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Preface

Algebraic geometry starts with cubic polynomial equations. Everything of smaller de-
gree, like linear maps or quadratic forms, belongs to the realm of linear algebra. An
important body of work, from the beginning of algebraic geometry to our days, has
been devoted to cubic equations. In fact, cubic hypersurfaces of dimension one, so el-
liptic curves, are occupying a very special and central place in algebraic and arithmetic
geometry and cubic surfaces with their 27 lines form one of the most studied classes of
geometric objects.

Besides the intrinsic interest in cubic hypersurfaces, their study allows one to test
key techniques in modern algebraic geometry. In fact, quite a few central notions were
originally introduced to answer questions concerning cubic hypersurface before later
developed into indispensable tools for a broad range of problems. Most of the material
covered by these notes has been taught in classes and the guiding principle often was
to first introduce a general concept and then to see how it works in practice for cubic
hypersurfaces. As the title indicates, it is the geometry of these varieties that is at center
stage. In particular, the many interesting arithmetic aspects of cubic hypersurfaces are
barely touched upon. Moreover, as Hodge theory is one of the key technical tools, we
often stick to hypersurfaces over the complex numbers.

The first three chapters cover the general theory of cubic hypersurfaces, their Fano
varieties and their moduli spaces. The next three chapters are devoted to cubic hyper-
surfaces of dimension two, three, and four. The theory is less well developed beyond
dimension four and we leave out completely the case of dimension one, i.e. of elliptic
curves. The last chapter deals with some general categorical aspects of cubic hypersur-
faces, again mostly of dimension three and four. The (detailed) list of contents should
give a fairly clear idea of the subjects and results that will be discussed.
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12 Chapter 0. Preface

These notes have their origin in a lecture course at the University of Bonn in the
winter term 2017 - 2018. Other parts were presented during lent term 2020 in Cambridge
and in the winter term 2021 - 2022 again in Bonn. As the lectures, these notes assume a
solid background in algebraic and complex geometry but are otherwise self-contained.

I am most grateful to colleagues and students who attended the lectures these notes
are based on. Their interest, questions, and comments have been extremely helpful and
motivating. Many people have made valuable comments on these notes for which I
am truly grateful. My sincere thanks go to: Pieter Belmans, Frank Gounelas, Moritz
Hartlieb, Emmanuel Kowalski, Alexander Kuznetsov, Robert Laterveer, Jia-Choon Lee,
Andrés Rojas, Samuel Stark, Mauro Varesco, and Xiangsheng Wei.

Financial support and hospitality of the following institutions is gratefully acknowl-
edged: The Hausdorft Center for Mathematics (Bonn), DPMMS and Gonville & Caius
College (Cambridge), and the Institute for Theoretical Studies (ETH, Zurich). In the last
phase, my research was partially funded by the ERC-Synergy Grant 854361 HyperK.

Cross-references and proofs: Cross-references of the type ‘Theorem 1.2.3” refer to
Theorem 2.3 in another chapter, here in Chapter 1, whereas ‘Proposition 2.3’ refers to
Proposition 2.3 within the same chapter.

Notation: In the first chapters we discuss cubic hypersurfaces of arbitrary dimensions.
Later when dealing with particular dimensions we will usually denote cubic surfaces by
S c P3, cubic threefolds by ¥ ¢ P*, and cubic fourfolds by X ¢ P?.



Basic facts

This first chapter collects general results concerning smooth hypersurfaces, especially
those of relevance to cubic hypersurfaces. Results that are particular to any special di-
mension — cubic surfaces, threefolds, etc., behave all very differently — will be dealt
with in subsequent chapters in greater detail.

1 Numerical and cohomological invariants

The goal of this first section is to compute the standard invariants, numerical and co-
homological, of smooth cubic hypersurfaces X ¢ P"*!. Essentially all results and argu-
ments are valid for arbitrary degree, but specializing to the case of cubics often simpli-
fies the formulae. Most of the results hold for hypersurfaces over arbitrary (algebraically
closed) fields. However, to keep the discussion as geometric as possible, we often pro-
vide arguments relying on the ground field being the complex numbers and only indicate
how to reason in the general situation. See Section 1.6 for more specific comments.

1.1 Lefschetz hyperplane theorem Let us begin by recalling the Lefschetz hyper-
plane theorem, see e.g. [474, V.13] and, for the ¢{-adic versions over arbitrary fields,
[209, Exp. XII], [1, Exp. XI], or [147, IV]:

Assume X C Y is a smooth ample hypersurface in a smooth complex projective
variety Y of dimension n + 1. Pull-back and push-forward define natural maps between
(co)homology and homotopy groups. They satisfy:

(i) H*(Y,Z)— H*(X,Z) is bijective for k < n and injective for k < n.
(1) Hi(X,Z)— Hi(Y,Z) is bijective for k < n and surjective for k < n.
(iil) mp(X)—m(Y) is bijective for k < n and surjective for k < n.

Combined with Poincaré duality HX(X,Z) ~ Hy,_1(X,Z), these results provide infor-
mation about the cohomology groups of X in almost all degrees. For example, combin-

13



14 Chapter 1. Basic facts

ing the Lefschetz hyperplane theorem with the usual ring isomorphism H*(P**!,7Z) ~
Z[hp]/(h2?), where he = ¢1(O(1)) € H*(P"*', Z), implies the following result.

Corollary 1.1. Let X ¢ P! be a smooth hypersurface of dimension n > 1 and degree
d. Then X is simply connected and for k # n one has

. Z ifkiseven
HY(X,Z) ~
0 ifkisodd. O

For smooth cubic hypersurfaces X of dimension at least two, 1 (X) = {1} can also be
deduced from the unirationality of X, see Remark 5.13 or Remark 2.1.23.

Exercise 1.2. To make the above more precise, prove for 4 := hp|y that

Z - h¥ if2k<n
H*(X,Z) =
Z-(hK*/d) if 2k > n.

Remark 1.3. At this point it is natural to wonder which of the classes (1/d)h* €
H*(X,Z), 2k > n, are actually algebraic, i.e. can be written as an integral(!) linear
combination Y n; [Z;] of fundamental classes [Z;] of subvarieties Z; C X of codimen-
sion k. This is not always possible and first examples of non-effective curve classes on
hypersurfaces in P* of large degree were constructed by Kollar [34].

However, every smooth cubic hypersurface X ¢ P"*!, n > 1 contains a line P! c X,
see Proposition 2.1.19 or Remark 2.3.6. Hence, for d = 3 the generator (1/3) h*~! of
H?""2(X,Z) is algebraic. In Exercise 5.2 we will see that for example the generic cubic
hypersurface X ¢ P’ does not contain a linear P> ¢ X and, therefore, there is no natural
candidate for a cycle representing the generator 4*/3 of H%(X, Z).

Remark 1.4. According to the universal coefficient theorem, see e.g. [155, p. 186],
there exist short exact sequences

0— Ext' (H,_1(X, Z), Z) — H*(X, Z) — Hom(H(X, Z), Z) —=0.

We apply this to the hypersurface X ¢ P**! and k = n. As H,_(X,Z) ~ H,_;(P"*!,Z) is
trivial or isomorphic to Z, one finds that

H"(X,Z) ~ Hom(H,(X, Z), Z) ~ 7%,
In other words, H"(X, Z) is torsion free.

Exercise 1.5. Assume X c P"*! is a smooth hypersurface of degree d > 1 and P! ¢ X
is a linear subspace contained in X. Show that then ¢ < n/2. The same result then holds
for all smooth hypersurface over a field of characteristic zero. See Remark 3.3 for a
geometric and more elementary argument which also works for char(k) > d.
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1.2 Twisted Hodge numbers and Picard group There is an algebraic proof of the
Lefschetz hyperplane theorem, at least with coefficients in a field. The argument can be
combined with Bott’s vanishing results to gain control over more general twisted Hodge
numbers (and not merely Betti numbers). As those will be frequently used in the sequel,
we record them here.

We start with the classical Bott vanishing for P := P(V) ~ P"*!, which can be deduced
from the (dual of the) Euler sequence

0—Qr—>V'®O(-1)—=0—0 (1.1)

and the short exact sequences obtained by taking exterior products

00— ——= N (V'@ O(-1)) o' 0.

A closer inspection of the associated long exact cohomology sequences reveals that
HI(P,Qp(k) =0

for all p, g, and k with a short list of exceptions for which the dimensions /h4(P, Qg(k)) =
dim HY(P, Qg(k)) are computed as follows:

() fO<p=g<n+l,k=0,then h"’(P) = h’(P,Q0) = 1,
(ii) If g = 0, k > p, then KO(P, QL (K)) = ("*'1*7) - (";‘), or
(iii) If g=n+1,k < p—(n+ 1), then "', QLK) = (17) - (170

-k n+l-p

The last two cases are Serre dual to each other and the well known formula

n+l+k)

0 —
h™(P, O(k)) —( k

(1.2)

is a special case of (ii).
To deduce vanishings for X one then uses the standard short exact sequences

0—Q2(~d) —QF — Q| —0,
0— Ox(=d) — Qp|xy — Qx —=0, (1.3)
the dual of the normal bundle sequence, and the exterior powers of the latter
OQQ’;I(—d)—>-Qf;|Xa-Q’;a-O. 1.4)
Note that as a special case of (1.4) one obtains the following adjunction formula.
Lemma 1.6. The canonical bundle of a smooth hypersurface X C P! of degree d is

wyx =~ Ox(d - (n+12)). (1.5)
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It is ample for d > n + 2, trivial for d = n + 2, and anti-ample (i.e. its dual w is ample)
in all other cases. O
Applying cohomology and Bott vanishing to (1.3) and (1.4) then gives
Corollary 1.7. For k < d, the natural map
H(P, Qg (k) — H(X, QY (k)
is bijective for p + g < n and injective for p + q < n. O
Note that in particular, Kodaira vanishing holds (over any field!):
HY(X, Q% (k) =0
for k > 0 and p + g > n, which is Serre dual to the vanishing for p + ¢ < n and k < 0.

Remark 1.8. For d = 3 and n > 1, the vanishing of HO(X, Qf() =0, p > 0, can also
be deduced (at least in characteristic zero) from the fact that cubic hypersurfaces are
unirational, see Section 2.1.5.

Corollary 1.9. Let X c P! be a smooth hypersurface of degree d. If n > 2, then
Pic(X) ~Z - Ox(1).
Forn=2d<n+1=3, and k = C, one has Pic(X) ~ H*(X, Z).

Proof For k = C, the proof is a consequence of the exponential sequence (in the
analytic topology) 0 —=Z — Ox — O} —0, which gives the exact sequence

HI(X’ OX) ﬁHl(X’ O;() — HZ(X7Z) ﬁHZ(X’ OX)

Now, by the Lefschetz hyperplane theorem or Corollary 1.7, H' (X, Ox) = 0 forn > 1
and H*(X, Ox) = 0 for n > 2 and, using Serre duality, also ford <n+1 = 3.

See [209, XII. Cor 3.6] for a proof over arbitrary fields. The vanishing H*(X, Ox) = 0
is there used to extend any line bundle on X to a formal neighbourhood and then to P!
by algebraization. O

Exercise 1.10. Show that the cotangent bundle Qy, and hence the tangent bundle 7y,
of a smooth hypersurface X ¢ P"*! of degree d > 3 is stable. In other words, for any
subsheaf F C Qy of rank 0 < r < n with det(F) ~ Ox(k) one has the slope inequality
k/r <(d - (n+2))/n.

Remark 1.11. Let us rephrase the above results in the motivic setting, cf. [21, 367] for
basic facts and standard notations. For the pure motive h(X) of a smooth hypersurface
X c P"*! of degree d there exists a decomposition

BX) = HX)p & EP Q=)

i=0
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in the category of rational Chow motives Mot(k), cf. [388]. Here, Q(1) is the Tate motive
(Spec(k),id, 1) and the primitive part H(X),, has cohomology concentrated in degree n.
Moreover, CH*(h(X),,) contains the homological trivial part of CH*(X). The decompo-
sition is known to be multiplicative, which is a result of Diaz [153] and Fu, Laterveer,
and Vial [184].

Note that not so much more is known about the Chow ring of (cubic) hypersurfaces.
However, according to Paranjape [385], see also [427], one knows CH" ! (X)®Q =~ Q for
smooth cubic hypersurfaces of dimension n > 5. See Section 7.4. for further information
on Chow groups and Chow motive and references.

1.3 Euler and Betti numbers It remains to compute the Betti number b,(X) :=
dimg H"(X, Q) of a smooth hypersurface X ¢ P = P"*! and we approach this via the
Euler number

2n 2n
e(X) =Y (=1 bi(X) = Y (=1 bi(X) + (=1)" bu(X).
i=0 i=0,#n

Using b;(X) = b;(P) fori = 0,...,2n, buti # n, one finds

n+ b,(X) if n is even
e(X) =
n+1-b,(X) ifnisodd.

Rephrasing this in terms of the primitive Betti number b,(X), = dimg H"(X, Q),r,
which equals b,(X) — 1 for even n > 0 and b,(X) for n odd (use b,_»(X) = 1 and 0,
respectively), implies

by(X)pr = (=1)*(e(X) = (n + 1)).

This reduces our task to computing e(X) = fx ¢, (X). Now, the total Chern class of X
can be computed by using the restriction of the Euler sequence (1.1) and the dual (1.3)
of the normal bundle sequence:

c(X) = ciX) = o(Tely) - o(Ox(d))™ = c(Ox(1))"? - o(Ox(d))™

ARy 2 ~(n+2\
_ZT:EZT—_(I—dh+(dm i~~)'§;( i)h,

where as before & = ¢;(Ox(1)). Hence,

! 2
c(X) = E . ((_1)n+2 .dn+2 4+ .. i(n:l- )dZ) Al

=%(a—wﬂ+wm+m—QWﬂ



18 Chapter 1. Basic facts
which combined with [, 4" = d leads to

1 n+2
eX) = - (1 =ay+d-(n+2)-1).
For d = 3 the right-hand side becomes
1 n+2

e(X) = §((—2) +3-n+5) (1.6)

or, more instructively, for the Euler number e, of the n-dimensional cubic hypersurface:
em=2m+2+> 4 and ey =2m+2-2 4.
i=0 i=0

Corollary 1.12. The primitive middle Betti number of a smooth hypersurface X c P!
of degree d and dimension n > 0 is given by

bu(X)pr = (";)n (d=1+1-ay*),

which for d = 3 becomes by(X)pe = (=1)" - (2/3) - (1 + (=1)" - 2"*1). o

We record the result for cubics and small dimensions in the following table. Further
information about the intersection form, to be discussed a little later, is also included.

-162 170 170

351 342 343 163 (253,90)
-672 682 682
1377 1366 | 1367 | —485 (441,926)

n| eX) | ba(Xpe | ba(X) | T(X) | (b;(X), b, (X))
0 3 3 3 3 (3,0)
1 0 2 2

2 9 6 71 -5 (1,6)
3| -6 10 10

4 27 22 23 19 (21,2)
5| -36 42 42

6 93 86 87 | -53 (17,70)
7

8

9

0

—_

Exercise 1.13. Denote by b,y the n-th primitive Betti number of a smooth cubic hy-
persurface X ¢ P"*!. Show that then

bn+1,pr =2 bn—l,pr + bn,pr-

For a geometric reason behind this equality see Remark 5.21.
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Exercise 1.14. Let b, be the n-th Betti number of a smooth cubic hypersurface of di-
mension n. Show that then

by=— (2" +3+(=1)"-7)

N =

or, alternatively,

by =2 + 24", boppsy =2 - Z4i, and byeq = 2 by — 4.
i=0 i=0

1.4 Hodge numbers and y,-genus After having computed all Betti numbers b;(X)
of smooth hypersurfaces X ¢ P"*!, we now aim at determining their Hodge numbers
hP4(X) = dim H%(X, Q%). In principle, the Hodge numbers can be computed from the
normal bundle sequence (1.3) and the Euler sequence (1.1) and it is a good exercise to
do this in low dimensions. However, the information is more elegantly expressed via a
universal formula that determines all the Hodge numbers for hypersurfaces of a fixed
degree but of arbitrary dimension.

Exercise 1.15. Use the description of the canonical bundle wy in Lemma 1.6 and the
sequences (1.4) to compute the remaining Hodge numbers for cubic hypersurfaces of
dimension three and four. More precisely, show that for a cubic threefold ¥ ¢ P* one
has

WOY) = h%3(Y) = 0and K> (Y) = K2 (Y) = 5
and that for a cubic fourfold X c P3 the middle Hodge numbers are
h*0(x) = i (X) = 0, B*'(X) = K13 (X) = 1, and h**(X) = 21.

In general, the Hodge numbers are encoded by the Hirzebruch x,-genus, which for
an arbitrary smooth projective variety X of dimension 7 is defined as the polynomial

Xy(X) =D xP(X)y”
p=0

with coefficients x”(X) = x(X, Q) = >-/_o(=1)? hP4(X). For example, x,(P") = 1 —
yE-+ (=D
Corollary 1.16. For a smooth hypersurface X C P"*! one has
-1D? if2p#n
XPX) = (D" RPPX) +
0 if2p=n

and, therefore, for 2p #n



20 Chapter 1. Basic facts

WP P(X) # 0 ifand only if xP(X) # (—1)?
" P(X) =1 ifandonlyif (X)) =(-1)""7+ (-1)". =

This can be pictured by the Hodge diamond, which distinguishes the two cases n
even and n odd. The discussion prompts certain natural questions: For which d and # is
% % 0? Or, how can one compute max{p | h”"~7 # 0}, which encodes the level of the
Hodge structure of X? For example, by Corollary 1.7 one knows that /0 = 0 for cubic
hypersurfaces of dimension n > 1.

.
| N 1
R X RN
1 RN . N S|
oo L h”721£/\2 cee pOn e 4 1D/2,(n=1)/2 \h(\n\—l)/Z,(n-H)/Z
1 R X 1 AN
1 1
J

In principle, x,(X) can be computed by the Hirzebruch-Riemann-Roch formula

X'(X) = f ch(Q)) - td(X),
X

which expressed in terms of the Chern roots y; of Ty becomes

T (l-ye)y
@ = | [[——=.
Xy(X) inzl o

cf. [245, Cor. 5.1.4]. The characteristic classes of Qﬁ and of Ty, the latter are needed
for the computation of td(X), can all be explicitly determined by means of the Euler
sequence for P and the normal bundle sequence for X c P. However, the computation
is not particularly enlightening until everything is put in a generating series, cf. [235,
Thm. 22.1.1].

Theorem 1.17 (Hirzebruch). For smooth hypersurfaces X, € P"*' of degree d one has

- w _ 1 4y’ - (-2
2N = G S Teyar ey (o (47
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A variant of this formula for the primitive Hodge numbers
WP (X))o i= dim H?(X)pe = B (X)) = 6,4

was worked out in [ 1, Exp. XIJ:

1 1+v)¥ = (1+2)¢
Z WKy = A+n(+2) (1(+ )? + El +Z;d -
2.q=0.n>0 y < )y )z

We consider the usual specializations of the y,-genus for cubic hypersurfaces (d = 3):

(1) y = 0. So, we consider y,—o(X) = )(O(X) = x(X, Ox). The left-hand side of (1.7) is
readily computed as

ZX(anOX”)Z’H-l = 3Z+0Z2 +Z3 +Z4+"' .
n=0

Indeed, the first two coefficients are y(Xo = {x1, X2, x3}, Ox,) = 3 and y(X; = E,O) =
0, where E is an elliptic curve. For n > 1 use Bott vanishing and the short exact sequence
00— Op(=3) — Op —= Ox —=0 to compute y(X, Ox) = y(P, Op) — x(P, Op(-3)) =
1. Alternatively, simply use (X)) = h?9(X) = dim H(X, Qg() =0forg>0.

To confirm (1.7) in this case, we compute its right-hand side and indeed find

IL_Z(1—(1—z)3)=IL_Z—(l—z)2

=(l+z+2+-)-(1-22+72)
=37+02 42+ 4+

(ii) y = —1. Observe that y,-_1(X) = e(X). In this case, (1.7) taken literally gives
= 1 1-2P8-(1-2

e Xn Z}’l+1 — . ,
2 %) (1-27 (I-2°-(1-2p

n=0

which is of course not very instructive. Only when the right-hand side of (1.7) fory = —1
is computed as the limit for y——1via L’Hopital’s rule, one obtains the useful formula

00 3Z
Xn }'H-l:
;e( S i ra 29
=3z-(Il+z+22+-)Y-(1-2z+Q22°-22* =)
=372+072+92 +---,

which sheds a new light on (1.6). The reader may want to check that one indeed gets
the same answer.
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(iii) y = 1. This is the most interesting case. According to the Hirzebruch signature
theorem [235, Thm. 15.8.2] we have

Xy=1(X) = 7(X).
To prove this, recall that for n = 0 (2) the intersection pairing
H'(X,R)x H'(X,R)—R

is a non-degenerate symmetric bilinear form which, of course, can be diagonalized to
become diag(+1,...,+1,—-1,...,—1). Now, by definition,

7(X) = b} (X) - b;(X), (1.8)

where b} (X) is the number of +1. Then the Hodge—Riemann bilinear relations imply
(X) = ZM(—I)P h(X) = Zp’q(—l)q h?4(X), cf. [245, Cor. 3.3.18]. Note that, al-
though the definition of the signature only involves the middle cohomology, indeed all
Hodge numbers h79(X), also the ones for p + g # n, enter the sum.

As a side remark, observe that the right-hand side of (1.7) for y = 1 reads

1 I+ -(1-2
(1-22) (A+2?+ (1 -2
which is anti-symmetric in z. Hence, only the X, with n = 0 (2) enter the computation,

so that one need not worry about defining an analogue of the signature for alternating
intersection forms. In any case, (1.7) implies for d = 3 the intriguing formula

(e

67+27

n+l _
2 T = (1-22Q2+62%)

n=0
=z-B+)- A+ ++)-(1-32+3B) -3 =)
=7-3-52+19z*-535+16378-4857'%+...).

Maybe more instructive is the explicit formula for the signature of an even dimensional
smooth cubic hypersurface X,,, = X c P>+

T(Xom) = (=1)"-2-3"+ 1. (1.9)

Remark 1.18. Later, see Theorem 4.21 and (4.7) in Section 4.3, we will see that for a
smooth cubic hypersurface X ¢ P"*! the middle Hodge numbers are given by
n+2 )

=[5,

These numbers are reasonable in the sense that they satisfy complex conjugation
hP"=P = p""P-P_but the combinatorial consequence of combining ZZ:O R P (X)) =
b, (X)pr with Corollary 1.12 seems less clear, see Exercise 4.13. From this description
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we will eventually be able to read off easily properties of Hodge numbers. For example,
one finds:

(i) W P(X)pr #0if and only if n — 1 < 3p < 2n+ 1 and
(ii) h?"P(X)p = lifand only if 3p =2n+1or3p=n-1.
(iii)) The level of the Hodge structure

€= (H"(X)) = max{ |p— gl | H*(X) # 0}

satisfies £ > 1 for n > 5 and ¢ > 2 for n > 8. The first computations of this sort
were done by Rapoport [398].

Note that the two cases in (ii) are Serre dual to each other.

Exercise 1.19. Show that only for n = 3 and n = 5 the middle cohomology H"(X, Z) is
the Tate twist of the Hodge structure of a (principally polarized) abelian variety. In other
words, only in these cases the intermediate Jacobian J"(X) is naturally a principally
polarized abelian variety, see Section 2.5.5 for a reminder of the definition.

In principle, we have now computed all Hodge numbers of smooth (cubic) hypersur-
faces, but decoding (1.7) is not always easy. For later use, we record the middle Hodge
numbers of smooth cubic hypersurfaces of dimension < 10. See Section 3.3.1 for a brief
reminder of Hodge structures.

n | bu(X)p Hr, e

1 2 HY o H"! 11

2 6 Hy' 6

30 10 H>' o H'? 55

41 22 H*' @ H) & H'? 120 1

50 42 H>? @ H> 21 21

6 86 HY? o H); & H** 8 70 8

71 170 H>? @ H* @ H>* @ H>® 1 84 84 1

8| 342 H» o Hy' ® H 45 252 45

9| 682 H%? @ H>* @ H*S @ H>¢ 11 330 330 11
10 | 1366 | H? e H o H, @ H®H> | 1 220 924 220 1




24 Chapter 1. Basic facts

1.5 Intersection form Our next goal is to determine the intersection form on H" (X, Z)
for a smooth cubic hypersurface X ¢ P = P**!, Recall from Section 1.1 that H"(X, Z)
is torsion free, i.e. H(X,Z) ~ Z®» X, The non-degenerate, and in fact unimodular,
intersection pairing

H'(X,Z) x H'(X,Z) — H*(X,Z) ~ Z

is symplectic for n = 1 (2) and symmetric for n = 0 (2). In the first case, H"(X, Z) admits

a basis y1, ..., ¥p,=2m for which the intersection matrix has the standard form
0 1
0 1
-1 0.
-1 0

For n = 0(2) the intersection pairing on H"(X,Z) defines a unimodular lattice. In
other words, the determinant of the intersection matrix (with respect to any integral
basis), i.e. the discriminant of the lattice, is +1. The classification of unimodular lattices
is a classical topic. It distinguishes between even lattices, i.e. those for which (a.a) =
0(2) for all @ € A, and odd lattices.

Assume that A is an odd Iattice, i.e. that there exists @ € A with (a.a@) = 1 (2), which
is unimodular and indefinite. Then, see [422, V. Thm. 4]:

A=, =2 ®Z(-1)*,

where Z(a) is the lattice of rank one with intersection form given by (1.1) = a. This can
be applied to the middle cohomology of any even-dimensional, smooth hypersurface of
odd degree, as (h"/?.h"?) = fx W22 = g,

That the intersection pairing on H"(X, Z) is indeed indefinite can be deduced easily
(at least for cubic hypersurfaces) from a comparison of 7(X) and b,(X), cf. Corollary
1.12 and (1.9).

Corollary 1.20. Let X ¢ P"™! be a smooth cubic hypersurface of even dimension. Then
the intersection form on its middle cohomology describes a lattice isomorphic to

H"(X,Z) ~ Z(D)®" @ Z(~1)®" ~ Ty .

Here, b* := b*(X) are uniquely determined by b} + b, = b,(X) = (1/3) (2"*? +5), see
Corollary 1.12, and b} — b, = v(X) = (=1)"/?-2-3"2 1 1, see (1.9). |

More interesting, however, is the primitive cohomology H"(X, Z),,. The intersection
form is still non-degenerate there, but not unimodular, and, as it turns out, not odd.
By definition and using that b, = 1 for even n > 0, H"(X,Z),, is the orthogonal
complement (k") ¢ H'(X,Z).
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It is important to note that
Z-h"? e H"(X,Z), C H'(X,Z) (1.10)
is not an equality. It describes a subgroup of finite index. The square of the index is
ind® = xdisc (Z - 1"'?) - disc (H"(X, Z)y) = +3 - disc (H"(X. Z)y).

where we use that H"(X,Z) is unimodular and Z - #"/? ~ Z(3), see [249, Ch. 14.0.2]
for the general statement and references. This also shows that the discriminant of the
intersection form on H"(X,Z),, is at least divisible by three and, therefore, H" (X, Z),
is not unimodular. In fact, disc(H"(X,Z),:) = 3, because the discriminant groups of
Z - h and H"(X, Z),, are naturally isomorphic, cf. [249, Prop. 14.0.2]. This can also be
deduced from the explicit description below.

The following is a folklore result for cubics (in dimension four, cf. [226] and Sec-
tion 6.5.2) and has been generalized to other degrees and complete intersections by
Beauville [55]. For the definition of the lattices A,, E¢, Eg, and U see [249, Ch. 14] and
the references therein.

Proposition 1.21. Let X ¢ P! be a smooth cubic hypersurface of even, positive di-
mension. Then the intersection form on its middle primitive cohomology H"(X, Z), is
described as follows:

(i) Forn =2 one has H'(X,Z)y ~ E¢(-1).
(ii) Forn > 2 one has H'(X,Z)pr =~ A2 ® E?f“ ® U®. Here, b = min{b} (X) - 3, b, (X)}
and

Yo - = =tam-3 =121 in=
Sy =0, =)= S0 -3)= 23"~ 1) ifn=0(4)

Yo —pas3zlne _ Lanp =
b, —bi+3=2(G-700) = 73"+ 1) ifn=204).

In particular, disc (H”(X, Z)pr) = 3 and the inclusion (1.10) has index three.

Note that n = 0(4) if and only if b > b, see (1.9). Also, observe that b >
(1/3)(2"+! — 37/2+1 _ 1), which is rather large for n > 4, i.e. H*(X, Z), contains many
copies of the hyperbolic plane U. This often simplifies lattice theoretic arguments.

Proof Assume n > 2, so that b} (X) > 3, and consider the odd, unimodular lattice
A =2 ®Ey" @ U®.
It has rank rk(A) = b,(X) and signature T7(A) = 7(X).! Therefore, A and H"(X,Z) are

! Note that T = 3(8) is a general fact for unimodular lattices containing a characteristic element @ with
(@.@) = 3(8), cf. [422, V. Thm. 2]. In our situation, 7(X) = 3 (8) can be deduced from (1.9).
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odd, indefinite, unimodular lattices of the same rank and signature and hence isomorphic
to each other (and to I+ ,-), cf. [422, V. Thm. 6].

Recall that a primitive vector @ € A in an odd unimodular lattice A is called charac-
teristic if (a.8) = (B.6) (2) for all B € A. Obviously, the orthogonal complement a* C A
of a characteristic vector is always even. The converse also holds, cf. [322, Lem. 3.3].
Indeed, for any primitive @ € A in the unimodular lattice A there exists 8y € A with
(a.Boy) = 1. Then for all 8 € A the vector 8—(a.B) By is contained in a* and in particular
of even square if a* is assumed to be even. Hence, (8.8) = (a.ﬁ)2 - (Bo.Bo) (2). As A'is
odd, there exists a 8 with (8,8) odd and hence (By)> must be odd. Altogether this proves
Bp = (oz.ﬁ)2 = (a.f) (2) for all B, i.e. a is characteristic.

For example, (1,1,1) € Z* is characteristic, for its orthogonal complement is A,.
In this case it can also be checked directly by observing that ((1, 1, 1).(xy, x2, x3)) =
X1+ X+ X3 = X7+ x5 + x5 = ((x1, X2, %3).(x1, X2, x3)) (2). But then (1,1,1) € Z% c A
is also characteristic for A and its orthogonal complement is the lattice in (ii).

One now applies a general result for unimodular lattices from [487, Thm. 3]: Two
primitive vectors @, 8 € A are in the same O(A)-orbit if and only if (a.a) = (8.8) and
both are either characteristic or both are not.

Therefore, to prove the assertion, it suffices to show that n? € H'(X,Z) is character-
istic or, equivalently, that H"(X, Z),, is even. We postpone the proof of this statement to
Corollary 2.14, where it fits more naturally in the discussion of Picard—Lefschetz reflec-
tions and of the monodromy action for the universal family of hypersurfaces. A more
topological argument was given by Libgober and Wood [322].

It remains to deal with the case n = 2, where we have H*(X,Z) ~ I;6. It is easy
to check that @ := (3,1,...,1) € I, 4 is characteristic with (@)? = 3 and its orthog-
onal complement turns out to be Eg(—1) = a* C I;4. Indeed a computation shows
that ¢; == (0,1,-1,0,0,0,0), e, = (0,0,1,-1,0,0,0), e3 := (0,0,0,1,-1,0,0), e4 =
(1,0,0,0,1,1,1), es :== (0,0,0,0,1,-1,0), and e7 := (0,0,0,0,1,—1) span a* and that
their intersection matrix is indeed E¢(—1). See also the discussion in Section 4.3.4.

Now consider the class of the hyperplane section 4 € H?*(X,Z). As in this case
Pic(X) ~ H*(X,Z), one can argue algebraically, using the Hirzebruch-Riemann-Roch
formula, to prove that 4 is characteristic. Indeed,

(L.L) ;r (L)

implies (L.L) = (L.h) = 0(2) and (L.h) = 0 for L € h*. Hence, using [487, Thm. 3]
again, H*(X,Z),y ~ a* ~ Eg(-1).

Later we will describe the isomorphisms H*(X, Z)pr = E(—1) from a more geometric
perspective and, in particular, write down bases of both lattices in terms of lines, see
Sections 4.1-3. |

XX, L) = 1
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Remark 1.22. Kulkarni and Wood [290, Thm. 11.1] show that the purely lattice theo-
retic description in Corollary 1.20 of the intersection product on H"(X,Z) can be real-
ized geometrically in the following sense:

e For n = 0 (4) a smooth cubic hypersurface X c P"**! is diffeomorphic to a connected
sum of the form M#k(S"xS") with k = b, (X) and, therefore, b} (M) = b,(M) = 1(M) =
7(X).

e For n = 2(4), n > 4 the hypersurface is diffeomorphic to a connected sum of the
form M#k(S"xS") with k = b} (X)—1 and, therefore, b,(M) = b,(M)+1 = —t(M)+2 =
—-7(X) + 2.

e For n = 1(2), a smooth cubic hypersurface X is diffeomorphic to a connected sum
M#k(S" x §™), with k = b,(X)/2 — 1 and, hence, b,(M) = 2. For n = 1,3, or 7 this can
be improved to k = b,(X)/2 and b,(M) = 0.

e The remaining case of smooth cubic surfaces X c P3 is slightly different. Viewing
X as the blow-up of P? in six points, as in Section 4.2.2, reveals that it is diffeomorphic
to the connected sum P>#6P2.

1.6 Cubics over other fields We conclude with a number of comments on (cubic)
hypersurfaces over arbitrary fields and notably in positive characteristics. Most of the
subtleties and pathologies that usually occur for varieties over fields of positive char-
acteristic can safely be ignored for hypersurfaces. In the following, let X C ]PJZ*1 be a
smooth hypersurface over an arbitrary field k.

(i) The Hodge—de Rham spectral sequence

EP = HI(X, Q) = HI (X k) (1.11)

degenerates, cf. Section 4.5. For char(k) = O or char(k) > dim(X), this follows from
results of Deligne and Illusie [148]. For the latter use that smooth hypersurfaces over
fields of positive characteristic can of course be lifted to characteristic zero.

More directly and avoiding the assumption char(k) > dim(X), one can argue as
follows. The computations in Section 1.4 show in particular that the Hodge numbers
hP4(X) = dim(E' f ") of smooth hypersurfaces only depend on d and n, but not on char(k).
From (1.11) one deduces that Zp rg=m hP(X) > dim HJ (X/k). Moreover, equality

holds if and only if the spectral sequence degenerates. On the other hand, dim Hy, (X/k)
is upper semi-continuous. Hence, the degeneration of the spectral sequence in charac-

teristic zero implies its degeneration in positive characteristic as well.

(i) The Kodaira vanishing H1(X, Qf( ®L) = 0for p+¢g > nand L € Pic(X) ample
holds. This can either be seen as a consequence of [148] for large enough characteristic
or be read off from Corollaries 1.7 and 1.9. In particular, all numerical assertions on
Hodge numbers remain valid over arbitrary fields. Also, for algebraically closed fields,
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the étale Betti numbers equal the ones computed in characteristic zero. The only case
not covered by these comments is the case of cubic surfaces in characteristic two.

(iii) Assume k = [F,. Then the Weil conjectures show that

o P P(t)(il)ml

Z(X.1) = exp {Z X ()l ] 00
with P(t) = [[(1—-a;t) of degree b,(X), and a; algebraic integers of absolute value |a;| =
¢"?. This was established by Bombieri and Swinnerton-Dyer [81] for cubic threefolds
and by Dwork [166] for arbitrary hypersurfaces, prior

to the proof of the general Weil conjectures by Deligne.

Of course, as cubic surfaces are rational, the Weil conjectures follow in this case from
the Weil conjectures for P2. This was first noted by Weil himself [492].

r=1

2 Linear system and Lefschetz pencils

This section discusses the linear system of (cubic) hypersurfaces. Basic facts concern-
ing the discriminant divisor are reviewed and its degree is computed. We describe the
monodromy group of the family of smooth hypersurfaces as a subgroup of the orthogo-
nal group of the middle cohomology and complement the results with a comparison of
the monodromy action with the action of the group of diffeomorphisms.

2.1 Universal hypersurface Hypersurfaces X ¢ P = P**! of degree d are para-
metrized by the projective space

10s(d)] =~ PN N(d,n) = (” Tl d) _ 1.

d

We will often abbreviate N(d, n) = hi°(P"*!, Op(d)) — 1 simply by N.
The universal hypersurface shall be denoted by

X cPVxP. 2.1

It is a hypersurface of bidegree (1, d), i.e. X is a divisor contained in the linear system
|Opn(1) ® Op(d)|, and the fibre of the (flat) first projection X —=P" over the point
corresponding to X C P is indeed just X.

More explicitly, X' can be described as the zero set of the universal equation G =
>ay x!, where a; € HO(PY, Opv(1)) are the linear coordinates corresponding to the
monomials x! € H(P, Op(d)). In other words, writing P as P = P(V) for some vector
space V of dimension n + 2, HO(P, Os(d)) = S4(V*), and PY = P(S%(V*)), one has
HO(PN, Opv(1)) = S4(V) and G corresponds to

id € End(S4(V)) = S4V) @ S4(v*) = H'PY x P, Opv(1) ® Oz(d)).
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The universal hypersurface X is smooth. To prove this, observe that the second pro-
jection X —P is the projective bundle P(Ker(ev)) — P, where ev is the surjective(!)
evaluation map

ev: H(P, Op(d)) ® O — O3(d).

The natural SL(n + 2)-action on H°(P, Op(d)) descends to an action of SL(n + 2)
and PGL(n + 2) on |Op(d)|. Both are linearized in the sense that they are obtained by
composing homomorphisms SL(n + 2) — SL(N + 1) and PGL(n + 2) —PGL(N + 1)
with the natural actions of SL(N + 1) and PGL(N + 1) on H'(PY, Opn(1)) and |Opn (1))

The following table records the dimensions of the linear system of cubic hypersur-
faces of small dimensions. We also include information about the moduli space

M, = |0p(3)lsm //PGL(n + 2)

and the discriminant divisor D(n) := D(3,n) = |Op(3)| \ |Op(3)|sm, both to be discussed
below, see Sections 2.3 and 3.1.3. We write N(n) := N(3, n).

n | N(n) | dim(PGL(n + 2)) | dim(M,) | deg(D(n))
0 3 3 0 4
1 9 8 1 12
2 19 15 4 32
3 34 24 10 80
4 55 35 20 192
5 83 48 35 448

The closed formula for the dimension of the moduli space is

(2.2)

dim(M,) = (" ; 2) - W

2.2 Discriminant divisor We are mostly interested in smooth hypersurfaces. They
are parametrized by a Zariski open subset which shall be denoted by

Un,d) = |Op(d)|sm = { X € |Op(d)| | X smooth } C |Op(d)].

For an algebraically closed ground field k, Bertini’s theorem shows that there exists a
smooth hypersurface of the given degree d. Hence, U(n, d) is non-empty and, therefore,
dense. In fact, if char(k) = O or at least char(k) 1 d, then the Fermat hypersurface

n+l
X = V(Z x;f] cP
i=0
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is smooth, as it is easy to check using the Jacobian criterion. The following explicit
equations for smooth hypersurfaces over arbitrary fields are taken from [270, p. 333]:

S X Xiem ifd=2,n+2=2m
S X X + 22, ifd=2,n+1=2m

1 2.3)
S X if d > 3, char(k) { d

oo xi x4+ xd if d > 3, char(k) | d.

i+1

Hence, the set of k-rational points of U(n, d) = |Op(d)|sm is always non-empty.
Definition 2.1. The discriminant divisor

D(d,n) c |0x(d)|

is the complement of the Zariski open (and dense) subset U(d, n) C |Op(d)| of smooth
hypersurfaces. Thus, D(d, n) is closed and, in a first step, it will be viewed with its
reduced induced scheme structure. However, in Section 2.3 we observe that its natural
scheme structure provided by its description as the zero set of the resultant is reduced.

Theorem 2.2. The discriminant divisor D(d,n) C |Op(d)| is an irreducible divisor. Its
degree is (d — 1)"' - (n + 2), which for d = 3 reads

deg(D(3,n)) = 2" - (n +2).

Proof Consider the universal hypersurface X ¢ PV x P as above and define

n+l

Xsing =4&nN ﬂ Vi,
i=0

where the V; = V(0;G) are the hypersurfaces of bidegree (1,d — 1) defined by the
derivatives of the equation of the universal hypersurface

ox!
8,G = Z“’a_xi € H(PV x P, Opv(1) ® Op(d - 1)).

By the Jacobian criterion, &g C X —PV is the (non-flat) family of singular loci of
the fibres A}, i.e. (Xsing)r = (X)sing.

As the Euler equation, see [91, Ch. 4], holds in its universal form 3 _ x; 3;G = d-G, one
has N V; c & if char(k) 1 d (which we will tacitly assume, but see Remark 2.3). Hence,
Xiing = (Vi and, therefore, codim(X;ng) < 1+ 2. To prove that equality holds, consider
the other projection Xgjpg —=P, which we claim is a P*-bundle with k = N —n— 2. To
see this, observe that the homomorphism of sheaves on P

¢: H* (P, O:(d)) ® Op —= Oz(d — 1)®*?, F—(9;F)
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is surjective, which can be checked e.g. at the point z = [1 : 1 : --- : 1] by using that
(6,’)(?7)(2) =d- 6,‘j. Then
Xsing = P(Kef(sl’))—»P

This clearly proves codim(&Xsing) = 7 + 2, but also that X, is smooth and irreducible.
To be precise, one needs to verify that Xy, ~ P(Ker(¢)) as schemes and not only as
sets, which is left to the reader.

Next, D := D(d, n) is by definition the image of X, under the projection

Kiing € X C PN x P—PV.

Let us denote the pull-backs of the hyperplane sections on PV and P (both denoted by
h) to PN x P by h; and h,. Suppose D is of codimension > 1. Then (hV~'.D) = 0, which,
however, would contradict

(W™ Kng) = (WY 1y + @ = D)™ = (n+2) - (d — 1"

Hence, D c PV really is a divisor. The computation also shows that in order to prove
the claimed degree formula for D, it suffices to prove that X§;,, —= D is generically in-
jective or, in other words, that the generic singular hypersurface X € |Op(d)| has exactly
one singular point (which is in fact an ordinary double point). (Note that one needs to
assume char(k) = 0 for the set-theoretic injectivity to imply that the morphism is of de-
gree one.) One way of doing this would be to write down examples of hypersurfaces in
each degree with exactly one ordinary double point” or to argue geometrically (assum-
ing char(k) = 0) by considering again the projective bundle X, —P. The fibre over
a point z can be thought of as a linear system with z as its only base point. By Bertini’s
theorem with base points, see e.g. [222, III. Rem. 10.9.2], the generic element will then
be singular exactly at z.

To see that generically it has to be an ordinary double point, just write down one
hypersurface with such a singular point at z (but possibly other singular points), e.g. the
union of (d — 2) generic hyperplanes P" c P and of a cone with vertex z over a quadric
in some hyperplane. O

Remark 2.3. In [1, Exp. XVII] the discriminant divisor is viewed as the dual va-
riety of the Veronese embedding v,: P & (P")*, i.e. as the locus of hyperplanes
(parametrized by PV) that are tangent to v,(P). It is also proved that the smooth locus of
D(d, n) is the maximal open subset over which X, — D(d, n) is an isomorphism and
that it coincides with the set of those singular hypersurfaces with one ordinary double
point as only singularity.
2 D. van Straten has provided me with examples in certain degrees. Note that writing down examples with
just one (badly) singular point is easy, e.g. the cone over the smooth examples in (2.3) has only one singular
point, which however is an ordinary double point only for d = 2. Since hypersurfaces with a singularity

worse than an ordinary double point may deform generically to a hypersurface with more than one singular
point, they cannot be used to prove injectivity in this fashion.
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2.3 Resultant There is a classical and more algebraic approach to the discriminant
divisor using resultants, cf. [102, 128, 150, 192]. Let us review some general facts.
Consider homogeneous polynomials in k[xo, ..., x,+1] of degree d; > 0,i = 0,...,m.
Then there exists a unique polynomial, the resultant, R(y;;) = Ry,(yis) € klyisl, i =
0,...,m,|l| =d;, such that:

(1) For all choices of polynomials f; € k[xo, ..., Xp+1lq, i = 0,...,m, the intersection
NV cC Pg” is non-empty if and only if R(fy, ..., f,,) = 0.3
(>i1) R(xg", .. .,x,”f;") = 1 (normalization).

(iii) R € k[y; ] is irreducible.

Moreover, R is homogeneous of degree [
of total degree [[ d; - > (1/d)).

Consider a homogeneous polynomial F € k[xy, ..., x,+1] of degree d and apply the
aboveto f; = 0;F,i =0,...,m = n+ 1, which are all homogeneous of degree d; = d—1.
Then, X = V(F) is singular, i.e. (| V(f;) # @, if and only if X € |Op(d)| is in the zero
locus of R.

Strictly speaking, R defines a hypersurface in PV = Proj(klyi /1), i = 0,...,n+ 1,

Il=d-=1,s0 N = (n+2) (Zt‘f) — 1. Its pull-back via the linear embedding P¥ < PV’

, where for I = (ig, ..., i,41) one sets I; == (ip,..., (I —

j#dj in the variables y; ; for fixed i and so

1 i xli
that maps x* to [zjx /]j=0 ,,,,, n+1

1), ..., ins1), describes the image of Xy, i.€. the discriminant divisor. The irreducibility
still holds, cf. [150, Sec. 5&6]. This leads to

D(d,n) = V(R4 (oG, ..., 0,11G)) € B¥ = |Op(d)],
which also defines a natural scheme structure on D(d, n).
Remark 2.4. The resultant is usually normalized to yield the discriminant
Adgp = d - Rgn(8,G) € H (Y, Oan((d = 1)"*' - (n +2))), (2.4)

where ¢;,, = (1/d) ((=1)"*? — (d — 1)**?). With this normalization, A;, becomes an
irreducible polynomial in Z[y,], which makes it unique up to a sign.

Example 2.5. The case n = 0 and d = 3, so three points in P', leads to the classical
discriminant for cubic polynomials f(X). If a;, @, @3 are the zeros of f(X), then by
definition A(f(X)) = (a1 — @) (a1 — a3) (as — a/3))2. For f(X) = X® + aX + b one has
A(f(X)) = —4a® - 27b*.

The discriminant of a general polynomial aoxg +a xgxl + azxox% + a3x? is the rather
complicated polynomial of degree four

Az = d2d} - dazal — 4diag — 27d3d% + 18apa  azas,

3 Here, R(fo, ..., fin) is the shorthand for applying R to the coefficients of the polynomials f;.
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which thus defines the discriminant surface of degree four
D(3,0) = V(Asp) C PP,

As an exercise, the reader may want to compare this with the normalization R(x(z), xf) =
1, which in (2.4), using c30 = —1, implies A ((1/3) (¥} + x)) = (1/3).

To confirm Remark 2.3, one can verify that the singular set of D(3,0) = V(Aszp) is
indeed the curve of triple points.

Example 2.6. (i) For n = 1 and d = 3 the discriminant divisor
DB3,1) c P’

is of degree 12 or, equivalently, the discriminant is an element of the vector space
H°(P°, Ops(12)), which is of dimension 293.930. Written as a linear combination of
monomials, 12.894 of the coeflicients are non-trivial, cf. [128, p. 99]. If the partial
derivatives 0;F are written as dpF = a“xé +a12x% +a13x§ +aaXxoXx1 +aisxox2 +aieXxi Xz,
etc., and one defines [£16,03] = det(a;r,) € H'(PY, Ops(3)), with pairwise distinct £;,
then A is a polynomial of degree four in the [££,£3] that involves less but still 68 terms.
In short, the discriminant is complicated.

Maybe just one word on the comparison between the discriminant introduced here
and the discriminant of a plane cubic E c P? in Weierstrass form y* = 4x> — gox — g3
which is classically defined as A(E) := g3 — 27g3. This is a rather simple polynomial
of degree three in the coefficients, whereas the full discriminant of cubic plane curves
is a polynomial of degree 12. The reason for this is that bringing a cubic polynomial in
the variables xg, x1, x, into Weierstrass form involves non-linear transformations. More
concretely, the coefficients g, and g3 of the Weierstrass form are of degree four and six,
respectively, in the coefficients of the original cubic equation, see e.g. [278, Ch. 3].

(ii) The case n = 2 and d = 3 the discriminant divisor D(3,2) c P is of degree
32. Its equation can be expressed in terms of certain fundamental invariants, see Section
4.4.1. This was first done by Salmon [415] with correction by Edge [171]. For more
recent considerations see [101].

As a consequence of Theorem 2.2 and the discussion in its proof, we deduce the
following.

Corollary 2.7. Assume k is algebraically closed. Then for the generic line P' < PV
the induced family Xp —=P' has exactly (d — 1)"*! - (n + 2) singular fibres X, X, . . .,
each with exactly one singular point x; € X;. Moreover, each x; is an ordinary double
point of X; and they are all distinct as points in P**' O

A pencil with these properties is called a Lefschetz pencil. Note that by Bertini’s
theorem [222, III. Cor. 10.9], at least when char(k) = 0, the total space Ap:i is still
smooth. See [1, Exp. XVII].



34 Chapter 1. Basic facts

In more concrete terms, for the generic choice of polynomials Fy, F| € H(P, Op(d))
for exactly (d — 1)"*! - (n + 2) values ¢ = [ty : #;] the hypersurface X, = V(ty Fo + t; F1)
is singular. Each singular fibre X; has exactly one singular point x;, which, moreover, is
an ordinary double point. Note that x; # x; fori # j, as otherwise x; would be a singular
point of all the fibres. Also observe that the projection X' —P is the blow-up of the
base locus V(Fy, F;) C P.

s ~

P

Pl

Example 2.8. There are, of course, pencils Xp: — P! = PV with more singular fi-
bres, i.e. with more or worse singularities. The Hesse pencil of plane cubics &; c P?
given by

to (xg + x? + xi) — 13 xpx1x2
is such an example. Here, the fibre Xjo.1; consists of three lines yielding three singular
points. The Hesse pencil is a special instance of the Dwork pencil (or Fermat pencil),
see [69], defined by the equation

n+l n+l
fo [ZXTHQ] - td Hx,-

i=0 i=0

of hypersurfaces of degree d = n + 2.

Clearly, the number of singular fibres of any pencil does not exceed (d—1)"*! - (n+2),
unless all fibres are singular. Note that for an arbitrary pencil the total space A1 need
not be smooth.

2.4 Monodromy group We now assume k = C and consider the universal family
n: X —U(d,n) C |Opi(d)|

of smooth hypersurfaces of degree d and dimension n. Note the change in notation. If
needed later, we will denote the universal family of all hypersurfaces by X', which is
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smooth projective and contains X’ as a dense open subset. Fix a point 0 € U(d, n) and
denote the fibre over it by X := Xy. The monodromy representation

p: m(U(d,n),0)—GL(H"(X, Z)) (2.5)

is the homomorphism obtained by parallel transport with respect to the Gauss—Manin
connection. Equivalently, R"n.Z is a locally constant system on U(n,d) and (2.5) is the
corresponding representation of the fundamental group. The monodromy group is by
definition the image of the monodromy representation

I'(d,n) =Im(p: 7;(U(d,n),0)—GL(H"(X,Z))) .

It depends on the base point 0 € U(d, n) only up to conjugation.
The monodromy group has been determined by Beauville [47] in complete generality.
We discuss the result for d = 3 and use the shorthand

I, =T@3,n) c GL(H"(X, Z)).

Theorem 2.9. The monodromy group T, of the universal smooth cubic hypersurface
X —|Opn+1(3)|sm is the group

O+*(H"(X,2)) ifn=0(2)
SpO(H"(X,Z),q) ifn=1(2).

n —

In fact, Beauville shows that I'(d, n) for n even and arbitrary d and also for n odd and
all odd d admits this description. If z is odd and d is even, then the monodromy group
is the full symplectic group Sp(H"(X, Z)).

Before sketching the main steps of the proof in Section 2.5, let us explain the notation
and add a few related comments.

For n even, one defines O(H"(X, Z)) c O(H"(X,Z)) as the subgroup of all orthogonal
transformations g: H"(X,Z) —> H"(X,Z) with g(h/*) = K"/?. Via the induced action
on H"(X, Z)y, it can be identified with the subgroup, cf. [249, Prop. 14.2.6]:

O(H"(X,2)) ~ { g € OH"(X, Z)y) | id = g € OApnxz),,) |-

Here, Ap := A*/A is the discriminant group of a lattice A, which for the primitive
cohomology A = H"(X,Z),: of a smooth cubic hypersurface is Z/3Z, see Proposition
1.21.

Another natural group in this context is the subgroup

O*(H"(X, Z)p) = Ker (sn, : OCH"(X, Z)pr) —{£1}),

where the spinor norm sn,, is the group homomorphism that sends a reflection ss in
a hyperplane 6* to (=1)"/? - (6)?/|(6)*|. In other words, if by means of the Cartan—
Dieudonné theorem g is written as a product [ [ ss, of reflections with §; € H"(X, R)pr,
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then sn,(g) = 1 if for n = 0(4) the number of ¢; with (5;)> < 0 is even and for n = 2 (4)
the number of §; with (6,)> > 0 is even.
The orthogonal group in the theorem is the finite index subgroup of O(H" (X, Z),,):

O*(H"(X,Z)) = OH"(X,Z)) N O* (H"(X, Z)p)-

For n odd, the intersection product on H"(X,Z) = H"(X,Z), is alternating and can
be put in the standard normal form. However, there exists an auxiliary rather subtle
topological invariant, which is the quadratic form q: H"(X,Z) —7Z/2Z, see [96, Sec.
1], that enters the definition of the group SpO(H" (X, Z), q) in the above theorem. Using
that any o € H"(X,Z) can be represented by an embedded sphere S —— X, one has
forn # 1,3,7 that g(a) = 0 if and only if the topological normal bundle of §" —— X
is trivial.* The definition of q for n = 1,3,7 is more involved. In any case, for n odd
SpO(H"(X, Z), q) is defined as the group of all isomorphisms g: H"(X,Z) — H"(X,Z)
that are compatible with the alternating intersection form ( . ) and the quadratic form q.

Remark 2.10. The occurrence of the primitive cohomology in Theorem 2.9 is not a
surprise. Indeed, the restriction W2 of h;/ 2= 1 (Op(1))Y? € H*(P™',Z) to any of the
fibres X, defines a section of the locally constant system R"r,Z. Hence, the primitive co-
homology groups H"(X;, Z); of the fibres glue to a locally constant subsheaf Rj,7.Z C
R"n,Z. Equivalently, the monodromy representation (2.5) satisfies p(y)(h"/?) = h"/? for
all y € m(U(d, n)), i.e. K"'? is monodromy invariant.

In fact, #"/? is the only monodromy invariant class up to scaling. Indeed, Deligne’s
invariant cycle theorem [474, V. Thm. 16.24] shows that the monodromy invariant part
H"(X,Q)? of H'(X,Q) is the image of the restriction H"(X, Q) — H"(X, Q), where
X < PN x P denotes the universal family of all hypersurfaces. Now writing X as a
projective bundle over P shows that

H"(X,Q) = @ H"*(P,Q) - c1(Opx(1)).

As ¢1(Opv(1)) restricts trivially to the fibres of the first projection X —=P", only
H"(P, Q) survives the map H"(X, Q) — H"(X, Q) and, therefore, its image is spanned
by /2.

Similarly, the monodromy representation preserves the intersection form on H"(X, Z).
Therefore, Im(p) ¢ O(H"(X, 2)) for n even and Im(p) C Sp(H"(X, Z)) for n odd.

Note that one can deduce from the theorem the well-known fact [474, V. Thm. 15.27]
that H"(X, Q) is an irreducible I'(d, n)-module or, equivalently, that Rgrﬂ'*Q cannot

4 The Arf invariant of g, also called the Kervaire invariant of X, is often viewed as the analogue of the
discriminant of the symmetric intersection form for n even. Recall that the Arf invariant A(g) € F, of the
binary quadratic form g = ax? + xy + by? is ab. For arbitrary ¢, which can be written as a direct sum of
those, it is defined by additive extension, cf. [95, Ch. III]. According to a result of Kulkarni and Wood
[290, Prop. 12.1], the Kervaire invariant is non-trivial for cubic hypersurfaces
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be written as a direct sum of non-trivial locally constant systems. Remark 2.11 and
Corollary 2.12 below are related to this.

Remark 2.11. In the general setting, where instead of working over C the ground field
can be an arbitrary algebraically closed field k, the geometric £-adic monodromy group
is the Zariski closure G of the image of the representation n?‘(U y— GL(H"(X, Q/)). It
has been determined in [147, Sec. 4.4]:

finite ifn=2
G =4 O(H"(X,Qy)) if2<n=0()
Sp(H"(X, Q) ifn=1(2).

Instead of working with coefficients in Q,; one can as well use coefficients in C. For
n even the proof comes down to the fact that an algebraic subgroup G ¢ O(V) of a
complex vector space V with a non-degenerate symmetric bilinear form is O(V) as soon
as there exists a G-orbit of classes & with (§)> = 2 generating V and such that G contains
all reflections ss induced by classes in that orbit, cf. [147, Lem. 4.4.2] or the account in
[390].

When working over C, one defines the algebraic monodromy group as the algebraic
group G C GL(H"(X, Q),) over Q obtained as the Zariski closure of the monodromy
group I', € GL(H"(X, Z),r) € GL(H"(X, Q)pr).

For the following result, which for n even strengthens Remark 2.10, recall the follow-
ing two notions:

(1) A very general point in |Op(3)| is a point in the complement of a countable union
of proper Zariski closed subsets;

(ii) The Hodge structure H"(X, Q) is irreducible if it cannot be written as a direct
sum of non-trivial sub-Hodge structures or, equivalently, if it does not contain any
non-trivial proper sub-Hodge structure.

The equivalence of the two characterizations in (ii) uses the existence of a polarization.

Corollary 2.12. Assume X € |Op(3)| is a very general cubic hypersurface of (even)
dimension n > 2. Then H"(X, Q) is an irreducible Hodge structure. In particular, the
(rational) Hodge conjecture holds for the very general cubic hypersurface.

Proof We follow the exposition of Peters and Steenbrink [390, Sec. 7]. The main input
is that for n > 2 the identity component G’ c G of the geometric monodromy group
(thought of as algebraic groups over Q) acts irreducibly on H"(X, Q),, see Remark 2.11.

We write the primitive cohomology of the very general cubic hypersurface X as di-
rect sum H"(X, Q) = @fz 1 Vi of irreducible Hodge structures. Then the projection
H"(X,Q)pr —=V; can be extended to a multivalued flat section of the local system
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End(R},7.Q) which is everywhere of type (0,0). As any polarizable variation of Hodge
structures of type (0,0) has finite monodromy, this section becomes univalued after
passing to a finite étale cover of |Op(3)|sm. In the process, the group G° does not change,
so that it still acts irreducibly. The image of the flat section of End(Rj7.Q) defines a
locally constant sub-system of Rj.Q with image V; at the point corresponding to X.
However, as G° acts irreducibly this shows that k = 1, i.e. H"(X, Q)pr is irreducible.

Concerning the Hodge conjecture, note that for an arbitrary smooth cubic hypersur-
face X and 2p # n, we have H??(X,Q) = H*(X,Q) = Q - h”. For a very general
cubic hypersurface X of even dimension n = 2p, the irreducibility of the Hodge struc-
tures H"(X, Q)p, in particular says that H””(X, Q) = 0. Therefore, Hodge classes in
H"(X, Q) are again just multiples of i”. O

Note that for n = 2, the identity component G° is trivial and indeed H*(S, Q)pr is of
type (1, 1) for any cubic surface. As it is of dimension six, it is certainly not irreducible.

Remark 2.13. (i) The identity component G° C G of the geometric monodromy group
is contained in the Mumford—Tate group of the Hodge structure H"(X, Q) of the very
general X, see [146, Prop. 7.5] or [20, Lem. 4]. By definition, the Mumford-Tate group
of a Hodge structure determines the space of all Hodge classes in tensor products of
the Hodge structure and of its dual. Thus, whenever the monodromy group is big, also
the Mumford—-Tate group is and, therefore, the various tensor products have only few
Hodge classes. The proof makes this philosophy explicit for H"(X, Q) ® H"(X, Q).

So, the arguments in the above proof actually show that for the very general cubic
hypersurface X any endomorphism of the Hodge structure H"(X, Q)p, is a multiple of
the identity, cf. [483, Lem. 5.1]:

Endeg(H”(X, Q)pr) = Q

(ii) Arguments similar to the ones above also show that for the very general cubic X
of dimension n > 2 the Hodge structures S2H"(X, Q)pr for n even and /\2 H"(X, Q) for
n odd split into the direct sum of two irreducible Hodge structures, i.e.

2
SZH”(Xs Q)pr ~Q- qx ® CI)L( resp. /\ Hn(Xv Q)pr ~Q- qx ® q)l('

Here, gx denotes the symmetric resp. alternating bilinear intersection form on the prim-
itive cohomology H" (X, Q).

To see this, one uses the classical fact that the orthogonal group O(V, g) resp. the
symplectic group Sp(V, g) of a vector space V with a non-degenerate symmetric or al-
ternating bilinear form ¢ acts irreducibly on the orthogonal complement g* in SV resp.
/\2 V. For example, for a symmetric forms the orthogonal complement g* is the space
of harmonic polynomials, i.e. those contained in the kernel of the Laplacian, which is
an irreducible representation of O(V), see [196, Ch. 10].
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2.5 Vanishing classes The computation of the monodromy group I',,, or more gener-
ally of I'(d, n), proceeds in three steps.

(i) Show that I'(d, n) equals the monodromy group of the smooth part of a Lefschetz
pencil Xpi —P.

(i1) Assume X — A is a family of hypersurfaces over a disk with X and X}, smooth
and such that the central fibre X; has one ordinary double point as its only singu-
larity. Let y be the simple loop around 0 € A. Describe the induced monodromy
operation p(y): H"(X,Z)— H"(X,Z) as a reflection ss. Here, X = X is a distin-
guished smooth fibre.

(iii) Let Xp —=P! be a Lefschetz pencil with nodal singular fibres over tq,...,t; €
P!\ co. Describe the subgroup (ss;y € GL(H"(X, Z)) generated by the monodromy
operations around all the nodal fibres &;, ..., A,.

To have at least a rough idea, let us give a few more details for all three steps. For
details of the statements and of the proofs we have to refer to the literature, cf. [474].

(i) Similar to the Lefschetz hyperplane theorem for smooth hyperplane sections of
smooth projective varieties, cf. Section 1.1, a result of Zariski, see [216] or [474, V.
Thm. 15.22], shows that for a very general line P! c PV = |Op(d)| the induced map

m(P'\ D)—s=m;(P" \ D) (2.6)

is surjective. (From now on we omit mentioning the base point in P' ¢ P in the nota-
tion.) The restriction of R"z,Z to P! \ D, which is isomorphic to the higher direct image
for the restriction of the family to P! \ D, corresponds to the representation

71 (P'\ D)—=m;(P" \ D)— GL(H"(X,Z))

obtained by composing (2.5) with (2.6). Hence, I'(d, n) can be computed as the mono-
dromy group of an arbitrary Lefschetz pencil X1 —=P!, i.e. as the image of

pp : m(P'\ D)—=GL(H"(X,Z)). 2.7

By Theorem 2.2, P' \ D ~ P!\ {#,...,t;} with £ = (d — 1)"*! - (n + 2). Therefore,
m(P'\ D) is isomorphic to a quotient of the free group m1(C \ {t1,...,#/}) =~ Z*¢ with
free generators given by the simple loops ; around the points ¢; € C.

Thus, in order to describe the image of (2.7), we need to compute the monodromy
operators ppi (y;) and the group they generate. (In our discussion the details concerning
the base point and the dependence on the path connecting it to circles around the critical
values are suppressed.)

(i1) Let x € X, be the ordinary double point of the central fibre of the family X — A
obtained from the Lefschetz pencil above by restriction to a small disk A~ P!,
0+—1;. The intersection of a ball B(x) ¢ X around x with the nearby smooth fibre
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X = X, retracts to a sphere S” C B(x) N X C X. Itis called the vanishing sphere and its
cohomology class 6 = [S"] € H'(X, Z) is the vanishing class. Its main property, respon-
sible for the name and verified by a local computation, is that it generates the kernel of
the push-forward map, cf. [474, V. Cor. 14.17]:

H'(X,Z2) ~ H,(X,Z)— H,(X,Z).

The self intersection (.0), determined by the normal bundle of §” c X, is given by

0 ifn=1()
68)={-2 ifn=2(4) 2.8)
2 ifn=0(4).

Of course, the vanishing for odd n follows from the fact that in this case the intersection
pairing on the middle cohomology is alternating. The other two cases are obtained by
an explicit computation, see [474, IV.15.2].

The crucial input is the description of the monodromy operation p(y) induced by a
simple loop around 0 € A. It is described by the Picard—Lefschetz formula:

{1 ifn=234)

=ss5: a—a+¢g, (@), with g, =
PO = 85 (@.9) 1 ifn=0,1(4).

(2.9)
Note that the sign is such that for n even s; is a reflection in §* and so, in particular,
ss(0) = —6 and s(% = id. For n odd, the monodromy is not of finite order, as sg(a) =
a+e, k- (a.d)- 68>

(iii) We have computed the images ppi (y;) of the free loops around the singular fibres
A,,i=1,...,£ = deg D(d,n), as the operators ss, associated with the corresponding
classes d;. They are reflections for even n and of infinite order for odd n.

Consider now families X' —s A around each #; € P! as in (ii). We may assume that
the smooth reference fibre is X for all of them. We observe that all vanishing classes
0; € H'(X, Z) are contained in the primitive cohomology. This follows from describing
the composition

H'(X,Z) = Hy(X,Z)—= Hy(X',Z) —= H,(B,Z) = H"*(P,Z) — H""*(X, Z)
as the product with the hyperplane class. In fact, the vanishing cohomology
H"(X, Z)van = Ker(H"(X,Z) —= H""*(P, 2)),

which in our situation coincides with the primitive cohomology, is generated over Z by
the vanishing classes, see [474, V. Lem. 14.26] or for the algebraic treatment [147, Sec.
4.3]. This has the following consequence.

5 Note that in [47] the sign of the intersection form is changed for n = 3 (4), so that in this case as well
ss(@) = a + (@.0) - 0.
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Corollary 2.14. The primitive cohomology H"(X,Z),: of a smooth hypersurface X C
P! is generated by classes § with (6.6) even as in (2.8). In particular, for n even, the
lattice H'(X, Z),y is even. O

Note that the fact that H"(X, Z), is generated by the vanishing classes ¢; in partic-
ular shows that b,(X),, < deg D(d, n), which is confirmed by a quick comparison of
Corollary 1.12 with Theorem 2.2.

For even n the Weyl group is the subgroup
W € O(H" (X, Zjpr)

generated by the reflections ss,. For n odd the Weyl group W c Sp(H"(X, Z)) is defined
analogously. In both cases W acts transitively on the set of vanishing classes A := {d;},
cf. [326, Prop. 7.5] or [474, Prop. 15.23].

A lattice A (symmetric or alternating) with a class of vectors A C A generating A and
with the associated Weyl group acting transitively on A is called a vanishing lattice, see
[168, 261]. By our discussion so far, we have I'(d, n) = Im(p) = Im(pp1) = W.

The proof of Theorem 2.9 for even n > 2 is in [47] reduced to a purely lattice theo-
retic result by Ebeling [168] describing the Weyl group of a complete vanishing lattice
as this particular subgroup of the orthogonal group of the lattice. The lattice H" (X, Z),
is complete, which by definition means that A contains a certain configuration of six
vanishing classes. The fact that for n > 2, in accordance with Proposition 1.21, the
lattice contains A, ® U®? is part of the picture.

The case of cubic surfaces is well known classically and is usually stated as

I'(3,2) ~ W(Ey).

This is the only case in which the monodromy group of cubic hypersurfaces is actually
finite. Indeed, it is an index two subgroup of the finite orthogonal group O(H?(X, Z)pr)
of the definite lattice H>(X, Z)pr. We shall come back to it in Section 4.1.4. For n odd
the result is deduced from [261].

Exercise 2.15. Consider the case n = 0 for which the universal smooth cubic hyper-
surface X —=P? \ S, defined over the complement of a quartic surface S with the
explicit equation given in Example 2.5, is an étale cover of degree three. Show that the
monodromy group I'(0, 3) is in fact S;. It equals the Galois group of the field extension
K(®3) c K(X). See [218] for further information.

2.6 Diffeomorphisms Clearly, any monodromy transformation is induced by a dif-
feomorphism. Hence, the monodromy group I',, is a subgroup of the image of the natural
representation

72 Diff* (X) —= O(H"(X, Z))
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of the group of orientation preserving diffeomorphisms. It turns out that Im(7) is slightly
larger than I,,. Details have been worked out by Beauville [47]. Here are the main steps.

Let us first consider the case that n is even and n > 2. Clearly, Diff*(X) also acts
on H*(X,Z) ~ Z - h and, therefore, sends % to h or to —h. The latter is realized by
complex conjugation defined on any X defined by an equation with coefficients in R. As
a consequence, Diff " (X) respects the direct sum decomposition H"(X, Q) = H"(X, Q),:®
Q- h"/2. This eventually leads to

OH"(X,2)) ifn=0(4)
OH"(X,Z)y) ifn=2(4).

Im(7) ~

To prove this note that O* (H"(X, Z))  Im(r) and that for n = 2 (4) complex conjuga-
tion induces an element in Im(7) the restriction of which to H"(X, Z),, acts non-trivially
on the discriminant Apy = Az e =~ Z/3Z.

Hence, it is enough to find an orientation preserving diffeomorphism g which acts
with spinor norm sn,(r(g)) = —1 on H"(X,Z) and fixes #"/2. For this, one uses the
connected sum decomposition of X as M'#(S" x S"), cf. Remark 1.22, and the dif-
feomorphism g obtained by gluing the identity on M’ with the product ¢ X ¢ of the
diffeomorphism ¢: S" —S8", (x1,..., Xp+1)—>(X1,..., Xn, —Xu+1). It acts on the in-
duced orthogonal decomposition H"(X,Z) ~ H"(M’',Z) & H"(S" x §",Z), for which
we may assume that W2 e HY(M',Z), by —id on H*(S" x §",Z) ~ U, and by id on
U*t = H"(M',Z). Write —idy = S_f © Se+y, With e, f € U the standard basis, to see that
indeed sn,(1(g)) = -1 and 7(g)(h"/?) = W"/2.°

For cubic surfaces, there is no reason for a diffeomorphism to respect the hyperplane
class (up to sign) and indeed Im(t) = O(H*(X, Z)), cf. [488] and Section 4.1.4.

For n odd Beauville’s result reads
SpO(H"(X,Z),q) ifn+1,3,7

Im(7) =
Sp(H"(X,Z)) ifn=1,37.

Indeed, the description of ¢g([S"]) for n # 1,3,7 in terms of the topological normal
bundle of §” C X is invariant under diffeomorphisms. In the other cases one proves that
ss is realized by a diffeomorphism for any primitive § € H"(X,Z). As those generate
the symplectic group, this is enough to prove the claim for n = 1,3, 7. Concretely, for
a given 6, there exist 6’ with (6.0’) = 1 and a decomposition X ~ M'#(S" x S") with
H"(S" x §",Z) spanned by 6,6". In [47] it is then observed that the reflection sy is
6 In [47] the result for n = 2 (4) is stated as Im(t) = O(H"(X, Z)) x{*1}. Indeed, complex conjugation defines

an element of order two in Im(7) that acts non-trivially on the discriminant of H"(X, Z),:. Moreover, it

commutes with the index two subgroup I', = O*(H"(X,Z)), as the universal family is defined over R

and hence monodromy commutes with complex conjugation. However, that complex conjugation also
commutes with the additional diffeomorphism g would seem to need an additional argument.
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realized by gluing the identity on M’ with the diffeomorphism (x, y) —(x, x - y), where
x -y is the multiplication in C, H, or O for the three cases n = 1,3, 7.

3 Automorphisms and deformations

Smooth hypersurfaces behave nicely in many respects. For example, for most of them
the deformation theory is easy to understand, not showing any of the pathological
features to be reckoned with for arbitrary smooth projective varieties. Similarly, their
groups of automorphisms are usually finite and generically even trivial. We will assume
d > 3 throughout this section. The only slightly exotic cases that need special care
are (n,d) = (1,3) and (n,d) = (2,4), i.e. plane cubic (elliptic) curves and quartic K3
surfaces.

3.1 Infinitesimal automorphisms First order information about the group of auto-
morphisms of a smooth hypersurface X ¢ P"*! and about its deformations are encoded
by the cohomology groups H°(X, Tx) and H'(X, Tx), respectively. Those can be com-
puted in terms of the standard exact sequences. We begin, however, with the following
well-known fact.

Lemma 3.1. Assume char(k) 1 d. Then a hypersurface X C P! of degree d defined by
F € k[xo,...,Xn1]a is smooth if and only if the partial derivatives 0;F form a regular
sequence in k[xo, ..., Xu41]-

Proof A standard result in commutative algebra shows that a sequence a; € A, i =
1,...,dim(A), in a regular local ring A is regular if and only if ht((a;)) = dim(A),
cf. [343, Thm. 16.B]. Hence, the partial derivatives (0;F) form a regular sequence in
the polynomial ring k[xo, ..., X,+1] if and only if the affine intersection V((0;F)) =
NV(0,;F) ¢ A"™? is zero-dimensional. However, as the polynomials 0;F are homo-
geneous, V((0;F)) is G, -invariant. Hence, (0;F) is a regular sequence if and only if the
projective intersection V((9;F)) ¢ P**! is empty. This implies that also X N V((0;F)) is
empty and, by the Jacobian criterion, that X is smooth.

Conversely, if X is smooth and char(k) 1 d, the Euler equation d - F = 27;01 x; 0;F.
shows that V((6,F)) = Xsing = @, i.€. (0;F) is a regular sequence. O

Example 3.2. The assumption on the characteristic is needed, as shown by the example
F = x2x; — xox? with char(k) = 3. Indeed, in this case X = {0, 00, [1 : 1]} is smooth, but
0oF = —x1 (xp + x1) and 01 F = xy (x¢ + x1) have a common zero in [1 : —1].

Remark 3.3. The smoothness of a hypersurface X expressed in terms of the partial
derivatives of its defining equation has concrete geometric consequences: For example,
it can be used to prove that a smooth hypersurface X = V(F) c P"*! of degree d > 2
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cannot contain a linear subspace P¥ ¢ P"*! of dimension k > n/2. This was the content
of Exercise 1.5, which used cohomology. The following argument is even easier:
Assume P* ¢ P"*! is the linear subspace V(xii1,...,X,+1). If P C X, then the equa-
tion of X can be written as F = E;’Ll +1 %;G; with deg(G;) > 1. Hence, for a point
x € P ¢ X one has diF(x) = Gj(x) for j > k+1and §;F(x) = 0 for j < k. If
k > (n+ 1)/2, then V(Gis1,...,Gni1) N PX # @ and, therefore, there exists a point
x € P¥ c X such that 9 iF(x) =0forall j=0,...,n+ 1, which contradicts the smooth-

ness of X at x.

Exercise 3.4. Show that a hypersurface X = V(F) c P"*! of degree d is singular if for
some i the degree of F' as a polynomial in ; is deg, (F) < d — 2, see [195, Lem. 1.2].

According to a classical observation of Kodaira and Spencer [279, Lem. 14.2], one
has the following.

Corollary 3.5. Let X ¢ P = P™! be a smooth hypersurface of degree d.

() Ifn>0andd > 3 but (n,d) # (1,3), then H'(X, Tx) = 0.
(i) Ifn > 2 ord < 3, then H'(X, Tplx) = 0 and the normal bundle sequence induces a
surjection

H(X, Ox(d))—=H'(X, Tx).

Proof We shall give a proof under the additional assumption that char(k) 1 d and refer
to [270, Sec. 11.7] for the general case.

)€Bn+2

Combining the Euler sequence 0 — Op — Op(1 — Tp—0 and the normal

bundle sequence 0 — Ty — Tp|x — Ox(d) —=0, we obtain a diagram

H'(Tx) — H°(T¢lx) H(Ox(d)) — H'(Tx) — H'(Telx) (3.1
=
HO(OX(I))@"J’Z.

Here, as before, 0,F € H(P, Os(d — 1)) are the n + 2 partial derivatives of the homo-
geneous polynomial F € H(P, Op(d)) defining X. The cokernel of the vertical map is
contained in H'(Oy), which is trivial for n # 1.

Now, for the first assertion in the case n > 1, observe that H'(X, Tx) = 0 if and only
if the kernel of the composition

(0iF): H'(X, Ox(1)®"*? — H(X, Ox(d))

is spanned by the vector (xg, ..., X,+1). Assume Y  h; ;F vanishes on X for some /; €
HO(P, Op(1)). Then, after rescaling, > h; 0;F = d-F = Y x; 0;F and, therefore, >_(h; —
x;) 0;F = 0. Using that (¢;F) is a regular sequence, see Lemma 3.1, and d > 3, this
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implies #; = x;. There is nothing to prove for n = 0, so the remaining case is n = 1,
d > 3, for which the assertion follows from the fact that H%(C, wg) = 0 for a smooth
curve of genus g(C) > 1.

For the second assertion observe that H' (X, Tp|x) = 0, whenever H' (X, Ox(1)) =0 =
H*(X, Ox), which holds as soon as n > 2, see Corollary 1.7. We leave it to the reader to
complete the argument in the cases n = 1,2 andd = 1,2, 3. O

3.2 (Polarized) automorphisms Let X be a smooth projective variety and assume
Ox(1) is an ample line bundle. We are interested in the two groups:

Aut(X, Ox(1)) C Aut(X).

Here, Aut(X) is the group of all automorphisms g: X —= X over k. The subgroup
Aut(X, Ox(1)) is the group of all such automorphisms with the additional property that
g Ox(1) ~ Ox(1). These groups are in fact the groups of k-rational points of group
schemes over k, which we shall also denote by Aut(X, Ox(1)) and Aut(X).

Remark 3.6. Standard Hilbert scheme theory, see e.g. [178] or [253], ensures that the
group scheme Aut(X, Ox(1)) is a quasi-projective variety and that Aut(X) is at least
locally of finite type. Indeed, there exists an open embedding

Aut(X) & Hilb(X x X), g—=T,,

mapping an automorphism to its graph. The Hilbert scheme Hilb(X X X) of X x X is
locally of finite type. More precisely, it is the disjoint union [ | Hilb”(X x X), P € Q[T],
of projective varieties Hilb”(X x X) parametrizing closed subschemes Z ¢ X x X with
Hilbert polynomial x(Z,(Ox(m) ® Ox(m))|z) = P(m).

The Hilbert polynomial of the graph I', of an arbitrary isomorphism is (X, Ox(m) ®
g*Ox(m)). Thus, for P(m) := y(X, Ox(2m)) one has a locally closed embedding

Aut(X, Ox(1)) — Hilb"(X x X).

Note that it may fail to be open in general, as y(X, Ox(m) ® g*Ox(m)) = x(X, Ox(2m))
may not necessarily imply that g*Ox(1) = Ox(1).

Proposition 3.7. The Zariski tangent spaces of Aut(X) and Aut(X, Ox(1)) at the identity
satisfy
TwAut(X, Ox(1)) C TiqAut(X) =~ H’(X, Tx). (3.2)

The inclusion is an equality if H'(X, Ox) = 0.

Proof This follows from the description of the tangent space of the Hilbert scheme of
closed subschemes of Y at the point [Z] € Hilb(Y) corresponding to Z C Y as

T[Z]Hllb(Y) = HOIn(Iz, Oz),



46 Chapter 1. Basic facts

cf. [178, Thm. 6.4.9] or [253, Sec. 2.2] and Section 2.1.3. ForZ =Ty Cc Y = X X X
this becomes

TiaAut(X) = Hom(Za, On) = H(A, Najxxx) = H(X, Tx).

As for our purposes the inclusion in (3.2) is all we need, we leave the second assertion
to the reader. Hint: Use H'(X, Ox) = Tjo,Pic(X). o

Exercise 3.8. Refine the proposition by showing that TigAut(X, Ox(1)) is the kernel of
the map H°(X, Tx) — H'(X, Ox) induced by the contraction with the first Chern class
ci(L).

For a smooth hypersurface of dimension n > 2 and degree d > 3 the result immedi-
ately gives

TwwAut(X, Ox(1)) = TiuAut(X) =~ H(X, Tx) ~ 0,

which allows one to prove the following general finiteness result. The original proof by
Matsumura—Monsky [344] is different, it avoids cohomological methods and relies on
techniques from commutative algebra. See [375, Rem. 6] for historical remarks.

Corollary 3.9. Let X ¢ P™*! be a smooth hypersurface of dimension n > 0 and degree
d > 3, but (n,d) # (1,3). Then Aut(X, Ox(1)) is finite and Aut(X) is discrete. In fact, if
(n,d) # (1,3),(2,4), then Aut(X, Ox(1)) = Aut(X), and then both groups are finite.

Proof As Aut(X) and Aut(X, Ox(1)) are group schemes, all tangent spaces are isomor-
phic and in our case trivial by Corollary 3.5. Hence, Aut(X), which is locally of finite
type, is a countable set of reduced isolated points. As Aut(X, Ox(1)) is quasi-projective,
it must be a finite set of reduced isolated points.

The equality Aut(X, Ox(1)) = Aut(X) for n > 2 follows from Corollary 1.9. Forn = 2
and d # 4, use that wy =~ O(d — (n + 2)) is preserved by all automorphisms and that
Pic(X) is torsion free, see Remark 1.4. |

Similarly, if (n,d) # (1,3),(2,4), any isomorphism X =~ X’ between two smooth
hypersurfaces X, X’ ¢ P"*! of degree d is induced by a coordinate change of P"*!,

Remark 3.10. (i) For n = 1 and d = 3 the result really fails, but not too badly. For a
smooth plane cubic curve E C P? and char(k) # 3, one has:

0 = TiAut(E, Op(1)) C TiuAut(E) =~ H(E, Tg) =~ H(E, OF) = k,
see [270, Sec. 11.7.5]. So, even in this case, the group Aut(E, Og(1)) is in fact finite,

although the bigger group Aut(E) certainly is not.

(i1) The finiteness of Aut(X) also fails for n = 2 and d = 4 in general. Indeed, there
exist quartic K3 surfaces with infinite automorphism groups, see [249, Sec. 15.2.5] for
examples and references.
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The groups of automorphisms of the universal smooth hypersurface of degree d, de-
noted X — U = |O(d)|sm, form a quasi-projective family

Aut := Aut(X /U, Ox (1)) — U = |Op(d)lsm. (3.3)

More precisely, there exist functorial bijections between Mory (7, Aut) and the set of
automorphisms g: Xr — &7 over T with g"Ox, (1) = Ox,(1) modulo Pic(T). As in
the absolute case, mapping g to its graph, describes a locally closed embedding Aut
Hilb(X xy X /U) into the relative Hilbert scheme.

According to Corollary 3.9, the fibres of Aut—- U, i.e. the groups Aut(X, Ox(1)),
are finite and, therefore, Aut—s U is a quasi-finite morphism. In fact, it turns out to be
finite, cf. Remark 3.1.7, which is a consequence of the GIT stability of smooth hypersur-
faces. Note that the general result of [346] proving properness for families of non-ruled
varieties is not applicable to cubic hypersurfaces of dimension at least two.

3.3 (Polarized) deformations The description of the first order deformations of a
smooth projective variety X is similar. Firstly, there is a bijection between H' (X, Tx) and
the set of flat morphisms X — Spec(k[e]) with closed fibre Ay = X, cf. [222, II. Ex.
9.13.2]. This can be extended to the following picture, cf. [178, Ch. 6]: If HY(X,Tx) =0,
then the functor

Fy: (Art/k) —= (Set),

mapping a local Artinian k-algebra A to the set of flat morphisms X — Spec(A) with
the choice of an isomorphism X =~ X for the closed fibre X} has a pro-representable
hull, see [178, Def. 6.3.1]. This means that there exist a complete local k-algebra R and
a ‘versal’ flat family X — Spf(R), Xy =~ X, for which the induced transformation

hg = Morty_ue(R, )—>=Fx 3.4

is bijective for A = k[e]. We shall write Def(X) := Spf(R) with the distinguished closed
point 0 € Def(X) and the Zariski tangent space ToDef(X) ~ H' (X, Tx).
Similarly, one considers the polarized version

FX,(’)X(I) : (Art/k) —_— (Set)

mapping A to the set of flat polarized families (X', O x (1)) — Spec(A) with closed fibre
(X,0x(1)) = (X, Ox(1)). Again, the functor Fx o,y has a pro-representable hull R’
with a ‘versal’ flat family (X, Ox (1)) — Def(X, Ox(1)) := Spf(R’).

Only if Aut(X) is trivial, one can expect a universal family to exist, i.e. (3.4) to be an
isomorphism. Then F is said to be pro-representable (and similarly for Fx o,)). This
is the difference between a universal and a versal family.

The natural forgetful transformation Fx o, (1) —> Fx describes a morphism

Def(X, Ox(1)) — Def(X), (3.5)
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which in general is neither injective nor surjective. The first Chern class
c1(Ox(1)) € H'(X, Qx) = Ext'(Tx, Ox)
interpreted as an extension class defines an exact sequence
0 —— Ox —=D(Ox(1)) —=Tx —=0.

Here, the sheaf D(Ox(1)) can be thought of as the sheaf of differential operators of
Ox(1) of order < 1.

Then TyDef(X, Ox(1)) ~ H'(X, D(Ox(1))) and the tangent map of (3.5) is part of a
long exact sequence, see [421, Sec. 3.3] for more details:

-+ = H'(X, Ox) — H'(X, D(Ox(1))) — H"(X, Tx) —= H*(X,Ox) — -~ .
=~ ToDef(X, Ox(1)) =~ ToDef(X)
In fact, for most hypersurfaces the outer terms are trivial.

Remark 3.11. Over C, the formal spaces Def(X) and Def(X, Ox(1)) can alternatively
be thought of as germs of complex spaces. Standard deformation theory ensures that
the universal families X — Def(X) and (X, Ox (1)) —Def(X, Ox(1)) can in fact be
extended from families over formal bases to families over some small complex spaces.
While this remains true in the algebraic setting for (X', Oy (1)) —Def(X, Ox(1)), cf.
[178, Thm. 8.4.10], it fails for the unpolarized situation.

The universal family of smooth hypersurfaces X — U = |Op(d)|sm induces a mor-
phism (U, 0) — Def(X, Ox(1)) from the formal neighbourhood of 0 := [X] € U. We
think of |Os(d)| as a component of the Hilbert scheme Hilb(P**') and of Ox(d) as the
normal bundle N, x/pr+t. Then ToU = H°(X, Ox(d)) and the tangent map of the compo-
sition

(U, 0) —Def (X, Ox(1)) —Def(X)

is the boundary map of the normal bundle sequence H°(X, Ox(d))— H'(X, Tx). Con-
versely, for an arbitrary deformation (X, O (1)) — Spec(A) of X over a local ring A
there exists a relative embedding X —— ]PT' extending the given one X c P"*!. Here
one uses that H' (X, Ox(1)) = 0, which ensures that all sections of Ox(1) on X extend
to sections of Ox (1), see [421, Sec. 3.3].

Proposition 3.12. Let X c P™! be a smooth hypersurface of degree d. Assume n > 2
orn =2, d < 3. Then the natural map

H(X, Ox(d)) = To|Op(d)| —= ToDef (X, Ox(1)) — ToDef(X) ~ H'(X, Tx)
is surjective. Furthermore, the forgetful morphism (3.5) is an isomorphism

Def(X, Ox(1)) —= Def(X)
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between smooth germs.

Proof Most of the proposition is an immediate consequence of the preceding discus-
sion and the vanishings H'(X,Ox) = 0 = H*(X,Ox). In order to see that the iso-
morphism TyDef(X, Ox(1)) ~ ToDef(X) between the tangent spaces is induced by an
isomorphism Def(X, Ox(1)) ~ Def(X) it suffices to observe that both spaces are smooth
and so isomorphic to Spf(k[[z1, . - ., z»]]) With m = dim T. This could either be deduced
from the vanishing H*(X, D(Ox(1))) = H*(X, Tx) = 0 for n > 3 [421, Thm. 3.3.11] or,
simply, from the fact that |Op(d)| is smooth. |

Remark 3.13. The kernel of H(X, Ox(d)) —s= H' (X, Tx) is a quotient of H*(X, T¢|x)
(and in fact equals it for n > 2 and d > 3). The latter should be thought of as the
tangent space of the orbit through [X] € |Op(d)| of the natural GL(n + 2)-action on
|Op(d)], see Section 3.1.3. This leads for cubic hypersurfaces to the dimension formula
dim H'(X, Ty) = (”;2), for which an alternative proof will be given in Example 4.15.

For later reference, we also note that H2(X, Tx) = 0 for all smooth cubic hypersur-
faces X c P"*!. For n > 3 this can be deduced from the Kodaira vanishing H(X, Tx) ~
H(X, QS’{I ® wy) = 0 fori > 1, as wy is ample, and for n = 2 it follows from Serre
duality.

It may be worth pointing out the following consequence, which we will only state for
cubic hypersurfaces.

Corollary 3.14. Any local deformation of a smooth cubic hypersurface X ¢ P! as a
variety over k is again a cubic hypersurface. |

For n = 2, so for cubic surfaces, it is easy to construct smooth projective global de-
formations that are not cubic surfaces any longer, see Remark 4.2.8. However, for n > 2
the fact that p(X) = 1 allows one to prove that global smooth projective deformations
of cubic hypersurfaces are again cubic hypersurfaces, cf. [259, Thm. 3.2.5].7 The sit-
uation is more complicated when one is interested in non-projective or, equivalently,
non-Kihlerian global deformations.

3.4 No automorphisms generically It turns out that for generic hypersurfaces the
automorphism group is trivial and this has been generalized to complete intersections.

Theorem 3.15. Assume n > 0, d > 3, and (n,d) # (1,3). Then there exists a dense open
subset V C |Op(d)|sm such that for all geometric points [X] € V one has

Aut(X) = Aut(X, Ox(1)) = {id}.

7 Thanks to J. Ottem for the reference. Compare this to the well-known fact that Def(P! x P!) is a reduced
point but yet P! x P! can be deformed to any other Hirzebruch surface F,, = P(O & O(n)) with n even.
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There are three proofs in the literature. The original one by Matsumura and Monsky
[344] and two more recent ones by Poonen [394] and Chen, Pan, and Zhang [116].
Benoist [64] discusses the more general situation of complete intersections. For (n, d) =
(1,3), i.e. for the generic cubic curve, one still has Aut(X, Ox(1)) = {xid} as long as
char(k) # 3. For simplicity we shall assume that (n,d) # (1, 3),(2,4) and so Aut(X) =
Aut(X, Ox(1)), see Corollary 3.9.

In [394] the result is proved by writing down an explicit equation of one smooth
hypersurface without any non-trivial polarized automorphisms, cf. Remark 3.19. We
will follow [116] adapting the arguments to our situation.® We shall begin with the
following result which is of independent interest.

Proposition 3.16. Assume X C P! is a smooth hypersurface of degree d over a field
of characteristic zero withn > 0, d > 3, and (n,d) # (1, 3). Then Aut(X) acts faithfully
on H'(X, Tx).

Proof We may assume that k is algebraically closed. Suppose g € Aut(X) acts trivially
on H'(X, Tx). As an element g € Aut(X) c PGL(n + 2) it can be lifted to an element in
SL(n+2) which we shall also call g. It is still of finite order and, after a linear coordinate
change, can be assumed to act by g(x;) = 4; x; for some roots of unities A;. This is where
one needs char(k) = 0.

Let F € H°(P, Op(d)) be a homogeneous polynomial defining X. As g(X) = X, the
induced action of g on H(P, Op(d)) satisfies g(F) = u F for some root of unity u.
Hence, changing g by u~!/¢ we may assume that 4 = 1 (but possibly g is now only a
finite order element in GL(n + 2)). For greater clarity, we rewrite (3.1) as the short exact
sequence

W= (Ve V)/k-id = H'(X, Tely) & H"(X, Ox(d)) —=H' (X, Tx),

with V = (xo,..., X41) and using H'(X, Tx) = 0 = H'(X, Tp|x) observed earlier. All
maps are compatible with the action of g and also the isomorphism is GL-equivariant.
Note that H(X, Ox(d)) is endowed with the action of g by interpreting Ox(d) as the nor-
mal bundle Ny/p. The induced action is compatible with the natural one on H(P, O(d))
under the isomorphism H°(X, Ox(d)) ~ H°(P, O(d))/{F).

As g has finite order, any class v € H'(X, Tx) fixed by g can be lifted to a g-invariant
section (1/|g]) >° g'se HO(X, Ox(d)), where s is an arbitrary pre-image of v. Thus, in or-
der to arrive at a contradiction, it suffices to show that the g-invariant part H 0(X, Ox(d))?
cannot map onto H'(X, Tx). So it is enough to show that its dimension W (Ox(d))? sat-
isfies

W2(Ox(d))® < h'(X, Tx) + dim(W?).

8 Thanks to O. Benoist for the reference.
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As h'(X, Tx) = h°(Ox(d)) — dim(W), this reduces the task to proving
dim(W) — dim(W#) < h°(Ox(d)) — h°(Ox(d))®. (3.6)

Note that the left-hand side of (3.6) equals dim(V®V*)—-dim(V®V*)8 and, as g(F) = F,
the right-hand side is nothing but #°(P, O(d)) — h°(P, O(d))$. The weak inequality in
(3.6) follows from the obvious equality W& = W N H°(X, Ox(d))?.

The strict equality follows from purely combinatorial considerations for which we
refer to [116]. The idea is to write V = €V, with V; := (x; | 4; = A). Then, the left-
hand side is dim(W) — dim(W?¢) = (n + 2)*> —= > dim(V;;). To compute the right-hand
side, one decomposes S(V) = S (€D V,) and shows that for d > 3 the dimension of
the non-invariant part on the left exceeds the one on the right.” O

Exercise 3.17. In order to gain a concrete understanding of the combinatorial part of
the proof, consider the situation V =V, ®V,,, 4; # 4, and d = 3. Then S3V = SSVAI @
(S2Vy, ® V) @ (Vy, ® S2V,,) ® SV, and dim(S?V)¢ is maximal when 43 = 43 = 1.
Show that in this case (3.6) holds, i.e. (1'*7) + (257) + (n + 2)> < (/) + n? + n3, where
n; =dimV/L. andn; +ny=n+2>2.

Corollary 3.18. Let X be a smooth complex hypersurface of dimension n > 0 and
degree d > 3 with (n,d) # (1,3). Then the action of the group Aut(X) on the middle
cohomology H" (X, Z) is faithful.

Proof The assertion follows from the proposition by using that the contraction map
H'(X, Tx) — End(H"(X, C)) is equivariant and injective, cf. Corollary 4.25. |

For (n,d) = (1,3), so plane cubic curves, the subgroup Aut(X, Ox(1)) still acts faith-
fully on H'(X,Z). An alternative proof of the corollary relying on the Lefschetz trace
formula, applicable to hypersurfaces in positive characteristic, was worked out by Pan
[384] and Javanpeykar and Loughran [262].

Proof of Theorem 3.15 As H°(X, Tx) = 0, the morphism Aut—s U in (3.3) is un-
ramified. After passing to a dense open subset V C U, we may assume it to be étale.
Fix [X] € V and assume there exists id # g € Aut(X). After base change to an open
neighbourhood of [g| € Aut, considered as an étale open neighbourhood of [X] € V,
there exists a relative automorphism g: X — X, soro g = g, with g|y = g. The base
change is suppressed in the notation.

The relative tangent sequence 0 —>Tx — Tx|x — Tx;V ® Ox —0 induces an
exact sequence H(X, Txlx) —Tx)V —=H '(X, Tx). The surjectivity follows from

9 1t is interesting to observe that the argument breaks down at this point for n = 0. And, indeed, the auto-
morphism group of a cubic X ¢ P! is never trivial. For n = 1 and d = 3 the arguments still show that
Aut(X, Ox (1)) acts faithfully on H' (X, Tx).
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Proposition 3.12 and all maps are compatible with the action of g. However, as r is g-
invariant, the action on T'x;V is trivial. Therefore, the action of g on H 1(X, Tx) is trivial
as well, which contradicts Proposition 3.16. O

Remark 3.19. Poonen [394] provides equations for smooth hypersurfaces X defined
over the prime field k, so k = F,, or k = Q, such that Aut(X, Ox(1)) = {id} for X := Xx,k.
For cubic hypersurfaces the equations are of the form ¢ xg + Do xl%rl + xfl +1» Where
n > 2 and char(k) # 3. The hard part of this approach is then the verification that the

hypersurface given by this equation has really no polarized automorphisms.

Remark 3.20. (i) Assume n > 2 and d > 3 as before. Then |Aut(X)| is universally

bounded, i.e. there is a constant C(d, n) such that for all smooth X € |O(d)|
[Aut(X)| < C(d, n).

This follows again from the fact that Aut(X /U, Ox(1))— U is a finite morphism, see
Remark 3.1.7.

The bound C(d,n) can be made effective. Howard and Sommese [237] show that
C(d,n) can be chosen of the form C(d,n) = C(n) - d". The bound is unlikely to be
optimal. See also Remark 4.7.

(i1) A more recent result of Gonzdlez-Aguilera and Liendo [195, Thm. 1.3] deter-
mines the possible orders of automorphisms of a smooth hypersurface. For cubic hy-
persurfaces of dimension at least two their result says that there exists a smooth cubic
hypersurface X c P"*! with an automorphism of order m not divisible by 2 or 3 if and
only there exists an £ € {1,...,n + 2} such that (-2)’ = 1 (m).

For example, for an automorphism g of a smooth cubic surface S ¢ P the result says
that |g| < 5 if |g| is not divisible by 2 or 3. A complete classification is known in this
case, see [158, Table 9.5] or Hosoh’s work [236], and shows that |g| < 12 without any
divisibility condition.

In fact, the case of cubic hypersurfaces was treated earlier already. It was observed
[194, Thm. 2.6 & Cor. 2.8] that if a prime p > 3 can be realized as the order of an
automorphism of a smooth cubic hypersurface X ¢ P"*! then p < 2!,

(iii) For smooth cubic threefolds maximal groups of automorphisms have been clas-
sified by Wei and Yu [490, Thm. 1.1]. There are exactly six of them, including groups
like Z/3Z x S5 and PGL,(Fy;), see Section 5.5.4. For smooth cubic fourfolds, an essen-
tially complete classification of groups of symplectic automorphisms, i.e. those acting
trivially on H 31(X), has been obtained by Fu [182] and Laza and Zheng [315]. Also, for
a smooth cubic fourfold X one has [Aut(X)| < 174960 = 2* - 37 - 5 and the upper bound
is attained by the Fermat cubic.



4 Jacobian ring 53

4 Jacobian ring

The Jacobian ring is a finite-dimensional quotient of the coordinate ring of a smooth
hypersurface obtained by dividing by the partial derivatives of the defining equation. At
first glance, it looks like a rather coarse invariant but it turns out to encode the isomor-
phism type of the hypersurface as an abstract variety. There are purely algebraic aspects
of the Jacobian ring as well as Hodge theoretic ones, which shall be explained or at least
sketched in this section.

4.1 Hessian and Jacobian We shall assume that the characteristic of k is zero or, at
least, prime to d and d — 1, where d is the degree d of the hypersurfaces under consid-
eration. The polynomial ring

S = klxo,... . xun] = €D S
i>0
is naturally graded. Here, §; is the subspace of all homogeneous polynomials of degree
i.For F € S ;we write 0;F € S, for the partial derivatives 0;F := 0F/0x;. The Hessian
of F is the matrix of homogeneous polynomials of degree d — 2
&F
Ox,- ox ili, i '

H(F) = (

For its determinant one has det H(F) € S -, where from now on we use the shorthand
oc=m+2)-(d-2). “.1)

The reader may want to compare this number to the much larger degree of the discrim-
inant divisor deg D(d, n) = (d — 1)"*'(n + 2). Also, for the case of interest to us, d = 3,
one simply has

oc=n+2.

Recall that a polynomial F € S, can be recovered from its partial derivatives by means
of the Euler equation

n+l1

d-F = Zx,ﬁiF. (42)
i=0
Definition 4.1. The Jacobian ideal of a homogeneous polynomial F € S, of degree d
is the homogeneous ideal
J(F) = (0;F) C S =k[xq,...,Xn+1]

generated by its partial derivatives,. The Jacobian ring or Milnor ring of F is the quo-
tient

S —s=R(F) := S| J(F),
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which is naturally graded as well.

An immediate consequence of (4.2) is that the quotient map factors through the co-
ordinate ring of X:

S —=S/(F)—=R(F).

If X ¢ P := P"*! is the hypersurface defined by F, then we shall also write J(X)
and R(X) instead of J(F) and R(F). As F is determined by X up to scaling, there is
no ambiguity. If F or X are understood, we will abbreviate further to J = J(F) and
R = R(F).

As an immediate consequence of Lemma 3.1, one obtains the following result.

Corollary 4.2. For a smooth hypersurface X C P defined by a homogeneous polyno-
mial F the Jacobian ring R(X) = R(F) is a zero-dimensional local ring and a finite-
dimensional k-algebra. O

4.2 Gorenstein and Poincaré We next want to show that the Jacobian ring R is
Gorenstein with its (one-dimensional) socle in degree o = (n + 2) - (d — 2). We will
also compute the dimensions of its graded pieces.

Proposition 4.3. Assume that the homogeneous polynomial F € S 4 defines a smooth
hypersurface X C P = P™*!. Then the Jacobian ring R := R(X) = R(F) has the following
properties:

(i) The ring R is an Artinian graded ring with R; = 0 for i > o and R, ~ k. Moreover,
R, is generated by the class of det H(F).
(i1) Multiplication defines a perfect pairing

RiXRy_i—=R, ~ k.

(iii) The Poincaré polynomial of R is given by

_ 4d-1 n+2
1-¢ ) . 4.3)

HRy:E:mmmgfz(l_t

i=0
For d = 3 the dimensions of the graded pieces of the Jacobian ring R(F) are simply

”+2) 4.4)

mmmg:(

Proof We write f; := d;F. Then, by Lemma 3.1, fy, ..., fur1 € S is a regular sequence
of homogeneous polynomials of degree d — 1. This is in fact all we need for the proof.

Let us begin by recalling basic facts about the Koszul complex of a regular sequence
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fos- s fas1 € S. As always, P"*! = P(V) and so V* = (xo, ..., Xus1). Then the Koszul
complex is the complex (concentrated in (homological) degree n + 2, ...,0)

Ko(f): ( /\n+2V* . ._>/\kV*_>. ) ~—>/\2V*—>V*—>k )®k S
with differentials
Op(xiy A Axi) =Y (=1 fioxi Ao A A A,
Now, for a regular sequence (f;) the Koszul complex is exact in degree # 0 with:
Ho(K.(f;)) = Coker (V*® S —=8) ~ R :=S/(f5),

see [424]. The exactness of the complex K.(f;) —= R and the fact that the differentials
in the Koszul complex are homogeneous of degree d — 1 shows

dimR; = dim(S;) — (n + 2) dim(S,;(d,l)) -

n+2

) 2
= Z(—l)’ (n -; )dim(S,'_j(d—l))'
=0

Of course, dim(S 1)) = K, 06 — j(d - 1)) = (177", see (1.2). This in
principle allows one to compute the right-hand side.

The argument can be made more explicit by observing that in K,(f;) only the differen-
tials depend on the sequence (f;). Hence, dim R; can be computed by choosing a particu-
lar sequence, e.g. f; = x*~". In this case, if a monomial x’ = xg’ e x;;‘l is not contained
in the Jacobian ideal (f; = x¢~!), then all i; < d—2 and hence |I| < (n+2)-(d-2) = 0. In
other words, R; = 0 for i > o, which is not quite so obvious from the above dimension
formula. Moreover, if x' ¢ (f;) for || = o, then x = []x/"2, i.e. R is one-dimensional
and generated by the Hessian determinant of F = ) x;’. For the computation of the
Poincaré polynomial, observe that

R(D ) = klxol /(™) @ -+ @ klxyen 1/ (x|

and hence

_1\n+2
P(R (Z xij)) = P(k[x]/(xd_l))n+2 =(1+t+---+ td—2)n+2 _ (i :id l) .

One can also argue without specializing to the case of a Fermat (or any other) hyper-
surface and without relying on the Koszul complex as follows. For an exact sequence
0—M"— ... —M"—=0 of graded S-modules the additivity of the Poincaré
polynomial implies > (~1)/P(M’) = 0. Now, define R’ := S/(fy, ..., f;) and consider

fi

the sequences 0 R-! R! R 0 . Since the sequence (f;) is
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regular, they are exact. Then
P(R) = PR - 'P(R™") = (1 = " HP(R"™Y)

and by induction

P(R) = (1 = t71y"*2 P(S).

As P(S) = 1/(1 — t)"*?, this implies (iii) and, thus, R; = 0 for i > o and R, =~ k.

Let us next show that the Hessian determinant det ((% f]) is not contained in the
ideal (f;) and thus generates R,.. For this consider the dual Koszul complex K*(f;) =
Homg (K.(f;), S ), which quite generally satisfies the duality

HP(K* () = Huso-p (Ko (),

see [291, Ch. 4]. So, for a regular sequence (f;) the dual Koszul complex K*(f;) is exact
in degree # n + 2 and H"*>(K*) ~ R. This can also be checked directly, for example
by using that HI(K*(f})) = Extg (R,S). Suppose now that H = (hij) is a matrix of
homogeneous polynomials of degree d — 2 such that H - (x j)j = (f)i.e. Y hijxj = fi.
Then H induces a morphism of complexes A° H: K.(f;) —= K.(x;), the dual of which
is a morphism K*(x;) — K*(f;). The latter induces in degree n + 2 the map

k=S/(x;) = H™(K*(x;)) —= H"(K*(f)) = R, 1+ det(H),

which can also be interpreted as the map 7: Ext§+2(k, S )—>Ext§+2(R, S) induced by
the short exact sequence 0 —(x;)/(f;) —= R —=k—=0. As (x;)/(f;) has zero-dimen-
sional support and, thus, Ext?'((x,)/( f),S) = 0, the map n is injective. Therefore,
det(H) # 0 in R. To relate this to our assertion, observe that the Euler equation (4.2)
implies H(F') - (xj)j =(d-1)(0;F);and set H := (1/(d — 1)) - H(F).

It remains to prove (ii), i.e. that the pairing defined by multiplication is perfect. Evi-
dence comes from the equation 7 - P(1/¢) = P(¢) for the Poincaré polynomial computed
above. This already shows that dimR; = dim R,_;. Thus, to verify that the pairing is
non-degenerate, it suffices to prove that for any homogeneous g ¢ (f;) there exists a
homogeneous polynomial & with 0 # g - i € R, or, equivalently, that the degree o part
(8)s of the homogeneous ideal (g) in R is not trivial. Let i be maximal with (g); # 0
and pick 0 # G € (g);. Suppose i < o. Then G - (x;) C (f;), which induces a non-trivial
homomorphism of S-modules k—=R, 1—G. Hence, dim; Homg (k,R) > 1, but this
is impossible. Indeed, splitting the Koszul complex K,(f;) into short exact sequences
and using that Extg (k, \” V* ® S) = 0 for i < n + 2, one finds a sequence of inclusions

Homyg (k, R) < Extl (k, Ker(dp)) —  --- <= Exti**(k, N"*V*®5) ~ k.

This concludes the proof of (ii) and of the proposition. O
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Remark 4.4. Let us add a more analytic argument for the fact that the Hessian deter-
minant generates the socle, cf. [204]. For this we assume k = C and define the residue
of g € C[xo,...,x,+1] with respect to F as

gdxg A+ ANdxyy

fO """ fn+1 ’

where as before f; = 9;F and I' := {x € C"*? | |fi(x)| = &} with 0 < & < 1. Then one
checks the following two assertions:

2mi

1 n+2
Res(g) = (—) :

(1) If g € (f;), then Res(g) = 0. This follows from Stokes’s theorem. Indeed, for exam-
ple for g = h - fy one has

. hdxg A -+ ANdxu4 h
(27i)"*? Res(g) = = f d(—) Adxg A+ Adxye =0,
¢ r o fio fun ro \J1 0 far1 0 ml

as h/(fi -+ fur1) is holomorphic around Ty = {z € C"** | |fy(2)| < &, |fi>0(2)| = &i}.

(ii) The residue of g = det H(F) is non-zero. More precisely, Res(det H(F)) = deg(f).
Here, f: C"? —=C"*? is the map x = (x;)— (fi(x)), which is of degree deg(f) =
dim O o/(f;). Indeed,

(L)"ﬂfdetH(F)dxo/\~-~/\dxn+1 :( 1 )szdfo/\"'/\dfml
T T

2mi for fun 2mi JorJun
1 n+2 . dZ dZn i 1 dZ
(" o ot L
i r 20 Zn+l im0 <7 Jiejl=e; <
= deg(f).

Clearly, (i) and (ii) together imply det H(F) ¢ J(F).

Saito [413] proves the above proposition by reducing the assertion to statements in
local duality theory as in [221]. Voisin [474, Ch. 18] deduces the result from global
Serre duality on P"*!,

Here is an immediate consequence of the perfectness of the pairing R; X R,—; —> R,,.
Corollary 4.5. Assume i + j < 0. Then the natural map
R;“— Hom(R;, R ;)
induced by multiplication is injective. O

In Remark 4.26 we will explain how the injectivity can be interpreted in more geo-
metric terms.
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Remark 4.6. The Jacobian rings of a smooth cubic surface S ¢ P? and of a smooth
cubic threefold ¥ ¢ P* in addition enjoy the Lefschetz property. More precisely, Dimca,
Gondim, and Ilardin [ 156, Prop. 2.22] show that for the generic element x € R;(S) mul-
tiplication defines an isomorphism x?-: R;(S) — R3(S) and Bricalli, Favale, and
Pirola [93, Thm. C] prove that for the generic element x € R (Y) the two multiplication
maps x°-: R{(Y) —— R4(Y) and x-: Ry(Y) —— R3(Y) are isomorphisms.

Remark 4.7. Let X = V(F) c P"*! be a smooth hypersurface of degree d. Then its
group of polarized automorphisms Aut(X, Ox(1)), which according to Corollary 3.9 is
essentially always finite, acts on the finite-dimensional Jacobian ring R = R(X). The
action is graded and faithful. As a generalization of the Poincaré polynomial P(R) one
considers for any g € Aut(X, Ox(1)) the polynomial

PR,g) =Y tr(g|R)L.

Then the Poincaré polynomial is recovered as P(R) = P(R,id). The equation (4.3) has
been generalized by Bott—Tate and Orlik—Solomon [375] to

det(1 - gt 1|V)

P(R, g) =
R-8) = et —grv)

4.5)

where V* = S| = (xq,..., Xn+1). This can then be used to see that |Aut(X, Ox(1))] is
bounded by a function only depending on d and n, see [375, Cor. 2.7], which we have
hinted at already in Remark 3.20.

4.3 Mather-Yau and Donagi As a graded version of a result of Mather and Yau
[342], Donagi [161] showed that the Jacobian ring of a hypersurface determines the
hypersurface up to projective equivalence.

Example 4.8. To motivate Donagi’s result, let us discuss the case of smooth cubic
curves E = X C P = P2, The interesting information encoded by the Jacobian ring

R=Ry®R DR, PR3

is the perfect pairing R; X Ry —=R3 =~ k. We shall describe this for a plane cubic in
WeierstraB form y? = 4 x> — g, x — g3, i.e. with F = x%xz - 4x(3) + 2 xox% + g3 xg. The
partial derivatives are

OoF = —12 xé + g x%, OF =2x1x5, and O, F = x% + 28 xox3 + 383 x%.
From this one deduces bases for R, R;, and R3, namely:

- 2o 3
Ry = (X, X1, X2), Ry = (X3, XoX1, XoX2), and R3 = (X;).
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With respect to theses bases, the multiplication Ry X R, — Rj is described by the matrix

XX KX Xk -383/(282) 0 $/12
[ BB Kkih|= 0 (27¢35 — 83)/(6g2) 0
B XXXy X% 1 0 -3g3/(282)

Recall that the discriminant of an elliptic curve in Weierstra3 form is by definition

A(E) = g% - 27 g_%, see Example 2.6, and its j-function is j(E) = 1728 %, cf. [222,
Sec. IV.4]. Hence, the perfect pairing R; X Ry — R3 ~ k determines j(E) and, therefore
(at least for k algebraically closed), the isomorphism type of E. Note that already the
determinant

A(E)?

72 g;

=24-1728 - g3 - (E)

of the above matrix almost remembers the isomorphism type of E.

Proposition 4.9. Let X, X’ c P = P™*! be two smooth hypersurfaces such that there
exists an isomorphism R(X) ~ R(X") of graded rings. Then the two hypersurfaces are
equivalent, i.e. there exists an automorphism g € PGL(n + 2) of the ambient P with
gX)=X".

Proof We follow the proof in [474, Ch. 18]. First, we may assume that the polynomials
F and F’ defining X and X’ are of the same degree d > 2. Then the given graded
isomorphism R(F)—=R(F’) can be uniquely lifted to an isomorphism g: § —S with
g(J(F)) = J(F") which reduces the proof to the case g = id and J(F) = J(F").

Next, consider the path F; := ¢- F’ + (1 —t) - F connecting F and F’. On the one hand,
we have J(F;); = J(F), for essentially all #, which by deriving with respect to ¢ gives
dF,/dt = F’ — F. The latter is contained in the ideal (F) + (F") c J(F) = J(F’). On the
other hand, the tangent space of the GL(n + 2)-orbit at F; is just J(F,); = J(F)4, which
can be seen by computing for A = (a;;) € M(n +2,C)

d .
%Ft ((ld + 5 'A).x)lsz() = zj:aiF, Xj:a,-jxj.

Hence, the path F, is tangent to all intersecting orbits and, therefore, stays inside the
GL(n + 2)-orbit through F, cf. [161, Lem. 1.2]. This proves the proposition. O

Remark 4.10. There exist examples of smooth projective varieties X that can be embed-
ded as hypersurfaces X = P in non-equivalent ways. For example, the Fermat quartic
X c P3 is known to admit exactly three equivalence classes of degree four polarizations
[143]. The three Jacobian rings are therefore non-isomorphic. However, for cubics of
dimension at least two this does not occur, as the hyperplane bundle is determined by
the canonical bundle.
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Remark 4.11. In Proposition 4.9 it is enough to assume that there is a ring isomorphism
R(X) =~ R(X’), not necessarily graded. Indeed, any ring isomorphism induces a graded

isomorphism @ m/miF! ~ @ mi, /mit!, where mg C R(X) and mp: C R(X’) are the

maximal ideals. Then use that R =~ @ mi,/mi! as graded k-algebras.'”

For reasons that will become clear later, we are interested in a certain subspace of the
Jacobian ring R(X) which only takes into account the degrees

tp)=m—-p+1)-d—(n+2).
Observe that these indices enjoy the symmetry
t(p)+tn—-p)=m+2)-d-2)=o0.
Therefore, multiplication describes perfect pairings
Ri(p) X Rign-p) —> R = k.

Let us first check for which p one finds a non-trivial R;(,. This is the case if and only if
0<tp)<o=m+2)-(d-2),i.e. for

n+2—dsps(n+1)-(d—1)—1.
d d

For d = 3 this becomes

n—1 << 2n+1
3 ~P=773
Observe that t(p) = oifand only if n —p + 1 = (1/d) - (n + 2) - (d — 1), which leads
to the next result.

(4.6)

Lemma 4.12. For given n and d the following conditions are equivalent:

(i) d| (n+2).
(ii) There exists p € Z with t(p) = O.
(iii) There exists p € Z with t(p) = 0.
(iv) There exists p € Z with t(p) = d.
(V) There exists p € Z with dim Ry, = 1.

(Vl) @Rt(p) ~ @Rmd. [m]
We also record that for d = 3, cf. (4.4):
n+2 n+?2
dim(R = = . 4.7
m(Rir) (3(n—p+1)—(n+2)) (2n+1—3p) @7

10 Thanks to J. Rennemo for explaining this to me.
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Exercise 4.13. Let X c P"*! be a smooth hypersurface of degree d. Show that

> dim(Ryp)) = bu(X)pes

where b,(X), was computed in Section 1.3. For d = 3 this becomes the mysterious
combinatorial formula

n+2 —(_1\". . _1\?.»n+l
;(2n+1—3p)_( D" (2/3) - (1+ (=1 - 2", (4.8)

cf. Remark 1.18. A geometric explanation will be given below, see Theorem 4.21.

4.4 Symmetrizer lemma There is a beautiful technique going back to Donagi [161]
that, under certain numerical conditions, allows one to recover the full Jacobian ring
R = R(X) from just the mutiplications Rg X Ryp) — Ryp)+a. This is useful as Ry and
the various Ry, can be described geometrically. We start with the geometric description
of R;(X). We recommend [127] for an instructive brief discussion and [474] for a more
detailed one. See also [470, Lem. 1.8] for generalizations to cohomology of polyvector
fields.'!

Lemma 4.14. Let X € P! be a smooth hypersurface of degree d. Assume dim(X) > 2
or d < 3. Then there exists a natural isomorphism

Ra(X) = H'(X, Tx).

Proof This follows from (3.1) in the proof of Corollary 3.5 and H'(X, Ts|x) = O,
which holds under the present assumptions. The case n = 1, d = 3 needs an additional
argument which is left to the reader. O

Example 4.15. Observe that the isomorphism confirms the dimension formula (2.2):

dim(Ms,) = dim H'(X, Ty) = dim Ry(X) = (” ; 2),

where M3, is the Deligne-Mumford moduli stack of all smooth cubic hypersurfaces,
cf. Remark 3.1.16.

Before turning to the geometric interpretation of the spaces R;,)(X), we present the
following purely algebraic result. It was proved by Donagi [161] for generic polynomi-
als and by Donagi—Green [162] in general.

Proposition 4.16 (Symmetrizer lemma). Assume the following inequalities:
i<j Q)i+j<o-1,and(ii)d+ j<o+3.

1" With thanks to P. Belmans for the reference.
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Then the image of the injection
R;_; — Hom(R;,R)),

see Corollary 4.5, is the subspace of all linear maps ¢: R;—=R; such that for all
g h€R;onehasg-ph)=h-¢(g) € R

Proof The subspace described by the symmetry condition is the kernel of
Hom(Ry, R;) —=Hom(N\'Ri, Rir ), ¢t (g A hi—>g - ¢(h) = h - p(g)).
As R;_; is obviously contained in it, one has to prove the exactness of the sequence
R;_;—=Hom(R;, R ;) — Hom( NRi, Riyj).

This is done by comparing it to a certain Koszul complex on P**!. See [474, Prop. 18.21]
for details.

Note that for cubic hypersurfaces the discussion below makes use of the symmetrizer
lemma only for i = 1, 2, but the proof does not seem to be any easier in these cases. O

To recover large portions of R(X), the proposition is applied repeatedly. Suppose
R; X R;— R, j is known. Then one recovers R; X R;_; — R, for which in addition (ii)
and (iii) still hold. However, it may happen that (i) ceases to hold, i.e. that i > j — i, but
this can be remedied by swapping the factors, which does not effect the conditions (ii)
and (iii). The procedure stops at some R, X Ry —> R, and a moment’s thought reveals
that £ = ged(i, j). Applied to i = d and j = #(p) (or, if necessary, with reversed order),
this procedure eventually implies the following result, see Remark 4.19 which makes
the procedure more explicit for d = 3.

Proposition 4.17. Assume (2n + 1)/n < d. Fix p such that 0 < t(p) < o —d — 1 and let
€ = ged(d,n + 2) = ged(d, t(p)). Then the multiplication

Rai X Ri(p) == Rarip) = Rip-1)
determines the multiplication Ry X R; —> Ryy. O

Note that in general ¢ is not of the form #(p).

The next corollary is a special case of a more general result, which beyond the cubic
case is known for all smooth hypersurfaces except when (d,n) = (4,4m) ord | (n + 2),
see [161, 162, 474]. The argument is easier for cubic hypersurfaces and so we restrict
to this case.

Corollary 4.18. Assume X = V(F) c P"*! is a smooth cubic hypersurface of dimension
n > 2 with 3 ¥ (n + 2). Then there exist integers p with 0 < t(p) < n — 2 and for each
such p the multiplication

R3 X Ri(p) == R34
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determines the graded algebra R = R(X), and hence by Proposition 4.9 also X, uniquely.

Proof For d = 3, the condition 0 < #(p) < 0 —d — 1 in Proposition 4.17 turns into, cf.
(4.6):

n+3<3p<2n+1, “4.9)

which has integral solutions for all n > 2. For any such p, multiplication R3(X) X
Ri(p) — R3.41(p) determines Ry X Ry —=R;,as 3 1 (n +2).

More precisely, if for two smooth cubic hypersurfaces X, X’ ¢ P"*! and their Ja-
cobian rings R and R’ there exists an isomorphism [R3 X Ry —= R3] = [R] X
R;(p) —>R’3+t(p)], then one also has an isomorphism [R; X R; —= R3] ~ [R| XR| —R)].
In particular, the isomorphism R; =~ Rj corresponds to a linear coordinate change
g (X0, -, Xpe1) —= {X0,...,Xn+1) and the compatibility with the multiplication can

be interpreted as an isomorphism
[klxo.. . xni T = SR —>Ro| = [kDxo. ... xuii ]2 = S*(R) —= Ry .

Hence, g identifies their kernels, which are spanned by the partial derivatives 9;F and
0;F’ of the defining equations. Thus, g induces a ring isomorphism k[x, . . ., X;+1] —>
kl[xo, ..., Xxy.1] that restricts to J(X)—=J(X’) and, hence, R(X) ~ R(X"). |

Remark 4.19. For d = 3 and 3 t (n + 2), as in Corollary 4.18, there always exists
a p with #(p) = 1 or t(p) = 2. The result covers, for example, cubics of dimension
n=2,3,5,6,8,9, for which we list the admissible 7(p):

n|0<tp)<o-4=n-2

t(2) = 1
(2) =5, t3) =2
1(3) =4, td) =1
13) =8, 1(4) =5, t(5) = 2
(4) =17, 1(5) = 4, t(6) = 1

O o0 N W W

Let us spell out how to recover the multiplication R; X R — R, from the multi-
plication R3 X Ry, — Ry,)+3 or, equivalently, the map R3 —=Hom(R;(,), Ry,)+3) for
the case #(p) = 1. We leave the case #(p) = 2 as an exercise. Given R3 X Rj — Ry
allows one to write down the condition g - ¢(h) = h - ¢(g) in R4, where g,h € R; and
¢ € Hom(R, R3). Since the assumptions of the symmetrizer lemma Proposition 4.16
are met, the subspace of all such ¢ is the image of the injection Ry = Hom(R|, R3),
i.e. Ry X Rj —Rj3 is recovered. Applying the same procedure again, one reconstructs
the multiplication Ry X Ry —R».
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Remark 4.20. The result is sharp. For example, forn = 4,the only 0 < t(p) < o =6
are #(1) = 6, #(2) = 3, and #(3) = 0. But the pairing R; X R3 —> R¢ =~ k certainly does
not determine the cubic nor does the multiplication by scalars R3 X Ry — Rj3.

4.5 Infinitesimal and variational Torelli theorem The next step is to describe the
parts R,(,)(X) geometrically. This is the following celebrated result of Carlson and Grif-
fiths [104].

Theorem 4.21 (Carlson-Griffiths). Let X ¢ P™*! be a smooth hypersurface of degree
d. Assume n > 2 or d < 3. Then for all integers p there exists an isomorphism

HP"P(X)pr = Ryp)(X), (4.10)

witht(p) = (n— p + 1) -d — (n + 2), compatible with the natural pairings on both sides,
i.e. there exist commutative diagrams

HP"P(X)pe X H'PP(X)p ——>= H™ (X 1D

Rip)(X) X Ryp—p)(X) ———— R (X).

Moreover, using the isomorphism H'(X, Tx) =~ Ry(X), cf Lemma 4.14, and the pairing
Tx x QF —>Q§_1, one obtains commutative diagrams

H'(X,Tx) x HP"P(X)pr —— HP" P (X)), (4.12)

RiX) X Ryp(X) ———— Ryp-1y(X).

The proof of the theorem is involved and we will not attempt to present it in full.
However, we will outline the most important parts of the general theory that enter the
proof and, in particular, explain how to establish a link between the Jacobian ring and
the primitive cohomology at all. As we will restrict to the case of hypersurfaces in P!
throughout, certain aspects simplify. We refer to [105] and [474] for more details and
some of the crucial computations. In Section 3.3 the results will be interpreted more
geometrically in terms of moduli spaces.

(i) The de Rham complex of a (smooth) k-variety X of dimension # is the complex
Q5 : OX—>QX—>Q§(—> s —>= Q.

The sheaves ng = /\[ Qy are coherent (here in the Zariski topology), but the differen-
tials d: Q}, — Q¥ are only k-linear. The de Rham cohomology of X is then defined as
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the hypercohomology of this complex:
Hip(X/k) = H(X, Q3),
which can be computed via the Hodge—de Rham spectral sequence
N =+
EV! = HI(X, Q) = HR (X/k). (4.13)

Note that the E;-terms are just cohomology groups of coherent sheaves. The spectral
sequence is associated with the Hodge filtration, which is induced by the complexes

FrQy Q) — - —Q

concentrated in degrees p,...,n and the natural morphism FPQS5 —Q}. Then one
defines

FP Hy (X/k) = Im (H'(FPQy) —= H(Q}) = Hp (X/k)). (4.14)

Remark 4.22. If X is smooth and projective over a field k satisfying char(k) = O or
char(k) = p > dim(X) and X is liftable to W(k), then (4.13) degenerates [148]. This
applies to smooth hypersurfaces X ¢ P**!, for which the assumption on the character-
istic of k can be avoided, cf. Section 1.6. Once (4.13) is known to degenerate, the map
in (4.14) is injective.

(i1) For open varieties the Hodge—de Rham spectral sequence does not necessarily
degenerate, but a replacement is available. For example, let us consider the open com-
plement j: U := P\ X = P = P"*! of a smooth hypersurface X C P. There are
quasi-isomorphisms (see the discussion following (4.22) below)

Q2 (log(X)) — Qp(xX) = j.Qy,. (4.15)

Here, QF («X) = j, Q7 (in the Zariski topology!) is the sheaf of meromorphic p-forms
on P with poles (of arbitrary order) along X. Furthermore, Ql(log(X)) C Qp(+X) is
af

defined as the subsheaf locally generated by d log(f) = 7 where f is the local equation

for X, and QL (log(X)) = A\’ (Q)'((log(X))). In our case, X = V(F) and
1 dFj
Qp(log(X))|y, = dlog(F;) Oy, = T Oy,
j

on the standard open subset U; = P\ V(x;) with F; = F(xo/xj,..., Xy41/x;). The
differentials in both complexes in (4.15) are the usual ones. By construction, Q3 (log(X))
is the subcomplex of forms @ with @ and da having at most simple poles along X. The
Hodge filtration in the open case is defined by

FPQ:(log(X)) : Qg(log(X))—>— —>Q$”(log(X))
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(and not as the direct image of F7Q7)) in degrees p,...,n + 1. It induces the spectral
sequence

EYY = HY(P,Qf(log(X))) = HP*(P, Qp (log(X))), (4.16)
where the right-hand side is isomorphic to
H* (P, Q2 (log(X))) = H' (P, Qp(+X)) = Hyp (U/k).

Again by [148], this spectral sequence degenerates under the assumptions of Remark
4.22 and so in particular for smooth hypersurfaces.
Observe that the residue map

res: # h+—=h|x

leads to a short exact sequence 0 —= Q} — Q}(log(X)) —i,Oy —=0. Taking exte-
rior powers, one obtains an exact sequence of complexes

0 — Q — Q2(log(X)) —> (i.Q3)[-1] —= 0
= Q3(+X)
af

with res (7 A a') = alx. Additionally, the sequence is compatible with the Hodge filtra-
tions of all three complexes, which provides us with exact sequences

0 FrPQy FPQs (log(X)) B (L. Fr1Q5[-1] — 0.
The induced long exact cohomology sequences read
o= Hio(P/k) — Hi,(U/k) — HiZ (X/k) — HF (P/k) — - - 4.17)
and
--- = FPH' (P/k) — FPH! (U/k) — FPr-'HI )\ (X/k) — FPHP (P/k) —  (4.18)
Note that the Hodge filtration F? H3, (U/k) is defined as the image of
H*(P, FPQp(log(X))) —H" (P, Qp(log(X))) ~ Hip(U/k) (4.19)

and not via the Hodge filtration of Q7,. The exactness of (4.18) relies on the injectivity
of (4.14) and (4.19), which is equivalent to the degeneration of the spectral sequences
(4.13) and (4.16).

If X is defined over k = C, there is an analytic version of the above for the associated
complex manifold X*". The de Rham complex Q3,, is defined similarly (now in the
analytic topology) and so is the Hodge—de Rham spectral sequence

EP? = HI(X™, QF ) = HI(X™). (4.20)
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The Poincaré lemma shows that in the analytic topology the inclusion C &= Oy leads
to a quasi-isomorphism C—Q},,, and hence an isomorphism

H*(X™,C) —= Hp(X*) = H(Qfu)-

The natural morphism X*" — X of ringed spaces provides a comparison map from the
algebraic to the analytic de Rham cohomology. For X smooth and projective, GAGA
shows that H(X, QF) —=H(X™, Q). Hence, the left-hand sides of (4.13) and (4.20)
coincide and, therefore, also the right-hand sides do, i.e. there exists an isomorphism

Hi (X/C) —> Hip (X™), 421

which is compatible with the Hodge filtration. In fact, (4.21) continues to hold for arbi-
trary smooth varieties without any projectivity assumption, see [212, Thm. 1’].
Also the open case can be cast in the analytic setting, where (4.15) is replaced by

Qr.(log(X*") — Q2. (+X*") — j. A}, — Rj.Cy. (4.22)

Here, the complex A3, is the standard C*-de Rham complex.
The verification of the quasi-isomorphisms in (4.22), and, similarly in (4.15), is read-
ily reduced to the case of U = C \ {0} —= C. In this case,

Q2 (log({0H)(C): Oc — % Oc,
QLHONEC): > 7"Oc —= > 7'dzOc,
J+A%(C): Cy —= dxCp+dyCy —= (dxndy)C.

The cohomology of all three satisfies H' ~ C for i = 0, 1 and H' = 0 otherwise.
Also, there is an analytic version of (4.16) and there exists a natural isomorphism

H*(P, Qi (log(X))) =~ H*(P™, Q3. (log(X™))).

To simplify the notation, we will from now on also write X, U, and P for the asso-
ciated analytic varieties. Then the exact sequence (4.17) becomes the classical Gysin
sequence

.- — Hi(P,C) — H(U,C) — H"\(X,C) — H*\(P,C) — - - - .

This is interesting only for i — 1 = n. As the map H*(X, C) —= H**?(P, C) is surjective
for k = n— 1 and k = n, simply because H*(P) — H*(X) —= H**?(P) is multiplication
with [X] € H?(P), one finds

H™(U,C) ———— H"(X,C),
U U
FPH™!(U,C) —— FP~'H"(X,C)y.
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However, the Hodge filtration is difficult to compute and it is preferable to replace it
by the pole filtration F;ol of the complex Qp(+X). Under the quasi-isomorphisms (4.15)
and (4.22) the two compare as follows

Froz(log(X)) :  QL(log(X)) — Q5 (log(X)) — -+ —= Q! (log(X))
n n n n

Fgolﬂlg,(*X) : Qg(X) Q§+1(2X) —_ . — Q%”((n—p+2)X).

This is usually not a quasi-isomorphism. However, using that H*(P, C),; = 0 and apply-
ing Bott vanishing, see Section 1.2, one finds

FgolH"“ (U,C) =~ FPH"\(U, C).

The advantage of using the pole filtration stems from the following result.

Lemma 4.23 (Griffiths). Let X ¢ P = P™! be a smooth hypersurface.
Then FPH"(X, C)y = FPYYH™ (U, C) is isomorphic to

HOP, Qg*l((n -p+ X))

FPUH™ (U, C) ~ 4.23
pol () dHO(P, Q3 ((n - p)X)) (423)
and HP"P(X), ~ FPYYH™ (U, C)/FP*H" (U, C) is isomorphic to
FIH U™ (U, ©) HO®, Q7 (n - p+ DX
pol N ®, Q" ((n— p+1)X)) (4.24)

FIR e (U,C)  HOE.Q (- p)X)) + dHO®, Q((n - p)X))
Proof By definition, the left-hand side in (4.23) is the image of the map
H'™!(B, FP Q8 (X)) —= H' (B, Q3 (+X)).

pol

The natural map Q&+ ((n = p + DX)[~(n + 1)]—= F12 Q2 (+X) induces

H(®, (0 = p + X)) —= FIoH (B, Q3 (+X)) = FI H'™ (U, ©).

It is rather straightforward to show that the map is surjective and that its kernel is the
image of d: H(P, Q((n - p)X))— H(P, Q{;”((n — p + 1)X)). The isomorphism in
(4.24) follows. |

Let us come back to the discussion of Theorem 4.21. Observe that

H'®, Q" (n—p+ 1)X)) ~ H'P,O((n—p+1)-d - (n+2)))
= H'(P, O(t(p))).

Thus, in order to prove (4.10), it suffices to show that the image of

(0:F): H'®,0((n - p) -d - (n + 1))*"** — H°(P, O(t(p)))
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equals H(P, Q2! ((n — p)X)) + dH(P, Q2((n — p)X)). This is a rather unpleasant com-
putation in terms of rational differential forms on P and C"*?. We omit this here and
refer to [474, Thm. 18.10] or [105, Ch. 3.2].12

To prove the commutativity of (4.11), one first needs to fix an appropriate isomor-
phism H™"(X)p, = R,(X) which again involves rational forms. Also the commutativity
of (4.12) is not straightforward. One has to argue that multiplication

H(P, O(d)) x H'(P, O(t(p))) —= H°(P, O(t(p - 1)))
is related to the contraction
H' (X, Tx) x H" P(X, Q%) —= H" "1 (X, 0"

via the surjection H(P, O(d)) — H°(X, Ox(d)) — H'(X, Tx). Note that the multipli-
cation takes place in the top degree n+1 of F' 11; ;IQI;(*X ), whereas the contraction applies
to the lowest degree (from degree p to p — 1).

This finishes our discussion of the main ideas that go into the proof of Theorem 4.21.

Example 4.24. For later use, we spell out the example of a smooth cubic threefold
Y c P* and its complement U := P*\ Y. Then the residue defines an isomorphism
H*(U,C) =~ H*(Y,C) which restricts to F*H*(U,C) ~ F>H3(Y,C) = H>'(Y). According
to the lemma, the space is naturally identified with the five-dimensional space

H*'(Y) ~ H'(P*, Q.(3 -2+ 1)-3)) ~ H'®*, O(1)).

We conclude this section by a result that will later be used to prove that the period
map is unramified, cf. Section 3.3.2. We state the result for cubic hypersurfaces only.

Corollary 4.25 (Infinitesimal Torelli Theorem). Let X C P"™! be a smooth cubic hyper-
surface of dimension n > 2. Then the contraction Tx X Qi — Qf(_l defines an injection

H'(X, Tx)~ Hom @ HP(X),, @ HPM (X | (4.25)
p+q=n p+q=n
Proof There exists a p such that 0 < #(p) < o — 3. Then, by Corollary 4.5, multiplica-
tion in the Jacobian ring R(X) gives an injection

R3 = Hom(Ry(), Rip)+3)-

Conclude by using Ry, = H?"77(X), and the compatibility of the multiplication in
R(X) with the contraction map, cf. Theorem 4.21. |

12 One could try an alternative argument: Apply /\"+1 to the Euler sequence to obtain 0 — O(—(n +
2)) —> O(=(n + 1))@+ —>Qf —>0. Tensor with O((n — p) - d) and consider the composition
HY(P,O((n = p) - d — (n + 1)))®"2 —ss HO(P, Q! ((n - p)-d)) —45 HOP, QI ((n- p+1)-d)), which
should be compared to the map given by (9;F). However, this attempt becomes quickly as technical as the
standard approach.
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Remark 4.26. If X c P"*! is smooth cubic hypersurface of even dimension n = 2m,
then the injectivity Rz &~ Hom(R (), Rymy+3) translates into the injectivity of

H' (X, Tx) <= Hom(H™"(X)pr, H" "1 (X)),

which geometrically can be interpreted as saying that for any first order deformation
there exists a primitive class of type (m, m) that does not stay of type (m, m).

In fact, our discussion and, more precisely, Corollary 4.18 imply a stronger result, at
least for cubic hypersurfaces in two thirds of all dimensions.

Corollary 4.27 (Variational Torelli theorem). Let X ¢ P™*! be a smooth cubic hyper-
surface of dimension n > 2 such that 3 { (n+2). Then (4.25) determines X uniquely. 0O

It is tempting to try to reduce the information needed to recover X further. For exam-
ple, one could try to apply the symmetrizer lemma Proposition 4.16 to determine the
image of (4.25) in terms the cup product H?"~P x H" PP — H™"_ For this to determine
the contraction with classes in H'(X, Tx), one would need n — p = p — 1. However, then
the condition (ii) {(p) + #(p) + 3 < 0 — 1 = n + 1 in Proposition 4.16 is not met.

In Section 3.3.2 the last two corollaries will be reformulated as variants of the Torelli
theorem.

5 Classical constructions: Quadric fibrations, ramified covers, etc.

This section presents standard constructions for cubic hypersurfaces. We will explain
how linear projections turn cubic hypersurfaces into quadric fibrations, see Section 5.1,
and how triple covers of projective spaces ramified along cubic hypersurfaces provide
cubic hypersurfaces of higher dimensions, see Section 5.5. There is also a discussion of
nodal cubics in Section 5.4 and of (uni)rational parametrizations in Section 5.3.

5.1 Projection from a linear subspace To get a feeling how many smooth cubic
hypersurfaces X ¢ P"*! contain a linear subspace P*"! < P**!, let us first look at a
special case and then describe the global picture.

Remark 5.1. Consider the Fermat cubic hypersurface X = V(> x?) c P! Then for n
even, V(xo+x1, X3+ X3, ..., X, + x4 ) describes a linear subspace P2 c P"*! contained
in X. Analogously, for n odd, V(xo + x1, X3 + X3, ..., X,—1 + Xu, Xp+1) describes a linear
subspace P"~1/2 ¢ P**! contained in X.

Clearly, this implies that the Fermat cubic contains linear subspaces P’ of any dimen-
sions ¢ < n/2. Recall that a cubic smooth hypersurface cannot contain linear subspaces
of higher dimension, cf. Exercise 1.5.
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Exercise 5.2. Let P := P¥"! ¢ P!, n > 0, be a linear subspace of dimension k — 1 > 0.

(i) Compute the dimension of the linear system |Op(3) ® Zp| of all cubic hypersurfaces
containing P.
(i) Show that dim |Op(3)®Zp| < dim(M,,), where M,, is the moduli space of all smooth
cubic hypersurfaces of dimension #, if and only if

5.1

2
n+2<(k+ )

3

Conclude from this that the generic smooth cubic X c P"*! does not contain a
linear subspace P41 if k satisfies (5.1).

(iii) For example, neither the generic cubic fourfold X c P> nor the generic cubic six-
fold X c P’ contains a plane P2. In the first case one has dim(P?) = (1/2) dim(X),
while in the second case dim(P?) < (1/2) dim(X), cf. Remark 1.3.

@iv) Foranyn > 0and 1 < k < (n+ 1)/2, there exists a family X — S of smooth cubic
hypersurfaces of dimension n over a connected base S and an S -smooth subscheme
‘P c & such that each fibre P, C &, is isomorphic to a linear Pl c X, c P! and
every such pair P*~! ¢ X occurs as one of the fibres, cf. [472, §1 Lem. 1].

We now write a linear subspace as P := P(W) c P := P(V) with dim(V) = n + 2 and
dim(W) = k. Additionally, we pick a generic linear subspace P(U) c P(V) of codimen-
sion k. Here, generic means that the composition U € V—=V/W is an isomorphism
or, equivalently, that U + W = V or, still equivalently, P(W) N P(U) = @.

The linear projection P - > P(U) ~ P(V/W) from P is the rational map that sends
x € P\ P to the unique point of intersection of the linear subspace xP =~ P¥ with
P(U) ~ P"1=* Tt is the rational map associated with the linear system |Zp ® O(1)| C
|O(1)| with base locus P ¢ P, which is resolved by a simple blow-up. The resulting
morphism ¢: Blp(P)—=P(V/W) is then associated with the complete linear system
[T*O1) ® O(-E)|:

E = P(NP/P) C—— Blp(P)

l N

P % P ................ > P(V/W).

The fibre ¢~'(y), y € P(U) = P(V/W), is the strict transform of P¥ ~ y P P in Blp(P)
which for dimension reasons is isomorphic to P¥. To visualize the situation observe that
E N ¢~'(y) is a section of 7|z : E —s=P which over a point x € P picks out the normal
direction v € P(Np/p(x)) given by the line Xy.

All fibres of ¢: Blp(P)—=P(V/W) are projective spaces P* and, indeed, it is the
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projective bundle Blp(P) ~ P(F™*) with the locally free sheaf
F = ¢.7°0(1)

on P(V/W), which is of rank k + 1. To determine F explicitly, tensor the structure se-
quence of the exceptional divisor E C Blp(P) with 7" O(1) to get the short exact sequence

0——170(1)® O(-E) ——1°0(1) ——= 7" 0()|[p ——=0 (5.2)
= ¢"O(1) = Oy(1) = 0(1,0)
Here, we use that NVp/p =~ V/W ® O(1), from which we deduce an isomorphism
E =P(Npjp) = PXP(V/W),

compatible with the natural projections, and that O(E)|g =~ O(1,—1) on E =~ PXP(V/W).
In particular, p*O(1)|g =~ (7*O(1) @ O(-E))|g =~ O(0, 1). Therefore, ¢ restricted to E is
the projection onto P(V/W). Thus, F is described by the direct image under ¢ of (5.2),
which reads

0 o) F H(P, O(1)) ® Opvjw) — 0.
The sequence splits, which gives a non-canonical isomorphism
F=00)® (W ® Osywy) = O(1) @ O

and, hence, det(F) ~ O(1), which is all we shall use for the moment.

Let now X ¢ P = P(V) be a cubic hypersurface with equation F € H(P, O(3)).
The pull-back 7*F is a section of 7*O(3), whose zero divisor V(7*F) is the total trans-
form of X. If P C P is contained in X, cf. Exercise 2.3.5, then the total transform has
two components, the exceptional divisor E and the strict transform of X C P. The lat-
ter is the blow-up Blp(X) of X in P € X. More precisely, in this case F is contained
in H'P,03) ® Ip) ¢ H(P,O(3)) and *F lies in H'Blp(P), 7*O3) ® O(-E)) C
HOBIp(P), 7 O(3)). Therefore, as a subvariety of Blp(P), the blow-up of X is

Blp(X) = V(+'F) € [T*O(3) ® O(-E)|.

5.2 Quadric fibrations The next goal is to describe Blp(X) as a quadric fibration over
P(V/W). To this end, we compute the direct image of 7*F under ¢. First, observe that

T'0B)® O(-E) =" 0) @ (T*O(1) ® O(-E)) = O4(2) ® ¢*O(1).

Here, the relative tautological line bundle Oy(1) correspond to writing Blp(P) =~ P(F™)
with F = ¢.7"O(1) as before. Thus,

$.(T°O03) ® O(-E)) = $.(04(2) ® " O(1)) =~ S*(F) ® O(1)
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and, therefore, 7" F can be thought of as a section ¢ € H*(P(V/W), S2(F) ® O(1)) or as
a symmetric homomorphism

q: FF—F0Q).

Hence, the fibre of Blp(X) C Blp(P) ~ P(F*) over y € P(V/W), i.e. the residual quadric
Q, of the intersection P C y_P N X, is the quadric defined by g, € § 2(F (). In particular,
the fibre is smooth if and only if this quadric is non-degenerate. Thus, the discriminant
divisor Dp of ¢: Blp(X)—=P(V/W) is

Dp = V(det(q)) C P(V/W).

Here, det(q): det(F)* — det(F) ® O(k + 1) is viewed as a section of the line bundle
det(F? @ O(k + 1) =~ O(k + 3).

The discussion is summarized by the following classical fact, see e.g. [81, Lem. 2]
for n = 3 and [42, Ch. 1]. See also Corollary 5.1.23 for a discussion in dimension three.

Proposition 5.3. Assume that the smooth cubic hypersurface X C P"*! contains a linear
subspace P = P! such that there exists no linear subspace P* ¢ X containing P. Then
the linear projection from P defines a morphism

¢: Blp(X) —P"+17* (5.3)
with the following properties:
(i) The fibre overy € P"™'% is the residual quadric 0O, of PC YWPNX, ie.
YPNX=PUQ,.

(ii) The fibres are singular exactly over the discriminant divisor Dp € |O(k + 3)|.
(ili) The morphism ¢ : Blp(X) —s=P™ 1% is flat.

Proof The first two assertions follow from the preceding discussion. For (iii) use ‘mir-
acle flatness’ which asserts that the smoothness of Blp(X) and of P**1-% together with
the fact that all fibres are of dimension k — 1 imply flatness of ¢. O

Example 5.4. As we shall see in Proposition 2.1.19 and Remark 2.3.6, every smooth
cubic hypersurface of dimension n > 2 contains a line, which corresponds to the case
k = 2 above. Thus, we can always project from a line L C X, which defines a morphism
Bl (X) —s>P""!, the fibre of which are conics. The discriminant hypersurface D; C
P"~! is contained in the linear system |O(5)| and the fibres Q, over points y € D consist
either of two intersecting lines or of a plane double line. We will come back to this in
Remark 2.5.2.
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Exercise 5.5. Let E C Bl (X) be the exceptional divisor of the blow-up of a line L € X
contained in a smooth cubic hypersurface X ¢ P"*!. For a generic point y € P"*~! of
a complementary linear subspace the residual conic Q) C yL N X intersects L in two
points x;, x, € L. Observe that the line X;y ¢ P"*! is tangent to X at x;. Show that the two
induced normal directions of L C X at x; and x, correspond to the two points contained
in the fibre of ¢|z: E—=P""! over y. In particular, the restriction ¢|z is generically
finite of degree two.

Remark 5.6. If there exists a linear subspace of bigger dimension contained in X, then
the fibre dimension of ¢ is not constant anymore. For example, if

PrrlaPcP~P CX,

then the fibre ¢~!(y) of ¢: Blp(X) —=P"*'=* over the point of intersection of P¥ N
P*1-k = {y} will be P’ ~ P*. The description of the discriminant divisor as an element
Dp € |O(k + 3)| remains unchanged.

Example 5.7. Consider the Fermat cubic X = V(> xf’) c P**! of even dimension and
let P = P2 c X be the linear subspace V(xg + x1, ..., X, + X,+1), see Remark 5.1. Show
that then Dp € P""'* = V(xg — x1,..., X, — X,11) is the union of n/2 + 1 hyperplanes
and the cubic X N P**17%,

Remark 5.8. In this lengthy remark we shall discuss various questions related to the
smoothness of the discriminant divisor Dp.

(1) In order to understand the local structure of Dp we first have a look at the space of
symmetric matrices

M={AecMrxr|A' =A)
over an algebraically closed field. It is stratified by the closed subvarieties
M;={AeM|rk(A) <{}.

Using normal forms of symmetric matrices, one shows that M, \ M,_; comes with a
transitive action of GL(r) and is therefore smooth. For our purposes, only the two strata
M,, ¢ M,y C M, = M are relevant. Clearly, M,_; C M, is a divisor cut out by
the determinant det(A) and, using normal forms, one proves that M,_, C M,_; is of
codimension two. Furthermore, a local calculation reveals that M,_, is the singular set
of M,_; and that M,_; has ordinary quadratic singularities along M,_, \ M,_3, i.e. the
generic three-dimensional section of M,_, € M,_; C M through apointA € M, ,\M,_3
produces a surface with an ordinary double point, see [37, Lem. 2].

The stratification can be put into families. For the locally free sheaf 7 of rank r = k+1
and the twist S2(F)(1) it defines a stratification

Mi_1(S*(F)(1)) € My(SA(F)(1) € M1 (SHF)(1)) = ISHF)(DI.
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Now, by construction, Dp is the degeneracy locus

Dp = Mi(q) = { y | tk(gy) <k} = ¢ Mi(S*(F)(1)),

where ¢ is viewed as a section of the vector bundle |S2(F)(1)|—=P™!* As F =~
O(1) ® O%, the sheaf S2(F)(1) is globally generated, which allows us to apply the
following Bertini type argument, see [37, Lem. 4]. Namely, for the generic section g €
HO(P(U), S2(F)(1)) the pre-image of the deeper stratum

g Mo (SAH(F)(D) € Dp = ¢~ M(S*(F)(1)) € P(U) = P**F

is of codimension three in P"*'~* and Dp has ordinary quadratic singularities along the
subset ¢! My—1(S*(F)()) \ ¢~ My—2(S*(F)(1)).

However, a priori there is no reason that the section g induced by the equation defining
X c P"! is generic in this sense and often it is not.

(i1) Note that the discussion suggests that Dp should not be expected to be smooth for
n+ 1 —k > 3. More precisely, the only cases when it definitely is are the cases of lines
in cubic surfaces, of lines in cubic threefolds and of planes in cubic fourfolds.

For a smooth cubic threefold ¥ ¢ P* and for the generic (but not for every!) line
L c Y the discriminant D; c P? is a smooth curve. This follows from (iii) below, see
Corollary 5.1.9 and also Corollary 5.1.23. However, for planes P? ¢ X c P in a cubic
fourfold, the discriminant curve can indeed be singular (and planes in X are rigid and,
thus, have all to be considered generic), see Exercise 5.7. If also X is allowed to vary,
more flexibility is gained, see Remark 6.1.5.

Note that in general, whenever there exists a smooth cubic Xy C pr+l containing a
linear P! ~ Py c X, with Dp, smooth, then by Exercise 5.2 smoothness of Dp holds
for the generic pair P“"! ~ P c X.

When smoothness of Dp cannot be achieved, the next best would Dp to have mild
singularities, e.g. ordinary double points. This is the case for the generic line L ¢ X in
a smooth cubic fourfold, see Lemma 6.4.12, but as our section ¢ may a priori not be
generic even for the generic line, it does not follow for general reasons.

(iii) Using the quadric fibration Blp(X)—P(U) and the description of Dp as its
discriminant divisor, one sometimes obtains a more concrete understanding of the sin-
gularities of Dp. More, precisely, Dp is smooth at y € Dp if and only if the fibre ¢’1(y)
is a quadric cone with an isolated singularity, cf. [42, Prop. 1.2] or [28, Prop. 1.2.5] for
the statement and for references.

5.3 (Uni-)rational parametrizations I The larger the integer & or, equivalently, the
smaller the dimension of the target space P(U) is, the more special X is. According to
Exercise 1.5, the dimension of a linear subspace contained in a smooth cubic hypersur-
face X c P"™! cannot exceed n/2, i.e. k < n/2 + 1. Thus, the most special and, hence,
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the geometrically most revealing case is P(U) =~ P"/? for n even and P(U) =~ P"+1/2 for
n odd.

Corollary 5.9. Assume X C P™! is a smooth cubic hypersurface of even dimension
containing a linear P = PY?* ¢ X < P"!. Linear projection from P defines a quadric
fibration Blp(X) —P"2 with discriminant divisor Dp € |O((n/2) + 3)). A similar result
holds for odd n. O

This construction can be very useful. As an example, we explain how the existence of
a quadric fibration in dimension four can be used to prove unirationality (of degree two).
But we emphasize that unirationality (of degree two) in fact holds true for all cubics of
dimension n > 1, cf. Corollary 2.1.21.

Example 5.10. Assume P> ~ P ¢ X ¢ P = P, Pick a generic P> ¢ P and let § be
the intersection of 7~ !(P?) c Blp(P) and Blp(X) C Blp(P). Observe that 7 !(P3) is the
blow-up of P? in the point of intersection x of P3 and P. Then § is the blow-up of the
cubic surface S := X NP3 in x. The generic fibre of

Pls: § —P*

over y € P? is the intersection of the quadric ¢~'(y) C yP with the line P' ~ P> nyP
and, therefore, consists of two points, i.e. § —=P? is of degree two, cf. the discussion
in Section 4.2.3. The base change Blp(X) Xp2 §S—Sisa quadric fibration with a sec-
tion over the rational surface S and hence rational. Thus, Blp(X) and, therefore, X are
unirational.

One can try to run the same argument for any linear subspace P C X. For example,
for a line P! ~ L c X, which always exists as we will see, one picks a generic P" and
lets S = P" N X, which is a cubic hypersurface of dimension n — 1. The base change
Blp(X) Xp» § —=§ is a conic fibration with a section but now, by induction, one only
knows that § is unirational of degree two.

If the existence of a second, complementary linear space contained in the cubic hyper-
surface X is assumed, not only unirationality but in fact rationality of X can be deduced.

Corollary 5.11. Assume that a smooth cubic hypersurface X C P! of even dimension
n = 2m contains two complementary linear subspaces P" ~ P(W) Cc X and P" =~
P(W’) C X, i.e. such that W @ W’ =V and, in particular, P(W) N P(W’) = @. Then the
quadric fibration (5.3) admits a section and X is rational.

Proof The section is of course given by the inclusion P”* ~ P(W’) C X, for which the
linear projection induces an isomorphism P(W’) —P(U). As any quadric admitting a
rational point is rational, the scheme-theoretic generic fibre ¢~!(z) is a rational quadric
over K(P™). Hence, Blp(X) is rational and, therefore, X itself is. O
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In principle, the argument would work for complementary linear subspaces P¥~! ~
P(W) c X and P"*!~% ~ P(W’) c X. However, unless n = 2(k — 1), the dimension of one
of the two subspaces will exceed n/2, which is excluded by Exercise 1.5.

Example 5.12. In fact, assuming the existence of two complementary linear subspaces
P:=P(W),P’ =P(W’) C X, i.e. such that W & W’ = V, the rationality of X can also be
deduced from the following, in fact easier, construction. Consider the rational map

Y PXP o > X

that sends a pair (x, x") to the residual point of intersection y of {x, x’} C xx’ N X. The
map is well defined for all (x, x") for which the line xx' is not contained in X. This
describes a non-empty open subset of P x P’.

Observe that any point in the complement of P U P’ is contained in the image of .
More concretely, y € X \ (P U P’) is the image of (x, x"), where x and x” are determined
by {x} = PN yP’ and {x’} = yP N P’. As any line through a point y € X \ (P U P’) that
intersects both P and P’ meets P and P’ exactly in the points of intersection x and x’, the
argument also shows that ¢ is generically injective. Thus, X is rational.

As mentioned before, Exercise 1.5 shows that for smooth X the situation can only
occur if dim(X) = 2m and dim(P) = dim(P’) = m. In this case, the construction leads to
a rational parametrization P X P - > X c P?™*1_ Here are two concrete examples:

(i) The Fermat cubic fourfold X = V(xg +-- -+x§) c P’ contains the two disjoint planes
V(xp — Ax1x — ux3, x4 — vxs) and V(xo — puxy, xo — vx3, x4 — Axs). Here, A, u, and v
are the three 3rd roots of unity. In particular, the Fermat cubic fourfold is rational.

(ii) The cubic fourfold X = V(F) c P°> with F = xéxl - xox% + x§x3 - xzxg + xi)@ - X4x§
which contains the two disjoint planes P = V(xg, x2, x4) and P’ = V(xy, x3, x5), cf.
[240, Sec. 5] or [227, Sec. 1].

Rationality of X, for example in dimension four, can also be deduced from the exis-
tence of other types of surfaces. We recommend [227] for further information, see also
Remark 5.4.15, Section 6.1.2, Conjecture 6.5.15, Conjecture 7.3.1, and Theorem 7.3.14.

Remark 5.13. Unirationality of cubic hypersurfaces of dimension at least two can be
shown alternatively by the following crude trick which however does not give any in-
formation about the degree of unirationality.

Fix a smooth cubic hypersurface X c P"*! of dimension n > 2. Then consider two
generic hyperplane sections Y, Y, € X and the associated rational map

Yi XYy o= X, (1, y2) =X

Here, x is the residual point of intersection of {y, y»} C y;y, N X. The map is dominant
as for the generic point x € X and any point y; € Y; the line Xxy; intersects ¥> in a
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(unique) point y,. Since by induction we may assume that Y; and Y, are unirational,
also X is. Note that cubic surfaces over an algebraically closed field are in fact rational,
see Proposition 4.2.4.

One can always project a smooth cubic hypersurface from a point xy € X. This defines
a morphism ¢: Bl (X)—>P" which is generically finite of degree two. Thus, there
exists a dominant rational map of degree two

X > P

or, in other words, the degree of irrationality is bounded irr(X) < 2.

Indeed, for generic y € P" the fibre ¢~!(y) consists of the two residual points xi, x,
of the intersection xy € yxy N X, i.e. yxg N X = {xg, x1, X2}, where possibly xy = x;
or Xy = X or x; = x,. The discriminant divisor in this case is contained in the linear
system |O(4)], but since there exists a line through every point, cf. Proposition 2.1.19,
projection from a point is only generically finite but not finite. The set of points in P
with positive-dimensional fibre will be described in Remark 2.3.6.

In Corollary 2.1.21 we will explain that there also exists a dominant rational map of
degree two with the role of X and P" reversed:

P o s X.

Remark 5.14. Of course, one could also consider the linear projection of a cubic hy-
persurface X c P"*! onto a generic P” ¢ P"*! from a point x € P"*! \ X. The resulting
morphism p: X —P" is of degree three and its Tschirnhaus bundle is p,Ox/Opn =
O(-1)® O(-1), see [353, Cor. 8.5]. The branch locus of the projection is usually sin-
gular, possibly reducible and non-reduced. For n = 2, it is a curve of degree six in P?
with six cusps, see [353, Lem. 10.1].

5.4 Nodal cubics Projecting from a point xy € X becomes more interesting when X
is singular at xy. The simplest case is that of a nodal cubic hypersurface with exactly
one ordinary double point x, as its only singularity.

Recall that an isolated singularity xo € X is an ordinary double point (or a node)
if the exceptional fibre E,, C Bl,,(X) is a non-degenerate quadric in the exceptional
divisor P" ~ E C Bl (P"*!). Then for any line xo € P! C P the intersection P' N X has
multiplicity at least two at xg.

Exercise 5.15. Assume X c P"*! is a nodal hypersurface with exactly one node at the
point [0 : ---: 0 : 1] € P**!, Show that then X is defined by an equation of the form

F(-xo» DR -xn) + Xn+1 * G(X(), DR -xn)’

where F and G define-smeeth hypersurfaces of degree three and two in V(x,4) =~ P".
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As in the smooth case, the blow-up Bl,, (X), which is smooth, can be described as the
strict transform of X in the blow-up of P:

E,, —— Bl (X) & BI,,(P) —> P"

l l 4

{xo} © X C P

with E,, ¢ E = P(T,P) ~ P" a smooth quadric hypersurface. The difference to the
smooth case is that the pull-back 7 F of the defining equation for X now vanishes along
E to order two so that Bl, (X) € [T7*O(3) ® O(-2E)|. By a similar argument as in the
smooth case, 7*F can then be viewed as an element in H(P*, F @ O(2)), for 7 O(3) ®
O(=2E) =7 0(1) @ ¢p*O(2).

As in this situation F =~ O(1) & O, the blow-up is realized as a closed subscheme
Bl,,(X) c Bl,,(P) = P(F™) of the P'-bundle P(F*) given by 7*F viewed as a section
(t1, 1) of O3) ® O(2). Here, the zero locus of #; can be thought of as the intersection
of X with P", while the zero locus of 1, is the intersection of the non-degenerate quadric
E with P". Thus, for y ¢ V(t;) N V(t,) the fibre ¢~'(y) consists of the residual point of
Xo € Y% N X and for y € V(#;) N V(t,) one has ¢~'(y) = P'. In other words,

¢: Bl,,(X) = Bl(P") —P"

is the blow-up of P" in the complete intersection Z := V(¢;) N V(#,) € P" of type (3,2)
or, alternatively, ¢ contracts every line that passes through xy. Compare this discussion
with Remark 2.3.6, where an interpretation in terms of Fano varieties is provided.

The birational correspondence can alternatively be described as an isomorphism

X\ Uyer L=P"\Z

Corollary 5.16. A cubic hypersurface X with an ordinary double point xq as its only
singularity is rational. The blow-up Bl (X) is isomorphic to a blow-up Blz(P") with
Z C P* a smooth, complete intersection of type (3,2). O

Remark 5.17. It is an interesting and often intriguing question to determine the maxi-
mal number u,,(d) of ordinary double points an otherwise smooth hypersurface X c P!
of degree d can acquire, even for surfaces the question is not fully understood. However,
for cubic hypersurfaces, the maximal number of ordinary double points of an otherwise
smooth cubic hypersurface X ¢ P"*! is known, namely

o= 3) = (’[’;i) .

2

For example, uy = 4, u3 = 10, and 4 = 15. In dimension two and three, the maximum
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is realized by a unique cubic: The Cayley surface described by the equation

(1 1 1 1)
XoXixXpx3 | —m+ —+ — 4+ — ZO,
X0 X1 X2 X3

see also Remark 4.2.16, and by the Segre cubic threefold

5 5
Z x,-3 = Z x;i =0,
i=0 i=0
see [158, Thm. 9.4.14]. Note that the Cayley cubic surface is the hyperplane section of
the Segre cubic threefold with x4 = x5 . Uniqueness fails in higher dimension. In fact,
there is a positive-dimensional family of cubic fourfolds with the maximal number 15
of nodes. Goryunov [198] and Kalker [265] give explicit equations for cubics attaining
the maximum.'?

5.5 Hyperplane sections Let X ¢ P! = P(V) be a smooth cubic hypersurface of
dimension n. Then the intersection with a generic hyperplane V(h) c P™!' h € V* =
HO(P(V), O(1)), defines a smooth cubic hypersurface ¥ := X N V(h) ¢ V(h) ~ P"
of dimension n — 1. We say that the family of hyperplane sections of X has maximal
variation if the rational map

Dy : P(V*) oo > M,, = |Op(3)lsm //PGL(n + 1), h—X N V(h)

is generically finite, i.e. its image is of dimension n + 1, and we say it has zero variation
if the map is constant. For simplicity we restrict to char(k) = 0 and then the variation is
measured by the derivative

d®yxy: H'(Y, Oy(1)) — H'(Y, Ty) (54)

of @y at the generic hyperplane section Y = XN V(h). The variation is maximal if d®y y
is injective and it is zero if dOyxy = 0.

The situation has been first studied by Beauville [41]. We restrict to the case of cubic

hypersurfaces but the arguments below easily generalize to higher degrees.

Proposition 5.18. Consider smooth cubic hypersurfaces of dimension n > 2.

(i) For the generic cubic hypersurface X C P"*! the family of hyperplane sections has
maximal variation.

(ii) For no smooth cubic hypersurface X C P! the variation of the family of hyper-
plane sections is zero.

13 T am grateful to S. Stark for the reference.



5 Classical constructions: Quadric fibrations, ramified covers, etc. 81

Proof For the proof of the first assertion we follow Opstall and Veliche [465], who
in turn rely heavily on [41], and it naturally splits in two steps. First, the property of
having a maximal varying family of hyperplane sections is a Zariski open condition in
|Opy(3)l. Indeed, the condition d®y y being injective describes an open subset in the
incidence variety of all pairs (X, Y) consisting of a smooth cubic hypersurface X c P(V)
together with smooth hyperplane section Y = X N V(h). Thus, it suffices to exhibit one
pair Y = X N V(h) ¢ X c P(V) with d®yy injective. It turns out that the generic
hyperplane section of the Fermat cubic X := V(Z:’:OI x?) c P! ~ P(V) has this
property. For instance, the hyperplane section defined by h = X,41 — > g aix; is ¥ =
V(F) c P" with

n n 3
F(xg,...,x,) :=Zx?+ Zaix,- .
i=0 i=0

First order deformations of Y = X N V(h) inside X can be written as Y, = V(F,) with

n n n 3
. 3
Fe(xo,...,x,) = E x; + E a;x; + & E bixi| .
i=0 i=0 i=0

Then the induced class in R3(Y) ~ H' (¥, Ty), see Lemma 4.14, is (up to the factor 3)

n 2 n
[Z (,l,'x,‘] . [Z b[)(,‘] (55)
i=0 i=0

modulo the Jacobian ideal, which is generated by the derivatives (1/3)9;F = x? +

a; (3> aixi)z. However, the attempt to write (5.5) as a linear combination » & (x? +
a; (3>, a;x;)%), with linear polynomials g; = g;(xo, ..., x,), leads to the equation

n 2 n -
(Z am] : [Z(bixi - aigi)] = ng i
i=0 i=0 /=0

As the right-hand side is a linear combination of monomials x; x?, only involving two
variables, while on the left-hand side several monomials in three different variables
occur for the generic choice of g;, this leads to a contradiction. Hence, for the generic
choice of a hyperplane section Y = XNV (x,m - Z?:o a,-xi) no first order deformation
corresponding to > b;x; vanishes in H LY, Ty).

For the proof of the second assertion we follow [41]. The first step consists of showing
that dOxy = 0 implies that Y is contained in the polar varietyP,X = V(Zf:ol u; 0;F )

of X = V(F) for some point u € P"*! \ Y. For this we may assume ¥ = X N V(x,41) =
V(F(xp,...,X,,0)) Cc P* so that first order deformations of Y in X are of the form
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Y. = V(F,) C P" with

n n
Fo= F(o,.ooone Y bix)) = F(x0, -, %0, 0) + £ @1 F)x0, -, %0, 0) ) b

i=0 i=0
Those correspond to a trivial first order deformation of Y, if the corresponding class in
R5(Y) =~ H'(Y, Ty) is trivial, i.e.

@1 F)(x0, -+, %0,0) Y bixi = i+ (iF)(Xo, -, X, 0)
i=0 i=0

for certain linear polynomials g; = gi(xo, ..., X,, 0). By virtue of Proposition 4.3, this
holds for all choices of b; if and only if (8,+1F)(xo, ..., X, 0) = 01in Ry(Y), i.e.

n

@n1 F) (X0, -, X0, 0) = > 1t (FF) (X0, - -, %, 0)
i=0

for suitable scalars ug, . . ., u,. However, then for u == [ug : -+ : u, : —1] € P**1\ Y the
polar P,X contains Y.
The second step of the argument exploits the Gauss map

v: X—X"CP', x+[0gF(x): -+ : 0,11 F(x)],

which describes the normalization of the dual variety X*, see [174, Ch. 10] and Section
2.2.2. The pull-back of a hyperplane section is the intersection P,X N X of some polar
variety with X. Hence, by Bertini’s theorem P,X N X is smooth for generic u and,
therefore, cannot contain any hyperplane section Y. Thus, d®yxy # O for generic Y. O

Whether the family of hyperplane sections of a particular smooth cubic hypersurface
has maximal variation seems to be an open question. For threefolds see [357, Pbl. 4.2].

As a consequence of this result or rather of its proof and using the fact that the moduli
space of cubic surfaces is of dimension four, one finds the following well-known result
in the theory of cubic surfaces, which is a classical result by Sylvester, see [158, Cor.
9.4.2].

Corollary 5.19. The generic cubic surface S C P* over an algebraically closed field
k of char(k) # 2,3 is isomorphic to a hyperplane section of the Fermat cubic threefold
Y = V(Z?:o xf’) cP e

4 4
S=~YnpP =~ V[Zx?,z:aixi] c P,
i=0 i=0

Equivalently, S ~ V(Z?:o bix}, Z?:o xi) c P4, m]
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Clearly, in higher dimensions cubic hypersurfaces of dimension n obtained by inter-
secting a single fixed cubic hypersurface of dimension n + 1 make up for only a small
subset of the whole moduli space.

Remark 5.20. At this point it is natural to consider Lefschetz pencils of hyperplane
sections of a fixed smooth cubic hypersurface X c P**!. Similar to the discussion in
Section 2.3, where we considered Lefschetz pencils of cubic hypersurfaces in P"*!, the
choice of a generic linear P! & |(O(1)| describes a flat projective family

y—=P, (5.6)

where the fibre ), are the hyperplane sections X N H,, with ¢ € P'. Alternatively, the
inclusions ), = X N H; = X describe Y as the the blow-up ) =~ Bly(X)—=X in
the base locus of the pencil which is a cubic hypersurface in H,, N H,, ~ P"! and so of
dimension n — 2.

The generic fibre of (5.6) is smooth and each singular fibre has exactly one ordinary
double point. The latter follows from the Gauss map X —> X" being generically injec-
tive and the classical fact that the generic singular hyperplane section has exactly one
singular point, see [1, Exp. XVII, Prop. 4.2], [174, Cor. 10.21] and the discussion in
Section 2.2.

The number m of singular fibres V), ,...,),, € Y is the degree of the dual variety
which is also known classically, namely

m = |{ € P'| Y singular }| = deg(X") = 3-2".
In [1, Exp. XVIII, (3.2.4)] this number is computed as
deg(X") = (=1)" (e(Xy) + e(Xp—2) — 2e(X;,-1)),

where e(X,) is the Euler number of a smooth (cubic) hypersurface of dimension » and
fixed degree. Then use (1.6) in Section 1.3. For a more direct approach see [174, Prop.
2.9].

5.6 Triple covers There is a way to link cubics of dimension 7 to cubics of dimension
n + 1 in an almost canonical way. In the end, one finds that every smooth cubic hyper-
surface of dimension n is a hyperplane section of some smooth cubic hypersurface of
dimension 7 + 1. In fact, the construction works for hypersurfaces of any degree d.

Let X = V(F) c P"*! be an arbitrary hypersurface of degree d given by a polynomial
F = F(xo,...,%1) € H'(P"!, O(d)). Then

F:=F-x, e HP"*?, 0(d))

describes a hypersurface X := V(F) c P"*2. Clearly, X is isomorphic to a hyperplane
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section of X, namely
X = X0 V(xp).

Observe that X is smooth if and only if X is smooth.

Note that X c P"*! determines its defining equation F only up to a scaling factor,
ie. V(F) = V(AF) for all A € k¥, and this does effect the equation F. However, at least
if k contains d-th roots of unity, the two hypersurfaces V(F — xﬁf ) and V(AF — x¢ +2)

n

only differ by a linear coordinate change [xo @ -+ @ Xpq1 @ Xpa2l—>=[X0 ¢ -+ Xpyp -
Ax10].
The rational map given by the linear projection P2 ... > P! that drops the last

coordinate is regular along X c P"*2. It defines a finite morphism, and in fact a cyclic
cover, of degree d

n: X —sPpt!
branched over X ¢ P™*!. More precisely, 77! (X) = d X as divisors in X and
7 X =X N V(X)) — X.

The Galois group of the covering is generated by [xg : -+ : Xp2]F—[x0 1 -+ 1 pXpi2]
with p a d-th primitive root of unity.
In short, up to finite quotients by w, one obtains an inclusion
1021 (D)lsm € 10p2(D)lsm C |Op3(Dlsm € -+

which is compatible with the linear actions PGL(2) c PGL(3) c PGL(4) C - --.

This basic construction has been successfully used to relate moduli spaces of cubic
hypersurfaces of different dimensions. We shall come back to this in later chapters.

Remark 5.21. The construction can be carried out multiple times. We restrict to the
case of cubics, i.e. d = 3. In this fashion, by applying the construction twice, one obtains

Xn+l (G Pn+2
Xn ( 5 Pn+l
Xn—l ——p"

where X, is an arbitrary smooth cubic in P" and X,, and X, are obtained by the above
procedure. Then there exists an algebraic isomorphism of Hodge structures

H™ X1, Qpr = ™ (X1, Qpr(=D®2 @ (H" (X, Qe @ H'(E, Q™. (5.7)

The isomorphism was established by van Geemen and Izadi [464, Prop. 3.5], based
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on work of Katsura and Shioda [436, 437]. Here, E c P? is the Fermat cubic, which
is thought of as X; obtained as the triple cover of P! branched over three points X, C
P!, and the fixed part on the right-hand side is taken with respect to the action of a
primitive root of unity. Observe that (5.7) explains the formula in Exercise 1.13 relating
the primitive Betti numbers of cubic hypersurfaces of three consecutive dimensions.

The reason for (5.7) is the following geometric correspondence originally described
by Katsura and Shioda for Fermat hypersurfaces: Write

Xo =V +ul) cP', X, =V +y +y3) c P2,
X, = V(F(xo, ..., %) +x,,) C P™

and X,u1 = V(F(20,-...20) + Zpyy +Z40) C P2
Then consider the rational map
X, X X o = X041
given by z; = x;y2,i = 0,...,nand Zys14; = € Xpe1yj, j = 0, 1, where & = —1, i.e.
([x0 -+t X X1, o Y1 i y2 ) ——=[XoY2 : **+ i XuY2 : € Xpi1Y0 & € Xng1 V1]

The indeterminacy locus is Z := V(x,11,y2) = X,—1 X Xo. A simple blow-up resolves the
indeterminacies and leads to

Blz(X, X X1) — Blz(X,, X X1)/p3
J I
b DD, CRE— > X0t
Here, u3 acts by
([xo -+t Xn 2 X L oty 22D ——[&x0 1 -+ 1 €xp t —Xpa ], [€)0 1 €1 1 —)2])
and & describes contractions
P X Xo—>=Xo = V(20 -+ +2) N X1 and Xy X P —= X 1 = V(Zpe1, Z0s2) 0 X

The construction sketched above not only works for cubic hypersurfaces. For hypersur-
faces of degree d, however, (5.7) involves d — 1 copies of the cohomology of X,,_;.

Remark 5.22. Assume X C P"! is a (smooth) cubic hypersurface and consider the
triple cover X —=P"*? as above. The isomorphism class of X only depends on the iso-
morphism class of X and not on its embedding X c P"*!. Is the converse also true,
i.e. does X determine X? It turns out that for the generic cubic X ¢ P"*! of dimension
n > 2, this is indeed true. In other words, using the notation in Section 3.1.5, mapping
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a smooth cubic hypersurface X of dimension # to the naturally associated triple cover
X —=P"*! branched over X defines a generically injective morphism

M3,11_>M3,n+1’ X+—X (5.8)

between the moduli spaces of smooth cubic hypersurface of dimension n and n + 1.
Indeed, for generic X = V(F) c P**! the determinant of the Hessian det H(f) is

irreducible, for example, this is the case for F(xo, x1, x2) = x3 + X7 + X3 + XX X2. As the

determinant of the Hessian of the equation F = F(xo, ..., Xe1) — X2, i8

det H(F) = 6 - det H(F) - x4,

Xp42 18 its only linear factor. Since X =~ X N V(x,:2) and since the intersection does not
depend on the choice of the embedding X c P"*!, this shows that the isomorphism class
of the generic cubic X of dimension 7 is uniquely determined by the isomorphism class
of the cubic X of dimension n + 1.

Note that the Jacobian rings of X and X are related by R(X) ~ R(X) ® k[x,42] /xi oy
Are there techniques to reconstruct R(X) from R(X)? In such a case, the triple cover X
again determines the original cubic X.

The fact that (5.8) is generically injective is at the heart of an approach of Allcock,
Carlson, and Toledo to link cubic surfaces to cubic threefolds, see Section 4.4.3, and
cubic threefolds to cubic fourfolds, see Section 5.6.1.



2

Fano varieties of lines

With any (cubic) hypersurface X c P"*! one associates its Fano variety of lines F(X)
or, more generally, of m-planes, contained in X. For a smooth cubic surface S C P3 the
Fano variety F(S) consists of 27 reduced points corresponding to the 27 lines contained
in §. In higher dimensions, Fano varieties are even more interesting and have become
a central topic of study in the theory of cubic hypersurfaces, especially in dimension
three and four.

The classical references for Fano varieties of lines and planes are the articles by
Altman and Kleiman [16] and by Barth and van de Ven [38]. For cubic hypersurfaces
many arguments simplify and we will restrict to cubics whenever this is the case. For
enumerative aspects we recommend [16, 174].

This chapter covers the general theory of Fano varieties of lines in Section 1, a de-
tailed discussion of lines of the first and second type on cubic hypersurfaces in Section
2, and presents global properties of the Fano variety of lines in Section 3. The remaining
two Sections 4 and 5 are devoted to numerical and motivic properties.

1 Construction and infinitesimal behaviour

We shall begin with an outline of the techniques that go into the construction of the Fano
variety of linear subspaces P c P"*! contained in a given projective variety X c P"*1.
The main tool is Grothendieck’s Quot-scheme, which also provides information on the
tangent space of the Fano variety at a point corresponding to a linear subspace P" C X.

1.1 Representing the Fano functor We work over an arbitrary field k£ and use the
shorthand P := P’,Z”. Often it is preferable to think of P as P(V) = Proj(S*(V*)) for
some fixed k-vector space V of dimension n + 2. We consider an arbitrary subvariety

87
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X c Pand fix an integer 0 < m < n+ 1. Then the Fano functor of m-planes is the functor
F(X,m): (Sch/k)’ —(Ser) (1.

that sends a k-scheme T (of finite type) to the set of all 7-flat closed subschemes L C
T x X such that all fibres L, C Xy C Py are linear subspaces of dimension m. We
shall mostly be interested in the case of lines, i.e. m = 1, and will write F(X) := F(X, 1)
in this case.

Remark 1.1. Here are a few examples and easy observations.
(i) For X = P, one obtains the Grassmann functor
F®,m) = G(m,P).

(i) For m = 0, the functor F(X, 0) is the functor of points hy.
(iii) For nested closed subschemes X C X’ C P there are natural inclusions

F(X,m) C F(X',m) C F(P, m) = G(m,P).

@iv) Set P, (£) = ('";’() and let Hilb™ (X) be the Hilbert functor that sends a k-scheme
T to the set of all T-flat closed subschemes Z C T x X with fibrewise Hilbert
polynomial y(Z;, Oz (£)) = P,,(£). Then

F(X,m) = Hilb™(X).

Here, we leave it as an exercise to show that any closed subvariety Z C P with
Hilbert polynomial P, is indeed a linear subspace P c P.

Theorem 1.2. The Fano functor F(X,m) of m-planes is represented by a projective
k-scheme F (X, m), the Fano variety of m-planes in X C P.

There are various ways to argue. However, in the end the proof always comes down
to the representability of the Grassmann functor.

e Use (iv) above and the representability of Hilb”(X) (for arbitrary projective X and
Hilbert polynomial P) by the Hilbert scheme Hilb”(X). This in turn is a special case
of the representability of the Grothendieck Quot-functor Quot)’; ” of quotients & —= F

with Hilbert polynomial P. Indeed, Hilb”(X) =~ Quot§ o0 Recall that the existence of
the Quot-scheme is eventually reduced to the existence of the Grassmann variety, cf.
[253, Ch. 2.2] or the original [211] or [178, Part 2].

e The inclusion F(X,m) c G(m,P) in (iii) above describes a closed sub-functor.
As the Grassmann functor G(m, P) is representable by the Grassmann variety G(m, P),
F(X, m) is represented by a closed subscheme F (X, m) c G(m,P).

Let us spell out the second approach a bit further. But first recall that

G(m,P™") =~ Gr(m + 1,n + 2),
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where Gr(m+1,n+2) is the Grassmann variety of linear subspaces of k**? of dimension
m + 1 or, in other words,

G(m, P"™*!) = Gr(m + 1,n +2) = Quot{ 1t h.
The isomorphism between the corresponding functors

Gr(m + 1,n +2)—>G(m,P"*") and Gr(m + 1,n + 2)—~>%§pec(k)/v
are given by
[GcVROr]l—=P@G)and [G Cc VR O]+ [V Oy —=V ® O7/G].
On k-rational points this gives
[WcC V]—PW)cP(V)and [W C V][V —V/W].
Also recall that G(m, P) is an irreducible, smooth, projective variety of dimension
dim(G(m,P)) = (m+1)-(n+ 1 — m).
It is naturally embedded into P( /\erl V) via the Pliicker embedding
G = G(m,P) —= P(A\"'V), L = P(W)—> [det(W)]. (1.2)

Under this embedding, O(1)|g =~ /\m”(S *). Here, S is the universal subbundle of rank
m + 1, which is part of the universal exact sequence

0—S—=Ve0;—9—0. (1.3)
The universal family of m-planes over G(m, P) is the P”"-bundle associated with S:
p: Lg =P(S)—G(m,P),

which comes with its relative tautological line bundle O ,,(1).1 The inclusion S € VR0Og
corresponds to the natural embedding

Lg c G(m,P) x P**!
and the induced projection g: Lg —=P"*! satisfies
q"Ox(1) = O,(D).

Assume now that X C P is a hypersurface defined by the homogenous polynomial
F € k[xo,...,Xps1la = HP,O(d)) = §4(V*). Dualizing (1.3) and taking symmetric
powers provides us with a natural surjection

SUV)® Og —=SUSY)

1 Throughout, we will work with the geometric, i.e. non-Grothendieck, convention for projective bundles,
50 p.Op(1) = S*.
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and hence a map S4(V*)— H%(G, S§4(S*)). Let sz € H(G, S%(S*)) denote the image
of F € §4(V*) under this map, so

SUVv—H%G,SUS")), Fr— sp.

Then the Fano variety of m-planes on X is the closed subvariety of the Grassmann
variety defined as the zero-locus of s, i.e.

F(X,m) = V(sr) C G(m,P). (1.4)
In particular, whenever F (X, m) is non-empty, then
dim(F(X,m)) = dim(G(m, P)) - rk(S*(S*))
m+ d)

y (1.5)

=(m+1)-(n+1—m)—(

Moreover, in case of equality the class of F(X,m), in the Chow ring or just in the
cohomology of G(m, P), can be expressed as the r-th Chern class of S d (Sp):

[F(X,m)] = c,(S%S™)), (1.6)

where r = rk(S4(S*)) = (”‘;fd). We will come back to this later, see Section 4.3.

For more general subvarieties X C P the argument is similar: If X = () V(F;), then
F(X,m) = N\ V(sF,), where sp, € H(G,S%(S")), d; = deg(F;). But unless X is a com-
plete intersection, it is more complicated to compute the class of its Fano scheme.

We shall denote the universal family of m-planes over F'(X,m) by p: L— F(X, m),
which is nothing but the restriction

L = Lelrm = P(SF = Slramy)
of Lg to F(X,m) C G(m,P). We also think of L as the universal family
L={(L,x)|xeLcX}

of pairs (L, x) consisting of an m-plane P" ~ L C P contained in X and a point x € L.
With its two projections, one has the following diagram, to which we later refer as the
(geometric) Fano correspondence, see Section 5:

L—7 ox 1.7)

|
F(X, m).

The composition of the natural inclusion F (X, m) C G(m,P) with the Pliicker embed-
ding (1.2) of G(m, P) defines the Pliicker embedding of the Fano variety of X

F(X,m) < G(m,P) — P(\""'V).
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The restriction of the hyperplane line bundle O(1)|rx,m) = /\m+1 (S*|Fx.m) is called the
Pliicker polarization and its first Chern class will be denoted

g = c1(S’Irxm) € CH' (F(X, m)), (1.8)
often also considered as a cohomology class
g € H*(F(X,m), Z)(1).

The following universal variant will be useful. Consider the universal hypersurface
X —|0(d)| = PV, cf. Section 1.2. Then denote by

F(X,m): (Sch/|Od)])° — (Set) (1.9)

the functor that sends a morphism 7' — |O(d)| to the set of all T-flat closed subschemes
L c Xy c T xP parametrizing m-planes P C P in the fibres of the pull-back X7 —T'.
Using the relative version of the Quot-scheme or of the Grassmann variety, one finds
that F(X, m) as a scheme over |O(d)| is represented by a projective morphism

F(X,m)—=|0(d)|.

By functoriality, the fibre over [X] € |O(d)| is F(X, m) and one should think of F(X, m)
as parametrizing pairs (L C X) of m-planes contained in hypersurfaces of degree d.
As in the absolute case, F(X, m) can be realized as a closed subscheme of the relative
Grassmannian

F(X,m) = V(sg) C |O0d)| x G(m, P),

where s € H(|O(d)| x G(m,P), O(1) ® S4(S*)) is the image of the universal equation
G € HY(O@)|xP, O(1)= Op(d)) = H*(|O(d)], O(1) ® S4(V*), see Section 1.2.1, under

O R SYUVHR Og)—=O()r S4(SY). (1.10)

Let us now look at the other projection 7r: F(X, m) — G(m, P). From the description
of F(X,m) as V(sg) C |O(d)| X G(m,P) one deduces an isomorphism

F(X,m) =~ P(K) —G(m,P),

where IC = Ker (S AVHY® Og—=SUS *)). In more concrete terms, the fibre of K at
the point L € G(m, P) is the vector space H(P, Z; ® O(d)).

Remark 1.3. Instead of introducing the two moduli functors (1.1) and (1.9) and arguing
that they can be represented by projective schemes, one could alternatively just use this
description of F(X,m) as a projective bundle over G(m,P) and define F(X,m) as its
fibre over X under the other projection F(X,m)—|Op(d)|. However, as soon as the
local structure of these Fano schemes is needed a functorial approach is preferable.
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1.2 Dimensions of the Fano variety and lines on quadrics The above description
of the universal Fano scheme allows one to compute its dimension.

Proposition 1.4. The relative Fano variety F(X,m) of m-planes in hypersurfaces of
degree d in P"*! is an irreducible, smooth, projective variety of dimension

dim(F(X,m))=(m+1)'(”+1_m)+(n+;+d)_(m;d)—1'

For example, for m = 1 and d = 3 the formula reads

dim(F(X, m)) = (2n — 4) + (” ; 4) -1,

The first part of the following immediate consequence confirms (1.5).

Corollary 1.5. If for an arbitrary hypersurface X C P! of degree d the Fano variety
F (X, m) is not empty, then

dim(F(X, m)) > dim(F(X, m)) - dim |O(d)| (1.11)
m+ d)

=(m+1)~(n+l—m)—( d

Moreover, equality holds in (1.11) for generic X € |O(d)| unless F(X, m) is empty. O

Example 1.6. (i) For a hyperplane X ~ P" c P**!, the Fano variety F(X,m) is simply
the Grassmann variety G(m, P") ~ Gr(m + 1,n + 1). It is of dimension (m + 1) - (n — m),
as predicted by (1.11).

(ii) For a smooth quadric X = Q c P™*! it is interesting to consider the Fano variety
F(Q,m) C G(m,P"™") of linear subspaces of maximal possible dimension m, which is
m = |n/2]. In this case, F(Q, m) parametrizes linear subspaces that are isotropic with
respect to the quadratic form ¢ defining Q. It is also called the orthogonal or isotropic
Grassmann variety and sometimes denoted by OGr(q, V). The following results are
classical, see [204, p. 735] or [445, Sec. 2.1]:

o If n = 2m, then F(Q, m) consists of two isomorphic, smooth, irreducible compo-
nents of dimension ("’; 1). Furthermore, two linear subspaces P(W;), P(W,) c Q c P!
are contained in the same connected component if and only if dim(W N W’) is even.
As an example, consider a two-dimensional quadric Q =~ P! x P! c P3. In this case,
F(Q,1) = P'UP', where the two components are the factors of Q ~ P! x P! parametriz-
ing the fibres of the corresponding projections. Note that fibres of the same projection
indeed intersect in a P! or not at all.

e If n = 2m + 1, then F(Q, m) is smooth and irreducible of dimension (m; 2). For

example, for Q ~ P! c P? the Fano variety F(Q, 0) is isomorphic to Q.
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The cases of even and odd dimensions are related as follows: Consider a smooth
quadric Q ¢ P™! = P(V) with n = 2m and pick a hyperplane P* ~ P(V’) c P(V)
such that Q" := Q NP(V’) is smooth. Then P(W) —P(W N V') defines an isomorphism
of each of the two components S,, of F(Q,m) c G(@m,P(V)) with F(Q',m — 1) C
G(m —1,P(V")). The varieties S ,, ~ F(Q' C P>, m — 1) are called spinor varieties. For
example, S| ~ P' and one also knows that S, ~ P3.

The spinor varieties are homogenous under the action of SO(V) (and also of Spin(V))
with Pic(S,,) = Z. The (very) ample generator O(1/2) is a square root of the Pliicker
polarization. It is given by a closed embedding

Sn—=PB(\"U),

where U ® U’ ~ V ~ k***? is a fixed decomposition into isotropic subspaces. Here,
the even part A" U c /\" U is viewed as the half-spinor representation of Spin(V) and
the embedding is obtained by observing that both actions of Spin(V) have the same
stabilizer. In particular, HO(S , O(1/2)) = 2.

The case of interest to us is d = 3 and m = 1. In this case, (1.11) becomes
dim(F(X)) >2n—-4

for non-empty F(X). Using deformation theory, we shall see that F(X) really is non-
empty of dimension 2n — 4 for all smooth cubic hypersurfaces of dimension at least
two. This shall be explained next.

Remark 1.7. Also relevant for us is the case d = 3 and m = 2. Then dim(F (X, 2)) >
3n — 13 as soon as F(X, 2) is not empty. The right-hand side is non-negative for n > 5.
For n < 5 one can conclude that F(X,2) is empty for generic X € |O(3)|. So, for
example, the generic cubic fourfold does not contain planes. We know already that a
smooth cubic threefold cannot contain a plane, see Exercise 1.1.5 and Remark 1.3.3.

Remark 1.8. If there exists one smooth cubic hypersurface X, ¢ P**! containing a
linear P", i.e. F(Xo,m) # @, and (m + 1)> + 9(m + 1) + 2 < 6(n + 2), then F(X, m) # @
for all smooth cubic hypersurfaces X C P"*!, see Exercise 1.5.2.

1.3 Local theory Any further study of the Fano variety of m-planes needs at least
some amount of deformation theory. Let us begin with a recollection of some classical
facts and a reminder of the main arguments. Most of the following can be found in
standard textbooks, e.g. [178, 223, 253, 281, 421]. As (non-)smoothness is preserved
under base change, we may assume for simplicity that k is algebraically closed.

As the Fano variety of m-planes is a special case of the Hilbert scheme which in turn
is a special case of the Quot-scheme, let us start with the latter.

Let g == [€ —= Fp] € Quot = Quoty,¢ be a k-rational point in the Quot-scheme of
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quotients of a given sheaf £ on X. We denote the kernel by ICy := Ker (£ —= F;). Then
there exists a natural isomorphism

T,Quot =~ Hom(Ky, Fo),

see [211, Exp. 221, Sec. 5]. Moreover, if Ext! (Ko, Fo) = 0, then Quot is smooth at g.
Let us quickly recall the main arguments for both statements. See [178, Ch. 6.4]
or [253, Ch. 2.2] for technical details. By the functorial property of the Quot-scheme,
the tangent space T,Quot parametrizes quotients & —>=F of &) = &€ W k[g] on
X, = X x Spec(k[]) which are flat over k[<] and the restriction of which to X C Xy
gives back g. It is convenient to study the following more general situation. Let A be a
local Artinian k-algebra with residue field k£ and assume an extension g4 = [E4 — F|
of g = [E—=Fp] to X4 = X X Spec(A) has been found already. Consider a small
extension A’ —s=A = A’/I, i.e. a local Artinian k-algebra A’ with maximal ideal g4,
such that 7 - my = 0. Any further extension of g4 to g4 = [E4 —>F’] leads to a
commutative diagram of vertical and horizontal short exact sequences of the form

Kokl ——= E [ —= Fo& 1

L

K€ Ex F
Kc A F.

Here, one uses that 7’ ®4 I ~ Fy ®; I, etc. Next observe that
F' ~Coker(: K—=E4 /(Ko @ D)),

where  is the obvious map. Furthermore, the composition of y with the projection
@: Ex /(Ko ®; I)—=E&, is the given inclusion K & &,. Conversely, one can define
an extension J in this way if the short exact sequence of coherent sheaves on X4

0— Fo & I —¢ {(K)—K—0 (1.12)
is split. The class of (1.12) is an element
o € Exty (K, Fo ® 1) = Exty(Ko, Fo) & I,

where we use flatness of K for the isomorphism. If this class is zero and a split has been
chosen, then all other extensions differ by elements in

HomxA, K, Fo & I) ~ Homy (Ko, Fo) & 1.
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Hence, Quot is (formally) smooth at ¢ = [€ —s Fp] if Ext' (Ko, Fo) = 0 and the
possible extensions of g to X X Spec(k[&]) are parametrized by Hom(/Cy, Fo).

Applied to the Hilbert scheme Hilb(X) =~ Quoty,,, one finds that the tangent space
at the point Z € Hilb(X) is given by

TZzHilb(X) ~ Hom(Zz, Oy)

and that Hilb(X) is smooth at the point Z € Hilb(X) if Ext!(Zz, O;) = 0. Now assume
that Z c X is a regular embedding with normal bundle Nzy. Then, Hom(Zz, Oz) ~
H®(Z, Nz;x) and the local to global spectral sequence, cf. [246, Ch. 3],

EDY = HP(Z, Exth(T7, O7)) = Exty (I, O7)

provides us with an exact sequence
H'(Z, Nyjx) — Ext! (Zz, O7) = H(Z, Ext)(T;, 02)) —= HZ, Ny x).

Furthermore, the local obstructions in Ext)lf(IZ, O7) to deform a smooth subvariety are
all trivial. Hence, any obstruction in Ext! (Zz, Oz) maps to zero under ¢ and, therefore,
is in fact contained in H'(Z, Nzx).

Example 1.9. Let us test this in the case of G(m,P) ~ Hilb”"(P). On the one hand,
we know that at L = P(W) € G = G(m,P) the tangent space T, G is isomorphic to
Hom(W, V/W) or, more globally, that Tg ~ Hom(S, @) with S and Q as in (1.3). On
the other hand, 7, Hilb(P) ~ Hom(Z,, Op). Indeed, there is a natural isomorphism

Hom(W, V/W) ~ Hom(Z;, Oy)
between the two descriptions obtained by applying Hom( , O, ) to the Koszul complex
== N (VW) @ O(=2)—= (V/W)" € O(-1) —= T, —=0,

associated with the equations (V/W)* — V* for L = P(W), and by using the natural
isomorphisms Hom((V/W)* ® O(~1), O;) ~ (V/W) ® H°(L, O (1)) ~ Hom(W, V/W).

Applied to the case L € F(X,m) = Hilb""(X) for an m-plane L c X in a variety X c P
that is assumed to be smooth (along L), one obtains the following result.

Proposition 1.10. Let L C X be an m-plane contained in a variety X < P! which is
smooth along L. Then the tangent space Ty F(X,m) of the Fano variety F(X, m) at the
point L € F(X,m) corresponding to L is naturally isomorphic to H*(L, Ny /x), so

T F(X,m) ~ H'(L, Ny /x).

Furthermore, if H'(L, Ny x) = O, then F(X,m) at the point L € F(X,m) is smooth of
dimension h°(L, J\/L/x). m]
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Remark 1.11. Using the description L = {(L, x) | x € L ¢ X}, we see that the fibres of
the projection g: L — X parametrize all m-planes in X passing through a fixed point.
On an infinitesimal level, this is expressed by

H(L,Niyx ® I,) = Ker (dg: T oL—=T,X),
cf. [281, Thm. II.1.7]. The infinitesimal version of (1.7) takes the form

T.L

|

d
HOL,Nyyx ® L) — Tnl —— T.X

T

HOL,Nyjx) —— TLF(X,m).

Remark 1.12. There exists a relative version of Proposition 1.10. Assume X —S§ is
a projective morphism over a locally Noetherian base S and £ is a coherent sheaf on
X. Then the relative Quot-scheme 7: Quoty, s, —=S parametrizes T-flat quotients
Er—Fpon X Xg T for all S-schemes 7. It is a locally projective S-scheme with
fibres 77!(s) = Quoty,g|,, where X := X. In particular, the relative tangent space at
a k(s)-rational point g = [£|x —= Fp] € Quoty,¢), C Quoty,s/c —=S is the tangent
space of the fibre 77! (s) = Quoty/g|,, i.€.

Tqﬂ_l(s) =~ T,Quoty, g, = Homy (Ko, Fo),

where Ky = Ker(E|y — Fp). More interestingly, if locally in X there are no obstruc-
tions to deform &|y —s> Fy and H'(X,, Hom(KCo, Fp)) = 0, then 7 is smooth at g.

This applies to our situation. Consider the universal family X —|O(d)| of hyper-
surfaces of degree d and let F(X,m)—|O(d)| be the associated family of Fano va-
rieties of m-planes in the fibres. Then the morphism F(X, m)—|O(d)| is smooth at
a point L corresponding to an m-plane L C X in a smooth (along L) fibre X = A if
HI(X,NL/x) =0.

1.4 Normal bundle of a line To compute the normal bundle Ay /x of an m-plane
P"™ ~ L c X we use the short exact sequence

0—Np;x —>Npp—=Nxsple —=0 (1.13)

of locally free sheaves on L ~ P, where we again assume that X is smooth (along L).

The normal bundle N7 can be readily computed by comparing the Euler sequences
for L ~ P and for P = P"*!. One finds N7z ~ O(1)®"*1=" More precisely, if L =
P(W) c P = P(V), then there is a natural isomorphism N7 p =~ Or(1) ® (V/W).
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If now X c P is a smooth (at least along L) hypersurface of degree d, then the exact
sequence (1.13) becomes

0—=Np/x —= O (1) — 0 (d) —0. (1.14)
After a coordinate change, the surjection is given by 0;F,i =m + 1,...,n + 1. Indeed,
assume that L = V(x,,,41, ..., Xs+1). Then
@y Or(h) —= Py OL()) —= @, Oul) (1.15)
7L Telr NL/]P OiF)izm+1....n+1
|
Or(d).

Compare the proof of Corollary 2.6 for a more invariant version of the diagram.
Observe that (1.14) has the following numerical consequences:

det(NL/x) =0i((n+1-m)—d), rk(NL/x) =n—-m, and

XNix) = x(O(1) - (n+ 1 —m) — x(Or(d))
m +d)

=(m+1)-(n+l—m)—( d

which equals the right-hand side of (1.11).
For m = 1 and d = 3 these observations allow us to classify all normal bundles.

Lemma 1.13. Let L C X be a line in a smooth (along L) cubic hypersurface X c P!,
Then N]_/X ~ OL(Cll) D ---D OL(an—l): ap =+ 2 a1, with

(1,...,1,0,0) or
(ai,...,ap1) =
(a,....1,1,-1).

Proof AsL ~P!' any locally free sheaf on L is isomorphic to a direct sum of invertible
sheaves, so Npx =~ @ Or(a;) with Y a; = n — 3. However, the inclusion Ny C
Or(1)®" implies a; < 1, which is enough to conclude. O

Together with Proposition 1.10 and Remark 1.12, the lemma implies the following.

Corollary 1.14. The Fano variety of lines F(X) of a smooth cubic hypersurface X C
P! is smooth and of dimension 2n — 4 if not empty.
Furthermore, the universal Fano variety F(X)—|Op(3)| is smooth over |Op(3)|sm-
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Proof Indeed, for both cases, (a;) = (1,...,1,0,0) and (a;) = (1,...,1,1,—-1), we
have H'(L, NV, r/x) = 0 and hence F(X) is smooth. The dimension formula follows from
hO(L, @ O(a;)) = 2n — 4 in the two cases. o

Definition 1.15. Lines with (¢;) = (1,...,1,0,0) and (a;) = (1,...,1,1,—1) are called
lines of the first type and of the second type, respectively.

Remark 1.16. It will come in handy, see e.g. Remark 2.20, to write the normal bundle
of lines of both types in a more invariant form as

(HOL Nyx(=1) ® OL(1)) @ (H' (L. N x(=2)) ® det(W*) ® Oy ) resp.
L)X =
(HO(L Nijx(=1) ® OL(1)) & (H' (L, Nijx(=1)) ® det(W*) & Or(-1)).

The factor det(W*) in the second summands comes in since H'(L, O;(-2)) is one-
dimensional, but it does not come with a natural basis. Indeed, from the Euler sequence
one has natural isomorphism wy, ~ Op(-2) ® det(W*), which combined with the natural
trivialization of H'(L, w;) implies H'(L, O1(-2)) = det(W).

Hence, for a line L € X of the second type there exists a natural isomorphism

det(N7/x) = det H(L, Npx(=1) ® H' (L, N7 jx(=1)) ® det(W*) ® Op(n — 3).

On the other hand, the normal bundle sequence for L C X leads to a natural isomorphism
det(Ny/x) = wylL ® wy, = det(W*) ® Op(n — 3). Combining the two isomorphisms, one
obtains a natural (in L and for fixed X) isomorphism

det H(L, N7 jx(=1)) = H'(L, Ny x(=1))". (1.16)

Exercise 1.17. Show that for any line L C X in a smooth cubic hypersurface, the normal
bundle sequence splits and, therefore, Tx|, ~ O(2) ® N x. Thus, the property of being
of the first or of the second type can also be read off from the shape of Tx]|r.

Exercise 1.18. Consider the normal bundle N]L,/F(X)XX of the natural inclusion L. C
F(X) x X and globalize Proposition 1.10 to the isomorphism

Trex = PNLFoOXX
of the tangent bundle of the Fano variety.

Proposition 1.19. Let X ¢ P! be a smooth cubic hypersurface, n > 2. Then the Fano
variety of lines F(X) is smooth, projective, and of dimension

dim(F(X)) = 2n — 4.

Proof The preceding discussion essentially proves the claim. It only remains to show
that F(X) is non-empty. For this consider the Fermat cubic Xo = V(x3 +---+x>, ) which
is smooth for char(k) # 3. Then clearly the line Ly := V(xg + X1, X2 + X3, X4, - . . s Xpt1)
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is contained in X, and hence F(Xy) # @. See Remark 1.5.1 for a similar observation.
For char(k) = 3 with ¢ = V-1 € k one may take Xo := V(> g xix? | + x3), see Section
1.2.2, and the line Ly = V(xg — & x1, X2, X4, - . . , Xu41). Of course, for the assertion one
may assume k = k.

According to Remark 1.12, the vanishing H'(Lg, Nz,/x) = O not only proves that
the fibre F(Xy) of F(X)—|O(3)| over the point Xy, € |O(d)| is smooth at the point
Ly € F(Xp) but that in fact the morphism is smooth at the point L. In particular, the
projective morphism F(X)—|O(d)| is surjective which proves F(X) # @ for all cu-
bics. Alternatively, one can combine dim(F(Xp)) = 2n—4 with Corollary 1.5 to conclude
that the generic non-empty fibre is of dimension exactly 2n — 4. Hence, again by Corol-
lary 1.5, F(X)—|O(3)| has to be surjective, i.e. F(X) is non-empty for all X. Another,
more direct argument will be given in Remark 3.6. O

Exercise 1.20. Assume that a cubic hypersurface X c P"*! contains two distinct, but
intersecting lines L;, L, C X. Show that then there exists a plane P> ¢ P"*! such that
either L; U L, c P2 c X or the intersection P> N X is a union L; U L, U L of three lines.
This applies to all smooth cubic hypersurfaces of dimension at least two.

1.5 (Uni-)rational parametrization I The existence of lines in cubic hypersurfaces
has the following immediate consequence.

Corollary 1.21. For a smooth cubic hypersurface X € P"*! of dimension n > 1 defined
over an algebraically closed field, there exists a rational dominant map of degree two

P o s X.
Thus, cubic hypersurfaces of dimension at least two are unirational, cf. Example 1.5.10.

The assumption on the field can be weakened, cf. [283].> One only needs the exis-
tence of one line contained in X.

As observed at the end of Section 1.5.3, there also exists a dominant rational map of
degree two

X e 5 P,

Proof Pick a line L C X and consider the projectivization of the restricted tangent
bundle P(7x|,) — L. A point in P(Tx|.) is represented by a tangent vector 0 # v € T, X,
which then defines a unique line L, C P passing through x with T,L, C T,X spanned
by v. Then, either the line L, is contained in X or, and this is the generic case, it is not.
In the latter case, L, intersects X in a unique point y, € X with the property that the
scheme theoretic intersection L, N X is 2x + y,. Note that y, = x can occur.

2 Thanks to X. Wei for the reference.
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Unless X contains a hyperplane, one defines in this way a rational map
P(Tx|L) = X, vi—=yy, (1.17)

which is regular on a dense open subset intersecting each fibre P(T',.X), x € L.

Now, pick a point y € X \ L in the image and consider the cubic curve Cy = yLNX.
If the residual conic Q of L ¢ C, = L U Q does not contain L, then there exist at most
two lines y € L;, i = 1,2, that intersect L and, at the same time, are tangent to X at their
intersection points. They correspond to the (at most) two points of the intersection LN Q.
In other words, under the assumption on C,, the non-empty fibre of vi—-y, over y would
consists of at most two points. Furthermore, for dimension reasons, P(7x|r) - > X
would be dominant. To show that C, = L' U Q satisfies L ¢ Q for at least one (and then
for the generic) y, take any tangent vector v € T,P**! \ T, X, x € L. Then the line L, is
not tangent to X at x and, therefore, L ¢ Q for the residual conic of L C m N X. But
then for any point y € Q the cubic C, has the desired property. Hence, the rational map
(1.17) is generically of degree two and dominant. O

Remark 1.22. The restriction of the map (1.17) to the fibre over one point x € L defines
a generically injective rational map

Pl ~ (T, X) G > X. (1.18)

The indeterminacies of this map are contained in the set of tangent directions v for
which the line L, is contained in X. Since the line L, is determined by the two points
X,y, as soon as x # y,, the map is injective on the open subset of tangent directions
with L, N X # 3x. Note that this open set is not empty. Indeed, it contains the tangent
direction of any line x € L C P tangent to X at x and going through a point y in X N P",
where P” c P is a generic linear subspace not containing x, cf. Remark 3.6. Warning:
The rational subvariety (1.18) is not linear.

Remark 1.23. The Liiroth problem is a classical question in algebraic geometry that
asks whether a unirational variety is automatically rational. This holds in dimension
one and in dimension two over algebraically closed fields of characteristic zero. Much
of the work on cubic hypersurfaces has been triggered by the Liiroth problem. Cubic
surfaces are in fact rational. However, smooth cubic threefolds are never rational, see
Section 5.4.5. The general cubic fourfold is not expected to be rational, but special ones
are, see Conjectures 6.5.15 and 7.3.1.

Sometimes rationality can be excluded by topological properties not necessarily sat-
isfied by unirational varieties. For example, the celebrated article by Artin and Mum-
ford [25] uses torsion in H3(X, Z) to exhibit a unirational threefold that is not rational.
However, the easiest topological invariant, the fundamental group m;(X), does not dis-
tinguish between rational and unirational varieties. Indeed, as proved by Serre [423],
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unirational varieties in characteristic zero are simply connected and, more generally, ra-
tionally connected varieties are simply connected by a result of Kollar [282]. For cubic
hypersurfaces this provides us with an alternative proof of Corollary 1.1.1.

Note that in positive characteristic, already for surfaces, unirationality neither implies
rationality nor simply connectedness, see [433, 434].

Remark 1.24. There is a general expectation (conjecture of Debarre—de Jong) that for
d < n+1 and char(k) = 0 or at least char(k) > d the Fano variety of lines F(X) is smooth
of the expected dimension 2n — d — 1. For d < 6 this has been proved in characteristic
zero by Beheshti [61] to which we also refer for further references. See also [174, Prop.
6.40], where the claim is reduced to the case d = n + 1.

Remark 1.25. Note that for m > 2 and an m-plane L C X contained in a smooth (along
L) hypersurface X of degree d such that Ny x =~ € O(a;) the Fano variety F(X,m) at
the point L € F(X, m) is smooth of dimension » WP, O(a;)). However, in contrast to
locally free sheaves on P!, there is a priori no reason why M r/x on L =~ P should be a
direct sum of invertible sheaves. Also the dimension of F (X, m) is harder to control as
other cohomology groups H'(L, N7,x) enter the picture.

2 Lines of the first and second type

We come back to the difference between lines of the first and of the second type. Various
characterizations are available, e.g. via the Gauss map or via linear subspaces tangent to
the line. We introduce the Fano variety F>(X) of lines of the second type and determine
its dimension, similar to the computation for F(X) itself.

2.1 Linear spaces tangent to a line As a warm-up we propose the following.

Exercise 2.1. Prove that for a line L C X in a smooth cubic hypersurface the following
conditions are equivalent:

(i) L is of the first type, (ii) H' (L, Nz/x(=1)) = 0, and (iii) A°(L, Nz x(~=1)) = n — 3.

Find similar descriptions in terms of the restriction of the tangent bundle 7Tx]|y, cf. Exer-
cise 1.17. Assume now that L is contained in a smooth hyperplane section ¥ = X N H
and show that if L is of the first type as a line in Y then it is so as a line in X. The
converse does not hold in general.

Remark 2.2. From Exercise 2.1 and (1.14) we deduce that a line L C X in a smooth
cubic hypersurface X = V(F) is of the first type if and only if the partial derivatives
0;F|;, € H(L,©O;(2)) span the three-dimensional space H°(L, O;(2)). Hence, L is of
the second type if and only if (0;F|.) C HY(L, O;(2)) is of dimension two. Note that
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dim({d;F|.)) = 2 holds for all lines, as otherwise the d;F would have a common zero in
at least one point of L, contradicting the smoothness of X.

For L = P(W) the surjection N7p —s>=Nypl. can be viewed as a map V/W ®
OL(1)—=0Or(3), cf. (1.15). After twisting and taking global sections, it gives the short
exact sequence

0 — Npyx(=1) —= Npp(-1) —= O01(2) — 0
~VIWe O

with its associated long exact cohomology sequence

0 — H(L, Ny jx(=1)) — V/W — H(L, O1(2)) — H'(L, Ny /x(-1)) —= 0.
= SH(W*)
The map in the middle
v V/W—>H0(L, Or2) = SZ(W*) 2.1

is of rank at least two. It is of rank three, i.e. surjective, if and only if L is of the first
type.

The map (2.1) can be described more abstractly: The cubic polynomial defining X is
an element F € S3(V*), which by contraction defines a map ip: V—=S 2(v*). In other
words, i maps a vector x € V to the partial derivative d,F. Composing with the natural
projection S2(V*)—=S2(W*) gives

ir

1% S2(V*) S2(W*)

Sy

VIW.

Here, the dotted arrow exists as L = P(W) C X.

Example 2.3. Consider the Fermat cubic X = V(F = _ x)) ¢ P"*! over a field k with

char(k) # 3. Then L := V(xo + x1, X2 + X3, X4,...,Xn+1) 1S @ line of the second type
contained in X, cf. the proof of Proposition 1.19.
Indeed, under P! —=>L, [t : s]—[t: —t:s: —s:0:---: 0] the partial derivatives

0iF,i =0,...,n+ 1, pull back to 3 2,31%,35%,35%0,...,0 and, therefore, span a
subspace of H°(P', Opi1(2)) of dimension two only. We leave it to the reader to work out
an example in the case char(k) = 3.

Lines L of the first and the second type in X can also be distinguished by the existence
of linear subspaces containing L that are tangent to X at every point of L. We need to
recall some facts from classical algebraic geometry.
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Definition 2.4. The projective tangent space of a hypersurface X = V(F) at a point
y € X is the linear space

P'=TyX = V(> x6iF(y)c P,

The projective tangent space is independent of the choice of the equation F and of
the linear coordinates xo, . .., X,+1. The Euler equation implies y € T, X.

Lemma 2.5. Consider a hypersurface X ¢ P! and a linear subspace P" ~ H c P!
not contained in X. Then for y € H N X the following conditions are equivalent:

(i) H c TyX, i.e. H is tangent to X at the point y
(i) y is a singular point of X N H.

Proof Choose linear coordinates such that H = V(xy41,...,%,41). Then H C T, X if
and only if xy OoF(y) + - -+ + X 0, F(y) = O for all [xg : --- : x;,], which of course is
equivalent to pF(y) = -+ = 0,F(y) = 0. As the 9;F(y), i = 0,...,m, are the partial

derivatives of the restriction F|p, which defines the intersection X N H, this proves the
assertion. O

In Section 5.1.1, especially Lemma 5.1.8, and Section 6.0.2, the next result will be
discussed again and in more detail for cubic hypersurfaces of dimension three and four.

Corollary 2.6. Assume L C X C P**! is a line contained in a smooth cubic.

(1) The line L is of the first type if and only if there exists a unique linear subspace
L C Py = P" 2 that is tangent to X at every point y € L.

(ii) The line L is of the second type if and only if there exists a linear subspace L C
P, ~ P that is tangent to X at every point y € L. In this case, Py is unique.

Furthermore, the linear subspace Py can be described as the intersection of all tangent
spaces at points of L, i.e.
PL=(T.X.

yeL

Proof We start with a direct argument to prove (ii).

If L is of the second type, then by Remark 2.2 all derivatives 0;F|, are linear combi-
nations of two quadratic forms Q, Q' € H(L, 0;(2)),i.e. ;F(y) = a; Q(y) + a; Q'(y) for
all y € L. Hence, we can write > x; 0;F(y) = (3_ a; x)Q() + (3_ a}x;)Q’(y) and define

P; = V(Zaixi,Zal’-xi> C PnJrl.

Then P; ~ P"! satisfies P; C TyX forall y € L.
Conversely, assume for a line L C X that there exists L ¢ P, ~ P! with P; C T,X
for all y € L. If, to simplify the notation, L = V(xy, ..., X,+1) C Pr = V(x,, Xn4+1), this is
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equivalent to 0gF(y) = - -+ = 0,1 F(y) = O for all y € L. Thus, the derivatives 0;F|;, span
only a two-dimensional space in HO(L, ©1(2)) and, therefore, L is of the second type.

An alternative argument, which is more invariant and also proves (i), goes as follows:
If L = P(W) is contained in a linear subspace P(U), then rewriting (1.15) as

WO —=s U0 —= U/WRO Nix(=1)

oo T

W0 ——= Vo0 —s= V/W® O = N p(-1)

|

OL(2) = Nypel(-1)

shows that P(U) is tangent to X at every point of L if and only if the subspace U c V
maps to Mpx(—1) € Npe(—1) under the surjection V@ O —s= Np p(-1).

In (i) and (ii), we let P, = P(U) with U C V defined as the pre-image under the map
V ® O —> N =(~1) of the maximal trivial subbundle O% ¢ N x(~1) € Npp(-1) =
VIW® O with k = n—3 and k = n — 2, respectively.

To prove the last assertion, use that by virtue of Lemma 2.5, P; C T,X if and only if
X N Py is singular at y. Since by definition, P is tangent to X at every point y € L, i.e.
X N Py is singular at every point y € L, this proves the inclusion P, C (T, X. As the
intersection is linear, the same argument proves equality. O

Remark 2.7. For later use, we emphasize that P, can be identified as
Py =P(U) c P(V) with W ¢ U—s=H(L, N1 )x(~1)) € V/W,
i.e. U c V is the pre-image of H(L, Nix(=1)) € V/W under the natural projection.

Remark 2.8. If L is of the second type, then the linear subspaces L ¢ P"~2 c P"*! that
are tangent to X at all points of L are exactly the linear subspaces L c P"2 c P;. They
are parametrized by P((U/W)*) =~ P"~3, where we write L = P(W) and P; = P(U).

Exercise 2.9. Fix aline L = P(W) c X in a smooth cubic hypersurface X c P!

(i) Consider a plane L = P(W) c P> c P"*! not contained in X and let Q c P> N X be
the residual conic of L ¢ P?> N X. Show that L c Q if and only if P? ¢ P;.

(ii) Deduce from (i) that the line W, c V/W corresponding to a point y € P**' \ L is
contained in the kernel of y; : V/W —=S*(W*) = H(L, O(2)), see Remark 2.2, if and
onlyifye Py.
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(iii) Show that the zero setin L of ¢ (W,) C HO(L, ©(2)) is the intersection LN O, of
L with the residual conic Q, of L c yL N X.

Note that by (ii) for y € P the image /(W,) is trivial and, thus, its zero set is all of
L, which fits with (i) saying L C Q, in this case.

Another way of rephrasing the difference between lines of the first and of the second
type in more geometric terms uses on the Gauss map.® Recall that the Gauss map for a
hypersurface X = V(F) c P := P**! is the map

Yx: P—=P", x—[0F (x) : -+ : 0,1 F(X)],

which is regular for smooth X, see Lemma 1.3.1. For d > 1 the morphism is not constant
and hence finite. Then, also its restriction

Yx: X—=X"=yx(X)

onto the dual variety X* is finite. Geometrically, yx maps y € X to the projective tangent
space T, X = V(>_ x; 8;F(y)). Hence, the fibre of yx over a point [H] € X* corresponding
to a hyperplane H C P is the set of all points x € X at which H is tangent to X.
Moreover, yy is generically injective as yx- o yx = id, cf. [174, Ch. 10]. In other words,
yx: X —>= X" is the normalization of X*.

As an immediate consequence of Remark 2.2, one then finds the following.

Exercise 2.10. Let L C X be a line contained in a smooth cubic hypersurface X. Prove
the following assertions:

(i) The line L is of the first type if and only if yx: L—>vyx(L) is an isomorphism onto
a smooth plane conic.

(i) The line L is of the second type if yx: L—7yx(L) is a degree two covering of a
line.

Note that Lemma 1.13 applied to the case n = 2 leaves only one possibility, namely
Nix = Op(-1), which counts as a line of the first type. For n > 2 there are two cases
and both can be geometrically realized on any smooth cubic hypersurface, see [174,
Prop. 6.30]. Indeed, for lines of the second type this follows from Example 2.3 and
Proposition 2.13. For lines of the first type combine the dimension formulae in Lemma
2.12 and Proposition 1.19.

3 Often, when the Gauss map is involved, some assumptions on the characteristic char(k) of the ground field
k have to be made. As we will usually only consider hypersurfaces of degree three, it will suffice to assume
that char(k) # 2, 3.
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2.2 Lines of the second type Assume n > 2. Lines of the first type are generic or,
equivalently, the set of lines of the second type

Fy(X) = { L| K°(L, Npyx(=1)) 2 n =2} C F(X) 2.2
is a proper closed subscheme.

Remark 2.11. The characterization of lines of the second type given in Remark 2.2 in
terms of the map ¢ in (2.1) globalizes to the following description of F,(X): Writing
Sr and QpF for the restriction of the universal subbundle and the universal quotient
bundle to F = F(X) — G(1,P), there exists a canonical sheaf homomorphism

¥: Qr—=S*(Sp)
for which F»(X) is the degeneracy locus:
Fr(X) = My() ={LeFX)|rk(yr) <2}

As rk(S 2(Sj;)) = 3, the locus F»(X) is isomorphic the zero locus of a global section of a
locally free sheaf. Indeed, consider the projective bundle 7: P(S 2(SF)) — F with the
tautological injection O (—1) —7*S?(Sr). The composition with the pull-back of the
dual of i leads to

Onl(—1) — 1°SX(Sp) =2 1° Q"

which can also be considered as a global section € H°(P(S?(Sr)), n* Q5 ® Ox(1)).
Then, the projection 7 induces an isomorphism

7w V(i) —>Fa(X).
This observation immediately implies a dimension formula for F,(X).

Lemma 2.12. [fnot empty, the locus F»(X) C F(X) of lines of the second type contained
in a smooth cubic hypersurface X of dimension n is of dimension

dim(F2(X)) = n — 2 = (1/2) dim(F(X)).

Furthermore, the closed set of all x € X contained in a line of the second type is of
dimension at most n — 1. See Corollary 2.15 for a stronger statement.

Proof The proof has two parts. First, the usual dimension formula for degeneracy loci
shows codim(M,(¥)) < (tk(QF) — 2) - (rk(SZ(S;)) —-2) =n-2,cf. [24, 174, 188].
Therefore, dim(F,(X)) > n — 2. The second part consists of proving that n — 2 is an
upper bound for the dimension which was first observed by Clemens and Griffiths [120,
Cor. 7.6].

As yx: X—=X* is generically injective, the image of ¢: L, = p~!(Fy)—=X is
a proper closed subscheme and, therefore, of dimension at most n — 1. Hence, as the
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first projection p: L, —> F} is of relative dimension one, it suffices to show that the
map g2 = qlp, : Lo —¢q(L,) C X is generically finite, which will also prove the last
assertion.

For x € ¢»2(L;) consider ¢, : qgl(x) —> X, L+—>1;(x), where ¢; : L— L is the cover-
ing involution for the restriction of the Gauss map yx|.: L— X", see Exercise 2.10:

iy OL —=X

ol

yx(L) —— X"

Thus, yx(t.(L)) = yx(x) forall L € ¢; !(x) and, therefore, the image of ¢, is finite. If
x #1(x), theline L € ¢, !(x) is the unique line through x and ¢; (x). Hence, ¢, is injective
on the open subset of lines L € g; !(x) satisfying x # ¢;(x), which implies that this set
is finite. It remains to prove that the lines with x = ¢;(x) do not affect our dimension
count. For this observe that the set of points (L, x) € L, with x = ¢z(x) is (fibrewise with
respect to p) of codimension one. As for the assertion it suffices to prove finiteness of
q» restricted to its complement, this concludes the proof. O

Proposition 2.13. For a generic smooth cubic hypersurface X c P"™! of dimension
n > 2 the locus F»(X) C F(X) of lines of the second type is non-empty, smooth and of
dimension

dim(F>(X)) = n - 2 = (1/2) dim(F(X)).

Proof The dimension formula has been established already for all smooth X already

by Lemma 2.12. So, we only have to prove the non-emptiness and the smoothness for

generic X. However, the following arguments, adapted from the four-dimensional case

treated by Amerik [18], also provide an alternative proof for the dimension formula.
Consider the universal Fano variety of lines of the second type

F2(X) € F(X) C|Op(3)I X G(1,P),

cf. Proposition 1.5. So the fibre of F>(X)—|Op(3)| over the point corresponding to a
smooth cubic X is F»(X). The fibres of the other projection n: F»(X) —=G(1,P) are
all isomorphic to, say, the fibre over the line L = V(xp,...,x,—1) C P. It is a closed
subscheme of the fibre of F(X'), which is the projective space P;, := |Z; ® Op(3)|. Recall
from Remark 2.2 and Exercise 2.10 that 77! (L) C P; in points corresponding to smooth
cubics is characterized by the property that 9;F|, € HYL,O.(2),i=0,...,n—1, span
a two-dimensional subspace. Thus, 77! (L) is the degeneracy locus M, (1) C P, of

Wi X0y s Xno1) ® Op, (1) —=H(L, 0,(2)) ® O3,

which at the point [F] € Py is ¢r(x;) = 9;F|L, cf. Remark 2.11. The coeflicients of ¢
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are the 3n coordinates corresponding to the monomials

X * XpXpi1, and x; - X2

2
Xit X n+1°

n?
i=0,...,n— 1, among all the linear coordinates of P, = |Z; ® Op(3)|.

Thus, with respect to the monomial basis of Py and the basis of HL, 01(2) given
by the restrictions of xﬁ, XpXp+1, and xi 41 the situation is described by the matrix

Yo s Yn-1
lﬁ =1 Yn cee Yon-1
2n -+ Y3n-1

on a projective space PV with coordinates Yo, . . ., Y3u—1, V3n, - - . , Y. Hence, My (¢) is the
pre-image under the linear projection PV .- > P(M(3, n)) of the universal determinan-
tal variety in P(M(3, n)) (with the 3n coordinates yy, . . ., ¥3,-1). Hence, the classical for-
mulae apply, see [24, 174], and show that codim(M(¥)) = (n—k) - (3 —k). In particular,
the fibre 77! (L) is of codimension n — 2 in |Z; ® Oz(3)| and the singularities of the fibre
over L are contained in M, (y). This proves that

dim(F>(X)) = dim |0p(3)| + n - 2.

As the image of F,(X)—|Op(3)| meets the smooth locus, cf. Example 2.3, and the
fibre over any smooth X € |Op(3)| is of dimension at most n — 2, cf. Lemma 2.12, F,(X)
is indeed of dimension n — 2 for all smooth X.

Using that the 0,F|;, € H(L, ©;(2)) for a smooth cubic X = V(F) always span at
least a two-dimensional space, we conclude that the image of M, () in |Op(3)| does not
meet the open subset of smooth cubics. In other words, the open subset of F»(X) lying
over |Op(3)lsm C |Or(3)] is smooth. Hence, F»(X) C F(X) is smooth of dimension n — 2
for the generic smooth cubic hypersurface X. O

Exercise 2.14. In the above proof, we observed that F»(X) is non-empty of dimen-
sion n — 2 for all smooth cubic hypersurfaces. Alternatively, one can deduce the non-
emptyness using semi-continuity and (2.2). We stress that for special smooth cubic hy-
persurfaces F>(X) may well be singular, see Remark 5.1.7.

2.3 Points contained in lines of the second type As a consequence we show that the
generic point x € X is not contained in a line of the second type and that the generic
point in the locus of points that are contained in a line of the second type is contained
in only finitely many such. Implicitly, we have seen this already in the proof of Lemma
2.12.
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Corollary 2.15. Consider the restriction of (1.7) to F, = F»(X)

Ly:=p \(F) —=L—2s%

|k

Fye—«— > F
The subvariety L, C L is the non-smooth locus of g: L—=X, i.e.
L, ={(L,x)€eL|dq: T L—=T,X is not surjective },
and its image q(L,) C X is a divisor in X.

Proof The P!'-bundle L, — F,»(X) was introduced already in the proof of Lemma
2.12. There, we showed that g: L, — X is finite on the dense open subset of points
(L, x) € L, for which the restriction of the Gauss map x|z is not ramified in x. This
proves the second assertion.

For the first assertion, we evoke Remark 1.11, which in our situation shows that the
kernel of dg: T(;,L—T,X is naturally isomorphic to H(L, N7,x(—1)). As for lines
of the first type one has h°(L, Nix(=1)) = n — 3 and for those of the second type
h°(L, N1;x(—=1)) = n — 2, this immediately proves the assertion. |

Note that purity of branch loci predicts the non-smooth locus to be of codimension
atmost 1 + dimL — dim(X) = n — 2, i.e. of dimension at least n — 1. This fits the above
description of the branch locus as L, which, as a P!-bundle over F»(X), is of dimension
dimFr(X)+1=n-2+1=n-1, see Lemma 2.12.

Remark 2.16. The description
Ker (dg: TpoL—=T.X) ~ H (L, Ny x(-1)),
as used in the above proof, also shows that dg drops rank at most by one, i.e.
n—1<rk(dq: TeyL—TX)<n
and, in particular, for all x € X
n-3<dim(g'(x)) <n-2.

While for the generic cubic, all fibres g~' (x) are of dimension n — 3, the differential dg
has never constant rank, i.e. the projection ¢ is not smooth, for n > 3.

Gounelas and Kouvidakis [199, Rem. 3.8] show that the projection g: L, —X is
birational onto its image, at least for the generic cubic X C P"*! 5 > 3. In other words,
the generic point in X that is contained in a line of the second type is contained in exactly
one such line. For a direct argument for cubic threefolds see Remark 5.1.17.
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Remark 2.17. There is a link between Corollary 2.6 and Corollary 2.15. For L € F(X)
consider P; = P(U) as in Corollary 2.6 and pick x € L c P;. Now compare the
deformations of L C X through x and deformations of L C Pj through x. Using the
diagram in the proof of Corollary 2.6 and combining it with the commutative diagram

0 — Nixnp, (=1) — Nyp,(=1) — Nxap,p,lL(-1) — 0

b

0 —— NL/x(—l) e NL/P(_D OL(Z)

O’

one finds that to first order these deformations are the same, i.e.
HO(L, Nyyx(=1)) = H'(L, Njxap, (=1)) = H(L, Nyp, (=1)).

In particular, as P; ~ P"~! for lines of the second type, there are more deformations of
L inside Py through a fixed point x than for lines of the first type for which P; ~ P"~2,

Later we will see that for specific n the locus F»(X) often has a concrete geometric
meaning, providing a different proof for dim(F,(X)) = n — 2, For example, for n = 3,
so smooth cubic threefolds ¥ c P*, F,(Y) is a curve in the Fano surface F(Y), see
Section 5.1.1. Note that F»(Y) can be singular for specific smooth cubic threefolds and
q: L, —Y might have positive-dimensional fibres, cf. Remark 5.1.7. Hence, for the
smoothness of F>(X), the assumption in Proposition 2.13 that X is generic is essential.

Remark 2.18. The description of F»(X) as a degeneracy locus of the expected dimen-
sion allows one to compute its fundamental class

[F2(X)] € H"*(F(X), 2),

which is the middle cohomology of the Fano variety F'(X), in terms of Chern classes of
Sy or, alternatively, of Qf (Porteous formula). We will not do this in general, but see
Proposition 5.1.1 for cubic threefolds and Proposition 6.4.1 for the computation in the
case of cubic fourfolds.

Remark 2.19. Recall from Corollary 2.6 that for lines of the second type there exists a
unique linear subspace L ¢ Py ~ P*"! ¢ P"*! that is tangent to X at every point of L.
Unlike the case of lines of the first type, linear subspaces L C P"~2 that are tangent to
X along L are not unique. They are all contained in P, and parametrized by a subspace
P"3 ¢ P; complementary to L C P;.

This leads one to consider the incidence variety F (X) of all pairs (L,P(U)) € F(X) x
G(n — 2, P) consisting of a line L c X and a linear subspace P"~? ~ P(U) C P such that
L is contained in P(U) and P(U) is tangent to X along L. Then

7: F(X)— F(X), (L,P(U))—L
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is an isomorphism over F(X) \ F»(X) and a P"~3-bundle over F»(X)  F(X). So, at least
over the open complement of the set F2(X)sne C F(X) of singular points of F(X), it
looks like the blow-up o : Bl,x)(F(X))—= F(X).*

To make the identification Blg,x)(F (X)) = F (X) rigorous (while assuming for sim-
plicity that F,(X) is smooth), we have to find a natural identification between the fibres
of T and o over a point L € F,(X). By the discussion in the proof of Corollary 2.6, see
also Remark 2.20 below, we know

N (L) = P(HO (L, Niyx(=1))").

The description of o~!(L) is more involved. As for any blow-up, the fibre over a point
in the center of the blow-up is the projectivization of the normal bundle at that point, so

o ML) = P(TLF(X)/TLF2(X)).
For a global description of the normal bundle for cubic fourfolds see Proposition 6.4.8.
We know that 77 F(X) = HO(L,NL/X) and that the subspace T F»(X) € T F(X) is the
subspace of all first order deformations of L in X such that L stays of the second type,
i.e. such that h°(L, Nix(=1)) = n — 2 is preserved. Assume L, C X, = X x Spec(k[&])
corresponds to v € T F(X) ~ H)(L, N, 1/x)- The boundary map of the associated short

exact sequence

0—¢&- - Nyx — N x, — Nyx —0
twisted by O, (—1) is a map
0,1 HO(L, Npjx(=1))—=H' (L, Niyx(=1)) = k,

that sends a section s to the obstruction to deform it sideways to a section of N7_x, (—1).>
Altogether, we obtain a map

T F(X) =~ H'(L, Ny x) — Hom(H*(L, Ny x(— 1)), H' (L, N7 x(=1)))
=~ H(L, Nx(-1))* ® H'(L, N x(-1)),

the kernel of which is T F,(X). Thus, for smooth points L € F,(X) there exists a nat-
ural isomorphism T F(X)/T; F5(X) ~ H(L, Ny/x(=1))*, up to tensoring with the line
H'\(L, Npx(=1)), and hence a natural identification o' (L) =~ I(L).

Recall from Remark 1.16 that there exists a natural isomorphism H'(L, N x(=1)) =
det HO(L, Nz jx(=1))".

Remark 2.20. This remark is rather lengthy and a little technical. We recommend to
skip it at first reading and come back to it when it is later used, see Section 6.4.4.

4 Has the following any chance of being true for n > 3: If there is no P"~2 contained in X, then F is smooth.
If F is smooth, then F» is smooth.
5 The isomorphisms here and in the next displays are not canonical.
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Let us look at the other projection
a: F(X)—G(n - 2,P), (L,P(U))—=P(U).
On the open part F(X) \ F»(X) C F(X) this is just
ap: FX)\ Fr(X)—G(n—-2,P), L—Py.
Similarly, one can consider
B: Fr(X)—G(n—-1,P), L—Py.

We wish to describe the pull-backs of the Pliicker polarizations on G(n — 2,P) and
G(n — 1,P) under @ and B. They can be compared to the standard Pliicker polarizations
Or,(1) and Op(1) on F»(X) c F(X) c G(1,P) as follows:

" O(1) = 7" Op(3)(—E) and B O2) = Op, (4).

Here, E C F (X) is the exceptional P*3-bundle over F,(X). Note that in particular
ayO(1) = Op(3)|p\F,, which is of particular interest for n > 3, as then F»(X) C F(X) is
of codimension at least two.

Let us sketch the argument assuming n > 4 and F(X) smooth. In both cases, we will
establish isomorphisms between the fibres of the involved line bundles that are natural
and, therefore, glue to isomorphisms between the line bundles themselves. The actual
gluing is left as an exercise, but see Proposition 5.2.2 for similar arguments where we
do explain also the gluing.

Let L = P(W) C X be of the first type. Then P; = P(U) =~ P"*~2, where U is given as
an extension

0— W — U — H%L, Ny x(-1)) — 0, 2.3)

see the proof of Corollary 2.6. Furthermore, according to Remark 2.2, there exists a
short exact sequence

0 — H(L, Nyx(=1)) —= V/W —= §*(W*) — 0. 24)
After fixing det(V) = k, the fibre of a;O(-1) at the point L is naturally isomorphic to
det(U)

1

det(W) ® det HO(N7/x(~1)) = det(W) ® det(V/W) ® det(S2(W))
det(W) ® det(W)* ® det(W)? =~ det(W)?,

1

which is naturally identified with the fibre of Or(-3) at L. Globalizing the argument,
one obtains the isomorphism a;O(1) =~ O(3)|p\r,. To conclude the description of the
pull-back a*O(1) it suffices to show that it restricts to O(1) on the fibres of E — F»(X).
The fibre o~'(L) =~ 771(L) = P(H(L, Ny x(~1))) over L = P(W) € F,(X) parametrizes
all extensions

0—W—Uy—= Uy —0,
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where Uy ¢ H(L, N7,x(-1)) is a hyperplane. At such a point and with W fixed, the
fibre of @*O(-1) is naturally identified with

det(Up) =~ det(W) ® det(Uy) =~ det(H(L, Nz,x(~=1))/Uy)*,

which is canonically isomorphic to the fibre of O(=1) = O(E)|-1(z). Here, the second
isomorphism relies on the natural identification of det(W)* and det(H°(L, Ny, /x(=1))) (or
rather of the squares, which is enough for our purpose), which in turn is a consequence
of Remark 2.2 and (1.16) in Remark 1.16, see also the argument below.

To prove 5*O(2) =~ OF,(4) we have to establish a natural isomorphism det(U )2
det(W)* for which we again use (2.3), only that now U is of dimension #:

det(U)?

1

det(W)? ® det HO(L, N1 /x(—1)) ® det HO(L, N7 ;x(~1))
det(W)2 ® det HO(L, NL/x(—l)) ® H! (L, NL/x(—l))*
det(W)? @ det(V/W) @ det(S2(W*))* =~ det(W)*.

[l

[l

Here, the second isomorphism follows from (1.16) in Remark 1.16 and the third one
from the exact sequence

0 — H(L, Nyx(~1)) —= V/W —= SX(W*) —= H'(L, N x(-1)) —= 0,

which is the analogue of (2.4) for lines of the second type, see Remark 2.2. The isomor-
phism 8*O(2) ~ OF,(4) suggest that maybe in fact 5*O(1) =~ OF,(2), but it turns out
that this is not true, see Remark 6.4.9.

3 Global properties and a geometric Torelli theorem

No information is lost when passing from a smooth cubic hypersurface of dimension at
least three to its Fano variety of lines. For cubic fourfolds the Pliicker polarization of
the Fano variety has to be taken into account and, of course, for smooth cubic surfaces,
where the Fano variety consists of just 27 reduced points, the result fails.

3.1 Canonical bundle and Picard group Recall the isomorphism det(S*) =~ O(1)|g
for the Pliicker embedding G —— ]P’(/\m”V), see Section 1.1. The following result is
[16, Prop. 1.8].

Lemma 3.1. For a smooth cubic hypersurface X C P*™! the canonical bundle wr of the
Fano variety of lines F = F(X) ¢ G(1,P) — P", N = ("?) - 1, is

Wr = 0(4 - n)IF

Proof As the Fano variety is the zero set F(X) = V(sp) C G(1,P) of a regular section
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sp € HYG, §3(S*)), see Section 1.1, the normal bundle sequence for F = F(X) ¢ G
takes the form

0—Tr — Talr —=5°(Sp) —0.
The adjunction formula then implies
wr = det(T}) = welr ® det(S>(Sy)).

As Tg = Hom(S, Q), one has wg = det(S ® Q) =~ det(S)" ® det(Q*)* ~ O(-n —
2)|g. Thus, it remains to prove that det(S 3(8)) =~ det(S)°, which one deduces from the
splitting principle and the following computation: Write formally S = My @ M; and
observe S3 (Mo & M) =~ M) & (M3 ® My) & (Mo ® M}) & M;. o

Thus, for smooth cubic threefolds ¥ ¢ P* the Fano variety of lines F(Y) is a smooth
projective surface with very ample canonical bundle, in particular F(Y) is of general
type. For smooth cubic fourfolds X ¢ P3 the Fano variety F(X) has trivial canonical
bundle wr ~ OF and we will later see that F(X) is a four-dimensional hyperkihler
manifold, see Theorem 6.3.10. Eventually, for n > 4 the Fano variety becomes a Fano
variety in the sense that its anti-canonical bundle wy y, is ample and in fact very ample.
In short:

ample ifn =23,
WFX) = trivial ifn= 4,
anti-ample ifn > 4.
Exercise 3.2. Use the arguments in the proof above to compute the Chern character

ch(F) := ch(7r). More precisely, if formally we write c¢(Sy) = (1 + £p) - (1 + £), so that
c1(Sy) = €y + £y and c2(SF) = £y - £y, then for x; := exp({;)

ch(F) = (xo + x1) - (n+2 = (1/x0) = (1/x1) = x5 = x7).
This gives back the above result ¢ (F) = (n —4) - g, where g = ¢;(O(1)|r) = —¢1(SF) =
o + {1, and
cho(F) = (n/2 = 7) - g* + (12 = n) - ¢2(Sp),
which for n = 3 and n = 4 becomes ¢, (F) = 6-g2—=9-¢2(Sr) and c2(F) = 5-g7—8-¢»(Sr),

see Section 5.2.1 and Proposition 6.4.1. For n = 4 this was computed by Diamond [151,
Sec. 4.2.1].

We will later determine the (rational) cohomology of F(X) for any smooth cubic
hypersurface X ¢ P**!, cf. Section 4.6. At least in characteristic zero, the positivity
property of the canonical bundle wry) already implies certain vanishings, e.g.

HY(F(X),0)=0
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for n > 4 and g > 0. See also Corollary 4.17 for an alternative approach. This allows
one to prove the following result, although strictly speaking only for n > 4, but see
Corollaries 4.18 and 6.3.11.

Corollary 3.3. Let F = F(X) be the Fano variety of lines contained in a smooth cu-
bic hypersurface X c P! over C. Then H'(F,Z) = O for n > 4 and, in particular,
Pic’(F) = 0. For n > 5 one has Pic(F) ~ H*(F,Z)(1). O

In Corollary 4.18 we will see that Pic(F) =~ Z for n > 5 and in Remark 4.19 we
explain that F(X) is in fact simply connected.

All these assertion remain valid over arbitrary fields. For example, Kodaira vanishing
holds for liftable varieties [148], see the comments in Section 1.1.6, and implies the
vanishing of PicO(F ).

3.2 Connectedness and the universal line Apart from the Fano variety of lines on a
cubic surface, all others are connected, see [16, Thm. 1.16] and [38, Thm. 6]. This leads
to the following strengthening of Proposition 1.19.°

Proposition 3.4. Let X ¢ P"*! be a smooth cubic hypersurface of dimension n > 2.
Then F(X) is an irreducible, smooth, projective variety of dimension 2n — 4.

Proof More generally, Barth and van de Ven [38] prove that the Fano variety of lines
F(X) on any, not necessarily smooth, hypersurface X c P"*! of degree d is connected
if d < 2(n — 1). They argue by bounding the dimension of the ramification locus (of
the Stein factorization) of L — X. Altman and Kleiman [16] use instead the Koszul
complex

= N(S38) =S (S) — O — Opxy—0. 3.1
The induced spectral sequence
EP! = HU(G, N7 (S(8))) = HP*(F(X), OFx))
combined with generalized Bott vanishing results for Grassmann varieties:
HP(G, N'(S3(S))) = 0forall p £ 0
shows H(G, Og) —= H(F(X), OF(x)). Hence, F(X) is connected. Together with the

smoothness of F(X), this shows that F(X) is irreducible.
For alternative arguments see Exercise 3.7, for n > 4, and Example 4.21. O

Exploiting similar techniques, Borcea [86] proved connectedness of certain Fano va-
rieties (X, m) of m-planes in complete intersections.
6 One could think of applying the Fulton-Lazarsfeld connectivity [316, Thm. 7.2.1], to prove the connectiv-

ity of F(X, m) whenever dim(F (X, m)) > 0. However, this would need the ampleness of S§4(S*) which is
just wrong.
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Exercise 3.5. Let X € P"*! be a cubic hypersurface and assume that m is an integer with
m? + 11m < 6n. Show that there exists a linear subspace P ¢ X c P"™! of dimension
m contained in X.

Remark 3.6. Assume n > 2. Then, the projection
qg:L—=X

of the universal line L. = P(S|rx)) — F(X) is surjective or, equivalently, through every
point y € X there exists at least one line y € L C X, possibly defined only over a
finite extension of the residue field of y. To prove this claim, we may assume that k is
algebraically closed. In fact, there are many ways to go about it; here are a few.

(i) We have computed that dim(F (X)) = 2n — 4, which implies that dim(L) = 2n — 3,
and dim(F,(X)) = n — 2. Hence, ¢: L—X over the complement of L|r,x) C L has
fibre dimension n — 3, see Remark 2.16, and, therefore, the image of ¢ is of dimension
n, i.e. g is surjective.

(ii) Avoiding any prior dimension computations, one can argue as follows, cf. [208].
For a fixed point y € X, let P" c P**! be a hyperplane not containing y. We may assume
y=[1:0:---:0]and P" = V(xp). If X = V(F), then the projective tangent space at the
point y € X is the hyperplane T,X = V(3 x; 8;F(y)) = P", see Definition 2.4, and any
line y € L C T, X has intersection multiplicity mult,(X, L) > 2. For dimension reasons,
there exists a point

Z€P"NT,X N XN V(@F).

Then let L := yz be the line connecting the two points. We may choose coordinates such
thatz =[0:1:0:---: 0], in which case F|; is the polynomial F(xo, x;,0,...,0).
By definition dgF(z) = 0 and by the Euler equation also d,F(z) = 0. Therefore,
mult,(X, L) > 2. However, a line L c P**! intersecting a cubic hypersurface X c P"*!
in two distinct points with multiplicity at least two at each of them is contained in X.

(iii) Another possibility to argue is to first take hyperplane sections to reduce to
the case of smooth cubic threefolds ¥ < P* Then the assertion was first observed
by Clemens and Griffiths [120, Cor. 8.2]. Another more direct argument was given by
Coskun and Starr in [126, Lem. 2.1].

Note that the argument in (ii) also shows that the fibre of L — X over y has the
expected dimension n — 3 if and only if the intersection P* N'T,X N X N V(G F) is of the
expected dimension n — 3. It is known [126, Cor. 2.2] that the fibre can be of dimension
bigger than n — 3 for at most finitely many points x € X.

Exercise 3.7. Assume n > 4 and observe that then P N T, X N X N V(9pF) in Remark
3.6 is connected by Bertini’s theorem. Deduce from this that F(X) is connected, thus
proving Proposition 3.4 again for cubic hypersurfaces of dimension n > 4.
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Remark 3.8. Consider the morphism @w: L —P(7x) that is induced by the inclu-
sion T )~ ¢*Tx and the isomorphism L = P(7/rx)). Concretely, @ maps a
point (L,y) € L to the tangent direction of L at y € L. On each fibre of the pro-
jection p: L— F(X) the morphism @ is described by the natural embedding L =~
P(T1) = P(Tx). It is injective, as the line L is uniquely determined by the point y
and the tangent line 7,L. One checks that @ also separates tangent directions and that,
therefore, it is in fact a closed embedding.

L= P(Tx) (3.2)
RN
F(X) X.

Note that the various line bundles enjoy the following compatibilities:
q"Ox(1) = Opy(1) and @* Or(1) = Op(-2) ® p*Op(1).

For the latter, combine @*O,(-1) =~ Ty,rx), Which holds by definition of @, and the
relative Euler sequence for p, see the proof of Proposition 3.10 below for more details.
Note that L c P(7x) is of codimension two and all fibres of g: L — X satisfy

dim(g~'(y)) <n-1.

In fact, the upper bound can be improved to n — 2, see Remark 2.16.

Using Remark 3.6 one sees that the fibre ™' (y) ¢ P(7y,X) ~ P"NT, X is an intersection
of a cubic and a quadric. So, if it is of the expected dimension n—3, itis a (2, 3) complete
intersection and, in particular, of degree six, cf. Lemma 5.11.

Exercise 3.9. Show that the normal bundle of the natural embedding L ¢ F(X) X X is
isomorphic to

Norooxx = @ (T ® Ox(-1)) =~ @ T, ® 0,(2) ® p*Op(-1).

We conclude this section by a description of . ¢ P(7x) as the zero set of a section of
a rank two bundle. This is a variation of an argument of Shen [426, Prop. 5.1] for cubic
fourfolds.

Proposition 3.10. There exists a locally free sheaf E of rank two on P(Tx) given as an
extension

0—m100B3)®0,3)—E—103)®0,2)—0
and a section s € HY(P(Ty), E) with V(s) = L ¢ P(Tx). Hence,

L =V(s2) c V(s1) cP(Tx)
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with s1 € H'P(Tx), 1*O(3) ® Ox(2)) and s, € H'(V(s1), (1" O3) ® Ox(3)lvisy)-’

Proof We use the two descriptions of the universal line over the Grassmannian G =
G(1,P) as

p:Lg=2P(S)—G and n: Lg =~ P(Tp) —P.
From the two relative Euler sequences
0—0—pS®0,(1) —T,—0 (3.3)
and 0 — 0 — 1" 0,(1)—T,—0
we deduce w, = p*Og(1) ® O,(=2) and w, = 7°O(—n - 2) ® Ox(—n — 1). Inserted into
PG @ W, = wi, = T'wp ® Wy,
while using O,(1) = 7*O(1) and wg =~ det(S ® Q) =~ Og(—n — 2), this leads to
P Og(1) = 1" O2) ® Ox(1). 34
Tensoring (3.3) with O,(-1) provides us with the short exact sequence
0—0,(-1) —= p*S —= p"Oc(-1) ® O,(1) —= 0,
which shows that p*S3(S*) admits a natural filtration
0=EyCE| CE,CE;CE;=pS3SH)

with quotients Ej, 1 /E; = p*Og(3 - 1) ® O,(2i — 3) = 7*O(3) ® O,(3 — 7). Now consider
the pull-back p*sr € H(Lg, p*S3(S*)) of the global section sr € H(G, S3(S*)) with
F(X) = V(sp) C G, see (1.4). Its projection s3 to E4/E3 =~ 7*(O(3) is nothing but the
equation F € H(P, O(3)) of X. Thus, V(s3) = P(Tslx) and the restriction of p*sy to
V(s3) projects to a section s, of (E3/E2)ly(sy) = 7*O(3) ® Oy(1) which cuts out the
fibrewise linear divisor P(Tx) C P(Tp|x). Hence, p*sr restricted to P(7x) is a section of
the bundle E := E; c §3(S*) which is an extension of E;/E; =~ n*O(3) ® O,(2) by
E, ~1003)® O:(3). O

Note that on each fibre of 7: P(Tx) — X the result above confirms the description of
¢ '(y) in Remark 3.6.

Exercise 3.11. Use the description of L C P(7x) as the zero section of an extension of
7*O3) ® Or(2) by 1°O(3) ® O,(3) to reprove Lemma 3.1.

7 1t [426] it is claimed that the extension describing E splits. However, Ottem [244, App.] shows that this
fails in dimension four.



3 Global properties and a geometric Torelli theorem 119

3.3 Geometric global Torelli theorem The following geometric global Torelli theo-
rem generalizes a well known result for n = 3 which we shall explain in Section 5.2.4. It
turns out, that the general proof is less geometric but in the end much easier. We follow
Charles [115], where a more general version is proved allowing the cubic hypersurfaces
to have isolated singularities.

Proposition 3.12 (geometric global Torelli theorem). Assume X,X’ C P"*! are smooth
cubic hypersurfaces of dimension n > 2 and let F(X) and F(X") be their Fano varieties
of lines endowed with the natural Pliicker polarizations Op(1) and Op:(1).

Then X ~ X' if and only if (F(X), Or(1)) =~ (F(X’), Op(1)) as polarized varieties.
For n # 4, this is equivalent to F(X) ~ F(X") as unpolarized varieties.

Proof Any isomorphism X =~ X’ is induced by an automorphism of the ambient projec-
tive space, cf. Corollary 1.3.9. Therefore, it naturally induces an isomorphism between
the Fano varieties of lines, which in addition is automatically polarized.

Before proving the converse, let us show that for n # 4 any isomorphism F(X) =
F(X’) is automatically polarized. Indeed, for n # 4, the canonical bundle wr ~ Op(4—n)
is a non-trivial, possibly negative, multiple of the Pliicker polarization Op(1) and any
isomorphism F(X) =~ F(X") respects the canonical bundle. Hence, if Pic(F (X)) is torsion
free for n > 4, then any isomorphism F(X) ~ F(X’) is automatically polarized.

To prove that Pic(F (X)) is torsion free, cf. Corollary 3.3, observe that for a torsion line
bundle L one has y(F(X), L) = y(F(X), O) = 1. As F(X) is a Fano variety for n > 4, we
have H'(F(X),L) ~ H'(F(X), L ® w}, ® wr) = 0 for i > 0 by Kodaira vanishing (which
holds also in positive characteristic, as with X also F(X) is liftable, see Section 1.1.6).
Therefore, H*(F(X), L) # 0 and, hence, L ~ O.2 For n = 3, the fact that wp =~ O(1)|¢
suffices to conclude.

Now, to prove the converse, let us assume that we are given a polarized isomorphism
between two Fano varieties (F(X), Or(1)) = (F(X’), O (1)). The restriction under the
Pliicker embedding F(X) c G c P( /\ZV) leads to the isomorphisms

HO®(N'V), O(1)) == H(G, Og(1)) == HO(F(X), Or(1))

and similarly for F(X’). The first isomorphism is classical, e.g. a standard Bott formula
for Grassmann varieties can be used to show that Pliicker coordinates form a complete
linear system. For the second one, use the Koszul complex (3.1) twisted by O(1), the
associated spectral sequence, and H'(G, /\iS 3(8)(1)) = 0 forall i > 0, see [16, Thm.

8 Thanks to S. Stark for the argument. Alternatively, one can use [142]. As an aside, Pic(F(X)) is also torsion
free for n = 4, as then F(X) is a hyperkéhler manifold, see Theorem 6.3.10 and, therefore, Pic(F (X)) =
NS(F(X)). In Remark 4.19, we give an argument that for n > 4 the Fano variety F(X) is a Fano variety
and, hence, (algebraically) simply connected.
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5.1]. Thus, any given polarized isomorphism sits in a commutative diagram

F(X) —— G ——=P(N\'V) (3.5)

R

F(X') ——= G ——=P(N\*V).

The next step consists of completing the diagram by an automorphism of G. For this
use again (3.1), now twisted by O(2). On the one hand, according to [16, Thm. 1.15],
restriction defines an injection H(G, Og(2)) “ H°(F(X), Or(2)), while on the other
hand, it is known classically, see [197, Ex. 8.12], that G c P( /\2 V) is cut out by quadrics,
i.e. by the kernel of the restriction map HO(P(A?V), O(2)) —= H(G, Og(2)). As this
kernel coincides with the kernel of the restriction map to F(X), the automorphism of
]P’(/\ZV) in (3.5) restricts to an automorphism of G.

However, automorphisms of G are classified. In our situation, they are all induced by
automorphisms of V, see [117] or [219, Thm. 10.19], which leads to an automorphism
of the whole correspondence G <—P(S) —P(V). The final result is the commutative
diagram

X X’
«
P(V) — P(V)
e Y S Lp
NS
LG E— LG
F(X) oo SRS RS F(X")
o

The surjectivity of L —= X, i.e. the fact that there exists a line through every point, cf.
Remark 3.6, eventually implies that the automorphism of P(V) restricts to an isomor-
phism X ~ X’. O

The proof above shows more, namely that any (polarized) isomorphism F(X) =
F(X") is induced by a unique isomorphism X =~ X’. For n = 3 we will provide a different
proof which relies on an isomorphism between the restriction of the tautological bundle
Sr and the tangent sheaf 7, see Proposition 5.2.12.

Corollary 3.13. For a smooth cubic hypersurface X C P™! of dimension n + 4
the group of automorphisms Aut(F(X)) of its Fano variety of lines F(X) is finite and
HY(F(X), Trx)) = 0. The vanishing holds as well for n = 4.
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Proof The assertions are obvious for n < 2. For 2 < n # 4, we know by the arguments
in the proof above that any automorphism F(X) =~ F(X) is induced by an automorphism
of X. As by Corollary 1.3.9 the group Aut(X) is finite for all cubic hypersurfaces of
dimension at least two, this proves the assertion. The tangent space of the smooth group
scheme Aut(F(X)) is HY(F(X), Trx)), which therefore has to vanish.

For n = 4 one argues similarly using polarized automorphisms. Alternatively, it fol-
lows from F(X) being a hyperkihler manifold, see Theorem 6.3.10. O

For future reference, let us make the observation in the above proof more explicit as
follows. The natural map

Aut(X) < Aut(F(X)) (3.6)

is injective for any smooth cubic hypersurface of dimension 2 < n and it is in fact an
isomorphism for all 2 < n # 4. For cubic fourfolds one finds Aut(X) ~ Aut(F(X), O(1)).
In the same vain,

H' (X, Tx) = H'"(F(X), Trx) (3.7

that associates to a first order deformation of X a first order deformation of F(X) is
injective for n > 2. We give a Hodge theoretic proof of this fact later, see Corollary
5.10. For cubic threefolds (3.7) is in fact bijective, see Proposition 5.2.14, but not for
cubic fourfolds, see Corollary 6.3.12.

Remark 3.14. Stark [441] shows that for n > 4 the natural map (3.7) is also surjec-
tive and hence bijective. By the previous corollary HOY(F(X), Trx)) = 0 and Kodaira
vanishing proves

H'(F(X), Trex) = H(FX), Q5 ™ @ why) = 0

for i > 1, since wr(x) is anti-ample. Thus, at least in principal, a Riemann—Roch com-
putation can be used to show

~h' (F(X), Treo)) = X(F(X), Trx)

= f c4(S3(8") - (ch(S* ® Q) — ch(S(5M))) - td(S* ® Q) - td(S*(S*)) ™!
G

n+2

= —( ) = —h'(X, Tx),
3

see the proof of Proposition 4.6 for similar computations. The arguments in [441] use

Borel-Bott—Weil theory. Certain vanishing results entering the proof had earlier been

observed by Borcea [86].
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4 Cohomology and motives

According to Proposition 3.12, the Fano variety F(X) of lines contained in a smooth
cubic hypersurface X determines the hypersurface. Therefore, essentially all and, in
particular, all cohomological and motivic information about X should be encoded by
F(X). In this section we study the cohomology of F(X) and we do this by first looking
at the motive of F(X).

4.1 Grothendieck ring of varieties As the Fano variety F(X) itself, its motive is an
interesting object to study. Now, the motive of F(X) may mean various things. Here, we
are interested in the class [F(X)] of F(X) in the Grothendieck ring of varieties Ko(Vary)
and in its motive h(F (X)) in the category Mot(k) of rational Chow motives.

We begin with the Grothendieck ring Ko(Vary) of varieties over a field k. Recall that
by definition it is the abelian group generated by classes [Y] of quasi-projective varieties
modulo the relations

(Y] =[Z] +[U],

the scissor relation. Here, Z C Y is a closed subset and U = Y\ Z is its open complement.
The abelian group Ky(Vary) becomes a ring with multiplication defined by the formula
[Y]-[Y']=[YxY']

The Lefschetz motive is the class £ := [A'] of the affine line. An important conse-
quence of the scissor relation is the fact that [Y] = [F]-[Z] for any Zariski locally trivial
fibration ¥ —Z with fibre F. See for example [21, Ch. 13] or [114, Ch. 2] for more
details.

Exercise 4.1. Note that for the last assertion it is not enough to assume that the fibration
Y —Z is étale locally trivial. Show that otherwise one would have £ = 0 in Ko(Vary).

Galkin and Shinder [189] relate the class [F(X)] € Ky(Vary) to the class [X12] e
Ko(Vary) of the Hilbert scheme X' of subschemes of X of length two.” In general, the
Hilbert square of a smooth variety can be obtained as the blow-up of the symmetric
product X := (X x X)/S, along the diagonal X ~ A c X®. Hence, in K(Vary) one
has

(X2 - P [X] = [XP] - [X]. 4.1)

Proposition 4.2 (Galkin—Shinder). Let X ¢ P"*! be a smooth cubic hypersurface. Then
in Ko(Vary) the following equations hold:

X2 =[P [X] + € [F(X)] 4.2)

9 As an aside, it is known that the Hilbert scheme of a smooth cubic hypersurface of dimension n > 3 is a
Fano variety, see [63, Thm. C].
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and

XP1=(1+6)-[X]+ - [FX)]. 4.3)

Proof We follow closely the argument in [189], where one also finds a version for
singular cubics.

Consider the universal family F(X) <—— L —— X of lines contained in X. As
L— F(X) is the P'-bundle P(Slrx)) — F(X), its class in Ky(Vary) is given by

[L] = [P"]- [F(X)]. (4.4)

Similarly, we denote by G = G(1,P) <—— Lg — P the universal family of lines in
P = P"™! and let Lg|x be the pre-image of X under the second projection. Then Lg|x
parametrizes pairs (x, L) consisting of a line L C P and a point x € X N L. It can also be
described as the P"-bundle P(7p|x) —= X, cf. the construction in the proof of Corollary
1.21. This shows that in Ky(Var;) one has

(Lalx] = [P"] - [X]. 4.5

Next, consider the morphism Lg|y \ L. —= X! that sends (x, L) to the residual inter-
section [(LNX) \ {x}] € X! It is inverse to the morphism X2\ L2l —1T|y that sends
Z € X1 to the pair (x, Ly). Here, L; C P is the unique line containing the length two-
subscheme Z c P and x is the residual point of the inclusion Z ¢ Lz N X. By definition,
L1 is the relative symmetric product of the universal line p: L. —= F(X), which equiv-
alently can be described as the relative Hilbert scheme of subschemes of length two in
the fibres of p or, still equivalently, as the P>-bundle LP! ~ P(S2(S*|px))) —= F(X).

Now, since

L] = [P?] - [F(X)] (4.6)
in Ky(Vary), the isomorphism
Lglx \L = X\ L&

together with (4.4), (4.5), and (4.6) proves the first equation (4.2). The second equation
(4.3) follows from (4.1). ]

Remark 4.3. The discussion shows that X2 and Lg|x are birational. As the latter is
simply P(7z|x), which is birational to X x P, one concludes that X'?! and X are stably bi-
rational. This can also be deduced from reducing (4.2) modulo ¢, at least when char(k) =
0. Indeed, by a result of Larsen and Lunts [306], the quotient Ky(Var) —> Ky(Vary)/(£)
is isomorphic to the monoid ring Z[SBy], see also [114]. Here, SBy is the monoid of
equivalence classes of smooth projective varieties modulo stable birationality. Using
that [P"] =1+ ---+ " = 1 modulo ¢, (4.2) then shows

[X"1] = [X] in Z[SB],
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i.e. X%l and X are stably birational.

Remark 4.4. As observed by Voisin [483, Prop. 2.9], a closer inspection reveals that
the construction in the proof above leads to the following picture:

Bl (Lslx) =~ Bloai(X®))

Lglx > L L2 xf2

F(X).

Here, E is the exceptional divisor of both blow-ups. In fact, Bl (Lg|x) = Bl (X)) is
an irreducible component of the incidence variety

{6, L,Z)|xeLnX, ZcLNX)}cXxLgly x X2
and E ~ L XF(X) L.
4.2 Chow motives Let us apply the standard formulae for cohomology and motives
of smooth blow-ups and projective bundles to (4.7). For example, using codim(L C

Lgly) = 3 and codim(L?! ¢ X?1) = 2, the following isomorphisms hold in the category
of rational Chow motives Mot (k)

B(BIL(Lglx)) ® HL)(=3) = h(Lglx) & HE)(~1)
and
BBl (X)) @ HILP)(=2) = h(X) @ HE)(-1),

see [21, 367]. Here, h(Y)(=i) = h(¥) ® (P!, [P' x x])® is the twist with the i-th power
of the Lefschetz motive. This can be combined with the standard formula for projective
bundles, which in our situation gives

(L) = HF(X)) & H(F(X))(-1),
bH(Lalx) = H(X) @ - - - ® h(X)(—n), and
HLP) = HF(X)) & HF(X))(—1) ® HIF(X))(-2).

The isomorphism Bly(Lglx) = Bly2(X!?') then implies a formula which, assuming
cancellation holds in Mot(k), would look like this:

BF(X))(-2) & @D HEO(—i) = Hx'™). (4.8)

i=0
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That cancellation in our case does hold was proved by Laterveer [307] and independent
proof of the isomorphism was given by Diaz [153]. The decomposition was refined
incorporating the primitive decomposition by Fu, Laterveer, and Vial [183]. The formula
can be combined with the isomorphism

n-1

HXP) = $25(X) & @D BX)(-i). “49)

i=1
which shows that finite-dimensionality of H(X) in the sense of Kimura and O’Sullivan
implies finite-dimensionality of H(F(X)), cf. [307, Thm. 4].1°

Thus, modulo cancellation, one has:

HF(X))(=2) & HX) ® HX)(—n) = S*H(X). (4.10)

Using the decomposition h(X) = h(X)p & P/, Q(—i), cf. Remark 1.1.11, and assuming
cancellation holds, this then becomes

n—-1
HFX))(-2) ® Q(-n) = S*H(X)p @ (P OIX(-D® P Q=i-j). @11
i=1 0<i<j<n

see [183]. Here, Q(1) is the Tate motive (Spec(k), id, 1), the dual of the Lefschetz motive.

Remark 4.5. As a consequence of Bittner’s result [71], see also (4.15) below, assigning
the Chow motive h(X) to a smooth projective variety X defines a linear map

Ko(Var;) — Ko(Moty).

The Grothendieck group on the right-hand side is by definition the abelian group gen-
erated by all rational Chow motives ) subject to the relation [b] + [H’'] = [§ @ b’]. This
allows one to deduce the above isomorphisms as equalities in Ko(Mot) without assum-
ing cancellation.

For a categorical version of this result, also just using (4.7), see Section 7.1.8.

4.3 Degree and Euler number Combining the information obtained from the de-
scription of F(X) c G(1,P) as the zero set V(sr) and the description of its class
[F(X)] € Ko(Vary), one can deduce the following numerical information, see [16, Prop.
1.6] and [189, Cor. 5.2]. The case n = 3 goes back to Bombieri and Swinnerton-Dyer
[81].

Proposition 4.6 (Altman—Kleiman, Galkin—Shinder). Let X c P"™! be a smooth cu-
bic hypersurface and let F(X) be its Fano variety of lines considered with its Pliicker
embedding

F(X) & G(1,P) & P",

10 Finite-dimensionality of §(X) is known for n = 3, Section 5.3, and n = 5, see Remark 7.4.7. It is not known
whether smooth cubic hypersurfaces of dimension 5 # n > 3 are Kimura finite-dimensional.
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where N = (";2) — 1. Then the degree and the Euler number of F(X) are given by the
following formulae
2n—4)!

e GBn® = Tn+4) (4.12)

deg(F(X)) = 27 -

and
e(X)-(e(X)-3) _ 22+ L (=2y*2 . (6n+ D +3n-CBn+1)-20
2 B 18

In Corollary 4.16 below, the formula for the Euler number is generalized to a formula
for the y,-genus.

e(F(X)) =

. (4.13)

Proof As aspecial case of (1.6), we know that [F(X)] = c4(S>(S*)) in the cohomology
ring or in the Chow ring of G. Writing formally S* = Ly ® L; and S3(S*) = Lg @ (L(% ®
L) ® (Lo ® L?) @ L3, allows one to compute, cf. Exercise 3.2:

cs(S3(SM) =9 (5567 +2(€aty + €ol3))
=9 (2¢1(S") + ca(8) - ea(S"),

where ¢; = ¢;(L;). Hence,
dea(FX) =9 [ (S (261(8F +ex(S") - ex(S)

Using standard Schubert calculus (Pieri’s and Gambelli’s formulae), this is turned in
[16] into a rather complicated formula which then can be simplified to the above. Com-
pare Remark 4.7 below for an alternative approach.

In principle, the second assertion can also be deduced by Schubert calculus, as

_ _ C(%) ) 3, ox
e(F(X))—L(X) Con-4(Trx) = L(—C(S3(S*)))2n_4 ca(S°(SY).

But here is a more illuminating way of doing this. Taking Euler numbers of (4.3) in
Proposition 4.2 shows

e(X?) =2 e(X) + e(F(X)),

where we use the additivity resp. the multiplicativity of the Euler number and e(¢") = 1,
cf. [71]. Taking cohomology commutes with taking symmetric products, in other words
H*(X™) = §"H*(X) (say with coefficients in a field of characteristic zero), cf. [210,
Prop. 5.2.3] or [331]. Hence, e(X?) = (e(X2)+1)_11 This proves the first equality in (4.13)
and the second follows from (1.1.6). |

1T The closed formula proved by MacDonald says

D ex™) 2 =1 -2 = exp (e(X) > z’/r], (4.14)

n=0 r=1
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Remark 4.7. The above classical computation of the degree relies on the representation
of F(X) as a subvariety of the Grassmannian G. As the degree can also be computed as

deg(F(X)) = f c1(p* 0> - ¢1(O,(1))

L
on the universal line L, we can change perspective and instead exploit the projection
q: L— X and the description of L as a codimension two subscheme of P(7x) provided
by Proposition 3.10. More precisely, using (3.4) in its proof, allows one to compute the
degree as

deg(F(X)) = f Qr*h+u)*™* 7*h - Br*h + 3u) - 3" h + 2u),
P(Tx)

where h = ¢;(Ox(1)) and u = ¢1(O,(1)).

Exercise 4.8. Use the projection 7: P(Tx)—=X and >_ ' - n*c,_i(Tx) = 0 to conclude
the computation in the previous remark and to confirm (4.12).

Remark 4.9. Recall from Section 1.1.4 that the Euler numbers e(X,,) of smooth cubic
hypersurfaces X,, ¢ P™*! of arbitrary dimensions are encoded by the generating series

00

> X, = ( Sk

s 1-22(1+27)

A formal computation using Mathematica'? reveals

00

il _ 27(1-22)7
;e(F(Xn))Z T G142 (4222 (-1 +47)

but a conceptual understanding in the sense of Theorem 1.1.17 is not known. '3

n | wrx | dm(FX)) | deg(F(X)) | e(F(X))
2 @] 0 27 27

3| O 2 45 27

4 o 4 108 324
5101 6 297 702

which is the geometric analogue of the well-known equality >, |X' (”>(]Fq)| 7" = exp (Z [X(Fgr)l"/ r)
for the Zeta function of a variety over a finite field F; and which generalizes to an equality for the Poincaré
polynomial

© _ylAPIX) L (1 30 L.
Z[Z(_l)ibi(x(n))yi] . (1-y ZZ IX ) (1 ; Zz 3; '
pard (1 = 2)P0X) . (1 — y2g)b2(X) ...
12 with thanks to P. Magni.

13 Mathematica did not come up with a generating series for deg(F(X,,)).
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4.4 Hodge theory via motives The computation of the Euler number is only a faint
shadow of the full cohomological information available. There are various ways to un-
pack the information encoded by the above motivic approach. We shall focus on the
Hodge theoretic content and so assume from now on that k = C.

To start, let HSz,, be the additive category of polarizable, pure Hodge structures of
weight n, see [172] for more on this and the notation. Recall that the Tate twist defines
an equivalence

HSz,,—>HSz, 2, H—H(1) = H®Z(1),

where Z(1) = (2mi)Z is the pure Hodge structure of weight (-1, —1) geometrically
realized by the dual of H*(P!,Z). Let HSz = @ HSz,, be the additive category of
graded pure, polarizable integral Hodge structures and denote its Grothendieck group by
Ky(HSz). By definition, this is the group generated by isomorphism classes of integral
polarizable Hodge structures with the condition that [H]+[H'] = [H®H’]. In particular,
two Hodge structures H and H’ define the same class [H] = [H’] in Ko(HSz) if and only
if there exists a Hodge structure Hy such that H & Hy ~ H’ & Hy. Note that the tensor
product defines a natural ring structure on Ko(HSz).

According to Bittner [71], Ko(Varc) can also be described as the quotient of the free
abelian group generated by isomorphism classes of smooth projective varieties by the
relation

[Blz(] + [Z] = [Y] + [E]

for every blow-up Blz(Y) —Y of a smooth projective variety Y along a smooth projec-
tive subvariety Z C Y of codimension » with exceptional divisor E. Using that for each
such smooth blow-up there exists a graded isomorphism of polarizable integral Hodge
structures, cf. [474, Ch. 7]:

H'(Blz(Y),Z)® H'(Z,Z)(-r) ~ H'(Y,Z) ® H"(E, Z)(-1), (4.15)
one finds that there exists a ring homomorphism
Ko(Varc) — Ko(HSz), [X]+—[H"(X,Z)(dim X)], (4.16)

where X is smooth and projective. Under this map, £ = [A'] = [P'] — [pt] is sent to the
class of the Hodge structure Z(—1).

Exercise 4.10. Show that X — (—y)~4m¥ . y (X) defines a ring homomorphism
Xy Ko(Vare) —Z[y, y™'l,

which factors through (4.16).
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Corollary 4.11. Let X ¢ P™! be a smooth cubic hypersurface. Then in Ky(HSz) the
following equality holds

[H* (X, 2)(2)] = [H*(P",Z)(2)] - [H"(X, Z)] + [H"(F(X), Z)]. (4.17)

As we shall see shortly, there is an isomorphism in HSz behind (4.17), see Corollary
4.12 below.

Proof Apply (4.16) to Proposition 4.2 and twist by the Hodge structure Z(2). O
Next we consider the natural functor
HSz éHSQ, H—H®;Q,

to the category of graded pure, polarizable, rational Hodge structures HSq. It induces a
linear map

Ko(Varg) — Ko(HSz) — Ko(HS). (4.18)
As the category HS is semi-simple, cf. [391, Cor. 2.12], the natural map
HSq“— Ky(HSg)

is injective, i.e. two rational Hodge structures H and H’ are isomorphic if and only
if [H] = [H'] in Ko(HSq)."* Thus, (4.17) becomes a graded isomorphism of rational
Hodge structures

H (X%, Q)(2) = (H*(P",Q) ® H*(X,Q)) (2) ® H*(F(X), Q). (4.19)

There is a shortcut to arrive at the isomorphism (4.19) by just applying cohomology
to (4.8), i.e. using the commutativity of the diagram

(SmProj(C)) Mot(C)

l |

Ko(Varc) —— Ko(HSz) —— Ko(HSq).

Similarly, either by applying cohomology to (4.9) or by using (4.18), one obtains an
isomorphism of Hodge structures

n—-1

H' (X, Q) ~ S*H'(X, Q) & @ H' (X, Q(-i).

i=1

14 Injectivity does not hold for integral Hodge structures. Indeed, there exist elliptic curves E, E’, and E such
that E and E’ are non-isomorphic but E x Ey =~ E’ x Ey, see [435]. In this case [H'(E,Z)] = [H'(E’,Z)]
in Ko(HSz), but H'(E,Z) and H'(E’,Z) are non-isomorphic Hodge structures. Thanks to B. Moonen for
the reference.
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Altogether this leads to the isomorphism of Hodge structures
(S*H'(X,Q)(2) =~ H'(X, Q)(2) ® H (X, Q2 ~ n) ® H'(F(X),Q) (4.20)

and, after decomposing into primitive parts, to

n—-1

H'(F(X),Q®QQ2-n) ~ P H'X,Qu2-de P Q2-i-))

i=1 O<i<j<n
{(SZH"(X, Qp)(2)  forn=0(2)
®
(NH'(X,Qp)(2) forn=1(2),

cf. [189]. Of course, here and below H"(X, Q),r = H"(X, Q) for n odd. Note that (4.21)
can also be obtained by taking cohomology of (4.11). In particular, for the middle co-
homology of the Fano variety the formula proves

4.21)

(S?H"(X,Qp)(2) ® H"(X, Qpe(1 = 5)  forn =0(2)

H"4(F(X),Q) ~ Q2 - n)®*" @ { ,
(N H'"(X, Q)p)(2) forn=1(2)

with m = [n/2] — 1.

4.5 Integral Hodge structures Instead of using the abstract language of motives, it
is possible to work entirely on the level of cohomology. In fact, working directly with
cohomology makes some of the results more concrete and more precise, e.g. (4.19) is
valid for cohomology with integral coefficients, and shows that the isomorphisms in
(4.21) are in fact algebraic.

Start with the diagram (4.7) and apply the blow-up formula for cohomology, cf. [474,
Ch. 7], to o : B = Blp(Lg|x) — Lg|x. Note that its exceptional divisor 7;: E—L is
a P2-bundle. We obtain isomorphisms

[l

H*(B,Z) H*(Lglx,2) © H'L,Z)(-1) & H'L,Z)(-2)
H*(F,Z)(-1) H*(F.Z)(-2) 4.22)

(H'P",2)® H'(X,Z2)) @ ® @ ® .
H*(F,Z)(-2) H'(F,Z)(-3)

R

The inverse of the first isomorphism is up to sign given by
(v, a1, ) —0ja + jiTiar + jiTjas - [E]

Here, j: E~— Bis the inclusion. For the second isomorphism apply the Leray—Hirsch
formula for the cohomology of a projective bundle to the P"-bundle Lg|x — X and to
the P!-bundle p: L— F = F(X).

Next we use the blow-up formula for o5: B =~ Bl (X?')—= X!, This time the



4 Cohomology and motives 131

exceptional divisor 7, : E—=LI?! is a P'-bundle and the Leray—Hirsch formula applied
to the P2-bundle p?': L1 — F, shows

1R

H*(B,7Z) H*X2,7) o H* (L, Z)(-1)

HX?,7) o { H'(F,Z)(-1)® H"(F,Z)(-2) & H"(F,Z)(-3) }.

Combining the two descriptions of H*(B, Z) gives the following isomorphism of Hodge
structures which gives back Corollary 4.11.

Corollary 4.12. Let X ¢ P"*! be a smooth cubic hypersurface. Then there exists an
isomorphism

HX2\7) =~ (H*P.,Z)® H*(X,Z)) ® H*(F,Z)(-2)

(4.23)
& H*(LP2, Z)(-1) ® H*([LP, Z)(-1)

of integral Hodge structures. O

Exercise 4.13. Show that the cohomology H*(F(X), Z) of the Fano variety of a smooth
cubic hypersurface is torsion free.

Use the fact that the integral cohomology H*(X!?!,Z) of a complex manifold X with
torsion free cohomology H*(X,Z) is again torsion free, see [452]. An argument based
on the weaker version of (4.23) provided by the equality (4.17) in Ko(Hdg;) was given
by Shinder [432]. See Remark 5.1.21 for comments on the case of cubic threefolds.'?

Note that apart from the obvious copy of H*(F, Z)(—2) on the right-hand side of (4.23)
there is another one hidden in H*(L!*!, Z)(~1) on both sides. The two copies arise from
the natural inclusions of direct summands

H*(F,Z)(-2)~— H*(L,Z)(-1) and H*(F,Z)(-2)~— H*(L,Z)(-2)
in (4.22). Composing the inclusion H*(X'?,Z)— H*(B,Z) with the projection
H*(B,Z)— H"(L,Z)(-1)® H*(L,Z)(-2) — H*(F,Z)(-2) @ H*(F,Z)(-2)
defines a map
(fi. )1 H' (X, Z)—= H"(F.Z)(-2) ® H'(F, Z)(-2).
Lemma 4.14. With the above notation, f; = 0 and fr(@) = pE](allel).

15 Thanks to S. Stark for various discussions related to this. His question on mathoverflow prompted the
above argument and Shinder’s proof.
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Proof The computation of f,(@) is a consequence of the commutativity of the diagram

H*(X[z]) L) H*(B)

Ol l l( e

H*(L[zl) L. H*(E)

) |

H*4(F) = H*(L).

To compute fi, we write [E]|g = T]e1 + T5e2, possibly up to classes on F which will not
effect the following. Here, e; and e, are the relative tautological classes of p and p!?!.
Then use 71.(0730lz - [Ellg) = T1.(T3(6lLe) - [Ellg) and Sl = pPl61 @ (pP1°6; - e2),
which leads to 75(6l 1) = 71 p*61 ® (7] p*62 - T;e2) for some classes 61 € H*(F) and 6, €
H*%(F). Hence, 71,(t5(6lm) - [Ell) is the sum of 71, (7{(p*61 - e1) ® (7] p*61 - T3e2))
and 7. ((T’lk pi(02-e1) Tye2) BT P02 - T;€2)). The two parts of the first summand are
trivial, because 71,7} = 0 and 7.75e; = 0, for 1 is a P2-bundle. Similarly, the first part
of the second summand is trivial. Therefore, 71.(75(0lLe) - [Ellg) = p*02 - Tl*‘l';e‘%, the
projection of which to H**(F,Z) c H* (L, Z) is trivial. o

Corollary 4.15. For the general smooth cubic hypersurface X C P™! the rational
Hodge conjecture holds for F(X) in the middle degree 2n — 4. The space of Hodge
classes in this degree satisfies dim H" 2" 2(F(X), Q) = [n/2].

Proof Consider the isomorphism (4.21) which by the preceding discussion is alge-
braic. On the right-hand side, the direct sum Q(2 — n)®" is spanned by Hodge classes
which are all obviously algebraic. According to Remark 1.2.13, (ii), up to scalars the
only Hodge class in the summand S 2(H'(X, Q)pr) for n even and in /\Z(H”(X, Q)pr) for
n odd is the class that corresponds to the intersection form ¢ which is algebraic. O

4.6 x,-genus and low dimensions Both, Corollary 4.11 or alternatively (4.21), allow
one to compute the Betti and Hodge numbers of F(X). The formula below evaluated at
y = —1 gives back (4.13).

Corollary 4.16. The y,-genus of the Fano variety of lines F(X) of a smooth cubic
hypersurface X c P! is given by

Xy(X) =2(=-1)"y" -1
2y?

Proof We use y,(€) = =y, x,({") = (=y)", x,(P") =1 -y +--- +(=1)"y", and

(X)+1
o) = ()

Xy (F(X)) = Xy(X).
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The latter is again a special case of a general MacDonald formula for the y, genus
analogous to the one for the Euler number (4.14), see [90, 347, 500]. This gives

S + 1

¥ x(F) = (X ) ) =+ () ()

(X0 —1-2(=y)"
a 2

'Xy(X)

by applying the homomorphism y,: Ko(Vary) —= Ko(HSq) —Z[y, y™'], see Exercise
4.10, to (4.3) in Proposition 4.2 or using Corollary 4.11 and only the second map. O

In principle, it should be possible to combine this with Hirzebruch’s formula for the
generating series Y .. vy(X,) 2! of all y,-genera of cubic hypersurfaces, see Theorem
1.1.17, to express y .o xy(F(X,)) Z"*! as a rational function, cf. Remarks 4.9 and 4.22.

Before making some of the computations explicit in low-dimensional cases, we shall
draw a few further consequences from (4.21).

Corollary 4.17. Let X be a smooth cubic hypersurface of dimension n.

(1) Ifnis even, then H*(X,Q) = H*(X, Q) and H*(F(X),Q) = HV(F(X), Q).
(ii) Ifnis odd, then H*(X,Q) = H¥(X,Q) ® H"(X, Q) and

n—-1

H'(F(X),Q) = H¥(F(X),Q e D H'(X, Q2 -i). O

i=1

The description of the first cohomology provides us with an alternative proof of
Corollary 3.3, which we state again in the following improved form.

Corollary 4.18. Let X c P"! be a smooth cubic hypersurface and let F(X) be its Fano
variety of lines.

() Ifn > 4, then the Picard variety Pic’(F(X)) is trivial.
(i) Ifn =5, then the Picard group is of rank one, i.e. Pic(F(X)) ~ Z.

Proof Indeed, as H*Y(F(X), Q) is trivial for even n and otherwise H°¥(F(X), Q) ~
@~ H(X, Q)2 - i), one finds H'(F(X),Q) = 0 for n > 4. Hence, H*'(F(X)) = 0
which implies that Pic’(F (X)) is trivial.

To prove the second assertion, observe that (4.21) implies H*(F(X),Z)(1) =~ Z. O

Debarre and Manivel [142, Prop. 1 & Ex. 3.3] prove a more precise form of (ii),
namely Pic(F (X)) ~Z - Op(1) forn > 5.
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Remark 4.19. In fact, F(X) is known to be simply connected for n > 4.' Forn = 4
this is a result of Beauville and Donagi [59], see Section 6.3.2, and for n > 4 the result
follows from a result by Sommese [440].

Alternatively, one can use the fact that for n > 4 the Fano variety of lines F(X) is
a Fano variety, i.e. it has negative canonical bundle, see Lemma 3.1. Quite generally,
according to results of Campana and Kollar, rationally connected varieties are simply
connected, cf. [139, 140]. That the algebraic fundamental group is trivial follows from
the observation that any finite étale cover 7: Z—Z of a Fano variety Z would again
be Fano and, therefore, 1 = y(Z, O) = y(Z, O) - deg(n) = deg(n), see [139, Cor. 4.18]
for the rest of the argument.

The middle cohomology H"(X, Q) of the cubic hypersurface X carries most of the
information. As we will see again and again, for the Fano variety of lines it is the co-
homology in degree n — 2, which is below the middle for all » > 2. And indeed, the
next result says that the two are intimately related. In Section 5.1, yet another approach
to computing the cohomology of the Fano variety is explained. Instead of the birational
correspondence between Lgly and X! it relies more directly on the Fano correspon-
dence between F(X) and X provided by the universal line L.

Corollary 4.20. Let X be a smooth cubic hypersurface of dimension n > 2.
(1) Ifn is even, then there exists an isomorphism of Hodge structures
H'™(F(X),Q) =~ H'(X. Q) o P Q2 - i - ).

where the direct sum is over all 0 < i < j <n such that2(i+ j)=n+ 2.
(ii) If n is odd, then H°Y4<""2(F(X), Q) = 0 and there exists an isomorphism of Hodge
structures

H"2(F(X), Q)pr = H™2(F(X),Q) =~ H"(X,Q)(1) = H"(X,Q)p(1). O

Example 4.21. Let us start by computing H(F(X), Q). For this, compare the proof of
(4.21). We distinguish the two cases:

(i) For n =2, we obtain the isomorphism of vector spaces
HY(F(X),Q) & Q = S*(H*(X, Q)pr) @ H*(X, Q) © Q.
Taking dimensions while using b>(X),: = 6, shows
bo(F(X)+1=21+6+1.

Hence, bo(F(X)) = 27, i.e. F(X) consists of 27 isolated points. We stress that using
étale cohomology, the same conclusion can be drawn for smooth cubic surfaces over
arbitrary algebraically closed fields.

16 T am indebted to R. Laterveer and S. Stark for pointing this out to me and for providing the references.
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(ii) For n > 2, one finds H(F(X),Q) ~ Q, where the right-hand side comes from
Q(2 — 1 — 1). This proves again that F(X) is connected, cf. Proposition 3.4 and
Exercise 3.7.

We shall exploit (4.21) to compute the Hodge diamond of F(X) for smooth cubic hy-
persurfaces of dimensions n < 5, cf. [189]. For the computation of the Hodge diamonds
for the corresponding cubic hypersurface see Section 1.1.4.

n = 3: Here, the formulae lead to the following isomorphisms of Hodge structures

H'(F(X),Q) = H*(X,Q)(1),

where we use that H3(X, Q) is primitive, and

HYF(X),Q) ~ (N H(X,Q) ).

Note that a priori the formula involves a direct summand Q(1) on both sides, which then
cancels out. Combining the two isomorphisms defines an isomorphism

N H'(F(X),Q) ~ HX(F(X), Q).

At this point, we do not yet know that the isomorphism is given by exterior product in
cohomology, but see Section 5.3 and Section 5.2.2. For the Hodge diamond this leads
to:

by(F(X)) =1 1
bi(F(X)) =10 5 5
by(F(X)) =45 10 25 10

n = 4: In this case, dim(F (X)) = 4 and the cohomology of F(X) is concentrated in even
degree.

H*(F(X),Q) = H*(X,Q)pe(1) ® Q(=1)
and
H*(F(X),Q) = S*(H* (X, Q)pr)(2) ® H*(X, Q)pr ® Q(-2).

For the Betti and Hodge numbers this implies

bo(F(X)) =1 1
by(F(X)) = 23 121 1
ba(F(X)) = 276 1 21 232 21 1

n = 5: Here, dim(F (X)) = 6 and for the rational cohomology of F(X) we have

H'(F(X),Q) =0, H*(F(X),Q) = Q(-1), H*(F(X),Q) = H(X,Q)(1) = H>(X, Q)p(1),
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HY(F(X),Q) =~ Q(-2)*?, H(F(X),Q) = H(X,Q) = H>(X,Q),,
and
HY(F(X),Q) = (N H (X, Q) (2) # Q(-3).

Thus, the non-trivial part of the Hodge diamond below the middle looks like this:

bo(F(X)) =1 1
bi(F(X))=0

by(F(X)) =1 1

by(F(X)) = 42 21 21
by(F(X)) =2 2

bs(F(X)) = 42 21 21
be(F(X)) = 862 210 442 210

Remark 4.22. Instead of considering Hodge structures of hypersurfaces over C and of
their Fano varieties, it is also interesting to study hypersurfaces over finite fields. Galkin
and Shinder [189] give the following formula

IXE )P =21+ ¢") IXE| + |IX(E )l

IF(X)(Fyl = e

which is a direct consequence of Proposition 4.2 or its version (4.9) in Mot(k), applying
arguments similar to the ones to compute e(F (X)) in the proof of Proposition 4.6.

One way to see this is uses that the Zeta function Z(X, z) = exp (EZI IX(Iqu)IZ—;) can
also be written as Z(X,z) = Y, 79¢@  with the sum running over all zero cycles, and so
|X(2)(Fq)| =(1/2) (|X(IF°",,)|2 + |X(F,)D. In principle, this allows one to write Z(F(X), z)
in terms of Z(X, z), which according to the Weil conjectures has a rather special form
for cubic hypersurfaces, cf. Section 1.1.6. This has been explained in detail by Debarre,
Laface, and Roulleau [141] who in particular discuss the existence of lines defined over
any finite base field.

5 Fano correspondence

The way we related H"(X, Q) and H"2(F(X), Q) was rather abstract and we shall now
explain a more direct and canonical way. This makes use of the Fano correspondence
(5.1) and the quadratic Fano correspondence (5.7).
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5.1 Pliicker polarization and Fano correspondence The Fano correspondence is
the diagram

L—% o x 5.1

|
F(X),
which induces for any m a homomorphisms of integral Hodge structures
¢ =p.oq: H"(X,Z)— H"(F(X), Z)(-1). (5.2)

Depending on the context, it may also be useful to consider the correspondence on the
level of Chow groups

¢: CH'(X)—=CH ' (F(X)) (5.3)

or to use other types of cohomology theories.
We apply the Leray—Hirsch decomposition to the P'-bundle L ~ P(Sy) — F(X) and
write

H*(L,Z) ~ p*H"(F(X),Z) ® u - p*H >(F(X), Z).
Here, u = ¢1(O,(1)) is the relative tautological class. Note that the pull-back map
p*: H'(F(X),Z)— H"(L, Z) is injective. Moreover,
W+ u-piei(Sp) + prea(Sp) = 0and p.(p*y +u-py) =y
Similar formulae hold for Chow groups.

Lemma 5.1. The twisted correspondence ¢(2): H*(X,Z)(2) —= H*(F(X), Z)(1) maps
the square of the hyperplane class h* to the Pliicker polarization g, cf (1.8):
o(h*) = g.
Similarly, h* € CH*(X) is mapped to ¢;(Op(1)) € CH'(F(X)) under (5.3).
In particular, for 2 < n we have o(h*) # 0 and, more generally, for all0 < k < n

0 # o(h*) € H*2(F(X), Q).

Proof Recall that L ~ P(Sp) ¢ P(V ® Op) =~ F x P(V) is induced by the natural
inclusion Sy € V ® Of and, thus,

Op(1) = g"O(1).

Hence, p.q"h* = p.(q"ci(O(D)*) = p.(u?) = ~¢1(Sp) = g.

The argument for the second assertion is geometric. Fix a generic point (L, x) € L,
so x € L c X, and consider generic hyperplane sections Z; = HiNn...N Hy N X
through x. Then q*(hk) e H*(L, Q) is the fundamental class of the subvariety g~'(Z).
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As all hyperplanes H; contain x and were otherwise chosen generically, the fibre of
Py ¢~ ' (Z) —=F(X) over L € F(X) consists of the one point (L, x). Hence, the
restriction pl,-1(z, is generically finite on at least one irreducible component and, there-
fore, (hX) = p.[q ' (Z)] # 0. o

Remark 5.2. (i) Arguing as in the proof above, we find that ¢(h¥) is represented by the
subvariety

Fp={L|LNZ # 2},

where Z; ¢ P!k is the cubic obtained as a generic linear section Z; = P"*1=% N X of
codimension & in X. In particular, the Pliicker polarization is represented by the divisor
Fpi-1nx of all lines L € F(X) intersecting a generically chosen linear section P"~! N X.
(i1) We can also work with singular linear intersections. For example, for a generic
line L C X and a generic line L # L’ C X that intersects L, the intersection of the plane
P2 ~ LL’ with X consists of L, L’ and a third residual line L”, see Exercise 1.20. Then
the closure F; of the locus of all lines L' € F(X) suchthat L # L' and LN L’ # @ is of
dimension 7 — 2 and its middle cohomology class [F;] € H**(F(X), Z) satisfies

3-[Frl = [Fl + [Fyl+[Fi] = o).
Note that L'+ L" defines an involution of F and its quotient is the projection
Fp—D; c P,

that maps a line L’ € F to its intersection point with a generically chosen linear sub-
space P*~! ¢ P!, Here, D; € |O(5)] is the discriminant hypersurface of the linear
projection Bl (X) —=P"~! from L C X, see Example 1.5.4. The situation will be stud-
ied in detail for n = 3 and n = 4 in subsequent chapters.

Exercise 5.3. Show that more generally o(h™) € H*"~>(F(X), Z) can be expressed as a
polynomial in the two Chern classes ¢(Sr) and ¢,(SF) of the universal subbundle Sg.
Concretely, for example, in H*(F(X), Z) or even in CH?(F(X)) one has

() = ¢{(SF) = ca(Sp).
Remark 5.4. The formula in the last exercise can be interpreted geometrically as fol-
lows. Fix generic hyperplanes H, H;, H> and let S; .= H; N H N X. Then F; = Fs, =
{LILNS;# @},i=1,2, both represent the Pliicker polarization g = c{(S}.). The inter-
section F| N F,, which represents the class g2 = cf(SF), consists of all lines intersecting
S and S,. Hence,

FinNFy,=FZ)U Fs,ns,.

Here, Z = H N X and the Fano variety F(Z) C F(X) of lines in Z is viewed as the zero
set of the associated canonical section of Sy.. Then use [F(Z)] = ¢2(SF) and [Fs,ns,] =

o(h).
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5.2 Isometry We next generalize results by Clemens—Griffiths [120] and Beauville—
Donagi [59] in the case of n = 3 and n = 4 to higher dimensions. A purely topological
proof for the first part was given by Shimada [431].

Proposition 5.5. Assume n > 3. The Fano correspondence defines an injective map
¢: H'(X,Z) — H"(F(X),Z)(-1)
and satisfies

1
(a-ﬂ)=—g f p(@) - oB) - g 5.4
F(X)

for all primitive classes a, 8 € H" (X, Z)y.

The pairing on the left-hand side of (5.4) is the standard intersection pairing on the
middle cohomology H"(X,Z). On the right-hand side, the pairing is up to the scalar
factor —1/6 the Hodge—Riemann pairing associated with the Pliicker polarization g.

Proof The injectivity of the map ¢: H"(X, Z), — H"™2(F(X),Z)(-1) follows from
(5.4) which in turn is proved by the following computation. The pull-back of @ € H"(X)
can be written uniquely as

g a=pe@) +u-pe). (5.5)

If o is primitive, then - = 0 and hence u-g*a = 0. Using u> = —p*co(Sp)+u-p*g, this
becomes —p*(p(@)-c2(SF))+u-p*(p(a@) +g-¢(a)) = 0, which implies (i) (@) +g-p(a) =
0 and ¢(@) - c2(SF) = 0. The latter then implies (ii) u* - pro(@) =u- p(g-p(a)).

Taking the product of (5.5) with the corresponding equation for another primitive
class 3, one obtains

q'@-p) = p e@) - e(B)) +u- p*(p@) - eB) +¢@) - ¢(B) + u* - p*(p() - p(B)).

The first summand on the right-hand side becomes trivial under p.. By (i), the direct
image p. of the second can be written as —2(g - ¢(a) - ¢(8)) and, according to (ii), the
last summand equals u - p*(g - ¢(@) - ¢(B)). Altogether, one obtains the equation

pq(-B)=~g- o) - B,

the left-hand side of which can also be written as (@.8) - p.g*[pt]. Taking product with
g"~3, for which we have to assume n > 3, and integrating proves

(@) - deg(p(q™(2)) = - f (@) 9(B) - g
F(X)

for generic z € X. The claim then follows from Lemma 5.11 below.

It remains to prove that ¢ is not only injective on H"(X, Z),, but on all of H"(X, Z).
Of course, the two are different only for n even, in which case we may write H"(X, Q) =
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H"(X, Q) ® Q- k2. As H"(X, Z) is torsion free, it suffices to prove injectivity with ra-
tional coefficients which amounts to prove that ¢(4"/?) is not contained in @(H" (X, Qpr)-
For this we may assume that X is very general, for ¢ and #/? are constant in families.
However, for very general X the Hodge structure H"(X, Q) is irreducible, cf. Corollary
1.2.12. Therefore, neither H"(X, Q) nor its isomorphic image under ¢ can contain the
non-trivial Hodge class @(h"/?). O

Exercise 5.6. Assume n = 3. Then 4 is represented by three generic points in X and,
therefore, (h>) by 18 lines. Show that this confirms Exercise 5.3.

Remark 5.7. (i) Note that for n odd, H" 2(F(X),Q) = H" 2(F(X), Qpr, cf. Corollary
4.20, and so ¢ maps H"(X,Q) = H"(X,Q)y to H"2(F(X), Q)pe(=1). This also holds
true for n = 4 but the argument is more involved: One may assume that X is general,
in which case H"(X, Q),; is an irreducible Hodge structure, see Corollary 1.2.12. As the
Fano correspondence ¢ sends H>!(X) to H>*°(F(X)), the whole primitive cohomology
H*(X, Q)pr is mapped into the minimal sub-Hodge structure of H 2(F(X), Q) containing
the one-dimensional H**(F(X)), hence into H*(F(X), Q), and, for dimension reasons,
isomorphically onto it.

(i1) In [260, Thm. 4] it is claimed in full generality that the composition of the restric-
tion of ¢ to the primitive part with the projection onto the primitive cohomology de-
scribes an isomorphisms of integral Hodge structures. However, the projection does usu-
ally not map into integral cohomology and, therefore, one needs to at least invert some
integers. For n odd or n = 4 there are injections H"(X, Z)y — H"™(F (X), Z)pe(=1),
which we shall see to be an isomorphism for n = 3 and n = 4, see Corollary 5.3.3 and
Proposition 6.3.19. The following result is the key observation.

Corollary 5.8. Let n be odd and assume that for all yy,v, € H'2(F(X),Z) one has
fF(X) Y1 -v2- 8" = 0(6). Then the Fano correspondence determines an isomorphism of
Hodge structures

¢: HY(X,Z)—>=H"2(F(X), Z)(-1).

Proof Under the assumptions on , the two cohomologies H"(X, Z) and H" *(F(X), Z)
are torsion free modules of the same rank, cf. Exercise 4.13. According to Proposition
5.5, the Fano correspondence is injective and compatible with the (alternating) intersec-
tion product on H"(X, Z) and the pairing (—1/6) fF Y1 +v2-¢""% on H""%(F,Z), which by
assumption is integral. As the former is unimodular, this suffices to conclude. O

It seems that for n odd only in the case n = 3 the assumption on the divisibility of
the Hodge—Riemann pairing has been proved. Note that for n even, the case n = 4 is
the only one in which the Fano correspondence ¢: H"(X,Z)— H"2(F(X),Z)(-1) is
a morphism of integral Hodge structures of the same rank. Once again, it is indeed an
isomorphism, which will be discussed in Section 6.3.4.
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Remark 5.9. For n = 3 and n = 4 we will see, cf. Section 5.3.1 and Corollary 6.4.3,
that for primitive classes y;, v, € H" 2(F(X), Z)p; one has

f 71~72~g”‘2=3f 71'72'[FL]=f yiy2 @),
F(X) F(X) F(X)

cf. Remark 5.2. Is this true in higher dimensions, say for classes y; = ¢(a;) with a; €
H"(X,Z)p?

Any deformation of a smooth cubic hypersurface X ¢ P"*! induces a deformation of
the associated Fano variety F(X). Using Hodge theory, the induced linear map between
the spaces of deformations of first order, see (3.7), is shown to be injective.

Corollary 5.10. For n > 3 any non-trivial first order deformation of a smooth cubic

hypersurface X C P! induces a non-trivial first order deformation of its Fano variety
F(X), ie.

H' (X, Tx) & H'"(F(X), Trx))-

Proof According to the infinitesimal Torelli theorem, see Corollary 1.4.25, the map
H'(X, Tx) —Hom(H"(X, C)pr, H"(X, C)pr), measuring the first order variation of the
Hodge structure H"(X, C),,, is injective.

Similarly, one considers the map H'(F, Tr) — Hom(H""%(F, C), H"2(F, C)) about
which we do not know anything a priori. However, if a class v € H'(X, Tx) is mapped
to zero in H'(F,Tr) then the induced infinitesimal variation of the Hodge structure
H"2(F,C) is trivial. However, by Proposition 5.5, in this case also the variation of the
Hodge structure H"(X, C),, is trivial and hence v = 0. O

Lemma 5.11. For n > 3 the generic fibre of the morphism q: L— X is of dimension
n — 3 and degree six with respect to the Pliicker polarization g, i.e.

f gn—3 =6.
'@

Proof Fix a generic point z € X and pick a hyperplane P" ¢ P**! not containing z.
Then the linear embedding

P' > G(1,P)—= P(\ V), y—77, (5.6)
induces an isomorphism {y € P" | 37 € X} ~ p(¢~'(z)). As in Remark 3.6, this proves
{(yeP"|%ZcX}=P'NnT.XNXNPX.

Here, T.X = V(3 _ x;0,F(2)) is the projective tangent space of X = V(F) at z € X and
P.X = V(3_ z;0;F) is its polar, cf. also Section 4.2.3. For generic choices of z € X and
P" ¢ P"!, this is a transversal intersection of the cubic X, the quadric P.X, and the two
hyperplanes P" and T, X and, therefore, of degree six. Here we use that the pull-back of
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the Pliicker polarization on G(1, P) under (5.6) is O(1) on P”, which can be checked by
a direct computation. O

Example 5.12. For a smooth cubic threefold ¥ C P*, so n = 3, the result says that there
are exactly six lines passing through every point in a Zariski dense, open subset of Y.
We shall come back to this in Section 5.1.

Remark 5.13. Barth and van de Ven [38] verify that for n > 4 the fibres of g: L—X
are connected by proving that the codimension of the ramification locus is at least of
codimension two, cf. the proof of Proposition 3.4. The description of the fibres as the
intersection of two hypersurfaces in P"~! as in the proof above shows this more directly.
Also observe that the connectedness of the fibres implies, once again, that F(X) is con-
nected for n > 3, cf. Proposition 3.4, Exercise 3.7, and Example 4.21.

5.3 Quadratic Fano correspondence Let us now turn to the quadratic version of the
Fano correspondence (5.1):

[2]
Ll o xi2 (5.7)
p[Z] L
F(X).

Here, ¢!?': LPP1C— X1 is the natural inclusion and p'?': L) — F(X) is the projec-
tion, see Remark 4.4. The quadratic Fano correspondence defines a homomorphism of
integral Hodge structures

¢ = plPlo g Hm(X™, Z2) — H™ 4 (F(X), Z)(-2). (5.8)

Lemma 5.14. Assume n is even. Then the homomorphism (5.8) for m = 2n composed
with the natural map S>H"(X,Z) — H*' (X, Z) equals the composition

S2H"(X,Z) ﬂ S2(H"™2(F,Z)(-1)) —2= H**(F(X), Z)(-2). (5.9)

A similar statement holds for n odd with S>H" replaced by /\2 H".

Proof The assertion follows from the commutativity of the diagram

H'(X) x H"(X) — H* (X2

’ | |

H'(L) x H"(L) —— H>'(L2)

| | |

Hn—Z(F) X Hn—Z(F) I H2n—4(F).
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The commutativity of the upper square is obvious and for the lower square it follows
from the commutative diagram

Ar,
LXL < Lx;L — L2

| |

FxF <2 _OF,

where the square is a fibre product. O

Recall from Lemma 4.14 that (pE] o g (a) = pg] (alp2) = fo(@), where

fo H"(XP,Z) — H"*(F(X), Z)
is the projection to the second copy of H*"~*(F(X), Z) on the right-hand side of (4.22).

Corollary 5.15. Let n > 2 be even. Then the square S>(¢) of the Fano correspondence
@ or, equivalently, the restriction of ! to SH"(X, Z)pe C H>(XY,7) is an injective
homomorphism of integral Hodge structures

S%(p): SH"(X, Z)pe = H" 1 (F(X),Z)(-2). (5.10)
A similar statement holds for n odd with S>H" replaced by /\2 H".

Proof We restrict to the case that n is even, the odd case is similar. Also, as H"(X, Z)
is torsion free, the assertion is equivalent to the corresponding one for rational Hodge
structures, so we may work with rational coefficients. Finally, as S *(¢) does not change
under deformations, we may assume that X is general.

Now split S 2HM(X, Qpr Q- -gx® q)i(, where gy denotes the class corresponding
to the intersection form. By Proposition 5.5, gx € S?H"(X, Q)pr is mapped to a non-
trivial Hodge class on F(X). According to Remark 1.2.13, the Hodge structure gy is
irreducible and, in particular, there are no non-trivial Hodge classes neither in ¢y nor
in its image under (5.10). Thus, it suffices to verify the injectivity of the restriction of
(5.10) to gy C S2H"(X, Q)pr» Which, again by the irreducibility of gy, would follow
from g5 — H*"~*(F(X), Z) being non-trivial.

Clearly, gy maps injectively into the direct sum on the right-hand side of (4.22). By
Lemma 4.14, the component f; to the first copy of H***(F(X),Z) is trivial and by
Lemma 5.14 the component f> to the second component is S2(¢). Thus, it suffices to
show that all other components of q§—>H2”(B, Z) vanish. However, the remaining
part on the right-hand side of (4.22) decomposes into Hodge structures of dimension
< dim gy. Thus, none of the projections into one of those can be injective on gy and,
therefore, they all have to be trivial. O
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5.4 Dual Fano correspondence Let us study a few more formal aspects of the corre-
spondence (5.1). On the level of cohomology, we are interested in the two maps:

¢=p.oq: H'X,Z)—H"*(F(X),Z)(-1)
and
Y=g, 0 p*: H"S(F(X),Z)— H"(X,Z)(3 — n).

The degree shift for the map y is caused by g: L — X having generic fibre of dimen-
sion n — 3. Note that Poincaré duality for X and F(X) defines natural isomorphisms

H'(X,Z)" ~ H"(X,Z) and H"2(F(X),Z)" ~ H"%F(X),Z),

where we use that the cohomology of X and F(X) is torsion free, see Remark 1.1.4 and
Exercise 4.13. The projection formula shows that ¢ and y are dual to each other, i.e.

(@) y)F = (@y(Y)x

foralle € H'(X,Z)andy € H 3n-6(F(X),Z). Here, (. )x and ( . )r denote the intersection
pairings on X and F(X).

Shimada [431] considers the correspondence ¥ as a map H,»(F(X),Z) — H,(X,Z)
and shows its surjectivity, which gives an alternative proof of Proposition 5.5. Then, for
n odd, it is automatically an isomorphism up to torsion, which follows from a compari-
son of Betti numbers, cf. Corollary 5.8.

5.5 Fano correspondences for Chow groups The same formalism works on the
level of Chow groups, but one has to distinguish between cubics of even and odd di-
mension.

Assume n = 0 (2) and write n = 2m. Then (5.1) induces maps
CH3(F(X)) —> CH"(X) —— CH™ \(F(X)).

Using the compatibility with the cycle class maps, one obtain the commutative diagram

CH>3(F(X)) ¥ CH™(X) —2—~ CH" ' (F(X))

H6m_6(F(X), Z)(3m _ 3) L_ HZm(X’ Z)(m) L H2m_2(F(X), Z)(m — 1)

To avoid potential confusion, let us stress that the diagram is not supposed to suggest
that the rows are exact or even that the compositions are zero.

For n = 1(2) we write n = 2m — 1 and consider as above

CHSm—4(F(X)) L CH'"(X) L— CHm_1 (F(X))
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However, in this case the cycle map does not relate this to the middle cohomology of
X. Instead, one has to restrict to the homologically trivial parts and use the Abel-Jacobi
maps to intermediate Jacobians, which for a smooth projective variety Z of dimension
N are the complex tori, cf. [474] for the general theory:

HZk—l (Z, C) _ FN—k+lH2N—2k+1 (Z)*
FFHY(Z) + H*(Z,Z)  Hon-2s1(Z,2)

Both description are used in the following commutative diagram

7 z) =

CHY*(F(X))hom ————> CH"(X)hom ————> CH"'(F(X))hom

AJpj AJXL jAJF

PrSFX) —— e () —— = FX)
- F(n—l)/ZHn—2(F(X))* N F(n+l)/2Hn(X)* - H3"76(F(X),C)
- H"2(F(X),Z) - H,(X,Z) T P332 (F(X))+H30(F(X),Z)

Note that the intermediate Jacobian J*(X) is selfdual and the two maps in the bottom
row are naturally dual to each other.
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Moduli spaces

To study the geometry of a particular hypersurface X ¢ P = P**! or to understand
how a certain feature changes when X is deformed, the actual embedding of X into
the projective space P is often of no importance. This view point leads to the notion
of moduli spaces of varieties isomorphic to hypersurfaces of fixed degree and fixed
dimension. There are various ways to construct these moduli spaces and we will discuss
the most fundamental ones.

Further details on moduli spaces of cubic hypersurfaces of dimension two, three, and
four can be found in subsequent chapters.

1 Quasi-projective moduli space and moduli stack

The embeddings of a fixed X into P are parametrized by the choice of a basis of
HO(X, Ox(1)) up to scaling.' So, instead of the linear system |Op(d)| one is really in-
terested in the quotient |Op(d)|/GL(n + 2). Ideally, one would like this quotient to exist
in the category of varieties or schemes and to come with a universal family. However,
as it turns out, this is too much to ask for.

Example 1.1. Consider the easiest case of interest to us: d = 3 and n = 0, i.e.
three points in P!. Up to a linear coordinate change, there are only three possibilities:
{x1, X2, x3} (three distinct points), {2 - x;, x»} (two distinct points, one with multiplicity
two), or {3x} (a triple point). Thus, the moduli space parametrizing all varieties isomor-
phic to hypersurfaces X c P! of degree three should consists of three points. However,
together with all possible embeddings they are parametrized by the projective space
|Op1 (3)], which is connected and, therefore, does not admit a morphism onto a discon-
nected space.

! Forn > 2 and d # n+2 the line bundle Ox(1) itself does not depend on the embedding, as it is determined

by the property that Ox(d — (n + 2)) ~ wx. For n > 2 one can alternatively use that Ox(1) is the ample
generator of Pic(X), see Corollary 1.1.9.

146
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The same phenomenon can be described in terms of orbit closures. For example, the
limit of the one-parameter subgroup diag(z, 1/7) applied to the set V(x(z) X1 — Xo x%) =
{0=[0:1],00=[1:0],[1: 1]} viewed as a point in |Op: (3)] is

{2-0,00} for +—0
lim{0,c0,[1:1]} =
{0,2-c0} for t—oc0.

Hence, all these points should be identified under the quotient map to any moduli space
that has a reasonable geometric structure.

Similar phenomena occur in higher dimensions and for all d > 1. The way out is to
allow only stable hypersurfaces. Those are parametrized by an open subset of |Op(d)|
and include all smooth hypersurfaces. This then leads to a quasi-projective moduli space
(without a universal family in general) parametrizing orbits of hypersurfaces. To obtain
a projective moduli space one has to add semi-stable hypersurfaces. This, however, leads
to a moduli space that identifies certain orbits.

We briefly review the main features of GIT needed to understand moduli spaces of
(smooth, cubic) hypersurfaces. We recommend [317, Ch. 6] for a quick introduction and
Mumford’s classic [362] or the textbooks [157, 356] for more details and references.
Although we definitely want the moduli spaces to be defined over arbitrary fields, we
usually assume that & is algebraically closed, just to keep the discussion geometric.

1.1 Quotients Let A be a finite type (say integral) k-algebra and G a linear algebraic
group over k with an action on X = Spec(A) or, equivalently, an action on A. If a quotient
X —X/G in the geometric sense exists, then X/G = Spec(AG), where A c A is the
invariant ring. In order for X/G to be a variety, the ring AS needs to be again of finite
type. This is Hilbert’s 14th problem which has been answered by Hilbert himself in
characteristic zero for G = SL and in general by Nagata and Harboush, see [362] or the
entertaining [360] for a historic account, references, and proofs:

If G is reductive, then AS is again a finite type k-algebra.

This seems to settle the question in the affine case by just defining X/G := Spec(A)
with the quotient morphism X —= X/G induced by the inclusion A® c A. However, this
is, in general, a quotient only in a weaker sense.

Definition 1.2. A morphism m: X —7Y is a categorical quotient for the action of a
group G on X if

(i) mis G-invariant® and

2 So, pre-composing 7 with either of the two natural morphisms G x X — X, the second projection or the
group action, gives the same morphism.
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(i1) any other G-invariant morphism i’ : X —Y” factors uniquely through a morphism
Y—Y'.

A G-invariant morphism 71: X —Y is a good quotient if the following conditions hold:

(i) mis affine and surjective,
(i1) m(Z) of any closed G-invariant subset Z C X is closed,
(i) 7(Z)) N n(Zy) = n(Z, N Z,) for all closed G-invariant sets Z;,Z, C X, and
(iv) Oy is the sheaf of G-invariant sections of Oy, i.e. Oy = (1.Ox)° or, in other words,
7 Oy(U)—=>Ox(n~' (1)) for all open subset U C Y.

A good quotient is geometric if in addition the pre-image of any closed point is an
orbit.?

By definition, any geometric quotient is a good quotient and, as proved in [362, Prop.
0.1], any good quotient is also a categorical quotient:

geometric = good = categorical.

Note that a good quotient is equipped with the quotient topology and parametrizes the
closed orbit of the action. Hence, a good quotient is geometric exactly when all orbits
are closed, see [317, Prop. 6.1.7]. The main result on affine quotients is the following,
cf. [362, Thm. 1.1] or [317, Prop. 6.3.1]:

Assume A is a finite type k-algebra and G is a reductive group acting
on X = Spec(A). Then X —=X//G := Spec(A®) is a good quotient.

In particular, it is a categorical quotient, but usually not a geometric one.

1.2 GIT quotients With certain modifications, the same recipe can be applied to pro-
jective varieties. Assume A = @,., A; is a graded k-algebra of finite type generated by
A; and assume that the projective variety X = Proj(A) is endowed with the action of a
reductive linear algebraic group G. Note that, in contrast to the affine case, the action is
not necessarily induced by an action of G on A. However, we shall assume it is, in which
case it is induced by a G-action on A;. This is called a linearization. Geometrically it is
realized by an embedding X = Proj(S*(A;)) = P™ such that the action of G on X is
the restriction of an action of G on P" induced by a linear representation G — GL(A ).

One is tempted to imitate the affine case and define the quotient simply as Proj(A%).
Note that A® is naturally graded and again of finite type, but possibly not generated
by elements of degree one. This can be easily remedied by passing to @,., A for an
appropriate m > 0. However, the graded inclusion A® C A does not define a morphism
between the associated projective schemes. Indeed, a homogeneous prime or maximal

3 The exact definition of these notions varies from source to source. The subtle differences will be of no
importance in our situation.
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ideal in A may intersect A in its inessential ideal (A%), = @,.,(A%);. In other words,
there exists a morphism

X% := X\ V((A®),) —=X*//G := Proj(A°)
only on the open set X* c X. This naturally leads to the central definition of GIT.

Definition 1.3. A point x € X is semi-stable if it is contained in the open subset X** C X,
i.e. if there exists a homogeneous G-invariant f € A;, for some i > 0, with f(x) # 0.

A point x € X is stable if x is semi-stable and the induced orbit morphism G — X**
is proper, i.e. the orbit G - x is closed in X* and the stabilizer G, is finite. The set X* of
stable points is an open subset of X**.

Exercise 1.4. For a linearized action of a linear algebraic reductive group G on P(V), a
point [x] € P(V) is semi-stable if and only if 0 ¢ G - x C V. A point [x] € P(V) is stable
if and only if the morphism G —V, g—g - x is proper.

Using open affine covers, the problem is reduced to the affine case which eventually
leads to the following key result in GIT [362, Thm. 1.10].

Theorem 1.5 (Mumford). Assume that a linearization of the action of a reductive lin-
ear algebraic group G on X = Proj(A) has been fixed. Then the natural morphism
X% —X*//G is a good quotient and the restriction X® — X%//G is a geometric quo-
tient.

1.3 Stability of hypersurfaces Let us turn to the concrete GIT problem that concerns
us. Consider G := SL(n + 2) with its natural action on P**! and the induced action on
all complete linear systems |O(d)|. Instead of SL(n + 2) one often considers PGL(% + 2).
Both groups are reductive and the orbits of their actions on |O(d)| are of course the same.
The advantage of working with SL is that its action on |O(d)| comes with a natural
linearization. The relevant result for us is the following, see [270, Sec. 11.8] for the
arithmetic version over Spec(Z).

Corollary 1.6. Every smooth hypersurface X C P of degree d > 3 defines a stable point
[X] € |O(d)| for the action of G = SL(n + 2), i.e.

U(d,n) = 10d)lm < |O@)F.

Proof The semi-stability is an immediate consequence of Theorem 1.2.2 and holds in
fact for d > 1. Indeed, the complement of U(d, n) € PV = |O(d)| is the discriminant divi-
sor D = D(d, n), which is the zero set V(A) of the discriminant A = A, € HOP®N, O0)),
¢ = (d-1)"". (n+2). As the smoothness of a hypersurface X c P does not de-
pend on the embedding, the discriminant divisor D is invariant under the action of GL.
Hence, for all g € GL the induced action on H'PN, O(¢)), sending A to g*A, satisfies
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D = V(A) = V(g"A). Therefore, g*A = Ag - A for some A, € G,,. This in fact defines
a morphism of algebraic groups GL —G,,,, g A,. However, the only characters of
GL are powers of the determinant, which by definition is trivial on G = SL. Hence, A is
a G-invariant homogeneous polynomial that does not vanish at any point [X] € |O(d)|
corresponding to a smooth hypersurface. In other words, U C |O(d)|*.

In order to show stability, one has to prove that for X the morphism
G—10@I*, g—=glX]

is proper. Let us first prove that the stabilizer Gyx; is finite. Clearly, any g € Gixj in-
duces an automorphism of the polarized variety (X, Ox(1)). This defines a morphism
Gx)—= Aut(X, Ox(1)), the fibre of which is contained in the finite subgroup p,.» =
Ker(SL(n + 2) —PGL(n + 2)). Now use Corollary 1.3.9 and Remark 1.3.10.

To conclude one needs to show that the orbit G - [X] is closed in |O(d)|*. Let us first
show it is closed in the open subset U = |O(d)|sm C |O(d)|*. Consider its closure G - [X]
in U and suppose there exists a point [X'] € G - [X]\G-[X]. Then G-[X'] € G - [X]\G-[X]
and hence dim(G - [X']) < dim(G - [X]) which would imply dim(Gx-}) > O contradicting

the above discussion. Now, consider the morphism

72 |0 —=|0(d)"//G = Proj (kIH'(BY, O(1)1°).

Clearly, U is the pre-image of the open non-vanishing locus of A € H'(PV, O(£))° <
kK[H°(PN, O(1))]€ and, therefore, 7~ (7([X])) c U for all smooth X. As the subset G-[X]
of 77! (w(x)) is closed in the bigger set U, it is also closed in 7! (m([X])). However, the
fibre 7~ ! (m([X])) as the pre-image of a closed point is closed in |O(d)[**. Altogether this
proves that G - [X] C |O(d)|*® is closed. |

Remark 1.7. The techniques of the proof show that the morphism
PGL(n +2) x U—U x U, (g, [XD+—=([X], g[X]

is proper. Now, the pre-image of the diagonal A C U X U can be interpreted as the
scheme Aut = Aut(X' /U, Ox(1))— U of polarized automorphisms of the universal
family of smooth hypersurfaces X — U c |O(d)|, cf. Section 1.3.2. So, in particular,
the fibre over [X] € U is the finite group Aut(X, Ox(1)). Note that as a consequence one
finds that Aut(X' /U, O x(1))— U is a finite morphism, cf. [270, Cor. 11.8.4].

Example 1.8. For d = 1, i.e. for hyperplanes, no [X] € |O(1)| is semi-stable. Indeed, in
this case, U(1,n) = |O(1)| = P* and k[xq, . . ., X1 15F = k.

In contrast, smooth quadrics, so d = 2, are semi-stable by the above, but they are
not stable. Indeed, the stabilizer of a quadric, say of »_ xi2 and in fact of every smooth
quadric is of this form after a linear coordinate change, is the special orthogonal group
SO(n + 2) ¢ SL(n + 2), which is not finite.
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Exercise 1.9. The above proof did not cover the case n = 0, 1.

(1) Verify that stability still holds in these cases. The only problematic case is n = 1
and d = 3.
(i) Show that for n = 0 and d = 3 (semi-)stability is equivalent to smoothness.

The next questions one should ask are: Is the inclusion |O(d)|sm C |O(d)[F is strict?
How can one interpret its complement geometrically? How big is |O(d)|* \ |O(d)[*?

1.4 Hilbert-Mumford The Hilbert-Mumford criterion is a powerful tool to decide
whether a point is stable or semi-stable. It roughly says that it suffices to check one-
parameter subgroups and gives a numerical criterion for those.

A one-parameter subgroup of a (reductive) group G is a non-constant morphism
A: G, — G of algebraic groups. If a linear action p: G — GL(V) is given, then the in-
duced action po 4: G,, — GL(V) can be diagonalized, i.e. there exists a basis (e;) of V
such that A(r)(e;) = 1" e;, r; € Z. The Hilbert—Mumford weight of apointx = > x;e; € V
with respect to this one-parameter subgroup is defined as

u(x,A) = —min{ r; | x; #0 }.

Theorem 1.10 (Hilbert-Mumford criterion). For a linearized action of a reductive
group G on P(V) a point [x] € P(V) is semi-stable if and only if u(x,) > 0 for all
one-parameter subgroups A: G, — G. The point [x] is stable if and only if strict in-
equality holds for all non-trivial A.

Using Exercise 1.4, one direction is easy to prove. The difficulty lies in checking that
it suffices to test one-parameter subgroups.

Example 1.11. A plane cubic curve E C P? is stable if and only if it is smooth. It is
semi-stable if and only if it has at most ordinary double points as singularities, cf. [356,
Exa. 7.2] or [362]. See also Section 2.2 below for a description of the moduli space of
all semi-stable plane cubic curves.

In later chapters we will discuss stability of cubic hypersurfaces in dimension n < 4,
see Sections 4.4.2, 5.5.2, and 6.6.7. But applying the Hilbert—-Mumford criterion is typ-
ically quite tricky. For example, the proof of the stability of smooth hypersurfaces in
Corollary 1.6 did not make use of it, but uses the discriminant instead. Also, the argu-
ment to prove stability of smooth cubic surfaces does not easily generalize to dimension
three or higher.

Remark 1.12. Fedorchuk [181] proves that a hypersurface X c P"*! defines a semi-
stable point in |Opn+1(d)| if and only if the subspace (0;F) C k[xy, ..., Xn+1]q defines a
semi-stable point in Gr(n + 2, k[xo, ..., X,+1]4) With respect to the natural SL(n + 2)-
action on the Grassmann variety.
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1.5 Moduli quotient and universal family Ideally, one would like the universal fam-
ily X —|O(d)|sm of smooth hypersurfaces to descend to a universal family over the
quotient X —=|O(d)|sm//G (of varieties isomorphic to smooth hypersurfaces). The nat-
ural (and only) choice for such a family would be the quotient X := X //G, where the
action of G = SL(n+2) on |O(d)|sm is lifted to the natural action on X' C |O(d)|sm X P**.
However, over a point [X] € |O(d)|sm//G the fibre of this family would be the quotient
X/Aut(X, Ox(1)) of X by the finite group Aut(X, Ox(1)) and not X itself. This is the
reason why the quotient

My = 10Dlsm//G (1.1)
typically does not represent the moduli functor
My (Sch/k)® —(Set). 1.2)

Here, by definition, M, sends a k-scheme T to the set M, ,(T) of all equivalence
classes of polarized smooth projective families (X, Ox(1))—T, Ox(1) € Picxr(T),
such that all geometric fibres are isomorphic to some smooth hypersurface X c P!
(over the appropriate field) of degree d with the polarization Ox(1)|x given by the re-
striction Opus1(1)]x. Here, two such families are equivalent if there exists an isomor-
phism between the 7T-schemes that respects the two polarizations up to the twist by an
invertible sheaf on T'.

However, M, is still a coarse moduli space which means the following.

Corollary 1.13. For d > 3 there exists a natural transformation ¢: Mgy, —= M, that
satisfies the following conditions.

(i) The induced map ¢(k'): Myn(k') — Md’n(k’) is bijective for any algebraically
closed field extension k' [k.

(ii) Any natural transformation My, — N to a k-scheme factorizes uniquely through
a morphism M, — N over k.

The second condition is essentially a consequence of the fact that |O(d)|sm — My,
is a categorical quotient. The inclusion |O(d)|sm C |O(d)[° together with the fact that
|O@)F —10(d)I°//G is a geometric quotient implies the first one. For an outline of the
details of the arguments see e.g. the discussion in [249, Sec. 5.2].

Remark 1.14. As some geometric arguments make use of actual families, one often
has to find substitutes for it. The following techniques are the most frequent ones:

(i) Instead of working with a universal family over M,,, which does not exist, one
uses the universal family X' —|O(d)|s, and the fact that |O(d)|sm —= My, is a geo-
metric quotient.

(i1) Assume n > 0, d > 3, and (n,d) # (1,3). Then, according to Theorem 1.3.15,
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there exists an open and dense subset V C |O(d)|sm such that Aut(X, Ox(1)) = {id} for
all [X] € V. We may choose V to be invariant under G. Then there exists a universal
family

/?%-VC Md,n

over the dense open subset V := V//G C M, ,. Explicitly, set X = X|y/G. It would be
useful to have control over the closed set My, \ V, e.g. to know its codimension. The
locus of smooth cubic surfaces with a non-trivial automorphism is of codimension one,
see Remark 4.3.10 and Section 4.4.1.

(iii) Luna’s étale slice theorem can be applied and gives the following: For any point
x = [X] € |O(d)|sm there exists a G-invariant smooth locally closed subscheme x €
S C |O(d)|sm, the slice through x, such that both natural morphisms

S x% G —=|0(d)|sm and S /G, —= M,

are étale (and automatically quasi-finite). The morphism S —= S /G, is finite and a ‘uni-
versal’ family exists over S, namely the pull-back of X —|O(d)|sp. In this sense, uni-
versal families exist étale locally over appropriate finite covers. See for example [286]
for more on Luna’s étale slice theorem.

(iv) A universal family may not even exist in a formal neighbourhood of a point
[X] € M;,,. Using the notation in Section 1.3.3, for any X the restriction of the moduli
functor M, to (Art/k) < (Sch/k)°, A Spec(A), is the union of all

Fx = Fx o)

(under the numerical assumptions of Proposition 1.3.12). This defines a finite morphism
Def(X, Ox(1)) = Def(X) — M,,, onto the formal neighbourhood of [X] € M,,, which
is in fact the quotient by the natural action of Aut(X) on Def(X). Over Def(X, Ox(1)) ~
Def(X) there does exist a ‘universal’ family, which is a formal variant of (iii).

(v) Finally, using finite level structures, there exists a finite morphism Md,,, — My,
with a ‘universal’ family X — Md,n, cf. [249, §5.4.2] for a discussion in the case of K3
surfaces. The key input to this approach is the fact that for (n,d) # (1,3) and n > 0 the
action of Aut(X, Ox(1)) on the middle cohomology is faithful, see Corollary 1.3.18.

Remark 1.15. The non-existence of a universal family or, equivalently, the possibility
of non-trivial automorphisms, is also responsible for the difference between the field
of moduli and the (or, rather, a) field of definition. This is expressed by saying that for
non-closed fields k the map ¢(k): My, (k) — M, (k) is usually not bijective.

To make this precise, let X C Pg” be a hypersurface of degree d and [X] € Md,n(l_c) the
corresponding closed point in the moduli space. The moduli space My, is defined over
the ground field & and so the point [X] € M, has a residue field k C kjx; C k, the field
of moduli of X, which is finite over k. However, X may not be defined over its field of
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moduli kpx}, but only over some finite extension kpx; C kx of it (which is not necessarily
unique), i.e. there exists a variety X, over ky C k such that X ~ X, x;, k. That X may
not be defined over kx; is the reason for ¢(k(x)) not to be necessarily surjective. Also,
since My ,(kx) C Md,,l(l_c), the potential non-uniqueness of X,, causes the non-injectivity
of ¢(kx).

Moreover, for all field automorphisms o € Aut(ky /k(x)) there exists a polarized auto-
morphism ¢, : X —=X, over kx. In fact, kjx; is the fixed field of all o € Aut(k/k) with
X7 ~ X. The isomorphisms ¢, do not necessarily define a descent datum, as X, may
have non-trivial automorphisms. However, if Aut(X) is trivial, then indeed k() is a field
of definition, which in this case is unique, and so kjx; = kx. As a consequence, one finds
that for all [X] in the open subset V C My, of hypersurfaces without automorphisms
the field of definition and the field of moduli coincide, i.e. X is defined over the residue
field k[X] of [X] € My,,.

1.6 Moduli stacks We change perspective and replace the moduli functor M, as in
(1.2) by the category M, —(Sch/k) fibred in groupoids (CFG). By definition, the
fibre M,(T) over a k-scheme T is the category of all polarized smooth projective fam-
ilies (X, Ox(1))—=T of polarized varieties isomorphic to hypersurfaces of degree d
and dimension n with isomorphisms of polarized families as morphisms in the category.

e The CFG M, — (Sch/k) is a stack. This entails two assertions:

(i) For two families (X}, Oy, (1))—T and (&3, Ox,(1))—T as above the functor
Isom(X;, X): (Sch/T)? — (Set) that sends T" —T to the set of isomorphisms of
the 7”-families (X}, O, (1))7- and (Xs, Ox, (1)) is a sheaf in the étale topology.

(i) Every descent datum in M, is effective, i.e. for an étale covering 7" —T and
(X', 0x/(1)) € My,(T") together with an isomorphisms of the two pull-backs to
T" xp T’ satisfying a natural cocycle condition over 7’ Xy T’ X7 T’ there always
exists a family (X, Ox(1)) € M,,(T) the pull-back of which to 7’ is isomorphic
to (X7, Oy (1)).

The proofs are by now standard and valid in broad generality. For an account of the
analogous statements for polarized K3 surfaces and further references see [249, Sec.
5.4.1].

By the very definition, M, is isomorphic to the quotient stack [U,,/SL(n + 2)] of
the open set Uy, = |Opn1(d)|sm C |Opne1(d)| of smooth hypersurfaces.

o The stack M = M, of hypersurfaces of degree d and dimension 7 is a Deligne—
Mumford stack. In other words, one has the following:

(i) The diagonal morphism A: M — M X M is representable, quasi-compact, and
separated, i.e. it is quasi-separated.
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(ii) There exists an étale covering U — M by a scheme

The representability of the diagonal is the assertion that the functor Isom(X, &5) is
representable, cf. Section 1.3.2. The diagonal is finite, which can be seen as a conse-
quence of the stability of smooth hypersurfaces, see Remark 1.7. The existence of an
étale covering by a scheme follows from the diagonal being unramified and the exis-
tence of a smooth covering by a scheme. The arguments are again well known, cf. [249,
Sec. 5.4.2] for the case of polarized K3 surfaces.

Remark 1.16. In Remark 1.14 we explained that locally the coarse moduli space M,
looks like the quotient of Def(X) by the natural action of Aut(X). In this sense, we can
think of the local analytic stacks [Def(X)/Aut(X)] as covering the Deligne-Mumford
stack M ,.

As smooth cubic hypersurfaces are unobstructed, more precisely H*(X, Tx) = 0, see
Remark 1.3.13, these local charts provided by Def(X) are smooth, cf. Proposition 1.3.12
and its proof. We conclude that the moduli stack of smooth cubic hypersurfaces M3,
is a smooth Deligne-Mumford stack of dimension (";2), see Section 1.2.1. The coarse
moduli space My, is singular, but all singularities are finite quotient singularities.

The difference between M3, and its coarse moduli space M3, is also detected on
the level of tangent spaces. The tangent space of the stack at a point corresponding to
a smooth cubic X c P! is TixiMs, = H'(X, Tx), but it can be bigger for the coarse
moduli space, which looks locally like the finite quotient germ Def(X)/Aut(X). While
the stack M3, is smooth, the smooth locus of the moduli space M3, is the strictly
smaller but still Zariski dense open subset of all smooth cubics with trivial automor-
phism group.

Remark 1.17. Naturally, one would like to compactify M, , to a projective variety that
is well behaved and in particular not too singular. The obvious GIT compactification
Mg, C |O(d)*//G has neither a modular interpretation, for characterizing semi-stable
surfaces geometrically is complicated, nor is it a particularly nice variety, as its singular-
ities are typical rather bad. But M, also admits a GIT compactification with finite quo-
tient singularities. This is provided by the Kirwan blow-up which is obtained by succes-
sively blowing-up |O(d)|** and then take the GIT compactification, see [275, 273, 274].

2 Geometry of the moduli space

The quasi-projective moduli space M,, of polarized varieties isomorphic to smooth
hypersurfaces of degree d and dimension n has been introduced as the quotient

Uin—>Main = Ugn//PGL(n + 2) = Uqn//SL(n + 2)
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of the open subset Uy, = |Opi1(d)lsm C |Opne1(d)] of all smooth hypersurfaces by the
natural action of SL(n + 2). As such, M, is an open subscheme of the GIT quotient
|Opnr1 (d)[%//SL(n + 2), which is a projective scheme.

But the moduli space M, can also be described as an affine quotient. To make this
precise, observe that the open set 5(1,,1 = HOP"!, O(d))sm of all homogenous polyno-
mials of degree d defining smooth hypersurfaces is the affine variety Spec(A). Here, A
is the homogeneous localization of the polynomial ring k[a;] = k[H'(P"™*!, O(d))*] with
respect to the discriminant A, € k[a;]., e = (d — 1™ . (n + 2), see Section 1.2.2 and
Section 1.2.3. Clearly, M, is then the affine quotient

Uq, = Spec(A) —= My, = Spec(AS“"*?) = U,,,/GL(n + 2) = Uy, /SL(n + 2)
and, in particular, M, is an affine variety. What else can we say about its geometric
structure? Note that M, is a normal variety with at most finite quotient singularities.
2.1 Cohomology The first step in understanding the topology of the moduli space

M, is to relate its cohomology to the cohomology of U, see [389].%

Theorem 2.1 (Peters—Steenbrink). Assume d > 3. Then there exists an isomorphism of
graded Q-vector spaces

H*(Ugpn, Q) = H (Mg, Q) ® H'(SL(n + 2),Q) 2.1
and the Leray spectral sequence
EP! = H (M, R17.Q) = H" Uy, Q) (22)
for the quotient morphism n: Uy, — Mg, degenerates.

Remark 2.2. (i) In fact, the isomorphism (2.1) is an isomorphism of mixed Hodge
structures. Indeed the mixed Hodge structure H*(SL(n + 2), Q) is of Hodge type and the
pull-back 7* is a morphism of mixed Hodge structures.

(i) In [389] the moduli space M, is rather considered as the quotient of ﬁd?n by
GL(n + 2). The result is fundamentally the same, namely there exists an isomorphism

H* (U, Q) = H' (M, Q) ® H'(GL(1 + 2), Q). 2.3)

(iii) The cohomology of SL(N, C) and GL(N, C) is well known. Indeed, the inclusions
of their compact real forms SU(N) ¢ SL(¥,C) and U(N) c GL(¥,C) are homotopy
equivalences and according to a result of Borel and Hopf [87, Thm. 8.2] this then gives

H*(GL(N),Q) = A"(m1,....nn) and  H*(SL(N),Q) = \"(n2,.... 11N,
with 77, of degree 2k — 1. An explicit realization of the classes 7, is described in [389,

4 Thanks to O. Banerjee for discussions related to this section.



2 Geometry of the moduli space 157

Sec. 5], which is crucial for Lemma 2.3 below. Namely, 7; can be realized by the locus
of those matrices for which the first N + 1 — k columns are linearly dependent.

Note that the mixed Hodge structure of H*(GL(N), Q) is such that the classes 7, €
H?~1(GL(N), Q) are of type (k, k).

(iv) Finally, the cohomology H*(M,,, Q) is naturally isomorphic to the equivariant
cohomology H:}L(N+2)(Ud,m Q) and H§L(N+2)(Ud,n’ Q), cf. [94, Sec. 1].

The main step in the proof of Theorem 2.1 is the following.
Lemma 2.3. The orbit map
or: GL(n + 2)—>ﬁd,,,, g—g-F
through a polynomial F € (7¢n induces a surjection
@t H (Ugp, Q) — H*(GL(n + 2), Q).

Proof We only sketch the main ideas and refer to [389, Sec. 6] for the technical de-
tails. Let D ¢ W := H(P™', O(d)) be the lift of the discriminant divisor, so that its
complement is U= ﬁd,n =W\ D. Then for a subvariety Y C D of codimension k in
W there exists a natural map

Q= H'(Y,, Q) ~ Hy{(W,Q — HX(W,Q) ~ H**"'(U, Q).

Now, the orbit map ¢ extends naturally to a map @z : M, ., —> W from the space of
(n + 2) X (n + 2) matrices M,,, to the vector space W. The extension has the property
that the inverse image of the discriminant divisor D c W is the divisor Dy = Myn \
GL(n + 2) of all non-invertible matrices. This leads to the commutative diagram

H¥(W,Q) ———— H*"'(U,Q)

w;j @

HY (Myi2,Q) —— H*"'(GL(n +2), Q).

The last step of the proof is to show that the subvariety Y; C D C W of those polynomials
F for which the hypersurface V(F) c P"*! has singularities contained in the linear
section V(F) N V(xg, ..., x,+2-) pulls back to the subvarieties defining the classes 7; as
in Remark 2.2 above. O

Proof of Theorem 2.1 Equipped with this lemma, a minor modification of the standard
proof of the Leray—Hirsch theorem is enough to prove the GL-version (2.3). First, for a
section s: H*(GL(n + 2),Q) = H*(Uy,, Q) of ¢f, 1.e. @y o s = id, the map

HGL(n+2),Q) ® H"(Myp,Q —= H'(UgpQ)
a ® f —  s(a) 7B
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is an isomorphism, see [389, Sec. 2] for a few more details. The proof of the SL-version
(2.1) is similar.

Next, the higher direct image sheaves R7r,.Q can be trivialized by means of the sec-
tion s and then the above isomorphism implies

> dim H? (M, R17.Q) = bi(Ug).
p+qg=k

which suffices to deduce that the Leray spectral sequence degenerates. O

Example 2.4. (i) The moduli space of smooth cubic surfaces M3, has the cohomology
of a point, i.e. H*(M33,Q) =~ HO(M3,2,Q) ~ Q. Indeed, M3, = A*/uy, see Section
4.4.1. So in this case, the theorem says that

H* (U3, Q) =~ H'(SL(4), Q),

which is a result first proved by Vasil’ev [466].

(ii) Consider the universal hypersurface of smooth cubic surfaces S—U = Uj,.
The relative Fano variety of lines F := F(S/U)— U is an étale morphism of degree
27, see Section 4.1.4 for the computation of its monodromy group. According to Das
[135, Thm. 1.1], passing to the étale cover does not change the cohomology, i.e.

H(F(§/U),Q) ~ H'(U,Q) =~ H"(SL(4),Q).

(iii) Also the cohomology of the total space of the universal family S — U = Ui, of
smooth cubic surfaces has been computed. Das [134, Thm. 1.1] shows that the natural
inclusion S ¢ U x P? induces isomorphisms

H*(S,Q) = H(U x P*,Q)/h’* ~ H*(U,Q) ® H*(P*,Q) ~ H*(SL(4), Q) ® H"(P*, Q).

Remark 2.5. Instead of fixing the degree, for us d = 3, it is interesting to let it grow.
One then asks whether the natural inclusions obtained from (2.1)

H*(SL(n + 2),Q) “—= H*(Uy,,, Q) (2.4)

stabilize the cohomology of U, for k and n fixed and large d. This has first been stud-
ied by Vakil and Wood [457] as a problem in the Grothendieck ring of varieties and
subsequently by Tommasi [451] who proves that (2.4) is an isomorphism in degree
k < (d+1)/2. Conversely, combined with the above result it proves the vanishing of the
cohomology H*(M,,, Q) for 0 < k < (d + 1)/2.

For the moduli space of smooth cubic hypersurfaces these results only give

H'(Us,,Q) =0 and H'(Mj3,,Q) = 0.

Note that the first vanishing (for arbitrary d) can be deduced from the Gysin sequence for
the open embedding U, C |Op+1(d)| and the irreducibility of the discriminant divisor
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D(d, n) = |Opw1(d)|\ Ug,, see Theorem 1.2.2. Note however that the fundamental group
of Uy, and My, is quite an intricate object that has been studied intensively, see [325]
for general results and references and [321] for the case of cubic surfaces.

Remark 2.6. There are other interesting and meaning full questions concerning the
action of GL(nz + 1) on |Opu+1 (d)).

For example, one may want to know the degree of the orbit closure GL(n + 1) - [X] C
|Opa+1(d)|. This turns out to be a difficult problem which has been studied in detail only
for plane curves, see work by Aluffi and Faber [17].

Also, it is natural to study the (intersection) cohomology of the GIT compactification
of M, or of the Kirwan blow-up [275]. Apart from low-dimensional cases very little
is known. Again, for d large, the cohomology of M, and its GIT compactification
stabilizes in small degree.

2.2 Unirationality of the moduli space As the GIT quotient of |Opx:1(d)|, the moduli
space My, is unirational, but is it also rational or stably rational? This is a classical
problem with a vast literature, especially the case n = 1 of plane curves has attracted a
lot of attention. We shall here restrict to the case d = 3:

e For n = 0 the moduli space M3 consists of just one point and hence is rational.

e For n = 1 the moduli space M3 ; is isomorphic to the affine line Al and, therefore,
is rational, cf. [157, Ch. 10.3].

In fact, its compactification provided by the GIT quotient |Op2(3)[** //SL(3) is by con-
struction Proj(S), where S = k[a;15%®, I = (iy, i1, i) with ig+i; +i» = 3, is the invariant
ring. It is known classically that S is generated by two algebraically independent poly-
nomials g € k[as]4 and g3 € k[ay]¢, cf. Example 1.2.6 and, therefore,

|Op2(3)* //SL(3) = Proj(S) = Proj(S"?) ~ Proj(klg3, g31) = P".

The points in A' ¢ P! are in bijection to smooth cubic curves and the closed orbit
through the union V(xo - x; - x) of three lines corresponds to co € P'. Other singular
plane nodal cubic curves, like the union V(x- (x% —x%)) of a conic and a line, correspond
to non-closed orbits mapping as well to co. There is an ample literature on this particular
case, see the surveys [361, 369] or the textbooks [157, 356].

e For n = 2, the GIT quotient |Op:(3)|*//PGL(4) is the weighted projective space
P(1,2,3,4,5), see Section 4.4.1, and the moduli space M3, is the open subset,
Mss = A*Juy C P(1,2,3,4,5),

cf. Corollary 4.4.3. Since weighted projective spaces are toric varieties and, therefore,
rational, also M3 is rational. See Section 4.4.2 for the description of singular stable and
semi-stable cubic surfaces.
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e For n > 3, it seems an open question whether the moduli space M3, is rational. In
fact, I am not even sure it is known to be stably rational.

Remark 2.7. The moduli space M = M3 4 of smooth cubic fourfolds is of dimension
20. It contains distinguished Noether—Lefschetz or Hassett divisors M N C; € M for all
6 < d = 0,2(6), see Section 6.6.4. These divisors are known to be of general type for
large enough d, see Remark 6.6.16.

So instead of asking for (uni-)rationality or uniruledness of these divisors, which only
holds for small values of d, e.g. for d = 42 [304, Thm. 0.2], other birational properties
are of interest. In [12] one finds upper bounds for the degree of irrationality, i.e. the

minimal degree of a dominant rational map C, - P10,

3 Periods

Periods provide a transcendental approach to study smooth complex projective vari-
eties. Typically, for X of dimension n, one considers the primitive middle cohomology
H"(X, Z)p: with its intersection pairing and its Hodge structure. The period of X is then
by definition this linear algebra datum naturally associated with X. The two principal
goals of introducing periods are an alternative approach to the construction of moduli
spaces of varieties of a particular type, complementing the constructions sketched in
the previous paragraphs, and, not unrelated, the formulation of a global Torelli theorem,
ideally proving that the period of a variety uniquely determines it.

3.1 Period domain and period map Let us briefly recall the abstract notion of a
Hodge structure, see [48, 145, 203] or [249, Sec. 3.1]. Consider a free Z-module I" of
finite rank. A Hodge structure of weight n on I' consists of a decomposition of the
complex vector space I'c :=T'® C as

e~ P HP

p+q=n
satisfying the condition HP¢ = H?49. A Hodge structure can alternatively be encoded
by the associated Hodge filtration

0Oc---cF'c---cF’c---cTle.

Here F? := @,,,, H"/, for which we have F” @ F4 = I'c for all p+q = n+1. Conversely,
starting with a Hodge filtration one reconstructs the Hodge structure by defining H?? :=
FP N F4,

Example 3.1. The prime example of a Hodge structure of weight 7 is of course the
cohomology H"(X,Z) (modulo torsion) of a smooth, complex projective variety X with



3 Periods 161

the Hodge decomposition H"(X,C) =
FO = H'(X,C).

If an ample class c{(L) € H*(X,Z) is fixed, then the primitive integral cohomol-
ogy H"(X,Z)rp (modulo torsion) also has a natural Hodge structure and, in addition,
comes with a natural polarization («, ) — (—1)""D/2 f @ A B A c (L)X which
for dim(X) = n is just the intersection pairing up to a sign.

pigen HP4(X). In this case, F**! = 0 and

The abstract notion of a polarization for an arbitrary Hodge structure of weight n is a
morphism of Hodge structures i : I'® ' —Z(—n) such that its R-linear extension leads
to a positive symmetric symmetric form (a,8) — (@, CB) on the real vector space
(H?1 @ H*P) N T'g. Here, C is the Weil operator which acts by i?~7 on H4.

Note that the assumption that ¢ is a morphism of Hodge structures means in practice
that ¥(a;,a2) = 0 for @; € HP% unless (p1,q1) + (p2,q2) = (n,n), which can also
be expressed as the orthogonality condition F? 1 F"~P*! with respect to the C-linear
extension of .

Example 3.2. Let us spell out these notions for smooth cubic hypersurfaces of dimen-
sion two, three, and four.

(i) For a smooth cubic surface S < P3. The Hodge decomposition is trivial, i.e.
H*(S,C) = H"(S) and, accordingly, the Hodge filtration collapses to

F?=0c F'=H"(S)=F"=H*S,C)

and similarly for the primitive cohomology.
(ii) For a smooth cubic threefold ¥ c P* the situation is already more interesting.
Here, we have H*(Y,C),, = H*(Y,C) = H*!(Y) ® H'(Y) and hence
FP=0cF>=H*>(Y)cF'=F’=HY,0)

of dimensions f2 = 5and f! = f* = 10.

(iii) Eventually, for a smooth cubic fourfold X c P> the Hodge decomposition of the
primitive cohomology gives rise to a filtration

F*=0cFP=H"X)c F* = H*'(X)® H*(X))r ¢ F' = F* = H*(X,C),,
of dimensions f3 = 1, f2 = 21, and f! = f° = 22.

For more details for the following discussion we recommend the classic [203, Ch. I]
or the more recent textbook [105, Ch. 4.4].

Fix a free Z-module I' ~ 7, a Z-linear map ¢: I’ ® T —=Z and a collection of
Hodge numbers A9, p + g = n, with > h?? = b. Then the set D of y-polarized Hodge
structures on I' of weight n with dim H?¢ = h?4 is naturally a complex manifold, the
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period domain. More precisely, for f? =", » hJ, it is an open subset of the algebraic
variety, called the compact dual of D,

DY c [[ Gr(f”.Te)

of all flags (F?) € [] Gr(f?,Tc) satisfying the orthogonality condition F? 1 F"~P*!
with respect to the C-linear extension of .

The compact dual D" is a smooth projective variety and D C DY is a open in the
classical topology, cut out by the condition that ¥( , C ) be positive definite. The com-
pact dual DY comes with a transitive action of Gc = O(T'c, ¢) and, therefore, can be
written as the homogenous space DY ~ G¢/B, where B is the stabilizer of a flag in DV.
Similarly, D can be described as a homogenous space

D =~ Gg/(BNGg) c D' ~ Ge/B.

We will be interested in the quotient O” \ D of D by the natural action of a discrete
group O’ € Gy commensurable with the full orthogonal group O(T', ¢). Since B N Gy is
a compact group, the action of O(T’, ) is properly discontinuous and any such quotient
O’ \ D is a normal complex space with finite quotient singularities.

Consider a smooth projective family 7: X — S of varieties of dimension n with a
relative ample line bundle £. The families of cohomologies H" (X}, Z) and H" (X}, Z) £,
form locally constant systems R"x.Z and Ry, 7. Z. We assume that S is connected, which
implies that the Hodge numbers h”9 := h74(X,) are constant. If S is simply connected,
then the two local systems are canonically isomorphic to the two constant systems
H"(X,Z) and H"(X,Z), for a fixed fibre X = A; with respect to the ample line bun-
dle Ly. In this situation, the period map

P: S —=D, tr—(F’H"(X,, C) £, pr)

is well defined and, by a classical result of Griffiths, holomorphic. Here, the period
domain D ¢ DY c [[Gr(f?, H*(X,C)y) is defined in terms of the polarization of the
primitive cohomology H"(X, Z),;. The construction applies to the universal deformation
X —Def(X) = Def(X, Ox(1)) of a cubic hypersurface of dimension n > 2, see Section
1.3.2, and describes the local period map

P: Def(X)—=D c D' C HGr(f”,H”(X, Opr). 3.

If S is not simply connected, one can still consider the map P: S — O’ \ D, where
O’ = Im(7(S) —= O(H"(X, Z),)) is the monodromy group of the family.

Let us apply the discussion to the universal family of smooth cubic hypersurfaces
X —=U(®) = |O0pu1 B)lsm C [Op1 (3)]
see Section 1.2.4. The monodromy group I, := Im(m(U(n)) — GL(H"(X, Z),)), for
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X = A} a fixed distinguished fibre, has been computed in Theorem 1.2.9. For even n,
we have found I', ~ O*(H"(X,Z)), which is a finite index subgroup of O(H"(X, Z)).
Similarly, I', ~ SpO(H*(X, Z), q) for n odd. In any case, the period map is then a holo-
morphic map

P U(n)_>rn \ Dm

where D, ¢ D) c [[Gr(fy, H"(X,C)y) with f7 = >, h*/(X)y. Locally around
every point in U(d) the period map P admits a holomorphic lift A— D,,. In order to
descend the period map to the moduli space of cubics, one might have to divide out by
a slightly larger discrete group, but since an isomorphism always acts by an isometry
on the middle cohomology, we obtain a period map

P: M, = Un)//G—=0\ D,. (3.2)

Here, O = O(H"(X, Z),;) for n even and O = Sp(H"(X, Z)) for n odd. Alternatively, one
can use the existence of a universal family locally, see Remark 1.14, to glue local period
maps to the global period map (3.2). Yet another alternative is to introduce the moduli
space of marked cubics parametrizing smooth cubics X together with an isometry of
H"(X,Z)p; with the abstract lattice described in Proposition 1.1.21 for n even or with
the standard symplectic lattice for n odd.

Remark 3.3. Instead of working with the singular spaces M, and O\ D,,, one can view
the period map as a map between smooth analytic Deligne—Mumford stacks:

P: M, —=[0\D,l.

This has the advantage of keeping track of the finite groups of automorphisms Aut(X).
Furthermore, the existence of the universal family over M, often simplifies arguments.

Example 3.4. Typically, the quotients O\ D, will not be Kihler or algebraic [106, 205].
However, for cubic hypersurfaces of dimension three and four they are.

(i) For smooth cubic threefolds the dimensions of the Hodge filtrations are £ = 0,
f> =5,and f' = f° = b3 = 10. The orthogonality conditions F? 1 F"P*! reduce
to F2 1 F2, which cuts out Dy c Gr(5,10). In other words, DY can be identified
with the Lagrangian Grassmann variety LG(5, 10) of all Lagrangian subspaces of a ten-
dimensional symplectic vector space. Thus, its dimension is dim D] = dim LG(5, 10) =
15, which is also the dimension of the moduli space As of principally polarized abelian
varieties of dimension five.

In our situation, the symplectic vector space is the complex vector space associated
with the standard symplectic structure on Z®!° and thus comes with the action of the
symplectic group Sp(10, Z). The quotient Sp(10,Z) \ D3 is naturally endowed with the
structure of a normal algebraic variety with finite quotient singularities. It can be thought
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of as the moduli space of principally polarized abelian varieties of dimension five:
As = Sp(10,Z) \ Ds,

which is more commonly written as the quotient A5 ~ Sp(10, Z) \ Hs of the Siegel upper
half space H of all symmetric 5 X 5 matrices 7 with Im(7) positive definite.
The period map for cubic threefolds is thus the map

P: M;—=Sp(10,Z) \ D3 ~ As,

which later will be shown to be a locally closed embedding.” Geometrically, it can be
interpreted as the map that sends a smooth cubic threefold ¥ ¢ P* to its intermediate
Jacobian J(Y). For more on this case see Section 5.5.3.

(i1) For smooth cubic fourfolds, the dimensions of the Hodge filtration are f4 =0,
=1, =21,and f! = f° = by(X),r = 22. The orthogonality conditions F” L
F"=P*! come down to a single condition F* = H>' 1 F?> = H*>!' @ H;;z, which can also
be expressed by saying that the line H*'(X) ¢ H*(X,C),, determines also H**(X)p.
Note that this condition implies that the projection of D) c Gr(1,22) x Gr(21,22) to
the first factor is still injective. Thus, it is more natural to view the period domain as the

analytically open subset of a non-degenerate quadric hypersurface of dimension 20:
Dy c D) c Gr(1,22) =~ P*! ~ P(I'® C).

Here, I := Eg(—1)*?@U®®A,(~1). The analytically open subset D4 C D is cut out by
the positivity condition (x.X) > 0 for [x] € DY ¢ P(T'®C). Also in this case, the quotient
O) \ Dy is indeed a quasi-projective variety. See Remark 6.6.13 for a discussion why
dividing by O(I') and O*(I") amounts to essentially the same. The period map in this
case is a map, later shown to be an open immersion,

P: My—=O)\ Dy,
see Section 6.6 for a detailed discussion.

Although O(I') \ D is in general not algebraic, it has been conjectured by Griffiths
and recently proved by Bakker, Brunebarbe, and Tsimerman [33] that the image of the
period map is always contained in a quasi-projective variety.

3.2 Infinitesimal and local Torelli For a smooth cubic hypersurface X of dimen-
sion n > 2, the Zariski tangent space of its universal deformation space Def(X) =
Def(X, Ox(1)) is naturally identified with ToDef(X) ~ H'(X, Tx), see Section 1.3.3.

5> It might seem more natural to divide out by the monodromy group I's = SpO(H>(Y,Z), q) c Sp(10,7Z).
However, there are automorphisms of cubic threefolds that are not contained in the monodromy group I'3,
see Remark 6.6.13.
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Thus, the differential of the local period map (3.1) can be viewed as a map

dP: H'(X, Tx) — T'poyD, C Hom @ HP(X),, @ HPM X)L (33)
pt+q=n p+q=n
which is in fact described by contraction, see [474, Ch. 17.1]. The injectivity of the map
(3.3), see Corollary 1.4.25, Remark 1.4.26, and Remark 1.16, can be rephrased as the
following statement.

Corollary 3.5 (Infinitesimal Torelli). The period map
P: Mné[o \ Dn]
from the moduli stack of all smooth cubics of dimension n > 2 is unramified. O

Recall from Remark 1.4.26 that for cubic hypersurfaces of even dimension n = 2m
already H™"™(X)p, detects first order deformations of X.

Classically, the result is stated in terms of the moduli space M, of marked cubics
parametrizing pairs (X, ¢) consisting of a smooth cubic hypersurface of dimension n
and an isometry H"(X,Z),, ~ I'. The period map in this setting is then a holomorphic
map

5: 1\7” —D,
and the infinitesimal Torelli asserts that it is unramified.

Remark 3.6. Often, the infinitesimal Torelli theorem implies the so called local Torelli
theorem, see the next section. Concretely, if Hodge isometries H"(X, Z), ~ H"(X, Z)y
are induced by automorphisms of X, then the period map

P.: M,—0O\D,

is also unramified. Otherwise, Hodge isometries not induced by an automorphism might
cause problems.

Recall that the converse does not hold, i.e. the local (or even global) Torelli does not
necessarily imply the infinitesimal Torelli theorem. Indeed, for smooth curves of genus
g > 2 the corresponding map P (or its stack version) is not unramified (exactly over
the hyperelliptic locus) but the period map P that associates with a smooth curve the
polarized abelian variety provided by its Jacobian defines a closed embedding and is in
particular unramified.

Example 3.7. The hypothesis in the above remark that would build upon the infinitesi-
mal Torelli theorem to prove a local Torelli theorem is not easy to ensure, not even for
cubic hypersurfaces. The only known cases are cubics of dimension three and four:

(i) As for smooth projective curves, any Hodge isometry H3(Y,Z) ~ H3(Y’,Z) for
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two smooth cubic threefolds is up to a sign induced by a unique isomorphism Y =~ Y,
see Remark 5.4.9.

(i1) The assumption for the local Torelli theorem is satisfied for cubic fourfolds, which
we will prove as part of the global Torelli theorem in Section 6.3.3. More precisely, ev-
ery Hodge isometry H*(X,Z) ~ H*(X, Z) preserving hf( is induced by an automorphism
of X.

3.3 Variational, general, and generic Torelli Let us consider the following possible
Torelli statements for smooth cubic hypersurfaces. We leave it to the reader to write
down appropriate versions for other types of varieties, e.g. curves, K3 surfaces, abelian
varieties, hypersurfaces of other degrees, etc. We recommend Beauville’s Bourbaki talk
[48] for further information and references.

(i) Variational Torelli theorem: A smooth cubic hypersurface X of dimension n can be
reconstructed from the (real) Hodge structure H"(X, C),, ~ é HP4(X),, together
with the map (3.3).

(i1) General Torelli theorem: Assume X is a very general smooth cubic hypersurface
of dimension n. Any other smooth cubic hypersurface X’ for which there exists an
isomorphism(!) of Hodge structures H"(X, Q) =~ H"(X’, Q) is isomorphic to X:

Hn(X’ Q)pr = Hn(X,, Q)pr = X~X.

(iii) Generic Torelli theorem: The period map P: M, — O’ \ D is of degree one, i.e.
generically injective, for any discrete group O C O’ C Og.

(iv) Global Torelli theorem: Two smooth cubic hypersurfaces X and X’ of dimension n
are isomorphic if and only if there exists a Hodge isometry(!) between their middle
primitive integral Hodge structures:

(H'"X,Dpr, () = (H"X, D)pr, (L)) & X=X

(v) Infinitesimal Torelli theorem: The stacky period map P: M, —[O \ D,] is un-
ramified or, equivalently, (3.3) is injective, see Corollary 3.5.

(vi) Local Torelli theorem: The period map P: M, —O \ D, is unramified, see Re-
mark 3.6.

These different versions of the Torelli theorem are interlinked.® For example, by work
of Clemens—Griffiths [104], Donagi [161], Voisin [485], and many others, one knows:

variational = general = generic

See [105, Ch. 8.2] for a detailed discussion of the second implication. The freedom in
choosing any discrete group O’ in the generic Torelli theorem (iii) is surprising at first,

6 and sometimes confused, especially infinitesimal with local.
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especially when compared with the case of K3 surfaces. For example, for cubic three-
folds, M3 = As ~ Sp(10, Z)\ D; is a closed embedding and, somewhat unexpectedly,
even dividing out by a bigger discrete subgroup Sp(10,Z) c O” c Sp(10, R) still leads
to a generically injective composition M3 — As ~ Sp(10,Z) \ D3 —= O’ \ D;.

Although, the variational Hodge conjecture only implies a general or a generic ver-
sion of the Torelli theorem, it is in a certain sense stronger than the global Torelli theo-
rem, but neither one of the two implies the other:

variational = global = variational or generic.

For example, the global Torelli theorem holds for K3 surfaces, see Section 6.6.3, but
in general a K3 surface can neither be reconstructed from its infinitesimal variation, so
the variational Torelli does not hold, nor does the period map injects the moduli space
of polarized K3 surfaces into O’ \ D for a discrete group O’ bigger than O(H*(S, Z)p).
Also, neither the local nor even the global Torelli theorem implies the infinitesimal
Torelli theorem, cf. Remark 3.6. Nevertheless, an infinitesimal or local Torelli theorem
is often seen as good first evidence for a global Torelli theorem.

As we have noted already in Section 1.4.5, see Corollary 1.4.27 in particular, the
Torelli theorems (i)-(iii) hold for two thirds of all smooth cubic hypersurfaces.

Corollary 3.8 (Variational, general, and generic Torelli). For smooth cubic hypersur-
faces of dimension n > 2 with 3 ¥ (n + 2) the variational, general, and generic Torelli
theorems hold true. O

Thus, the first case for which a generic Torelli does not follow from general results
is the case of cubic fourfolds. Indeed, in this case the generic Torelli does not hold, and
consequently neither does the variational or the general. But a global Torelli theorem
holds. This is the content of Section 6.3.3.

Remark 3.9. (i) At this point, for smooth cubic hypersurfaces of dimension n = 3m —
2 = 7,10, 13,... neither the global nor the generic (and hence neither the variational
nor the general) Torelli theorem is known to hold.

(i1) For cubic hypersurfaces covered by Corollary 3.8 the global Torelli theorem is
only known in dimension three. So the first case for which the generic but not the global
Torelli theorem is known to hold is the case of cubic fivefolds.

(iii) By Corollary 3.5, the infinitesimal Torelli theorem holds for all smooth cubic
hypersurfaces of dimension n > 2, but the local one in the formulation of (vi) above is
not known beyond dimension four.
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Cubic surfaces

The general theory presented in previous chapters applied to the case of smooth cubic
surfaces S C P3 provides us with some crucial information.

On the purely numerical side, we have seen that the Hodge diamond is only non-
trivial in bidegree (p, p), i.e.

H'(S,05) = H'(S,Qg) = 0 and H*(S, Os) = H(S,Q}) = 0,
and, moreover, see Sections 1.1.2 and 1.1.3:
HY'(S) = H'(S,Qq) =~ k¥,

The linear system of all cubic surfaces |O(3)| ~ P! comes with a natural action of
PGL(4) and its GIT quotient, the moduli space of semi-stable cubic surfaces, is four-
dimensional, see Sections 1.2.1 and 3.1.3

We have also seen that the Fano variety F(S) of lines contained in S is non-empty,
smooth, and zero-dimensional of degree 27, see Proposition 2.4.6 and Example 2.4.21.
Hence, over an algebraically closed field k, the Fano variety F(S) consists of 27 reduced
k-rational points. So, any smooth cubic surface S ¢ P3 defined over an algebraically
closed field contains exactly 27 lines. In this chapter we denote them by ¢, ..., {57, so

FS)={t,....07}

or, viewing S as a blow-up of P2, as Ei,...,E¢ Li,...,Ls, Lis,...,Lss, see below.
There are more classical arguments to deduce this result and we will touch upon some
of the techniques in this chapter. However, we will have to resist the temptation to dive
into the classical theory too much and instead refer to the rich literature on the subject,
see for example [50, 158, 222, 228, 284, 335, 462]. Also, there is a vast literature on
the arithmetic of cubic surfaces over non-algebraically closed fields which will not be
mentioned at all, see e.g. the recent [269] for a modern approach and references.

168



1 Picard group 169

1 Picard group

Let S c P? be a smooth cubic surface over an arbitrary field k. We will see that its
Picard group Pic(S') coincides with the numerical Picard group Num(S') and the Néron—
Severi group NS(S') = Pic(S)/ Pic’(S). So, it is endowed with the intersection pairing
(L£.L") which satisfies the Hodge index theorem. In particular, the inequality (£.£")> >
(L.L) - (L.L) for all line bundles £, £ with (£.£) > 0.

1.1 Intersection form The only line bundles that come for free on any smooth cubic
surface are Og(1) := O(1)|s and its powers Og(a). For example, the canonical bundle
is described by the adjunction formula, see Lemma 1.1.6, as

wsg = OS (_1)9

with the very ample dual wg =~ Og(1). The Hirzebruch-Riemann—Roch formula for a
line bundle £ on S takes the form
(L.L)+ (L.Os(1))
+1,
2
where we use y(S, Os) = 1, see Section 1.1.4.

XS, L) =

(1.1)

Lemma 1.1. Any numerically trivial line bundle L on a smooth cubic surface S is
trivial. In particular, Pic(S) is torsion free of finite rank and Pic’(§) = 0.

Proof Indeed, if a numerically trivial line bundle £ is not trivial, then (£.Os(1)) = 0
implies H(S, £) = 0 and H*(S, £) ~ H(S, L* ® wg)* = 0. Hence, x(S, £) < 0, which
contradicts (1.1) showing y(S, £) = 1. |

Corollary 1.2. For a smooth cubic surface S C P? over an arbitrary field k one has
Pic(S) = NS(S) ~ Num($) =~ Z®®)
with 1 < p(S) < 7. For a field extension k C k' the base change map
Pic(S) & Pic(Sy) 1.2)

is injective. Moreover, if k is algebraically closed, then p(S) = 7 and for any further
base change (1.2) is an isomorphism.

Proof Recall that an invertible sheaf £ on S is trivial if and only if H(S, £) # 0 and
HO(S, L) # 0. As H'(S o, L) = H(S, £) ® k', this shows the injectivity of (1.2).
For k = C, the exponential sequence gives
Pic(S) ~ H*(S,Z) ~ 7%,
while for an arbitrary algebraically closed field k the Kummer sequence

0 un G —> G 0,
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with n = {™ prime to char(k), provides injections Pic(S) ® Z/¢"Z — He?t(S,,ugm) with
a cokernel contained in H*(S, G,,). Taking limits, one obtains

Pic(S) ® Z; = HZ(S,Zi(1)) = Ze(1)®, (1.3)

as by(S) = 7, cf. Section 1.1.6. Together with (1.2), this proves p(S) < 7 for arbitrary
base field k.

For k algebraically closed, the Brauer group is trivial, i.e. Br(S) = H*(S,G,,) = 0.
This is analogous to H*(S, 03) = H*(S,O05)/H*(S,Z) = 0 for k = C. Hence, (1.3) is
an isomorphism and, therefore, p(S) = 7. The last assertion follows from a standard
‘spreading out’ argument and the fact that for k = k the Picard variety Picg consists of
isolated, reduced, k-rational points, cf. [249, Lem. 17.2.2]. m]

Example 1.3. Examples of smooth cubics with p(S) < 7 can be produced easily.

(i) For example, if S—=|O(3)| is the universal cubic surface, then the scheme-
theoretic generic fibre S, satisfies Pic(S,) = Z - O(1)|s,. Here, S, is a smooth cubic
surface over the (non algebraically closed) function field k(n7) ~ k(zy, ..., t19).

(ii) Similarly, if Sp: —P! C |O(3)| is a Lefschetz pencil, then the other projection
7: Spi —>P3 is the blow-up of P3 in the smooth intersection S| N S, c P of two
smooth cubics. Hence, Pic(Spi) = Z-O(1)|s,, ®Z- O(E) by the blow-up formula, where
E = P(Nj,ns,/p3) is the exceptional divisor of 7. Therefore, the fibre S, over the generic
point € P!, with residue field k(7)) ~ k(z), satisfies Pic(S,) =Z - Os(1).

Note that according to Corollary 1.2.7 a Lefschetz pencil of cubic surfaces has exactly
32 singular fibres, each with only one ordinary double point as only singularity.

Remark 1.4. At this point, one could mention two famous results concerning cubic
surfaces over non-algebraically closed fields going back to Segre and Manin, cf. [335,
Thm. 33.1&33.2] and also [284, Ch. 3]:

e A smooth cubic surface of Picard number one is not rational.
o Birational smooth cubic surfaces of Picard number one are actually isomorphic.

Both results follow from the same principle that for a birational correspondence that
is not an isomorphism the ample line bundles on both sides of the correspondence force
the Picard group to be of rank at least two.

Remark 1.5. (i) Similarly to Example 1.3, it should be possible to construct examples
of smooth cubic surfaces with arbitrary prescribed Picard number 1 < p < 7. But it
is an entirely different matter to produce cubic surfaces with prescribed Picard number
over special types of fields, like number fields or finite fields. As the Picard number of a
cubic surface over a finite field F, can be read off its Zeta function (as the multiplicity of
g~" as aroot of the denominator), computing p(S) and |S (F,)| are essentially equivalent.
For the latter we refer to [35] and the references therein.
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(i1) The Weil conjectures had been verified for cubic surfaces over finite fields early
on by Weil himself [492], cf. [335, Thm. 27.1]. A finer analysis of the possibilities for
the Zeta function was attempted in [335, 410, 442]. The complete classification was
eventually given by Banwait, Fité, and Loughran [35] and a topological approach to the
average number was described by Das [134].

By the Hodge index theorem, the Picard group Pic(S) =~ NS(S) ~ Z®®) together
with the non-degenerate intersection pairing defines a lattice of signature (1, p(S) — 1).
It is an odd lattice, because (Og(1).Os (1)) = 3. The orthogonal complement Og (1)* C
Pic(S) is negative definite of rank < 6.

For k = C the exponential sequence leads to an isomorphism of lattices

Pic(S) =~ H*(S,Z).

As H*(S,Z) is unimodular and odd, it is isomorphic to I; ¢ and Og (1)* ~ HZ(S,Z)pr ~
E¢(—1), cf. Corollary 1.1.20 and Proposition 1.1.21. The same conclusions hold over an
arbitrary algebraically closed field, as we will show next.

Corollary 1.6. Let S C P3 be a smooth cubic surface over an algebraically closed field.
Then

Pic(S) = I, 6 and Og(1)* =~ Eg(—1). 1.4
For an explicit basis of both lattices in terms of lines see Section 3.4.

Proof Completely geometric arguments for this description exist. For example, one
can use that S is a blow-up of P? in six points, which, however, we will deduce later
from (1.4), or that S admits a conic fibration S —=P' with five singular fibres, see
Section 2.4 and [412, IV.2.5]. Here, we shall derive the claim from the description of
the intersection pairing H*(S,Z) of a smooth cubic surface over C.

Indeed, in characteristic zero, the assertion follows from the complex case and the
standard Lefschetz principle. In positive characteristic, the assertion is proved by means
of the specialization map

Pic(S ;) & Pic(S)).

Here, S — Spec(R) is a smooth family of cubic surfaces over a DVR and ¢ and 7
are the closed and generic points with residue fields k(#) and k() of positive and zero
characteristic, respectively.

Specialization is injective, because it is compatible with the intersection form. How-
ever, Pic(S5) = I} ¢ is a unimodular lattice and any isometric embedding of finite index
of a unimodular lattice is an isomorphism. Once Pic(S') is determined, its primitive part
is described as in the proof of Proposition 1.1.21. O

Remark 1.7. The Galois group Gal(k/k) naturally acts on Pic(S #) and on the sublattice
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Os (1)t =~ Eg(—1). It therefore defines a subgroup G C O(Es), which is in fact con-
tained in the Weyl group W(Es) C O(Eg), cf. Section 1.2.5. Alternatively, the Galois
group acts on the configuration of lines £(S), see Remark 1.3 and Section 3.6, whose
automorphism group is W(Eg). Which subgroups can be realized in this way? It is a
classical fact that the scheme theoretic generic cubic surface, which lives over the func-
tion field of |O(3)|, leads to G = W(Ey), see Corollary 1.14. For information concerning
the case of finite fields, in which case G is a cyclic group, see [35].

1.2 Numerical characterization of lines We next aim at a purely numerical charac-
terization of lines contained in smooth cubic surfaces.

Remark 1.8. (i) Observe that any P' ~ L ¢ S with (L.L) = —1 is in fact a line, i.e.
the degree of L as a subvariety of the ambient P* is deg(L) = 1 or, still equivalently,
(Os(1).0O(L)) = deg(Os(1)|L) = 1. Indeed, by adjunction Opi(-2) =~ w; =~ (ws @
Ol = Os (=Dl ® Opi (-1).
(ii) For a geometrically integral curve C C S, we deduce from (1.1) that
12 1-1(C.00) = 1(C,00) = (5, 05) - (5, 05 (~C) = - “D L8O

and, therefore,
(C.C) = deg(C)-2>-1. (1.5)

If in addition (C.C) = —1 holds, which implies geometrically integral, then automati-
cally deg(C) = 1 and h'(C, O¢) = 0. Hence, again, L := C = P! is a line.

So, combining (i) and (ii), we find that a (—1)-curve, i.e. a (geometrically integral)
curve with (C.C) = —1, on a smooth cubic surface is the same thing as a line.

(iii) Similarly, if £ € Pic(S) with (£L.Og(1)) = 1 and (L£.£) = —1, then (S, L) = 1
by (1.1) and, therefore, H’(S, £) # 0. Hence, £ ~ Og(L) for some curve L C S which,
using deg(L) = (L.Os(1)) = 1, implies that L is geometrically integral and hence a line.

Note that these arguments only use the numerical properties of the polarized surface
(S, Og(1)) and the fact that wg ~ Og(—1). This will be useful later on, see for example
the proof of Proposition 2.7.

Thus, if Pic(S) =~ I, and a € I, ¢ is a characteristic vector of square (a.a) = 3, cf.
proof of Proposition 1.1.21, then there are natural bijections
{P'~LcS|line} =~ {CcS| integral, (C.C)= -1}
{Beligl BB =-1, (ap) =1},

see also the proof of Corollary 1.9 below.
We draw two immediate but crucial consequences from this. The first one is usually
deduced from a concrete geometric reasoning, which is avoided in the present approach.

[l
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Corollary 1.9. Assume that S C P3 is a smooth cubic surface over an algebraically
closed field. Then S contains six pairwise disjoint lines €1,...,{s C S.

Proof By Corollary 1.6, the Picard lattice is Pic(S) =~ I} ¢ and this is all that is needed
in the following. In particular, the assumption on k to be algebraically closed can be
weakened.

As argued in the proof of Proposition 1.1.21, the class @ = (3,-1,...,-1) € I;¢
(with the harmless but convenient sign change), written in the standard basis vy, .. ., ve,
and the hyperplane section /g are both characteristic classes of the same square (@.@) =
(hs .hs) = 3. Hence, after applying an appropriate orthogonal transformation, they coin-
cide. But then the classes v;, i = 1, ..., 6 correspond to line bundles £; with (£;.L;) = —1
and (£;.Os(1)) = 1. According to the above remark, £; ~ O(¢{;), where the curves {; C S
are lines. As (£;.L;) = (v;.v;) = 0 for i # j, they are pairwise disjoint. |

Note that the existence of two disjoint lines already implies that S is rational, see
Corollary 1.5.11.

Remark 1.10. It is curious to observe that one can reverse the flow of information and
deduce from the geometry of a cubic surface information about the lattices I, ¢ and Es.
For example, the fact that the Fano variety F(S) of lines on a smooth cubic surface over
an algebraically closed field consists of 27 isolated, smooth k-rational points translates
to the fact that in the lattice I; ¢ there exist exactly 27 classes ¢ with (£.(3,1,...,1)) =1
and (£.£) = —1.

Corollary 1.11. Assume S C P? is a smooth cubic surface over an arbitrary field k.
Then, an invertible sheaf L is ample if and only if (L.L) > 0 and (L.L) > 0 for every
line L C Sy.

Proof Only the ‘if-direction’ requires a proof. For this, let us first recall the Nakai—
Moishezon criterion for smooth projective surfaces over arbitrary fields, cf. [31]: An
invertible sheaf £ is ample if and only if (£.£) > 0 and (L£.C) > 0 for every curve
C c S. It is of course enough to test integral curves C, but we may not necessarily be
able to reduce to geometrically integral ones. For this reason, one has to take all lines in
the base change Sz into account.

As L is ample if and only if its base change to S; is ample, one can reduce to the
case k = k. Then any integral curve C is geometrically integral and by (1.5) either
(C.C) = —1,in which case P! ~ Cis aline, or (C.C) > 0. To prove (£.C) > 0 in the latter
case we shall apply the Hodge index theorem. First note that there exists a hyperplane
P? c P? such that the intersection S NP? consists of three lines £; U £> U{3. We postpone
the proof of this fact, cf. Sections 2.4 and 3.3. As (L.£;) > 0, also (£.Os (1)) > 0. Hence,
L and Og (1) are contained in the same connected component C° of the positive cone

C={xeNSES)®R | (x.x)>0}=CL(-C.
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Similarly, (Os(1).C) > 0 implies [C] € C° \ {0} and, therefore, also (L.C) > 0.

The same remark as the one at the end of Remark 1.8 applies: Only the numerical
properties of (S, Og (1)), the isomorphism wg =~ Og(—1), and the inequality (£.Og(1)) >
0 have been used in the proof. O

1.3 Effective cone We summarize the situation by a description of the ample cone and
the effective cone. By definition, the effective cone is the cone of all finite, non-negative
real linear combinations of curves

NE(S) = { D ailCil | a; € Reg |,

where C; C § are arbitrary irreducible (or integral) curves. The dual NE(S)* of NE(S)
is the nef cone which can also be described as the closure of the (open) ample cone

Amp(S) :={ Y aili | a; € Rog, L; ample | € Pic(S) @ R.

In the following description of the effective cone we use that there exist exactly 27
lines on a cubic surface over an algebraically closed field. This has been deduced by
cohomological methods in Example 2.4.21 already and the existence of at least 27 lines
will be shown again in Remark 2.5.

Proposition 1.12. Let S be a smooth cubic surface over an algebraically closed field.
Then the effective cone is

i=1

27
NE(S) = { > ailt] | a; € Ry }

the closed rational polyhedron spanned by the 27 lines {1, ...,y C S. The ample cone
is the interior of its dual NE(S)*, which is again rationally polyhedral:

Amp(S) = Int (NE(S)").

Proof As above, C° denotes the connected component of the positive cone that con-
tains Og (1). By (1.1) all integral classes in C° are contained in NE(S ). Furthermore, any
integral curve C with [C] not contained in the closure of C° is a line, see Remark 1.8.
Hence, the closure of NE(S) is spanned by the closure of C°® and K := Z?Z, R-[¢].
Now, K N C° # @. Indeed, as used before, the class Og (1) can be written as the sum
of three lines. In order to show that C° C K, it therefore suffices to argue that no class
in C° can be written as af; + b{; with a,b > 0. As two distinct lines are either disjoint
or intersect transversally in exactly one point, (£;.£;) = 0 or = 1. Hence, (af; + bf;.al; +
bt;) = —(a* + b*) or = —(a* + b* — 2ab), which are both not positive. o

This result in particular shows that the ample cones of smooth cubic surfaces over
algebraically closed fields all look the same. This is in stark contrast to other types of
surfaces, for example K3 surfaces, cf. [249, Ch. 8].
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For non algebraically closed fields these cones can be described via the inclusion
Pic(S) & Pic(Sp) as Amp(S) = Amp(Sp) N (Pic(S) ® R) and, dually, NE(S) =
NE(S;) N (Pic(S) ® R). Hence, rephrasing Corollary 1.11, £ is ample if and only if
(L.C) > 0 for all curves C which after base change to the algebraic closure are unions
(with multiplicities) of lines.

Remark 1.13. Itis not difficult to prove that an ample invertible sheaf on a cubic surface
is automatically very ample, see [222, V. Thm. 4.11].

1.4 Monodromy group of 27 lines Consider the family of all smooth cubic surfaces
S—=U = |03)|sm- In Section 1.2.5 we discussed the monodromy group of this family,
i.e. for k = C the image of the natural representation

ps: m(U)—=O(H*(S,Z)),

where § = Sy is a distinguished smooth fibre. According to Theorem 1.2.9, this is
the group O*(H?(S,Z)) of all orthogonal transformations of the lattice H>(S,Z) with
trivial spinor norm that fix the hyperplane class. In fact, in the discussion there we
argued that the monodromy group, as a subgroup of the orthogonal group of the lattice
H*(S , L)y = Eg(—1), is the Weyl group W(Eg). Recall that its order is

|W(Eq)| = 51.840 =27 .3%.5

and that W(Ejs) is a subgroup of index two of O(Es), only the coset of the orthogonal
transformation given by a global sign change is missing, cf. [130, Sec. 15].

Let us rephrase this in terms of the family of 27 lines. Recall from Corollary 2.1.14
that the relative Fano variety of lines of the family S — U is an étale morphism F =
F(S/U)—U of degree 27. Furthermore, by Proposition 2.1.4, F is connected. Using
the same choice of a point [S] € U and identifying Bij(F(S)) = S,7, we obtain the map

por: m(U)—= 7.

Its image is the monodromy group of the family of lines, only well defined up to con-
jugacy. The image is isomorphic to the Galois group of the covering, cf. [218, Sec. 1].
Compare the following classical fact also with the discussion in Section 3.6 and Remark
3.8.

Corollary 1.14. The Galois group or, equivalently, the monodromy group Im(pr) C Sy7
of the universal family F —=U of the 27 lines contained in smooth cubic surfaces
S c P? is isomorphic to the Weyl group W(Eg).

Proof The image of the monodromy representation ps: m1(U) —>O(H%(S,2)) is the
Weyl group W(Es). An element in its kernel fixes every line and thus is also contained
in the kernel of m{(U) — S,7. The induced map W(Es) = Im(ps) —>Im(pr) C Sy
is injective, which proves the claim. O
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Remark 1.15. Harris [218, Sec. I11.3] describes the monodromy group as O7(6, F,), the
orthogonal group of ]Fff’ endowed with the quadratic form ¢ == 3 ",_ ;%ix;. Indeed, with
every line £ C S one associates the class £ € H>(S, IF2)pr given as the image of h—¢ which
satisfies (h — £.h — €) = (h.h — €) = 0(2). The intersection form on H>(S, IF2)pr 18 seen to
be isomorphic to ¢ when expressed with respect to &; for £, ..., {s the exceptional lines
of a representation of S as a blow-up of P2, see Proposition 2.4. The quadratic form ¢
on Ff(’ has exactly 27 non-trivial zeros which via £+ ¢ are in bijection to the lines
contained in S. This leads to an identification of O~ (6, F,) := O(H%(S, F2)pr» q) with the
group of automorphisms of the line configuration on S. To conclude, one argues that
every such automorphism is induced by a monodromy operation which uses elementary
automorphisms of cubic surfaces.

Remark 1.16. It has been mentioned already in Section 1.2.6 that apart from those
diffeomorphisms of a cubic surface that can be described by monodromy (and, which,
therefore preserve the hyperplane class and only define elements in the Weyl group),
there are others such that in fact all orthogonal transformations of H>(S,Z) are realized
by diffeomorphisms.

Note that from the perspective of lines on a cubic surface, it is clear that there must
be many diffeomorphisms that do not preserve the hyperplane class. For example, use
the fact that any two disjoint lines are alike, see Section 3.2, and that a cubic surface is
a blow-up of P2, see Proposition 2.4. So, even without using any topological argument,
just the investigation of lines on a smooth cubic surfaces shows that 7(Diff(S)) is much
bigger than W(Eg).

2 Representing cubic surfaces

Cubic surfaces can be viewed from different angles and can be described geometrically
in various ways. Each representation highlights particular features. We will briefly de-
scribe the most common ones.

2.1 Cubic surfaces as blow-ups To start, let us try to realize cubic surfaces as blow-
ups of simpler surfaces.

Let S c P? be a smooth cubic surface over an arbitrary field k and let P! ~ E c §
be a smooth, integral, rational curve. Assume that E is a (—1)-curve, i.e. (E.E) = —1 or,
equivalently, that E is a line, cf. Remark 1.8. Then § is the blow-up

7: 8§ —3§

of a smooth projective surface § in a point x € § with exceptional line E. This is a
special case of Castelnuovo’s theorem [31, 50, 222]. Alternatively, one may use the
linear system |Os (1) ® O(E)|, which is indeed base point free and contracts the curve E.
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More generally, one proves the following.

Lemma 2.1. Assume E,...,E, C S are m pairwise disjoint (—1)-curves. Then S is
isomorphic to the blow-up t: S = Bl,,(S)—=S§ of a smooth, projective surface S with
E; = 7 (x;) as exceptional lines. Furthermore, the following assertions hold.

(i) The Picard number of S satisfies m < p(S)—1 < 6.
(i) Ifm =6, then § ~ P,
(iii) Ifm =5, then § ~ B1,(P?) or § ~P' x P'.

Proof Indeed, the blow-up of a smooth surface in one point increases the Picard num-
ber by one. As § is projective, p(§) > 1. This proves the lower bound on p(S) in (i). For
the upper bound use Corollary 1.2.

If m = 6, then S is minimal and its canonical bundle wg satisfies wy =~ T'ws ®
O _E)), where E;, i = 1,...,6, are the exceptional lines. Thus, (ws.wg) = 9. Hence,
the classification theory of minimal surfaces of Kodaira dimension —co proves that § ~
P2. Ruled surfaces over curves of positive genus can be ruled out, since H'(S, Os) = 0.

If m = 5, then, similarly, (wg.ws) = 8. Now, if S is not minimal, it can be blown
down once more and the resulting surface will then have to be P2. If S is minimal,
then by classification theory S is a Hirzebruch surface, i.e. § =~ F, = P(O @ O(n))
over P! with 0 < n # 1. We need to exclude all the cases 0 < n. To this end, use that

C, = P(O(n)) c F, is a smooth rational curve with (C,.C,) = —n. Its strict transform
in S is thus a smooth rational curve C, with self-intersection (C,.C,) < —n. Hence,
according to Remark 1.8, we haven =0 orn = 1. O

Exercise 2.2. Show that in the case S = Bl (P?), none of the lines E;, i = 1,...,5, is
mapped to a point in the exceptional line over x.

Remark 2.3. Thus, eventually the situation reduces to the two cases 7: § —>P? and
7: § —P! X P!. They are given by the linear systems Os (1) ® O}, E;) withm = 6
and m = 5, respectively. Hence, for degree reasons,

6 5
Os(1) = T°02(3) ® O [— > E,-] resp. Os(1) = 7°0(2,2) ® O {— > E]
i=1 i=1
Here, O0(2,2) := Op(2) ® Op1(2) on P! x P'. Numerically, in the second case Os(1)
could a priori also be, for example, 7*O(4, 1) ® O(- Zf;l E;). However, in this case the
first ruling would lead to a family of lines on S, which we know does not exist.

2.2 Blowing-up P? and P' x P! Assume a smooth cubic surface S ¢ P? contains
six pairwise disjoint lines E|, ..., Es C S. The induced classes [E;] € Pic(Sz) =~ I 6
generate a sublattice Ipg C I; 6. In fact, together with 7 Op2(1) € Pic(S) they form a
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standard basis of I; ¢ and so in particular Pic(S) —Pic(S3) = I; 6. Note that Os(1) =
Ops(1)|s and the classes of E1, ..., Eg span a proper sublattice of Pic(S) of index three.

Thus, as a consequence of Corollary 1.9, we obtain the following classical description
of cubic surfaces as blow-ups of P2. The assumption on k being algebraically closed
can be weakened to Pic(S) being a unimodular lattice of rank seven or, equivalently,
PiC(S) = 11,6'

Proposition 2.4. Let S C P be a smooth cubic surface over an algebraically closed
field. Then S is isomorphic to the blow-up Bl ,(P?) of P? in six distinct points x; € P?,
i=1,...,6. O

Of course, for a given cubic surface S C P3 described by an explicit polynomial F,
it is typically not easy to find the four cubic polynomials f;(yo,y1,¥2), i = 0,...,3, for
which the (closure of the) image of the rational map

P? e B3, g 031 yal == [foGo, y1,2) -+ 2 f3(i0, y1,32)]
is S. For concrete aspects of this problem see [393].

Remark 2.5. Assume S is presented as Blj,,(P?) as in the proposition. Then there are
three sets of curves readily visible that will turn out to be lines:

(i) The exceptional lines Ey, ..., Es.
(ii) The strict transforms L;;, i # j, of the lines L;; C P* passing through x; # x; € P2.
(iii) The strict transforms L; of any smooth conic L; c P? passing through the five
points x; € P%, j # i.

Xi

. . 2
Lines on a cubic surface S E— P

Let us count them. There are six curves of type (i) and there are 15 curves of type
(i) assuming that no three points are collinear, i.e. that no x; € L;; for any k distinct
from i and j. To count the curves of type (iii), observe that |Op2(2)| is of dimension five.
Hence, for arbitrary five points, there exists a conic C containing them all. This conic C
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is either smooth, the union of two distinct lines, or a double line. Hence, again under the
assumption that no three of the points xi, ..., x¢ are collinear, the conic must be smooth
and, therefore, there exists a unique L; for every i. This gives another six curves exactly
when the six points are not all contained in one conic.

As it turns out, these conditions are automatically satisfied, see Remark 2.8. More-
over, under these conditions the L;; and the L; are indeed lines, i.e. (L;;.L;;) = (L;.L;) =
—1, cf. Remark 1.8. Hence, starting with a smooth cubic surface S, the lines of type (i),
(i), and (iii) account for 27, and hence all, lines.

Remark 2.6. One word on the intersection behaviour of these lines. First observe that
E;NE;=ofori+ j Similarly, L;j N Ly, = @ for {i, j} # {k, {}. Also, fori # j one has
LinL; =@ and (L.E;) = 1,but L; N E; = @. Furthermore, L;; N E; = @ for k ¢ {i, j},
but (L;;.E;) = 1 = (L;;.E;). Finally, (L;.L;j;) = 1 = (L;.L;;) = 1, cf. Remark 3.1.

Let us now address the converse and consider a blow-up 7: Bl;,,,(P?) —P? in six
distinct points xi,...,xs € P2. Is this blow-up then automatically a cubic surface? It
turns out that the same conditions on the points {x;} as above need to be imposed.

Proposition 2.7. Assume xi,...,xs € P? are general in the sense that no three of them
are collinear and there is no conic that contains them all. Then the blow-up Bl (P?) is
isomorphic to a cubic surface S C P>,

Proof More precisely, one shows that the invertible sheaf
L=703)80(-) E)
is very ample and that the image of the induced closed embedding
¢r: Bl (PH—>S c P?

is a cubic surface. Here, as before, E|, ..., E¢ denote the exceptional lines.

Classically, the assertion is proved by showing that £ separates points and tangent
directions, cf. [50, 222]. We shall instead give an argument that uses the general Nakai—
Moishezon criterion and some of our earlier considerations.

First note that numerically (Bl;,,,(P?), £) indeed behaves like a cubic surface. By the
blow-up formula, its Néron—Severi lattice is isomorphic to I; ¢ with £ corresponding to
the characteristic vector (3,—1,...,—1) and, in particular, (£.£) = 3. Hence, Corollary
1.11 is valid, see the comment at the end of its proof. In fact, only (£.£) = 3, wg ~ L*,
and that £ is effective were needed there.

Therefore, £ is ample if and only if (£.L) > 0 for every P! ~ L c BI[X‘.,(PZ) with
(L.L) = —1. If L is one of the exceptional lines, then clearly, (L.L) = —(L.E;) = 1.
Otherwise, let D := 7(L) be its image, which is a member of a linear system |Op:2(d)| for
some d. Denote by m; = mult,,(D) = (E;.L) the multiplicity of D at the point x;. For
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example, m; = 0if x; ¢ D and m; = 1 if x; is a smooth point of D. Moreover, L is the
strict transform of D and 7*D = L + )_ m; E;. The latter shows

d>=(D.D)=TD1D)=-1+2Y m—-Y m=5-(m—1)

from which we deduce thatd = 1 or d = 2, i.e. D is a line or a conic. Now, (£.L) < 0
is equivalent to 3d < > m;, which reads 3 < > m; ford = 1 and 6 < > m; ford = 2.
Hence, for d = 1, the line D passes through at least three of the points xi, ..., xs. If
d = 2 and D is a smooth conic, then D contains all six points xj, ..., xs. If d =2 and D
is singular, i.e. D consists of two lines, then one of the two contains at least three of the
points. However, for general points xp, . . ., x these two situations are excluded. Hence,
L is indeed ample.

In order to prove that £ is very ample, consider a generic curve in the linear system
IZi.) ® Op(3)], which, for simplicity, we will assume to be smooth.! In other words,
we pick a smooth elliptic curve in P? passing through xi,...,xs. Let C be its strict
transform, which is still a smooth elliptic curve. Next observe that the restriction map

H°(Bly,y(P?), £)—=H’(C, LIc)

is surjective, for H'(Bl,(P?),0) = H'(P?,0) = 0. Using that deg(L|c) = 3 and
that any line bundle of degree three on an elliptic curve is very ample, we know that
L is base point free. Thus, since h°(L) = 4, the line bundle £ defines a morphism
or: Bllxi}(]P’z) —>P3 and as (£.£) = 3, it is either of degree one or three. However, the
latter would imply that S := Im(¢,) is a plane contradicting (L) = 4. Hence, or is
generically injective. The map ¢, does not contract any curve, as £ is ample, and is
therefore the normalization of its image S, a possibly singular cubic surface. However,
the natural injection H%(S, Og(m)) — H°(Bl,,,(P?), £™) is a bijection, as both spaces
are of the same dimension. Using that £ is very ample for m > 0, this suffices to
conclude that indeed ¢ : Bl X,,}(IP’Z)—N>S . |

For later use, let us record the following: If a cubic surface S C PP? with the restriction
of the hyperplane line bundle Og(1) is viewed as a blow-up 7: § = Bllx,.}(Pz)—>P2
with exceptional lines Ey, ..., Eg, then

Os(1) =7 0B)Q@ O(->_ E)). 2.1

Remark 2.8. The proof also reveals that whenever a smooth cubic surface S is viewed
as a blow-up S = Blj,,(P?) —=P?, then the points xi, ..., xs € P? have to be in general
position. This allows one to produce smooth global deformations of cubic surfaces that
themselves are not cubic surfaces any longer by letting six points in general position
become special, cf. Corollary 1.3.14.

I 1n fact, by Bertini’s theorem with base points, cf. [222, III. Rem. 10.9.2] and [154, Thm. 2.1], this can
indeed be achieved.
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Dimension check: The choice of six generic points in P? modulo the action of PGL(3)
accounts for a parameter space of dimension 4 = dim |Ops(3)| —dim PGL(4), the dimen-
sion of the moduli space of smooth cubic surfaces, cf. Section 1.2.1.

A similar analysis can be done for blow-ups 7: § —=P! x P! in five points. If the five
points xq,...,x5 € P! x P! are completely arbitrary, then £ := 7°0(2,2) ® O(-Y_ E))
may not be ample. For example, if two points x;, x, are contained in the same fibre F
of one of the two projections, then (L.F) < 0 for the strict transform F of that fibre.
Similarly, not four of them can lie on the diagonal.

Exercise 2.9. Work out the exact conditions for the five points in P! x P! that ensure
that the blow-up is a cubic surface.

Dimension check: The choice of five general points on P! x P! modulo the action of
Aut(P' x P') again accounts for a parameter space of the same dimension four of the
moduli space of cubic surfaces.

2.3 Cubic surfaces as double covers We now describe the projection from a point
as discussed in general in Section 1.5.2. So, fix a point # € S not contained in any line
and consider the projection of S from u to a generic plane P> ¢ P3:

§ <75 = BIS) %ﬂ}ﬂ.

It corresponds to the linear system |[Z, ® Os(1)| on S or, alternatively, to the complete,
base point free linear system |0*Os(1) ® O(=E)| on S, where E := o~ !(u). The fibre
¢~'(y) over y € P? consists of the residual intersection {x;, x,} of the line %y through u
and y with S, i.e.uy NS = {u, x1, x2}.

Thus, as we assumed that u is not contained in any line, ¢: S —=P? is a finite mor-
phism of degree two ramified along the intersection of S = V(F) with the polar quadric

PMS = V(E u; (9,F)

To see the last assertion, choose coordinates such that u = [1 : 0 : 0 : 0], P2 = V(xo),
andy=[0:1:0:0]. Then P,S = V(9yF), while the intersection of S with the line
V(x2, x3) through u and y is singular at z = [zo : z; : 0 : O] # u, i.e. z is a branch point of
the projection ¢, if and only if 9y F(z) = 0.

Note that C := § N P,S is singular at u. Indeed, the tangent plane of P,S atu € P,S
is given by Zi Xi Zj uj ((9,6,F)(u) = Zi Xi Zj Uuj ((9,8,F)(u) =2 Zi Xi (6,F)(M), which
is also the equation for the tangent plane of S at u. Similarly, one checks that C is
smooth at every other point. Thus, the strict transform C c § of C is the branch curve
of ¢. Observe that this implies that C is contained in the linear system of Prw, ® wg =
9" Op(3) ® 07O (—1) ® O(E) =~ ¢*Op2(2) = 0*Og(2) ® O(-2E). This confirms C €
|Os (2)]. Also note that the smoothness of S implies that C is smooth, i.e. C is smooth
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away from u and has multiplicity two at u. Moreover, D = ¢(C) c P? is a smooth
quartic. The discussion can be seen as a special case of Proposition 1.5.3.

Remark 2.10. (i) The covering involution of § —=P? corresponds to taking the in-
verse on an elliptic curve. Indeed, think of # € S as the zero point. Then the covering
involution maps any other point y € S to the residual point z € S of the intersection
{u,y} C uy N S, which is exactly the description of y— —y on an elliptic curve. Note
that the covering involution on § does not descend to an involution on S, for any point in
the intersection T, NS would map to u. So, on § we only have a birational involution,
the Geiser involution.

(i1) There is another type of birational involutions, named after Bertini and associated
with pairs (#,y € T,S N S). The image of a point z € S is determined by the group
structure on the elliptic curve uyz NS C uyz =~ P2. It turns out that the group of all
birational transformations Bir(S) is generated by Bertini and Geiser involutions and
the group Aut(S) of regular automorphisms, see [335, Thm. 33.7]. The latter has been
studied intensively, viewing it as a subgroup of the Weyl group W(E¢). We refer to [158,
Ch. 9.5] for details and references. See also Remark 1.3.20.

Summarizing, the blow-up of a smooth cubic surface in a point not contained in any
of the 27 lines is a double cover of P? ramified over a smooth quartic curve. The converse
of the construction holds true as well, as shown by the following.

Proposition 2.11. Assume k = k and let ¢: S —=P? be a double cover ramified along
a smooth quartic curve D C P2. Then there exists a (=1)-curve in S the contraction
§ —=8 of which is isomorphic to a smooth cubic surface S.

Proof First note that ws =~ ¢*(wp ® Op(2)) =~ ¢*Op(-1). Next, let E c S be an
irreducible component of the pre-image of one of the 28 bitangents £ of D, cf. Section
3.7 below. We show that E is a (—1)-curve and that its contraction leads to a smooth
cubic surface.

Compute the normal bundle N s as the kernel of ¢* Nz —= Opne),, to see that
indeed (E.E) = —1. Let 0: § —=§ be the contraction of E. If Og(1) denotes the dual
of wg, then 0" Os (1) @ O(-E) =~ ¢*Op:(1). To conclude, one argues as in the proof of
Proposition 2.7. First, twisting the structure sequence for E C S with ¢*Op2(1) ® O(E)
shows that 1(S, Og(1)) = 4. Therefore, the associated linear system defines a map
S —=P3, which is readily seen to be regular. Using the ampleness of ¢*Op(1), one
shows that it is an embedding. Eventually, observe that (Os(1).Og(1)) = (¢*Op(1) @
O(E).¢*Op2(1) @ O(E)) = 2(Op2(1).0p2(1)) + 2(¢*Op2(1).E) + (E.E) = 3. O
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Double cover and pre-image of the bitangent.

\. )

Dimension check: The moduli space of smooth curves of genus g = 3 is of dimension
3 g — 3 = 6. Canonical embeddings of the non-hyperelliptic ones define smooth plane
curves D C P? of degree four. Cubic surfaces together with the choice of the additional
point # € S needed for the passage to plane quartic curves also make up for a six-
dimensional family.

2.4 Conic fibrations of cubic surfaces We apply the general construction of Section
1.5.1. So, pick a line L € § in a smooth cubic surface and consider the linear projection

¢: S —=P!

from L to a generic line P' c P3. Usually, the linear projection is only a rational map,
but, as L is of codimension one, it is regular in this case or, equivalently, Bl (S)—S is
an isomorphism. The fibres ¢~ (y) are the residual conics of the intersection L € yLNS..
In particular, (¢‘1(y).L) = 2 and, therefore, ¢: L—=P!is of degree two.

According to Proposition 1.5.3 there are exactly five singular fibres. Furthermore, the
singular fibres ¢‘1(yi), i=1,...,5, consist of two distinct lines intersecting each other
and both intersecting L, see Remark 1.5.8, (ii), and Section 3.3 below.

Dimension check: The conic fibrations obtained in this way are given by a section of
S(F) with F = Opi (@O, see Section 1.5.1. Now, dim P(H’(S%(F))) = 9 on which
Aut(P') acts with one-dimensional orbits. The additional action of Aut(F) eventually

cuts the space down to a four-dimensional space.

Remark 2.12. The above construction associates two divisors in P! with a line in a
cubic surface L c S: The discriminant divisor D; = {y,...,ys} € P!, which is
of degree five, and the branch divisor R, C P! of the projection ¢: L—=P!, which
is of degree two. Dolgachev, van Geemen, and Kondd [160] write these divisors as
D; = V(Fs5(xg,x1)) and Ry = V(F»(xp, x1)) and consider the K3 surface obtained as
the minimal resolution of the double cover of P? branched over the sextic curve C c P?
defined by the reducible curve x; - (x% - Far(x9, x1) + Fs5(x0, x1)).
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If Y —P? is the cyclic triple cover branched over S C P3, see Section 1.5.6, and if
we let ¢: Bl (Y) —P? be the projection from the line L C S C Y, then the curve C is
the union of the discriminant curve D; c P? and the line V(x;) c P?, see [160, §4.13 ].
In [160, §4.12] one also finds a link to cubic fourfolds containing a plane, see Remark
6.1.17.

In Remark 4.11 we will briefly mention how this construction is used to derive a
period description of the moduli space of cubic surfaces.

r

Fibration with five singular fibres, all meeting the given line

Remark 2.13. Lefschetz pencils provide another way of fibring a cubic surface S. As
discussed in Remark 1.5.20 in general, a Lefschetz pencil on S defines a fibration

S —P!

with 12 singular fibres, each with only one single ordinary double point. The smooth
fibres S, = S N H,, t € P, are smooth plane cubic curves and for a generic choice of the
Lefschetz pencil the family is not isotrivial by Proposition 1.5.18.

The other projection is the blow-up S =~ Bl,, ,, x,(S)—=3S in the three base points
X1, X2, x3 € S of the pencil. Alternatively, a Lefschetz pencil is determined by the choice
of two generic points xj, x; € § giving rise to a line P! ~ IZy, x, ® O(1)| € [O)].

Brown and Ryder [97] classify elliptic fibrations of smooth cubic surfaces up to bira-
tional correspondences.

2.5 Pfaffian cubic surfaces, Clebsch, and Cayley A cubic surface S  P? is said to
be Pfaffian if it is defined by a cubic equation F such that

F? = det(A),

where A is an alternating matrix of size 6 X 6 with coefficients in H O(p3, Ops(1)),1.e. up
to sign the cubic polynomial F(xy, ..., x3) is the Pfaffian of A. Alternatively, the matrix
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A can be viewed as a map Ops(—1)®0 — ng that induces a short exact sequence

0 ——= Op (1) —2 020 i F 0.

Here, i: § & P? is the given closed embedding and F is a sheaf on S. In Section
6.1.1 this is considered from a slightly different angle. There, the general alternating
form is viewed as a map W ® O(-1)—= W* ® O on the projective space IP’(/\2 W)
with dim(W) = 6. Its degeneracy locus is a cubic hypersurface denoted by Pf(W*) c
P( /\2 W*). Then a cubic surface § c P3 is Pfaffian if it can be written as a linear inter-
section Pf(W*) N P3, cf. Remark 6.2.5.

A naive dimension count lets one expect every cubic to be Pfaffian, see the proof of
[51, Prop. 7.6], and this is indeed the case as proved by Beauville. How to explicitly
find the matrix A the Pfaffian of which is the defining equation F(xy, ..., x3) has subse-
quently been addressed in [217, 379, 444]. Note that a cubic surface may be represented
as a Pfaffian cubic in more than one way, see [51, Cor. 6.4] and [99]. The generic cu-
bic surface can be represented in 72 different ways as Pfaffian and this is related to the
choice of six pairwise disjoint lines (double sixes), of which there are 36, see Example
3.6.

Representing general and special cubic surfaces in various forms is a classical topic.
The most famous representation of a generic cubic surface is provided by its Sylvester
(or pentahedral) form:

G+O0+6+6+6=0. (2.2)

Here, ¢; = {i(xy,...,x3) are linear forms, pairwise independent, and uniquely deter-
mined up to scaling by cubic roots of unity. This is just a reformulation of Corollary
1.5.19. The five planes P> ~ V({;) c P? defined by the linear ¢; form the Sylvester
pentahedron.

Exercise 2.14. Show that a smooth cubic surface described by (2.2), so the generic cu-
bic surface is covered, is isomorphic to a cubic surface in P* described by two equations

apzg+ - taszy=z0+ - +u=0, (2.3)
see [158, Cor. 9.4.2].

Example 2.15. The Clebsch (diagonal) cubic surface [118, §16] is the smooth cubic
surface that is defined either by the equation

3,.3,.3,.3 3
Xg+x]+x+x3—(xp+x1+x2+x3)” =0

inP3 ie ¢ = x;fori = 0,1,2,3 and &4 = —(xp + --- + x3) in (2.2), or by the two
equations

Yot HYi=Yo++ya=0
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in P*. The surface is also called Klein’s icosahedral cubic surface, as Klein explained
how to obtain it as the blow-up of P? in six points that correspond to opposite pairs of
vertices of an icosahedron [276, §10].

The Clebsch cubic surface comes with a natural Ss-action. This allows one to realize
the 27 lines as the union of two Ss-orbits. All lines are real and visible in the well-
known model of the Clebsch surface. More precisely, starting with the line defined by

Yo=y1+y2=y3+ys=0,

permutation of coordinates produces 15 lines (all defined over Q). In other words, 15
lines are described by y; = y; + yx = y¢ + yn with {i, j, &k, {,m} = {0,1,2,3,4}. The
remaining 12 lines are described by three equations

Vit yity=@-yityitye=—¢-(yi+y)+ys=0

with 0 <i < j<3and{k, ¢} C{0,1,2,3}\{i, j}. Here, ¢ = (1/2)(1 + \/5) is the golden
ratio.

The Clebsch surface is also distinguished by its number of Eckardt points. It is the
only smooth cubic surface with exactly 10 Eckardt points, see Section 3.8. The Eckardt
points on the Clebsch surface are the points described by the 10 equations y; +y; = yx =
ye =yn = 0forall {i, jk,£,m} ={0,1,2,3,4}.

Remark 2.16. The modification
VoV Ay (/D) ys = o+ +ya=0

of the equations for the Clebsch surface describes the Cayley cubic surface. A more
common description of it is given by the equation

3 3
[Ix-> /=0
i=0 i=0

Up to coordinate change, the Cayley cubic is the only cubic surface with four nodes as
singularities. Thus, it is the most singular nodal cubic surface, see Remark 1.5.17

The Cayley cubic is known to contain only nine lines and only eleven tritangent
planes. It is often seen as a hyperplane section of the Segre cubic threefold, see Remark
1.5.17. For more on the Cayley surface see [243, Ch. 4], see also Remark 4.6.

Further ways of representing a cubic surface exist. For example, after coordinate
change a smooth cubic surface S c P* can be viewed as the zero set of a polynomial
of the form xo - x1 - x2 + x3 - O_ x;) - €(x0, . . . , x3) with £ linear [158, Cor. 9.3.3]. More
generally, an equation of the type ¢ - €, - {3 = my - my - m3, with {; and m; all linear,
is called a Cayley—Salmon equation. The generic cubic surface can be written in 120
different ways in this form, see [215] for a recent account. Note that in this form certain
lines contained in §' can be spotted directly; the nine lines V(£;, m;) are clearly contained
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in §. For more results on the representation of cubic surfaces we refer to the classic
[228] and [158, Ch. 9].

3 Lines on cubic surfaces

The 27 lines on a cubic surface are among the most studied geometric objects in mathe-
matics. That smooth cubic surfaces contain at most finitely many lines was proved by
Cayley in 1849 and then Salmon immediately observed that there are exactly 27 of
them. Both papers, with identical titles, appeared in the same volume of the Cambridge
and Dublin Math. Journal [112, 414]. We recommend the introduction to [228] and the
essay [131] for more on the history and a discussion of the various notations.

Once the 27 lines have been found and described geometrically, one can study their
configuration from various angles. We collect a few observations starting with the three
types of lines (i)-(iii) as introduced in Remark 2.5. In the following, we let S be a smooth
cubic surface with fixed six pairwise disjoint lines E|, ..., E¢ viewed as the exceptional
lines of a contraction 7: S —=P? over points xi,..., x¢ € P2.

3.1 Lines are exceptional Any line L C S can be realized as an exceptional line E]
of some blow-down S — P2, In other words, for any line L c S there exist five lines
E,..., Eg suchthat £} := L, E7, ..., Eg are pairwise disjoint lines.

This is clear if L is of type (i), i.e. if L is already one of the exceptional lines E;.
If L is of type (ii) or (iii) just observe that L5, L3, L14, Lis, Eg, L¢ is a collection of
pairwise disjoint lines involving at least one line of each type. That the first five are
pairwise disjoint is easy and also that E¢ and L¢ are disjoint. To see that Ls N L; = @
for j # 6, observe that the intersection of their images, a conic and a line in P2, satisfies
LenL, j = {x1, x;}. Therefore, the intersection is transversal at both points and, hence,
the intersection of the strict transforms Lg and L is empty.

Remark 3.1. Note that L; N L;; # @ # L; N L;;. Indeed, either L; N L;; consists of x; and
another point x distinct from xi, ..., x¢ or of x; with multiplicity two. In the first case,
L; and L;; intersect in x (or rather in the unique point lying above x), while in the second
case they meet in the point in E; corresponding to the common tangent direction of L;
and L;; at x;.

3.2 Two disjoint lines I Any two disjoint lines are alike, i.e. any two disjoint lines

L,L’ can be completed to a collection of six pairwise disjoint lines E| = L,E), =
L', E%, ..., Eg, which then can be viewed as the exceptional lines of a blow-down of §
to P2

Indeed, by Remark 3.1, we only have to consider the following three cases: (i) L = E|
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and L' = E,, (il) L = Eyand L’ = L,3,and (iii) L = E; and L’ = L. Of course, (i) can be
completed by Ejs, ..., Eg and for (ii) and (iii) use a configuration of the type considered
above already: E] . L] . L23, L24, L25, L26.

Remark 3.2. An elementary counting argument reveals that a smooth cubic surface
contains exactly 216 unordered pairs of disjoint lines.

3.3 Ten lines intersecting a given line For every line L C S there exist exactly ten
further lines intersecting L. Moreover, these ten lines come in pairs {{;, t”l, o ls, f;}
such that every two pairs, say {1, {|} and {£2, £}}, are disjoint, i.e. (£;U€)N(ELUL)) = @.
Furthermore, all triangles L, {;, £; are coplanar, i.e. there exists a plane P? c P3 with
SNP2=LU{uU ¢! and, in particular, {; N £} # @.

According to Section 3.1, we may assume L = Eg. Going through the list, one finds
that indeed Eg intersects only Ljg, Log, L3g, Lag, Lsg and Ly, Ly, L3, La, Ls. We let £; =
Lgand ¢} = L;,i=1,...,5.

Then check that fori # j € {1,...,5},forexamplei =1, j = 2,one has LisNLjs = @,
Lis N L;j = @ (see the arguments in Section 3.1), and L; N L; = @. For the last one use
that, for example, L; N L, consists of the four points x3, . .., xs. Hence, the intersection
is transversal and, therefore, the intersection L; N L, of their strict transforms is empty.
It remains to verify that L, £;, £; are coplanar. For this assume i = 1 and observe that

O(E¢) ® O(Lis) ® O(L1)
O(E) ® (+*0(1) ® O(-E} - E¢)) ® (T"0(2) ® O(- ., E)))
T0B3) @ O(=3_Ej) = O (s,

R

1R

cf. the proof of Proposition 2.7. The implication ¢; N ¢ # @ can be seen more directly
and more geometrically. As an aside, note that the plane containing L, £;, £; is tangent at
the points of intersection of each pair of these three lines.

To prove the existence of the five pairs of lines intersecting L C S one could alterna-
tively use the linear projection ¢: S —=P! from L, see Section 2.4. They occur as the
five singular fibres ¢~!(y;) = £; U L.

Remark 3.3. (i) Each of the coplanar unions LU{;U{ is either a triangle, i.e. it has three
singular points, or consists of three lines all going through one point. This corresponds
to the two possibilities that the line L; and the conic L; intersect transversally in x4 or
with multiplicity two, so that Lig is tangent to L; at xg.

(i1) From the above count, we deduce that every smooth cubic surface admits exactly
45 tritangent planes, i.e. planes that intersect the cubic in the union of three pairwise
distinct lines. The additional 15 constellations not of the above form are L;;, UL;,;, UL
with {if,...,ig} ={1,...,6}.

(iii) It is possible to show that there are nine of the 45 tritangent planes that cut out

1513 1304 isig
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all the 27 lines contained in S. In this sense the union of all lines on a cubic surface is
described as the intersection with a (highly degenerate) surface of degree nine.

(iv) An elementary counting argument shows that a smooth cubic surface contains
exactly 135 pairs of intersecting lines [228, Ch. 1.3]. Equivalently, on a smooth cubic
surface without Eckardt points, see Section 3.8, there exist exactly 135 points that occur
as intersection of two lines contained in the surface.

3.4 Lines generating the Picard group There exist explicit bases of the lattices
Pic(S) =~ I;6 and Og(1)* =~ Eg(—1) that can be expressed as integral linear combi-
nations of the 27 lines.

Let fo, ..., fe denote the standard basis of I, ¢, i.e. f; = —[E;],i = 1,...,6, and fy
corresponds to a line in P2, Then consider a tritangent plane, for example E¢L; L. Its
intersection with S gives the class 3fy + fi + -+ + fs. So, the classes of Ey,..., Eq
together with [Eg] + [L;] + [L;¢] already generate a sublattice of I; ¢ of index three. To
generate all of I; ¢ by lines, observe that (L;.E;) = 1,i = 2,...,6, (L;.E) = 0, and,
therefore, Ly =2fo + 0fi + o + -+ + fo.

Spelling out the comments in the proof of Proposition 1.1.21, a basis of the definite
lattice Os(])L =~ Eﬁ(_l) is then giVCl’l by e = El - Ez, e = E2 - E3,€3 = E3 —E4,65 =
E4 —E5,e6 = E5 —E6, ande4 = E] —E4—E5 +L16.

Remark 3.4. The lattice E¢ has 72 roots which can be written down explicitly in terms
of the above bases, see [158, Sec. 8.2.3] or more explicitly [395, Remark 2.6].

3.5 Two disjoint lines II For any pair of disjoint lines L, L’ there exist exactly five
lines €1, ..., {s meeting both. Moreover, those five lines are pairwise disjoint.

According to Section 3.2, we may assume L = E| and L’ = E;. The lines meeting E
are

L2, Ly3, Ly4, Lis, Lys, Lo, L3, Ly, Ls, Lg
and those meeting E, are
Lyy, L3, Log, Lys, Los, Ly, L3, L4, Ls, Le.

Hence, the ones meeting both lines, E; and E,, are precisely Ly, L3, L4, Ls, Lg, Which
we have seen to be pairwise disjoint already.

This collection of five pairwise disjoint lines is special and not at all like, for ex-
ample, the lines E1, ..., Es. Namely, there is no further line disjoint to all of the lines
Ly, L3, Ly, Ls, Lg. Indeed, the lines E; all intersect at least one of them. The lines L},
j =3,...,6, intersect L;, cf. Remark 3.1. The lines L;;, 2 < i < j, intersect L, and,
again by Remark 3.1, L;, L, also both intersect Lj,. As a consequence of Lemma 2.1,
we obtain the next result.
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Corollary 3.5. Any pair of disjoint lines L,L’ C S gives rise to a blow-down map
S—>LxL =P xP!
contracting exactly the five lines intersecting both lines L and L'. O

There is a very geometric way of describing this blow-down, cf. [50]. Namely, for
any point x € S \ (L U L) the plane xL’ spanned by L’ and x intersects L in exactly one
point u,. Similarly, xL intersects L’ in a unique point «’.. This defines a map

S\LUL)—LXL, xt—(uy,u’),

which can be extended to all of S by replacing xL’ for x € L’ by the tangent plane TS
(which contains L’). Also, in this description one sees that exactly the lines ¢y, ..., ¢s
are contracted. Their images are the points (u;, u;), where £; N L = {u;} and ;N L' = {u}}.
The inverse of the birational map L X L’ > § studied in Example 1.5.12.

3.6 Configuration of lines Consider the configuration
L= [,(S) = {51,...,527 }

of all lines contained in a cubic surface S . By definition, it not only encodes the set of all
lines, but also their intersection numbers (but not, for example, the intersection points
and, in particular, not whether there are triple intersection points), and is independent
of the actual surface S. Alternatively, view £ as the graph with vertices corresponding
to the 27 lines ¢; and with two vertices ¢;, {; connected if the two lines intersect. Its
complement, i.e. the graph with the same set of vertices but with vertices connected
by an edge if and only if they are not connected in L, is the so-called Schldfli graph,
checkout Wikipedia for graphical renderings of it.

Note that if the first six lines ¢j,...,¢s are chosen to be the exceptional lines of
a blow-up S —P2?, ie. &, = Ey,...,0c = Eg, then all the remaining 21 lines are
uniquely determined. For example, L;, is the unique line that intersects £; and ¢, but
no ¢s,...,¢ and L; is the unique line that intersects {5, ..., {s but not £;. Moreover,
according to Lemma 2.1, any subset {{;,...,{;} of six pairwise disjoint lines can be
realized as the exceptional lines of a blow-up S —P?. In other words, for any two
choices €1, ..., s and €1, ..., £ of six pairwise disjoint lines, there exists a unique auto-
morphism g: £— L of the configuration with g({;) = ;. Thus, choosing six pairwise
disjoint lines €1, ..., {s is equivalent to giving an element in Aut(L£). This allows one to
compute the order

|Aut(L£)| =27-16-10-6-2 =27 -3*.5 = 51.840.

Indeed, there are 27 choices for E;, then 16 choices for E,, etc. Of course, it is no
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coincidence that this number is the order of the Weyl group W(Ej), cf. Corollary 1.14
and Remark 3.8.
The configuration of lines presented by the entries of the matrix

E, E, E; E, Es Eg
Li L Ly Ly Ls Lg

is what is called a Schldifli double six. It has the property that each of the 12 lines
intersects exactly those lines in the matrix that are neither contained in the same row nor
in the same column. As straightforward count reveals that there are exactly 30 points
that occur as intersection points of two of the lines in a Schléfli double six.

Example 3.6. There exist 36 Schléfli double sixes in each smooth cubic surface, see
[158, Ch.9.1].

It is a classical fact that the choice of a double six of lines in P? contained in a
cubic surface S determines the surface uniquely. In fact, for any given five skew lines
1, ...,0sin P? and one, say ¢, that intersects them all (think of E1, ..., Es and L), there
exists a unique cubic surface containing the six lines as part of a double six. Indeed, the
curve D = € U |J¢; satisfies B%(Op(3)) = 19, which together with #°(P?, O(3)) = 20
and using the short exact sequence 0 —Zp(3) — Op3(3) — Op(3) —= 0 essentially
implies the claim. See [230, Sec. 25] or [268] for further details.

In Section 1.2.5 we have seen that the monodromy group of the family of all smooth
cubics is the Weyl group W(Ey), see also Corollary 1.14. As the discriminant divisor has
degree 32, see Theorem 1.2.2, the Weyl group is generated by 32 reflections. Coxeter
[129] showed that W(E) can also be generated by six reflections and one transformation
that is given by interchanging the two rows of a double six.

3.7 Lines versus bitangents for double covers Let us now make use of the descrip-
tion of a cubic surface S as a double cover of P2, cf. Section 2.3. We fix a pointu € S
not contained in any of the lines, consider the blow-up o: § = Bl,(S)—S, and let

¢: S =Bl,(S)—P?

be the projection onto a generic plane. We denote the exceptional line of the blow-up by
E and the ramification curve by D := ¢(C) c P2, a smooth quartic curve. We will now
establish the natural bijection between the 28 bitangent lines of D and the 27 lines in S
together with E:

{{’C]P2| bitangents to D }<—{{y,..., {7 C S | lines JU{ E }. 3.1

First, observe that each line £; C S, simultaneously considered as a curve in S, satis-
fies 1 = (£.05(1)) = (£;.¢*Op2(1)). Hence, £; == ¢(£;) € P? is a line and ¢: £; —>{; is
an isomorphism. Similarly, (E.¢*Op(1)) = 1 and, therefore, E —>E = ¢(E) C P? is
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also a line. However, lines in P?> whose pre-images under ¢ split off a copy of the line
cannot intersect D transversally at any point. Hence, all the lines £; and E are bitangent
to D.? Thus, (3.1) follows from the next result.?

Lemma 3.7. Let D C P? be a smooth quartic curve over an algebraically closed field k
with char(k) # 2. Then D admits exactly 28 bitangent lines.

Proof As afirst step, one observes that wp =~ Opz(1)|p. Therefore, a bitangent through
x,y € D (or a hyperflex through x = y € D) corresponds to an invertible sheaf N €
Pic*(D) with H(D, N) # 0 and N? ~ wp,. Here, we tacitly use the fact that a line bundle
N with N? ~ wp, satisfies i°(N) < 1.

The number of square roots of wp, called theta characteristics, is of course 226 =
64. However, only 28 of them are effective. To deduce this from the general theory of
theta characteristics one can use that on a smooth projective curve of genus g there are
exactly 2871 - (28 + 1) even and 287! - (2¢ — 1) odd theta characteristics, see [26, 358]. By
definition, whether a theta characteristic N is even or odd is determined by the parity of
hO(N). Therefore, in this case a theta characteristics is effective if and only if it is odd.
Hence, there are exactly 22 - (23 — 1) = 28 of them.

Alternatively, one could use the Pliicker formula for smooth curves C C P? with only
bitangents and simple flexes. It turns out that there exist 24 flexes and 28 bitangents, see
[218, Sec. II]. ]

As ¢71(£) —=; is of degree two, ¢~ (£;) = £; U ] with ¢: £, —>{;. The two curves
¢; and £ intersect in the pre-image of the points of contact £; N D. Note that ¢! does
not correspond to a line in S, as two lines in S intersect in at most one point and there
transversally. Instead, (o°({}).Os(1)) = 2 and (£.E) = 1,1.e. u € S is a smooth point of
the curve o(£?). Indeed, ¢; U €] = ¢~'(£;) is a curve in the linear system of ¢*Op(1) =
0*Os(1) ® O(=E). Hence, 2 = ({; U £.¢"Op2(1)) = 1 + (£,.0"Os (1) ® O(-E)). As £ is
not a line and, hence, (£7.05(1)) > 1, one has (£;.E) > 1 and in fact (£,.E) = 1, because
the two lines ¢({}) = {; and ¢(E) = E intersect in one point only and there transversally.

For example, for the line L, there exists a unique conic Q through x3, x4, x5, x¢ and
7(u) that intersects Ly, in two points distinct from xy, x,. Here, as before, we view S as
the blow-up 7: § —=P? in six points xi,...,xs € P2. The strict transform Q c § of
Q is contained in the linear system of o (7*O(2) ® O(— Z#],z E;)) ® O(=E). This line

2 By definition, a bitangent of D is a line in P? that intersects D in two points x, y with multiplicity (at least)
two. The case x = y is allowed, in which the bitangent has multiplicity four at this point. This is sometimes
also called a hyperflex. The locus of smooth quartic curves with a hyperflex is a divisor in the moduli space
of curves of genus three, cf. [132, 239].

The 27 lines contained on a cubic surfaces S c P3 and the 28 bitangent lines to plane quartic curve D C P?
are part of one of Arnold’s trinity, joined by the 120 tritangent planes to a canonical curve of genus four
C C P3. The latter will naturally come up again as curves of lines contained in a cubic fourfold passing
through a fixed point. As in the proof here, they are accounted for by the odd theta characteristics on C.

3
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bundle is indeed isomorphic to ¢*Op2(1) ® O(=Ly,), cf. (2.1), and, hence, L, U O =
¢ '(¢(L12)). Note that Q is a (—1)-curve in S, but not its image in S .

Remark 3.8. For the universal family D — U := |Op2(4)|sm of smooth quartic curves
in P2, the relative family of bitangents

B(D/U)—U

is an étale map of degree 28. Its Galois group or, equivalently, its monodromy group
Im(rr; (U) —= Sy3) is isomorphic to Sp(Z/2Z), which is of order 288-7! = 2°-3*.5.7,
see [218, Sec. 1I:4]. Compare this to Corollary 1.14 and the discussion in Section 1.2.5.
For example, to compute the monodromy group of the 27 lines on the universal family
of smooth cubic surfaces one has to consider the stabilizer of one of the 28 bitangents,
which amounts to fixing the exceptional curve blown-down to the point u € S. Hence,
the order is 288 - 7!/28 = 27 - 3* . 5, which confirms Corollary 1.14.

For a short historic account of the interplay between lines on cubic surfaces and
bitangents to quartic curves we also recommend [462, Ch. 7].

3.8 Eckardt points A point x € S in a smooth cubic surface S is called an Eckardt
point if the tangent plane at x € S intersects S in three lines through x or, equivalently,
if x is contained in three lines, cf. Section 3.3. How many Eckardt points can a smooth
cubic surface have? Since there exist only 45 tritangent planes, see Remark 3.3, there are
no more than 45 Eckardt points. In fact, by a result of Hirschfeld [232], in characteristic
two this maximum is attained. However, in any other characteristic the maximum is 18,
see below.

~ )

A

X6

Lis

How some Eckardt points arise

In Remark 3.3 we have seen examples of Eckardt points, namely three lines con-
sisting of an exceptional line Eg, the strict transform L;, i # 6, of the conic L;, which
contains xg, and the strict transform L of the line L;s tangent to L; (at xg). As for each i
there exist only two lines through x; tangent to L; at some point, each conic L; will give
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rise to at most two Eckardt points. So altogether, there exist at most 12 Eckardt points
of this type.

However, Eckardt points may also arise in a different way namely as the triple inter-
section L;,;, N Ly, N Ly, with {iy, ..., i¢} = {1,...,6}. Generically, such triple intersec-
tion would be empty, but star shaped configuration are of course possible.* Note that in
this case the three lines L; ;,, L;,;,, and L;;, are not coplanar.

For generic choices of points xi,. .., xs € P?> one does not expect any of these two
possibilities to occur. Namely, neither will any of the conics L; be tangent to any line
L;; nor will the line configuration show stars.

The following is a result of Eckardt [169]. Further numbers of Eckardt points can be
realized over finite fields [68, 233].

Proposition 3.9. The number of Eckardt points on a cubic surface S over an alge-
braically closed field of characteristic zero is 0,1,2,3,4,6,9, 10, or 18.

Remark 3.10. First we want to mention the classical result that an Eckardt point of
a cubic surface S induces a non-trivial automorphism of order two, see [158, Prop.
9.1.13].

The loci Hy C |Op3(3)|sm of smooth cubic surfaces with at least k Eckardt points have
been studied by Nguyen [455] (see also the author’s thesis) and later in more detail by
Keneshlou [271]. They are invariant under the action of PGL(4) and, thus, determine
closed subschemes

Hk = H;/PGL&4)c M = M3,2

of the four-dimensional moduli space of smooth cubic surfaces, see below. For example,
it turns out that A; ¢ M is an irreducible divisor, so of dimension three, and that A, is
zero-dimensional for £ > 10. Note that by the above, Aut(S) # {1} forall § € H,.

This is of course compatible with the above proposition. As soon as the surface §
contains more than 10 Eckardt points, it contains 18 Eckardt points.

Moreover, Ho consists of exactly two points, corresponding to the Clebsch surface,
see Example 2.15, and the Fermat cubic. The latter admits 18 Eckardt points and is the
only point in H;; = --- = H;g. We refer to [158] for more details.

3.9 Cubic surfaces and lines over other fields Cubic surfaces have been studied
over other fields, not algebraically closed ones or of positive characteristic. Cubic sur-
faces over the field of real numbers have received particular and sometimes artistic
attention [263, 491].

A classical result of Segre [420] states that the number Ng of lines contained in a
4 1 would expect some combinatorial argument to show that at most six points can occur in this way. How-

ever, the next result may be valid without it. A priori it could happen that whenever there are more stars in
the line configuration associated with the six points, then fewer conics L; are tangent to those lines.
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smooth cubic surface S c P3 over an arbitrary field kis Ny =0, 1,2,3,5,7,9, 15, or 27
and all those numbers are realized by smooth cubic surfaces over k = Q. For a modern
account of the proof see [350]. Kass and Wickelgren [269] developed a motivic count
of lines over arbitrary fields.

Schléfli [417] had proved earlier that for k = R only Ny = 3,7, 15, or 27 are possible.
In the 19th century Clebsch [119], Klein [277], Schléfli [417], Cayley [113], and others
were interested in actually constructing real cubic surfaces exhibiting all 27 lines in an
instructive and appealing way, cf. [228, §20]. The plaster model of the Clebsch diagonal
surface, see Example 2.15, can be found in many mathematics department around the
world.

4 Moduli space

In higher dimensions, moduli spaces of cubic hypersurfaces are geometrically not com-
pletely understood. But the situation is much better for cubic surfaces. In this case, not
only can the moduli space, as a quasi-projective GIT quotient, be described quite ex-
plicitly, but it also has been investigated as an arithmetic quotient of a period domain.
We outline the main features but refer to the original literature for more details. It is
fascinating that a classical object like the moduli space of cubic surfaces has been a
topic of recent and quite beautiful research.

4.1 GIT desription Recall from Section 3.1.3 that the moduli space of smooth cubic
surfaces, say over an algebraically closed field of characteristic zero, is constructed as
the quotient

M = M3, = |Op:(3)|sm //SL(4),

which is an open dense subset of the GIT quotient |Ops(3)|*//SL(4) of the open sub-
set of all semi-stable cubic surfaces. The latter has been introduced as the projective
scheme Proj(k[a;]3“*). Here, the variables a;, with I = (ip,...,i3) and Y i; = 3, are
the universal coeflicients of the universal cubic hypersurface, see Section 1.2.1.

Note that, as dim|Op3(3)] = 19 and dim SL(4) = 15, the moduli spaces M, is of
dimension four.

The following result is a highlight of invariant theory in the 19th century. The art of
computing rings of invariant polynomials has been almost forgotten and, indeed, it is
typically quite difficult to perform in concrete situations. Salmon’s original computation
[416] of the ring of invariant quaternary cubic polynomials is nearly incomprehensible
for the modern reader, but it was rewritten by Beklemishev [62] and given a detailed
exposition with minor corrections by Reinecke [400].
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Theorem 4.1 (Salmon). The invariant ring S = k[a;]"® is generated by polynomi-
als I3, Lig, g, I3n, 1yo, I1oo € kla;] of degree deg(l;) = d. Furthermore, the first five
of these polynomials are algebraically independent, while for the last one we have
Iy € klis, Ls, I, I3z, Luo].

For a cubic surfaces in Sylvester form (2.3), the polynomials I, are explicitly given
as Ig = O'i - 40’30'5, 116 = 0’10’2, 124 = 0'40'2, [32 = 0'20'2, 14() = 0’2, and 1100 =
o-ésv. Here, o; are the elementary symmetric functions in the coefficients a; of (2.3) and
v =T]. j(a ; — a;) is the Vandermonde determinant. Eventually, the ring of invariants
k[a;15%® is computed as a subring of the ring of invariants k[ay, ...,a4]" on the affine
section of all cubics in Sylvester form under a finite group H.

Corollary 4.2. The moduli space of semi-stable cubic surfaces is naturally isomorphic
to the four-dimensional weighted projective space P(1,2,3,4,5), so

|Ops (3)I*°//SL(4) ~ P(1,2,3,4,5).

Proof Salmon’s theorem shows that the invariant ring S := k[a;]5"® is generated by
algebraically independent polynomials Ig, 116, I24, 132, 149 and a further polynomial /¢
with I7, € klIs, I1, D4, I32, Iso). Since 8 + 100, one finds that the twisted ring S® is
isomorphic to k[Ig, I16, I24, I32, I49]. This proves the assertion

|08 (3)[* //SL(4) = Proj(S) = Proj(S ™)
=~ Proj(k[Ig, 116, 24, 132, 140])

=~ Proj(k[y1 : y2 : y3 : ¥4 : y5])
= P(lazs 3949 5)1

where the y; are algebraically independent variables of degree i. The last isomorphism
is simply the definition of the weighted projective space P(1, 2, 3,4, 5). O

As seen by the above description as a weighted projective space, the GIT compacti-
fication |Op3(3)**//SL(4) of the moduli space M3, of smooth cubic surfaces has only
finite quotient singularities. In higher dimensions, this is no longer the case.

According to Section 1.2.3, the discriminant A = A3, is an invariant homogeneous
polynomial of degree 32 in the coefficients a; of a cubic surface S = V(3_ a;x!). Thus,
A can be written in terms of Ig, I, Ir4, and I3, which was already done by Salmon
[415] with minor corrections by Edge [171], see also [133, Sec. 6.4].

For all practical purposes, one can in fact replace I3, as a coordinate by the discrim-
inant such that |O(3)|sm//SL(4) € P(1,2,3,4,5) = Proj(k[yi, Y2, 3, V4, ¥s]) is the open
complement of the hyperplane V(y,) = P(1,2,3,5).

The hypersurface in P(1,2,3,4,5) defined by I;op parametrizes generically smooth
cubic surfaces with exactly one Eckardt point, cf. Remark 3.10 and [158, Exa. 9.1.3 &
Ch. 9.4.5].
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Corollary 4.3. The moduli space of smooth cubic surfaces M3, is isomorphic to the
quotient A*/u,, where the cyclic group s = {t | t* = 1) acts by t - (a1, a2, a3,a4) =
(tay, tzag, l36l3, tay). O

From the above one deduces that M3, is smooth outside the origin. The surface cor-
responding to the only singularity of M3, was described by Naruki [370], see also [157,
Ch. 10.7]. The other singular points of P(1,2,3,4,5) all correspond to singular cubic
surfaces, see [133, Sec. 6.9 & 6.10]. Naruki’s description [370] of the moduli space
was used by Colombo and van Geemen [124] to describe the Chow group of a certain
moduli space of marked cubic surfaces.

Warning: The moduli stack M3, of smooth cubic surfaces is not isomorphic to the
natural Deligne—-Mumford stack with P(1,2, 3,4, 5) as underlying coarse moduli space.
Indeed, there is a divisor of smooth cubic surfaces with non-trivial automorphisms, see
Remark 3.10, while the weighted projective space as non-trivial stabilizers only in the
origin of the open subset M3, =~ A4/,u4 cc P(1,2,3,4,5) and its complement.

Remark 4.4. Dardanelli and van Geemen [133] exploit a classical construction to de-
scribe the moduli space of cubic surfaces. If a cubic surface S c P? is given by the cu-
bic polynomial F(xo, X1, X2, x3), then the determinant of the Hessian (9;0;F) describes a
quartic surface T C P3. For a generic cubic surface, the Hessian is nodal and, therefore,
its minimal resolution is a K3 surface, the transcendental and Picard lattices of which
depend on the geometry of the cubic surface S. The approach was pursued further by
Koike [280].

4.2 Stable cubic surfaces After having described the GIT quotient |O(3)[** //SL(4),
one wants to know, of course, what it parametrizes. We know that all smooth cubic
surfaces define stable points in |O(3)), but can one also understand all semi-stable cubic
surfaces in analogy to the case of plane cubic curves? See Section 3.2.2 for the latter.
This is a classical result already discussed by Hilbert [229], see also [157, 361] for the
statement and [62, 356, 400] for complete proofs.

Theorem 4.5 (Hilbert). Let S c P3 be a cubic surface.

(1) The surface S is stable if and only if S is nodal, i.e. all its singularities are ordinary
double points.

(ii) The surface S is semi-stable if and only if every singularity of S is either an ordi-
nary double point or an A,-singularity.®

We will not go into the details of the proof, but let us at least indicate how to use the

5 An A,-singularity, also called a cusp, is a singularity that locally analytically is given by xg + x% + xg.
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Hilbert—-Mumford criterion, see Theorem 3.1.10, to prove that cubic surfaces S C P3
with at most ordinary double points as singularities are stable.

Assume that S := V(F) c P? is integral and defines a point x € |(O(3)| that is not sta-
ble, i.e. such that there exists a non-trivial 1: G,, — SL(4) with u(x, 1) < 0. After a lin-
ear coordinate change we may assume that the action is diagonal and the induced action
on the linear coordinates is given by A(f)(x;) = ¢/ x; with ry < -+ < r3 and > rj=0.
Then, on a cubic polynomial F = >_ a;x! the action is given by A()(F) = > a;tx!,
where I = (io,...,i3), > i; = 3,and rI := ) r;i;. By an elementary computation, see
e.g. [54, Prop. 6.5], one shows that u(x, 2) < 0 implies that [1 : 0: 0: 0] € § is either a
non-ordinary double point or a cusp.

Remark 4.6. (i) In fact, it turns out that all semi-stable cubic surfaces that are not stable
give the same point in |Ops (3)[*° //SL(4). More precisely, the only semi-stable non-stable
cubic surface with a closed orbit is the surface V(xg — X1 - X1 - Xx2) up to coordinate change,
see [356, Thm. 7.24].

(i1) Also recall from Remark 2.16 and Remark 1.5.17, that the maximal number of or-
dinary double points of an otherwise smooth cubic surface is four. The maximal number
four is only achieved by the Cayley cubic which with the above convention corresponds
to a point of the form [yp : y; : y3 : 1 : ys] € P(1,2,3,4,5). The explicit computation of
the coordinates is easy but not particularly enlightening.

(iii) The loci of semi-stable cubic surfaces with a given number of nodes and cusps
has been investigated by Nguyen [456]. For example, the maximal number of cusps is
three and surfaces with one node and two cusps can be realized as a specialization of a
cubic with two cusps or alternatively of a cubic with two nodes and one cusp.

4.3 Period description via cubic threefolds The Hodge structure of a smooth cubic
surface S carries no information. Indeed, H*(S,Z) =~ NS(S) is independent of the par-
ticular surface S. Nevertheless, a simple trick allows one to associate with S a Hodge
structure of weight one which knows everything about S. This beautiful idea was first
exploited by Allcock, Carlson, and Toledo [14] and later further explored by Dolgachev,
van Geemen, and Kondd [160], Kudla and Rapoport [289], Achter [2], Zheng [499],
and others. Eventually, it leads to a description of the moduli space of smooth cubic
surfaces as an open subset of an arithmetic ball quotient. We will use results that will be
explained only in Section 5.4. So the reader might want to skip this section and come
back to it later. Similar ideas allowing to pass from cubic threefolds to cubic fourfolds
will be discussed in Section 6.6.1.

We follow the construction in Section 1.5.6 and consider the cyclic triple cover
Y—P'>S

branched over the smooth cubic surface S c P?. We view the Hodge structure H 3(Y,2)
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as naturally associated with §. It comes with the additional structure of a Hodge iso-
metry «: H3(Y,Z)—> H3(Y,Z) of order three induced by the natural covering action of
p = e¥3 on Y. In other words, H>(Y,Z) is a free Z[p]-module of rank five. Note that ¢
acts as a Hodge isometry.

Exercise 4.7. Assume f: § — S’ is an isomorphism between two smooth cubic sur-
faces. Show that there exists an equivariant isomorphism f: ¥ —> ¥’ between their
associated cubic threefolds, and hence a Hodge isometry H3(Y,Z) == HXY',Z) of
Z[p]-modules. The isomorphism f is canonical up to the action of p and restricts to

fls = f

The following discussion is based on some basic linear algebra which we spell out
for the reader’s convenience. First recall that the primitive third root of unity p satisfies
1+p+p*=0andp® = p~! = p. Then the ring of Eisenstein integers Z[p] C C contains
0 := p—p* = V=3 = i3, which can also be written as § = 2p + 1. Its complex
conjugate satisfies = —6. Also recall that the units in Z[p] are 1, +p, and +p*. In
other words, Z[p]" = (—p) = us.

Note that for ¢ the analogous equation id + ¢ + (> = 0 holds. As the invariant part of
its action on H3(Y,C) is H*(P?,C) = 0, its eigenspace decomposition has the form

H(Y,C)=H,® Hy = (H>' ® H") ® (Hj;1 o H'?), 4.1)

p*

where the two eigenspaces are complex conjugates of each other and both are of dimen-
sion five.

Abusing the notation, we introduce another endomorphism of A 3(Y,Z)as 0 :=1—1
2: + id. For its action we write 6(a), which should not be confused with the simple
multiplication 6 - « for classes @ € H>(Y,C). Observe that (4.1) is also the eigenspace
decomposition for the action of 6, more precisely 8(«) = 6-« for @ € H, and 6(a) = —6-«
for @ € H,». In particular, 6*(e) = 6* - @ = =3a for all classes @ € H*(Y,Z).

The endomorphism ¢ is a symplectic isometry, i.e. it satisfies (¢«(@).t(8)) = (a.B) or,
equivalently, ((@).8) = (a.Lz(ﬂ)), which for 6 becomes (6(@).8) = —(a.0(B)).

To start, we will only use that I := H3(Y,Z) is a unimodular symplectic lattice with
an action of Z[p] enjoying the above properties, the rank is of no importance for now.
Then, following [14, §4], cf. [54, §3], one defines the pairing

(6(a).B) + 6 - (a.B)
7 ,

2:

h: T xT—=Zlpl, h(a,B) =

for which one proves a number of easy facts.
o The first thing to prove is that 4 really takes values in Z[p]. This is left to the reader.
e Next, one checks that

ha, B) = h(B, @).
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Indeed, (6(a).8)+6-(a.B) = —(B.6(a)—6-(B.c) = (6(B).)+0-(B.a) = (O(B).a) + 6 - (B.«x).
e The form A( , ) is Z[p]-linear in the first component, i.e. h(«(@),B) = p - h(a,B) or,
equivalently,

h(@(a@),B) = 0 h(a,B).
Indeed, (*(@).8) + 0 - (6(@)B) = (8> - a.B) + 8- (0(@).B) =0 (8- (a.pB) + (6(a)B)).

Altogether, we now have proved that £ is a Z[p]-hermitian form, i.e. its bilinear ex-
tension under Z[p] C C is a hermitian form on the complex vector space I' ®z,) C of
dimension (1/2) - rkz(I).

¢ The eigenspaces H,, and H,» are isotropic with respect to the C-linear extension
of the symplectic pairing ( . ) and, therefore, also with respect to h. For example, if
o, € Hy,then - (a.f) = (0-ap) = (0(a)p) = —(a.08) = —(a.0-B) = -0 (ap) and
hence (a.() = 0. For the second part use that the endomorphism 6 preserves H,,.

e Consider the Z[p]-linear composition j: I — I' ®; C—s= H,,. If the complex
vector space H,, is endowed with the hermitian form

W(y,8):=0-(y.8) =iV3-(y.5),

then jis isometric with respect to 2 on I and 4’ on H,,. Indeed, since the two eigenspaces
H, and H,; are h-isotropic and @ = j(a) + j(@), etc., we have h(a,8) = h(j(@), j(B)) +
h(j(@), j(B) = 6-(j(@).j(B), where we use that 8(j(a)) = 6- j(a) and 8(j(@)) = 6" j(a).

For dimension reasons, the linear extension gives rise to a hermitian isomorphism
I' ®z,) C = H,, which in our geometric setting reads

H*(Y,Z) ®zp) C—==H*(Y),.

The next step is not a purely linear algebra statement, it needs the cubic threefold in
the background.

e The decomposition H, = Hg’l @ Hé’z is A’-orthogonal. Furthermore, Hf;l is of
dimension four and positive definite with respect to /', while Hll;z is an h’-negative
line. The signs are deduced from a local computation showing that, for example, for
a =dzi AdzyANdzz onehasi-aAa@ = i-dzy AdZ) Adzy AdZ, Adzz AdZz which is positive
when integrated over any disk. The dimensions are easily computed by applying a result
of Griffiths, see Lemma 1.4.23 and Example 1.4.24: The residue gives an isomorphism
H>'(Y) ~ H°(P*, O(1)) which is compatible with the action of p. Since the invariant
part of the right hand side is of dimension four, this shows dim Hg’l =4. AsdimH, =5,
it also proves dim H};z =1

Exercise 4.8. As a continuation of Exercise 4.7, show that any automorphism of a
smooth cubic surface S for which the induced automorphism of H*(Y,Z) is given by
multiplication by a unit in Z[p] is itself the identity. This corresponds to the statement
that automorphisms of a framed cubic surface are trivial, see [54, Cor. 3.4].
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o There exists an isometry
(H(Y.Z),h) = Z[p]*' = (Z[p]*, h*")

of Z[p]-modules such that under its C-linear extension H>(Y,Z) ®z(p C = C® the her-
mitian form A corresponds to the standard form —xyyy + Z?zl X;yi, i.e. to C*!. This
relies on the fact that % is a unimodular Z[p]-lattice and some general classification re-
sults for those. We refer to [54, Prop. 2.6] for details and references. In fact, with minor
modifications, everything that follows would also work if the isomorphism type of the
Z|p]-lattice were something else, as long as the signature is unchanged.

Recall from Remark 1.5.22 that the generic cubic surface S is uniquely determined
by its associated cubic threefold Y. Combined with the global Torelli theorem for cu-
bic threefolds, see Section 5.4.2, this immediately proves already the following global
Torelli type theorem [14] for generic smooth cubic surfaces.

Theorem 4.9 (Allcock—Carlson-Toledo). For two smooth cubic surfaces S,S’ c P
and their associated cubic threefolds Y, Y’ C P* the following conditions are equivalent:

(i) There exists an isomorphism S = §’.
(ii) There exists a Z[pl-equivariant Hodge isometry H>(Y,Z) ~ H(Y’, Z).
(iii) There exists a Z[pl-equivariant isomorphism (J(Y),E) =~ (J(Y'),Z") of polarized
abelian varieties.

The proof of the full result uses moduli spaces, period domains, and period maps. We
briefly outline the argument. If M, := M3, = U//PGL(4) with U = |Op3(3)|sm denotes
the moduli space of smooth cubic surfaces, then one defines the moduli space of framed
smooth cubic surfaces A712 =U //PGL(4) as the quotient of the space

U:=1(S,9)|S €Ug: H(Y,Z)=>Z[p]*" }

by the natural action of PGL(4), which according to Exercise 4.8 is free. Here, Y is the
cubic threefold associated with S and ¢ is an isometry of the two hermitian Z[p]-lattices
up to the action of yg =~ Z[p]*.

The period map for smooth cubic surfaces is the holomorphic map

P: My—=B* c PCHY, (S, 9)—=@(H*'(Y),) (4.2)

that sends a framed smooth cubic surface to the hyperplane given by go(Hz’l(Y)p) C
Z[p]*! ®zy,) C ~ C*!. Here, the open subset B* parametrizes all positive hyperplanes.
It is naturally identified (anti-holomorphically) with the complex four-dimensional ball
{z | Y|zl < 1} ¢ C* Indeed, a positive hyperplane H c C*! is determined by
its hermitian orthogonal, which is a negative line spanned by a vector z (unique up to
scaling) with Z?:l |zi* < |zof?. After normalizing zp = 1, the latter becomes » lzi]> < 1.
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The period map is compatible with the action of the discrete projective unitary group
PU := U(Z[p]*")/us on both sides and thus descends to the period map

P: M,—=PU \ B~ 4.3)

The key observation is that with any point in B* one can associate a point in the
five-dimensional upper half plane Hs. In terms of Hodge structures of weight one, it
is described by sending a positive hyperplane H ¢ C*! to H @ H*+ c C'°, where the
orthogonal complement is taken with respect to the hermitian structure. This causes
the map B* — Hj to depend holomorphically on H. Since for H = HZ’I(Y),, one has
H' = (H{l)f)l = H*!(Y),» and hence H®H* = H>'(Y), this gives rise to a commutative
diagram

PU \ B*

P

M, / \

\ M3/

Here, P3: M3 —=As ~ Sp(10,Z) \ Hs is the period map for cubic threefolds that
sends a smooth cubic threefold Y to its intermediate Jacobian J(Y). The global Torelli
theorem proves that this map is closed embedding, see Example 3.3.4 and Section 5.2.
Since M, — M3, sending S to the associated triple cover ¥ —=P3, is generically
injective, cf. Remark 1.5.22, the same holds true for the composition M, —Sp(10,Z)\
Hs and hence for (4.3). On the other hand, a version of the infinitesimal Torelli theorem
implies that (4.2) is unramified, i.e. its tangent maps are injective. Since both, M, and
B* are smooth of dimension four, one finds that (4.2) is a local isomorphism. Altogether

this proves that (4.3) is an open embedding of complex analytic spaces or, by applying
Baily—Borel, of quasi-projective varieties.

Sp(10,Z) \ Hs

In fact, instead of working with the coarse moduli scheme M, of smooth cubic sur-
faces, one can refine the above discussion to work on the level of stacks. Again the
period map defines an open embedding of smooth analytic Deligne—-Mumford stacks

M, & [PU\ B*],

see Section 3.1.6. The crucial observation here is a result by Zheng [499, Prop. 6.1]
proving that the natural map that associates with an automorphism of a cubic surface
S an automorphism of the corresponding triple cover ¥ —=P3 and hence an automor-
phism of its intermediate Jacobian induces an isomorphism

Aut(S ) —>Aut(J(Y), 1)/ .

Here, Aut(J(Y),¢) is the group of polarized automorphisms commuting with the action
of the covering endomorphism ¢.
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Remark 4.10. The preceding discussion is complemented by the description of the
image of (4.3). According to Allcock, Carlson, and Toledo [14], see also Beauville’s
exposition [54], one has

P: M, ——PU\ (B*\ H).

Here, H := |J&* is the set of all hyperplanes H c C*! containing some element
§ € Z[p]*! with h*1(6.6) = 1. It turns out that all such classes ¢ are contained in the
same orbit of the U(Z[p]“’l)-action, so that M, is isomorphic to the complement of an
irreducible divisor PU \ H c PU \ B*.

(i) To show that P(M,) is contained in the complement of | J §*, observe first that for
a class § € H3(Y,Z) with j(6) € H"(Y), the map C—= H"2(Y), 1 j(6) defines a
morphism

E, = C/Z[p]l—=J(Y) = H*(Y)/H (Y, Z). (4.4)

By Exercise 5.4.8, the intermediate Jacobian J(Y) is an irreducible principally polar-
ized abelian variety and, in particular, it cannot split off the elliptic curve E, with its
canonical principal polarization. Thus, (4.4) cannot respect the principal polarizations.
Since the principal polarizations on the two sides are given by the intersection pairing
on H'(E,,Z) respectively H>(Y,Z), the morphism (4.4) is polarized if and only if the
images 6,1(6) € H*(Y,Z) of 1,p € Z[p] = Hl(Ep,Z) satisfy (6..(6)) = —1. The latter is
equivalent to 0 - (j(6).j(6)) = (0> = p) - (j(6).j(6)) = (j(6)-j(@)) + (j(9).ju(6)) = ~1.
A computation reveals that 4(5,5) = 1 is equivalent to 8 - (j(9).j(6)) = 1, which shows
that for a smooth cubic surface S the associated cubic threefold Y does not admit a class
8 € H3(Y,Z) with j(@) € H"*(Y), and h(3,5) = 1.

(i1) The other inclusion is more subtle, see [54, §7] for a detailed exposition or the
original [14, §9]. For this the period map has to be extended to an isomorphism of the
stable locus

M; = |0z (3)lsm/PGL(4) C |0 (3)*//PGL(4) —— PU \ B*
and in fact to an isomorphism
|Ozs(3)[** //PGL(4) —— PU \ B*

of the projective moduli space of all semi-stable cubic surfaces with the Baily—Borel
compactification. This makes use of the description of all stable and semi-stable cubic
surfaces as outlined in the previous section.

For a comparison of various natural compactifications of the moduli space of smooth
cubic surfaces see Zhang’s thesis [498] or the recent article [108].
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Remark 4.11. Another approach to a period description of the moduli space of cubic
surfaces was proposed by Dolgachev, van Geemen and Kondd [160]. Instead of associ-
ating with a cubic surface S C P? a cubic threefold Y — P?, they consider a K3 surface
T obtained as the minimal resolution of the double plane 7 —s=P? branched over the
curve defined by x; - (xg - Fo(xg, x1) + F5(xg, x1)), see Remark 2.12. Here, F5 defines the
discriminant divisor of the quadric fibration ¢: S —=P! from a chosen line L C S and
F, describes the branch locus of the degree two morphism ¢: L—P!.

In terms of Hodge structures, the difference between the two approaches is that the
one by Allcock, Carlson, and Toledo uses Hodge structures of weight one, while the one
by Dolgachev, van Geemen, and Kondd works with Hodge structures of weight two. A
detailed period description of the moduli space of all elliptic K3 surfaces with a section,
can be found in [160, §6]. The final results describes the moduli space of smooth cubic
surfaces again as an open subset of a ball quotient.
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Cubic threefolds

This chapter is devoted to cubic hypersurfaces ¥ ¢ P(V) ~ P* of dimension three. We
will be mostly interested in smooth ones, but (mildly) singular ones will also make an
appearance. Cubic threefolds and their Fano surfaces of lines have a long and distin-
guished history in algebraic geometry, going back to the Italian school, especially Gino
Fano [177], and to the landmark article of Clemens and Griffiths [120]. The latter proves
irrationality of all smooth cubic threefolds and introduces the intermediate Jacobian as
an effective tool in complex algebraic geometry. Cubic threefolds have also served as a
testing ground for the Weil conjectures already in [81] and their geometry has been in-
vestigated in detail in the series of papers of Beauville [42, 43], Tyurin [446, 447, 448],
and Murre [364, 365].

Before getting started, we collect the basic facts on cubic threefolds that follow from
the general theory as presented in previous chapters. We will typically work over C.

0.1 Invariants of cubic threefolds The canonical bundle of a smooth cubic threefold
Y ¢ P* = P(V) is easily computed as wy ~ Oy(—2), which is the square of the dual of
the ample generator of Pic(Y) =~ Z - Oy(1), see Lemma 1.1.6 and Corollary 1.1.9. The
non-trivial Betti numbers of Y are

bo(Y) = by(Y) = ba(Y) = b(Y) = 1, and b3(Y) = 10

and, therefore, its Euler number is e(Y) = —6, see Section 1.1.3. For the even Betti
numbers one can be more precise:

H>(Y,Z)~7Z-h and HYY,Z) =Z- (h*/3),

where £ is the restriction of the hyperplane class. Note that 42/3 is an integral algebraic
class, see Remark 1.1.3. Furthermore, the middle degree Hodge numbers are

WOY) = h%3(Y) = 0 and K>'(Y) = K2 (Y) = 5.

205
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The linear system of all cubic threefolds is |Op+(3)] =~ P3* and the moduli space
of smooth cubic threefolds is of dimension ten, see Section 1.1.2. Furthermore, the
universal deformation space Def(Y) of a smooth cubic threefold is smooth of dimension
ten. More precisely, dim H'(Y, Ty) = 10 and H*(¥, 7y) = 0, see Remark 1.3.13.

0.2 Invariants of their Fano variety As for cubic surfaces and maybe even more so,
the geometry of lines on cubic threefolds is particularly rich and interesting. In dimen-
sion three however, every point is contained in a line and a generic point is contained in
exactly six lines, cf. Example 2.5.12. As for a smooth cubic threefold Pic(Y) ~ Z-Oy(1),
there are no planes contained in Y, see also Remark 2.1.7.

The general theory of Fano varieties of lines as outlined in the Chapter 2 provides us
with detailed and useful information:
(i) The Fano variety of lines F := F(Y) of a smooth cubic threefold Y is an irreducible,
smooth, projective surface, the Fano surface of Y.

(i1) The canonical bundle wp of F is ample. It is isomorphic to the Pliicker polarization
induced by F = G(1,P*) & ]P’(/\2 V), see Lemma 2.3.1:

wWr = Op(l) (01)

(ii1) The degree of the Fano variety F' with respect to the natural Pliicker polarization
g = ¢1(Op(1)) is, cf. Section 2.4.3:

deg(F) = f g> =45. (0.2)
F

(iv) The Euler number of the Fano surface is e(F) = 27, see Proposition 2.4.6 and
Section 2.1 below.

(v) The Hodge diamond of F up to the middle is, cf. Section 2.4.6:

bo(F(Y)) = 1 1
bi(F(Y)) =10 5 5
by(F(Y)) = 45 10 25 10.

Note that the Noether formula y(Of) = fF(l/ 12)(c%(F )+ co(F)) combined with the last
two assertions provides another proof of the degree formula (0.2).

(vi) The universal family of lines on Y comes with two projections
Fy)y<2-1L 2.y,

where the morphism g: L —=7Y is generically finite of degree six, cf. Lemma 2.5.11
and Example 2.5.12. It can be shown that at least for the generic cubic threefold the
Galois group of g: L—Y is the symmetric group Sg.'

! T wish to thank F. Gounelas for providing an argument that will appear in a forthcoming paper.
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(vii) The Fano correspondence ¢ = p, o g*: H*(Y,Q) — H'(F, Q)(—1) has the follow-
ing property, see Proposition 2.5.5:

1
(a-ﬁ)=—g f (@) (B) - g.
F

(viii) There exist isomorphisms of Hodge structures, cf. Section 2.4.6,
H(Y,Q)(1) ~ H'(F(Y),Q) 0.3)
and N HX(Y,Q)(2) ~ N H'(F(Y),Q) ~ HX(F(Y),Q). 0.4)

The isomorphism in (0.3) can be obtained via the Fano correspondence, see Proposi-
tion 2.5.5, or, alternatively, via the motivic approach in Section 2.4.6. The first isomor-
phism in (0.4) is deduced by taking exterior products of (0.3) and for the second see
Lemma 2.5 below. The isomorphisms (0.3) and (0.4) will be upgraded to isomorphisms
of integral Hodge structures in the course of this chapter.

For a very general cubic threefold Y, the only rational Hodge classes in /\2 H3(Y,Q)
are multiples of the one given by the intersection product on Y, see Remark 1.2.13.
Hence, by virtue of (0.4), the Picard number of the Fano surface is F(Y)

p(F(Y)) =tk NS(F(Y)) =1
in this case.

0.3 Chow groups and Chow motives The rational Chow motive of a smooth cubic
threefold Y splits as, see Remark 1.1.11:

6

3
b(Y) = EP V() = @D Q=) & H(¥ ).

j=0 i=0
For the Chow groups we have
CH’(Y) ~ CH'(Y) ~ CH*(Y) ~ Z.

The only non-trivial Chow group is CH?(Y) resp. CH*(Y)® Q = CH()(Y)r), which can
be determined using arguments specific to cubic threefolds. However, its structure can
also be deduced from general principles, see Corollary 3.16.

The Chow motive of the Fano surface F(Y) was described in Section 2.4.2 by

HF(Y))(=2) ®H(Y) & H(Y)(-3) = SH(Y).
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1 Lines on the cubic and curves on its Fano surface

The Fano surface F(Y) of a cubic threefold Y parametrizes all lines L C P* contained in
the cubic Y. Such lines can be of the first or of the second type, see Section 2.2, i.e.

NL/Y ~0Ore Oy OI‘NL/Y ~ O o Or(-1).

We study natural curves in F(Y) of a smooth cubic threefold Y C P* over an arbitrary
algebraically closed field. Firstly, there is the curve of lines of the second type

R = Fy(Y) C F(Y),

cf. Section 2.2.2. Its pre-image in L is the ramification divisor of the second projection
q: L—=Y, see Corollary 2.2.15 and Section 1.1 below. Secondly, for each line L C Y
one considers the closure C; ¢ F(Y) of the curve of all lines L # L’ C Y intersect-
ing L. It comes with a natural fixed point free involution, the quotient of which is the
discriminant curve of the linear projection of ¥ from L.

1.1 Lines of the second type To understand the geometry of F' = F(Y), we need to
study the surjective morphism g: L —=Y. Note that both varieties are smooth projec-
tive and of dimension three. Therefore, the ramification locus R(g) C L of g, i.e. the
closed set of points in which ¢ fails to be smooth, is a surface (or, possibly, empty,
which it is not).

According to Corollary 2.2.15, we know already that R(g) is the restriction L, of the
universal line L to the subvariety R = F»(Y) c F(Y) of lines of the second type, but it
is instructive to see the traditional line of arguments in dimension three which provides
us with more precise information.

Proposition 1.1. The ramification divisor R(q) C L of the morphism q: L—>Y is an
element in the linear system |p*Op(2)|. It is the pre-image of a curve R C F(Y) in the
linear system |Op(2)|.

Proof Note that R(g), and hence R, cannot be empty. Indeed, otherwise L — Y would
be an étale covering of degree six of the simply connected threefold Y. As F(Y) and L
are connected, see Proposition 2.3.4, Exercise 2.3.7, and Example 2.4.21, this is absurd.

We consider the differential of ¢ as a morphism of sheaves dg: T, — ¢*7y. Then by
definition, R(q) is the zero locus of det(dg): det(7.) —¢* det(Ty), which we consider
as a section of wr, ® ¢"wy.

Now, applying g*w} = g*Oy(2) = O,(2), cf. the proof of Lemma 2.5.1, and using
(0.1) gives

WL = w, ® p'wp = p*det(Sy) ® 0,(-2) ® p*Or(1),

where we also make use of the Euler sequence 0 — Oy, —= p*Sr® O, (1) — 7;) —0



1 Lines on the cubic and curves on its Fano surface 209

for the projective bundle p: L ~ P(Sp)—F. Therefore, wy, ® g"wj ~ p*Op(2) and
hence det(dg) € H(L, p*Or(2)) =~ H(F, Op(2)). O

Remark 1.2. Proposition 1.1 goes back to Fano. In [120, Sec. 10] the argument uses
the observation that the pre-image ¢~'(S) of the generic hyperplane section S := Y NP3
is the blow-up p: ¢~'(S)—= F(Y) in the 27 points ¢; € F(Y) corresponding to the 27
lines ¢; € S contained in the cubic surface S :2

Bly,. co)(F(V) =21~ § =y NP3,

----- U7

The kernel of the tangent map Ty yL—T,Y at a point (L,x) € L ¢ Fx Y is
the space of first order deformations of L C Y through x € L. This space is naturally
isomorphic to the subspace H(L, N1y ® Z,) ¢ H(L, Ny y), cf. [281, Thm. I.1.7] or
Remark 2.1.11. As the ideal sheaf Z, of x € L =~ P! is isomorphic to O, (~1), this space
is non-zero if and only if L C Y is a line of the second type, i.e. Ny ~ Or(1)@OL(-1),
cf. Lemma 2.1.13.

Note that the non-vanishing of H°(L, N7,y ® Z,) only depends on L C Y and not on
the point x € L. In particular, g: L—Y is ramified along all of L = p~![L] c L or
not at all. This confirms that R(g) = p~'(R) for the curve R = F»(Y) c F(Y). More
precisely, one has the following characterization, cf. the more general Corollary 2.2.15.

Corollary 1.3. The morphism q: L—Y is smooth at (L, x) € Lifand only if LC Y is
a line of the first type, i.e. R = Fy(Y) € F(Y) and R(q) = p~ (F5(Y)) = L, c L. O

Exercise 1.4. Show that every point x € Y that is not contained in any line of the second
type is contained in exactly six lines.

Exercise 1.5. Show that every Eckardt point x € Y, i.e. a point contained in infinitely
many lines, is contained in infinitely many lines of the second type. In fact, according to
Murre [364, Lem. 1.18] every point contained in a line of the first type is only contained
in finitely many lines and, therefore, all lines containing an Eckardt point are of the
second type.

Exercise 1.6. It turns out that the ramification of ¢: L —Y along R(g) is generically
simple, see [120, Lem. 10.18]. Consider the projection g: R(q)—=R = g(R(¢)) C Y
and denote its degree by d. Show that R € |Oy(30/d)|, which will be confirmed in
Remark 1.18. In fact, it turns out that at least for generic cubic threefolds one has d = 1
and hence R € |Oy(30)|, see Remark 1.17. Show that R is a curve of arithmetic genus

pa(R) = 136.

Remark 1.7. (i) According to Proposition 2.2.13, for generic Y the curve R = F»(Y)
is smooth. It seems that in [364, Cor. 1.9] a local computation is used to show that

2 The monodromy of this cover coincides with the monodromy of L. — Y which is G, see page 206.



210 Chapter 5. Cubic threefolds

R is always smooth. However, special smooth cubic threefolds may contain Eckardt
points and for those the morphism ¢: L— ¥ may contract curves E, = ¢~'(x) c L.
The image curves p(E,), which are smooth elliptic, are irreducible components of R.
Therefore, a smooth cubic ¥ c P* can admit at most finitely many Eckardt points. This
is a result of Clemens and Griffiths [120, Lem. 8.1], see also Coskun—Starr [126, Cor.
2.2]. According to Roulleau [403], a smooth cubic threefold contains at most 30 Eckardt
points. Furthermore, as R € |O(2)], it is ample and hence connected. Thus, whenever R
is reducible, it is singular.

Note that conversely the smoothness of F,(Y) for generic Y implies that the generic
cubic does not contain any Eckardt points. For explicit computations in the case of the
Fermat cubic threefold see [74, 405]. Bockondas and Boissiere [74] also show that the
singularities of R = F»(Y) are exactly the points corresponding to triple lines, i.e. lines
L € F(Y) for which there exists a plane with P> NY = 3L. That there are at most finitely
many triple lines was already observed by Clemens and Griffiths [120, Lem. 10.15].

(i1) The interpretation of R as F,(Y), which in turn by Remark 2.2.11 can be thought
of as the degeneracy locus M;(y) of the natural map ¢ : Qp —>SZ(S;), allows one to
deduce all at once that R # @, dim(R) = 1, and R = {L € F | det(¥/;) = 0} € |Op(2)], for
det(Q)* ® det(S 2(5;;)) =~ Op(2). Note that the scheme structures of R = F,(Y) = M,(¥)
all coincide.

Clearly, two distinct lines Ly, L, C P*, contained in the cubic Y or not, do not intersect
at all or in exactly one point (and there transversally). In the second case, they are
contained in a unique plane. For infinitesimal deformations as well one distinguishes
between these two cases:

(1) Let L C Y be a line of the first type. Then the lines L, C Y corresponding to
t € F(Y) close to L € F(Y) are disjoint to L. Indeed, a first order deformation L, of
L with non-trivial intersection with L would fix some point x and, therefore, define a
non-trivial global section of N7,y ® Z, ~ Or(-1) & O,(~1), which is absurd.

(ii) If L c Y is of the second type, then for each point x € L, the subspace
HY (L, Nyy ® ) ¢ H (L. Nyyy) = Ty F(Y)

is one-dimensional and corresponds to a deformation Spec k[e] x{x} C L, C Spec k[&] X
Y. The image of L, in p* spans a plane P, ~ P? and, therefore, is contained in Y N P;.
Then L, is the double line 2L C P; and hence 2L C Y N P;. Note that a priori the plane
Py, depends on the choice of the point x € L, but from the fact that 2L c Y N P one
deduces that it does not. So, we have reproved Corollary 2.2.6 in this case, which we
state again follows.

Lemma 1.8. Let L C Y be a line in a smooth cubic threefold. Then L is of the second
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type if and only if there exists a (unique) plane P> ~ P; C P*, that is tangent to Y at
every point of L, i.e. 2L C Py NY. For a triple line one has 3L = P, NY. O

Corollary 1.9. The generic line L C Y is of the first type. In fact, for a dense open
subset of lines L € F(Y) and any plane P*> C P* containing L the intersection Y N P? is
reduced.

Proof Lines of the second type are parametrized by the curve R = F»(Y). So, any line
Ly € F(Y) \ R is of the first type. Furthermore, for any line of the second type L, C Y
there exists a unique plane P? ~ P;, c P* which intersects Y along L, with multiplicity
at least two. The points L € F corresponding to the residual line LC Y of L, C P, NY
for L, moving in R sweep out a curve R’ C F(Y). Then any line corresponding to a point
in F(Y)\ (RUR’) has the required property. See Remark 6.4.19 for a similar construction
in dimension four and some information about R’. O

The curve R comes with a natural double cover R—> R. Indeed, for a line of the
second type L C Y, so L € R, the restriction of the Gauss map y: L—y(L) is of
degree two with two ramification points, see Exercise 2.2.10. If we let R be the curve
that parametrizes lines of the second type together with these ramification points, then
the projection to R is étale of degree two. The situation will be studied in more detail
for cubic fourfolds in Section 6.4.4.

Remark 1.10. The curve R’ C F(Y) of lines that are residual to lines of the second
type considered in the proof above has been studied in more detail by Lahoz, Naranjo,
and Rojas. They show [303, Thm. C] that [R'] = 8g € H*(F(Y), Q) and that for generic
Y the curve R’ is irreducible with exactly 1485 nodes. It turns out that for the generic
cubic threefold Y, the map R—R’, L L’, that sends L € R to the residual line L’
of 2L c P, NY is of degree one, i.e. R is the normalization of R’. See Remark 1.25 for
more details.

1.2 Lines intersecting a given line We move on to the next class of curves in F(Y).
For a fixed line L € F we define the curve C; C F(Y) as the closure of the curve of all
lines L’ c Y different from L but with non-empty intersection @ # L N L":

{L'#L|L'NL+@}cCpCF(®).

Note that taking the closure adds at most the point L. To define C;, rigorously with a
natural scheme structure, use the formalism of Section 2.5.5 and consider

p=p.oq": CHz(Y)—>CH1(F(Y)) =~ Pic(F(Y)).

By definition, p, is trivial on components of g~!(L) with positive fibre dimension over
F(Y), e.g. the class of the component p~![L] c g~!'(L) is mapped to zero under p,. The
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image of the class of the line L C Y under ¢ is a line bundle O(Cy) that comes with a
natural section (up to scaling) vanishing along C;.
The curve C; is endowed with a natural involution

t: C;—=Cr, L'—L" (1.1)

determined by the condition LU L’ U L” = LL’ N Y. The quotient 7: C; —=Cy /¢ will
play a key role further below.

Note that at this point it is not clear whether C is smooth for generic choice of L.
This will be deduced later as a consequence of Lemma 1.26.

The point L € F(Y) corresponding to a line L C Y may or may not be contained in its
associated curve Cy. This is the content of the next result, cf. [120, Lem. 10.7].

Lemma 1.11. A line L C Y is of the second type if and only if L € Cy.

Proof Assume L € Cy. Then, as discussed above, a first order deformation of L C
Y given by deforming L along C; defines a non-trivial class in H(L, N, 1/v(=1)) and,
therefore, L is of the second type. More geometrically, let L’ € C; specialize to L € Cy.
Then the plane LL’ specializes to a plane P with 2L C ¥ N P and, therefore, L is of the
second type.

For the converse, consider the curve R of all lines L of the second type. To prove that
L € Cy, holds for all L € R, it suffices to prove it for the generic L € R. In particular, we
may assume that L is not one of the finitely many triple lines, see Remark 1.7. In other
words, we can assume that the residual line Lo of 2L ¢ P;NYisnot L,i.e. 3L # P, NY.
A small deformation L, € C; of Ly € Cy, leads to a deformation P, := LL, of the
plane P; = LLy. The residual line L;of LUL, C P,NY also defines a point in Cy, and
specializes to L. Hence, L € C;. O

Assume now that L is of the first type, i.e. L € F(Y) \ Cy.. In this case, g~' (L) is the
disjoint union of p~'[L] ~ L and a curve mapping isomorphically onto C:

g (L) =pLIuC,. (12)

Indeed, for L’ € Cy the line L’ = g(p~'[L’]) intersects L transversally in exactly one
point. Hence, p~![L’] and ¢! (L) intersect with multiplicity one.

Remark 1.12. Any curve in F(Y) intersects the ample curve R ¢ F(Y) of all lines of the
second type. Applied to Cy, this shows that any line L C Y intersects some line L' C Y
of the second type. This can also be deduced from the fact that g: L — Y has to ramify
along a divisor in Y which necessarily intersects every line.

Remark 1.13. It is not difficult to show that distinct lines L yield distinct curves Cy:

L+L = Cp+Cyp.



1 Lines on the cubic and curves on its Fano surface 213

For example, if L and L’ intersect in a point x € Y, in other words LL’ ~ P2, then the
intersection C;, N Cy, parametrizes the residual line of LU L’ ¢ LL’ N Y (which may
coincide with L or L") and all lines passing through x. The latter set is finite unless x is
an Eckardt point. Thus, if C; = Cy,, then all lines intersecting L would go through one
of the finitely many Eckardt points contained in L, which is absurd.

In the case of two disjoint lines L N L’ = @, the intersection of LI’ ~ P?® with Y
defines a cubic surface S C Y. If S is smooth, then it contains only finitely many lines
and hence the intersection C; N Cy is finite. If S is normal and not a cone, then S has
only rational double points as singularities and still contains only finitely many lines
[157, Ch.9.2.2]. If S is a cone over a cubic curve, then we may assume that L is a line
through the vertex and L’ is a component of the cubic curve. In particular one finds a line
intersecting L but not L’. Finally, if S is neither normal nor a cone, then S is reducible
or projectively equivalent to one of two specific surfaces [157, Thm. 9.2.1]. One has to
argue separately in the two cases.

Lemma 1.14. For any two lines L,L, C Y the curves Cr,,Cr, C F(Y) are alge-
braically equivalent. Moreover, O(Cp)®? is algebraically equivalent to Or(1) ~ wg. In
particular, 3 -[C;] = g € HX(F(Y),Z) and (C.Cy) = 5.

Proof By construction, O(C}) is the image of [L] € CH?(Y) under
@: CH2(Y)—= CH!(F(Y)) =~ Pic(F(Y)).

Since all lines parametrized by the connected Fano surface F(Y) are algebraically equiv-
alent to each other, the same is true for the invertible sheaves O(C}), i.e. the algebraic
equivalence class of Cy, is independent of L.

The second statement has been proved in general already in Remark 2.5.2, where the
curve Cyp was denoted by Fy. Let us briefly sketch the argument again for threefolds. The
class h> € CH?(Y) is represented by the intersection with an arbitrary plane P> c P*.
Choosing a plane that intersects Y in three lines, see Exercise 2.1.20, this shows that
h? = [L;]+[L,]+[Ls]. For example, for P? = P, for L of the second type, h? = 2[L]+[L]
with L’ the residual line of 2L Cc P, NY.

Hence, by Lemma 2.5.1, g = ¢1(Or(1)) = ¢(h?) = [Cy,] + [Cy,] + [CL,], which is
algebraically equivalent to 3 - [Cf,]. O

Exercise 1.15. Let us make the last step of the above proof more explicit. We represent
aplane P> ¢ P* with P>2NY = L; U L, U L3 as the intersection V(s;) N V(s»), where
51,8 € V= HO(P*,0(1)) ~ H(F, S;) are two linearly independent sections. Then
the zero set of the image of s; A s, under the natural map /\2 V*— HY(F(Y), /\2 Sp) =
HO(F(Y), Op(1)) is the set of all lines L = P(W) with (s; A s2)lw = 0. The latter is
equivalent to L N P2 # @ or, equivalently, to LN (L; U L, U L3) # @, which in turn just
says L € Cr, U Cy, U Cp,. Thus, once again, O(1) = O(Cy, + Cr, + Cr,).
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Exercise 1.16. Show that the self-intersection and the (arithmetic) genus of C;, ¢ F(Y)
are given by

(Cr.Cr) =5and g(Cr) = 11.

Relate this to the fact that for two disjoint lines on a smooth cubic surface there exist
exactly five lines intersecting both, see Section 4.3.5.

Remark 1.17. We know that for the generic cubic threefold Y the curve R is smooth and
irreducible with [R] = 2g in H?*(F,Z). On the other hand, for any line L, Lemma 1.14
says [C] = (1/3)g. This proves that R cannot be contained in Cy and that, therefore,
R and C; intersect in only finitely many points. Applied to a line L of the second type,
it shows that through the generic point of L there is no other line of the second type
passing through it.> In Exercise 1.6, the fact was alluded to already and used to prove
that for the generic cubic threefold g: R(q) — R is generically injective.

Remark 1.18. Let Ly C Y be a fixed generic line and so in particular of the first type.

(1) As g: L—Y is of degree six, sending L € Cy,, C F to the point of intersection of
Ly and L defines a morphism of degree five which by (1.2) is nothing but ¢:

q: Cr, —2> Ly, L—LyN L.

The ramification points of Cr, — Ly, i.e. the points in the intersection R(g) N Cy,,
correspond to lines of the second type intersecting Ly. The Hurwitz formula applied to
q: Cr,— Lo shows d-(R.Ly) = (R(q).C1,) = 30, where d is the degree of R(q) —=R =
q(R(¢)). This confirms R € |Oy(30/d)|, see Exercise 1.6, and as explained in Remark
1.17, R(g) —= R is generically injective, at least for the generic cubic threefold Y. Since
the generic line Ly avoids the locus where R(g) —= R is not injective, we can conclude
that for every point x € Ly there exists at most one line of the second type passing
through x or, equivalently, that the morphism Cr,— Ly is not étale in at most one
point in each fibre.

In fact, Clemens and Griffiths [120, Lem. 10.18] showed that the ramification of
L —7Y is generically simple along R(g) which implies that for the generic line L, the
morphism C;, — L has simple ramification only. Together with the above, this shows
that a fibre of C;, — L consists of either six lines of the first type or of four lines of
the first type and one of the second.

It can be shown that the monodromy group of C;, —= Lo is Ss.*

(ii) Let L € Cy, and denote by L’ the residual line of Ly U L C m N Y which may
coincide with L or Ly. Then

¢ Or,(1) = O(Cp)lc,, ® Oc,, (L~ L). (13)

3 1 wish to thank A. Rojas for the argument.
4 T wish to thank F. Gounelas for the argument.
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Indeed, if {x} = Lo N L, then g~'(x) parametrizes the five lines (with multiplicities) L; :=
L,L,,...,Lsdistinct from L containing x. Hence, g" Oy, (1) = Oc,, (3" L)). On the other
hand, C;, N Cp ={L’, Ly, ..., Ls} and, therefore, ¢* O, (1) =~ O(CL)ICLO ® OCLO (L-L).

C
(L] ’L[L“ T L
(D )

Ls
Cr,

Ls Ly

In other words, the two sets ¢g~'(x) = {Lo, L, L, ...,Ls} and (C, N Cr) U {Lo} =
{Lo} U {L, L,,...,Ls} differ only by L getting swapped for its residual line L’. In the
proof of Corollary 1.30, we will see that #%(g* Oy, (1)) = 2.

(iii) As a consequence of (1.3), one obtains for any two points L, L, € Cy, an iso-
morphism

O(Cp, = Cple,, = Oc, (L1 = L} = (Lo — L)), (1.4)
which will be crucial in the proof of Corollary 3.12.

Exercise 1.19. Let L be as above a generic line in a smooth cubic threefold. Apply the
Hurwitz formula to the projection g: Cr, — Ly to prove

we,, = q°O0(=2)® Or()lc,, -
Combine this with the adjunction formula wc,, = Or(1)Ic,, ® O(Cy,)lc,, to deduce
OCle,, =4 0(=2)® Or(Dlc,, -

Corollary 1.20. The Pliicker class g = c1(Op(1)) € H>(F(Y),Z) is divisible by three
and so is the Hodge—Riemann pairing nyl -y - g on H'(F(Y),Z), cf. Proposition
1.5.5. O

Remark 1.21. The fundamental group of F(Y) has been computed by Collino [122]:
There exists a non-split short exact sequence

0 Z]27Z m(F(Y)) VAL 0. (1.5)

5 Thanks to S. Stark for the reference.
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In other words, [, (F(Y)), m(F(Y))] =~ Z/2Z and H,(F(Y),Z) ~ Z®'°. By the universal
coefficient theorem, i.e. the short exact sequence, see [155, p. 186]:

0 —= Ext!(H\(F(Y), Z), Z) —= H*(F(Y),Z) — Hom(H»(F(Y), Z),Z) —= 0,

this in particular shows that H>(F(Y),Z) is torsion free. Note that in fact the full coho-
mology H*(F(X),Z) of the Fano variety F(X) is known to be torsion free for smooth
cubic hypersurfaces X < P! of any dimension, see Exercise 2.4.13. Collino’s de-
scription uses a degeneration of the cubic threefold obtained as the secant variety of a
rational normal curve of degree four. In Corollary 3.12 we will see that the Albanese
map describes an index two inclusion

0 — H2(AIb(F(Y)), Z) —~> HX(F(Y),Z) 7/2Z 0

and in [122] it is the non-triviality of this cokernel Z/2Z that ensures that a certain
natural map Z/2Z —s[n(F(Y)), 71 (F(Y))] is indeed non-zero. The surjection in (1.5)
is the natural map 71 (F(Y)) —m; (AIb(F(X)).

Remark 1.22. For a general cubic threefold ¥ c P*, the line bundle O(C.) generates
the Néron—Severi group

NS(F(Y)) ~Z - O(Cyp).

Indeed, we have remarked that NS(F(Y)) is of rank one for general Y and, since we have
(CL.CL) = 5, the line bundle O(C) defines a primitive class in NS(F(Y)).

1.3 Conic fibration We study the linear projection from a line L C Y as a special
case of the construction in Section 1.5.1.

Let L = P(W) c P* = P(V) be a line contained in the smooth cubic hypersurface ¥ ¢
P*. Assume P? ¢ P* is a plane disjoint to L, of which we think as P(V/W). The linear
projection Y \ L - > P2 from L onto this plane is the rational map associated with the
linear system |Oy(1)®Z;| C |Oy(1)|. It is resolved by a simple blow-up 7: Bl (Y)—Y
and the induced morphism ¢: Bl;(Y)—P? is then associated with the complete linear
system |[7* Oy (1) ® O(—E)|, where E is the exceptional divisor.

The fibre over a point y € P? is the residual conic of L ¢ yLNY c yL ~ P?. The
conic is smooth or a union of two lines L;, L,, possibly non-reduced, i.e. L; = L,, or
with L; = L. Note that in the case that L; = L, the plane y L ~ P? intersects Y with higher
multiplicity along L and hence L is of the second type. Therefore, if L was chosen to be
of the first type, then the fibres of ¢: Bl;(Y)—P? are either smooth conics or possibly
non-reduced unions of two lines, both different from L.

Corollary 1.23. Let L C Y be a line of the first type.
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(i) Then the linear projection from L defines a morphism
¢: BI(Y)—=F?,

with a discriminant curve Dy C P? of degree five and arithmetic genus six.

(i1) The fibre over a point y € Dy is the possibly non-reduced union of two lines
¢~ '(y) = Ly U L, with L, Ly, L, coplanar.

(iii) With the notation in (i1), Ly = L, if and only if y is a singular point of Dy, which
then is an ordinary double point.

(iv) For L C Y generic in the sense of Corollary 1.9, i.e. L € F(Y) \ (RU R’), then
¢ '(y) = LiU Ly with Ly # Ly and L; # L for all y € Dy. In particular, Dy is
smooth for generically chosen L.

Proof Most of this has been verified already, see also Section 1.5.2. For (iii) see [42,
Prop. 1.2] or [81, Lem. 2]. The last assertion is a consequence of Proposition 1.5.3. The
fibre over y € D; cannot be a double line L, = L,, asthen P>NY = LU 2L;, and so L,
would be of the second type, which is excluded for L generic. The smoothness of Dy
for the generic choice of the pair L c Y also follows from Remark 1.5.8. O

Remark 1.24. The abstract approach matches nicely with the intuitive picture. Here
are two comments in this direction.

(1) That Dy is of degree five, i.e. D; € |O(5)], can be linked to the fact that a line
in a smooth cubic surface S ¢ P3 is intersected by five pairwise disjoint pairs of lines,
see Section 4.3.3. Indeed, if ¥ c P* is intersected with a generic hyperplane P* c P*
containing L, then D; c P? is intersected with a generic line P! ¢ P?. The fibres over
the intersection points y € D; N P! are the pairs of lines in ¥ contained in the cubic
surface S := Y NP3 intersecting L, of which there are exactly five.

(ii) For a line of the first type the exceptional divisor
LxP' =~ PNy = O%) =~ E c BI(Y)

has normal bundle O(0, —1). Hence, the restriction of ¢*O(1) ~ 7*O(1) ® O(-E) to
P! x P! is O(1, 1). In particular, the composition P! x P! ~ P(A7,y) € Bl (Y)—=P? is
a morphism of degree two, which confirms the geometric description that (¢~ (y)) N L
is the intersection of the residual conic of L € yL N'Y with L.

Remark 1.25. A quick dimension count shows that (up to coordinate transformations)
the generic quintic curve D C P? is of the form D;, for some smooth cubic threefold ¥
with a line L C Y. Indeed, dim |Og2(5)] = 20 and dim PGL(3) = 8, while the space of
pairs L C Y is of dimension 12 = 10 + 2.

As a consequence, the generic singular Dy, has just one node. Since a node of Dy,
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corresponds to a line L of the second type with 2L U L’ = P> N Y, in this case L’ € R’
and R— R’ is of degree one, as mentioned already in Remark 1.10.

We now consider the restriction Bl (Y)|p, = ¢ (D) — D, of the linear projection
¢: Bl (Y)—=P? to the discriminant curve D; C P?. We assume that L is generic in the
sense of Corollary 1.9, so that all fibres are reduced singular conics, i.e. unions of two
distinct lines. Then the relative Fano scheme of lines

n: Dy = FBI.(Y)Ip, /D) —= Dy

parametrizing all lines in the fibres of ¢ is an étale cover. The morphism is indeed
unramified which can be shown by abstract deformation theory or simply by arguing
that a morphism from one curve onto a smooth curve with exactly two distinct points in
each fibre is étale. As D, parametrizes lines in Y, it comes with a classifying morphism
D, <= F (Y) which is easily seen to be a closed immersion.

Alternatively, Dy, can be obtained as the Stein factorization of the composition of the
normalization of ¢~ (D) with ¢. The morphism to F(Y) can then be viewed as follows:
The natural rational map ¢~'(D;) > L is regular on the complement of the section

of ¢~'(D;)— D given by the intersection points of the two lines in each fibre. The
image of the composition with p: L—=F(Y) is Dy —— F(Y).

\

\/\
—— X

¢—1(DL)norm ¢_l (DL)

Lemma 1.26. For a generic line L C Y the two curves D, c F(Y)and C;, C F(Y)
coincide. Furthermore, Dy = Cy, is a smooth curve of genus 11.

Proof Indeed, D; and C;, both parametrize all lines L # L' C Y intersecting L. We
know that the (arithmetic) genus of Cy is g(Cr) = 11 and the same is true for 5L by
Hurwitz’s formula. This is enough to conclude equality. Smoothness of D, follows from
the smoothness of D;. O

6 Thanks to A. Rojas for the argument.
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Corollary 1.27. For a generic line L C Y, i.e. L€ F(Y)\ (RUR’), the curve 5L =Cy
is connected or, equivalently, irreducible.

Proof For a general cubic Y, one has p(F(Y)) = 1 and, in fact, NS(F(Y)) ~ Z- O(Cy),
see Remark 1.22. Therefore, in this case C;, has to be irreducible. As under deformations
of the pair L ¢ Y with L € F(Y)\ (RUR’) the topology of the situation does not change,
this proves the assertion in general.

Alternatively, one can use the smoothness of C;, and the general fact that effective
ample divisors are connected, cf. [222, III. Cor. 7.9]. O

Exercise 1.28. Show that
n. Cp = BL —D;
is the quotient of the natural involution L' —= L”, see (1.1). Use Exercise 1.19 to deduce
Or(2)c, =" OQ2) ® ¢"OQ).
In fact, using the explicit description of the morphisms ¢ and 7 one finds
Or(Dlc, =" O() ® ¢ O(1).

Remark 1.29. See also [43, 201] for yet another proof that does not reduce to the case
p(F(Y)) = 1 or uses the ampleness of C;. The idea there is that sending a line L’ € C; to
its intersection with L defines a map C; — L of degree five, cf. Remark 1.18. If Cy is
not irreducible, then one of the irreducible components is rational or hyperelliptic. The
first case would contradict the injectivity of the Albanese map in Corollary 2.8 and to
exclude the second one uses that F(Y) is not covered by hyperelliptic curves, cf. [201,
Sec. 3].

If L is not generic but L € R C F(Y) is still a generic point of R, then the curve Cp
is again irreducible, its genus is eleven, and it comes with a morphism C; —s=P! of
degree four, see [201, Lem. 3.3].

A Riemann—Roch computation reveals that y(F(Y), O(C.)) = 1. Although there is a
priori no reason for the higher cohomology groups of O(C}) to vanish, at least Kodaira
vanishing does not imply anything in this direction, the following result was proved by
Tyurin [447, Lem. 1.8].

Corollary 1.30. For every line L C Y the induced curve Cp C F(Y) is unique in its
linear system, i.e. l°(F(Y), O(Cp)) = 1. As a consequence, one obtains an injection

F(Y) & Pic(F(Y)), L+ O(Cy). (1.6)

Proof As afirst step, we observe that for a generic Ly € C;. the associated line bundle
O(Cy,) is indeed not isomorphic to O(Cy). For this it suffices to show that the morphism
(1.6) does not contract the curve Cy. The latter follows from (1.6) being unramified
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which is a consequence of the discussion in Sections 2 and 3 below, see Corollary 2.9
and Lemma 3.1, which is independent of our discussion here.

Now pick a line Ly € Cy, with O(Cy,) # O(Cr) and assume in addition that Ly can be
chosen generic such that in particular Cy,, is smooth. Then consider the exact sequence

0—0O(C = Cp)) —0O(Cr) —O(Cp)lc,, —0

from which we deduce that it suffices to prove o Lo» O(CL)chO) = 1. Note that ac-
cording to (1.3), this time applied to g: Cr, — Lo, we have O(CL)|CL0 ~ ¢ Or,(1) ®
Oc,, (L' = L). A priori, for a line L of the second type it may happen that the residual line
L’ of LyUL c LyLNY coincides with L and then one would have #1°(C,, O(Colc,,) = 2.
However, by choosing Ly € CL generically, the case L = L’ can be avoided.

Suppose now that #1°(O(C L)|CLO) > 2. Then, consider the natural inclusion

O(CDle,, — L= q"Or, (1) ® Oc, (L)

and observe that the only possible base point of L is L'.

If L’ € Cy, is indeed a base point of £, then g*Oy,(1) C L shows h°(q* Oy, (1)) > 3.
For a generic two-dimensional linear system in |g*Op,(1)| the image of the induced
morphism ¢: C;, —=P? cannot be a line and, therefore, deg(¢) = 1. However, in this
case Im(0) c P? is a curve of degree five and, hence, of arithmetic genus six, which
contradicts g(Cr,) = 11. Thus, £ is base point free.

Now choose a generic (hence base point free) two-dimensional linear subsystem of
|£] and consider the induced morphism ¢&: Cy, —>P2. Note that deg(¢) = 1, because
otherwise &~ 1(&(L")) = {L’, Ly, ...} (with multiplicities) and ¢*Op,(1) would have L; as
a base point, which is absurd. But deg(¢) = 1 implies that £(Cy,) C P? is of degree six
and, therefore, of arithmetic genus ten. The latter again contradicts g(Cy,) = 11.

If C; does not contain a generic L, then the arguments have to be modified. For
example, if Ly is not generic but of the first type, then Cy, is not smooth any longer and
in the discussion above it has to be replaced by its normalization. If all Ly € C, are
of the second type, then one has to work with the morphism g: Cy, —= Ly of strictly
smaller degree than five and the description of O(Cyp)lc,, has to be adapted.

For the second assertion use again Remark 1.13. O

2 Albanese of the Fano surface

Fix a point #) € F = F(Y) corresponding to a line Ly C Y and consider the classical
Albanese morphism

a: F—=A = AIb(F) = H'Y(F)"/H\(F,Z), t+— (a»—> f a).
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According to the numerical results, see Section 0.2, A is an abelian variety of dimension

five.
The goal of this section is to compare the following two pictures

/q\A

L =P(SF) — Y CB(V) ~P* P(TF) > P(Tq) —= P(ToA) ~ P*
| L
F F—2 o A,
2.1

We will show that they describe the same geometric situation.

2.1 Tangent bundle versus universal subbundle Let us begin with some prelimi-
nary comments:

(i) The natural inclusion Sr C V ® OF defines an embedding L ~ P(Sp) € F X P(V),
which is in fact nothing but the composition of the two inclusions L ¢ FXY and FXY C
F x P(V). Thus, the relative tautological line bundle is described by O,(1) = ¢*O(1),
cf. the proof of Lemma 2.5.1, and the pull-back describes a homomorphism

HOP*, O(1)) —> HO(Y, Oy(1)) = H(L, O,(1)) = H'(F, S}.). (2.2)

The injectivity holds, because L —=Y is surjective and ¥ c P(V) is not contained
in any hyperplane. However, at this point it is not clear that the map is also surjective
or, equivalently, that the morphism g: L —P(V) is the morphism associated with the
complete linear system |0, (1)].

(i1) The differential of the Albanese morphism a: F—=A = Alb(F) is a homo-
morphism da: Tr —a*7T, between the tangent sheaves. However, a priori it may not
induce a morphism P(7z) —P(a*T4) —=P(7T4). For this we will have to argue that
da: T\F —T,A is injective for all ¢+ € F. Note that the tangent bundle 7 is trivial,
which gives a natural projection P(73) =~ A X P(TpA) —=P(THA).

(iii) Finally note that there is indeed an isomorphism V =~ TA. Namely, compose
ToA ~ H'O(F)* ~ H>'(Y)* with the dual of H>!(Y) ~ R; ~ V* provided by Theorem
1.4.21. Here, R = @ R; ~ C[V*]/(9;F) is the Jacobian ring of Y = V(F), cf. [120, Sec.
12]. However, in the discussion below, the isomorphism between the two spaces will be
obtained in a different manner.

Exercise 2.1. Show that the natural isomorphism V* =~ H>!(Y) or, equivalently, V ~
H"2(Y), see Theorem 1.4.21, is compatible with the action of Aut(Y). More precisely, if
g € Aut(Y) is the restriction of an automorphism g € PGL(V) of the ambient projective
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space P(V), then the action g* of g on P(H"(Y)) coincides indeed with g. See [499,
Lem. 5.4] for details.

The first step is to show that 7z and Sy are naturally isomorphic. Evidence is provided
by the following two numerical observations:

det(Tr) =~ wy = Op(=1) =~ det(Sp) and c(Tr) = e(F) = 27 = c5(Sp).

The latter is shown by the following argument, which a posteriori explains geomet-
rically the curious observation that e(F) = 27 is the number of lines on a cubic surface.
Consider a generic hyperplane section S := YN V(s), s € H'(P*, O(1)), which is a cubic
surface S C V(s) = P3. Let § be the image of s under H'(P(V), O(1)) — H(F, S}). Its
zero set V(§) C F is the set of lines L € F with s|; = 0, i.e. the set of lines contained in
the cubic surface S and, hence, ¢,(Sr) = |V(3)| = 27, cf. Exercise 1.15.

Alternatively, one can use c(F) = 6 - g> — 9 - ¢3(S) (which actually holds in the
Chow ring and not only in cohomology where for degree reasons it would simply be an
equality of numbers), see Exercise 2.3.2, and fF g2 = 45.

Proposition 2.2. Let Y c P* be a smooth cubic threefold and F = F(Y) its Fano variety
of lines. Then there exists a natural isomorphism

Tr = Sr

between the tangent bundle Tr of F and the restriction Sg of the universal subbundle
S ¢ V® Og under the natural embedding F < G(1,P*).

Proof The result was originally proved by Clemens—Griffiths [120] and Tyurin [446]
by very clever geometric arguments. We follow the more algebraic approach by Alt-
man and Kleiman [16, Thm. 4.4]. As a first step, observe that the fibres of 7Tz and Sg
at a point in F(Y) corresponding to a line L = P(W) C Y are naturally isomorphic to
HY(L, N, r;v) and W. Thus, the following arguments can alternatively be seen as estab-
lishing an isomorphism HO(L, Niyy) = W that is natural and thus works in families.
Start by observing that the first of the two spaces sits in the exact sequence

0 —— HYL,Nyjy) —=V/IW@ W ——= S3(W*) ——0,

where the surjection is given by the partial derivatives 9;F of the equation F defining Y,
cf. Remarks 2.2.2 and 2.2.20.

Next, recall that F ¢ G = G(1,P*) is the zero set of the regular section sy €
H°(G, S3(S*)). The latter is the image of the equation in S3(V*) defining Y under the
natural surjection S3(V*)—s=S3(S), see Section 2.1.1. Hence, the normal bundle se-
quence for F c G has the form

0—Tr — Talr —S8°(S;) —=0. (2.3)
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Deformation theory, see Section 2.1.3, provides us with descriptions of the fibres of the
two tangent bundles:

TiyF =~ H(L, Nyjy) and Ti)G = HO(L, Ny »).

Moreover, fibrewise (2.3) is described as the cohomology sequence of the exact se-
quence 0 — Ny — N » — O (3) — 0 of normal bundles for the nested inclusion
L c Y c P*. The global version of the latter is the exact sequence of normal bundles of
the nested inclusionL ¢ F XY C F X P:

0 — Myrxy —— NijFxp Nexy pxel, — 0. 2.4)
= p*Qr ® Oy(1) =~ g*03) = 0,(3)

We use N, joxe = p*Q®O,(1), which is the global version of the natural isomorphism
Nip = V/IW® O(1) for aline L = P(W) c P(V), cf. the discussion in Section 2.1.3.
Here, Q is the universal quotient bundle on G. Restricting to F, one obtains Ni pxp =
p*Qr®0,(1) and taking the direct image of (2.4) under p: L —F, one recovers (2.3):

0—— p*N]L/FxY — p*N]L/FXP — P*Op(3) —0. (2.5)
=Tr = Tglr = §3(S;)

See Exercise 2.1.18 for the isomorphism 77 =~ p. N, where we use the shorthand N :=
NL/Fxy. Taking determinants of (2.4) shows

NN = det(N) = det (p* Qr ® 0,(1)) ® O,(-3) = p* det(Qr)
and applying /\2 and ® O,(-3) to (2.4), one obtains the exact sequence
0—— /\2/\/® O0p(=3) — p*/\2QF ® Op(-1) —= N ——0.
As p.0,(-1) = 0 = R'p,O,(-1), taking direct images gives
Tr = pN = R p. (NN ® 0,(-3)) = det(Qr) ® R' p.O,(-3).

By relative Serre duality, cf. [222, III. Ex. 8.4], Rlp*O,,(—S) =~ p.(0,(1))" ® det(Sr)
and, therefore, Tr ~ p.N = det(QF) ® Sr ® det(Sr) =~ Sr. m]

Remark 2.3. In Remark 6.4.6 we will give another, somewhat curious argument to
deduce an isomorphism 7 =~ Sr by viewing Y as a hyperplane section of a smooth
cubic fourfold X c PS.

Note that Sr is naturally viewed as a subbundle Sy ¢ V ® OF and, as we will see, T
as a subbundle Tr C a* Ty =~ ToA® Of. However, the above result does not yet show the
existence of an isomorphism Sr =~ 7r that would be compatible with these inclusions
under some isomorphism V =~ T(A. This follows from the next result.
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Corollary 2.4. The natural map in (2.2) is an isomorphism
vV — H(F, S;)

and q: L—=Y C P(V) is the morphism associated with the complete linear system

1O, (D).

Proof Use dim H(F, Sy) = dim HO(F, T7) = dim H'(F,Or) = 5 and the injectivity
of the natural map V* — H(L, ¢*O(1)) =~ H(L, O,(1)) = HO(F, S, see (2.2).

One could also imagine a proof that uses spectral sequences as in Proposition 2.3.12
and the isomorphism V* ~ H(G, S*). O

2.2 Cohomology ring of the Fano surface So far, we have shown that there exists an
isomorphism L ~ P(Sr) ~ P(7r), but not that the two morphisms in (2.1) are related. In
fact, we have not yet even properly defined the morphism P(7r) —=P(T(A). This will
be done next.

By virtue of Corollary 2.5.15, there is an isomorphism A> H'(F, Q) —> H*(F, Q) of
Hodge structures. Recall that the discussion in Section 2.4.4 only showed that there
exist isomorphisms of Hodge structures

N H'(F,Q) =~ N H(Y,Q)(2) ~ HX(F,Q),

but a priori not that the cup product induces such an isomorphism. We state the result
again as the following lemma and present the traditional argument for it.

Lemma 2.5. The exterior product defines isomorphisms
N HY(F) = H*(F) and \'H'(F.Q) — H*(F, Q). 26)

Proof We use the isomorphism Sp =~ T, which turns the first assertion into the more
geometric claim that the natural map A\* H'(F, S *)—H'(F, N S7) is an isomorphism.
For this, we use the commutative diagram

NV ———— N HF,S;)

| |

HY(B(N V), O(1)) — H(F, N’ S;) =~ HO(F, O(1))

and the fact that all spaces are of the same dimension ten. Thus, it suffices to show
that the image of the Pliicker embedding F C ]P’(/\2 V) is not contained in any hyper-
plane. This can either be argued geometrically [120, Lem. 10.2] or by using the Koszul
complex as in the proofs of Propositions 2.3.4 and 2.3.12.

Let us turn to the second isomorphism in (2.6). The proof of Corollary 2.5.15 in this
particular case goes as follows: As the map /\2 H'(F,Q)— H*(F,Q) is topologically
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defined, its injectivity is independent of the particular smooth cubic threefold. It is thus
enough to check injectivity for one Fano surface F = F(Y). However, for the very gen-
eral cubic A\ H3(Y, Q)(2) ~ \> H'(F, Q) is the direct sum Q(—1) @ H of two irreducible
Hodge structures of weight two. The first summand is pure and spanned by the inter-
section product gy on H3(Y, Q), which by Proposition 2.5.5 is mapped onto a non-trivial
Hodge class. The irreducibility of H = q§ follows from the fact that Sp(H>(Y)) acts
irreducibly on H, see Remark 1.2.13.

The irreducibility of the Hodge structure H implies that the map H— H*(F, Q)
is injective if and only if A\> H'O(F)— H*(F) is non-trivial, which we have shown
above. Moreover, H*(F) is contained in H*(F, C),, and, therefore, H < H?*(F, Q).
Altogether, this proves the injectivity of /\2 H'(F,Q)— H?*(F, Q) and, for dimension
reasons, its bijectivity. O

2.3 Albanese morphism Geometrically, the first injectivity in (2.6) is equivalent to
saying that the image of the Albanese morphism a: F—A is a surface. Moreover,

the pull-back defines an isomorphism a*: H*(A, Q) —— H*(F,Q), of which we will
prove an integral version in Corollary 3.12 below.

Corollary 2.6. The Albanese morphism a: F — A is unramified, i.e. for all t € F the
tangent map da;: T\ F —=T A is injective. In particular, the derivative of the Albanese
map defines the morphism g in (2.1)

g: P(Tp) —P(Ta) —P(ToA).
Proof Assume da, is not injective for some ¢ € F. Then the induced map
N T.F — N T,nA
is trivial. However, this map is the dual of the map
N T = N HO@) = N H'(F) — H>(F) = H'(F, wp) —> wr ® k1),

which then is also trivial. As wp is very ample and, in particular, globally generated,
this is absurd. o

Lemma 2.7. The morphism g: P(Tg) —=P(TA) is the morphism associated with the
complete linear system |O,(1)|

Proof First, g*O(1) = O,(1), as P(Tr) C P(a*Ty) =~ P(TpA) X F is induced by the in-
clusion T = a*T, = ToyA®Or. It remains to show that the linear system is complete,
i.e. that the pull-back map H(P(T,A), O(1)) —= H(P(TF), O,(1)) is a bijection. Both
sides are of dimension five, so it suffices to prove the injectivity. If the map were not
injective, then all tangent spaces T;F = TA would be contained in a hyperplane. But
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this would contradict the bijectivity of the dual map H°(A, Q4) —= H°(F, QF), which is
the pull-back of one-forms under the Albanese map a: F —A. O

This proves the main result of this section:

Proposition 2.8. There exist isomorphisms Sp ~ Tp and V =~ TyA inducing a commu-
tative diagram

P(SF) —— P(V)

| !

B(Tr) —= B(ToA). O

Corollary 2.9. The Albanese morphism a: F — A is unramified and generically in-
Jective.

Proof The first assertion is Corollary 2.6. To prove the injectivity generically, we
choose the above isomorphism V =~ T(A such that the two inclusions

’7}(—>a*7}:ToA®0F and Sp(é- Ve Ok

coincide. Hence, the morphism F — G(1,P(TA)), t+—[TF C Ty(A)] is identified
with the Pliicker embedding F = G(1,P(V)). However, if for all points s € a(F) and
distinct points #; # t, € a”!(s) the tangent spaces T, F C ToA and T,,F C T,yA are
different, then the generic fibre can only consist of just one point. O

In fact, Beauville [44, Thm. 4] has shown that a: F —— A is injective and hence
a closed immersion, see Corollary 3.5. We will see that in the end this assertion is
equivalent to saying that the invertible sheaves O(Cy,) and O(Cy,) associated with two
distinct lines L; # L, C Y are never isomorphic, which we proved as Corollary 1.30
already.

As a side remark, we state the following observation by Voisin [479, Sec. 4]:

Corollary 2.10. IfY does not admit any Eckardt point, then the cotangent bundle Qp
of its Fano variety F = F(Y) is ample.

Proof By definition Qp ~ T = S;. = p,0,(1) is ample, if the relative tautological
line bundle O,(1) on P(7r) —F is ample. Now use that g: P(7r) ~ P(Sp) ~ L—Y
is the morphism induced by the linear system |0, (1)|, which is finite unless ¥ contains
Eckardt points. O

Remark 2.11. The ampleness of the cotangent bundle of an algebraic variety is a very
strong condition and examples of such varieties are not easily produced. According to
a result of Kobayashi, see e.g. [149, Prop. 3.1], ampleness of Qpy) implies that F(Y) is
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hyperbolic, i.e. there are no non-constant holomorphic maps C— F(Y). In particular,
F(Y) does not contain any (singular) rational or elliptic curves.

Note that the ampleness of Qpy) is actually equivalent to the finiteness of g: L—7,
i.e. to the non-existence of Eckardt points, and there certainly exist smooth cubic three-
folds for which Qpy) is not ample, see [403] for a detailed discussion.

2.4 Geometric global Torelli theorem for threefolds The following is a special case
of the ‘geometric global Torelli theorem’, see Proposition 2.3.12. The result in dimen-
sion three [120, 446] predates the general result and we present here its classical proof
that relies on the preceding discussion.

Proposition 2.12. Two smooth cubic threefolds Y, Y’ c P* are isomorphic if and only if
their Fano surfaces F(Y) and F(Y') are isomorphic:

Y~Y & FY)=~F{Y’).

Proof For any smooth cubic threefold Y c P*, the Picard group Pic(Y) is generated by
Oy (1). Hence, any isomorphism Y =~ Y’ is induced by an automorphism of the ambient
P* and, therefore, induces an isomorphism F(Y) =~ F(Y") between their Fano surfaces.

Conversely, any isomorphism F(Y) =~ F(Y’) induces an isomorphism between the
images Y and Y’ of the natural morphisms

P(Tr)) —P(THoAlb(F(Y))) and P(Tryr)) —=P(ToAlb(F(Y"))),
given by the differentials of the Albanese maps. O

Exercise 2.13. Observe that the same techniques can be exploited to show that for any
smooth cubic threefold ¥ c P* there exists a natural isomorphism of finite groups, cf.
Corollary 1.3.9,

Aut(Y) —— Aut(F(Y)),

see (3.6) in Section 2.3.3. Combined with Corollary 1.3.18 and (0.4), this shows that
the natural action Aut(F(Y)) “ Aut(H'(F(Y),Z)) is injective, see [384].
Quotients of F(Y) by subgroups of Aut(F(Y)) have been studied by Roulleau [407].

We complement Proposition 2.12 by the following infinitesimal statement.

Proposition 2.14. Let Y c P* be a smooth cubic threefold and let F = F(Y) be its Fano
surface. Then the natural map

H'(Y, Ty)—==H"(F,Tr)

is bijective.



228 Chapter 5. Cubic threefolds

Proof The injectivity of the map holds more generally for all smooth cubics of di-
mension at least three, see Corollary 2.5.10. In order to prove bijectivity, it suffices
to show that 4'(F, 77) = 10. Note that the Hirzebruch—-Riemann—Roch formula shows
x(F,Tr) = 30. Hence, by applying the vanishing H°(F, Tr) = 0, see Corollary 2.3.13,
one obtains &' (Tx) = h*(Tr) — 30. Thus, it would be enough to show 4?(Tr) < 40.

However, it is possible to compute H'(F, Tr) =~ H'(F, S¢) directly.” The Koszul re-
solution of Op, see (3.1) in the proof of Proposition 2.3.4, tensored with S allows one
to compute H'(F, Sr) via the spectral sequence

EP = 11, \(5%(8) © §) = HII(F, Sp).

After applying Bott—Borel-Weil theory to identify the various terms one eventually
finds that H'(F, Sr) is the kernel of the natural map S2(V) ® det(V) —=V* ® det(V)
given by the equation of Y c P(V). For smooth Y this map is surjective and, therefore,
h'(F,SF) = dim S?(V) — dim(V) = 15 - 5 = 10. ]

The result says that the Fano surface F(Y) stays a Fano surface after small defor-
mations, which is false for example for the Fano variety of lines on a smooth cubic
fourfold, see Corollary 6.3.12 and Remark 2.3.14.

Remark 2.15. Note that the Picard number p(F) := rk(H"!(F, Z)) of the Fano variety
satisfies 1 < p(F) < 25. The general cubic threefold satisfies p(F(Y)) = 1, see the
proof of Lemma 2.5, but in light of the moduli space of cubic threefolds being only
ten-dimensional one is led to ask which other Picard numbers can be attained. Using
(2.6) to see that the Albanese morphism induces an isomorphism of Hodge structures
H*(A,Q) ~ H*(F,Q), cf. Corollary 3.12 below for an integral version, the problem is
linked to the analogous question for abelian varieties of dimension five.

According to Hulek and Laface [241] the Picard number of an abelian variety of
dimension five satisfies 1 < p < 17 or p = 25. Clearly, then the same holds true for the
Fano variety of lines F of any smooth cubic threefold Y. For example, the upper bound
p(F) = 25 is attained by the Klein cubic

Y= V(x%xl +x%x2+x%x3+x§x4+x3xo),

see [10, 56, 404]. In this case, A =~ E| X---X E5 (as unpolarized abelian varieties), where
the E; are pairwise isogenous elliptic curves with CM, see [305, Exer. 5.6.10]. Roulleau
[406] describes examples with p(F) = 12,13 and observes that there exist infinitely
many smooth cubic threefolds with p(F) = 25. However, which of the remaining values
1 < p(F) < 17 are realized seems an open question. Note that the moduli space of
abelian varieties of dimension five is of dimension 15. Over finite fields the problem
7 Thanks to A. Kuznetsov for providing the complete argument. His proof is too long and technical to be

included here in full, so we only sketch the approach. As was pointed out to me by S. Stark, a complete
proof can already be found in a paper by Wehler [489].
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has been studied by Debarre, Laface, and Roulleau [141]. This is then related to the
Zeta function, cf. Remark 2.4.22.

In the arithmetic setting, the link between the Fano surface and the intermediate Ja-
cobian, cf. Corollary 3.3, has been used by Roulleau [408] to prove the Tate conjecture
for the Fano surface over any finitely generated field not of characteristic two.

3 Albanese, Picard, and Prym

The general theory set up in Section 2.5.5 provides us with a commutative diagram

CHZ(F)alg I CH2(Y)alg —— CH[(F)alg 3.1
A(F) J(Y) Pic’(F).

Note that CH*(F )atg is known to be big (over C), while CH!(F) = Pic(F).

The intermediate Jacobian
HI,Z(Y) B H21(Y)a<
H)Y,Z)  Hy(Y.Z)
of Y is self-dual and the two maps on the bottom are dual to each other, cf. Section 2.5.5.
Indeed, they are induced by the Fano correspondence ¢: H 3(Y,Z)—=H'(F,Z)(-1) and
its dual y: H3(F,Z)—H>(Y,Z) (a priori up to torsion, but see Remark 1.21). More-
over, as the two maps induce isomorphisms between the cohomology groups with ra-
tional coeflicients, they are isogenies of abelian varieties of dimension five.

The aim of this section is to show that all three abelian varieties, A(F), J(Y), and
PicO(F ), are isomorphic and, moreover, can be identified with the Prym variety of the
morphism Cy, =~ BL — Dy in Section 1.3.

JY) =Y =

3.1 Albanese versus intermediate Jacobian In order to understand the composition
A = A(F)—s J(Y) —=Pic"(F),

we first pre-compose it with the Albanese map a: F'—s A, which depends on the ad-
ditional choice of a point #, € F corresponding to a line Ly C Y. This map then fac-
torizes through F e-CHZ(F )atg, t—>=[t] — [#o] and the Abel-Jacobi map CHX(F Jalg C
CH?(F)pom —= A(F). According to Exercise 2.4.13 and Remark 1.21, H*(F,Z) is tor-
sion free. Hence, the notion of homological and algebraic equivalence for divisors on F
coincide. A similar result holds for curves on Y, see the proof of Corollary 3.16 below.
Thus,

CH?(Y)ug = CH*(Y)hom and Pic’(F) ~ CH'(F)ug = CH'(F)hom.
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Lemma 3.1. The composition F A(F) J(Y) Pic’(F) sends a point
L € F to the invertible sheaf O(Cr, — Cr,).

Proof Clearly, the class of the point L € F under y: CH?(F) — CH?(Y) is mapped
to the class [L] € CH2(Y) of the line L C Y. The image of the latter under the correspon-
dence ¢: CH?(Y)— CH!(F) is by construction O(Cy). Then use the commutativity of
the diagram (3.1). ]

The result can be extended to a description of the composition
C —=A(C)—= A(F) —= J(Y) — Pic’(F) —Pic’(C), (3.2)

for an arbitrary (smooth) curve C C F(Y) as L— O(C —Cy,)|c, which combined with
Remark 1.18 will come up again as the Abel-Prym map in Remark 3.9. The observation
is particularly useful when C is ample, e.g. for C = Cy. In this case, one finds

A(C)—=A(F) and Pic’(F)— Pic’(C).

The surjectivity follows from H'(F, Or(-C)) = 0, a consequence of the Kodaira van-
ishing theorem, which proves the injectivity of the map H'(F, Or) & H'(C, O¢) be-
tween their cotangent spaces.

For the injectivity use that for a line bundle M of degree zero on F, the line bundle
O(C) ® M* is still ample. Hence, again by Kodaira vanishing, H'(F, O(-C) ® M) = 0
and, therefore, HO(F, M) —s> H%(C, M|¢) is surjective. The latter shows that with M|
also M would be trivial.

Let L € F be generic and consider Cy, as the étale cover
n. Cp =~ 5L—>>DL
of degree two, see Section 1.3.
Corollary 3.2. Using the above notation, one has:

(1) The following composition is trivial:

Pic(D;) —Z= Pic%(C}) ~ A(C)) A(F) J(Y) Pic’(F). (3.3)

(ii) The image of the restriction map H'(F,Z)—s H'(Cy, Z) is contained in the kernel
ofn.: H(C1,Z)—=H'(D;, 7).

Proof Observe that under the natural map
D; — Pic(D;) —Pic(C) — CH?*(F) — CH?(Y)

apointy € Dy is mapped to [L;] + [L>] € CH?(Y), where L, and L, correspond to the
two points of the fibre 77! (y).
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Clearly, for the plane P> = y L, the following equality holds in CH*(Y):
[Li]+ [Lo] = [Li] + [Lo] + [L] = [L] = [P*]ly — [L].

As [yL] € CH?(P*) ~ Z is independent of y € Dy, also the class [L] + [L,] € CH*(Y)
is. Thus, D;, — CH?(Y)— CH'(F) is constant and, therefore, the composition (3.3)
is trivial.

The second assertion is equivalent to the vanishing of the composition

H'(D.,Z) — =~ H\(CL,2Z) ey H3(F,Z)(-1). (3.4)

Composing (3.4) further with the injection H>(F,Z) = H3(Y,Z) = H'(F,Z)(-1)
describes the map obtained by taking cohomology of (3.3). Hence, (i) implies (ii). O

Note that the purely topological assertion (ii) is deduced from a Chow theoretic argu-
ment. A more topological reasoning along the same lines is probably also possible but
likely to be not quite as elegant.

By a purely topological description of étale coverings of degree two, one computes
that the intersection pairing on H'(C}, Z) restricted to the submodule

H'(Cp,Z)" = Ker (n.: H'(C,Z)—H'(D.,Z))

is divisible by two, cf. Section 3.2. Hence, the Hodge—Riemann pairing (. ) on H'(F, Z)
with respect to the Pliicker polarization satisfies

Yr = fv-y' g = 3f Yle, +Yle, € 6Z, (3.5)
F CL
where we use 3[C;] = g € H*(F,Z), cf. Lemma 1.14. Then, according to Proposition
2.5.5, the Fano correspondence provide an injection of integral(!) symplectic lattices
¢: (H*X,2),( )~ (H'(F,Z),(=1/6)(. )F)

of finite index. As the left-hand side is unimodular, this map has to be an isomorphism.
We thus have proved the following result, cf. Corollary 2.5.8.

Corollary 3.3. The Fano correspondence induces an isometry of Hodge structures
¢: (H(%,2), (. )y) == (H'(F,Z)(=1),(=1/6)( . )r)
and, consequently, isomorphisms of the associated polarized abelian varieties
A(F) —= J(Y) — Pic’(F). O

Remark 3.4. By definition of the intermediate Jacobian of Y, there exists an isomor-
phism of Hodge structures

H'(J(Y),Z) (1) = H(Y,Z) (3.6)
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which gives rise to a Hodge class in H>2(J(Y) X Y,Z). It is an open question whether
this class can be written as an integral(!) linear combination of algebraic classes. This
question and its relation to the existence of a universal codimension two cycle and to
the question whether cubic threefolds have universally trivial CHy has been studied by
Voisin [481], cf. Section 7.4.2.

Note however that the Fano correspondence does give an algebraic correspondence

H'(J(Y),Z) —> H'(A(F),Z) —> H'(F(Y),Z) <2~ H3(F(Y),Z) —> H3(Y.2),

which however is only an isomorphism of rational(!) Hodge structures unlike (3.6). In
Section 6.3.8 a similar phenomenon will be discussed for cubic fourfolds.

The next result improves upon Corollary 2.9, cf. [44, Thm. 4].
Corollary 3.5 (Beauville). The Albanese morphism
a: F—— A(F) = J(Y)

is a closed immersion. Equivalently, the morphism F — Pic(F), L—=O(C}) is a
closed immersion

Proof Indeed, by Corollary 2.9 the morphism F — A(F') is unramified and its com-
position with A(F) — J(Y)—Pic(F), which is an isomorphism by Corollary 3.3, is
the injective map L+— O(Cy), cf. Corollary 1.30. m]

Remark 3.6. Some of the varieties we have considered, e.g. the Fano variety F(Y) or
its Albanese variety A(F(Y)) ~ J(Y), admit a modular description, i.e. are isomorphic
to certain moduli spaces of sheaves on Y. Here are some facts and references:

(i) The blow-up J(Y)—=J(Y) in the codimension three subvariety F(Y) c J(Y)
admits a modular description. Druel [165] shows that it is isomorphic to the moduli
space of semistable sheaves of rank two on Y with Chern classes ¢c; = ¢3 = 0 and
¢y = (2/3) - h%. The complement of the exceptional divisor, a P2-bundle over F(Y), is
the open set parametrizing the locally free sheaves.

The original argument relies on work of Markushevich—-Tikhomirov [341] and Iliev—
Markushevich [258]. A simplified account was provided by Beauville [52] who also
describes the proper transform of the theta divisor and a description in terms of matrix
factorizations was provided by Bohning and von Bothmer [76].

(i1) The moduli space of semi-stable locally free sheaves of rank two on Y with Chern
classes ¢c; = hand c; = (2/3)-h? has been described as the Fano variety of lines F(Y) by
Beauville [58, Prop. 3] and by Biswas—Biswas—Ravindra [70, Thm. 1]. A similar result
holds for the moduli space of semi-stable locally free sheaves of rank two with Chern
classes ¢; = 0and ¢, = (1/3) - K%

(iii) Another moduli space appears naturally. As shown by Bayer et al [40], the moduli
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space of semistable sheaves of rank three and Chern classes ¢; = —h, ¢, = h?, and
c3 = —h?/3 is the blow-up of the theta divisor 2 ¢ J(Y) in its only singular point, see
Section 4.1 and Remark 7.2.7.

3.2 Reminder on Prym varieties The next step is to relate the intermediate Jacobian
J(Y) to the Prym variety of the étale cover C; — D, for a generic line L C Y.

Let us begin with a reminder on Prym varieties. We recommend [42, 49, 305, 359]
for a more detailed discussion and [179] for a historical account.

We consider an étale cover

n: C—=D

of degree two between smooth projective curves. Then C comes with a covering in-
volution that we shall denote by ¢. Note that according to the Hurwitz formula, we
have g(C) = 2g(D) — 1. The double cover r corresponds to the two-torsion line bundle
Ly =1,0c/Op € Pic’(D) that satisfies 7° L, ~ O¢.

Lemma 3.7. The pull-back n*: Pic(D) —Pic(C) defines an isomorphism

Pic(D)/{L,) ~ Ker (Pic(C) —=“= Pic(C)).

Proof The morphism 1 —¢* maps a line bundle £ to £ ® *L*. Clearly, if £ = 7*M,
then (1 — ¢*)(L) =~ Oc¢. For the other inclusion use that any ¢*-invariant invertible sheaf
descends to an invertible sheaf on D.

Following Beauville [42], the descent can be shown explicitly as follows: Suppose
L = O(E) satisfies «* L ~ L. Write E—i*E as the principal divisor (f) for some f € K(C)
and observe that then f - ¢* f has neither zeros nor poles, so we may assume f - ¢*f = 1
(we need k to admit square roots for this). Pick an element g € K(C) with :*g = —g and
set fy := g-(f=1). Then, f = fy-(¢* fo)~' and, therefore, Ey := E—(f;) is the pull-back of
a divisor on D. Alternatively, the existence of f; can be deduced from Hilbert’s theorem
90. We leave it to the reader to verify that Op and L, are the only line bundles with
trivial pull-back to C. O

Definition 3.8. The Prym variety of an étale double over 7: C —> D is defined as

Prym (C/D) := Im (Pic’(C) ——“= Pic(C)).

Hence, there exists a natural exact sequence, see [81, Thm. 2], [42, Sec. 2.6], or [365,
Sec. 10.9]:

0— (L) —= Pic’(D) — Pic’(C) —Prym(C/D) — 0. 3.7)

8 One could think that the absence of fixed points is important here. It is not, although for the descent of
invariant invertible sheaves on surfaces, fixed points do cause problems.
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In particular, the dimension of the Prym variety is
dim Prym(C/D) = g(D) — 1.

Next we wish to show that the Prym variety can also be viewed as a connected com-
ponent of the kernel of the norm map. Recall that the norm map N: Pic(C) —Pic(D)
is the push-forward map 7. : CH'(C)— CH!(D), which, using Pic® ~ Alb for curves,
on the identity component is described by the natural map A(C)— A(D) between the
Albanese varieties. Alternatively, N(£) ~ detr.L ® (detm.O¢)*. For example, for the
line bundle £ = O(x), x € C, the exact sequence 0 — O¢ — L —=k(x)—=0 in-
deed shows O(n(x)) ~ detm,.k(x) ~ detn.L ® (det1.O¢)*. Clearly, N defined as 7, is a
group homomorphism, which is not quite so apparent in the latter description. Note that
Ker(/N) has two connected components, non-canonically isomorphic to each other.

The claim now is that the connected component Ker(N)° of the kernel Ker(N) con-
taining O is the Prym variety, i.e.

Prym (C/D) = Im (1 — ¢*) ~ Ker (N)°.

For one inclusion use 7.t* = 7, and compute N(L ® 1" L*) ~ detm.(L) @ (detm.* L) ~
Op. For the other inclusion, observe that N: PiCO(C)—>>PiCO(D) is surjective and
hence Prym (C/D) c Ker (N)° is an inclusion of abelian varieties of the same dimension
g(D) - 1.

To summarize, in addition to the exact sequence (3.7) there is an exact sequence

0 — Prym U Prym’ — Pic%(C) —= Pic’(D) — 0. (3.8)
~ AC) ~ A(D)

It is useful to describe both points of view in terms of integral Hodge structures. For
this, recall that
HY(C,0¢) N HO(C, we)*
H'(C,Z) ~ H\(C.Z)

and similarly for PicO(D). As explained in [305, Ch. 12.4], H 1(C,Z) admits a symplectic
basis of the form A, fio, A, i=1,...,8(D) - 1 with Ao, fip fixed by the action of ¢*
on H'(C,Z) and C(AF) = AT, (uF) =, see also the picture in [164]. In particular, the
only non-zero intersection numbers are (1y.fio) = 1 and (A7) = 1. This allows one to
describe the eigenspaces H 1(C,Z)* ¢ H'(C,Z) of the involution ¢* as

Pic’(C) ~ = AIb(C)

HY(C,2)" = (Ao, fio, AT + A7, p1f + ;) and H(C,Z)™ = (AF — A7, — 7).

The latter implies the fact alluded to before that the intersection pairing on H'(C,Z)~ is
divisible by two, which was used in the proof of Corollary 3.3. Moreover, the image of
the pull-back map

.....
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which is given by Ao+ Ao, po—>2fio, Ai—=A7 + A7, and p;j—>put + 7, for i =
1,...,g(D) — 1, defines a sublattice of index two. With this notation, topologically the
étale covering C — D can be constructed by cutting D along the standard loop rep-
resenting (o and gluing two copies of D along . This explains why in particular the
pull-back of wg gives 2 fig.

Also observe that the image of

H'(C,2)—H'(C,2)", ar=a +'a
is contained in 7* H'(D, Z) ¢ H'(C,Z)* with index two. On the other hand,
HY(C,Z)—=H'(C,Z)", ar—a - '@
is surjective. As the sequence (3.7) is induced by the exact sequence
0 — H'(C,2)* — H'(C,Z) ——> H'(C,Z) — 0, (3.9)

the Prym variety can be described as

H'(C,0c)" _ H(C.wc)™
HY(C,2)-  H\(C,Z)

Prym(C/D) =~

Remark 3.9. The Prym variety is commonly viewed as a principally polarized abelian

variety: Indeed, the last isomorphism together with the description of H'(C,Z)~ as A -

A7, pf — p7) allows one to define a principal polarization

= € H*(Prym(C/D),Z) ~ /\zHl(Prym(C/D),Z) ~ /\zHl(C, VAR

on Prym(C/D) explicitly given by the intersection pairing on H'(C,Z)~ scaled by the
factor (1/2).
For a fixed point ty € C one defines the Abel-Prym map as

AP: C—Prym(C/D), t+—=O(t — 1)) @ " O(t — 1p)".

It induces the canonical isomorphism AP*: H'(Prym(C/D),Z) —= H'(C,Z)". In par-
ticular, AP*(2) = (1/2) > (Af Apf + A7 Ap;) € H?*(C,Z) and hence
deg AP*(E) = g(C)— 1 = 2g(D) - 2.
The kernel of Pic’(C) —s=Prym(C/D) can be written as the degree two quotient

H'(C,0c)" H'(C,0c)*
HY(D,Z) HY(C,Z)*

As the last step of our general discussion, observe that (3.8) corresponds to

Pic’(D) ~

0——= HY(C,2) —= H'(C,Z) -~ (1 + )H(C,Z) —= 0,
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where we make use of the degree two quotient

1 + 1 +
H' (C,Oc¢) H' (C,O¢) ~ Picd(D).
(1 +)H(C,7Z) HY\(D,Z)

Let us now apply the general theory to the cover C; —s> D, associated with a generic
line L C Y in a smooth cubic threefold.

Proposition 3.10 (Mumford). For a generic line L C Y, the curve i: C;— F(Y)
induces an isometry of Hodge structures

(H(X%2),~(.)y) = (H'(E2)(=1), (1/6)( . )r) —= (H'(C1, 2)7, (1/2)( )
and an isomorphism of polarized abelian varieties
J(Y) = A(F) = Pic’(F) TN> Prym(Cr/Dy).

Proof The first isomorphism is the content of Corollary 3.3. The second one follows
from a comparison of (3.9) with the exact sequence

0 —> Ker(¢) —= H'(Cp, Z) > H3(Y,Z) — 0.

Here, ¢ is the composition of the push-forward map i, : H'(Cy,Z)—s H>(F(Y),Z) in-
duced by i: C;, & F(Y) and the dual y: H*(F(Y),Z)—s= H>(Y,Z) of the Fano corre-
spondence. The surjectivity of i, is a consequence of the ampleness of C;, and the Lef-
schetz hyperplane theorem: H'(C;,Z) ~ H\(Cy,Z)—sH(F(Y),Z) ~ H3(F(Y),2).
As y is dual to ¢: H3(Y,Z) — H'(F(Y),Z), which is an isomorphism according to
Corollary 3.3, ¥ is surjective, too.

By virtue of Corollaries 3.2 and 3.3, we know that H' (D, Z) —= H*(F(Y), Z) is triv-
ial and, hence, n*H'(D;,Z) c Ker(¢). Both are free Z-modules of the same rank and
Ker(¢) is saturated, as its cokernel is the torsion free H 3(Y,Z). However, 7 H' (D, Z) is
also contained with finite index in H'(Cy, Z)* and the latter is a saturated submodule of
H'(Cy,Z), for its cokernel is the torsion free H'(C;,Z)~. Hence, Ker(¢) and H YL, z)*
both realize the saturation of 7*H'(D;,Z) ¢ H'(Cy,Z) and, therefore, coincide. So,
altogether we obtain an isomorphism of Hodge structures

H(Y,Z)(1) ~ H'(C1,Z)

and, hence, an isomorphism of abelian varieties Prym(Cy/Dy) =~ J(Y). The compatibil-
ity with the various pairings and polarizations is easily checked. O

Remark 3.11. Not every smooth curve of genus eleven admits an étale double quo-
tient. Furthermore, the space of étale double covers C — D with g(C) = 11 arising as
Cp— Dy is of codimension three. Indeed, the quotient curve Dy, is smooth of genus six
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and, therefore, its deformation space is of dimension 15. On the other hand, the space
of all (¥, L c Y) only accounts for twelve dimensions.’

3.3 Theta divisor of the Albanese The following summarizes results in [120], [43,
Prop. 4 & 7], and [44, Thm. 4]. Note that in [446, Sec. 2] it is wrongly claimed that the
image of « is a divisor of degree two.

Corollary 3.12 (Beauville, Clemens—Griffiths). Fix a point in F = F(Y) and consider
the Albanese embedding a: F — A = A(F) = Prym(C/Dy), see Corollary 3.5. Then

(i) [a(F)] = (1/3!)-E* € H%(A(F),Z) ~ H*(Prym(C./Dy), 7).
(i) a"(E) = (2/3) - g € H*(F,Z) and degz(a(F)) = fF 22| = 20.
(iii) The composition

@: FXF 2% AxA——>A

is generically finite of degree six and its image is the theta divisor & c A."°
(iv) In degree two, the pull-back defines an index two inclusion

0 — HX(A,Z) “~ HX(F,Z) — Z)2Z — 0,
the cokernel of which is generated by the image of (1/2) - a*(E) = (1/3) - g.

Note that the Albanese map F— A depends on the choice of a point in F, so a line
in Y. However, the map a: F X F—A does not. So, the intermediate Jacobian of ¥
or, equivalently, the Albanese of its Fano surface F comes with a distinguished divisor
E C A representing the principal polarization.

Proof All assertions are invariant under deformations of Y, so we may choose Y gen-
eral. Then, H"!'(F,Q) = Q- g = Q- [C.], see Remark 2.15, and H33(4,Q) = Q - E3.
For the last equality one has to use the description of the monodromy group and the
isomorphism H®(A, Q) ~ A° H'(A,Q) ~ A° H3(Y,Q)(6) combined with the arguments
in Remark 1.2.13. Therefore, (i) is equivalent to the second assertion in (ii), which in
turn is is equivalent to the first one in (ii), for fF g% =45.

In order to prove (ii), we use that the composition C; = F = A =~ Prym(C1/Dy)
is the Abel-Prym map, use (1.4) in Remark 1.18 and (3.2). This suffices to conclude,
because deg AP*(Z) = 10 by virtue of Remark 3.9.

For the verification of (iii), one first shows that @ is of degree at least six. Pick a
generic point (L;,L;) € F X F and consider the points of intersections Cy, N Cp, =
{M,, ..., Ms} and the residual lines My,;, k = 1,2, of Ly UM; ¢ LyM; N Y. Then O(Cy, +

9 This comment was prompted by a question of G. Oberdieck.
10" S0 both morphisms, g: L.—s Y and a: F x F —> E, are of degree six, but it seems for different reasons.
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Cum, +Chu,,) = O(Cp, + Cp, + Ciy,), as both line bundles are given by the image of P2NY
under CH?(Y) — Pic(F). Hence,

O(CLI - CLZ) = O(CMZi - CMIi)

and, therefore, by Lemma 3.1 the points (M»;, My;) € FxF,i =1,...,5 are all contained
in the fibre & !(a(L,, L,)). Hence, indeed deg(a) > 6.

CL, M;; M»;
[M:]
[M3]

) —""/ 7 M;
(D

Cr, L L,

If we knew already that
f o EH=6-5, (3.10)
FxF

then we could conclude that @ is generically finite and, thus, its image is a divisor. As
H“(A,Z) = Z - Z for general Y and thus [a(F x F)] = k- Z, k > 1, deg(a) > 6 and
fA =% = 5! would then imply deg(a) = 6 and [@(F X F)] = E,i.e. k= 1.

It remains to prove (3.10), for which one uses (i) and the fact that the Pontrjagin
product m, (%—? X ?—f) equals 6 - =. The latter is in [43] proved by evoking the geometric
description of (1/3!) - @3 for the theta divisor ® on the Jacobian of a genus five curve.
It is a special case of the general version of the Poincaré formula m.([W,] ® [W,]) =
(";’")[W,Hm], cf. [305, Ch. 16.5].

To prove (iv), we first claim that a*: H*(A,Z) = H?*(F,Z) is a finite index inclu-
sion. Indeed, a* is the composition of H*(A,Z) =~ /\2 H'(A,Z) == /\2 H'(F,Z), cf.
Proposition 3.10, and the cup product /\2 H'(F,Z7)~— H*(F,Z), which is injective by
virtue of Lemma 2.5. Since both groups are of rank 45, this proves the claim. Further-
more, if the left-hand side is endowed with the quadratic form

(@B)a = (1/3D fA o B2,

which is integral as for the principal polarization Z the class (1/3!) - 23 is integral,
then a* is an isometry by virtue of (i). Next, one shows that disc( . )4 = 4. For this
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consider the power E> of an elliptic curve with its natural principal polarization and
write H2(E>, Z) as a direct orthogonal sum of summands of the form H'(E, Z)=H'(E, Z)
and H*(E,Z)® H°(E,Z). Then ( . )gs is unimodular on the first and of discriminant four
on the second summand. Now, as the intersection pairing on H*(F,Z) is unimodular,
the standard formula for the index of a finite index isometric embedding, see e.g. [249,
14.0.2], implies the result. The last statement follows from the fact that Z € H*(A, Z) is
not divisible. O

Remark 3.13. The two isomorphisms
H'(A,Q) = H'(F,Q) and H*(A,Q) = H*(F,Q)

show that the natural map H*(A,Q) ~ A" H'(A,Q)—s= H"(F, Q) is surjective. This
allows us to write the cohomology of the Fano variety as the quotient of H*(A, Q) by
the ideal generated by the primitive classes in degree three:

H'(A,Q)/(P3)—=H"(F,Q).

The curve analogue is well known: The inclusion C = J(C) of a smooth curve into its
Jacobian, after choosing a point xy € C, induces a surjection H*(J(C), Q) —= H*(C, Q),
the kernel of which is the ideal generated by primitive classes of degree two:

H*(J(C),Q)/(P)—H"(C,Q).

We will encounter a similar structure for cubic fourfolds, see Remark 6.3.13 and Ap-
pendix 6.

Remark 3.14. For a principally polarized abelian variety (A, ) the cohomology classes
(1/ph-E” € H"P(A,2),

which are not divisible any further, are also called minimal.

For the Jacobian of a smooth projective curve all minimal cohomology classes are
effective. Furthermore, according to results of Matsusaka [345] and Ran [396], every
principally polarized abelian variety that admits an effective minimal cohomology class
of codimension g — 1 is the Jacobian of a smooth projective curve of genus g.

In the above result, (i) says that for the intermediate Jacobian J(Y) of a smooth cubic
Y c P* the minimal cohomology class of codimension three is effective and, according
to a conjecture of Debarre [138], any irreducible principally polarized abelian variety A
with an effective minimal cohomology class of codimension 1 < p < dim(A) is either
the Jacobian of a smooth projective curve or the intermediate Jacobian of a smooth
cubic threefold. For recent progress on the conjecture in dimension five see the work of
Casalaina-Martin, Popa, and Schreieder [111]. In relation to this, Krdmer [287] showed
that the decomposition of E as the sum of F and —F is the only decomposition of the
theta divisor. In Remark 7.4.5 we will comment on (1/4!) - E* € H**(J(Y), Z).
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Remark 3.15. The class of F & A has another interesting feature. As shown by
Collino, Naranjo, and Pirola [123], the difference of [F] and [—F] is homologically but
not algebraically trivial. Here, by definition —F is the image of the composition (—1)oa.

Although not stated as such explicitly, the result was independently and earlier proved
by van der Geer and Kouvidakis [461] using degenerations to nodal cubic threefolds.
They also observe that F and (1/3!) - 23 are homologically but not algebraically equiv-
alent.

3.4 Chow groups As a further consequence, one obtains a description of the alge-
braically trivial part of the Chow group of one-dimensional cycles on Y.

Corollary 3.16. Assume L C Y is a line that is generic in the sense of Corollary 1.9.
Then the Abel-Jacobi map gives an isomorphism of groups

CH*(Y)a1g = CH*(Y)pom —> J(Y) = Prym(C./Dy).

Proof The result can be seen as an application of a result of Bloch and Srinivas [73,
Thm. 1 (ii)]: If Y is a smooth complex projective variety with CHy(Y) =~ Z, then the
Abel-Jacobi map induces isomorphisms of groups

CH*(Y)ug = CH?(Y)pom —> J(¥). (3.11)

Clearly, as on a cubic threefold any two points can be connected by a chain of lines,
cubic threefolds satisfy the assumption.

However, in our case of a smooth cubic threefold more direct arguments for the iso-
morphism CHz(Y)alg =~ J(Y) exist, see [364, 365, 366] or [42, Thm. 3.1]. O

Remark 3.17. Just a few more comments on the motivic aspects of the above. For more
information see Section 7.4.

(i) Note that the above result in particular shows the finite-dimensionality of the mo-
tive h(Y) in the sense of Kimura and O’Sullivan [21, 272], cf. Section 7.4.3. Since
H(F(Y)) can be expressed in terms of H(Y), see Section 2.4.2, this implies that also
H(F(Y)) is finite-dimensional. The result can also be deduced from the isomorphism of
rational Chow motives

b2 (A) = HA(F(Y))

proved by Diaz [152, Thm. 1.2].

(i1) Bloch [72, Exa. 1.7] proves that the intersection product defines a surjection
Pic’(F(Y)) ®z Pic(F(Y)) —=CH*(F(Y))o,

which also implies finite-dimensionality of the motive h(F(Y)).
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(iii) The isomorphism of Chow groups
CH?(Y)ag > Pic’(F(Y)) = Prym(C./Dy)
leads to an isomorphism of rational Chow motives
(1) = H(F(Y) = b'(CL).

Here, the latter is the anti-invariant part of b!(Cy) under the action of the involution ¢*. In
a slightly different form this result was first proved by Sermenev [486] and also a little
later by Reid [399, App. 4.3], but see also Manin [334, Sec. 11] and the more general
results of Nagel and Saito [368] on Chow motives of conic fibrations.

Remark 3.18. The arguments in the above discussion heavily rely on the ground field
being C. In fact, already the definition of the intermediate Jacobian J(Y) over other fields
is problematic. However, CH2(Y) and Prym(Cy/D;) make perfect sense over arbitrary
fields and, indeed, Murre [364] describes an algebraic approach that defines the isomor-
phism CH?(Y )alg = Prym(Cr/Dy) over arbitrary algebraically closed fields. In fact, the
isomorphism was originally stated up to elements of order two, but the divisibility of
CHZ(Y)a]g (pointed out by Bloch, see the review of [364]), proves the full statement.
Shen [427] discusses the isomorphism to the Prym for cubics over arbitrary fields.

Remark 3.19. Clemens and Griffiths [120, App. A] give a geometric argument that
shows a weaker version of the first isomorphism in (3.11), namely that the difference
between CH?(Y)hom and CHZ(Y)a]g is annihilated by 6. More precisely, it is shown that
6 - CH*(Vhom = CH?(Y)ulg.

The idea is the following: Let C C Y be any curve. Then a surface C ¢ S C Y is
constructed such that 6 C on Y is rationally equivalent to the sum of P> N S and a sum
of lines > a; L;. As Pic(Y) =~ Z, this proves the assertion. The surface S is obtained as
the image ¢(§) of the surface S := p~'(p(¢~'(C))) parametrizing pairs (L, x) consisting
of a point x contained in the line L that intersects C. Clearly, S is a P'-bundle over
p(g~'(C)), which comes with a natural multi-section g~'(C) c §. Its image under g.
gives 6 C.

4 Global Torelli theorem and irrationality

In this section we survey the known arguments that, based on the results of the previous
sections, prove two milestone results: The global Torelli theorem and the irrationality
of all smooth cubic threefolds.



242 Chapter 5. Cubic threefolds

4.1 Torelli for curves We begin by recalling the classical Torelli theorem for smooth
projective curves over C. The statement for cubic threefolds is literally the same and its
original proof, by Clemens—Griffiths [120] and independently by Tyurin [446], mimics
Andreotti’s classical proof for curves [22]. However, other and easier proofs exist.

Theorem 4.1 (Torelli theorem). For two smooth projective, irreducible curves C and
C’ over C the following assertions are equivalent:

(i) There exists an isomorphism C = C’.
(i) There exists a Hodge isometry H'(C,Z) ~ H'(C', Z).
(iii) There exists an isomorphism (J(C), ®) = (J(C"), ®") of polarized varieties.

Recall that a Hodge isometry is an isomorphism of Hodge structures that in addition
is compatible with the intersection product ( . ) naturally defined on the first cohomology
H'(C,Z) of any smooth projective curve.

The theta divisor ® € H2(J(C),Z) on J(C) = Pic’(C) is given by the intersection
form viewed as an element in

NH'C.2) =~ N H'((©),Z) ~ HXI(C), D).

The isomorphism in (iii) is an isomorphism of varieties ¢: J(C) —= J(C’) such that the
induced map ¢, : H*(J(C),Z) —= H*(J(C'), Z) satisfies ¢,(0) = O'.

As the intersection form on H'(C, Z) is unimodular, the theta divisor as a cohomology
class on J(C) satisfies fJ(C) ®¢ = g! or, in other words, ® is a principal polarization.
For any line bundle with first Chern class ® we shall write O(®). The Riemann—Roch
formula shows #°(J(C), O(®)) = 1, i.e. O(®) is indeed the line bundle associated with
a uniquely determined effective divisor which is also called ©. As the line bundle O(®)
is only unique up to twisting by line bundles in Pic’(J(C)), the effective divisor © is
only unique up to translation.

Geometrically, the (or, rather, a) theta divisor is described as the image

@ =Wy (C)cJ(C)
of the following morphism which depends on the choice of a point x € C
u: C&7! J(C) = Pic’(C),
(X150 X)) > O (O x — (g — Dx).

For any other choice of x, say x’, the image of u is the translate by the line bundle
O((g — 1)(x — x')) € J(C). Note that any isomorphism ¢: J(C) —= J(C’) with ¢.(®) =
@ € H*(J(C'),Z) can be composed with a translation such that it in fact satisfies the
equality ¢(®) = ®" of effective divisors.
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Remark 4.2. Note that it may very well happen that the Jacobians J(C) and J(C’) of
two curves are isomorphic as unpolarized (abelian) varieties without C and C’ being
isomorphic. It is unclear whether this can be reinterpreted purely in terms of C and C”’.
In any case, if J(C) =~ J(C’) as unpolarized varieties, then the symmetric products of
the two curves satisfy [C] = [C"?] € Ky(Varc) for all d > 2g — 2.

4.2 Torelli for cubic threefolds The following is the analogue of the classical global
Torelli theorem for curves.

Theorem 4.3 (Clemens—Griffiths, Tyurin). For two smooth cubic hypersurfaces Y,Y' C
P* over C the following assertions are equivalent:

(i) There exists an isomorphism Y =~ Y.
(i1) There exists a Hodge isometry H3(Y,Z) ~ H3(Y',Z).
(iii) There exists an isomorphism (J(Y),2) =~ (J(Y"),Z) of polarized varieties.

Remark 4.4. Unlike the Jacobian of a curve or of any variety, the intermediate Jacobian
of a variety has usually no modular interpretation and, in fact, is not even necessarily an
abelian variety.

For a cubic threefold Y ¢ P* the situation is better: J(Y) is a principally polarized
abelian variety and has a certain moduli interpretation provided by the isomorphism
JY) = Pic®(F(Y)) of polarized abelian varieties, see Corollary 3.3 and also Remark
3.6. However, the question whether the existence of an unpolarized isomorphism J(Y) =~
J(Y’) reflects a geometric relation between Y and Y’ remains. In fact, it is potentially
even more interesting here than for curves.

Remark 4.5. According to Proposition 3.10, for a generic line L C Y there exists an
isomorphism of polarized abelian varieties (Prym(C./D;),E) ~ (J(Y), E). Of course,
the polarized Prym variety is uniquely determined by the isomorphism class of the curve
Cy c F(Y) of all lines intersecting L and the involution ¢. Thus, as an immediate conse-
quence of the above global Torelli theorem, one can also state

(CL’L)Z(CL’,L/) > Y= Y/,

where on the left-hand side one has an isomorphism of curves that commutes with the
natural involutions on both sides and L and L’ are generically chosen lines contained
in Y and Y’. Note that the converse does not hold, i.e. Y =~ Y’ is not expected to imply
Cp ~ Cyp, for the isomorphism type of C; C F(Y) varies with L for fixed Y.

Remark 4.6. Assume that Y is a very general cubic threefold. Then any other smooth
cubic threefold Y’ for which there exists an isomorphism of rational Hodge structures
H3(Y,Q) ~ H3(Y’,Q) is actually isomorphic to Y. This can either be seen as a conse-
quence of the variational Torelli theorem, see Corollary 3.3.8, or by arguing that for
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the very general cubic threefold any such isomorphism would imply the existence of an
integral Hodge isometry and then applying the above theorem.

Several proofs of Theorem 4.3 exist in the literature. The first one, see [43], seems the
shortest and most instructive one, but it relies on the fact that the theta divisor E C J(Y)
has only one singular point, which we will only prove in Corollary 4.7. The somewhat
longer one to be outlined in Section 4.4 has the advantage of being closer to Andreotti’s
classical proof for curves.

Proof Clearly, it suffices to show that (iii) implies (i). First note that a principal polar-
ization of an abelian variety can be thought of as a cohomology class, but that the actual
effective divisor is only determined up to translation. Nevertheless, from an isomor-
phism of principally polarized abelian varieties as in (iii) one obtains an isomorphism
of the distinguished theta divisors = ~ =’. Assuming that = has only one singular point
0 € E, cf. Corollary 4.7, this isomorphism sends 0 € E to 0’ € Z’. Thus, it suffices to
prove that the projective tangent cone of 0 € E is isomorphic to the cubic threefold:

TCy(E) ~ Y. .1

By virtue of the universal property of the blow-up [222, II. Cor. 7.15], the morphism
a: F X F—A in Corollary 3.12 induces a diagram

P(Tr) & BIs(F X F) —= Bly(E) —— Bly(A) <— P(TpA)

T

A— s FXF < A > {0}

Here, we use the description of the exceptional divisor of BIA(F' X F)—=F X F as the
projectivization P(ANV,rxr) of the normal bundle and the isomorphism Ny /pxr = Tr.

The fibre of the blow-up Bly(E) — = over the origin 0 € E is by definition the projec-
tive tangent cone of 0 € =, which is regarded as a closed subscheme TCy(E) C P(TyA).
As = is irreducible, also the blow-up Bly(E) is, see [222, II. Prop. 7.16]. Therefore, the
induced morphism between the exceptional divisors P(7r) —s=TCy(E) is surjective.
Composed with the isomorphism L =~ P(Sr) =~ P(7F), see Proposition 2.2, and the
inclusion TCy(E) c P(TpA), it gives a morphism

ri L = P(Sp) = P(Tr) —=TCy(E) C P(TpA) ~ P*.

Up to a linear coordinate change, r is nothing but the projection g: L —P(V). In-
deed, r*O(1) = O,(1), because the relative tautological line bundle of the blow-up
Bly(A) — A restricts to O(1) on the exceptional divisor P(7yA) and pulls back to the
relative tautological line bundle of the blow-up Blx(F X F) — F X F'. The latter restricts
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to O,(1) on L. ~ P(7F). Hence, r is indeed induced by a linear sub-system of |O,(1)],
but the only base-point free one is the complete linear system |O,(1)|.
In particular, we recover Y as the image of r. This concludes the proof of (4.1). O

It is tempting to try a shortcut here, involving the geometric global Torelli theorem,
see Proposition 2.3.12 or Proposition 2.12. If (A,E) ~ (A’,Z’), can one use a: F X
F—Eanda’: F' X F' —Z’ to deduce directly F ~ F’ and from there Y ~ Y’? In the
alternative proof below, the Fano surface will play a role albeit in an indirect fashion.

4.3 Andreotti’s proof Next we give an outline of the main arguments of Andreotti’s
proof for non-hyperelliptic curves. We choose the notation to match the one we are
using for cubic threefolds.

Let C be a smooth projective curve of genus g and let V := H L0y ~ HY(C, we)*.
The theta divisor

® c J(C) ~ H(C)"/H,(C,Z) ~ V/H\(C,Z)

gives rise to the rational Gauss map y: @ - > P(V*). It is regular on the smooth
locus Bg, C O and there given by x+—P(7,®). Here, the hyperplane 7,0 c T,J(C) =
ToJ(C) ~ V is considered as a point in P(V*).

The Gauss map is studied via the canonical embedding of the non-hyperelliptic curve
i: C = P(V) given by the complete linear system |wc|. The dual variety C* ¢ P(V*) of
this embedding is the hypersurface of all points H € P(V*) corresponding to hyperplanes
H c P(V) tangent to C at at least one point, i.e. C* = {H | |[H N C| < 2g — 2}. The key
observation now is that the Gauss map y: Oy, —=P(V™) is a dominant map which is
branched exactly over C* c P(V*):

branch(y) = C*.

As the Gauss map only depends on ® C J(C) and C can be recovered from C* as its
dual variety [192], this immediately proves the global Torelli theorem.

To prove that C* is indeed the branch divisor one studies the derivative of the mor-
phism u: C87! —=0 = Wg_l c J(C)atapoint X = (x1,...,X,1) € C87!. The image

du(TC*™") € Ty J(C) = H"(C)* = Hom(H’(C, wc), C)

is nothing but the span of the linear maps o a(x;) € wc(x;) = C. Hence, P(T,x)®)
contains the span i(x;)...i(x,-1). For a generic hyperplane H € P(V*) the intersec-
tion H N i(C) consists of 2g — 2 distinct points xi,..., x> and there are exactly

(2;__12) choices of (x;,,... s Xi,,) € Cs7! that span H. In other words, the generic fibre

of C81 — 4@ ) P(V*) contains exactly (%gg:lz) points.
Hence, the branch divisor of y o u is the locus with fewer than this number of points in
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the fibre. Away from the big diagonal in C#~!, which maps into the singular locus O,
the cardinality of the fibre over H € P(V*) drops whenever H is tangent to C at one of
the points, i.e. H € C*, or g — 1 of the points, say xi,...x,_; are linearly dependent.
Note that the second case also leads to points in Og;ne. Therefore, the branch divisor of y
is contained in C*. As C* is irreducible, this proves the claim and concludes this sketch
of Andreotti’s proof of the global Torelli theorem.

4.4 Singularity of the theta divisor The analogy between the original proof of the
global Torelli theorem for cubic threefolds, which will be explained next, and An-
dreotti’s for curves is visualized by the following picture:

C s (V) Y — PB(V)
C* — P(V*) i(x1) ... i(xg-1) Y s P(V* LiL,
® =
ce! (X150 ey Xgo1) FxF (L1, Ly)

Here are the details, cf. [120, 446, 449]: Let y: E - > P(V*) be the Gauss map. It
is regular on the smooth locus Eg,, C = and there described by

x—>T,E C T J(Y) = ToJ(Y) = ToA(F) ~ V,

using the identification HO(Y,0())" = V =~ ToA(F), cf. Corollary 2.9. The key step

is to show that the branch divisor of the composition F' X F SN~ P(V*) is
(contained in) the dual variety Y* c P(V*). For this step one uses the commutative
diagram, see Corollary 2.9:

SF Cﬁ% V®0F

k k

Tr <> TyA® OF,
which at a point (L; = P(W)), L, = P(W>)) € F X F implies
Im(da: Ty, 1,(F X F)—Ty1,1,)A) = 62(T1, F) + 62(T, F) = Wy + Ws.
Hence, for disjoint lines L; and L, or, equivalently, when m ~ P3, one has

y(a(Ly, L)) = LiL, € P(V™).
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The map y o @ can be extended to a morphism F X F'\ A—=P(V*) by mapping a pair
(Ly, Lp) of distinct lines with L; N L, = {x} to the projective tangent space T,Y € P(V*).
The generic fibre of y o a, say over [H] € P(V*) \ Y7, is the set of pairs L; # L, € F
with L, L, = H c P(V) or, in other words, the set of pairs (L1, L) of disjoint lines in the
smooth cubic surface S := YN H, of which there are exactly 27-16 = 432 independently
of H, see Section 4.3.2. Hence, the branch divisor of y o « is contained in Y*.

To conclude, observe

branch(y) C branch(y o @) C Y.

Now, using deg(a) = 6, by virtue of Corollary 3.12, and deg(y o @) = 432, one knows
deg(y o @) > deg(@) and hence deg(y) > 1. Alternatively, one could use that Z c J(Y)
is certainly not rational.

Then, as P(V*) is simply connected, y has a non-trivial branch divisor and, therefore,

branch(y) = Y™.

As the normalization of Y™ is the cubic threefold Y, this shows that Y is uniquely deter-
mined by = C J(Y), which concludes the second proof of Theorem 4.3. O

Extending the above considerations combined with an intersection theory computa-
tion one proves the following result.

Corollary 4.7. The theta divisor 2 C J(Y) has only one singular point, namely 0 € 2
which has multiplicity three.

Proof A naive idea to prove that Eg,, = {0} is that the composition y o « is regular in
all points of the complement of A € F X F. The latter suggests that the Gauss map 7 is
regular in all points not contained in @(A) = {0} and, hence, that 0 is the only singularity
of . For a rigorous proof of Zg,, = {0} we refer to [43, 439], see also Remark 4.14.
The assertion about the multiplicity follows essentially from (4.1). More precisely, a
standard formula in intersection theory shows that deg(@) - multy(E) = cf(A) —c(A),
where @~'(0) = A ~ F, see [187, Prop. 4.2 (a)]. As the right hand side equals 18 and
deg(a) = 6, the result follows, cf. [187, Ex. 4.3.2]. O

Exercise 4.8. Observe the following immediate consequence of the above. The princi-
pally polarized abelian variety J(Y) is irreducible, i.e. it cannot be written as a product
J(Y) = A; X A of two principally polarized varieties A; and A,.

Casalaina-Martin and Friedman [107] prove a converse of the above result: A prin-
cipally polarized abelian fivefold whose theta divisor has a unique singularity which in
addition has multiplicity three is isomorphic to the intermediate Jacobian of a smooth
cubic threefold.

Note that the two proofs of Theorem 4.3 sketched so far do not use the geometric
Torelli theorem, see Proposition 2.3.12.
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Remark 4.9. (i) The strong form of the Torelli theorem for curves asserts that for
two smooth projective, irreducible curves C and C’ any isomorphism of principally
polarized abelian varieties (J(C),®) ~ (J(C’),®") is up to a sign induced by a unique
isomorphism C =~ C’. This in particular applies to automorphisms and leads for a non-
hyperelliptic curve C to the isomorphism

Aut(C) = Aut(J(C), ®)/{+id}.

If C is hyperelliptic, then Aut(C) =~ Aut(J(C),®). This stronger form of the Torelli
theorem 1is surprisingly poorly documented in the literature, but see Weil’s Bourbaki
talk [493], Milne’s account of it [352, §13], or Serre’s appendix to [310]. The result is
needed to ensure that the map between the coarse moduli spaces of curves and princi-
pally polarized abelian varieties M, — A, is not only injective but in fact a locally
closed embedding.

(i) The analogous assertion for a smooth cubic threefold ¥ < P* is the isomorphism
Aut(Y) X {#id} = Aut(J(Y), E),

which, of course, also shows Aut(Y) =~ Aut(J(Y), E)/{+id} as in the curve case.

Observe that unlike the case of curves, the principally polarized abelian variety J(Y)
comes with a distinguished theta divisor, namely the one whose only singularity is at the
origin. Hence, any polarized automorphism of (J(Y), Z) restricts to an automorphism of
E, which in turn provides an automorphism of the projective tangent cone ¥ ~ TCyZ of
its unique singular point. Note that —id acts as the identity on P(7(J(Y)) and hence on
Y. More precisely, this map Aut(J(Y), E) — Aut(Y) has kernel {+id} and it provides an
inverse of the natural injection Aut(Y) = Aut(J(Y), ), see Exercise 2.1. This proves
the assertion. In this form, the result was established by Beauville (private communica-
tion) and Zheng [499, Prop. 1.6]."

Remark 4.10. In [447] one finds another kind of Torelli theorem which instead of
(J(Y), E) uses the algebraic equivalence class of FF C A(F) = PicO(F ) =~ J(Y). More
precisely, Tyurin proves the following assertion: Two smooth cubic threefolds ¥, Y’ C
P* are isomorphic if and only if there exists an isomorphism of varieties A(F(Y)) =
A(F(Y")) such that under this isomorphism the two cycles F(Y) c A(F(Y)) and F(Y’) C
A(F(Y")) are algebraically equivalent. With all the results proved in the previous sec-
tions, this consequence is not difficult to prove. We leave the details to the reader.

4.5 Cubic threefolds are not rational The description of the singular locus of & C
J(Y) immediately leads to the following counter-example to the Liiroth problem for
threefolds: smooth cubic threefolds are unirational but not rational. The result was first

1" Thanks to M. Rapoport for the references.
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proved in [120]. We recommend Beauville’s survey in [57] for comments on the histor-
ical context and references to other examples.

Corollary 4.11 (Clemens—Griffiths). A smooth cubic threefold Y c P* is not rational.

Proof First note that the blow-up of a smooth threefold Z in a point does not change
its intermediate Jacobian J(Z) while the blow-up along a smooth curve C C Z changes
the intermediate Jacobian. In the latter case there is a natural isomorphism of principally
polarized abelian varieties

JBlc(Z2)) =~ J(Z) x J(C).

Hence, if a smooth cubic threefold Y c P* is rational, then there exist smooth curves C;
and D; and an isomorphism

JY)XJ(Dy) X - X J(Dy) = J(Cy) X - X J(Cp)

of principally polarized abelian varieties. Using the principal polarization, this leads to
an isomorphism of principally polarized abelian varieties

JY)=J(C) XX J(Cr) =~ J(CrU...UCy). “4.2)
Classical Brill-Noether theory shows that the singular set @y of the theta divisor

© =W, ={LePic*'(C) | (L) > 0} c Pic*™(C) ~ J(C)
of the Jacobian of a smooth curve C of genus g is the Brill-Noether locus
Oging = W!_ | ={ L€ Pic* (C) | (L) > 1},

g-1

see [24, Ch. IV]. Furthermore, the determinantal description of W;_l implies
dim(W, ) 2 p(g = 1,1.8) =g — 4. 43)

For g = 5 one finds dim(®g,z) > 1. On the other hand, we know by Corollary 4.7 that
dim(Egiyg) = 0 for the theta divisor E C J(Y). Hence, there is no polarized isomorphism
J(Y) = J(C). Note that the fact that Zy, is a point also shows that J(Y) is irreducible and
hence k = 1 in (4.2), see [57, Lem. 2] for some more details concerning this point. O

Exercise 4.12. Adapt the above arguments to show that two birational smooth cubic
threefolds Y, Y’ ¢ P* are always isomorphic.

Remark 4.13. The crucial observation in the above proof is that as a polarized abelian
variety J(Y) is not isomorphic to the Jacobian of a smooth curve J(C). Independently of
its application to the irrationality, this has other interesting consequences. For example,
Schreieder [419, Cor. 25] shows that this implies that the surface F(Y) is not dominated
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by a product of curves. In general, we are lacking the techniques to decide which sur-
faces can or cannot be dominated by product of curves, see Schoen’s article [418] for
some general results in this direction.

Remark 4.14. Since the original proof by Clemens and Griffiths [120], many other
arguments have been found to prove the irrationality of smooth cubic threefolds.

(o) The irrationality of smooth cubic threefolds in arbitrary characteristic # 2 was
proved by Murre in [365].

(1) In[120, App. C] Clemens and Griffiths explained how, Mumford’s theory of Prym
varieties can alternatively be exploited to show that J(Y) =~ Prym(Cy /D) cannot be the
Jacobian of a curve.

Indeed, according to Mumford [359, Sec. 6], see also [43, Sec. 3] or [439, Sec. 5],
with a short list of exceptions the theta divisor of Prym(C/L) has singularities in dimen-
sion < g(D) — 4, which would exclude it from being the Jacobian of a curve by (4.3).
One exception is a quintic curve D c P? for which h%(D, £, ® O(1)|p) = 0(2), where
L, is the torsion line bundle defining the étale cover C — D. However, although in
our case D; c P?isa quintic, one can show that WD, L, ® O)Ip,) = 1. Indeed,
WDy, Ly ® OWMIp,) = W(Cp, 7 O1)) — hO(Dy, O)lp,) = 4 -3 = 1. Here, we use
that C;, C E =~ P(N)y = sz) ~ L x P!, via the intersection point L' —=L N L', and
701) = ¢*"OD)lc, = (" Oy(1) @ O(=E))lc, = (Opi (1) ® Opi(1))lc,, cf. Remark 1.24.
See also [44] for a detailed discussion.

(ii) Beauville [57, Thm. 3] considered the Klein cubic threefold ¥ = V(F) defined
by F = x(z)xl + x%xz + x§X3 + x%x;; + xixo. Recall that its Fano variety of lines has the
maximal Picard number p(F(Y)) = 25, see Remark 2.15. The Klein cubic comes with a
group of automorphisms generated by two automorphisms of order five and eleven. If Y
were rational and hence J(Y) =~ J(C), these automorphisms would act on the curve C,
which is shown to be geometrically impossible. No further information about the inter-
mediate Jacobian J(Y) and its theta divisor is needed in this example, which simplifies
the argument considerably.

Similarly, Zarhin [497] used the natural automorphisms of a cubic threefold ¥ —s p3
associated with a cubic surface S c P, see Section 1.5.6, to prove irrationality.

(iii) The argument by Markushevich and Roulleau [340] is more arithmetic. They
exhibited a rather complicated cubic equation F' € Z[xo, ..., x4] with good reduction
modulo three. The Weil conjectures can be used to prove that the reduction of the in-
termediate Jacobian cannot be the Jacobian of a curve over any finite extension of Fs.
This suffices to exclude the intermediate Jacobian J(Y) of the complex cubic threefold
Y from being the Jacobian of a curve.

(iv) The condition for cubic threefolds to be rational a priori defines a countable union
of locally closed subsets in [O(3)|. Thus, once an irrational smooth cubic threefold, like
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the Klein cubic threefold in [57], has been found, the very general cubic threefold will
also be irrational. Note that according to a result of Kontsevich and Tschinkel [285],
rationality is in fact closed under specialization.

(v) Specializations to mildly singular cubic threefolds have also been exploited to
prove irrationality of very general cubic threefolds. Collino [121] and van der Geer and
Kouvidakis [460] use degenerations to cubics with one ordinary double point and study
the induced specialization of the intermediate Jacobian. Bardelli [36] relies on limiting
mixed Hodge structures for a degeneration to a union of three hyperplanes, while Gwena
[214] specializes to the unique cubic with ten ordinary double points, see Remark 1.5.17
and Remark 4.2.16.

(vi) It is not known whether smooth cubic threefolds are stably rational. In fact, no ex-
ample of a stably rational smooth cubic threefold has been found. Voisin [483] showed
that if a smooth cubic threefold ¥ < P* is stably rational then the minimal curve class
(1/41)-2* on J(Y) is effective. Note that for o(F(Y)) = 1, a minimal curve in J(¥) cannot
be contained in F(Y) as it would then represent (1/6) - g which is not an integral class.
As for rationality, it is known that stable rationality specializes [371]. We recommend
[471, 482] for further information and references.

Remark 4.15. We briefly sketch an approach to the irrationality introduced by Galkin
and Shinder [189]. It is based on the motivic relation between a smooth cubic threefold
Y c P4, its symmetric square Y, and its Fano surface F(Y). Recall that according to
Proposition 2.4.2 one knows that

(YP1=Q+8)-[Y]+ - [FY)] 4.4)

in Ky(Vary). On the other hand, if ¥ were rational, then [Y] = [P?] + ¢ - @, where
a =Y a;[C;] is a linear combination of classes [C;] of smooth projective curves C;, see
[189, Cor. 2.2] for details. Taking symmetric products gives

[YP]=S2[Y] = S)[PP1+[P*]- € - a + €% - S*(a). 4.5)
Combining (4.4) and (4.5), one obtains
- [FY)] = SYP+[PP]-C-a+ > S*a)-(1+3)-([PP1+(-a)
P -Cra-(+0)+2-5%a).

Assuming that the equation remains valid in Ky(Vary) after dividing by £2, one would
obtain

[FO)]=[P1-C+a-(1+0)+S%(a) =5 (a+[P']) - L. (4.6)
Taking the image of this equation under

Ko(Vary) —= Ko(Var)/(£) ~ Z[SBy],
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see Remark 2.4.3, shows that the class of [F(Y)] in Z[SBy] is a sum (with signs) of
classes of the form S2[D] = [D®] and [D] - [D’] = [D x D'], where D and D’ are
smooth projective curves.

However, one knows that whenever [Z] = > +[Y;] in Z[SB,] with irreducible vari-
eties Z and Y;, then Z is stably birational to one of the Y;, see [306, Cor. 2.6]. Applied
to our case, it shows that F(Y) is stably birational to D X D, or to D'®, where D1, D,,
and D are smooth projective curves. To conclude, one uses that the Hodge numbers /'
and 420 are stable birational invariants. Hence,

(I +gD)n-(1+gDy)r)  or

1+ °F@)t+ 2 FY) P = {

1 +hY (D)t + h20(DP) 2.
The left-hand side is 1 + 57 + 1072, see (v) in Section 0.2. This immediately excludes
the first case, as there is no solution to the two equations g; + g> = S and g; - g» = 10.
Numerically the second case is possible, as for g(D) = 5 one indeed has '°(D?) =
g(D) = 5 and W*°(D?®) = (g(ZD )) = 10. However, if the two surfaces of general type
F(Y) and D® are stably birational, they are in fact birational. In fact, as their canonical
bundles are both ample and minimal models are unique in dimension two, they are
isomorphic F(Y) ~ D®. This leads to the contradiction 25 = A"1(F(Y)) = i1 (D?®) =
26.

Of course, as it stands, this approach does not provide a complete proof, for it is not
clear that (4.6) holds, because it was obtained by dividing by £2. Even worse, it is now
known that ¢ is a zero divisor in Ky(Vary), although there is no reason to expect that the
difference of the two sides in (4.6) is really not trivial and annihilated by £>.

5 Nodal, stable, and other special cubic threefolds

In this section we first discuss cubic threefolds with one ordinary double point as the
only singularity. The irrationality as well as a global Torelli theorem are easy to prove
for them and the Fano variety, albeit singular, has a simple geometric description.

This section also contains a collection of some famous special cubic threefolds, most
of which have been mentioned before. The fact that cubic threefolds are Pfaffian will be
mentioned in passing.

5.1 Torelli for nodal cubic threefolds One nodal cubic threefolds, i.e. those with one
ordinary double point as the only singularity, play a central role in the original article
by Clemens and Griffiths [120]. The theory looks similar to the one for smooth cubic
threefolds but simplifies at many points. The most notable difference between the two
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situations is that contrary to smooth cubic threefolds those with an ordinary double point
are always rational, see Corollary 1.5.16.

To fix the notation, let ¥ ¢ P* be a threefold with yy € Y an ordinary double point as
its only singularity. Blowing-up the singular point leads to a diagram, see Section 1.5.4:

EC— Bl (Y) —— BIc(%) <O F
N .
o} —— Y PP =—C.

Here, p: E’ —C is thought of as the family of all lines in Y passing through the
node yy. The curve C c P3 is a smooth complete intersection curve of type (3,2) and
genus g(C) = 4. If Y is obtained as the hyperplane section Ty X N X of a smooth cubic
fourfold X, then C is simply the fibre of g: L — X over yy € X parametrizing all lines
in X through yy, see Section 6.0.2.

According to Exercise 1.5.15, after a linear coordinate change, we may assume that
yo=[0:0:0:0:1] € P*and Y is given by an equation of the form F + x4 - G, with
F € H'(P?,0(3)) and G € H°(P?, O(2)) defining smooth hypersurfaces in P* ~ V(x,).
Then C = V(F) N V(G).

Alternatively, we can think of the exceptional divisor E as a quadric E C P(T,,P*) =~
P3 and then C = Y N E. Also, ¢: EN E' — C c P? and the quadric E c P3 can be
reconstructed from C < P? as the union of all lines £ ¢ P3 with |C N £] = 3 (with
multiplicities), see [460] and also Section 6.1.4 for more details in the situation of cubic
fourfolds.

The Hodge structure of the smooth blow-up Bl (Y) can be described via the isomor-
phism Bl (Y) =~ Bl (P3) and Jjxop*as

H*(Bly,(Y),Z) = H'(C, Z)(-1),
which immediately defines an isomorphism
J(Y) = JBl,,(Y)) = J(C) = Pic’(C)

of principally polarized abelian varieties of dimension four. Note that in comparison the
intermediate Jacobian of a smooth cubic threefold is of dimension five.

Remark 5.1. The analogue of Theorem 4.3 for nodal cubic threefolds is the following
statement, the proof of which, however, is is much easier than in the smooth case: As-
sume Y, Y’ ¢ P* are two cubic threefolds each with an ordinary double point y, € ¥ and
Y, € Y’ as their only singularities. Then the following conditions are equivalent

(i) Y = Y’ as (singular) complex varieties.
(i1) There exists a Hodge isometry H3(Bly0(Y), Z) ~ H3(B1y6(Y’), Z).



254 Chapter 5. Cubic threefolds

(iii) There exists an isomorphism (J(Y), E) = (J(Y’), E’) of polarized abelian fourfolds.

To see that (iii) really implies (i), observe that a polarized isomorphism J(Y) =~ J(Y’)
induces a polarized isomorphism J(C) =~ J(C’) between the Jacobians of the two as-
sociated genus four curves C,C’ C P? and, therefore, an isomorphism C =~ C’. As the
embeddings C,C’ c P3, are canonical, any isomorphism C ~ C’ extends to an isomor-
phism of the ambient projective spaces and thus leads to an isomorphism

Bl (Y) = Blc(P?) = Bl (P?) = Bly, (Y"). (5.1)

The morphism (5.1) restricts to an isomorphism E ~ E’ between the exceptional divi-
sors of the blow-ups Bl, (¥Y)—=Y and Blyé)(Y ’Y—Y’. Indeed, if their intersection is
empty, then Y and Y’ would have two nodes each. If their intersection is a curve, the
blow-up 7 would define a contraction of the quadric E. Thus, ¥ =~ Y’.

The Fano variety F(Y) of lines is not used in the proof of the global Torelli theorem
for nodal cubic threefolds, but it is nevertheless interesting to understand its geometry.

Remark 5.2. Consider the Hilbert scheme of two points on C which is, of course,
nothing but the symmetric product C®. With each point in C® corresponding to a
subscheme Z c C of length two, one associates a unique line £; c P containing
Z. Clearly, Z ¢ C N {z and if the inclusion is not an equality of schemes, then ¢ is
contained in the quadric E and |C N {z| = 3, cf. Section 6.1.4 for more details. If {7 is
not contained in E, then its strict transform in Y is a line Lz and the induced map

CO\NT—F(Y), Z+—1L,

is injective. Here, T := {Z € CO | |CNn¢&y = 3)is the indeterminacy locus. However,
mapping Z € T to the residual line E;3, where Z = {s1,5} € CN{z = {s1, 52,53},
extends the map to a surjective morphism C® —s= F(Y). Observe that through every
point of C ¢ E =~ P! x P! ¢ P? there exist exactly two lines contained in E. This
shows that T" consists of two disjoint copies of C, which get identified under the map to
F(Y). In other words, C® is the normalization of F(Y), which in this case can also be
described as the blow-up

C? ~ BIo(F(Y))—= F(Y) with C®\(CuC)=FY)\C,
that glues two disjoint copies of C. In particular, this shows
[F(N)] = [C?] = [C]in Ko(Var),

see [189] and Corollary 6.1.30 for the analogous result in dimension four.

The cohomological description of the blow-up Bl (Y) = Bl (P3) lifts to the level of
Chow groups. Hence, the composition

Pic’(C) — CH?*(Bl,,(Y))ay — J(BI,,(Y))
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of the pull-back map and the Abel-Jacobi map induces J(C) = Pic’(C) =~ J(Y). Fur-
thermore, the Albanese map

a: C? —AC?) = J(C) = J(Y) (5.2)

can be reinterpreted in terms of the Fano correspondence C <L E - ¥ as the map
Z = {s1, s2}—=a([E,] + [Ej,]). Over the open set C? \ (C U C) = F(Y) \ C, the map
(5.2) coincides with F(Y)\ C—=J(Y), L—a(L).

The analogue of (i) in Corollary 3.12 is the classical fact

[a(CP)] = (1/2) - E* € H*(J(Y), D).

Note that in the above discussion we suppressed the choice of a reference point sy € C
or aline Ly C ¥, needed to actually define the Albanese maps a for C® and F(Y).

A very similar and more detailed discussion for nodal cubic fourfolds can be found
in Section 6.1.4.

5.2 Semi-stable cubic threefolds The moduli space of smooth cubic threefolds M3 =
|Op+ (3)|sm //SL(5) is naturally compactified by the moduli space

M5 C M3 = |Op(3)|* //SL(5)

of semi-stable cubic threefolds. However, a clear geometric understanding of the sin-
gular cubics that need to be added is complicated in general. For cubic surfaces the
situation was still fairly easy, see Section 4.4.2, but for cubic threefolds it is already
quite a bit more involved, before it gets really complicated for cubic fourfolds, see Sec-
tion 6.6.7, and essentially impossible in dimension five and beyond. In dimension three,
we record what is known but refer to the original articles [13, 495] for details.

Theorem 5.3 (Allcock, Yokoyama). Let Y C P* be a cubic threefold. Then Y is stable
if and only if all its singularities are of type A,, i.e. locally analytically given by an
equation x5 + xi + x3 + x5, withn < 4.

In [13] one also finds a complete description of all semi-stable cubic threefolds: Y is
semi-stable if and only if all its singularities are of type (i) A, with n < 5, (ii) of type
Dy, i.e. locally described by X3 + x7 + x; + x3, (iii) of type Ao, i.e. locally described by
X3+ x7 + x5, or (iv) of type A, with n > 6 but such that Y contains none of the planes
containing the kernel of its quadratic part. The latter case is missing in [495].

The result is complemented by the observation that a semi-stable cubic threefold with
an A-singularity is isomorphic to the secant variety of a rational normal curve in P*.
Furthermore, the locus of strictly semi-stable cubic threefolds in M3 consists of one
component isomorphic to P! and another one that consists of a single point represented
by the cubic given by xg + x? — X3 - x3 - x4 which has three singularities of type Dy4. See
also the discussion in Remark 4.4.6.
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In recent years, another notion of stability, especially for Fano-varieties, has been
studied. This notion of K-stability is linked to the existence of Kédhler—Einstein metrics.
Liu and Xu [324] show that for cubic threefolds both notions coincide. In particular, the
GIT moduli space and the K-stability moduli space provide the same compactification
of the moduli space of smooth cubic threefolds.

Other compactifications better suited for extending the link between smooth cubic
threefolds ¥ c P* to their intermediate Jacobians J(Y) have been studied by Casalaina-
Martin, Grushevsky, Hulek, and Laza [109, 110].

5.3 Moduli space As hinted at already in Example 3.3.4, as a consequence of the
global Torelli theorem one obtains a locally closed embedding

M3(6A5

into the moduli space of principally polarized abelian varieties of dimension five. The
description of the automorphism group of the intermediate Jacobian in Remark 4.9 al-
lows one to state a similar result on the level of moduli stacks: Mapping a smooth cubic
threefold Y to its intermediate Jacobian defines a locally closed embedding of smooth
Deligne—-Mumford stacks

Mz — A; = [Sp(10,Z) \ D].
Note that dim(M) = 10 while dim(.A43) = 15.

5.4 Pfaffian cubics, Klein, and Segre We conclude with a review of some particular
cubic threefolds. Since all smooth cubic threefolds are irrational, there has never been
a good reason to study special cubic threefolds systematically. As we will see in the
next chapter, the situation is completely different in dimension four, where only special
cubics are expected to be rational and the challenge to classify those has been a driving
force in the theory. Of course, interesting special cubic threefolds exist and have been
studied and we briefly mention some of them.

(i) The Klein cubic threefold is the smooth cubic threefold Y defined by the equation
XXy + X3 Xy + x5 X3+ X3 xg + x5 x0 = 0.

Various aspects of it have been studied over the years [10, 56, 201, 207, 404]. It was
mentioned already that its Fano surface attains the maximal Picard number p(F(Y)) =
25 and that its intermediate Jacobian J(Y) =~ A(F(Y)) is of the form E> (unpolarized)
with £ a CM curve, cf. Remark 2.15. The automorphism group of Y has been deter-
mined by Adler [10] as PGL,(F;;), which is of order 660, see also [57, Thm. 3] for
explicit examples of automorphisms. Beauville [57] used the existence of these auto-
morphisms to exclude Y from being rational directly, see Remark 4.14. Roulleau [404,
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Prop. 1] proved that the Klein cubic threefold is the only smooth cubic threefold with
an automorphism of order 11.

Adler’s result complements classical results of Klein who studied the Hessian of Y
and observed that its singular set is the modular curve Xy(11), see [11] for more infor-
mation and references. Gross and Popescu [207] showed that the Klein cubic threefold
is birational to the moduli space of (1, 11) polarized abelian surfaces (with canonical
level structure). In particular, this moduli space is unirational but not rational. An ex-
plicit resolution of the Hessian of the Klein cubic threefold was described by Gounelas
and Kouvidakis [201, Sec. 6] who also proved that the intersection of Y with its Hessian
is not uniruled.

(i1) It was mentioned before that every smooth cubic surface can be represented, in a
non-unique way, as a Pfaffian, see Section 4.2.5, and we will see that this is not true for
cubic hypersurfaces of dimension four, see Remark 6.2.6. For cubic threefolds a naive
dimension count, cf. the argument in Remark 6.2.6, shows that in principle every smooth
cubic threefold could be a Pfaffian. That this is indeed true has first been verified by
Adler [11, App. V] for generic cubic threefolds, then extended by Beauville [51, Prop.
8.5] to all smooth cubic threefolds and by Comaschi [125] to singular ones. Beauville
first proved a criterion that shows that a smooth cubic threefold is Pfaffian if it contains
a normal elliptic quintic curve, for the analogue in dimension four see Remark 6.2.5.

(iii) The Segre cubic threefold (or Segre cubic primal) is given by the two equations

5 5
Z X = Z x? =0.

i=0 i=0

Taking the hyperplane section x; = x; of it, one obtains the Cayley cubic surface, see
Remark 1.5.17 and Remark 4.2.16. The Segre cubic threefold has 10 singular points, all
ordinary double points, and thus realizes the maximal number of ordinary double points.
In fact, up to coordinate change, the Segre cubic is the only nodal cubic threefolds with
10 singular points. The singular points are explicitly given as the permutations of the
point[-1:—-1:—-1:1:1:1].

The Segre cubic threefold is isomorphic to the GIT quotient (PH®//SL(2), see [158,
Thm. 9.4.10], and can also be realized as a birational model of the moduli space A,(2) of
principally polarized abelian surfaces with a level two structure, see [242, Thm. IV.1.2].
The projective dual of the Segre cubic is the Igusa quartic, see [459] for a detailed study
of the topology and [238] for a new duality perspective.

We recommend Dolgachev’s survey [159] for further information on classical and
modern aspects of the Segre cubic.

(iv) According to a result of Sylvester, see Corollary 1.5.19 and Section 4.2.5, the
generic cubic surface S C P? can be written in Sylvester form, i.e. § = V(KS +---+ l’i),
where ¢; are linear forms in the linear coordinates xy, . . ., x3. This is no longer true for
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cubic threefolds. In fact, Edge showed [170] that the generic cubic threefold cannot
even be written as the sum of seven(!) cubes of linear forms.

It is not difficult to see that the generic cubic polynomial cannot be written as the
sum of six cubes of linear forms, but the naive dimension count does not include the
possibility of seven cubes. Indeed, h°(P*, O(3)) = 35 and the choice of seven linear
forms also accounts for dimension 35.

6 Appendix: Comparison of cubic threefolds and cubic fourfolds

The goal of this appendix is twofold. We first briefly outline an approach to link cubic
threefolds via the triple cover construction to cubic fourfolds and then to abelian va-
rieties of dimension eleven and hyperkéihler manifolds of dimension four. Most parts
of it are completely analogous to the lower-dimensional situation in Section 4.4.3. It
again leads to a description of the moduli space of cubic threefolds as an open set of
a ball quotient. In the second part we will highlight similarities between the theory of
cubic hypersurfaces of dimension three and four. This part can either be studied now, as
a summary of this chapter and a preview of the next one, or later after having worked
through the theory of cubic fourfolds in detail.

6.1 Passing from threefolds to fourfolds In Section 4.4.3, we explained how to use
the Hodge theory of the cubic threefold naturally associated with a smooth cubic surface
via the triple cover construction to link the moduli space of smooth cubic surfaces,
which a priori has no period description, with a certain moduli space of abelian varieties
of dimension five. We will now explain a similar story for cubics of dimension three
and four. This was again initiated by Allcock, Carlson, and Toledo [15] and investigated
further by Looijenga and Swierstra [329], Kudla and Rapoport [289], and Boissiére,
Camere, and Sarti [77].

The discussion of the linear algebra is almost literally the same as the one in Section
4.4.3, so we will state only the results and leave the adaptation of the arguments there
to the case here as an exercise. The notation is chosen to match the two situations. Note
however that the conventions in the references differ. We will mostly follow the original
[15] (up to a scaling factor).

The geometric starting point is the triple cover

X—P'oy,
branched over a given smooth cubic threefold ¥ C P*, as described in Section 1.5.6. The
covering action induces a Hodge isometry ¢: H*(X, Z)pe —> HY(X, Z)pr. The main dif-

ference to the situation in Section 4.4.3 is that now the intersection pairing is symmetric,
but we still have the useful equalities («(e),8) = (@.c*(8)) and (6(a).8) = —(a.0(B)).
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The eigenspace decomposition with respect to ¢ (or #) now looks like
4 3,1 22 2,2 1,3
H'X,C)n =H,®Hy =(H, @H")® (sz @sz ). 6.1)

In order to see that the one-dimensional H>'! is contained in H,, one can use the residue
description H» ~ HOP, Q];S (2X)), see Lemma 1.4.23, and the fact that the covering
action [xg : --- @ xs5]—>[xp : -+ : p - x5] alters the differential form Q = ZS(—I)ixi .
dxg A+ A J;l A ++- A dxs by afactor p. Since complex conjugation swaps H, and H,,
this also shows that H'- is contained in H,. Using b4(X),r = 22 and again complex
conjugation, we also conclude that dim(Hg’z) = dim(HZf) =10.

Next, on the symmetric lattice I" := H*(X, Z)p; one defines in complete analogy to the
case of cubic threefolds the pairing'?

h: TxT—Z[p]. ha.p) = 2P er 0-(@p)

e Using that the lattice I is even, see Proposition 1.1.21 or Section 6.5.2, one checks
that this pairing takes indeed values in the Eisenstein integers Z[p] = {(1/2)(a + b - 6) |
a,beZ, a=b)}.

e The form h(, ) is Z[p]-linear in the first variable and satisfies h(a, 8) = h(B, @).

e The two eigenspaces H,,, H,» C T'®z C = are isotropic with respect to (. ) and h.

e Consider the Z[p]-linear composition j: I' — I'®; C — H,,. It is isometric with
respect to i on I and 4’ (y, 8) := i V3 - (y.6) on H,.

e The line Hg’l C H, is negative definite and the hyperplane Hf,’z C H, is positive
definite.

These facts are now applied to study the moduli space M3 = |Op+(3)|lsm//PGL(5)
of smooth cubic threefolds. First, one considers its natural cover M parametrizing
pairs (Y, ¢) consisting of a smooth cubic threefold ¥ and an isometry ¢: H*(X, L)pr—>
Z[p]'! up to the action of us =~ Z[p]*. Here, X is the cubic fourfold associated with ¥
and Z[p]'*! simply denotes the Z[p]-lattice that comes out of the above construction (its
isomorphism type is independent of ¥ and X but its precise shape is of no importance).
Altogether this leads to a holomorphic period map

P: My;—=B'"" c BC'™), (¥, @) —@(H>).

Here, B! denotes the open set of negative lines which is biholomorphic to the ten-
dimensional ball {z | }_ |z;/> < 1} ¢ C'°. The infinitesimal Torelli theorem, see Corollary
1.4.25, essentially shows that the map P is immersive, i.e. its tangent map is injective
at each point or, equivalently, it is a local isomorphism. Note that Ms is indeed smooth,
see [15, Lem. 2.7].

12 The pairing used in [15] is 6 - h, which then takes values in 6 - Z[p].
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Taking quotients by PU := PU(Z[p]'®!), one obtains a holomorphic map from the
coarse moduli space to a certain ball quotient:

P: M;—PU\B'". (6.2)
‘We phrase the analogue of Theorem 4.4.9 as a statement about this period map.

Theorem 6.1 (Allcock—Carlson-Toledo, Looijenga—Swierstra). The period map (6.2) is
an open embedding of the coarse moduli space Mj into the arithmetic quotient PU\ B'0
of the ten-dimensional ball B'? c C'°.

Allcock, Carlson, and Toledo [15, Thm. 1.1] and independently Looijenga and Swier-
stra [329, Thm. 3.1] not only show that P is an open embedding, but also describe its
complement.

Proof We restrict ourselves to prove the injectivity of (6.2) and the quickest way to do
this uses the strong global Torelli theorem for cubic fourfolds, see Theorem 6.3.17 and
Remark 6.3.18. The proof in [15] is more direct.

Assume that for the cubic fourfolds X and X’ associated with two smooth cubic
threefolds ¥ and Y’ there exists an isomorphism &: H*(X, Z)pré-H“(X’, Z)pe of Z[p]-
modules which is an isometry with respect to the form % on the two sides and satisfies
E(H>'(X)) = H>'(X"). The real part of h and the compatibility with the action of @ gives
back the intersection pairing. Hence, £ is a standard Hodge isometry between the two
cubic fourfolds and, therefore, & (up to sign) is induced by an isomorphism X ~ X’ that
is compatible with the covering action. This eventually proves ¥ ~ Y. O

The open immersion (6.2) of quasi-projective varieties can be upgraded to an open
immersion of analytic Deligne—Mumford stacks (or orbifolds)

M; & [PU\ B'9].

This relies on a result of Zheng [499, Prop. 6.3] describing the automorphism group of
a cubic threefold Y in terms of the associated triple cover X as

Aut(Y) = Autzy, (H*(X, Z)pr) /s,

where on the right hand side, one has the group of all Hodge isometries of the primi-
tive cohomology compatible with the Z[p]-action. Implicitly, we have used this result
already in the proof above.

The extension to the compactification of M3 and the description of the boundary of
the open inclusion M3 < PU \ B! are quite subtle. Roughly, there are two boundary
components corresponding to nodal and cordal cubic threefolds. We refer to [15, 329]
for details.

Kudla and Rapoport [289, §6] establish a link to abelian varieties. This is a special
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case of the general theory of half twists developed by van Geemen [463]. It comes down
to the observation that the decomposition (6.1) can be rewritten as

H'X.2)y®C = (H)' o H) & (H,” @ H ;")

and now the two summands are complex conjugate to each other. Hence, a Hodge struc-
ture of weight one on H*(X, Z)p is defined by setting

1,0 — g3l 2,2 0,1 — 22 13
Hy (X)) =Hy & sz and Hy; (X) = H;" ® sz .
In particular, the quotient
A(Y) = H (X, Z)pe \ HY(X, 2/ Hyi), (X)

is a complex torus of dimension eleven, and in fact an abelian variety, naturally associ-
ated with the cubic threefold Y. This eventually leads to a map from M3 into a certain
moduli space of abelian varieties of dimension eleven. Note that in [289] the conven-
tions are slightly different, which might lead to isogenous abelian varieties.

Finally we mention results by Boissiere, Camere, and Sarti [77, Thm. 1.1]. Instead of
working with the cubic fourfold X associated with the cubic threefold Y, they consider
the hyperkihler fourfold provided by the Fano variety of lines F(X). The covering auto-
morphism of X —P* induces a non-symplectic automorphism of F(X) of order three.
This approach leads to the identification of the moduli space of hyperkihler fourfolds of
K3-type endowed with a non-symplectic automorphism of order three and the mod-
uli space of smooth cubic threefolds. They also show [77, Prop. 5.1] that the image of
the induced morphism M3 — My, Y — X, intersects the Hassett divisor C14 N My, see
Example 6.5.8, in a generic Pfaffian cubic.

6.2 Summary The following table summarizes the central results concerning smooth
cubic threefolds proved in this chapter. At the same time, it serves as a guide to the
analogous results for smooth cubic fourfolds to be proved in the next chapter.

6:1 2.3)
FY)=—L——Y FX)<—L——X
dim F(Y) = 2, surface of general type dim F(X) = 4, hyperkéhler fourfold
(Sect. 5.0.1) (Thm. 6.3.10)
H' (Y, Ty)=>H"(F(Y), Tr(r) H'(X, Tx) = H'(F(X), Trx)), corank = 1
Aut(Y)—>Aut(F(Y)) Aut(X)—>=Aut(F(X), O(1)) < Aut(F(X))
(Prop. 5.2.14 & Exer. 5.2.13) (Cor. 63.12 & (3.6) in Sec. 2.3.3)
global Torelli: H*(Y,Z)<—Y<—=F(Y) | global Torelli: H*(X, Z),; <X < F(X)
(Prop. 5.2.12 & Thm. 5.4.3) (Prop. 2.3.12 & Thm. 6.3.17)
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A’ H'(F(Y),Q)—>H2(F(Y),Q)
N> H\(F(Y),Z) — HX(F(Y),Z) > Z/2Z
N H'(F(Y),Q)/(P3)—>H*(F(Y),Q)

(Cor. 2.5.15, Lem. 5.2.5, & Rem. 5.3.13)

S*HX(F(X),Q—>H*(F(X),Q)

S2H*(F,7)— H*(F,Z) > (Z/22)* ® Z/5Z

S*H*(F(X), Q)/(H3)—=H"(F(X),Q)

(Exa. 6.3.3, Cor. 6.3.11, & Rem. 6.3.13)

R =F, €|Or(2)]
(R.R) = 180, g(R) = 136
(Prop. 5.1.1 & Exer. 5.1.6 )

[F2] = 5- (> — c2(SF))
(LF>LLF2)) = 1125, B2O(F,) = 449
(Prop. 6.4.1 & Sec. 6.4.4)

H¥Y,Z)(1) ~ H'(F(Y),Z) ~ H'(CL, Z)"
J(Y) = A(F(Y)) = Prym(C./Dy)
Pic’(D;) X Prym(Cp/D;) —= Pic%(C})
CH*(Y)ug = Pic’(F(Y)) = Prym(C./Dy)
H (1) = H'(F(Y)) = h'(Cr)”

(Prop. 5.3.10, Cor. 5.3.16, & Rem. 5.3.17)

HY (X, 2)pr(1) = H*(F(X), L)pr = H*(F1, Z),,

CHo(FL)p o ® CHo(F L) = CHo(FL)hom
CH?(X)a ® Q = CHA(F(X))hom ® Q
D X)prim(1) = HAF X)) = H*(FL)y

(Cor. 6.3.21, Rem. 6.3.24, & Rem. 6.4.14)

(Hl(A,Z), Ze HZ(A,Z))

a: F(Y) — A, a*(E) = (-2/3) - c1(F(Y))
(Lem. 5.1.26)

(HA(F(X),2),qr € HY(F(X), Q)

gr = (1/30) - c2(F(X))
(Rem. 6.4.2)

Bl (Y) —— P?

Bl (X) ——— P?

U U
FY) > C———>D; FX) > F———>D,
étale : 16 fix. pts.
5:1¢ @3,
L (Lem. 5.1.26) L (Prop. 6.4.12)

3[Cel =g = ¢, (ICLLICL) = 5
=0/ [,

(Lem. 5.1.14, Exer. 5.1.16, (3.5) in Sec. 5.3.1)

3[FLl = o), (IFLLIFL]) =5
ar(@) = (1/2) [, @

(Prop. 6.4.1 & Cor. 6.4.3)

U index=2

H'\(Dy,Z) (Sect. 53.2 (3.2))

H'(Cp,2)" = H'(C,Z) —= H'(C1, Z)

H*(F1,2)*“—~ H*(F1,Z) = H*(F1,Z)"
U index=?

H*(D1,2) (Rem. 6.4.14)

nodal cubic yg € Y, rational

C? ~ Blo(F(Y))— F(Y)

[CPT = [F(]+[C]
(Cor. 1.5.16, Rem. 5.5.1, Rem. 5.5.2)

Bl,,(Y) = Bl(P%), C c P? compl. int. (2, 3)

nodal cubic x € X, rational
BL,,(X) = Blg(P*), S c P* compl. int. (2,3)
§12I ~ Blg (F(X)) — F(X)

[S®] = [F(X)]
(Cor. 1.5.16, Prop. 6.1.28, Cor. 6.1.30)
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Cubic fourfolds

In this chapter we turn to cubic hypersurfaces X c P(V) =~ P> of dimension four. The key
new feature is the unexpected appearance of K3 surfaces and hyperkihler fourfolds. K3
surfaces come in via their Hodge structures, which turn out to be very similar to Hodge
structures of cubic fourfolds. The reason for the occurrence of hyperkéhler fourfolds is
more geometric: As shown by Beauville and Donagi [59], the Fano variety F(X) of lines
contained in a smooth cubic fourfold X ¢ P? is a hyperkihler manifold. More precisely,
F(X) is a hyperkéhler manifold deformation equivalent to the four-dimensional Hilbert
scheme S 2! of subschemes of length two of a K3 surface S.

We begin again by collecting immediate consequences of the results discussed in
earlier chapters. As throughout these notes, most of the results hold for arbitrary (alge-
braically closed) ground fields. However, as Hodge theory will play an essential role in
describing the geometry of the situation, we will work mostly over the complex num-
bers.

0.1 Invariants of cubic fourfolds The canonical bundle of a smooth cubic fourfold
X c P9 is given by wy =~ Ox(-3). For the Picard group one has Pic(X) ~ Z - Ox(1) and
the non-trivial Betti numbers of X are given by

bo(X) = ba(X) = be(X) = bg(X) = 1, and by(X) = 23,

see Section 1.1. In particular, for the Euler number one has e(X) = 27. If 4 denotes the
restriction of the hyperplane class, then H*(X,Z) = Z - h and H*(X,Z) = Z - (h*/3),
see Exercise 1.1.2. Any line L C X satisfies [L] = /?/3, so that the integral Hodge
conjecture holds for X except possibly in degree four, but see Section 3.4.

The middle Hodge numbers are

W0(X) = l®*(X) = 0, B*'(X) = i3 (X) = 1, and h**(X) = 21.

The lattice H*(X, Z) with its Hodge structure is of central importance and will be dis-
cussed in detail below.

263
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The linear system of all cubic hypersurfaces in P’ is |Ops(3)| =~ P and the moduli
space of all smooth cubic fourfolds is of dimension 20, cf. Sections 1.2 and 3.1.5.

A smooth cubic fourfold X C P> never contains a linear P> ¢ P> and a generic one
does not contain a linear P?> ¢ P°, see Remark 2.1.7 or (v) below for an argument using
Hodge theory. However, some smooth cubic fourfolds do contain planes P> ¢ P> and,
as we will see, those are parametrized by a divisor in the moduli space of all smooth
cubic fourfolds, see Remark 1.3.

0.2 Invariants of their Fano variety The Fano variety of lines P! ~ L ¢ X in a
cubic fourfold X plays a central role in the theory. Recall that there are two types of
lines which are distinguished by the splitting type of their normal bundles

Or(hHheOre O if L is of first type
L/x = 0.1)

Or()@ O (1)® Op(—1) if Lis of second type.

Geometrically, the two types can be described in various ways, see Section 2.2.2. For
example, if L is of the first type, there exists a unique plane P> ¢ P3 such that P? is
tangent to X at every point of L, i.e. the intersection P?> N X contains L with multiplicity
at least two, i.e. P> N X = 2L U L’ for some residual line L’ C X not necessarily distinct
from L. For lines of the second type there is a one-dimensional family of such planes
all contained in a linear P3 c P that is tangent to X at every point of L, see Corollary
2.2.6 and the discussion of the situation for cubic threefolds in Sections 5.1.1. Lines of
the second type are parametrized by a surface F»(X) Cc F(X), see Proposition 2.2.13.

Here are some facts concerning the Fano variety F(X) that can be deduced from the
general discussion in Chapter 2.

(i) The Fano variety F(X) of lines contained in a smooth cubic fourfold X c P5 is an
irreducible, smooth projective variety of dimension four with trivial canonical bundle
wrx) = Ofpx), see Proposition 2.1.19 and Lemma 2.3.1.

(i) The degree of the Pliicker embedding F(X)— G(1,P%)—— IP’(/\2 V), i.e. the de-
gree of F(X) with respect to the Pliicker polarization g = ¢1(Orx)(1)), is

deg(F(X)) = f gt =108,
F(X)

cf. Section 2.4.3. Later, we will show that F(X) is a hyperkédhler manifold, cf. Theorem
3.10, and its degree with respect to the Beauville-Bogomolov—Fujiki square will be
computed as grx)(g) = 6, see Lemma 2.12 and Remark 3.14.

(iii) The Euler number of F(X) is e(F (X)) = 324 and its Hodge diamond up to the
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middle is given by, cf. Section 2.4.6:

bo(F(X)) = 1 1
by(F(X)) = 23 121 1
by(F(X)) = 276 1 21 232 21 1.

The Betti numbers suggest that the map S2H*(F(X),Q) — H*(F(X), Q) may be an
isomorphism. This is indeed true and can be proved by using the analogous result for
the Hilbert scheme S of a K3 surface S, cf. Corollary 2.10. It essentially also follows
from Section 2.5.3. The discussion there, not using any hyperkihler geometry, shows
the injectivity of S2H*(F(X), Qpe — H*(F(X),Q) and can be extended to prove the
full statement.

(iv) The projection g: L — X from the universal family p: L — F(X) of lines con-
tained in X is surjective and its generic fibre g~!(x) is isomorphic to a smooth complete
intersection curve of type (2,3) in P? and, therefore, is of genus

g(g ' (x) = 4,

see Remark 2.3.6 and Lemma 2.5.11. There are at most finitely many fibres of dimen-
sion > 1, see e.g. [126, Cor. 2.2]. For the generic point x € X the cubic threefold
Y := T,.X N X has a node at x € Y as its only singularity. Note that the fibre ¢~'(x) is
nothing but the curve C in Section 5.5.1 parametrizing all lines in Y passing through the
node.

(v) The Fano correspondence induces an injective morphism of integral Hodge struc-
tures, see Proposition 2.5.5:

¢=p.oq’t H(X.Z) — H(F(X),Z)(-1). 0.2)
As both sides are of rank 23, the injection is of finite index. Moreover, ¢ maps

H*(X, Z)pe tO H*(F(X), Z)pr, see Remark 2.5.7, and for , 8 € H*(X, Z)pr We have

1
(@p)=-2 f e(@) - o) - g*.
F(X)

By Deligne’s invariant cycle theorem or its slightly stronger consequence Corollary
1.2.12, we know that Hz'z(X, Z)pe = 0 for the very general smooth cubic fourfold X C
PP3. For its Fano variety of lines this implies

p(F(X)) = tk NS(F(X)) = 1.

Another consequence of H>?(X, Z)pe = 0 for the very general smooth cubic fourfold,
is the absence of any linear P> C X. Indeed, a plane in the very general X would satisfy
[P?] = m- h>. As (h*.h%) =3 is square free, the class h? is not divisible any further and
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hence m € Z. This leads to the contradiction 1 = sz W2 = ([P21.h%) = (m - W2.h%) =
m- fx W =3-m.
(vi) The dual of the Fano correspondence (0.2) is given by

Y= gq. o p*: HUF(X),2)(1)—H'(X, 2),

see Section 2.5.5. Tensoring with Q and using (0.2) gives an isomorphism of Hodge
structures HO(F(X), Q)(1) = H*(X,Q) and, thus, a bijection between their spaces of

Hodge classes H33(F(X),Q) —= H>*(X, Q).

By the Lefschetz (1, 1)-theorem, all classes in H!(F(X), Q) are algebraic and hence,
by applying the Lefschetz operator, also all classes in H>3(F(X), Q) are algebraic. Since
Y maps algebraic classes to algebraic classes, this proves the Hodge conjecture for
H>2(X,Q). It was first established by Zucker [501] relying on ideas of Griffiths and
drawing upon normal functions induced by hyperplane sections Y; of X and the result-
ing family of Fano surfaces F(Y;). The use of the Fano correspondence simplifies the
argument but is unlikely to generalize to other classes of fourfolds. See also Corollary
3.29 for a refinement and further comments on the integral version.

0.3 Chow groups and Chow motives The rational Chow motive of a smooth cubic
fourfold X splits as
8

4
b(X) = P v(X) = P Q=) & H(X)pr,
i=0

J=0 i=
see Remark 1.1.11. For the Chow groups we have
CH’(X) ~ CH'(X) ~ CH*(X) ~ Z.

From the Bloch—Srinivas principle [73, Thm. 1 (ii)] we deduce that the cycle class map

CH?*(X) = H**(X,Z) is injective (and, as we will see, in fact bijective). So the only
interesting Chow group is CH>(X), parametrizing one-dimensional cycles up to rational
equivalence, resp. CH(H(X),,) =~ H' 22(X, Qe @ (CH*(X) ® Q). The Chow motive of the
Fano variety F(X) is described by

HOF(X))(=2) @ H(X) @ HX)(—4) = S*h(X),

cf. Section 2.4.2. See Remark 3.24 for some more information and Section 7.4 for
general comments on Chow groups and motives.

1 Geometry of some special cubic fourfolds

Special cubic fourfolds, e.g. those containing a plane or those that can be described in
terms of Pfaffians, are not only geometrically rich and interesting, but they play a key
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role in the theory of general cubic fourfolds as well. In this first section, we discuss
cubic fourfolds containing a special surface like a plane or a rational normal scroll and
also comment on nodal cubic fourfolds. The case of Pfaffian cubic fourfolds will be
dealt with in detail in the next section. There is a well-defined meaning of the notion of
special cubic fourfolds, to be discussed in detail in Section 5.

1.1 Cubic fourfolds containing a plane: Lattice theory Let us first consider smooth
cubic fourfolds X ¢ P> containing a plane P> ~ P ¢ X. These cubics are central in the
original proof of the global Torelli theorem for cubic fourfolds [472, 477] and have been
used as a starting point for a number of considerations.

Lemma 1.1. The sublattice
Ky =Z-h*®Z- [Pl c H(X,Z)

is saturated, i.e. its cokernel is torsion free, and its intersection matrix is

301
(1 3), (1.1)

which is positive definite of discriminant 8.

Proof Clearly, (h*.h*) = 3 and (h*.[P]) = 1. To prove ([P].[P]) = fpcz(/\/'p/x) =3, use
either one of the two short exact sequences

0 — Npjx — Npjp — Op(3) —0 or 0—Tp — Txlp — Np;x — 0,

from which one concludes ¢;(Np/x) = 0 and co(Npx) = 3 - I3,
Assume @ € H*(X,Z) is contained in the saturation of Z - h* @ Z - [P] and write

@2 s +1-[P] and @ 2 (s+(t/3) - W+ (1/3) v,

where v = 3[P] - k* € H*(X, Z)pr. We observe that the class v is not divisible any
further. To see this, we may assume that X is a cubic fourfold containing a second plane
P’ c X disjoint to P. Indeed, the family of smooth cubics fourfolds containing a fixed
plane is connected and smooth cubic fourfolds containing two disjoint planes exist, see
Example 1.5.2 and Section 1.5.3. Hence, ([P’].v) = —1 and thus v is not divisible.'

Then (a.h?) € Z implies 3s + ¢ € Z. Using () one finds ¢ € Z and then by (*) also
s €. |

The notation K shall be explained in Section 5.2, the intersection form there will be
changed by a global sign which explains the minus sign in the notation here.

! T wish to thank X. Wei for a discussion of the argument.
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Exercise 1.2. Let Q be the residual quadric of a generic linear intersection P ¢ P3 N X,
so that cohomologically [P] + [Q] = A?. Imitate the above computation to show that the
two classes [P],[Q] € H*(X,Z) describe a basis of the lattice K¢ with the intersection

matrix
3 =2
(_2 4 ) . (1.2)

Remark 1.3. A quick dimension count reveals that the set of smooth cubic fourfolds
containing a plane forms a divisor in the moduli space of all smooth cubic fourfolds.
Let us indicate two ways to verify this.

(i) Fix a plane P> ~ P ¢ P = P3 and compute the linear space [Zp ® Op(3)| of all
cubics passing through P. Its dimension is

RO, O:(3)) = h°(P, Op(3)) — 1 = 56 — 10 — 1 = 45.

The subgroup of PGL(6) preserving P as a subvariety (but not necessarily pointwise)
is of dimension 26. This proves that within the 20-dimensional moduli space M4 of all
smooth cubic fourfolds, see Section 1.2.1, the set of cubics containing a plane is an
irreducible divisor, cf. Exercise 1.5.2 and [472, §1 Lem. 1].

(ii) As explained above, 4 and the class of a plane [P] € H*(X,Z) span a rank two
sublattice. The first order deformations in H'(X, Tx) preserving [P] as a (2, 2)-class, i.e.

{ve H' (X, Tx) | i,[P1 = 0in H(X) },

form a subspace of codimension one.

In (i) above and in Exercise 1.5.2 we have seen that the set of smooth cubics X
containing a plane inside the moduli space M, of all smooth cubic fourfolds forms
an irreducible divisor. The Hodge theoretic condition on H*2(X,Z) to contain a lattice
isometric to K could a priori describe a union of several (Noether—Lefschetz) divisors
in M. However, a result of Hassett [226, Prop. 3.2.4] says that this is not the case, cf.
Proposition 5.6. Therefore, if X is very general among all smooth cubic fourfolds with
H>2(X,Z) ~ Ky, then it contains a plane P? C X. By specialization, this is then true for
all X with K¢’ > H**(X,Z) extending h* € H**(X,Z).

Exercise 1.4. Adapt the techniques of (i) or (ii) above to show that the set of all smooth
cubic fourfolds X € M, that contain two disjoint planes forms an 18-dimensional sub-
space. This was first observed by Hassett [227, Sec. 1.2]. Recall from Corollary 1.5.11
that every cubic fourfold containing two disjoint planes is rational.

Degtyarev, Itenberg, and Ottem [144] show that a smooth cubic fourfold can contain
at most 405 planes. The maximum is attained only once, namely by the Fermat cubic.
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1.2 Cubic fourfolds containing a plane: Quadric fibration Recall from Section 1.5
that the blow-up of X in a plane P?> ~ P c X leads to a quadric surface fibration

¢: X = Blp(X) —P?

with the fibre over a point y € P? being the residual quadric surface O,of PC PN X.
As X does not contain a linear P>, the morphism is flat. Furthermore, the discriminant
divisor Dp c P? is a curve in the linear system |Op2(6)).

Remark 1.5. (i) According to Exercise 1.5.2, the existence of an example with a smooth
discriminant divisor Dp shows that for the generic choice of a pair P> ~ P ¢ X the
discriminant divisor is a smooth sextic curve. An explicit example of a Pfaffian cubic
containing a plane can be found in [29, Thm. 9].?

Alternatively, but less explicitly, the existence can be shown as follows: As explained
in Remark 1.5.8, it suffices to show that for a given plane P> ~ P c P the sections
in H°(P?, S2(F) ® O(1)) induced by the equations defining cubics X c P> that contain
the plane P are generic. This is clear, as H'(P2, S%(F) ® O(1)) ~ H'(P°, 0(3) ® Ip),
see Section 1.5.2, and the existence of some smooth cubic containing P is known, see
Exercise 1.8.

(i1) More precisely, one has the following criterion, cf. [472, §1 Lem. 2]: The discrim-
inant curve Dp C P? of the projection from a plane P C X contained in a smooth cubic
fourfold is smooth if and only if X does not contain a second plane with non-empty in-
tersection with P. Indeed, yPN X = PU ¢~ !(y) C yP =~ P? and, therefore, either ¢~ (y) is
smooth, or it is a quadric cone with an isolated singularity, in which case Dp is smooth
at y by Remark 1.5.8, or ¢~!(y) contains a plane. Note that there are indeed cases where
Dp is singular and even reducible, see Exercise 1.5.7.

A plane P C X in a smooth cubic fourfold leads to two natural subvarieties of the
Fano variety F(X). First, there is the dual plane

P :={[L]|LcP}c FX)

which is isomorphic to P** ~ P2, Second, there is the divisor Fp of all lines meeting P.
As with Cy, in Section 5.1.2, it has to be defined as the closure of

{[L1¢P"|LNP+o}C FpCFX).

Alternatively, consider the Fano correspondence F(X) <2 L X and the pre-image

¢~ '(P) c L of dimension three. It breaks up into the P'-bundle Lp- —=P* and F b
q"'(P) =Lp- U Fp,

where the latter maps under p generically injectively onto the hypersurface Fp C F(X).

2 Thanks to M. Varesco for the reference.
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More precisely, Ff,—= Fp is an isomorphism over Fp \ P*, because a line L C X not
contained in P intersects P transversally in one point or not at all.

Remark 1.6. (i) Note that the class [Fp] € H*>(F(X),Z) is the image of [P] € H*(X,Z)
under the Fano correspondence ¢: H*(X, 7)(1)— H*(F(X),Z), where we use that
p«[Lp-] = 0. As ¢ is injective, this in particular proves that Fp is not empty, which
of course also follows from the fact that q’l (x) is either a curve of genus four, of which
there are none in P* =~ P2, or of dimension two, see Remark 2.2.16.

(i) The restriction of the Pliicker polarization g € H*(F(X),Z) to P> =~ P* c F(X)
gives back the hyperplane class on P? ~ P*. Indeed, under P* ~ G(1,P) c G = G(1,Pd)
the Pliicker polarization restricts to the Pliicker polarization, i.e. Oglp-(1) =~ O(1). As a
consequence we find

f g =1
P*

In Remark 4.4 we will see that, Np. JFxy = Qpe and, therefore, ([P*].[P*]) = 3.
Thus, the two classes [P*], g2 € H4(F (X),Z) are not proportional and, in particular,
H>?(F(X),Z) is of rank at least two. In fact, using (4.2) in Section 4.1, one can prove
that it is of rank at least four. Also note that a line P' ¢ P* is also a line with respect to
the Pliicker embedding.

Exercise 1.7. Show that a line L c P C X is of the first type, i.e. N;x ~ Or(1) & 0%,
if and only if Np/x|, =~ O%2.

Exercise 1.8. Consider the Fermat cubic X = V(Z x?) C P’ and the plane P = V(xo +
X1, X2 + X3, X4 + x5) C X, see Exercise 1.5.7. Use that the intersection Fp N P* consists of
those lines in P that are contained in a residual quadric Q) to show that P* N Fp consists
of three lines.

Hence, O(Fp)lp- =~ O(3) and we have ([Fp]>.[P*]) = 9 for the two cohomology
classes [Fp]?, [P*] € H**(F(X),Z). Later we will see that ([Fp]*.[Fp]?) = fF(X)[Fp]4 =
12, see Exercise 3.25.

Note that then Fp N P* # @ for all smooth cubic fourfolds containing a plane. Antic-
ipating the discussion in Section 4.1, express [P*] € H**(F(X), Q) as a linear combina-
tion of [Fp]?, gz, [Fp] - g, and c,(TF), which for the generic choice of the pair P ¢ X
generate H**(F(X), Q).

Next, we consider the relative Fano variety
Fp = F(X/P*)—P? (1.3)

of lines contained in the fibres of ¢: X —P2. In other words, the fibre of (1.3) over
apointy € P? is the Fano variety F(Q,) C F(X) of all lines contained in the residual
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quadric Q) C X of the intersection P C yP N X. The natural morphism
Fp—>Fp Cc F(X) (1.4)

maps onto Fp, see Proposition 1.10, and is injective over Fp\ P*, cf. [472, §1]. However,
it may fail to be injective over P* for special smooth cubic fourfolds containing a plane,
and indeed this happens in Exercise 1.8, but one certainly expect Fp — Fp for generic
choices.

Let us look at the fibres of Fp —=P?. For y € P? \ Dp the residual quadric Qy is
smooth, i.e. Q) ~ P! x P!, and the Fano variety F (Qy) consists of two connected com-
ponents parametrizing the fibres of the two projections to P':

F(Q,) =P'UP"

According to Remark 1.5, for the generic pair P C X, the singular fibres Q, are of the
form V(x% + x% + x%) C P3, i.e. they are isomorphic to a cone over a smooth quadric
curve. Hence, in this case F(Qy) ~ P!, parametrizes the lines through the vertex of the
cone.

Remark 1.9. The pull-back of the Pliicker polarization g € H*(F(X),Z) to Fp defines
a line bundle with fibre degree two, i.e. f]P' g = 2 for P! ¢ F(X) parametrizing fibres
of one of the two rulings of a smooth quadric Q, C X. This has nothing to do with
the cubic X, but rather follows from an explicit computation of the Pliicker embedding
P' c F(Q,) C F(P?) c F(P%) c P(A\’V). Note that in particular P' ¢ F(Q,) C F(X) is
cohomologically different from a line P' ¢ P* in Remark 1.6, (ii).

Adding the universal line to (1.4) leads to a diagram

(1.5)

I R

Fp FpC F(X).

Recall that g: L —> X is surjective and its generic fibre is a curve of degree six with
respect to the Pliicker polarization on F(X), see Lemma 2.5.11 and Section 0.2, (iv).
In contrast, the projection gp: Lg, — X —= X is generically finite of degree two, as a
generic point x € X is contained in exactly two lines in the fibre 0y, y = ¢(x), of the
linear projection ¢: X — P2

Proposition 1.10. Consider a smooth cubic fourfold X C P containing a plane P ¢ X
such that Dp C P2 is smooth. Then
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(i) The relative Fano variety Fp is a P'-bundle over a smooth, polarized K3 surface
Sp of degree two, obtained as the Stein factorization of (1.3):

Fp —Ls Sp — s P2,

Here, 7 is a finite morphism of degree two ramified over the sextic curve Dp.
(ii) The relative Fano variety Fp is smooth and the morphism (1.4) is a birational map
onto the uniruled divisor Fp C F(X).

Proof If the discriminant curve Dp C P? is smooth, the double cover
n: Sp—>P? (1.6)

ramified over Dp is a K3 surface naturally polarized by 7*O(1), which is of degree
two, cf. [249, Exa. 1.1.3]. The smoothness of Fp follows from the vanishing of the
obstruction space to deform a line in the fibres of ¢: X —=P2.

The morphism Fp — Fp is surjective. Indeed, any line L c X intersecting P properly
defines a linear space P> =~ LP, which can also be written as yP for a unique y € P? and
then L is contained in Q,. As the map is generically injective and Fp is smooth (and
irreducible), this proves (ii). O

T e ]
/ﬂﬁ x/

7
FP ////:

Remark 1.11. The double cover Sp—=P? can be understood more conceptually in
terms of Clifford algebras, see [28, §1.5 & App. A] for more details.

Recall from Section 1.5.1 that X —=P? is described as the zero set in P(F*) of a
quadratic form ¢g: F*— F ® O(1) associated with the defining equation. Here, F =~
O(1) ® O3, The sheaf of even Clifford algebras Cy associated with (F*, g) is a locally
free sheaf of algebras of rank four, explicitly Co ~ O@ A*F* (=)@ A" F*(-2). Its center
Z c Cp is a locally free sheaf of algebras of rank two. The relative affine spectrum gives
back the covering K3 surface:

m: Sp = Spec(Z)—>P2.
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Since Cy is a sheaf of algebras over Z, it corresponds to a rank four sheaf By of
Os,-algebras on Sp, i.e. 1.8y =~ Cp. The two sheets of the covering parametrize the two
half spinor representations and the fibres of 7: Fp — Sp are their projectivizations, cf.
Example 2.1.6.

Remark 1.12. There is a striking analogy between the curves C; ¢ F(Y) in the Fano
surface of lines in a cubic threefold Y c P*, see Section 5.1.2, and the hypersurface
Fp C F(X).

The similarities between the two situations can be pictured as follows:

F(Y|p,/D)) ————— D, CP? P2 > Dp

C, C F(Y) Fp C F(X)

Here, the two vertical arrows are birational maps onto their images Cy and Fp. In
fact, for the generic choice of a line L C Y in a cubic threefold, one has Cj, ~ 5L.

In Remark 4.11 we will discuss another fourfold analogue of the situation for cubic
threefolds described by the left hand diagram above, where instead of projecting the
cubic fourfold from a plane one projects it from a line, as in dimension three.

All the fibres of the morphism 7: Fp —s Sp are isomorphic to P!, but the fibration is
in general not Zariski locally trivial. In other words, the Brauer—Severi variety Fp —> Sp
is not trivial and, therefore, its Brauer class

apx € Br(Sp),

which is always of order at most two, is in general not trivial.
Alternatively, ap x can be understood as the Brauer class of the natural sheaf of Azu-
maya algebras By on Sp, see Remark 1.11. Also, Fp can be written as the projectivization

Fp ~P(E)

of alocally free ap x-twisted sheaf of rank two, the bundle of half spinor representations,
and By ~ End(E). See [249, Ch. 18] for general facts on Brauer groups of K3 surfaces.

Remark 1.13. The Brauer—Severi variety Fp—Sp is typically not trivial, i.e. it is
not the projectivization of an algebraic or holomorphic rank two bundle, cf. Exercise
1.20 below. However, in the C®-setting it always is, i.e. Fp =~ P(E) for some C*®-vector
bundle of rank two E — Sp.

A relative tautological class gy € H>*(Fp, Z), fibrewise of degree one, is in this setting
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well defined up to translation by classes in H*(Sp, Z) and by Leray—Hirsch
H*(Fp,Z) ~ H*(Sp, Z) ® Z - go. (1.7)

The pull-back gp of the Pliicker polarization under Fp —= Fp C F(X) has fibre degree
two, see Remark 1.9. Therefore, gy = B®(1/2)gp with B € (1/2)H*(Sp,Z) c H*(Sp, Q)
well defined up to translation by elements in H?(Sp, Z). Warning: Neither the class g €
H?(Fp,Z) nor the class 2B € H*(Sp,Z) need to be of type (1, 1).

The next result explains the role of the Brauer class ap x for the geometry of X, see
Kuznetsov [298, Sec. 4.3].

Lemma 1.14. The following conditions are equivalent:

(i) There exists a rational section of ¢: X —=P?.
(ii) The Brauer class is trivial apx = 1 € Br(Sp).
(iii) There exists a line bundle L on Fp of odd degree on all fibres of 7.

In this case, the cubic fourfold X is rational, see Example 1.5.10.

Proof Letus first prove that apx = 1 if and only if 77: Fp — Sp has a rational section.
Indeed, if apx = 1, then Fp is the projectivization of a locally free sheaf of rank two,
which can be trivialized over Zariski open subsets. Each such trivialization leads to a
rational sections of 7: Fp—=Sp. As Br(Sp) is a subgroup of the Brauer group of the
function field of Sp, so Br(Sp) € Br(K(Sp)), the converse holds as well.

The generic fibre Q) of ¢: X —=P? is a surface isomorphic to P! x P!. A rational
section of ¢ picks out a point x € Qy in the generic fibre, and, therefore, distinguishes
the two lines given as the fibres of the two projections through x and hence a canonical
point [L,] € Fp over each of the two points z; € Sp mapping to y under (1.6). This
defines a rational section z+—[L.] of #: Fp —=Sp. Conversely, if a rational section of
7 is given, mapping y € P? to the point of intersection x of the two lines corresponding
to the two points z;,z2 € Sp over y, i.e. L, N L, = {x}, defines a rational section of
X —=P?. Thus, (i) and (ii) are equivalent.

As a Zariski locally trivial P!-bundle comes with a relative tautological line bundle,
(1) and (ii) imply (iii). Conversely, a line bundle of odd fibre degree can be modified by
powers of gp to define a line bundle of fibre degree one. The dual of its direct image
then gives a bundle of rank two, the projectivization of which describes 7. O

Remark 1.15. Maybe a little surprisingly, a smooth cubic fourfold X containing a plane
P2 ~ P C X can be rational without the quadric fibration X —P? having a rational
section or, equivalently, without ap x € Br(Sp) being trivial, see [29, Thm. A].

Exercise 1.16. Show that the Brauer class apy is trivial if there exists a class y €
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H>**(X,Z) with (y.[Q]) = 1, cf. [296, Prop. 4.7]. Here, [Q] is the class of the residual
quadric of a generic hyperplane section P ¢ P?> N X, see Exercise 1.2.

Remark 1.17. Dolgachev, van Geemen, and Kondo [160, §4.12] pointed out a curious
link between cubic surfaces and cubic fourfolds containing a plane that is passed on to
their associated K3 surfaces.

As explained in Remark 4.2.12, with aline L ¢ § = V(F(xp,...,x3)) C P?in a
smooth cubic surface, one can naturally associate a K3 surface as the minimal resolution
T of a double plane T —=P? branched over a certain sextic curve C c P? derived from
the discriminant divisor and the branch divisor of the projection L ¢ S —=P!. Then the
cubic fourfold defined by F(xo, ..., Xx3) + X4 - X5 - (X4 + X5) contains the plane P spanned
by L ¢ P> ¢ P5 and the point [0 : --- : 0 : 1]. Moreover, for the generic choice of S the
K3 surface T is isomorphic to the minimal resolution of the double cover §p —=P? as
considered in the discussion here.

1.3 Cubic fourfolds containing a plane: Fano correspondence The Fano corre-
spondence composed with the restriction to Fp—s=Fp C F(X) defines a morphism
of integral Hodge structures

op: HY(X,Z)— HX(F(X), Z)(-1)— H*(Fp, Z)(-1). (1.8)

On the other hand, the pull-back under 7: Fp—>Sp defines an injective morphism of
integral Hodge structures

71 H*(Sp,Z) —= H*(Fp,Z).
These two morphisms are linked to each other by the next result, cf. [472, §1, Prop. 1].

Proposition 1.18 (Voisin). The Fano correspondence (1.8) is an injection of Hodge
structures

gp: HY(X,Z) — H*(Fp,Z)(-1)

with finite cokernel. Furthermore, primitive classes a, 8 € H*(X, Z)pr satisfy
1
(@f) =-7 f ep(a@) - op(B) - gp (1.9)
Fp

and, up to a global sign, the restriction to the sub-Hodge structure Kg ¢ HYX,Z)
defines an index two, isometric embedding of integral Hodge structures

Kyt C—= H(Sp. Dpu(-1).

Proof First observe that ¢p can alternatively be described via the correspondence

Fp <2 Lz, *.ox X in (1.5). Arguments identical to the ones in the proof

of Proposition 2.5.5 ensure (1.9). The denominator 6 there, which is the degree of
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the generic fibre of g: L—X, is here replaced by the degree 2 of the morphism
gr: Lz, —=X. This clearly already proves the injectivity of ¢p on HY(X, Z)pr.

For the very general pair P C X, the space of Hodge classes H>*(X, Z) is of rank two,
see Remark 1.3, and coincides with Kg. As K¢ + c H*(X,Z) is an irreducible Hodge
structure, @p maps it into the transcendental part of H*(Sp,Z) ¢ H*(Fp,Z), cf. (1.7),
which for dimension reasons is HZ(SP,Z)pr. As the Fano correspondence is invariant
under deformations, the assertion then holds true for all P c X with smooth Dp.

Next, under the pull-back H*(Sp,Z)— H?*(Fp,Z) the intersection form on Sp cor-
responds to the intersection pairing (1/2) pr Y1 - Y2 - gp, because gp has fibre degree

two, see Remark 1.9. Therefore, gp restricted to K * is up to a global sign an iso-
metric Hodge embedding into HZ(SP,Z)pr(—l). As disc(Kg‘l) = disc(Kg) = 8 and
disc(Hz(Sp,Z)pr) = 2, its index has to be two, cf. [249, Sec. 14.0.2]. O

In Example 3.25 similar arguments will be used to describe the Néron—Severi group
of the Fano variety F(X).

Remark 1.19. If ap x = 1, then a rational section of Fp—=Sp exists by Lemma 1.14.
The image of such a section in Fp C F(X) defines a surface Sp with the property that
for all classes @ € H*(F(X),Z) in the image of KS‘L c H*(X,Z), so in particular for all
classes in the transcendental part of H 2(F(X),Z), one has

w@=f &yf=fww%
F(X) Sp

where g is the Beauville-Bogomolov—Fujiki pairing on H*(F(X),Z), see Section 3.1.
Compare this result of Shen [428, Rem. 6.7] with (3.4) in Example 3.6.

Exercise 1.20. Show that ¢p(Kg Yy ¢ H*(Sp, Z)p 1s the kernel of the linear map
(2B.): H*(Sp, L)pr —=1.[2Z, (1.10)

where 2gg = 2B + gp as in Remark 1.13.

If Sp has Picard number one, then the kernel of (1.10) is the transcendental lattice
T(Sp, apx) of the Hodge structure H (Sp, apx, Z) of the twisted K3 surface (Sp, ap x), cf.
Remark 5.20 and see [249, Sec. 16.4.1] for the definition of the twisted Hodge structure.
In particular, in this case apx # 1.

Exercise 1.21. Under the above assumptions, prove that the Fano correspondence ¢p
induces an isomorphism of rational Chow motives

5 X = H(Sp)(1).

Remark 1.22. Let:: Sp — Sp denote the covering involution of the double cover
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n: Sp—=P2. Then there exists a fibre product diagram

’

qp ~
Lg, —— Fp

o e

Fo —= Sp,

where g, sends a point x € L, [L] € Fp, in the quadric Q, =~ P! x P!, y = ¢(x), to the
fibre through x of the other projection.

1.4 Nodal cubic fourfolds: Blow-up and lattice theory Another special class of cu-
bic fourfolds is provided by nodal cubic fourfolds. They share many features of nodal
cubic threefolds, see Section 5.5.1, and were already discussed by Hassett [226]. De-
spite them being (mildly) singular, they show various features, in particular in their
relation to K3 surfaces, that are similar to those observed for certain families of smooth
cubic fourfolds. For some comments on the stability of nodal cubic fourfolds see Sec-
tion 6.7.

Assume X C P is a cubic hypersurface with an ordinary double point xy € X as its
only singularity. As a consequence of the general discussion in Section 1.5.4, we have
the following picture

EC— Bl (X) —— Bls(F*) <O F’
Lok
{xo) —— X PP ~——OF

Here, S c P* is the smooth complete intersection of a quadric and a cubic, so a K3
surface of degree six. Its normal bundle is Nz = Os(2) ® Os(3) and, therefore, the
exceptional divisor of the blow-up ¢ is E’ ~ P(Og(2)® Oy (3)). Furthermore, the surface
S can be understood as the Fano variety of all lines in X passing through the ordinary
double point xy € X

S={{l|xpel}CcFX)

and p: E’ —S is the universal family over it. The image of 7: E’ — X is the union
of all lines in X that pass through xp. It contracts the intersection £’ N E to x( and is an
embedding elsewhere.

Under the identification P* =~ P(T,,P°), the morphism ¢|g: E —= P* is nothing but
the natural embedding of the exceptional divisor E = 77'(xo) as the quadric in P* ~
IP(TXUPS). In fact, in the presentation of S = V(#;) N V(z,) as the intersection of a cubic
and a quadric, see Section 1.5.4, V(¢#;) should be thought of as X N P* and V(1,) as
E c P* ~P(T,,P). Hence, ¢: ENE' —=S .
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Example 1.23. The procedure can be reversed. Assume S C P* is a smooth complete
intersection of type (3,2). So we can write S as an intersection S = ¥ N Q of a cubic
Y and a quadric Q. However, the cubic ¥ < P* is not unique. A computation reveals
that K°(P*, Z5 (3)) = 6 which yields a five-dimensional space P° =~ |Zg(3)| of cubics
containing the sextic K3 surface S. Note that once Y is chosen, the quadric Q is unique.
More explicitly, after choosing one representation S = V(F) N V(G) with deg(F) = 3
and deg(G) = 2, the equations for all other cubics containing S are of the forma F+{-G
with £ € HO(P*, O(1)).

In this situation a nodal cubic fourfold X c P> occurs naturally, namely the one de-
fined by the equation F(xo, ..., x4)+x5-G(xo, . .., X4), see Exercise 1.5.15. It contains the
various cubic threefolds Y containing S as the hyperplane sections x5 = {(xo, . .., xX4).

The morphism ¢ is induced by the complete linear system |7*Ox (1) ® O(—E)|, while
7 is induced by the complete linear system |¢*Op+(3) @ O(—E")|. Hence,

¢ Ops(1) 2 7" Ox(1) @ O(—E) and 7" Ox(1) ~ ¢*Ops(3) ® O(-E"), (1.11)
which in turns gives O(E + E’) =~ ¢*Op+(2) and OBE + E’) =~ 7 Ox(2).
The Hodge structure of the smooth blow-up Bl,,(X) can be described via the isomor-
phism Bl,,(X) = Blg (P*) as
H*(Bl,,(X),Z) ~ H'(P*,Z) ® H*(S, Z)(-1), (1.12)

where the second summand is embedded via j, o p*: H*(S,Z) = H*(Bls(P*),Z), cf.
[474, Ch. 7]. Alternatively, the projection onto the second summand

¢r, - H (Bl (X), Z) — H*(S, Z)(~1)
can be viewed as being induced by the Fano correspondence S <L E I Xof all
lines through xj € X.

A standard computation reveals that the square of a class « € H“(le(J (X), Z) written
asa =a’ + j.(p*(B)) witha’ € H*(P*,Z) and g8 € H*(S,Z) can be computed as

(@) = (@ .a")p: — BP)s,

where, of course, H*(P*,Z) ~ Z - th with (hﬂzﬂ.h]@) = 1. The second isomorphism in
(1.11) together with the equality

[E') = -[S1+5-hs =—-6-h2, +5-hs € H'(P*,Z) ® H*(S,Z)(-1),
which uses —p*(cl((’)p(l))z) =ci(Ngps) =5 - hg, give T*hi, =9. h]%m —6-(hps - [E']) +
[E'7=9-h2,~6- ju(p*(hs)) =6 hy + 5 ju(p*hs) = 3 Iy — j.(p’(hs)), ie.
T'hy =3 hl, — hs € H'(P*,Z) & H (S, Z)(-1). (1.13)

Note that the square of the class on the right-hand side is indeed 9 — (hs.hs) = 3 =
(hi.hi).
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Remark 1.24. Analogously to Remark 5.5.1, the description of the cohomology of the
blow-up leads directly to the following global Torelli theorem for nodal cubic fourfolds.
Assume X, X’ c P> are two cubic fourfolds each with an ordinary double point x € X
and x’ € X’ as the only singularity. Then the following conditions are equivalent

(1) X ~ X’ as (singular) complex varieties.
(ii) There exists a Hodge isometry {: H*(B1«(X),Z) ~ H*(Bly(X’), Z) with {(h%) = h3,
and {(E%) = E3,.

Indeed, any Hodge isometry as in (ii) defines a Hodge isometry H*(S,Z) ~ HX(S’,7),
hs — hg., which, by the global Torelli theorem for K3 surfaces, is then induced by a
polarized isomorphism (S, ig) =~ (S’, hg'), cf. Section 6.3 and [249, Ch. 7.2]. As for both
K3 surfaces the inclusion S, S’ ¢ P* is induced by the complete linear system defined
by hs and hg-, the isomorphism extends to an isomorphism of the ambient projective
spaces, of their blow-ups and, eventually, to X ~ X’. See Theorem 3.17 for a global
Torelli statement for smooth cubic fourfolds.

Note that in dimension four there is no analogue of (iii) in Remark 5.5.1, as there is
no geometric object naturally associated with the Hodge structure of weight two that
would replace the passage from Y to J(Y) for cubics of dimension three.

Consider the sublattice of rank two of H2’2(B1x(J (X),Z) spanned by the two Hodge
classes h@ and hg. The intersection form with respect to the two bases h]%m hs respec-
tively T*hi =3. h@ —hg,2- h@ — hg, see (1.13), is described by the matrices

1 0 3 0
(0 —6) and (0 _2). (1.14)

Kg = (hes, hs) € HY (Bl (X), Z),

We will denote this lattice by

in analogy to K for smooth cubic fourfolds containing a plane. Note, however, that Ky

was positive definite while the matrices in (1.14) are indefinite. In fact, the real K_, as in

Section 5.2, would be positive definite with a diagonal intersection matrix diag(3, 2).>
The analogue of Proposition 1.18 is then the following result [226].

Proposition 1.25 (Hassett). Let X C P> be a cubic fourfold with an ordinary double
point xg € X as its only singularity. Then, up to a global sign, the Fano correspondence
of all lines through x induces a Hodge isometry

Gt Kyt —= H(S, (1),

3 A similar sign issue occurs under the Fano correspondence H*(X,Z) — H*(F(X), Z) for smooth cubic
fourfolds.
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Proof As explained before, ¢, : H*(Bl,,(X),Z)—= H*(S,Z)(-1) is nothing but the
projection onto the second summand in (1.12), which is enough to conclude. O

In Remark 3.27 we will see that general K3 surfaces of degree d = 6 can indeed only
be associated with singular cubic fourfolds.

Continuing Example 1.23, we emphasize that for a generic polarized K3 surface
(S, L) of degree six, so a (2, 3) complete intersection in P*, the incomplete linear system
|Op+(3) ® Zg | defines a cubic fourfold with an ordinary double point xy € X as its only
singularity. For the very general such (S, L) the primitive cohomology H*(S,Z)y(—1)
then describes the transcendental part of H*(Bl,,(X), Z).

Exercise 1.26. Prove that taking a generic hyperplane section ¥ = H N X through the
node xo € X transforms Bl (X) =~ Blg(P*) to Bl (Y) ~ Blc(P?), where C c P? is a
complete intersection of type (2, 3), see Section 5.5.1.

Remark 1.27. In Section 5.2 we will discuss the relation between certain families of
smooth cubic fourfolds X c P3 and families of polarized K3 surfaces (S, L) of particular
degrees d. We will see that for d = 0 (6) there is an ambiguity in the choice of (S, L) for
a given X. More precisely, generically there are two possibilities to associate a polarized
K3 surface with a given X. However, for d = 6 the situation is different, for the purely
lattice theoretic reason explained in Remark 6.10. There is indeed a distinguished K3
surface associated with a nodal cubic fourfolds. *

1.5 Nodal cubic fourfolds: Fano variety ~Assume that the nodal cubic X ¢ P° and its
associated sextic K3 surface S ¢ P* are generic in the sense that X does not contain any
planes P> ¢ P> and S does not contain any lines P! ¢ P*. Then any subscheme of length
two Z = {s1, 52} € S defines a line £ c P* with Z c S N ¢ that is not contained in S .
See Example 3.3 for background on the Hilbert scheme S, Note that a non-reduced Z
consists of a point s € S and a tangent direction v € TS, which still defines a line 7.
First we observe that either:
(i) Z is the scheme-theoretic intersection S N £ or

(ii) ¢z c E and S N £z is a scheme of length three.

Indeed, if the length of the intersection is at least three, then £ is contained in the
quadric E C IP’(TXU]Pﬁ) ~P*and S € |Og(3)| shows (S.£;) = 3, where we use again that
S does not contain any lines.

We denote by

T:={ZeSP||ISNnt)=3)
the closed subset of subschemes Z of type (ii).

4 I wish to thank E. Brakkee for a discussion related to this point.
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Then for Z = {s1, 52} € S\ T, the proper transform ¢! (£,) is of the form
¢\ (6z) = E, UE, Uy,

where Ef = p~'(s;) © X are the lines through x, € X corresponding to s; € S,
i = 1,2, and, by abuse of notation, £ C Bl (X) = Blg (P*) also denotes the strict
transform of £, ¢ P*. Using 7°Ox(1) =~ ¢*Op:(3) ® O(=E’) in (1.11), the fact that
(E’.(;S’1 (€2)) = 0 (as the proper transform of the generic line in P* does not intersect E”),
and (7" Ox(1).E7,) = 1, one deduces (7" Ox(1).(z) = 1. Hence,

Ly =1({;)CcX

is a line in X C P°. Alternatively, one may think of L, C X as the residual line of
E; UE| C PzNX, where Pz C P is the plane spanned by the two intersecting lines
T(E;i) C X, i = 1,2. We leave it to the reader to verify that all this makes sense also
when Z consists of a point s; = s, together with a tangent direction. Also note that the
strict transform of a line ¢; contained in E would not give a line in X, because it gets
contracted to xo € X. We have seen a similar construction for nodal cubic threefolds
already in Remark 5.5.2.

Altogether, this defines a morphism S'?! \ T — F(X), Z+— L;. Conversely, if
L c X is a line not containing xo, then L intersects 7(£’) = |J, ¢, L’ in two points
(counted with multiplicities) contained in two lines L; and L,. Indeed, if L intersected
three lines through xp, then L and the three lines would all be contained in one plane
necessarily contained in X, which is excluded by our genericity assumption on X. There-
fore, the proper transform of L defines a line £ ¢ P* intersecting S in the two points
S1, 52 € § with E;,- = L;. As a consequence, one finds an isomorphism

SPINT ~ F(X)\{L|xo €L}

To push this a bit further, one observes that the rational map Z+—{, extends to a
morphism which on the exceptional set T C S'?l is given by Z = {sy, s,}+— E/_, where
S N €y = {s1, 52, s3). The resulting morphism T —s=S§ “—— F(X) is a Zariski locally
trivial P'-bundle over the image S c F(X), because the lines through any fixed point of
the quadric E form a P! and P!-bundles over E are Zariski locally trivial.

The discussion essentially proves the following results, we refer to [226, Sec. 6.3]
for the missing details. A less precise result but for cubic hypersurfaces with arbitrary
isolated singularities has been proved by Lehn [318, Thm. 3.6].

Proposition 1.28 (Hassett). Let X C P> be a generic cubic fourfold with an ordinary
double point xo € X as its only singularity. Then there exists an isomorphism

S~ Blg(F(X)).
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Here, S C P* is the associated K3 surface of degree six which viewed as S < F(X)
parametrizes all lines passing through x. O

Remark 1.29. (i) Consider a smooth hyperplane section Y := X N P* and view S as
the complete intersection S = ¥ N Q of the cubic ¥ ¢ P* and a uniquely defined
quadric Q C P*, see Example 1.23. Then the natural inclusion F(Y) = F(X), which
by Lemma 4.5 describes a Lagrangian subvariety, can be reinterpreted as the inclusion

F(Y) & s

that mapsaline{ C Y C P* to the intersection [£ N Q] € S?), see [58, Prop. 3].

Note that F(Y) c S ~ Blg(F(X)) avoids the exceptional locus of the contraction
S~ F(X).

(i) The moduli space M(v) of semi-stable sheaves on S with Mukai vector v =
(2,0, —2) is singular of dimension ten. Beauville [52, Prop. 8.4] showed that every bun-
dle E in a dense open subset of M(v) can be written as the cokernel of an alternating
linear map A: Op(=2)® —= Op(~1)%®, cf. Section 4.2.5. Associating with E the cubic
Y c P* determined by the Pfaffian of A, leads to a rational map

M(V) oo > |Zs (3)| =~ P?, (1.15)

which in fact is a rational Lagrangian fibration. The generic fibre over Y € |Zg(3)| is
the moduli space of sheaves of rank two with ¢; = 0 and ¢, =