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Abstract: We present a natural hierarchy for Gödel’s model L of con-
structible sets. The new hierarchy simplifies finestructural arguments. This
is demonstrated by a proof of Jensen’s Covering Theorem for L.

1. Introduction

The fundamental constructible operation is the formation of a definable
subset of a level Lα of Gödel’s constructible hierarchy:

I(Lα, ϕ, ~y) = {x ∈ Lα|Lα |= ϕ[~y, x]}

where ϕ is a first-order formula and ~y ∈ Lα. The next level of the hierarchy
is then formed as

Lα+1 = {I(Lα, ϕ, ~y)|ϕ is a formula, ~y ∈ Lα}.

This hierarchy is analysed using Skolem functions

S(Lα, ϕ, ~y) = the least x ∈ Lα such that Lα |= ϕ[~y, x]

relative to a canonical wellorder <Lα of Lα.
Whereas some principles like the Continuum Hypothesis can be proved in L
with “coarse” methods, the proofs of subtle principles like Jensen’s 2 require
a careful setup and analysis of these structures. In Jensen’s finestructure
theory of the constructible hierarchy [4], first-order definability is split up
into iterated Σ1-definability over appropriate structures. It is essential that
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màtica, Barcelona, Spain in 2001 and 2003. The author wishes to thank the CRM and
its members for their generous support and hospitality.

1



the constructible operations are definable by ∈-formulas of low complexity
which has to be shown with considerable effort.
This article presents an approach which aims at reducing these complica-
tions: the new hierarchy is built with a definability notion of the order of
Σ1-definability; the corresponding constructible operations and notions are
incorporated into the language as basic symbols.
Combinatorial applications of finestructure theory are based on the uniform
behaviour of hulls under finestructural Skolem functions. Constellations
in the constructible universe can be captured by finestructural hulls; the
condensation lemma controls the shape of such hulls since they have to be
isomorphic to levels of the hierarchy.
The hulls formed in the new finestructure satisfy laws known from the clas-
sical theory, and they are therefore adequate for finestructural arguments.
We demonstrate this by a proof of the Jensen Covering Theorem for L which
is simpler than the original proof in [1] since it need not distinguish cases
according to the various complexities of definitions.
The article is structured as follows: Sections 2 - 5 introduce the basic no-
tions of the fine hierarchy; we prove condensation and an analogous result
about directed limits. Section 6 transfers Jensen’s upward extensions of
embeddings technique to the fine hierarchy; the method basically defines an
ultrapower by an extender, so we call the resulting map an extension. In
section 7 we construct strong maps with wellfounded extensions. The tech-
niques are put together in section 8 for a proof of the Covering Theorem.
The techniques of the proof of the Covering Theorem can be used in core
model theory. In particular, fine ultrapowers and extensions can be formed
by the techniques of section 6.

2. The Fine Hierarchy

We approximate the constructible universe by a hierarchy (Fα)α∈On of
structures Fα = (Fα, I ¹ Fα, S ¹ Fα,∈, <¹ Fα). Each Fα is a transitive set
and

⋃
α∈On Fα = L. The functions I ¹ Fα and S ¹ Fα are the restrictions to

F<ω
α of a global interpretation function I and a global Skolem function S

defined on L<ω. The relation <¹ Fα is the restriction of a ternary guarded
constructible wellorder to F 3

α. We shall usually write (Fα, I, S,∈, <) instead
of Fα = (Fα, I ¹ Fα, S ¹ Fα,∈, <¹ Fα). We first define a language adequate
for the structures Fα.

2.1. Definition. Let L be the first-order language with the following
components:
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• variable symbols v̇n for n < ω;
• logical symbols =̇ (equality), ∧̇ (conjunction), ¬̇ (negation), ∃̇ (existential

quantification), (, ) (brackets);
• function symbols İ (interpretation), Ṡ (Skolem function) of variable finite

arity;
• a binary relation symbol ∈̇ (set-membership) and a ternary relation sym-

bol <̇ (guarded wellorder).

The syntax and semantics of L are defined as usual. The variable arity of İ
and Ṡ is handled by bracketing: if n < ω and t0, . . . , tn−1 are L-terms then
İ(t0, . . . , tn−1) and Ṡ(t0, . . . , tn−1) are L-terms. If t0, t1, t2 are L-terms then
t0∈̇t1 and t0<̇t1t2 are atomic L-formulas. We denote the set of first-order
L-formulas simply by L.

We assume that L is Gödelised conveniently: the set of Gödelised formulas
satisfies L ⊆ {Vn |n < ω} (this technical condition will be used in used in
Proposition 3.6); the usual syntactical operations of L are recursively defin-
able over Vω. This includes the simultaneous substitution ϕ

~t
~w of terms ~t for

variables ~w in ϕ. The notation ϕ(v̇0, . . . , v̇n−1) implies that the free vari-
ables of ϕ are contained in {v̇0, . . . , v̇n−1}. By L0 we denote the collection
of quantifier-free formulas of L.

The language L is interpreted in L-structures in the obvious way. If A =
(A, . . . ) is an L-structure, ϕ(v̇0, . . . , v̇n−1) ∈ L and a0, . . . , an−1 ∈ A then
A |= ϕ[a0, . . . , an−1] means that A is a model of ϕ under the variable
assignment v̇i 7→ ai for i < n. The Fα-hierarchy is defined by iterated
L0-definability:

2.2. Definition. The fine hierarchy consists of fine levels Fα = (Fα, I ¹
Fα, S ¹ Fα,∈, <¹ Fα) which are defined by recursion on α ∈ On:

For α ≤ ω let Fα = Vα and ∀~x ∈ Fα : I(~x) = S(~x) = 0. Let <Fω be a
binary relation which wellorders Fω = Vω in ordertype ω and which extends
the ∈-relation. Define the ternary relation <¹ Fω by: x <y z iff (y = Fn

for some n < ω, x, z ∈ y and x <Fω z). This defines the structures Fα for
α ≤ ω.

Assume that α ≥ ω and that Fα = (Fα, I ¹ Fα, S ¹ Fα,∈, <¹ Fα) has been
defined. For ϕ(v̇0, . . . , v̇n) ∈ L0 and x0, . . . , xn−1 ∈ Fα set

(∗) I(Fα, ϕ, x0, . . . , xn−1) = {xn ∈ Fα | Fα |= ϕ[x0, . . . , xn]}.
We say that (Fα, ϕ, x0, . . . , xn−1) is a name for its interpretation
I(Fα, ϕ, x0, . . . , xn−1) in the fine hierarchy.
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The next fine level is defined as

Fα+1 = {I(Fα, ϕ, x0 . . . xn−1) |ϕ(v̇0 . . . v̇n) ∈ L0, x0 . . . xn−1 ∈ Fα, n < ω}.
To define I ¹ Fα+1 we only need to define I(~z) for “new” vectors ~z ∈
(Fα+1)<ω \ F<ω

α . We have already made certain assignments in (∗); in all
other cases set I(~z) = 0. Define the relation <Fα endextending <Fω : for
x, y ∈ Fα \ Fω set x <Fα

y iff there is a name (Fβ , ϕ, x0, . . . , xm−1) for x
such that every name (Fγ , ψ, y0, . . . , yn−1) for y is lexicographically greater
than (Fβ , ϕ, x0, . . . , xm−1), where the first two coordinates are wellordered
by ∈ and the further coordinates are wellordered by <Fγ

. The ternary re-
lation <¹ Fα+1 is then defined by: x <y z iff y = Fν for some ν ≤ α
and x <Fν z. The Skolem function S finds witnesses of existential state-
ments. Again we only need to define S(~z) for ~z ∈ (Fα+1)<ω \ F<ω

α . We
set S(~z) = 0 except when ~z = Fα, ϕ(v̇0, . . . , v̇n), x0, . . . , xm−1, where ϕ ∈
L0, x0, . . . , xm−1 ∈ Fα, m ≤ n, and there exist xm, xm+1, . . . , xn ∈ Fα such
that: Fα |= ϕ[x0, . . . , xm−1, xm, xm+1, . . . , xn]; in this case let S(~z) be such
an xm minimal with respect to the wellfounded relation <Fα .

This defines Fα+1 = (Fα+1, I ¹ Fα+1, S ¹ Fα+1,∈, <¹ Fα+1).

Assume that λ > ω is a limit ordinal and that Fα is defined for α < λ. Then
let Fλ =

⋃
α<λ Fα, which determines Fλ = (Fλ, I ¹ Fλ, S ¹ Fλ,∈, <¹ Fλ).

The fine hierarchy satisfies basic hierarchical properties some of which were
assumed tacitely in the previous definition:

2.3. Proposition. For every γ ∈ On:
(a) α ≤ γ → Fα ⊆ Fγ ;
(b) α < γ → Fα ∈ Fγ ;
(c) Fγ is transitive.

Proof. By simultaneous induction on γ. Assume that (a) – (c) hold for
β < γ. Then they trivially hold at γ if γ ≤ ω or γ is a limit ordinal.

Consider the remaining case γ = β + 1, β ≥ ω.

(a) It suffices to show that Fβ ⊆ Fβ+1. Let z ∈ Fβ . Since Fβ is transitive,
z = {x ∈ Fβ |x ∈ z} = {x ∈ Fβ | Fβ |= (v̇1∈̇v̇0)[z, x]} ∈ Fβ+1.

(b) By (a), it suffices to show that Fβ = {x ∈ Fβ | Fβ |= (v̇0=̇v̇0)[x]} ∈ Fβ+1.

(c) Let a ∈ Fβ+1. Then a ⊆ Fβ ⊆ Fβ+1, and a ⊆ Fβ+1. qed

First-order definability can be emulated in S0:
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2.4. Proposition. For every ∈-formula ϕ(v̇0, . . . , v̇m−1) one can uniformly
define a quantifier-free formula ϕ∗(v̇0, . . . , v̇m−1, v̇m, . . . , v̇m+k−1) ∈ L0 such
that for all α ≥ ω and for all a0, . . . , am−1 ∈ Fα:

(Fα,∈)|=ϕ[a0, . . . , am−1] iff Fα+k|=ϕ∗[a0, . . . , am−1, Fα, . . . , Fα+(k−1)].

Proof. By induction on the complexity of ϕ. For atomic ϕ let ϕ∗ = ϕ,
for ϕ = ¬̇ϕ0 let ϕ∗ = ¬̇ϕ∗0, and for ϕ = ϕ0∧̇ϕ1 set ϕ∗ = ϕ∗0∧̇ϕ∗1. The
only nontrivial case is the existential one. Consider ϕ,ϕ∗ satisfying the
proposition. Then: (Fα,∈) |= ∃̇v̇jϕ[a0, . . . , am−1]
⇐⇒ ∃bj ∈ Fα (Fα,∈) |= ϕ[a0, . . . , aj−1, bj , aj+1, . . . , am−1]
⇐⇒ ∃bj ∈ Fα Fα+k |= ϕ∗[a0, . . . , bj , . . . , am−1, Fα, . . . , Fα+(k−1)]
⇐⇒ {xm+k ∈ Fα | Fα+k |= (ϕ∗ v̇m+k

v̇j
)[a0, . . . , am−1, Fα, . . . ,

Fα+(k−1), xm+k]} 6= ∅
⇐⇒ {xm+k ∈ Fα+k | Fα+k |= (v̇m+k∈̇v̇m∧̇ϕ∗ v̇m+k

v̇j
)

[a0, . . . , Fα, . . . , xm+k]} 6= ∅
⇐⇒ I(Fα+k, (v̇m+k∈̇v̇m∧̇ϕ∗ v̇m+k

v̇j
), a0, . . . , am−1, Fα, . . . , Fα+(k−1)) 6= ∅.

The right-hand side is expressible quantifier-free in Fα+k+1, which yields a
formula (∃v̇jϕ)∗ as required. qed

By the following theorem we have defined a hierarchy for the constructible
universe:

2.5. Theorem.
⋃

α∈On Fα = L.

Proof. (⊆) holds since the definition of the fine hierarchy can be carried
out absolutely inside the inner model L.

For (⊇) set F∞ =
⋃

α∈On Fα. It suffices to show that F∞ is an inner model
of set theory since L is the ⊆-smallest inner model. By a variant of Theorem
13.9 of [3] it is enough to check the following three facts:

(1) F∞ is transitive;

this holds by 2.3(c).

(2) F∞ is closed with respect to first-order definability, i.e., for all
∈-formulas ϕ(v0, . . . , vm−1) and a1, . . . , am−1, z ∈ F∞ we have
{a0 ∈ z | (z,∈) |= ϕ[a0, . . . , am−1]} ∈ F∞.
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Proof. Let a1, . . . , am−1, z ∈ Fα and let ϕv̇m be the formula ϕ with all
quantifiers restricted to the new variable v̇m. Then:

{a0 ∈ z | (z,∈) |= ϕ[a0, . . . , am−1]}
= {a0 ∈ z | (Fα,∈) |= ϕv̇m [a0, . . . , am−1, z]}
= {a0 ∈ Fα+k | Fα+k |= (v̇0∈̇v̇m∧̇ϕv̇m)∗

[a0, . . . , am−1, z, Fα, . . . , Fα+(k−1)]},
by 2.4.

= {a0 ∈ Fα+k | Fα+k |= (v̇0∈̇v̇m∧̇ϕv̇m)∗
v̇m+k+1

v̇0
[0, a1, . . . , z, Fα, . . . , a0]}

∈ Fα+k+1

as required. qed(2)

(3) F∞ is almost universal, i.e., ∀y ⊆ F∞∃z ∈ F∞ : y ⊆ z.

Proof. If y ⊆ F∞, then y ⊆ Fα for some α. By 2.3.(b) Fα ∈ Fα+1 and so
z = Fα satisfies the claim. qed

Remark. A more detailed analysis (see [5]) shows that the F-hierarchy is
actually a refinement of Jensen’s Jα-hierarchy: ∀ν ∈ On Jν = Fων .

The constructible sets are generated by the I-function from the levels Fα:

2.6. Proposition. If x ∈ Fγ+1, γ ≥ ω then there are α0, . . . , αm−1 ≤ γ
such that x = I(Fα0 , . . . , Fαm−1).

Proof. We show the proposition by induction on γ. So assume the property
for y ∈ Fβ+1 with β < γ. By definition of Fγ+1, x = I(Fγ , ϕ, y0, . . . , yn−1)
for some ϕ ∈ S0 and y0, . . . , yn−1 ∈ Fγ .
Let yi = I(Fαi

0
, . . . , Fαi

m(i)−1
) for i < n according to the inductive assump-

tion. Then

x = I(Fγ , ϕ, I(Fα0
0
, . . . , Fα0

m(0)−1
), . . . , I(Fαn−1

0
, . . . , Fαn−1

m(n)−1
))

= I(Fγ , ψ, Fα0
0
, . . . , Fα0

m(0)−1
. . . , Fαn−1

0
, . . . , Fαn−1

m(n)−1
),

where

ψ(v̇0
0 , . . . , v̇0

m(0)−1, . . . , v̇
n−1
0 , . . . , v̇n−1

m(n)−1, v̇r)

= ϕ
İ(v̇0

0 , . . . , v̇0
m(0)−1), . . . , İ(v̇n−1

0 , . . . , v̇n−1
m(n)−1), v̇r

v̇0, v̇1, . . . , v̇n
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and v̇0
0 , . . . , v̇0

m(0)−1, . . . , v̇
n−1
0 , . . . , v̇n−1

m(n)−1, v̇r is the sequence of variables up
to and including v̇r. qed

3. Constructible Hulls and Maps

The functions I and S are the basic constructible operations. We consider
some related “algebraic notions”.

3.1. Definition. A set or class Z ⊆ L is constructibly closed if Fω ⊆ Z and
Z is closed with respect to the operations I and S. For X ⊆ L let F(X) be
the constructible hull of X, i.e., the ⊆-smallest constructibly closed superset
of X. Note that all fine levels Fα are constructibly closed.

3.2. Definition. A map σ : A → B of S-structures is called fine, if it
preserves all quantifier-free L-formulas and if σ ¹ Fω = id ¹ Fω. If σ is an
isomorphism, we call it a fine isomorphism and write σ : A→̃B.

We are particularly interested in fine maps between constructible levels Fα.
In some constructions one actually obtains stronger closure properties with
respect to the functions I(Fα, , ) and S(Fα, , ).

3.3. Definition. A set Z ⊆ Fα is constructibly closed up to Fα, if Z is
constructibly closed and:
(a) ∀ϕ ∈ L0∀~x ∈ Z (I(Fα, ϕ, ~x) ∈ Fα → I(Fα, ϕ, ~x) ∈ Z);
(b) ∀ϕ ∈ L0∀~x ∈ Z S(Fα, ϕ, ~x) ∈ Z.

Obviously:

3.4. Proposition. If Z is constructibly closed and Fα ∈ Z then Z ∩ Fα is
constructibly closed up to Fα.

3.5. Lemma. Let Z ⊆ Fα be constructibly closed up to Fα. Then Z is
existentially closed inside Fα, i.e., for all ϕ(v̇0, . . . , v̇m−1, v̇m, . . . , v̇n) ∈ L0:
∀a0, . . . , am−1 ∈ Z : ((Z, I, S,∈, <)|= ∃v̇m . . . v̇nϕ[~a] iff Fα|= ∃v̇m . . . v̇nϕ[~a]).

Proof. Assume that Fα |= ∃v̇m . . . v̇nϕ[~a]. It suffices to show by induction
on i = m, . . . , n that

∃v̇m ∈ Z . . . ∃v̇i−1 ∈ Z∃v̇i ∈ Fα . . . ∃v̇n ∈ Fα ϕ[~a].
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For the inductive step take bm, . . . , bi−1 ∈ Z such that

∃v̇i ∈ Fα . . . ∃v̇n ∈ Fα ϕ[~a,~b].

Set bi = S(Fα, ϕ,~a,~b). Then by the definition of S

∃v̇i+1 ∈ Fα . . . ∃v̇n ∈ Fα ϕ[~a,~b, bi].

Since Z is closed with respect to the function S(Fα, , ), we get bi ∈ Z.qed

3.6. Definition. A map σ : Fα → Fβ is fine up to Fβ if σ is fine and its
range σ′′Fα is constructibly closed up to Fβ .

Then 3.5 implies immediately:

3.7. Lemma. If σ : Fα → Fβ is fine up to Fβ then σ is elementary for
existential L-formulae, i.e., for ϕ(v̇0, . . . , v̇m−1, v̇m, . . . , v̇n) ∈ L0

∀a0, . . . , am−1 ∈ Fα Fα |= ∃v̇m, . . . , v̇n ϕ[~a] iff Fβ |= ∃v̇m, . . . , v̇n ϕ[σ(~a)]).

These maps allow liftings to the next F-levels:

3.8. Lemma. Let σ : Fα → Fβ be fine up to Fβ . Then there is a uniquely
determined fine lifting σ+ : Fα+1 → Fβ+1 such that σ+ ⊇ σ and σ+(Fα) =
Fβ .

Proof.

(1) For ϕ(v̇0, . . . , v̇m) ∈ L0, ~x = x0, . . . , xm−1 ∈ Fα and ψ(v̇0, . . . , v̇n) ∈
L0, ~y = y0, . . . , yn−1 ∈ Fα:
I(Fα, ϕ, ~x) = I(Fα, ψ, ~y) iff I(Fβ , ϕ, σ(~x)) = I(Fβ , ψ, σ(~y)).

Proof. Assuming that m ≤ n:

I(Fα, ϕ, ~x) 6= I(Fα, ψ, ~y)

⇐⇒ Fα |= ∃̇v̇m(¬̇ϕ ↔̇ψ
v̇m+1 . . . v̇m+nv̇m

v̇0 . . . v̇n−1v̇n
)[~x, 0, ~y]

⇐⇒ Fβ |= ∃̇v̇m(¬̇ϕ ↔̇ψ
v̇m+1 . . . v̇m+nv̇m

v̇0 . . . v̇n−1v̇n
)[σ(~x), 0, σ(~y)], by 3.7,

⇐⇒ I(Fβ , ϕ, σ(~x)) 6= I(Fβ , ψ, σ(~y)).

qed(1)

So we can define an injective map σ+ : Fα+1 → Fβ+1 by σ+(I(Fα, ϕ, ~x)) =
I(Fβ , ϕ, σ(~x)).
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(2) σ+ ⊇ σ and σ+(Fα) = Fβ .

Proof. Let x ∈ Fα. Then x = I(Fα, v̇1 ∈̇ v̇0, x) and
σ+(x) = I(Fβ , v̇1 ∈̇ v̇0, σ(x)) = σ(x).
Furthermore σ+(Fα) = σ+(I(Fα, v̇0

.= v̇0)) = I(Fβ , v̇0
.= v̇0) = Fβ . qed(2)

(3) ∀z ∈ Fα+1: z ∈ Fα iff σ+(z) ∈ Fβ .

Proof. Let z = I(Fα, ϕ, ~x) and assume that σ+(z) = I(Fβ , ϕ, σ(~x)) ∈ Fβ .
Since σ is fine up to Fβ , σ+(z) ∈ range(σ). Let σ+(z) = σ(y) for some
y ∈ Fα. Then σ+(z) = σ+(y) and z = y ∈ Fα as required. qed(3)

(4) σ+ preserves I, i.e., for all ~z ∈ Fα+1: σ+(I(~z)) = I(σ+(~z)).

Proof. Clear for ~z ∈ Fα, since σ is fine. If ~z is of the form ~z = Fα, ϕ, ~x,
ϕ ∈ L0, ~x ∈ Fα, then the preservation follows directly from the definition of
σ+. In all other cases we set I(~z) = 0 by default and then, by σ+(Fα) = Fβ ,
σ+ ¹ Fω = id ¹ Fω and by (3): I(σ+(~z)) = 0 by default. qed(4)

(5) ∀y, z ∈ Fα (y <Fα z iff σ(y) <Fβ
σ(z)).

Proof. The relation <Fα is defined via the lexicographical order of names.
Let y=I(Fγ , ϕ, ~x), where (Fγ , ϕ, ~x) is the lexicographically minimal name for
y ∈ Fα. Then σ(y)=I(σ(Fγ), ϕ, σ(~x)), and we claim that (σ(Fγ), ϕ, σ(~x)) is
the lexicographically minimal name for σ(y). If not, then there is a formula
ψ ∈ L0 such that

Fβ |= ∃vn+1∃v0 . . . vn−1

σ(y) = I(vn+1, ψ, v0, . . . , vn−1) ∧ vn+1 = I(vn+1, v̇0=̇v̇0) ∧
(vn+1, ψ, v0, . . . , vn−1) is lexicographically smaller than
(σ(Fγ), ϕ, σ(~x)) with respect to the wellordering <σ(Fγ).

By 3.5, this existential formula can be pulled back to Fα by σ which con-
tradicts the minimal choice of the name for y.

For y, z ∈ Fα the preservation of minimal names yields the following equiv-
alences:
y <Fα z

iff the minimal name for y is lexicographically smaller than the minimal
name for z

iff the minimal name for σ(y) is lexicographically smaller than the minimal
name for σ(z)

iff σ(y) <Fβ
σ(z). qed(5)

Property (5) implies readily that
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(6) σ preserves the ternary relation <.

(7) σ+ preserves S.

Proof. Clear for ~z ∈ Fα. We only have to consider the non-default case
when ~z is of the form ~z = Fα, ϕ, x0, . . . , xm−1, where ϕ(v̇0, . . . , v̇n) ∈ L0,
m ≤ n, x0, . . . , xm−1 ∈ Fα.
S(~z) is defined non-trivially
iff Fα |= ∃̇v̇m . . . v̇n ϕ[~x]
iff Fβ |= ∃̇v̇m . . . v̇n ϕ[σ(~x)]
iff N(σ+(~z)) is defined non-trivially,
using the existential elementarity of σ (3.7).

So assume that z = S(Fα, ϕ, ~x) is defined non-trivially.

Fα |= ∃̇v̇m+1 . . . v̇n ϕ[~x, z],
Fβ |= ∃̇v̇m+1 . . . v̇n ϕ[σ(~x), σ(z)],

and then S(Fβ , ϕ, σ(~x)) = σ(z) or S(Fβ , ϕ, σ(~x)) <Fβ
σ(z). We have to

exclude the second possibility. So assume S(Fβ , ϕ, σ(~x)) <Fβ
σ(z) and

work for a contradiction: Fβ |= ∃̇v̇m . . . v̇n ϕ[σ(~x)]. Since σ′′Fα is closed
under S(Fβ , , ) there are xm, . . . , xn ∈ Fα such that

Fβ |= ϕ[σ(~x), σ(xm), . . . , σ(xn)] and σ(xm) <Fβ
σ(z).

Since σ is fine and preserves < this implies:

Fα |= ϕ[~x, xm, . . . , xn] and xm <Fα z,

which contradicts the minimal choice of z = S(Fα, ϕ, ~x). qed(8)

(8) σ+ preserves ∈, i.e., for y, z ∈ Fα+1: y ∈ z iff σ+(y) ∈ σ+(z).

Proof. Let z = I(Fα, ϕ, ~x). Then

y ∈ z ⇐⇒ y ∈ Fα and Fα |= ϕ[~x, y]
⇐⇒ σ+(y) ∈ Fβ and Fβ |= ϕ[σ(~x), σ+(y)]
⇐⇒ σ+(y) ∈ σ+(z).

qed
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4. Condensation

Condensation lemmas are the principal tools of constructibility theory:

4.1. Lemma. Let Z be constructibly closed with the additional closure
property Z = I[Z<ω], i.e., every element of Z has a name in Z. Then there
is a unique β ∈ On and a unique fine isomorphism π : Fβ→̃(Z, I, S,∈, <).
π is called the condensation map of Z.

Proof. If β, π like this exist then π is the inverse of the Mostowski collapse
of Z and hence uniquely determined. We prove the existence of β, π for
Z ⊆ Fδ by induction on δ ≤ ∞. If δ = ω, then Z = Fω and we can take π
to be the identity on Fω.

Assume δ > ω and that the property holds for all γ < δ: for γ < δ there
is a unique β(γ) ∈ On and a unique fine isomorphism πγ : Fβ(γ)→̃(Z ∩
Fγ , I, S,∈, <). The Mostowski collapses of the Z ∩Fγ cohere nicely, and so
γ ≤ γ′ < δ ⇒ β(γ) ≤ β(γ′) and πγ ⊆ π′γ .

In case δ is a limit ordinal ≤ ∞, let β =
⋃

γ<δ β(γ) and π =
⋃

γ<δ πγ ; then
π : Fβ→̃(Z, I, S,∈, <) is as required.

Finally consider the successor case δ = γ + 1. If Z ⊆ Fγ , we are done by
the inductive assumption. So let z ∈ Z ∩ (Fδ \ Fγ) 6= ∅.
By the additional closure property, z has a name in Z which can only be of
the form (Fγ , , ); hence Fγ ∈ Z. By 3.4 Z ∩ Fγ is constructibly closed up
to Fγ . Therefore the map πγ : Fβ(γ) → (Z ∩ Fγ , I, N,∈, <) is constructibly
closed up to Fγ . By 3.8, there is a fine map π+

γ : Fβ(γ)+1 → Fγ+1 = Fδ,
π+

γ ⊇ πγ , π+
γ (Fβ(γ)) = Fγ and it suffices to show that Z = range(π+

γ ).

By definition of π+
γ , every element of range(π+

γ ) is of the form
z = I(Fγ , ϕ, πγ(~x)), and then z ∈ Z since Fγ , πγ(~x) ∈ Z. Conversely
consider z ∈ Z. If z ∈ Z∩Fγ then z ∈ range(πγ) ⊆ range(π+

γ ). If z ∈ Z\Fγ ,
then the closure property Z = I[Z<ω] implies that z = I(Fγ , ϕ, ~y) for some
~y ∈ Z ∩ Fγ . ~y = πγ(~x) for some ~x ∈ Fβ(γ) and z = π+

γ (I(Fβ(γ))) ∈
range(π+

γ ). qed

The closure properties of 4.1 will later be arranged by forming constructible
hulls according to the following criterion:

4.2. Lemma. Let X ⊆ Fα and α ≥ ω. Then the constructible hull
Z = F(X ∪ {Fα}) satisfies the property Z = I[Z<ω].
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Proof. SinceX ∪ {Fα} ⊆ Fα+1, Z ⊆ Fα+1. We have to show that
Z ⊆ I[Z<ω]. Any z ∈ Z is generated from points in X ∪ {Fα} by some
composition of the operators I and S; in this composition the operation S
will only yield elements of Fα. So if z ∈ Z \ Fα and z 6= Fα then it is of
the form z = I(Fα, ϕ, ~y) where ~y ∈ Z and z ∈ I[Z<ω]. If z = Fα then
Fα = I(Fα, v̇0=̇v̇0) ∈ I[Z<ω]. Finally if z ∈ Fα ∩ Z then z = I(Fβ , ϕ, ~y)
for some lexicographically minimal name (Fβ , ϕ, ~y). The components Fβ , ~y
of the minimal name can be obtained from z using the Skolem function
S(Fα, , ). Since Z is closed with respect to S(Fα, , ) we get Fβ , ~y ∈ Z,
hence z ∈ I[Z<ω]. qed

5. Directed Systems

Directed systems of fine levels will later be used to extend fine maps onto
larger domains. We show here that wellfounded limits of such systems
belong to the fine hierarchy:

5.1. Definition (Ai)i∈D, (πij)i≤j∈D is a fine system if it is a directed
system of fine maps πij : Ai → Aj for i ≤ j from D. A fine system has
a direct limit A, (πi)i∈D with fine maps πi : Ai → A, which is uniquely
determined up to isomorphism.

5.2. Lemma Let (Ai)i∈D, (πij)i≤j∈D be a fine system of structures Ai =
Fαi , with a direct limit A = (A, I∗, S∗,∈∗, <∗), (πi)i∈D. If ∈∗ is strongly
wellfounded then A is isomorphic to a fine level Fα.

Proof.

(1) (A,∈∗) is extensional.

Proof. Let a, b ∈ A, a 6= b. Choose i ∈ D, ā, b̄ ∈ Fαi such that a = πi(ā),
b = πi(b̄). Then ā 6= b̄ and we can choose c̄ ∈ Fαi such that c̄ ∈ ā ↔ c̄ /∈ b̄.
Then πi(c̄) ∈∗ a ↔ πi(c̄) ∈∗ b. qed(1)

By the Mostowski isomorphism theorem, (A,∈∗) is isomorphic to a transi-
tive set, and we may conveniently assume that A is transitive and ∈∗=∈¹ A.
The subsequent argument will be an induction on the following relation on
{(i, Fγ) | i ∈ D, Fγ ∈ Fαi}:

(j, Fδ)<̃(i, Fγ) iff πj(Fδ) ∈ πi(Fγ).

The wellfoundedness of ∈ implies:
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(2) <̃ is a wellfounded relation.

We shall now state five properties about (i, Fγ), i ∈ D, Fγ ∈ Fαi which will
be proved by a simultaneous induction on <̃

(3) πi(Fγ) = Fξ for some ordinal ξ.
(4) I∗ ¹ Fξ = I ¹ Fξ, <∗¹ Fξ =<¹ Fξ, and S∗ ¹ Fξ = S ¹ Fξ.
(5) ∀ϕ ∈ L0∀~y ∈ Fξ: I∗(Fξ, ϕ, ~y) = I(Fξ, ϕ, ~y).
(6) ∀x, y ∈ Fξ: x <∗Fξ

y iff x <Fξ
y.

(7) ∀ϕ ∈ L0∀~y ∈ Fξ: S∗(Fξ, ϕ, ~y) = S(Fξ, ϕ, ~y).

So fix (i, Fγ) and assume that (3) – (7) hold for all <̃-smaller pairs. First
we prove (3) and (4) at (i, Fγ). We distinguish whether (i, Fγ) is a limit or
a successor in <̃.

Case 1 (“limit”): For all (j, Fδ)<̃(i, Fγ) there is (k, Fη) such that
(j, Fδ)<̃(k, Fη)<̃(i, Fγ).
Then let Fξ =

⋃{πj(Fδ) | (j, Fδ)<̃(i, Fγ)}; note that the right hand side
belongs to the fine hierarchy by the inductive asumption (3). Then:

(3) πi(Fγ) = Fξ.

Proof. (⊆). Let x ∈ πi(Fγ). Choose j ∈ D and x̄ ∈ Fαj such that
x = πj(x̄). Let x̄ ∈ Fδ+1 \ Fδ. Take l ∈ D, i, j ≤ l. Then πjl(x̄) ∈ πil(Fγ),
πjl(Fδ) ∈ πil(Fγ), πj(Fδ) ∈ πi(Fγ), and thus (j, Fδ)<̃(i, Fγ). By the case
assumption there is (k, Fη) such that (j, Fδ)<̃(k, Fη)<̃(i, Fγ). We may also
assume that j ≤ k. Then πjk(Fδ) ∈ Fη. The level Fη is closed under the
I-function, hence πjk(x̄) ∈ Fη. So x = πk(πjk(x̄)) ∈ πk(Fη) ⊆ Fξ.

(⊇). Conversely, let x ∈ πj(Fδ), (j, Fδ)<̃(i, Fγ). Choose k ∈ D, j, i ≤ k and
x̄ ∈ Fαk

such that x = πk(x̄). Then x̄ ∈ πjk(Fδ) ∈ πik(Fγ) and x̄ ∈ πik(Fγ)
since πik(Fγ) is transitive. Hence x ∈ πi(Fγ). qed(3, Case 1)

(4) is now clear since by the proof of (3) Fξ is the union of structures on
which, by induction assumption, I∗ and I, <∗ and <, as well as N∗ and N
agree. Hence they agree on Fξ.

Case 2 (“successor”): There is some (j, Fδ)<̃(i, Fγ) such that there is no
(k, Fη) with
(j, Fδ)<̃(k, Fη)<̃(i, Fγ).
Then let Fρ = πj(Fδ) and set ξ = ρ + 1. We may assume that j ≥ i.

(3) πi(Fγ) = Fξ.
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Proof. (⊆). Let x ∈ πi(Fγ). Choose k ∈ D, k ≥ j and x̄ ∈ Fαk

such that x = πk(x̄). Let x̄ ∈ Fη+1 \ Fη. Since x ∈ πi(Fγ) \ πk(Fη)
we have (k, Fη)<̃(i, Fγ). By the case assumption, πk(Fη) ⊆ πj(Fδ). Let
x̄ = I(Fη, ϕ, ~y).

πk(x̄) = I∗(πk(Fη), ϕ, πk(~y)), by the definition of I∗;
= I(πk(Fη), ϕ, πk(~y)), by the inductive hypothesis (5);
∈ Fρ+1 = Fξ,

since πk(Fη) ⊆ πj(Fδ) = Fρ.

(⊇). Conversely, let x ∈ Fξ. Let x = I(Fρ, ϕ, ~y), ϕ ∈ L0, ~y ∈ Fρ. Choose
some k ∈ D, k ≥ j, x̄, ~̄y ∈ Fαk

such that x = πk(x̄), ~y = πk(~̄y). By property
(5) for (j, Fδ): x̄ = I(πjk(Fδ), ϕ, ~̄y). πjk(Fδ) ∈ πik(Fγ), hence x̄ ∈ πik(Fγ)
and x ∈ πi(Fγ). qed(3, Case 2)

(4) follows from (4) – (7) at (j, Fδ).

In the proofs of (5) – (7) both cases will be treated together:

Proof of (5) at (i, Fγ). Let ϕ(v̇0, . . . , v̇n) ∈ L0, y0, . . . , yn−1 ∈ Fξ. Consider
j ∈ D, x̄ ∈ Fαj . It suffices to see that

πj(x̄) ∈ I∗(Fξ, ϕ, ~y) iff πj(x̄) ∈ I(Fξ, ϕ, ~y).

We may assume that j is sufficiently large so that there are ȳ0, . . . , ȳn−1 ∈
Fαj such that y0 = πj(ȳ0), . . . , yn−1 = πj(ȳn−1). Then:

πj(x̄) ∈ I∗(Fξ, ϕ, ~y) ⇐⇒ x̄ ∈ I(Fγ , ϕ, ~̄y)
⇐⇒ (Fγ , I, S,∈, <) |= ϕ[~̄y, x̄]
⇐⇒ (Fξ, I, S,∈, <) |= ϕ[~y, πj(x̄)], by property (4);
⇐⇒ πj(x̄) ∈ I(Fξ, ϕ, ~y)

qed(5)

Proof of (6) at (i, Fγ). Let x, y ∈ Fξ. Let (Fγ , ϕ,~c), (Fδ, ψ, ~d) be lex-
icographically minimal names for x, y respectively. Choose i ∈ D and
x̄, ȳ, Fγ̄ , ~̄c, Fδ̄,

~̄d ∈ Fαi such that x, y, Fγ ,~c, Fδ, ~d = πi(x̄, ȳ, Fγ̄ , ~̄c, Fδ̄,
~̄d). By

(4), πi preserves I and < and so (Fγ̄ , ϕ, ~̄c) is the lexicographically least name
for x̄. Similarly (Fδ̄, ψ, ~̄d) is the lexicographically least name for ȳ. Then:
x <Fξ

y

iff (Fγ , ϕ,~c) is lexicographically less than (Fδ, ψ, ~d)

iff (Fγ̄ , ϕ, ~̄c) is lexicographically less than (Fδ̄, ψ, ~̄d)
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iff x̄ <Fαi
ȳ

iff x <∗Fξ
y. qed(6)

Proof of (7) at (i, Fγ). Let ϕ(v̇0, . . . , v̇n) ∈ L0, y0, . . . , ym−1 ∈ Fξ, m ≤ n.

Case 1: S(Fξ, ϕ, ~y) is defined to be 0 by some default case of definition 2.2.
Choose some j ∈ D, j ≥ i, ȳ0, . . . , ȳm−1 ∈ Fαj , y0 = πj(ȳ0), . . . , ym−1 =
πj(ȳm−1). The map πj : (πij(Fγ), I, S,∈, <) → (Fξ, I, S,∈, <) is fine, and
therefore S(πij(Fγ), ϕ, ~̄y) is also defined to be 0 by a corresponding default
case of definition 2.2. Then S∗(Fξ, ϕ, ~y) = πj(S(πij(Fγ), ϕ, ~̄y)) = πj(0) = 0,
as required.

Case 2: The definition of S(Fξ, ϕ, ~y) does not fall under a default case.
So S(Fξ, ϕ, ~y) is the <Fξ

-minimal z for which there are zm+1, . . . , zn ∈ Fξ

satisfying

Fξ |= ϕ[~y, z, zm+1, . . . , zn].

Choose some j ∈ D, j ≥ i, ȳ0, . . . , ȳm−1, z̄, z̄m+1, . . . , z̄n ∈ Fαj such that:

y0 = πj(ȳ0), . . . , ym−1 = πj(ȳm−1), z = πj(z̄), zm+1 = πj(z̄m+1), . . . ,
zn = πj(z̄n).

The map πj : (πij(Fγ), I, S,∈, <) → (Fξ, I, S,∈, <) is fine, and therefore

z̄ = S(πij(Fγ), ϕ, ~̄y).

Then

S∗(Fξ, ϕ, ~y) = πj(S(πij(Fγ), ϕ, ~̄y))
= πj(z̄) = z

= S(Fξ, ϕ, ~y),

as required. qed(7)

We can now prove the lemma:

Let Fθ =
⋃{πj(Fδ) | j ∈ D, Fδ ∈ Fαj}. If Fθ = A, we are done. Suppose

A \ Fθ 6= ∅. Take x ∈ A \ Fθ. Choose i ∈ D, x̄ ∈ Fαi such that x = πi(x̄).
Let x̄ ∈ Fγ+1 \ Fγ , Fγ ∈ Fαi . x̄ = I(Fγ , ϕ, ~y) for some ϕ ∈ L0, ~y ∈ Fγ .
By (5), x = I(πi(Fγ), ϕ, πi(~y)). Clearly πi(Fγ) ⊆ Fθ. If πi(Fγ) ∈ Fθ, then
x ∈ Fθ, contradicting the choice of x. Hence πi(Fγ) = Fθ.

The preceding argument shows that A ⊆ Fθ+1. Conversely, Fθ+1 ⊆ A,
since Fθ = πi(Fγ) ∈ A and A is closed under the function I(Fθ, , ). Hence

15



A = Fθ+1 where Fθ = πi(Fγ) and then (5), (6), and (7) yield I∗ = I ¹ Fθ+1,
<∗=<¹ Fθ+1, and S∗ = S ¹ Fθ+1. qed

6. Extensions

Large Cardinal Theory can be viewed as the theory of elementary embed-
dings of transitive models of set theory. Large cardinal strength corresponds
to the richness of the collection of such embeddings. Relevant techniques
include the formation of ultrapowers by ultrafilters or the construction of
extensions by extenders. Since an extender can be defined to be an ele-
mentary map itself, one is producing new elementary maps out of given
ones. In this chapter we shall construct extensions of fine levels which are
related to the proof of the Jensen Covering Theorem for L. We shall first
consider a (trivial) presentation of L as the direct limit of a directed system
S of “small” structures. In the construction of extensions we shall employ
subsystems of S.

6.1. Definition. Define a directed partial order (D,≤):
D = {(µ, p) |µ ∈ On, p ⊆ {Fξ | ξ ∈ On}, p is finite} and (µ, p) ≤ (ν, q) iff
µ ≤ ν and p ⊆ q.

For (µ, p) ∈ D let πµp : Fα(µ,p)↔̃F(Fµ ∪ p) be the uniquely defined isomor-
phism given by the condensation lemma 4.1; note that the closure condi-
tions of 4.1 are satisfied by 4.2. For (µ, p) ≤ (ν, q), we have F(Fµ ∪ p) ⊆
F(Fν ∪ q) and we can define the fine map

πµp,νq = π−1
νq ◦ πµp : Fα(µ,p) → Fα(ν,q).

The system

S = (Fα(µ,p))(µ,p)∈D, (πµp,νq)(µ,p)≤(ν,q)

is fine and (L, I, S,∈, <), (πµp)(µ,p)∈D is the transitive direct limit of the
system S.

6.2. Definition. Let Fα,Fδ be fine levels, α < δ ≤ ∞. We say that Fα is
a base for Fδ if for every µ < α and every finite p ⊆ {Fξ | ξ < δ} we have
α(µ, p) < α.

We shall extend a fine map E from Fα to a larger domain Fδ: Fix a fine
map E : Fα → Fβ where α is a limit ordinal greater than ω and where the
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range of E is cofinal in Fβ , i.e., ∀y ∈ Fβ ∃x ∈ Fα y ∈ E(x). Cofinality can
always be arranged by taking β minimal such that E maps into Fβ . Fix a
fine level Fδ such that Fα is a base for Fδ.

The subsequent construction defines the extension of Fδ by E.

Define a subsystem S0 of S by: D0 = {(µ, p) |µ < α, p ⊆ {Fξ | ξ <
δ}, p is finite} and

S0 = (Fα(µ,p))(µ,p)∈D0 , (πµp,νq)(µ,p)≤(ν,q)∈D0 .

By Proposition 2.6,

Fδ =
⋃
{F(Fµ ∪ p) | (µ, p) ∈ D0}

and so

Fδ, (πµp)(µ,p)∈D0

is the transitive direct limit of the system S0.

The base property 6.2 implies immediately:

(1) If (µ, p) ∈ D0 then Fα(µ,p) ∈ Fα.

(2) If (µ, p) ≤ (ν, q) ∈ D0 then πµp,νq ∈ Fα.

Proof. Set π = πµp,νq. Let p = {p0, . . . , pm−1} and p′i = π−1
µp (pi), p′′i =

π−1
νq (pi) for i < m. For arbitrary x ,y we have π(x) = y iff x ∈ Fα(µ,p),

y ∈ Fα(ν,q) and there is a term t of the language L and a tuple ~z ∈ Fµ such
that

x = t(p′0, . . . , p
′
m−1, ~z) and y = t(p′′0 , . . . , p′′m−1, ~z).

The latter property can be expressed by an L-formula of the form:

ψ ≡ v̇2m
.= t(v̇0, . . . , v̇m−1, v̇2m+4, . . . , v̇n)

∧̇ v̇2m+1
.= t(v̇m, . . . , v̇2m, v̇2m+4, . . . , v̇n)

∧̇ v̇2m+4∈̇v̇2m+2∧̇ . . . ∧̇v̇n∈̇v̇2m+2

∧̇ ¬̇v̇2m+3
.= 0.

The last conjunct is not relevant for the meaning of the formula but is put
in for later use by the S-operation. For a fixed term t the condition on
π(x) = y becomes:

∃v̇2m+3 . . . v̇n ψ[p′0, . . . , p
′
m−1, p

′′
0 , . . . , p′′m−1, x, y, Fµ]
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Using the S-operation this is equivalent to

S(Fτ , ψ, p′0, . . . , p
′
m−1, p

′′
0 , . . . , p′′m−1, x, y, Fµ) 6= 0,

where τ = α(ν, q) is big enough so that all parameters and all existential
witnesses are contained in Fτ .

The set Ψ of all L-formulas ψ as above is definable over (Fω,∈) and is thus
an element of Fω+ω. By quantifying over all ψ ∈ Ψ we are now able to
define the map π :

π(x) = y ⇐⇒ ∃ψ ∈ ΨS(Fτ , ψ, p′0, . . . , p
′
m−1, p

′′
0 , . . . , p′′m−1, x, y, Fµ) 6= 0

⇐⇒ S(Fτ+1, χ, p′0, . . . , p
′
m−1, p

′′
0 , . . . , p′′m−1, x, y, Fµ, Fτ ) 6= 0,

where χ is the formula :

¬̇Ṡ(v̇2m+3, v̇2m+4, v̇0, . . . , v̇m−1, v̇m, . . . , v̇2m−1, v̇2m, v̇2m+1, v̇2m+2)=̇0.

So we can define the map π by an L0-formula. Using Kuratowski pairing
and projection functions inside Fα we see that π is an element of the base
Fα. qed(2)

By (1) and (2), the system S0 can be mapped componentwise by the map
E. For (µ, p) ∈ D0 let Fα∗(µ,p) = (Fα(µ,p)); for (µ, p) ≤ (ν, q) ∈ D0 let
π∗µp,νq = E(πµp,νq).

(3) S∗0 = (Fα∗(µ,p))(µ,p)∈D0 , (π
∗
µp,rq)(µ,p)≤(r,q)∈D0 is a fine system.

Proof. The fact that πµp,νq : Fα(µ,p) → Fα(ν,p) is fine can be expressed
by a schema of universal formulas where the universal quantifiers may be
restricted to Fα(ν,p). Using the S-operation this can be expressed quantifier-
free in Fα. The fine map E : Fα → Fβ lifts the schema up to Fβ , hence
π∗µp,νq : Fα∗(µ,p) → Fα∗(ν,q) is fine.

The commutativity of the fine system lifts up by the same method. qed(3)

Let A, (π∗µp)(µ,p)∈D0 be a direct limit of the system S∗, A = (A, I∗, S∗,∈∗
, <∗). We show that Fβ is isomorphic to an initial segment of A. Define a
map σ : Fβ → A by: for y ∈ Fβ take (µ, 0) ∈ D0 such that y ∈ E(Fµ); then
let σ(y) = π∗µ0(y).

(4) The definition of σ(y) is independent of the choice of µ.

Proof. Let y ∈ E(Fµ) and y ∈ E(Fν) with µ ≤ r. πµ0,ν0 = id ¹ Fµ,
and this is preserved by the lifting by E : π∗µ0,ν0 = id ¹ E(Fµ). Hence
π∗µ0(y) = π∗ν0 ◦ π∗µ0,ν0(y) = π∗ν0(y). qed(4)
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(5) σ : Fβ → A is fine.

Proof. Since σ is the union of the fine maps π∗µ0 : Fα∗(µ,0) → A qed(5)

(6) σ′′Fβ is an ∈∗-initial segment of A.

Proof. Let z ∈∗ π∗µ0(y). Choose (ν, q) ∈ D0, (µ, 0) ≤ (ν, q) and z̄ ∈ Fα+(ν,q)

such that z = π∗νq(z̄). Then z̄ ∈ π∗µ0,νq(y). Since πµ0,νq is the identity on
Fµ, π∗µ0,νq is the identity on Fα∗(µ,0). Hence z̄ ∈ y. Also z = π∗νq(z̄) =
π∗νq ◦ π∗µ0,νq(z̄) = π∗µ0(z̄) ∈ σ′′Fβ . qed(6)

By (5) and (6) we may assume Fβ is an initial segment of A.

Since the fine systems are nicely connected by the map E, one can define a
fine map from the limit of S0 into the limit of S∗0 : for x ∈ Fδ, x = πµp(x̄)
define πE(x) = π∗µp(E(x̄)).

(7) The definition of πE(x) is independent of the choice of (µ, p) ∈ D0

and x̄.

Proof. Let x = πµp(x̄) = πνq(x′). Choose (λ, r) ∈ D0 such that (µ, p) ≤
(λ, r) and (ν, q) ≤ (λ, r). Then πµp,λr(x̄) = πνq,λr(x′) and π∗µp,λr(E(x̄)) =
π∗νq,λr(E(x′)). So

π∗µp(E(x̄)) = π∗λr ◦ π∗µp,λr(E(x̄))
= π∗λr ◦ π∗νq,λr(E(x′))
= π∗νq(E(x′)).

qed(7)

(8) πE : Fδ → A is fine.

Proof. Because

6
-

E ¹ Fα(µ,p)

6

πE

Fα∗(µ,p) A
π∗µp

Fα(µ,p) Fδ-
πµp

is a commutative diagram of fine maps. qed(8)
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(9) πE extends the map E.

Proof. Let x ∈ Fα. Choose (µ, 0) ∈ D0 such that x ∈ Fµ. Fα(µ,0) = Fµ

and πµ0 = id ¹ Fµ. Then π∗µ0 = id ¹ E(Fµ) and πE(x) = πE(πµ0(x)) =
π∗µ0(E(x)) = E(x). qed(9)

6.3. Definition. We call the structure A = (A, I∗, S∗,∈∗, <∗) defined
above the extension of Fδ by E; we write A = Ext(Fδ, E). In case (A,∈∗)
is strongly wellfounded then A will be identified with an isomorphic fine
level Fη (see lemma 5.2). The map πE : Fδ → A is called the extension
map of Fδ by E.

In the strongly wellfounded case, the map πE will be better than fine:

6.4. Lemma. Let πE : Fδ → Fη be the extension map of Fδ by E. Then
πE is fine up to Fη.

Proof. We have to show that π′′EFδ is constructibly closed up to Fη , i.e.,
that properties 3.3(a) and (b) are satisfied.

(a) Consider ϕ ∈ S0, ~x ∈ Fδ and assume that z = I(Fη, ϕ, πE(~x)) ∈ Fη. We
have to show that z ∈ π′′EFδ.
Take (µ, p) ∈ D0 such that ~x ∈ range(πµp) and z ∈ range(π∗µp). Let
~x = πµp(~u), z = π∗µp(y). Then πE(~x) = π∗µp(E(~u)) ∈ range(π∗µp). By
the definition of I,

Fη |= ∀v (v ∈ z ↔ ϕ(πE(~x), v)).

The map π∗µp : Fα∗(µp) → Fη is fine and preserves such universal statements
downwards:

Fα∗(µ,p) |= ∀v (v ∈ y ↔ ϕ(E(~u), v)).

The set y is uniquely determined by this property. The map

E ¹ Fα(µ,p) : Fα(µ,p) → Fα∗(µ,p)

is sufficiently elementary so that the definable point y has to be in the range
of E ¹ Fα(µ,p). Take ȳ ∈ Fα(µ,p) such that y = E(ȳ). Then

z = π∗µp(y) = π∗µp(E(ȳ)) = πE(πµp(ȳ)) ∈ range(πE).

(b) Consider ϕ(v̇0, . . . , v̇n) ∈ S0, ~x = x0, . . . , xm−1 ∈ Fδ, m ≤ n and assume
that S(Fη, ϕ, πE(~x)) 6= 0, i.e., it is defined non-trivially. Then there are
ym+1, . . . , yn ∈ Fη such that

Fη |= ϕ[πE(x0), . . . , πE(xm−1), z, ym+1, . . . , yn],
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and z is <Fη
-smallest with this property. By Proposition 2.6 we may assume

that z is a level of the fine hierarchy. Take (µ, p) ∈ D0 such that ~x ∈
range(πµp) and z, ym+1, . . . , yn ∈ range(π∗µp). Let ~x = πµp(~u), z = π∗µp(w),
ym+1 = π∗µp(wm+1), . . . , yn = π∗µp(wn). By definition of S

Fη |= ∀vm . . . vn (vm = I(vm, v0 = v0) ∧ vm ∈ z

−→ ¬ϕ(πE(x0), . . . , πE(xm−1), vm, vm+1, . . . , vn)).

Since π∗µp preserves universal L-statements downwards:

Fα∗(µ,p) |= ϕ[E(u0), . . . , E(um−1), w, wm+1, . . . , wm]∧w = I(w, v0
.= v0)

Fα∗(µ,p) |= ∀vm . . . vn (vm = I(vm, v0
.= v0) ∧ vm ∈ w

−→ ¬ϕ(E(u0), . . . , E(um−2), vm, vm+2, . . . , vn)).

The set w is uniquely determined by these properties and so is in range(E).
Let w = E(w̄). Then z = π∗µp(w) = π∗µp(E(w̄)) = πE(πµp(w̄)) ∈ range(πE).
qed

By this lemma and lemma 3.8, an extension πE : Fδ → Fη can be lifted to
a fine map π∗E : Fδ+1 → Fη+1. In this way, the smallest Fδ+1 for which Fα

is not a base can still be mapped over, which will give a covering set in the
proof of the covering theorem.

7. Strong Maps.

For the proof of the covering theorem for L we construct strong maps which
induce wellfounded extensions.

7.1. Definition. Let E : Fα → Fβ be a cofinal map with limit ordinal α.
(a) The map E is strong for Fδ, if Ext(Fδ, E) is wellfounded in case Fα is

a base for Fδ.
(b) The map E is strong for the fine hierarchy (F-strong) if E is strong

for every Fδ.

In the construction of strong maps we use the following criterium for non-
strength:

7.2. Lemma. Let E : Fα → Fβ be cofinal, α a limit ordinal. Assume
that E is not strong for Fδ. Then there is a sequence (µ0, p0) ≤ (µ1, p1) ≤
· · · ∈ D with µn < α, pn ⊆ Fδ and a sequence y0, y1, . . . ∈ Fβ such that
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yn+1 ∈ E(πµnpn,µn+1pn+1)(yn) for all n < ω. A sequence y0, y1, . . . ∈ Fβ like
this is called a vicious sequence for E, Fδ.

Proof. Use the notations from the previous chapter. Let A = (A, I∗, S∗,∈∗
, <∗) be the nonwellfounded extension. There is a sequence y∗0 , y∗1 , . . . ∈ A
with y∗n+1 ∈∗ y∗n for all n < ω. For n < ω choose an index (µn, pn) ∈ D,
µn < α, pn ⊆ Fδ and yn ∈ Fβ y∗n = πµnpn

(yn). We may assume that
(µn, pn) ≤ (µn+1, pn+1) for all n < ω. Then

y∗n+1 = π∗µn+1pn+1
(yn+1) ∈∗ y∗n = π∗µnpn

(yn)

implies

yn+1 ∈ (π∗µn+1pn+1
)−1 ◦ π∗µnpn

(yn) = E(πµnpn,µn+1pn+1)(yn)

as required. qed

The following proof is based on the idea that the counterexample Fδ to the
strength of E can not exist, if the vicious sequence y0, y1, . . . were taken
from range(E); in that case the infinite descent could be pulled back to Fα

and to the ∈-relation of Fδ, contradicting the wellfoundedness of ∈.

7.3. Lemma. Let β > ω be a limit ordinal and let X ⊆ β be cofinal in
β with µ = card(X) regular and uncountable. Then there is an F-strong
map E : Fα → Fβ such that X ⊆ range(E) and card(Fα) = µ.

Proof. We construct a continuous tower (Yξ | ξ < µ) of substructures of
Fβ whose union will be range(E). Present X as X =

⋃{Xξ | ξ < µ}, where
card(Xξ) < µ for ξ < µ. By simultaneous induction on ξ < µ define a
sequence (Eξ | ξ ≤ µ) of fine maps Eξ : Fαξ

→ Fβ , Yξ = range(Eξ) such
that

(1) ξ ≤ ζ ≤ µ −→ Yξ ⊆ Yζ .
(2) ζ ≤ µ, limit ζ −→ Yζ =

⋃
ξ<ζ Yξ.

(3) Xξ ⊆ Yξ+1, card(Yξ) < µ.
(4) If ξ < µ and Eξ is not F-strong take Fδ with δ minimal such that Eξ

is not strong for Fδ. Then let Yξ+1 contain a vicious sequence for Eξ,
Fδ as a subset.

The construction is possible since we basically have to include a set of
cardinality < µ in going from Yξ to Yξ+1 and form a constructible closure.

Then set E = Eµ, α = αµ. Obviously X ⊆ range(E) = Yµ and card(Fα) =
card(Yµ) = µ. We show that E is F-strong. Assume for a contradiction
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that Fα is a base for Fη but Ext(Fη, E) is not wellfounded. By 7.2 there
is a sequence (µ0, p0) ≤ (µ1, p1) ≤ · · · ∈ D with µn < α, pn ⊆ Fδ and a
vicious sequence z0, z1, . . . ∈ Fβ such that

zn+1 ∈ E(πµnpn,µn+1pn+1)(zn)

for n < ω. The structure Fα is the union of the continuous tower (Ỹξ)ξ<µ,
where Ỹξ = E−1′′Yξ. Let H be a transitive structure containing all the
sets mentioned so far and reflecting enough properties of V for the follow-
ing argument. A straightforward Löwenheim-Skolem argument yields an
elementary substructure W of H such that

(5) for n < ω: µn ∈ W , pn ∈ W .
(6) Fα ∈ W , Fδ ∈ W .
(7) W ∩ Fα = Ỹξ for some ξ < µ.

Let σ : H̃ ∼= W ≺ H, H̃ transitive be the Mostowski transitivisation. By
(7), σ−1(Fα) is the transitivisation of Ỹξ

∼= Yξ, hence

(8) σ−1(Fα) = Fαξ
.

Also, for that reason:

(9) Eξ = E ◦ σ ¹ Fαξ
.

By the absoluteness of the relevant notions and elementarity

(10) Fαξ
is a base for Fδ̃, where δ̃ = σ−1(δ).

(11) Eξ is not F-strong.

Proof. For n < ω let

µ̃n = σ−1(µn), p̃n = σ−1(pn), π̃n,n+1 = σ−1(πµnpn,µn+1pn+1) ∈ Fαξ
.

Then by elementarity, πµ̃np̃n,µ̃n+1p̃n+1 = π̃n,n+1, and for n < ω:

zn+1 ∈ E(πµnpn,µn+1pn+1)(zn)
= E ◦ σ(πµ̃np̃n,µ̃n+1p̃n+1)(zn)
= Eξ(πµ̃np̃n,µ̃n+1p̃n+1)(zn).

qed(11)

By the initial construction, let δ be minimal such that Eξ is not strong for
Fδ. By (4) above there are indices (νn, qn) for n < ω, such that νn < α and
qn ⊆ Fδ and a vicious sequence y0, y1, . . . ∈ Yξ+1 such that

yn+1 ∈ Eξ(πνnqn,νn+1qn+1)(yn)
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for n < ω. We can apply E−1 to both sides of the relation:

E−1(yn+1) ∈ E−1 ◦ Eξ(πνnqn,νn+1qn+1)(E
−1(yn))

= σ(πνnqn,νn+1qn+1)(E
−1(yn))

= πσ(νn)σ(qn),σ(νn+1)σ(qn+1))(E
−1(yn))

Finally apply πσ(νn+1)σ(pn+1) to both sides:

πσ(νn+1)σ(pn+1)(E
−1(yn+1)) ∈ πσ(νn)σ(pn)(E−1(yn)),

which is a descending ∈-chain in Fη. Contradiction. qed

8. The Jensen Covering Theoren for L.

8.1. Theorem. Assume, 0] does not exist. Then L covers V , which means:
∀X ⊆ On∃Y ⊆ On (X ⊆ Y ∧ Y ∈ L ∧ card(Y ) ≤ card(X) + ℵ1).

Proof. Assume L does not cover V . Let X ⊆ β be a counterexample to
covering with β choosen minimally. We can assume that ℵ1 ⊆ X and that
µ = card(X) is choosen minimally with the stated properties.

(1) There is no Y ⊇ X, Y ∈ L, such that cardL(Y ) < β.

Proof. Assume to the contrary that Y ⊇ X, Y ∈ L, and there is f ∈ L,
β̄ < β, f : β̄ ↔ Y . Let X̄ = f−1′′X. By the minimality of β there is Ȳ ∈ L,
X̄ ⊆ Ȳ ⊆ β̄ with card(Ȳ ) ≤ card(X̄) + ℵ1. Then f ′′Ȳ ∈ L is a “covering
set” for X, which contradicts our assumptions on X. qed(1)

(2) β is a cardinal in L;

this follows immediately from (1).

(3) X is cofinal in β.

(4) card(X) ≥ ℵ1,

since ℵ1 ⊆ X.

(5) card(X)+ < β.

Proof. If β < card(X)+, we could take β ∈ L to cover X. If β = card(X)+,
X could not be cofinal in β. qed(5)

(6) card(X) is regular.
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Proof. Assume that µ is singular. Let λ = cof(µ) < µ. Write X =
⋃

ξ<λ Xξ

where each card(Xξ) < µ and sup(Xξ) < β. For each ξ < λ choose Yξ ∈ L,
Xξ ⊆ Yξ, card(Yξ) ≤ card(X) using the minimality of β. We can assume
that Yξ ⊆ On and sup(Yξ) < β. Set ι = card(X)+. There is a map
h : β ↔ Fβ since β is an L-cardinal. Let Z = {h−1(Yξ) | ξ < λ} ⊆ β;
card(Z) ≤ λ < µ, and by the minimality of µ there is W ∈ L, Z ⊆ W ,
card(W ) ≤ µ. Set

Y =
⋃
{h(η) | η ∈ W, h(η) ⊆ On, otp(h(η)) < ι}.

Y ⊇ ⋃{h(η) | η ∈ Z} =
⋃

ξ<λ Yξ ⊇ ⋃
ξ<λ Xξ = X, Y ∈ L, since the

definition takes part inside of L, cardL(Y ) ≤ ι, since cardL(W ) ≤ ι and
cardL(h(η)) < ι for every h(η) used in the definition of Y . But this is a
contradiction to (1). qed(6)

We are now in a position to use Lemma 7.3: There is an F-strong map
E : Fα → Fβ such that X ⊆ range(E) and card(Fα) = µ.

(7) E 6= id ¹ Fα.

Proof. Since E is cofinal in Fβ and card(Fα) = card(X) < card(Fα)+ < β
(by (5)). qed(7)

(8) Fα is not a base for F∞.

Proof. Otherwise the F-strength of E yields a map πE : F∞ → F∞ extend-
ing E. Then πE is not the identity on L and this implies the existence of
0]. Contradiction qed(8)

So there is a minimal fine level Fγ such that Fα is not a base for Fγ . Take
ν < α and a finite p ⊆ {Fτ | τ < γ} such that F(Fν ∪ p) is isomorphic to
some Fζ with ζ ≥ α. Fζ = F(Fν ∪ q), where q is the collapse of p. By the
minimality of η we must have ζ = γ, and we may assume:

(9) F(Fν ∪ p) = Fγ .

By this property, γ must be a successor ordinal; let γ = δ + 1.

(10) Fα is a base for Fδ.

By the F-strength of E, let

πE : Fδ → Fη
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be the extension of Fδ by E. The extension map is fine up to Fη (6.3) and
by 3.8 there is a fine extension

π+
E : Fδ+1 → Fη+1, π+

E ⊇ πE .

Then

X ⊆ range(E) ⊆ range(πE) ⊆ range(π+
E)

= π+
E
′′Fδ+1 = π+

E
′′(F(Fν ∪ p)

)

=F((π+
E
′′Fν) ∪ (π+

E
′′p)), since π+

E is fine
⊆F(Fν∗ ∪ (π+

E
′′p)), where Fν∗ = π+

EFν , ν∗ < β.

Setting Y = F(Fν∗∪(π+
E
′′p)) we have Y ∈ L, and cardL(Y ) ≤ cardL(Fν∗)+

ℵ0 < β.
This contradicts (1) above. Qed
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dations of the Formal Sciences III, Kluwer.

26


