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Abstract. Recently, Gitik, Kanovei and the first author proved that for a

classical Prikry forcing extension the family of the intermediate models can be

parametrized by Pp!q{finite. By modifying the standard Prikry tree forcing

we define a Prikry-type forcing which also singularizes a measurable cardinal

but which is minimal, i.e. there are no intermediate models properly between

the ground model and the generic extension. The proof relies on combining

the rigidity of the tree structure with indiscernibility arguments resulting from

the normality of the associated measures.

1. Introduction

The classical Prikry forcing first appeared in 1970 in Prikry’s dissertation [Pri70].

It positively answered the following question of Silver and Solovay:

Is there a forcing preserving all cardinals while some cofinality changes?

In fact, the singularization of regular cardinals by some forcing is necessarily con-

nected with Prikry forcing. In such an extension there must be a Prikry generic

filter over an inner model with a measurable cardinal by the covering theorem of

Dodd and Jensen (see [DJ82]).

Prikry forcing is equivalent to a Prikry tree forcing where conditions are trees with

trunks, where the splitting sets above the trunk are always large with respect to the

chosen normal measure. Many variants of Prikry forcings are known, see [Git10].

Let us give some examples for the analogous situation when a forcing adds a subset

of ! instead of �. It is easily seen that Cohen forcing adds a perfect set of mutually

generic reals. On the other hand several forcings adding reals are minimal. Here

a generic extension is called minimal if it has only trivial intermediate models.

Furthermore, a forcing is said to be minimal if every generic extension by it is

minimal. The first known forcing with this property was Sacks forcing introduced

in [Sac71]. Also plain Laver forcing is minimal, see [Gra80]. Mathias forcing, the

analog of the classical Prikry forcing for !, is not minimal, as the subsequence of

even digits generates a proper intermediate model. This holds as well for plain

Mathias forcing as for Mathias forcing with an ultrafilter associated. In contrast to
1



2 PETER KOEPKE, KAREN RÄSCH AND PHILIPP SCHLICHT

plain Laver forcing, the version with a Ramsey ultrafilter associated is not minimal,

because it is equivalent to Mathias forcing with the same ultrafilter, see [JS89].

Classical Prikry forcing is not minimal. The main result of Gitik, Kanovei and the

first author in [GKK10] reads:

Theorem. Let V rGs be a generic extension by classical Prikry forcing for some

normal measure on a measurable cardinal �. Then every intermediate model is

a Prikry extension by this forcing and is generated by some subsequence of the

associated Prikry sequence. Moreover, the intermediate models of V and V rGs

ordered by inclusion are isomorphic to Pp!q{finite ordered by almost inclusion.

Other Prikry-type forcings also have many intermediate models. Gitik showed in

[Git10] that for a 2�-supercompact cardinal � and a normal measure on P�p2
�q

every  �-distributive forcing of size � is a subforcing of the associated supercom-

pact Prikry forcing. Thus all results so far have shown that generic extensions by

Prikry-type forcings have many intermediate models.

In contrast, this paper provides a minimal Prikry-type forcing preserving all car-

dinals while singularizing a measurable cardinal from the ground model. Inspired

by the classical Prikry tree forcing, we introduce the partial order PU , where U
is a sequence of �-complete nonprincipal ultrafilters over �. The conditions of PU

are U-trees whose splitting sets are large with respect to certain ultrafilters in U .

In Section 3 we prove a Ramsey theorem for such trees and a Prikry lemma for

PU , which justifies calling it a Prikry-type forcing. Thereafter, in Section 4, we

are going to investigate the intermediate models of generic extensions by PU if U
is sequence of pairwise distinct normal measures. The minimality of PU is a direct

consequence of:

Theorem. Let V rGs be a generic extension by PU where U is �-sequence of pairwise

distinct normal measures on �. Then for every X P V rGs either X was already in

the ground model or X generates the whole generic extension, i.e., V rXs � V rGs.

Since the proof heavily uses the normality of the associated measures, we discuss

the situation in the more general setting without the requirement of normality in

Section 5. This may be helpful to gain information about generic extensions by the

classical Prikry tree forcing.

The results of this paper have grown out of the diploma project of the second

author under supervision of the first. In the diploma thesis [Räs10] only a part of

the previous theorem was proved. For the remaining part the correspondence with

the third author was of indispensible importance.
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2. Setting

The notation follows common conventions. We will typically think of u, v P r�s !

as strictly increasing sequences of ordinals in �. By u P v we mean that u is an

initial segment of v. Moreover, we will use the typical operations on sequences,

namely concatenation denoted by the symbol ⌢ and the restriction of the domain

to some subset of ! denoted by æ . In addition � corresponds to the operation z ,

i.e., thinking of sequences remove the one range from the other and enumerate the

result increasingly. By a tree we understand a non-empty subset of r�s ! which is

closed under initial segments. If T is a tree and k P !, then we denote by LevkpT q

the k-th level of T , which consists of all elements of T of length k.

2.1. Normal measures.

For our construction we shall fix a measurable cardinal �, and we shall assume that

there is a sequence U � xU� : �   �y of pairwise distinct normal measures on �.

This assumption has the consistency strength of ZFC�“there exists a measurable cardinal”

by the following result of Kunen and Paris:

Theorem 2.1 (Kunen-Paris forcing, [KP71]). Assume that V is a model of GCH

and let � be a measurable cardinal and � ¡ �� a regular cardinal. Then in some

generic extension with the same cardinals and cofinalities there are � many pairwise

distinct normal measures on �.

In our minimality proof we will use a family xA� : �   �y of pairwise disjoint

subsets of � with A� P U�. In the case of normal measures such a sequence always

exists:

Lemma 2.2. Let � be a measurable cardinal carrying �-many pairwise distinct

normal measures xU� : �   �y. Then there is a family xA� : �   �y of pairwise

disjoint subsets of � with A� P U�.

Proof. For ordinals �, � P �, �   � pick X�,� � � such that X�,� P U� zU� .

Moreover define X�,� :� � zX�,� and X�,� :� �. Let

A� :� p △
� �

X�,� q z p�� 1q.

By the normality we have A� P U�. Assume that there is � P A� X A� . Then

� ¡ maxp�, �q and therefore � P X�,� XX�,� – a contradiction. 
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2.2. Intermediate models of generic extensions.

Every intermediate model of ZFC of a generic extension V rGs is generated by a

single set, namely some Q-generic filter H for some forcing Q over V , see [Jec06, pp

247-248]. We may further assume H � � for some cardinal �. Hence, we restrict

our attention to all sets of ordinals in V rGs in the minimality proof. The smallest

inner model N of ZFC with V � N � V rGs and H P N for a set of ordinals

H P V rGs can be defined without reference to forcing as
�

z�Ord,
zPV

Lrz,Hs (such a

model need not exist for arbitrary sets in V rGs). It is easy to check that this is a

model of ZFC for any H P V rGs. We say X is V -constructibly equivalent to Y , in

short X �V Y , if V rXs � V rY s.

3. Tree Prikry Forcing for Sequences of Ultrafilters

We now define and study a Prikry-type forcing PU where U � xU� : �   �y

is a sequence of ultrafilters and the conditions are trees whose branching sets are

controlled by U . This generalizes the classical situation where all branching sets are

controlled by a single ultrafilter. Nevertheless the forcing satisfies several properties

of classical Prikry forcing, in particular the Prikry lemma. In the next section we

shall let U be a sequence of pairwise distinct normal measures and obtain the desired

minimality result.

For the rest of this section let U � xU� : �   �y denote some fixed sequence of

�-complete nonprincipal ultrafilters over the measurable cardinal �.

3.1. U-trees and the partial order PU .

The conditions in the forcing are trees of the following type.

Definition 3.1. A set T � r�s ! is called U-tree with trunk t if

(T1) xT,Py is a tree.

(T2) t P T and for all u P T we have u P t or t P u.

(T3) For all u P T if t P u then

SucT puq :� t �   � : u⌢x�y P T u P Umaxpuq
�.

Note that each such tree has a unique trunk.

�Because u � ∅ is possible for correctness one should use “sup” instead of “max” but this

seems to be less intuitive.
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P U�

�

Figure 1. An image of a U-tree.

Definition 3.2. Let PU :� t xt, T y : T is a U-tree with trunk t u.

Furthermore for xs, Sy, xt, T y P PU define

xs, Sy ¤ xt, T y :ðñ S � T

xs, Sy ¤� xt, T y :ðñ S � T and s � t

In the latter case we call xs, Sy a direct extension of xt, T y.

Note that xs, Sy ¤ xt, T y implies s Q t.

The following lemma introduces several possibilities to alter a U-tree to obtain a

new one, namely to restrict it, to remove an initial part or to attach the U-tree on

top of some finite strictly increasing sequence of ordinals in �.

Lemma 3.3 (and Definition). Let T be a U-tree with trunk t.

(1) If u P T , u Q t then Tæu :� t v P T : u P v _ v P u u is a U-tree with

trunk u and xt, T y ¥ xu, Tæuy. The case u P t is not of interest since then

Tæu � T .

(2) For u P T let TQu :� tv P r�s ! : u⌢v P T u. This is a U-tree with trunk

t� u if SucT puq P U0 or t� u � ∅.

(3) If u P r�s ! and maxpuq � maxptq then u � TQt :� tu⌢v : t⌢v P T u is a

U-tree with trunk u.

Proof. In every case all properties are evident from the respective definition. 

What is essentially needed in (3) are the properties SucT ptq P Umaxpvq and maxpvq  

minp SucT ptq q.

Lemma 3.4. Let xT� : �   �y, �   �, be a sequence of U-trees with the same trunk

t. Then
�
� � T� is again a U-tree with trunk t.

Proof. This is obvious as U� is �-complete for every �   �. 
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Let us now characterize compatibility.

Lemma 3.5. Let xs, Sy, xt, T y P PU . Then xs, Sy∥xt, T y iff ps P T and t P S q.

In particular xs, Sy∥xt, T y implies s P t or t P s.

Proof. Clearly xr,Ry ¤ xs, Sy, xt, T y implies s, t P r and hence s, t P R � S, T .

If s P T , t P S and s P t, then xt, pSæ tq X pTæ sqy P PU is a common extension of

xs, Sy and xt, T y. 

3.2. Ramsey properties of U-trees.

In this subsection we are going to prove that for every coloring of some U-tree one

can find a sub-U-tree which is homogeneous in the sense that all elements on the

same level have the same color. This is a version of the Rowbottom-Theorem for

colorings of r�s !. We will use this to prove a slightly more involved property of

this sort, namely that every graph on a U-tree can be restricted to a sub-U-tree

such that whether two nodes are connected only depends on the order configuration

of the ordinals in the two nodes.

Lemma 3.6. Let T be a U-tree and c : T Ñ � with �   �. Then there is a U-tree

T̄ � T with the same trunk homogeneous for c, i.e. every two elements of T̄ on the

same level have the same color.

Proof. We show by induction on n that for every coloring of a U-tree T with trunk t

with less than � many colors there is a U-tree Tn � T with the same trunk such that

the coloring is constant on all Levels of Tn up to |t| � n. By letting T̄ :�
�
n ! Tn

where for all n we know that c is constant on LevkpTnq for all k ¤ |t|�n we obtain

a U-tree homogeneous for c.

The assertion is obvious for n � 0. Thus let c : T Ñ � with �   � be a coloring

of a U-tree T . Consider for every � P SucT ptq the coloring cæ pTæ t⌢x�y q. By

the induction hypothesis there are U-trees S� � Tæ t⌢x�y such that c is constant on

LevkpS�q for all k ¤ |t|�n�1. Further, S :�
�
�PSucT ptq

S� is a U-tree and for every

� P SucSptq � SucT ptq and all u, v P Sæ t⌢x�y � S� with |u|�|t| � |v|�|t| ¤ n�1 we

obtain cpuq � cpvq. Denote this value of c by �,|u|�|t|. Then by the �-completeness

of Umaxptq there is H � SucSptq in Umaxptq such that all � P H have the same

sequence x�,k : k ¤ n � 1y and hence c is constant up to Level |t| � n � 1 on

Tn�1 :�
�
�PH S�. 

Now we establish partition results for colorings of T 2. The colors of a pair xu, vy P

T 2 may depend on the type of u, v, i.e., the way in which the sequences u and v are

interlaced. We shall prove that on a sub-U-tree the color of each pair only depends

on its type.
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Definition 3.7. Let u, v be finite strictly increasing sequences of ordinals. Then

typepu, vq P 3|ranpuqYranpvq| denotes the order configuration of u and v, i.e., enumer-

ate uY v strictly increasing as t �i : i   n u and define

typepu, vqpiq �

$'&'%
0 if �i P u z v

1 if �i P v zu

2 if �i P uX v

For example x0, 2, 0, 0, 1y tells us that u has four and v has two elements, that

the first element of v is the same as the second element of u, and that the second

element of v is bigger than all elements of u. This is depicted in Figure 2.

0
2
0
0
1

u v

Figure 2. The type x0, 2, 0, 0, 1y.

Theorem 3.8. Let T be a U-tree and c : T 2 Ñ � for some �   � where all the U�

are normal measures on �. Then there is a U-tree T̄ � T with the same trunk such

that for all u, v P T̄ the value of c only depends on the type of u, v.

This is an immediate consequence of the following.

Lemma 3.9. Let S, T be U-trees and c : S � T Ñ � for some �   � where all the

U� are normal measures on �. Then there are U-trees S̄ � S and T̄ � T with the

same trunks, respectively, such that for all u P S̄, v P T̄ the value of c only depends

on the type of u, v.

Proof. For, we conclude by induction on xm,ny:

Let S, T be U-trees with the trunks s and t, respectively. Further let

c : S � T Ñ � for some �   �. Then there are U-trees Sm � S with

trunk s and Tn � T with trunk t such that for all u P Sm, v P Tn with

|u| � |s| ¤ m, |v| � |t| ¤ n the value of c only depends on the type of

u, v.

We prove this by induction along the order on ! � ! defined by xk, ly   xm,ny iff

k ¤ m and l ¤ n, and k   m or l   n.

Since the cases where m � 0 or n � 0 follow from the previous lemma, let us assume

m,n � 0. We may first apply the induction hypothesis and therefore assume that c
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on S�T behaves as required for u, v with x|u|� |s|, |v|� |t|y   xm,ny. Now we will

successively thin out both trees in three ways to cover the different arrangements

of the largest elements of u and v.

To deal with the case maxpuq � maxpvq, we define another coloring c1 on S � T by

c1pu,wq � cpu,w⌢x�yq if maxpuq � � and w⌢x�y P T , and c1pu,wq � 0 otherwise.

By the induction hypothesis we can thin out S, T so that c1pu,wq depends only on

typepu,wq for u,w with x|u| � |s|, |w| � |t|y   xm,ny. Then cpu, vq is constant for

all u, v with |u| � |s| ¤ m, |v| � |t| ¤ n and the same type t if the last entry of t is

2 since then cpu, vq � c1pu, v � xmaxpvqyq.

Now we handle the case maxpuq ¡ maxpvq. For each pair xw, vy P S � T let

Xw,v :� t � P SucSpwq : cpw⌢x�y, vq � w,v u

where w,v   � is chosen so that Xw,v P Umaxpwq. Let us define a coloring c2

on S � T by c2pw, vq � w,v. We can assume that S, T are thinned out so that

c2pw, vq depends only on typepw, vq for w, v with x|w|�|s|, |v|�|t|y   xm,ny by the

induction hypothesis. Let Xw � △vPTXw,v for w P S, i.e., � P Xw iff � P Xw,v for

all v P T with maxpvq   �. Then Xw P Umaxpwq by normality. We restrict SucSpwq

to Xw for each w P S with |w| � |s| � m� 1. To see that cpu, vq is constant for all

u, v with |u|�|s| ¤ m, |v|�|t| ¤ n and the same type t if the last entry of t is 0, note

that in this case maxpuq P Xu�xmaxpuqy,v and hence cpu, vq � c2pu� xmaxpuqy, vq.

The procedure for the remaining case maxpuq   maxpvq is similar. 

It is possible to generalize Theorem 3.8 to arbitrary colorings of n-products of

U-trees.

3.3. Forcing with PU .

Now we investigate whether several properties of Prikry forcings also apply to PU .

For example we discuss a Prikry lemma to show the preservation of all cofinalities

but �’s and the reconstruction of the generic filter from the Prikry sequence.

Lemma 3.10. Let G be generic on PU , then

fG :�
�
t t : DT xt, T y P G u

is an !-sequence cofinal in �. Hence in V rGs we have cfp�q � ℵ0. We call fG a

Prikry sequence for U .

Proof. For every �   � the set

D� :� t xt, T y P PU : �   maxptq u

is dense and hence we know that fG is cofinal in �. By Lemma 3.5 all trunks of

elements of G are totally ordered by P. Accordingly, fG has to be an !-sequence. 
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Lemma 3.11. PU satisfies the ��-cc. Thus it preserves cofinalities and cardinals

greater than �.

Further, xPU ,¤
�y is �-closed.

Proof. The first claim is an immediate conclusion from the fact that there are

only � many possible trunks and Lemma 3.4. The second statement is a direct

consequence of the same lemma. 

For the next result we convey the proof of the Prikry lemma for the classical Prikry

forcing but use Lemma 3.6 as the analog of Rowbottom’s Theorem. It is also

possible to copy the proof given in [Git10] for the classical Prikry tree forcing.

Lemma 3.12 (Prikry lemma). Let xt, T y P PU and ' a statement in the forcing

language. Then there is a direct extension xs, Sy P PU of xt, T y deciding '.

Proof. Let xt, T y and ' as stated above. We apply Proposition 3.6 to the coloring

on T defined by

u ÞÑ

#
0 if there exists a U-tree X with trunk u such that xu,Xy , '

1 otherwise

and obtain a U-tree T̄ � T homogeneous for this coloring. Then xt, T̄ y decides

'. 

Corollary 3.13. The forcing PU does not add bounded subsets of �. In fact V� �

V
V rGs
� .

Proof. This follows from the previous two lemmas by standard methods. 

Corollary 3.14. The forcing PU preserves cofinalities of ordinals less than �. Hence

it also preserves all cardinals less or equal to �.

The following theorem sums up the preceding results.

Theorem 3.15. Let G be a generic filter on PU . Then in V rGs

(1) � is singular with cfp�q � ℵ0,

(2) all cardinals are preserved and also all cofinalities but �’s.

Furthermore V� � V
V rGs
� .

As for the classical Prikry forcing it is possible to reconstruct the generic filter from

the Prikry sequence.



10 PETER KOEPKE, KAREN RÄSCH AND PHILIPP SCHLICHT

Lemma 3.16. Let G be a generic filter on PU and f :� fG the associated Prikry

sequence. Then G � Gf where

Gf :� t xt, T y P PU : @n   ! fæn P T u.

Also the other direction works. If f is an !-sequence of ordinals in � and Gf is

generic on PU , then fGf � f .

Proof. It is enough to show G � Gf and that every two elements in Gf are com-

patible. Let xt, T y P G. For every n   ! there is some xs, Sy P G with fæn P s and

we can assume xs, Sy ¤ xt, T y which yields fæn P S � T and hence xt, T y P Gf .

For the second requirement let xs, Sy, xt, T y P Gf . According to the definition of

Gf we have s � fæ |s|, t � fæ |t| and thus s P T and t P S. Hence we finally obtain

xs, Sy∥xt, T y by Lemma 3.5. The second assertion is easily seen as xt, r�s !æ ty P Gf

for every t P f . 

It would be nice to have a characterization of Prikry sequences for PU as there is

of Prikry sequences for the classical Prikry forcing in form of the Mathias criterion

(see [Mat73]). Although we do not know of such a characterization, we have the

following proposition:

Proposition 3.17. Let f � fG for some generic filter G on PU and let f̃ be an

!-sequence equal to f on all but finitely many natural numbers. Then f̃ also is a

Prikry sequence for U .

Proof. We will show that Gf̃ is a generic filter on xPU ,¤y because Gf is. From

the proof of Lemma 3.16 we already know that every two conditions in Gf̃ are

compatible. Further, from xt, T y ¤ xs, Sy and xt, T y P Gf̃ it directly follows that

xs, Sy P Gf̃ .

Suppose fpiq � f̃piq for all i ¥ m and let t � fæ pm � 1q, t̃ � f̃æ pm � 1q, so

maxptq � maxpt̃q. Let p :� xt, r�s !æ ty and p̃ :� xt̃, r�s !æ t̃y. Further, define

ℎ : t q P PU : q ¤ p u Ñ t q P PU : q ¤ p̃ u, xt⌢u, T y ÞÑ xt̃⌢u, t̃⌢u� TQt⌢uy.

It is easy to see that ℎ is an isomorphism. Since p P Gf � G, we observe that G

is PU -generic below p. Thus, ℎrGf X t q P PU : q ¤ p us is PU -generic below p̃ and

moreover ℎrGf X t q P PU : q ¤ p us � Gf̃ X t q P PU : q ¤ p̃ u by the definition of

Gf̃ . 

4. Intermediate Models of Generic Extensions by PU

In this section, we show that the Prikry tree forcing for a sequence of pairwise

distinct normal measures is minimal. Let us consider the relation �V introduced

in the first section. The result can be stated as follows:
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Theorem 4.1. Let V rGs be a generic extension by PU where U is sequence of

pairwise distinct normal measures on �. Then for every set X P V rGs of ordinals

either X P V or X �V fG.

For the rest of this section we will refer to U as a sequence of pairwise distinct

normal measures on � and as we have seen in the first section in Lemma 2.2 with

this comes a sequence xA� : �   �y of pairwise disjoint subsets of � such that

A� P U�. Fix such a sequence xA� : �   �y.

The proof is split into two parts where the first one only handles new subsets of �

and the second part uses this to obtain a general result for all sets of ordinals in the

generic extension. The arguments are quite different and therefore we prove both

results in separate subsections dedicated to the particular step in the proof.

4.1. Subsets of � in the generic extension.

This subsection shows how to deal with Pp�qV rGs. More precisely, we are going to

prove the following theorem.

Theorem 4.2. Let V rGs be a generic extension by PU where U is sequence of

pairwise distinct normal measures on �. Then for every X P Pp�qV rGs either

X P V or X �V fG.

Before we start to prove the theorem we provide a helpful lemma.

Lemma 4.3. Let T be a U-tree. Then there is a U-tree T̄ � T with the same trunk

such that for all u, v P T with upnq � vpnq for some n   mint|u|, |v|u, we have

upmq � vpmq for all m ¥ n below mint|u|, |v|u.

Proof. Let T be a U-tree and shrink T to a U-tree T̄ in which all sets of successors

have been restricted to the appropriate A� as follows

T̄0 :� tu P T : u P t u

T̄n�1 :� tu P S : D �   � D v P T̄n

p v Q s ^ � P SucT pvq XAmaxpvq ^ u � v⌢x�y q u

T̄ :�
¤
n !

T̄n.

Note that Lev|s|�npT̄ q � T̄n for all n ¡ 0. Obviously T̄ is as required. 

Since we have proved that the set of all U-trees with the property from the lemma

is dense, we also have the following proposition which introduces a proof idea for

Proposition 4.2.

Proposition 4.4. Let f � fG for some generic filter G on PU and let d P V rGs be

a subsequence of f . Then either d is finite or d �V f .
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Proof. Let d be an infinite subsequence of some Prikry sequence f . Let ℎ be the

function mapping every �   � to the unique � with � P A� if � P
�
� �A� and to

0 otherwise. As we have seen in the previous lemma, the set

D :� t xt, T y P PU : @u P T SucT puq � Amaxpuq u

is dense in PU . The density yields some condition xt, T y P D XG.

We will now reconstruct f from d. This construction works recursively although

the idea is quite simple since from knowing dpn � 1q � fpn � 1q we also know

fpnq � ℎpfpn� 1qq. The latter is true because fæm P T for all m, hence it makes

sense to consider SucT pfæ pn � 1qq which is a subset of Afpnq for n � 1 ¥ domptq

and therefore ℎp�q � fpnq for all � P SucT pfæ pn� 1qq, especially for fpn� 1q. We

define

f0 :� d

fn�1 :� fn Y t pk, �q P ! � � : k � 1 P dompfnq ^ ℎpfnpk � 1qq � � u

and conclude f � t⌢p
�
n !fn æ p! zdomptqq q.

The inclusion from left to right follows by showing fnæ p! zdomptqq � f � t for all

n   !. Clearly this is true for f0 � d and the argument for the induction step has

been explained already.

Let us finally check f z t �
�
n !fn. Since d is infinite dompdq is unbounded in !

and hence for every k   ! there is lk P dompdq greater or equal to k. Now it is easy

to prove pk, fpkqq P flk�k by induction on lk � k for k ¥ domptq.

Since f war recursively defined from d, using ℎ P V , we have f P V rds. 

Now we prove Theorem 4.2.

Proof of the theorem. Let 9X be a name for some subset of � and xt, T y P PU . We

will show that there is p ¤ xt, T y such that

p , p 9X P V _ 9X �V 9f q

where 9f denotes the obvious name for the associated Prikry sequence.

By the Prikry lemma, we may assume that for every u P T the condition xu, Tæuy

already decides 9X up to maxpuq. For u P T define

Xu :� t �   maxpuq : xu, Tæuy , �̌ P 9X u.

Moreover, consider the following coloring

c : T � T Ñ 2, xu, vy ÞÑ

#
1 if Xu Xmaxpvq � Xv Xmaxpuq

0 otherwise

By Theorem 3.8 there is T̄ � T such that the values of c on T̄ � T̄ only depend on

the type of the arguments.
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Further, we may also assume by employing Lemma 4.3 that for all u, v P T with

upnq � vpnq for some n   mint|u|, |v|u, we have upmq � vpmq for all m ¥ n below

mint|u|, |v|u. Note that we have not changed the coloring by thinning out T .

Claim. For every s P T̄ and n   ! the coloring c is constant on the set

txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu.

Assume there are u, v P LevnpT̄Qsq with up0q � vp0q and cps⌢u, s⌢vq � 1. We may

further assume that maxpuq   maxpvq.

To begin with, we show that all u1, v1 P LevnpT̄Qsq with typepu1, v1q � talt satisfy

cps⌢u1, s⌢v1q � 1, where talt :� x0, 1, . . . , 0, 1y denotes the alternating type of two

sequences of length n. By our assumptions the type of u and v only consists of 0’s

and 1’s and hence is of length 2n. Furthermore, it ends with 1. We construct three

sequences w0, w1, w2 P LevnpT̄Qsq with typepw0, w1q � typepw2, w1q � typepu, vq

and typepw0, w2q � talt.

To understand the procedure look at Figure 3. There n � 3 and the exemplary

situation in which typepu, vq � x1, 0, 0, 1, 0, 1y is on the left side, where the squares

stand for u and the dots for v. The right side shows what we are going to construct.

u v

w0 w1 w2

Figure 3. x1, 0, 0, 1, 0, 1y ; talt.

We proceed by recursion on i   2n. Let ℓpiq � |tj   i : typepu, vqpjq � 0u|

denote the number of 0’s in typepu, vq up to component i. If typepu, vqpiq � 0,

then pick �0
ℓpiq ¡ maxp�1

i�ℓpiq�1, �
2
ℓpiq�1q in SucT̄ ps

⌢�0
0
⌢� � �⌢ �0

ℓpiq�1q and �2
ℓpiq ¡ �0

ℓpiq

in SucT̄ ps
⌢�2

0
⌢� � �⌢ �2

ℓpiq�1q. If typepu, vqpiq � 1, then pick �1
i�ℓpiq ¡ �2

ℓpiq�1 in

SucT̄ ps
⌢�1

0
⌢� � �⌢ �1

i�ℓpiq�1q. Of course if ℓpiq � 0 or i� ℓpiq � 0, then there are less

requirements to the choice of �0
ℓpiq, �

2
ℓpiq or �1

i�ℓpiq.



14 PETER KOEPKE, KAREN RÄSCH AND PHILIPP SCHLICHT

Clearly w0 :� s⌢�0
0
⌢� � �⌢ �0

n�1, w1 :� s⌢�1
0
⌢� � �⌢ �1

n�1 and w2 :� s⌢�2
0
⌢� � �⌢ �2

n�1

are as required. Therefore cps⌢w0, s
⌢w2q � 1 because

Xs⌢w0
� Xs⌢w1

Xmaxpw0q

� Xs⌢w1
Xmaxpw2q Xmaxpw0q � Xs⌢w2

Xmaxpw0q.

Now we continue by showing cps⌢u1, s⌢v1q � 1 for all u1, v1 P LevnpT̄Qsq with

typepu1, v1q � tsuc, where tsuc :� x0, . . . , 0, 1, . . . , 1y denotes the successive type

of two sequences of length n. Similar to what we did so far, we construct se-

quences w0, w1, . . . , wn P LevnpT̄Qsq with typepwj , wj�1q � talt for all j   n and

typepw0, wnq � tsuc.

Again we first look at the special case n � 3 and Figure 4 illustrates how we are

going to proceed.

w0 w1 w2 w3

Figure 4. talt ; tsuc for n � 3.

We proceed by recursion on the Cantorian well-ordering of ! � ! restricted to

n � pn � 1q. Pick �0
0 P SucT̄ psq. For pi, jq P n � pn � 1q with p0, 0q   pi, jq, we

distinguish two cases. If i � 0, then pick �j0 P SucT̄ psq with �j0 ¡ �0
j�1. If i � 0,

then pick �ji P SucT̄ ps
⌢�j0

⌢ � � �⌢ �ji�1q with �ji ¡ �j�1
i�1 .

As before it is easy to see that w0, . . . , wn with wj :� s⌢�j0
⌢� � �⌢ �jn�1 are as required

and hence the above argument shows cps⌢w0, s
⌢wnq � 1.

Finally, we easily obtain cps⌢u1, s⌢v1q � 1 for all u1, v1 P LevnpT̄Qsq. This is because

for such u1, v1, there is w P LevnpT̄Qsq with typepu1, wq � typepv1, wq � tsuc. For

n � 3 and typepu1, v1q � x1, 0, 0, 0, 1, 1y this can be seen in Figure 5.



A MINIMAL PRIKRY-TYPE FORCING 15

u1 w v1

Figure 5. tsuc ; x1, 0, 0, 0, 1, 1y.

Claim. The condition xt, T̄ y forces 9X P V _ 9X �V 9f .

Let G be generic over PU with xt, T̄ y P G. We first prove that for all k

XfGæ pk�1q � 9XG X fGpkq.

Let k   !. Since xfGæ pk � 1q, T̄æ p fGæ pk � 1q qy P G holds, we obviously obtain

XfGæ pk�1q � 9XG X fGpkq. Now let � P 9XG X fGpkq. Then there is a U-tree S with

trunk v P fG of length greater than k such that xv, Sy , �̌ P 9X and xv, Sy P G.

Since the conditions xv, Sy and p :� xfGæ pk� 1q, T̄æ p fGæ pk� 1q qy are compatible

and p decides 9X up to fGpkq ¡ �, also p , �̌ P 9X. Thus � P XfGæ pk�1q.

An even easier observation is that Xu � XvXmaxpuq for all u P v in T̄ . This holds

because xu, T̄æuy decides 9X up to maxpuq and will be useful in the end.

The rest of the proof describes a way to construct fG from 9XG if 9XG R V . Of

course t P fG.

Now assume we already have constructed s :� fGæm for some m   !. Starting

from s we now obtain fGæ pm � 1q. Assume there is n ¡ 0 such that the only

value of c on txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu is 0. Then u :�

fGæ pm� nq � s P LevnpT̄Qsq satisfies

Xs⌢u � XfGæ pm�nq � 9XG X fGpm� n� 1q � 9XG Xmaxpuq

and therefore Xs⌢v � 9XG X maxpvq holds for all v P LevnpT̄Qsq with up0q � vp0q.

It is clear that this uniquely determines fGpmq.

By the previous lemma the other case is that for all n ¡ 0 the only value of c

on txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu is 1. In this case 9XG equals�
�PSucT̄ psq

Xs⌢x�y P V . In order to see this, we show Xs⌢x�y � 9XG X � for all

� P SucT̄ psq. Let � P SucT̄ psq. Then there is k such that fGpkq ¡ � and by letting

n :� k� 1�m we can find u P LevnpT̄Qsq with upmq � � and maxpuq ¡ fGpkq. By
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our assumption Xs⌢u X fGpkq � XfGæ pk�1q and hence

Xs⌢x�y � Xs⌢u X � � XfGæ pk�1q X �.

By the preliminary observation this is all we had to show. 

4.2. Arbitrary sets in the generic extension.

Now we will apply the above to obtain a result about arbitrary sets in generic

extensions by PU following [GKK10].

Theorem 4.5. Let V rGs be a generic extension by PU where U is sequence of

pairwise distinct normal measures on �. Then for every set X P V rGs of ordinals

there exists Y � � such that X �V Y .

Proof. Let G be a PU -generic filter over V and X P V rGs a set of ordinals. We

proceed by induction on the least ordinal  having X as a subset. Since the case

 ¤ � obviously holds, we may assume  ¡ �.

Case 1: cfpq ¤ �.

If  is the successor of some ordinal �, then by the assumption XX� is constructibly

equivalent over V to some subset of �. But since X equals pX X�q Y t�u the same

subset of � works for X.

Let us assume that  is a limit ordinal. In V rXs fix an increasing cofinal sequence

x� : �   cfpqy of ordinals in . For every �   cfpq consider the set X X �

for which there is Y� � � such that X X � �V Y� by our assumption. Therefore

we may also assume x Y� : �   cfpqy in V rXs. Then X X � P V rY�s and thus

there is a set of ordinals z� P V such that X X � P Lrz�, Y�s. Moreover, let �� be

an ordinal such that X X � is the ��-th element in Lrz�, Y�s regarding  Lrz�,Y�s.

Since PU has the ��-cc and cfpq   �� we can find sets Z,A P V which have size

� in V and approximate x z� : �   cfpqy and x�� : �   cfpqy, respectively, i.e.,

for every �   cfpq the pair xz�, ��y is in Z � A. But then there is a bijection

ℎ : � Ñ Z � A in V . Furthermore, we denote by #Xp�q the least ordinal # such

that the pair xz, �y :� ℎp#q has the property that in V rXs

X X � is the �-th element in Lrz, Y�s regarding  Lrz,Y�s .

The pair xz�, ��y P Z �A has this property and hence the function #X : cfpq Ñ �

is well-defined and clearly an element of V rXs. Additionally, think of our sequence

xY� : �   cfpqy as Ỹ :� tx�, �y : � P Y�u � cfpq � �. Now code #X and Ỹ into a

subset Y of � which lies in V rXs then.

Eventually, #X , ℎ and xY� : �   cfpqy are elements of V rY s and hence so is the

sequence xX X � : �   cfpqy and X as its union.
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Note that we used nothing more but the fact that P satisfies the ��-cc in V .

Case 2: cfpq ¡ �.

By the induction hypothesis for every �    we have a subset of � constructibly

equivalent to XX� over V and we may assume that either XX� P V or XX� �V fG

by Theorem 4.2.

If there is �    such that X X � �V fG, then obviously X �V fG. The remainder

of the proof handles the case X X � P V for all �   .

Claim. Let X X � P V for all �   . Then X P V .

Let 9X be a name for X. For every �    we define

P� :� t p P PU : p , 9X X q� � �pXX�q u
which is non-empty and in V . Note that � ¤ � implies P� � P� . We distinguish

two cases in order to prove X P V .

If
�
�  P� � ∅, let p P

�
�  P�. Then for every �    let �    be an ordinal

greater than � and obtain

p , q� P 9X iff p , q� P 9X X q�
iff p , q� P �pXX�q iff � P X.

Hence X is definable in V .

If
�
�  P� � ∅, then construct a sequence xp� : �   y which has an antichain

as subsequence of length greater than � in V rXs. This contradicts our assumption

and hence case B cannot arise.

The definition of the sequence makes use of the whole sequence xP� : �   y and

therefore the construction takes place in V rXs. In case we have P��1 � P�, pick

p P P� zP��1 and let p� ¤ p such that

p� , 9X X�p��1q � �pXXp��1qq.

Otherwise, let p� be an arbitrary element of PU . Since the unbounded set Ξ :�

t �    : P��1 � P� u is in V rXs, also xp� : � P Ξy P V rXs. The fact cfpq ¡ �

tells us that |Ξ| ¡ � and therefore it remains to prove that for distinct �, � P Ξ the

conditions p� and p� are incompatible in PU .

Fortunately, this is an immediate consequence of the construction. If �   � are in

Ξ, then p� P P� � P��1 wich implies p� , 9X X �p��1q � �pXXp��1qq and on the

other hand we have p� , 9X X�p��1q � �pXXp��1qq.

This part of the proof used only that PU satisfies the ��-cc in V rXs.

All in all we finished the proof of Theorem 4.5. 
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5. Further Remarks

Let us return to the general setting, where the U� are just �-complete non-principal

ultrafilters over �. We explain why this is not sufficient for the minimality and state

partial results in this setting.

5.1. Why we require normality.

We will now look at a situation in which a generic extension by PU (without nor-

mality), or more general by any forcing which singularizes a regular cardinal, has

many proper intermediate models. For this we force over LU which denotes the

Silver model for the normal measure U . With our definition in Section 2 we have

LU � LrU s. Note that in LU there is a sequence xU� : �   �y of �-complete

non-principal ultrafilters over � such that there is as sequence of pairwise disjoint

sets xA� : �   �y with A� P U�, i.e., we only dropped the normality. To see the

existence of such a sequence in LU simply partition � into �-many parts of size �

such that the first one is in U . Then use appropriate bijections of � onto itself to

obtain the other ultrafilters as images of U .

On the other hand the Dodd-Jensen Covering Theorem for LU tells us the following.

Theorem 5.1 (Covering Theorem for LU for generic extensions of LU , [DJ82]).

Let LU rGs be a generic extension of the Silver model LU and let � be the measurable

cardinal in LU . Then exactly one of following holds

(1) LU rGs is covered by LU , i.e., for every set X P LU rGs there is a set Y in

LU such that X � Y and |Y | � maxt|X|,ℵ1u in LU rGs.

(2) There exists an !-sequence f P LU rGs cofinal in � which is a Prikry se-

quence for the classical Prikry forcing in LU and LU rGs is covered by LU rf s.

Now, let G be PU -generic over LU . Then in LU rGs the Covering Theorem for LU

is false. To see this, note that � is regular in LU and moreover � has cofinality !

in LU rGs.

However, the above theorem now yields an !-sequence f P LU rGs cofinal in � which

is a Prikry sequence for the classical Prikry forcing in LU . By the Theorem about

the intermediate models of generic extensions by the classical Prikry forcing, which

was cited in the introduction, LU rf s � LU rGs has a great variety of intermediate

models and therefore LU rGs cannot be minimal.

But this means that the forcing PU for the above sequence U adds a subset of �

which does not correspond to a subsequence of the Prikry sequence. Hence the

behavior is much worse than for PU with U consisting of normal measures or the

classical Prikry forcing.
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5.2. Partial results without normality.

Even without normality it is possible to prove that every subsequence of the Prikry

sequence constructs the whole Prikry sequence (see Corollary 4.4) and moreover it

is possible to reduce the question about intermediate models to subsets of �. This

may be helpful for investigating the classical Prikry tree forcing.

If every subset of � reduces to a subsequence of the Prikry sequence, then the

proof in [GKK10] for showing that under this assumption every set in the generic

extension by the classical Prikry forcing reduces to a subsequence of the Prikry

sequence almost works. In the second part of this proof we lack in a characterization

in the sense of the Mathias criterion for Prikry sequences coming from PU . However,

it is possible to prove some weak analog and together with Proposition 3.17 the

proof works. For more details consult [Räs10].
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