,G) be a location such that n P 1 ( r ):= 
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( a ,  cpi, n-I (ti?)) ? ( a ,  cp,, 2) .  Then z := Sk; (n-I (G)) belongs to X and 
L, t= cpi (z, n-I (ti?)) iff L, t= cpj(n(z), G). Moreover, if there is T E LC 
such that L, + cpi(T,ti?), then n(z) is the cL-minimal such element, be- 
cause < L  n(z) and L, + cpi(z, G) imply La + cpi(n-'(T), n-'(G)) and 
n-'(T) cLz, contradicting the definition of S,, . Hence 

as required. The location S of the condensed structure is defined as the ? -
smallest strict upper bound of all r such that n-' ( r )  ? s and S= ? - sup{r I 
npl ( r )? s ) .  i 

Usually, we shall have E = m in the proposition, except when for every 
ti? E L, of the right length 

n- ' (ti?) <Iex 2 .  
+ 

In that case we have Fi = m + 1 and ? = 6,i.e., F = (z,cp,,', 0) and 

observing that Si;, 1 0 
+ 
= 0. 

The condensation situation in Proposition 2 is often written as n : X " LT. 

The slow growth of the L? -hierarchy is expressed by a finiteness property 
which says that at successor locations at most one more point enters the 
hulling process, and by continuity properties saying that at limit locations 
we just collect results of previous processes. 

PROPOSITION3 (Finiteness Property). Let s = ( a ,  cp, 2)be an a-location. 
Then there exists z E La such that for any X C L,: 

Ls- {x)c L,  {xU {z)). 

PROOF. The expansion from L,  to L,,. provides us with at most one new 
Skolem value in forming hulls, namely S i n  (2).Take this S i n  (2)to be z . i 

PROPOSITION4 (Monotonicity). (a) Suppose that so and sl  are a-locations 
such that so 2sl. Then L , s , { ~ )  L, ,{x)for all x c La. 

(b) Suppose that a. and alare ordinals such that a 0  < a].If so,s1 are ao- 
and al-locations, respectively, and X Lao then L,, {x)c L,,{X U {ao)). 

PROOF. Clear from the definitions. i 

For the continuity property we have to distinguish between three kinds of 
limit locations: 
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PROPOSITION (a)Ifa is a limit ordinal, s (a ,  cpo, 6), and 5 (Continuity). = 

X 5 L, then 

(b) I fs  = (a+ l,cpo, 6)and X c L, then 

L , { x u  {a))n L ,  	 = L { X U  {a))n L ,  

= U{L,{X) I r is an a-location). 

(c) Ifs = (a ,  cp, 2)is a ? -limit, s # ( a ,  cpo,6), and X c L, then 

L,{X) = r isan a-location, r 2 s ) .  U{L,{X)I 
PROOF. (a) is clear from the definitions since the hull operators considered 

only use the functions I ,  N ,  S .  
(b) The first equality is clear. The other is proved by two inclusions. 
(2 )If z is an element of the right hand side, z is obtained from elements 

of X by successive applications of I, N,  S and S$; for n < O. Since 
S$; (y') = S ( a ,  cp,, y'), z is also obtainable from elements of X u { a )  using 
only the I, N and S operations. Hence z belongs to the left hand side. 
(G)Conversely, consider z E L {X U {a ) )  n L,. There is a finite sequence 

computing z in L {x U {a)): 

such that each y j  is an element of X U { a )  or yi is obtained from {y; I i < j )  
by using I ,  N ,  S :  

for some /?,y', y E {y; I i < j ) .  
We show by induction on j < k: 

if y j  E L, then yi E U = U{L,{X)I r is an a-location) 

CASE 1: yl E X U {a) .  Then our claim is obvious. 
CASE2: yl = I(/?, cp,, y') (as in the first of the three ways of obtaining 

y, from y' E {yi / i < j ) ,  displayed above). If P < a ,  then /?,y' E U by 
the induction hypothesis and hence y, E U. If /? = a ,  then y' E U by the 
induction hypothesis. Setting 

y(v, w') = tiu (u  E v -cp, (u,w')) 

with distinguished variable v we obtain y j  = Sin(7)E U. 
CASE3: yi = S(P, cp,, y') (the second way of obtaining y j ) .  If P < a ,  then 

p , y ' ~  u a & d y i  E U . I f p = a , t h e n y ' ~  u a n d y i  = ~ k ; ( y ' )E U. 
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CASE4: y j  is a component of N(y,)  for some i < j (the third way of 
obtaining yj). 

CASE4.1 : yi E L,. Then y; E U by the induction hypothesis. As U is 
closed under N ,  we get N(yi)  E U, i.e., each component of N(yi )  belongs 
to U. 

CASE4.2: y; E L a i l\ L,. Then y; = a ,  or yi = I ( a ,y ,y ' )  for some 
E {yll/ h < i}. Since a = we may assume the I ( a ,  "u is an ordinal", Q)), 

latter. N(yi)  will be of the form (a ,  X, (co, . . . ,c ,_~)) .  We obtain co in U as 
follows: If 

with distinguished variable vo then co = S> (y') E U, since, inductively, 
y' E U. We obtain cl in U as follows: If 

X I  ('4, = . 3vrn-lVu ( ~ ( u ,  *~ ( u ,3 ~ 2 . .  210, VI,. . . ,v,-I) $1) 

with distinguished variable vl then cl = S> (coAy')E U. Proceeding like 
this we see that y j  E U. 

(c) is again obvious from the definitions. i 

This completes our list of basic properties of the hull operations associated 
with the fine hierarchy. They are sufficient to establish Jensen's Square 
Principle in L, which we consider next. 

53. A proof of square. 

THEOREM(Jensen). Assume V = L. There exists a sequence ( Cii / P singular ) 
such that 

(a) Cii is closed unbounded in P, 
(b) Cphas ordertype less than P, 
(c) ifp is a limit point of Cii then p is singular and CF= Cpn p. 
PROOF. Let P be singular. The following claim gives a reformulation of 

the singularity of P: 

CLAIM1. There is a location s = (y, cp, x'), y > P, and a.finite set p C L;. 
such that 

{/ i :<P / - i = P n ~ s { F u p ) }  
is bounded in P. 

PROOF. Choose a less than P and a function f : a + P cofinally. Choose 
E ORDsuchthat f E L , .  S e t p  = {f}  a n d s  = (y,cp,,,,,6) wheren is 

a natural number choosen such that cp, = vo = vl (v2) with distinguished 
variable vo. If a 5 P < P then 

p n ~ , { p u p )  > B n ~ , { a u p )  2 f ' ' a .  
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Hence P nL , {p  Up )  is cofinal in p ,  and so /?nL,,{ Pup )  # p. i(claim 1) 

Let s = s (p) be ? -minimal satisfying Claim 1, together with the finite set 
p 2 L;.. We show that s is a ? -limit which can be nicely approximated from 
below. 

CLAIM2. s is a limit location. 

PROOF. Assume that s = r+. By the Finiteness Property (Proposition 3) 
there exists a z E L,. such that if p is less than p then 

Hence {p< p 1 p = /?nL, { F  U p U { s ) ) )  is bounded in /3, contradicting 
the minimality of s . -I(Claim 2) 

CLAIM3. s # (/3, po,6). 

PROOF. Assume that s = (P, cpo,6). Choose Po less than P such that 
p C La. IfPo < P <  pthen 

contradicting the fact that s and p satisfy the requirements in Claim 1 .+(Claim 3) 

CLAIM4. s # (y, po,6) for limit y .  

PROOF. Assume that there is a limit ordinal y such that s = +(y, PO,@. 
Choose yo less than y such that p G Lj ,and yo > y, and set so = (yo, cpo,O). 
Then 

Hence { p  < P 1 = fi nL,,,{/3 UP ) )  is bounded below /3, contradicting 
the minimality of s.  -I(Claim 4) 

In defining Cpwe shall consider three special cases and a generic case. In 
the special cases, P will have cofinality co and we can pick any co-sequence 
cofinal in p as Cp. 

SPECIALCASE I .  s = (a+ l,cpo,6) for some a .  

Every element of La+,can be "named" by a and finitely many elements of 
La. So we may assume that p is of the form p = q U {a )  with q C L,. 



462 SY D. FRIEDMAN AND PETER KOEPKE 

Define a strictly increasing sequence (P, I n < u ) of ordinals less than 
recursively: Let 

Given fin choose Pn+1greater than fin least such that 

Since s = ( a ,cp, , 6 )  ? (a + l,cpo, 6), the definition of s implies that fin+ 
exists below P. Let p,, = Un<,,Pn.Then 

P n L , { P w u P )  	= P n L , { P w u 9 u { a ) )  

= P n U{L,{P,, u 9 )  I r is an a-location) 

= U n < w  P n ~:,.,,,n) {P., U 9 )  

= U n < w  P n L : ~ . ~ ~ . G ~u 9 ){ P n + l  

= Un<,,P n + l  = Po; 

the second equality uses Proposition 5(b), the third and fourth use the 
monotonicity property of our hulls (Proposition 4(a)). Now by the definition 
of Powe must have Pw= P. Hence setting 

we get a cofinal subset of P. This finishes Special Case 1. 

Now assume that s = (?, p,T)  # (y,cpo,6). 
CLAIM5. There is afinite p 2 Lj.such that L, {p u p) = L,,. 

PROOF. By condensation (Proposition 2), there are a unique function n 
and a unique location F such that n :  L,, {P U p )  2 Li. Then we have 
L, = L?{P u p) where p = n f ' p  As n r P = id, we can conclude that 
P n Ls{pu p )  = f i  n LAP U p) holds for all p less than f i .  Hence 

is bounded below P. Then F = s by the ? -minimality of s ,  and so L, = 

L, {p U p) = L, . {(Claim 5) 

Let <* be the canonical wellorder of finite subsets of L derived from <L:  

PO<* PI -po # p1 and the <L-maximal element of po A p l  belongs to 
pl. Choose a <"-minimal p(P)  2 L;. such that p(P)  satisfies Claim 5. Since 
in particular the old parameter p is generated by P u p(P)  we have 

CLAIM6. {P < f i  I p = f i  n L, {pu p (P) ) )  is bounded below 8. Let 
Po < P be the maximum of this set. 
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By Claim 6,  p ( P )  satisfies the requirements in Claim 1 and we may denote 
p ( P )  by p without danger of confusion. 

We have to examine which locations below s are computed in L ,{ X) : for 
Y G L,, we write r = (?, v / ,y') E Y if y' E Y. We say that a subset Y of L ,  
is bounded below s ,  if there is so ? s such that if r ? s and r E Y, then r ? so. 
The ? -least such so is called the ? -least upper bound of Y below s .  Note 
that if in addition Y = L ,{ Z ) then we get L ,  { Z )  = L,?,( 2 ) .  

SPECIALCASE2. L, { au is bounded below s for every a < P .  

Define a strictly increasing sequence ( f i n  I n < u) of ordinals less than P 
recursively: Let Po be defined as in Claim 6.  Given Pn, set 

8+1= U ( PnL?{(P.+ 1 )  u p ) )  

By Special Case 2,  there is r ? s such that 

L7{(Pn+ 1 )  u P )  = L r { ( P n+ 1) u p ) .  

The minimality of s implies that P nL ,  { ( p , + 1) U p )  cannot be cofinal in 
p ,  and so Pn+l is less than p. Let p, = U,,, pn. Then 

and since pw is greater than Po we have pCu= p. Hence setting 

we get a cofinal subset of p.  This finishes Special Case 2. 

Now assume that L, {aoU p )  is unbounded below s for some ao less than 
p. Choose ao = cro(P) least with this property. We would like to use ao to 
steer the singularisation of p and obtain ordertype(Cli) 5 max{cro, u )  < p.  
If cro is neither a limit ordinal nor zero we have to look for another steering 
ordinal. In this case we write cro = cr; + 1, and we choose a least crl = c r l  ( P )  
less than a. such that 

L7{a1U p U {a ; ) )  

is unbounded below s .  If a1 = cri + 1 ,  then we choose a least a2 = a2(p) 
less than crl such that 

L,{a?u P u { a ; , a I ) )  

is unbounded below s .  Continuing this way we find a natural number 
k = k ( P )such that cr = a(P)= ak( P ) is a limit ordinal or zero. 
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be the set of those ordinals i that satisfy the following properties (1)-(5): 

(1) 0 < i < a ,  and i f l  5 k thenp, 2 a;. 
(2) s, is a y -location. 
(3) j < p, for i  5 j < a .  
(4)If 1 < k and t is the 7 -least upper bound of L, {a;upu{a;, . . . ,a,'-,}) 

below s then s, 7 t. 
(5) I fP < Y thenp E L,,{P, u p ) .  

Using the following facts (i)-(iv) the reader can easily show that there is io 
less than a such that an ordinal i less than a satisfies the conditions (1)-(5) 
if and only if i > io, i.e., I ( P )  is a final segment of a .  

(i) L, {au p U {a;, . . . ,a;.-, )) is unbounded below s. 
(ii)a < p and p = U{P, li < a) where (p, I i < a)is (weakly) increasing. 

(iii) L,  {a(U p U {a;, . . . ,a;-,)) is bounded below s for all 1 5 k. 
( i v ) I f / 3 < y t h e n j 3 ~ L , { p ~ ~ ) = L : , .  

So set 

c,~= { P ~1 i E I(P)).  

Then 

CLAIM9. Cp is closed unbounded in P and order type(^,^) 5 a < P. 

This completes the definition of the system ( c ~P singular), and we are / 
left with proving the coherence property. Fix p less than P such that p is 
a limit point of Cp. We have to show that p is singular and CF = Cpnp. 
p falls under the Generic Case, as ~rdertype(C,~) > a. Let E be the least 
ordinal q such that p = P,. Then E is a limit ordinal and p is singular since 
cf (Pz)5 Z < &.By condensation there is an isomorphism 

n: L.sz{pup}  2 LT. 

Let q = n"p and 1J; = a(?) .  

CLAIM10. n 17= id. I f s  is a P-location then F is u p-locution while if s 
is a y -location and 7: > p then n(P) =B. 

PROOF. If y > /j then E L,, {pup)  and = P nL, {pu p )  .i(Claim 10) 

PROOF. If Po <s < /j then6 # P n L,,{S u p  u {a;. . . and there- 
f o r e S # p i l ~ , { S ~ q ~ { a ~...a ~ ~ , ) ) . I t f o l l o w s t h a t s ( ( 3 ) ~ F .  

Conversely if r ?F and is a finite subset of La(,, then n-'(r) ? s, and 
n-'"q C: L,,{P, U p )  for sufficiently large i less than Z, since the st's are 
unbounded below s,, the P,'s are unbounded in and L;{P U q)  = La(,\. 
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As p, = P nL , , { p ,  u p )  we get pi pnL,{/?,~ q )= for pi's cofinal in p 
and so r ? s ( p ). Therefore F?: s ( p ). +(Claim 1 1 )  

CLAIM12. 7does not fall under Special Case 1. 

PROOF. AS L T { pU q )  = L-, we get q >* ~ ( 7 ) .Assume q >* p ( p ) .  As 
p ( p )  satisfies the requirements in Claim 5 at p, we get q g L,{? u p ( p ) ) ,  
hence p = n p l  " q  C L , { p  u n-l " p ( p ) ) .  SO n-I " p ( p )  <" p = Z - I  I f  4 

and n-' " p ( p )  satisfies the requirements in Claim 5, contrary to the minimal 
choice of p = p ( P ). +(Claim 13) 

Now L,,{E u p )  = L , { E U is unbounded below SF. Hence L?{E U q )  
is unbounded below F,and E < p.  Hence 

CLAIM14. p does not fall under Special Case 2. 

CLAIM15. I f j  < k thena i (P)= 

PROOF. By induction on j < k.  

By definition, a ,( P ) is the smallest v s.t. L,{VU p U {a :  I i < j } )  is un- 
bounded below s .  Now L , { Eu p U {ah, . . . ,ai -, )) is unbounded below s,, 
so L T { ZU q U {a;),. .. , is unbounded below X. Hence L i { a I ( P )  U 

q U {ah, . . . ,a : - , } )  is unbounded below 5,as Z u { a :  . . . a ; - , )  2 a ,( P ) .  
Conversely, the definition of I ( P ) implies that L , {a:U p U {a ; , .. . ,a : - , } )  
is bounded below s by some s' ? s,, hence by some location in L , ~ { PU 

So Lr{a i  U q U {ah, . . . ,a : - l ) )  is bounded below F by some location less 
than F. So a,( p )= a ,( p ) .  i(C1aim 15) 

PROOF. The set L,{E U q U {ah, . . . ,crb-,}) is unbounded below 7. If we 
take a '  less than Z , then L, ,{af  U p  U {ah,. . . ,a;.-,)) is bounded below s,, 
by the minimality of E.  So we have c r ~( p )= C. i(C1aim 16) 

CLAIM17. p does not fall under Special Case 3, 

since E f 0. So we are again in the Generic Case. 

CLAIM18. I f i  < E then P j ( P )= Pi@). 

PROOF. By definition, Po = Po@)is the largest 6 less than P such that 6 = 
p nL ,  (6  up ) .  From the definition of 7= /?, we infer that is the largest 
6 less than p such that 6 = Bn L,,{d U p ) .  As L,{F U p )  L , { ~ U  q )  
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by a map which is the identity on 3,we see that Pois the largest 6 less than 
-

/3 such that 6 = p nL7{6 U q ) ,  which is the definition of Po(P). 

Now consider 0 < i < E. Then 

s,(P)is the ? -least upper bound of L,  { i  ti p U (ah,.. . ,a:.-,)) below s. 

By the definition of s, we get that 

si( p )  is the ? -least upper bound of ~ , { i  ti p ti (aht. .. a;-,)) below s,. 

Moreover, 

is the ? -least upper bound of L,{i u q U {ah,.. . ,a;,)) below S. 

Now p,(p)  is the minimal ordinal greater than f30 such that 

forallsr? sz(P) withs' c ~ , , ( i ~ ~ ~ { a b . .. a ; , ) ) .andP,jpj is theminimal 
ordinal greater than f3o such that 

foral1~'?Swith;i; ' t .~ , { i ~ ~ ~ { a ~ . . . a ~ - , } ) .  

By the above and the fact that II 1 p = id we have P,(P) = P,(p) as 
required. +(Claim 18) 

Now one easily checks that each ordinal i less than E satisfies the defining 
properties of I(/?) (cf. (1)-(5) above) if and only if it satisfies the corre- 
sponding defining properties of Ifp).So we get I(p)= I ( P )  nE, and this 
immediately implies the coherence property. i 
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