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Introduction and Motivation

This course is an introduction to non-Archimedian geometry. In particular, we
will give a thorough introduction to Tate’s rigid analytic spaces. These spaces
behave quite differently compared to manifolds or schemes over C, so it is essential
that one learns the basics well to develop intuition for the subject.

Just for now, though, in the introduction, we’ll give a little bit of motivation
without going into very much detail. The reader isn’t expected to understand
everything; this is just an appetizer. Let’s get into it!

Let X be a smooth variety over Q (for example, we could take X to be an
elliptic curve). We can consider the extension C/Q and the scheme X;. We can
associate to X¢ a complex manifold, which, by abuse of notation, we refer to as
X(C). Now, we can use tools from complex geometry and topology to study X.

For example:

1. We get access to topological invariants, like Betti cohomology H (X (C), Q). What algebraic geometers call Betti cohomol-
ogy is what topologists would call singular
cohomology.

2. We get access to Hodge theory: For proper X, we have

H(X(C),C) = @ H'(X, ).

i+j=n

3. If X is an algebraic group, then X (C) is a complex Lie group. This gives us

access to the Lie algebra exponential and logarithm.

4. We can use analytic uniformization: If X is an Abelian variety of dimension g,

then, for a lattice A in C¥, we can write
X(C) = Lie(X(C))/H,(X(C),Z) = C*/A.

This can be used to describe complex moduli of Abelian varieties. For instance,
if X is an elliptic curve, we have for some canonical 7 in the complex upper

half-plane that X is of the form C/(Z + 7Z).

5. One can read off the geometric étale fundamental group of X, via

Wft (XC) _ WIOP (X(C))/\ Here, the symbol " denotes profinite comple-

tion.

This lets us deduce that 7Z'ft (X) is topologically finitely generated.
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It would be nice to have a similar “analytic” theory over other so-called “valued
fields” (we’ll say something more about this shortly) like Q,orC,orF, (2) or
C((#)). Not only because it seems intrinsically interesting, but because there are

important applications! We will now briefly speak about some of them.

Hasse principle. If we want to study X (Q), the Hasse principle says that it
suffices to study X (R) and, for all primes p, the points X (Qp) One concrete
application of the Hasse principle is the Hasse-Minkowski theorem, which says

that a quadratic form over Q has a nontrivial solution if it has one over R and, for

all primes p, over Q{)

Langlands program. We want to understand Gal(Q/Q). To do this, we nat-
urally try to study its representations. This is difficult, so, for primes p, we look
at Gal(@/ Q,). From there, we can ask when representations of Gal(@/ Q,)

“come from geometry”, i.e., when they arise in the cohomology of some variety

over QP

p-adic approximation/lifting. ~ Given a scheme over Z, it is often easier to deal
with points over XFp and then try to lift to characteristic 0 via Hensel’s lemma.

Similarly, sometimes we want to lift a variety over FP to characteristic 0.

Function field arithmetic. ~ Start with a variety over E, (£). We cannot base

change to C, so our only reasonable shot at getting an analytic theory is to look at

E, (1)

Deformation theory. Moduli spaces are often analytic spaces. In a slightly
different direction, if we have a family of varieties over C parameterized by, say,
the affine line, and we have a singular variety at a point in Alc, we can remove it
by completing and passing to the generic fiber, which leads us to an analytic space

over C((2)).

History

Historically, the motivation for rigid analytic spaces was J. Tate’s work on elliptic
curves. He noticed that if £ is an elliptic curve over Cp satistying a technical

condition, then there is an isomorphism of topological groups
E(Cp) = C;/qZ.
This looks a lot like the complex case, where we have

exp(27wi-—
E(C) = C/(Z + 7Z) 22, ) exp(amin)Z.
But this is 2 priori only an isomorphism of topological groups. It would be much
more meaningful to upgrade this to a geometric statement, so that the associated
geometric object remembers the elliptic curve in a faithful way. It was this that

lead Tate to develop rigid analytic spaces.

If you haven’t seen quadratic forms before,
you can think of things of the form > | 2,X?
fora; € Q" and indeterminates X;. The
actual definition is slightly different, but every
quadratic form can be put into this form.
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Valued Fields

Definition 1. Let K be a field. An absolute value on X is a map
l*]: K= Ry

such that for all 2, b € K, the following hold:

1. We have |2| = 0 if and only if 2 equals 0.

2. Wehave |ab| = |a||b].

3. We have |2 + b| < |a| + |5].

on R is an absolute value. Ditto for

|

Example 2. The usual absolute value |

the usual norm on C.

Example 3. The trivial absolute value sending every element of the field in ques-

tion to 0 is an absolute value.

Example 4 (p-adic absolute value). The p-adic valuation v, on Qs defined as
follows: Forany 2 € Z \ {0}, if  is equal to p"d with d coprime to p, we set

v,(a) = n. Foralb € Q, weset vp(a/h) to be vp(a) - vp(b). The p-adic absolute

’ . v (x Exercise 5. Check that the p-adic absolute
valueis | *|,: x — »()
P’ ? : value actually is an absolute value.

Definition 6. Two absolute values on | * |, and | * |, are called equivalent if there

exists ¢ € R such thatwe have | * |, = | * |5.

Theorem 7 (Ostrowski). Every nontrivial absolute value is equivalent ro | * | or,
for some prime p, the p-adic absolute value | * | ,. O
Topology
Lemma 8. Let K be a field equipped with an absolute value | * |. Then, the function
d: K* — Ryt (x,9) = |x— ]
Exercise 9. Prove lemma 8.

defines a metric. The induced topology on K makes K into a topological field. O

Lemma 10. Let K be a field. Let | * || and | * |, be two absolute values on K. The
following are equivalent:
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1. The absolute values | * || and | * |, are equivalent.
2. The absolute values | * || and | * |, define the same topology on K.

Proof. The proof of (1) = (2) is straightforward.

Let’s prove (2) = (1). Fori = 1,2and x € K, we have |x"|; == 0ifand
only if we have | x|, < 1. The former statement is equivalent to the statement that
the sequence (x, 20, ) converges to 0 in K, which is an entirely topological
statement. So for any x € K, we have |x|; < 1if and only if we also have |x|, < 1.

Now, for y,z € K with |y| # 1 # |z| andn,m € Z,setx = y"z". Applying
the conclusion of the previous paragraph to x, we have mlog |y|; + nlog|z|; <0
if and only if we also have 7 log |y|, + zlog |z|, < 0. Rearranging, this shows that

we have
log |}’ l; <

r r
loglz|;, m  loglz|, m’

Since 7 and m were arbitrary, this shows that we have

Rearranging yet again, we see that there holds Scribe’s note: I added a few additional details
rom William Stein’s website: https://www.
P
log |)’|1 10g 2], williamstein.org/papers/ant/html/

= . node62. html.
log|yl, loglzl,

Since y and z were arbitrary, this shows that there is a constant ¢ € R such that for
every w € K, we have

_ log |w|,
= —=——.
l0g|w|2

Rearranging one final time, this shows that forany w € K, we have |w|, =

|wl3. 0

AR

Completions
Let K be a field and let | * | be an absolute value.

Definition 11. The field X is called complete with respect to |*| if every sequence
in K that is Cauchy with respect to | * | has a unique limit in K.

Lemma 12. For any field K with absolute value | * |, there is a field extension K' | K
together with an absolute value | * |" on K' extending | * | such that K' is complete
with respect to | * |" and K < K' is dense. The filld K’ is initial among continuous This universal property shows that equivalent

morp hisms fVUWl K into com 2 Jete valued ﬁf 1ds. absolute values have isomorphic completions.


https://www.williamstein.org/papers/ant/html/node62.html
https://www.williamstein.org/papers/ant/html/node62.html
https://www.williamstein.org/papers/ant/html/node62.html
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Sketch. Cauchy sequences in K form a K-algebra R. Sequences converging to 0
form a maximal ideal 7 € R. One can check that

|(xn)n€220|' = lim |x,|

n—oo

defines an absolute value on R /1. O

Example 13. The field R is the completion of Q with respect to the usual abso-
lute value. The field QP is the completion of Q with respect to the p-adic absolute
value | *| - Like R, the field Q, is not algebraically closed. We write @ to denote

an algebraic closure. In contrast to the real case, the extension Q,,/Q is infinite.

Proposition 14. Let K be a field that is complete with respect to an absolute value
| * |. Let V be a finite dimensional K-vector space. Then, any two vector space norms
onV are equivalent. In fact, if V' is isomorphic to K, then every norm is equivalent

to the norm (ay, ..., a,) = max; |a;|. In particular, every such norm is complete.

Proposition 15. Let K be a field that is complete with respect to an absolute value

| * |. Let LK be an algebraic extension. There is a unique way to extend | * | to a
absolute value | * " on L. If L| K is finite, then L is complete with respect to | * |" and
| * | admits the following description: for « € L, we have

o' = | Nmy (2|15, O

This implies that we get a unique extension of | * | » from Q, to @ Unfortu-

nately, the field @ is not complete with respect to | * | >
Definition 16. Let C, denote the completion of @ with respectto | * | .

Proposition 17 (Krasner’s Lemma). The field C,is algebraically closed. O

RIGID ANALYTIC GEOMETRY 7

There are other ways to describe Q. For
example, we can describe Q, as the field of

sums of the form Z::_m a,p”, where a,, lies in
{0,1, ..., p — 1} and vanishes for z sufficiently
negative. Yet another way is to first define the
p-adicintegers Z, aslim,z | Z/p"Z, and then
setQ, to be ZP[I/p].

Scribe’s note: I've altered the statement of Propo-
sition 15 to more or less match the statement
given in Brian Conrad’s notes: https://
virtualmathl.stanford. edu/~conrad/
248APage/handouts/ostrowski.pdf.
The reason is that we need some extension
statement for algebraic (but possibly infinite)
extensions to extend the p-adic absolute value to
an absolute value on @

Strictly speaking, Krasner’s Lemma says
something more general, but this version
suffices for our purposes.


https://virtualmath1.stanford.edu/~conrad/248APage/handouts/ostrowski.pdf
https://virtualmath1.stanford.edu/~conrad/248APage/handouts/ostrowski.pdf
https://virtualmath1.stanford.edu/~conrad/248APage/handouts/ostrowski.pdf
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Non-Archimedean Fields

Observe that for 4, b € Z, we have v, (a+b) = min(vp (a), v, (6)). This implies that
|a+b], is no larger than max(|| ,, [6] ). In other words, the p-adic absolute value
satisfies a strong version of the triangle inequality called the “ultrametric triangle

inequality”.

Definition 18. A nontrivial absolute value | * | on a field K is called non-
Archimedean if it satisfies the ultrametric triangle inequality: forall 2,5 € K,
there holds | + &| < max(]4/, |5]). Otherwise, it is called Archimedean.

Theorem 19 (Gelfand-Tornheim-Ostrowski). If a field K is complete with respect
to an Archimedean absolute value, then K is isomorphic to R or C. O

In contrast, there are many fields that are complete with respect to non-

Archimedean absolute values.

Definition 20. A non-Archimedean field is a field K together with an equivalence

class of non-Archimedean absolute values with respect to which X is complete.

Definition 21. Let K be a field. A valuation (of rank 1) is a function v: K —
R U {0} such that the following conditions are satisfied for all 2, b € K:

1. We have v(4) = coif and only if z equals 0.
2. We have v(ab) = v(a) + v(b).

3. We have v(a + b) = min(v(a), v()).

For any valuation v, we get a non-Archimedean absolute value x — exp(-v(x)).

Conversely, for any non-Archimedean absolute value | * |, we get a valuation
v: x> —log|x]|.
The ultrametric inequality has far-reaching consequences, which we now

discuss.

Lemma 22. Let K be a non-Archimedean field. Let (a,,) 7 be a sequence of
elements in K. The series Z:Zl a,, converges if and only if the sequence (a,,) ez
converges to 0.

Proof. Let ¢ be a real number greater than 0. Then, there exists /N such that for all

m > N, we have |4,,| < ¢. But then, for any / > m, we have

We take an equivalence class because we want
to think of K as a topological field, i.e., we want
to emphasize the topology over any specific
absolute value inducing it.
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Thus, the sequence (Zizl a,) ez, is Cauchy. O

Definition 23. A valuation ring is an integral domain such that for all nonzero

x € Frac(4), at least one of x and x ! lies in A.

Definition-Theorem 24. Let K be a field equipped with a non-Archimedean
absolute value. Let Oy denote the ring {x € K : |x| < 1}. Let Wy denote the ideal
{x e K : |x| <1} in O.
1.(a) Thering Oy is an open subring, called the ring of integers of K. It is a
valuation ring.
(b) The maximal ideal of O is Wy We sometimes call My the maximal ideal
of K.
(c) Wehavedim Oy = 1.
Conversely, let R be a 1-dimensional valuation ring. Then, the field Frac R is a
freld admitting a non-Archimedean absolute value with R as its ring of integers.
2. The following are equivalent:
(a) The freld K is complete with respect to our choice of non-Archimedean abolute
value.

(b) Forany & € My, we have
Ok =lim O /&".

Sketch. We do not give a full proof of this theorem. We will, however, say a few
words about how to, givena 1-dimensional valuation ring R, construct a non-
Archimedean absolute value on Frac R having R as its ring of integers. We may

endow (Frac R)*/R* with the structure of a totally ordered set via
[x] <[] = x'yeR.

By Proposition 8 in §4.5 of Chapter 6 of Bourbaki’s Commutative Algebra,
there is a map (FracR)*/R* — R that, when composed with the natural map
(FracR)* — (FracR)™/R*, yields an absolute value on Frac R satisfying our

requirements. O

Surprising Features of Non-Archimedean Topologies

Let K be a field equipped with a non-Archimedean absolute value.

Lemma 25. Let a,b € K be two elements with |a| # |b|. Then, we have |a + b| =
max(|al, ]).

Proof. Without loss of generality, we can assume that || is less than ||. Then,

we have |2 + b| < |a|. But we also have

|a| = |a+b-0b| <max(|a+b|,|b]) =|a+ bl O

RIGID ANALYTIC GEOMETRY 9

Note that there is no completeness assump-
tion.

Geometrically, this means that every triangle in
K is isosceles!
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Forr € Rand 2 € K, let B,.(4) denote the closed ball {x € K : |x — 4| < 7} of Contrary to popular belief, the ball B,.(2) is in

radius 7 around 4. Let B, () denote {x € K : |x — 4| < } and let d B, (2) denote general not compact.

B,(2) - B, (a).

Lemma 26. Foreveryr € R and every a € K, every point in B,(a) s its center. In Scribe’s note: Originally, the first and second

particular, forr € Rand a,b € K, the balls B,(a) and B,(b) are either equal or sentences in lemma 26 were each their own
disioint. lemma, but I combined them into one lemma

Lyjont. since they re so similar. I also added a few

. L . details to the proof.
Proof. Let b be an arbitrary point in B,.(z). Then, the closed ball B,.(5) is a subset
of B,.(a); for if ¢ is any point in B,.(«), we have
|b—c|=]b+a-a-|
=max(|a - b|, |a—c]|)
<.
By symmetry, this shows that B,.(z) and B,.(¥) are equal. O
DY
Lemma 27. Foranyr € R and a € K, the ball B, (a) is both open and closed. Ditto
forB, (a) and 0B, ().
Proof: Immediate from lemma 26. O
Theorem 28. Let K be a equipped with a non-Archimedean absolute value. As a
topological space, the field K is totally disconnected. To say that a topological space is totally
disconnected is to say that any connected

Proof. Let A be a subset of K. Suppose that 4 contains points 4, & with @ # b. subspace consists of at most one element.
Let 0 < 9 < d(a, b) be a real number. Then, the set 4; = By(a) n A4 is open and
closed. Thus, so is 4, = 4 \ A4;, which is nonempty since it contains &. O

Towards Rigid Geometry

The first attempt at analytic geometry over a non-Archimedean field K could be

to “copy” the definition of a real or complex manifold.

Definition 29. A locally K-analytic manifold is a topological space that is

locally isomorphic to O.

This is useful in some situations, e.g., for studying K-points of algebraic groups
over K. But it isn’t well-suited to doing analytic geometry, i.e., studying locally an-
alytic functions on X. To be more precise: lemma 22 suggests a notion of analytic
functions on B;(0) < K. We could hope to get a well-behaved sheaf of analytic
functions on B (0) (or X, for that matter); however, the space B, (0) can be writ-
ten as B; (0) U 0 B, (0), so the space of functions on B, (0) should decompose as a
product of the spaces of functions on B; (0) and d B, (0), respectively. This goes
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against the principle from complex geometry that functions on the closed unit
ball should be determined by their behavior in the interior thereof. Even worse:
Suppose that K is CP' This field has F_P as its residue field. For any 2 € F_P’ choose a
life [4] € Cp. Then, we get an znfinite decomposition

B,(0) = O, = [ [([a] +mc) = [ [ B; (L)),

ﬂEFP aEFP

and the space of functions on O decomposes as an infinite product of the spaces
»

of functions on the various B ([4]), fora € F_p

Rigid analytic geometry solves this by

1. “postulating” that functions admit a global power series expansion, and

2. only allowing certain open covers.

Technically, the definition is closer to the algebraic geometry of varieties than

to manifolds.

11
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The Tate Algebra

Let X be a non-Archimedean field with residue field £. Consider the closed unit
disc B;(0). What should “analytic functions” on B, (0) < K be?

Lemma 30. Let (c,) ez, be a sequence of clements in K. Then, the function f =
Znezzo ¢, X" € K[ X] converges on B{(0) if and only if the sequence (c,) converges
20 0.

Proof. Immediate from lemma 22. O
lemma 30 motivates the following definition.

Definition 31. The Tate algebra in 7 variables is the ring
Exercise 32. Show that 7}, is a K-algebra. If &

P is a nonzero element of My, show that there is
. i|—o0 . .
Tn _K<X1"' ’Xn> = f: Z ﬂl,Xl ta, —— 0 gKIIX15~-~an]]~ an isomorphism
€L K(Xy,., X,) = O [X,, .., X, 15 [1/ @]
It follows from lemma 30 thatany / € T,, defines a “evaluation” morphism This isomorphism hints at a different approach
to rigid analytic geometry, namely that of

B'{(O) S K:x— ZZ. al-x", which, by abuse of notation, we also refer to as f. Raynaud.

Writing
O (Xy5 ey X)) = K(X],... X,) N Op[X7, ..., X, 1
there is a natural reduction map

red: Og(X},...,X,) — k[X, ... X,].

n

Exercise 32 suggests that K (X, ..., X,) is “complete”, in some way; let’s make

this more precise.

Definition 33. Let R be a K-algebra. A K-algebra norm on R is a function
|*|: R — R,y suchthatforallc € Kand f, g € R, the following conditions hold:

—

. There holds | f| = 0 if and only if f equals 0.

I

We have [¢f| = |c||f]-

. We have |fg| < |f]lgl.
. We have | £ + ¢| < max(|f], |¢]).

A K-algebra norm is called multiplicative if equality holds in (3).

SN

N
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Definition 34. The Gauss norm on 7}, is the K-algebra norm | * || defined by

> ox
€2l

Observe that there holds

T, Ifl < 1} = O (X, X,).

= Sup {l[l|}
€27,

AFR

Lemma 35S. Forany nonzero f € T,(K), there is a € K™ with |af]| = 1.

Proof. We defined || f]| to be the supremum of the coefficients in the expansion of
- Since these coefficients converge to 0, the supremum is attained, i.e., there is a

coefficient ¢; of the expansion of f with || f|| = ¢;. Setatobe ¢ . O

Proposition 36. The Gauss norm is multiplicative.

Proof. Let f, g be elements of 7,,. By lemma 35, we can assume that there holds

I/l = gl = 1. The kernel ker(red) of the reduction map is the ideal of elements 4
with ||5| < 1. Since £[X], ...
Since neither of f and ¢ lies in ker(red), the norm || f¢|| of fg must be 1. O

,X,] is an integral domain, the ideal ker(red) is prime.

Corollary 37. Anelement f =

|Z| > 0, we bave |¢y| > |¢;|.

;X is a unit if and only if for all i with

g
€2

Proof. First, suppose that £ is a unit. By lemma 35, we may assume without loss
of generality that there holds || /| = 1. By Proposition 36, we have |f || = 1.
Therefore, the element /= iesin © (X1, .., X,)". This implies that the reduction
redf liesin k[X;, ..., X,] = #".

The other direction is left as an exercise. O

Proposition 38 (Maximum Modulus Principle). Forany f = > X' €

K(X;,.., X)), webhave

n

€2
/1= sup |f(x)]-
x€B7(0)

IfK "isan algebraic extension of K with infinite residue field £, then there is a
point xy € (K')" with coordinates lying in the closed unit ball in K’ that satisfies

/1= 1/ (o) -

Proof. Forany x € B}(0), we have

If@)] =] > ex

T
1€

IN

max |¢x'|
€2,

A

max le;|

I71-

RIGID ANALYTIC GEOMETRY 13

Exercise 39. Show that Proposition 38 can
fail if £ is not assumed to be infinite. Hint:
Consider QP

Remember, there is a unique absolute value on
X' extending the one on X by Proposition 15.

It is with respect to this absolute value that we

consider the residue field of K.

Scribe’s note: I've stightly modified the statement
and proof of Proposition 38, to strengthen the
theorem and avoid mentioning the Tate algebra
of K, which we technically haven t defined (since
K is generally not complete with respect to the
extended absolute value). The statement is now
closer to the one given in Bosch’s Lectures on

Formal and Rigid Geometry.
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We will now show the existence of the point x,. By lemma 35, we may assume
that there holds || f]| = 1. Consider the reductionf~ € k[X;, ..., X,]. The element
f is nonzero, so since £’ is infinite, there exists ¥ € &' with f (%) # 0. Choose any
lift %y € Oy of ¥. Then, the element f(x,) has nontrivial image _f (X) € k. Thus,
we have | f(x,)] = 1. O

Definition 40. A Banach K-algebra is a K-algebra equipped with a K-algebra

norm with respect to which it is complete.

Proposition 41. The algebra T,, is complete with respect to the Gauss norm, i.c., the
algebra T, is a K-Banach algebra.

Proof. Let (f,,),nez,, be a Cauchy sequence in 7,,. Write
fm = 2 Ci,le"
€2l

Then, forall 7 € ZZjand all ¢ > 0, there exists N such that for all m, m, = N, we

have

£> “f‘mI _fmZH = sup |Cz',m1 = G, |
€27,

The RHS of the preceding expression is no less than |;,, — ¢;,, |- This implies
that for all 7, the sequence (c; ) .z, is Cauchy. Since K is complete, it has a

f= Z cl-X".

b
€22,

unique limit ¢;. Set

We need to show that f lies in 7}, and that £ is the unique limit of the sequence
() mez,,- We first address the former claim. We may assume without loss of
generality that for allm; € Z,yand allm, > my, wehave |f,, — £, | < 1/m;.
< 1/m;y. Since | * | is continuous,

this implies that forall m € Z., we have |¢; = ¢,,;| < 1/m.Form € Z,

Then, foralli € Z), wehave |c,, ; — ¢, ;|
since £, lies in 7,, by assumption, there exists N,, such that forall7 € Z2, with
|z] > N, strict inequality |c,, ;| < 1/m holds. By lemma 25, this implies that for
allm € Z,, there exists N, € Z, such that forall7 € Z7 with |Z| > N, there
holds |¢;| < 1/m. This verifies that f lies in 7.

Finally, we show that f is the unique limit of (f},) .Forallm € Z,,, we

meZ,
have ||f = £, = sup,.,. ¢ = ¢,;| < 1/m. Thisshows that f isalimit of

20 . . . .
() mez,s and that (£,,) .z - must converge coefficient-wise to any limit, so the
uniqueness of f follows from the fact that convergent sequences in X have unique

limits. O

Weierstrass Preparation and Division

In classical algebraic geometry, varieties are build from maximal spectra of poly-
nomial algebras £[X, ..., X ] over some field £. The theory relies on the fact that
k[X;, ..., X,] has good algebraic properties: it is Noetherian, factorial, Jacobson,

Scribe’s note: I added numerous details to the
part of the proof of Proposition 41 in which f is
shown to lie in T}, and verified to be the unigque
limit of VM)mﬁlzo’ following §1.4 in Bosch,

Giintzer, and Remmert’s Non-Archimedean

Analysis.

Exercise 42. Let (f,,),ez_, be a sequence in

. £
T,,. Show that the series 3" f,, converges

in 7, if and only if the sequence (||£,,[|)

converges to 0.

mel
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and satisfies the Noether normalization and Krull’s principal ideal theorems. We

would like to have analagous properties for 7.

Definition 43. Let f be an element of 7, and, for elements f; € 7, _,, write
f=2 5%
7=0
The element f'is called distinguished of order & if the following conditions hold:
1. Theelement f}, isaunitin7,_;.

2. Forallj > k, wehave | f;|| > || f;ll and || fi]l = | /1.

Example 44. Let /' € K(X) be an arbitrary nonzero element. If & is such that
there holds |¢;| = ||f]|, then £ is distinguished of order .

Theorem 45 (Weierstrass Division). Let g € T, be distinguished of order k. Then,
for f €T, there is a unique q € T, as well as a uniquer € T,_|[X,] with degr < k
such that there bolds

f=g-q+r
Moreover, we bave | f]| = max(|glgl, |7])-

We will prove Theorem 45 by first proving two intermediate statements. Seribe’s note: 1 split up the proof of Theorem 45
by pulling out a couple of lemmas. I also added
Lemma 46. Let g € T, be distinguished of order k. Let f be an element of T,. a few details from §1.2 of Bosch’s Lectures on

. . F land Rigid G .
Suppose that thereis g € T, aswell asr € T,_;[X,] with degr < k such that there ormatand Hgid beomety

holds
f=g-q+r
Then, there must bold || f|| = max(||gl|l[l, |17[])-

Proof: Without loss of generality, we can assume that 4 and 7 are both nonzero.
By lemma 35, we can assume that we have ||g|| = 1 and max(||g]||¢[l, [|7]]) = 1.
Clearly, we have || f] < max(|l]ll¢l, l7]) = 1. Suppose that that inequality is

strict. Then, we have

red(gg +7) = red(f) = 0,

and at least one of red(g) and red(r) must be nonzero. This contradicts Euclidean
division in £[Xj, ..., X ]. O

n

Lemma 47. Letg € T, be distinguished of order k with |g| = 1. Writeg =

o i ’ k / " o i
Z].:O ngiforgj €T, . Purg = ijo ngé andg = ijkﬂngi, so that there
holds g = ¢ + ¢" and ¢’ is distinguished of order k with |g'|| = 1. Sete = |g"| < 1.
Then, for f € T,, there are elements q, f; € T, as well as an elementr € T,_;[X,]

with degr < k such that the following conditions bold:
1. Wehave f =qg+r+ fi.

2. Webave | f1]| < | £



340

350

360

16 BEN HEUER, TRANSCR. MATTHEW STEVENS

3. Both |\q|| and \r|| are no greater than || f|).

Proof: Write [ = Z;ijX;{ for elements f; € 7,,_. Thereis k' € Z., such that

D Wr

J=k'+1
satisfies | /|| < ]| f]|. Write
¥ ,
Iy 2
7=0

By Euclidean division in K[Xj, ..., X, ], there existg € T, and » € T,,_;[X,] with
[ =q¢ +randdegr < k. Set f; = —q¢" + f", so that there holds

= +f=aqd +r+fi+vqd =qg+r+fi

i.e., condition (1) holds. To see that condition (2) holds, note that ||g"|| equals ¢, so

we have
1A < max(lgg”lL 1F°1) < el A1,
as desired. The fact that condition (3) holds follows from lemma 46. O

Proof of Theorem 45. lemma 46 shows that if we are given ¢ and 7 as in the theo-
rem statement, then we have || /|| = max(||¢]|ll¢ll, [I7])-

Now, we will show that if there exist elements ¢ and » as in the theorem state-
ment, then 4 and 7 are unique. Suppose that ql and 7’ satisty /= gq' + 7. Then,
we have 0 = g(g—¢') + (r— ). By lemma 46, we have max(|lg — 4’|, [l = 7||) = 0
and thus we have g - q' =r—7r =0.

Finally, we show that elements 4 and 7 as in the statement of the theorem exist.

By lemma 35, we may assume that there holds ||g]| = 1. Asin the statement of
lemma 47, write g = Z;io ng,ﬁ forg; € T, yandpute = || Z;ikﬂng,{ [

Applying lemma 47 inductively, for each 7 € Z,,, wefind f;,4, € T, and 7, €
Tl with f; = gig + 7, + fryand g, 7] < &1 fland | f| < €| f-
One readily verifies that the elements g = ZZO g;and 7 = ZZO 7. are of the form
sought. O

AFRe

In Example 44, we observed that every nonzero element in 7] is distinguished of

some order. Thus, Theorem 45 yields the following corollary.

Corollary 48. The algebra T, = K(X) is a Euclidean domain. In particular, it is a
PID.

An analogue of the Weierstrass Preparation Theorem in complex analysis holds

for the Tate algebra.
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Corollary 49 (Weierstrass Preparation). Let g € T, be distinguished of order k.
Then, there is a unique monic polynomial w € T,_;[X,] of degree k and a unit

e € T, such that we bave g = ew. The polynomial w satisfies |w|| = 1and w is
distinguished of order k.

Analytically, this means that the zero set of g coincides with the zero set of .
In the case # = 1, the element f has only finitely many zeros on B; (0). Asin
complex geometry, this will fail over B; (0).
Proof of Corollary 49. By lemma 35, we can assume that there holds ||¢g|| = 1. .

” % . Exercise 50. Here, we use Theorem 45 to
Appl}’lng Theorem 45 tOf =X,,wegetg €T, andr € 7,4 [Xn] with deg r<k deduce Corollary 49. Prove that Theorem 45
such that there hold X,/f = gg + rand max(|lgg|, |7[l) = 1, which implies in and Corollary 49 are equivalent by using
. b Corollary 49 to prove Theorem 45.

particular that we have ||g]|, 7| < 1. Putw = X}/ — 7, so we have ¢ = ». We have
|| = 1and w is distinguished of order 4.

We claim that ¢ is a unit in 7,,. To see this, first note that @ and g and g all
lie in O (X, ..., X,). Consider their respective reductions & and 4 and g in
k[X,,...,X,]. Since ¢ and & are distinguished of order & and have both have Gauss
norm 1, they have degree £ in X,,. Thus, the element § lies in #[X;, ..., X, ]* = £".
This implies that ¢ lies in 7},

Uniqueness is clear from the uniqueness part of Theorem 45. ]

Corollary 49 applies only for distinguished elements of 7,,. The following
lemma shows that this condition is extremely mild in the sense that all elements

become distinguished after a suitable change of variables.

Lemma 51. 1. Forintegers ay,...,a,_; € Ly, there is a norm-preserving antomor-
phism o with

X +X, i<n
X; (%)
X. i=n.

z

2. Given fi,..., f, € T,, there are integers ay, ..., a,_ € L, satisfying the following
property: if ¢ is the automorphism arising from the a,, ..., &, as in (1), then for
all j, the element zr(fj) is distinguished of some order in T,,.

Proof. (1). There is certainly amap . : K[, ..., X,] = K[X), ..., X,] satisfy-
ing the condition (). For all elements / € K[X;,..., X, ] with | /]| = 1, we have
logee ()Nl < 1. This shows that o,

continuous. One readily verifies that o has an inverse a';rle given by

is norm-decreasing, which implies that 7, is

X, - X i<n
X,i=n,

X'l.»—>

which is also norm-decreasing. Thus, the map 7, is norm-preserving and extends

pre
to an automorphism ¢ of 7,, by completeness.

(2). By lemma 35, we may assume that for all /, there holds || /|| = 1. For each Seribe’s note: I added a few details to the

second part of the proof of lemma 51 from
§1.2 of Bosch’s Lectures on Formal and Rigid

f} = Z Cl-szr. Geometry.

T
€2

7> write
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Let N ¢ Z7, denote the finite subset of elements 7 € Z_, for which there exists ;
such that E; does not vanish. Pick # with # > max,, |7|,and for € € {1,...,n — 1},
puta, = ", Let & denote the automorphism arising from 2, ..., #,, as in (1) and
let & denote the automorphism £[Xj, ..., X, ] induced by &. Let N, ¢ N denote
the subset of elements 7 for which ¢;; does not vanish. Since forany 7 € Z, we

have
1

. . _ on-1. . .
ajg ey, v, =t 1ttt +1,

the function

@i N, > Zoy: i ayiy + -+ a1, +1,

is maximized by a unique element of \V;, namely the multi-index 7,,,,, ; in N, that

is largest in the lexicographic order. Thus, for any 7, we have

5= 3 G+ X (6 # X)X
€2l
. —1
= > a0 (1),

i€l
Thus, the element f} is distinguished of order max P O

Corollary 52. Forcvery element g € T,,, there isa unite € T, and w € T,,_,[X,] (a
polynomial with respect to the variable X,) such that there bolds g = ew. O

Applications of Weierstrass Preparation and Division
Proposition 53. The algebra T, is Noetherian.

Proof. We argue by induction. The base case # = 0 is trivial. Now, for the in-
ductive step, assume that 7;_; is Noetherian. Leta ¢ 7, be any ideal. Choose

¢ € a. Bylemma 51, we can assume that g is distinguished of order £. By Theo-
rem 45, the quotient 7,/ (¢) is a finite 7,,_,-module generated by 1, X, ..., X* ™.
In particular, it is Noetherian. Since a is an ideal above (g), the ideal a is finitely
generated. O

Proposition 54. The algebra T, is a factorial. In particular, it is normal.

Proof. We argue by induction. The base case # = 0 is trivial. Now, for the induc-
tive step, assume that 7,_; is factorial. Then, the algebra 7} [X] is also factorial.
Let f be an element of 7,,. By lemma 51, we may assume that f is distinguished of
order k. Then, by Corollary 49, there is an element w € T,,_; [X] such that we have
(f) = (@). By the inductive hypothesis, it suffices to show that the natural map

T4 X,1/(@) = T,/ (@)

is an isomorphism; to see this, note that both the source and target are generated
overT,_; by theelements 1, X, , ..., X,f ~1 then apply Euclidean division on the
LHS and Theorem 45 on the RHS. L]
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Proposition 55 (Noether Normalization). Let a < T, be an ideal. Then, there
exists d € L, and a finite injective K-algebra homomorphism Ty — T, [a.

Proof. If ais (0), this is clear. Otherwise, let ¢ be a nonzero element of a. By

Scribe’s note: I added a few details to the proof of
Proposition 55 from §1.2 of Bosch’s Lectures on
T,, > T, - T,/(¢) — T,/aisfinite. Let b denote its kernel. If b is (0), Formal and Rigid Geometry.

n—

lemma 51, we may assume that ¢ is distinguished. By Theorem 45, the map

we are done. If not, we may repeat the above argument with b in place of a and,
continuing inductively in this way, we will find d such that there exists a finite

injective map 7y — T,,/a after finitely many steps since T is just the field K. O

Lemma 56. Lermt < T, be a maximal ideal. Then, the algebra T, [W is a finite
freld extension of K.

Proof. By Proposition 55, there is an integer 4 and a finite injective map 7, —
T, /m. Since T,, /m is a field, the algebra 7; must be a field, so & is 0 and T}, is
K. O

AR

Let B"(K) denote {(xy,...,x,) € K : |x,| < 1}. For x € B"(K), let m_ denote the
) > K.

For any ring R, let Sp(R) denote its maximal spectrum.

kernel of the natural evaluation map K(Xj, ..., X,

n

Proposition 57. There is a bijection
B"(K)/ Gal(K/K) — Sp(T;,)

Proof. Sending x +> m_ defines a map ¢: B”"(K) — Sp(7,,).

We claim that the map ¢ is surjective. Let m ¢ 7, be a maximal ideal. Then,
we can find a K-linear embedding 7, /m < K. We use this to define a map
@: T, — T, /m — K. We want to see that this is the evaluation map for the point
x = (p(X;),...,(X,)). For this, it suffices to prove that ¢ is continuous. We
will do this by showing that ¢ is norm-decreasing. We want to show that for any
g €T, wehave |@(¢g)| < [|¢g[l- Suppose not. By lemma 35, we may assume that we
have ||g|| = 1. Puta = ¢(g) € K. Let f = ¥+ clYk_l + - + ¢, be its minimal
polynomial over K and let L/K denote a splitting field of f in K. Let Ay5ens ) be
the roots of f. By Proposition 15, for every j, there holds

;| = | Nmj () |1/ 55,

In particular, for all /, we have |4| = |«;|. By the Fundamental Theorem of
Symmetric Polynomials, for all 7, we have

2 k
o] < la|” < al” = [g].

This implies that £, viewed as an element of the Tate algebra, is a unit. This im-
plies that () is a unit, a contradiction. This completes the proof that ¢ is surjec-

tive.
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Now, we claim that ¢ factors through the Galois action. For o € Gal(K/K)
and x € B”(K), the diagram

T %
T,

n

is commutative, and hence the kernels coincide.

Finally, we claim that ¢ is injective. Suppose that x,y € B” (K) are such
that m, and m, coincide. Then, we have 7, /m, = T,/ m,. Hence, there exists
o € Gal(K/K) such that the following diagram commutes:

s K
7,/m,

Thus, we have y = o(x). O

Corollary 58. IfK is algebraically closed, then we bave Sp(T,) = B"(K) and every
maximal ideal is of the form (X, — xy, ..., X,, — x,,) for some x € B"(K). O

n

Proposition 59. The algebra T, is Jacobson.
Proof. Letabe an ideal of 7.

First, we treat the case @ = 0. Let f be an element of the Jacobson radical
of T,,. By Proposition 57, forall x € B"(K), we have f(x) = 0. By applying
Proposition 38 to the previous sentence, we see that || /]| equals 0, which implies
that f equals 0.

Now, we treat the case in which a is prime, from which the general case follows
easily. Our goal is to show that the Jacobson radical q of 7, /a is (0). By Propo-
sition 55, there exists an integer d and a finite injection 7, — T,,/a. The map
Sp(T,,/a) — Sp(T}) is surjective, so q N T, is contained in the Jacobson radical of
T, which is (0). Suppose that there is a nonzero element f € q. Then, there exist
elements 4, ..., 4, € T}y with 2, # 0 such that there holds f* +a, f*" +--+4;, = 0.
On the other hand, one may check that we have

k—1
ay=—f(f" +~+g_q)eqnT; =0,
a contradiction. O

Proposition 60. Every maximal ideal of T, has beight n and is generated by n

elements. O
Corollary 61. The ring T,, has Krull dimension n. O

In conjunction with Proposition 55, Proposition 60 and Corollary 61 yield a

good dimension theory for 7,,.

Warning 62. In general, there can exist ideals
aand b and injections 7, /a < T, /b that
decrease dimension.



490

500

510

520

Functional Analysis on the Tate Algebra

Our goal in this section is to prove the following proposition.
Proposition 63. Any ideal a < T,, is closed.

There is an elementary proof of Proposition 63 using orthonormal bases.
Instead, we will use a very important tool, the Banach Open Mapping Theorem,
from functional analysis that we will employ again in the future several times.

As in the previous section, let K be a non-Archimedean field.

Definition 64. A K-Banach space is a K-vector space V" together with a function
[ *|: 7 — R satistying the following conditions:

1. Forallv € V, we have ||v|| = 0 if and only if v is 0.
2. Forallc € K and v € V, we have ||cv| = |c|||v]|.
3. Forallv,w € V, we have ||lv + w| < max(|o|, |w])-

4. The vector space V' is complete with respect to || * ||.

Theorem 65 (Banach Open Mapping Theorem). Any continunons and surjective
K-linear homomorphism of K-Banach spaces is open. O

Corollary 66 (Closed Graph Theorem). A K-linear map ¢: M — N between
K-Banach spaces is continuous if and only if for any sequence (a,,) ,7_ of elements
inM,anya € M,andanyb € N,1f(a,),  convergestoaand (f(a,)),ez,

converges to b, then f(a) equals b.

Proof. First, we prove the reverse direction. Put
I={(x,p(x)):x e M} c MxN

and equip I with the subspace topology. The assumption is equivalent to the
completeness of I'; in particular, the space I'is K-Banach. Consider the natural
map B: T — M x N — M obtained by composing the inclusion of T into
M x N with the projection M x N — M. The map £ is continuous and

surjective, so by Theorem 65, it is a homeomorphism. Now observe that ¢ is the
-1

mapMﬁ—>1"—>M><N—>N.

The forward direction is left as an exercise. O

Proof of Proposition 63. Let a ¢ T,, be the closure of a. It is easy to check that a’is
an ideal. Since 7, is Noetherian, the ideal a is finitely generated. Suppose ¢y, ..., €,

generate a. Then, the map
,
. r . r
p: T, = a:(a;); — Zﬂi"f
=1

is a continuous and surjection K-linear homomorphism of K-Banach spaces. By
Theorem 65, the map ¢ is open. In particular, there exists 0 < ¢ < 1 such that
there holds

2(B,(0)) >B.(0)na’.
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Exercise 67. Prove the forward direction of
Corollary 66.

Here, the notation B, (0) refers to the set

el Ifl <
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By lemma 35, this means that forall x € a', there exist a,, ..., 4, € T, such that
there hold Z:=1 ae; = xande|a,| < |x|. Since ais dense in a’, there exist
elements £, ... f. € awith ||f; — ¢,|| < ¢* forall 7.

Let x, be an element of a’. Applying the previous paragraph inductively, we

obtain elements 4, with ¢|4;| < |x,|| and

r r r
5= D g = D anfi+ D g (fi = e)
=1 i=1 i=1

and

0]l < & 1€ = el .

For any fixed 7, the sequence ( );';1 tends to 0. Thus, we have

a;;

7 o0
5= | 2 4l
1 \j=1

i=

€aqQ.
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Affinoid Algebras

Let X be a non-Archimedean field.

Definition 68. A K-algebra A is called affinoid if there is a surjective morphism
of K-algebras7, - A. A morphism of affinoid algebras is just a morphism
on the underlying K-algebras. The category of affinoid algebras, which is a full
subcategory of the category of K-algebras, is denoted by AffAlg,.

By Propositions 53 and 59, all affinoid algebras are both Noetherian and

Jacobson.

AFRe

Lemma 69. Letp: B — A be a morphism of affinoid K-algebras. For any
m € Sp 4, the preimage ¢_1 (M) is a maximal ideal.

Proof. There are injections

K < Bl/o7'(m) & 4/m.

By lemma 56, the field 4 /m is finite over K, and thus B/@™" (m) is a field. O

Residue Norms and the Supremum Seminorm

Let A be an affinoid K-algebra.

Definition-Theorem 70. Given any surjection a: T, - A, we define the map
| :A4A—>R ,: f— inf II.
[*lerd =R f o IF

The map | * |, is a complete K-algebra norm, making A into a K-Banach algebra.
With respect to the topology on A induced by | * | ,, the map e is continnous and open.

The norm | * |, is called the residue norm of a.

Proof. We leave the verification that | * |, is a norm as an exercise.
The map « is easily seen to be norm-decreasing, and thus « is continuous.
Finally, we will show that 4 is complete with respect to | * | . Let (£,,) ez,

be a Cauchy sequence. This is equivalent to the convergence to 0 of the sequence

Equivalently, a K-algebra is called affinoid if it
is topologically of finite type over K.

Exercise 71. Show that forany «: 7,, — 4,
themap | * |,: 4 — R, isanorm. Hint: To
show that /' € 4 is0ifand only if | f], is 0,
apply Proposition 63 to ker «.
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(15 = for1Domez,- Let fy € T, be any lift of £, and pick lifts 3, € 7, of the
various f,, = f,,,1 such that (9,,),,ez  converges to 0. Put

m—1
fr; ::ﬁ)’ - ZO d,,-

Foreverym € Z., theelement f,, € T, lifts £,,, and the sequence (f,;l)mez20
converges to some /' € 7,,. By the continuity of a, the sequence (f,,) ez ,
converges to a(f").

The openness of « is an consequence of Theorem 65. O

Residue norms depend on the surjections defining them; however, this next

result will show that the induced topologies don’t:

Theorem 75. Let A and B be two affinoid K-algebras and let a: T, - A and
B: T,, - B be two surjections. With respect to the topologies on A and B induced
by the residue norms of a and B, respectively, every homomorphism ¢+ A — B is

continuous.
Corollary 76. Any two residue norms on 4 are equivalent.

Proof. Apply Theorem 75 to the identity on 4. O

Proof of Theorem 75. We only treat the case in which B is reduced. Suppose

that (x;)4ez,, is 2 sequence in 4 that converges to a point x. Suppose that the
sequence (@ (x;)) kez,, converges to some y € B. We will show that y equals x, at
which point the claim follows by Corollary 66. Replacing x;, by x;, — x if necessary,
we can assume that x is 0, so our goal is to show that y equals 0. Form € Sp 5,

let  denote @~ (m), which lies in Sp 4 by lemma 69. We get an induced map

@: A/n — B/msuch that the following diagram commutes:

T, L,
[l
A—B
L
A/n —— B/m.

The vertical compositions induce residue norms on A4 /1 and B/m; by lemma 56
and Proposition 14, these norms must be respectively equivalent to the unique
field norms on A4 /1 and B /m extending the norm on K, which exist by Propo-
sition 15, and thus @ is continuous. Thus, for every m € Sp 4, the element

(B — B/m)(y)is 0. Since B is reduced by assumption and Jacobson by Proposi-
tion 59, the element y is equal to 0. O

Foranyx € SpAandany f € A4, we write f(4) to denote the element
(A4 — A/x)(f) € A/x;and, when there is no risk of confusion, we write | * | to
denote the unique norm on A4 /x extending the one on K (the existence of which

is implied by Proposition 15).

Exercise 72. Show that for any affinoid
algebra 4 and any surjection a: T, - A, we
have |1], = 1.

Exercise 73. Consider the surjection

a: Q,(X) > Q,(X)/(X* - p) of affi-
noid algebras. Show that | /p|, equals 1, but
|21, equals |p| # 1. This shows that residue

norms need not be multiplicative in general.

It is possible to avoid the use of Theorem 65
here. Instead, one can use the following result
(that we won’t prove):

Proposition 74. The infimum appearing in
the definition of | * |, is attained. In particular,
the image of | * |+ A — Ry is |K|. O

A tull proof of Theorem 75 can be found in
§1.4 of Bosch’s Lectures on Formal and Rigid
Geometry.
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Definition 77. The supremum seminorm on 4 is the seminorm | * ||

R, defined by

sup :

g = sup [fG)]-

x€Sp A4

By Proposition 59, the supremum seminorm on 4 is a norm if and only if 4 is

reduced.
Lemma 82. Forany surjection a:: T, - A, we bave || * |, < |f1,.

Proof. Let f’ be any lift of f to 7,, and let x be any point in Sp 4. Then, we have
T,/a " (x) = A/x, which, together with Exercise 79, shows that there holds

FE = 1F @ @) < U N = IF -

Thus, there holds

= < inf "I = ) O
1 s xz;)r; |/ (x)] P 1A= 171,

Ao

Recall that, by Proposition 55, we can find a finite injective morphism 7; < A.

Our next goal is to relate the supremum seminorm on 4 to the Gauss norm on 7.

Proposition 83. Suppose that A is an integral domain viewed as a finite algebra
over Ty via a finite injective morphism Ty — A, the existence of which is guaranteed
by Proposition 55. Then, for any f € A, there is a unique monic irreducible poly-
nomial p(X) = X" + a, X" + - + a, € T,[X) with p(f) = 0. Moreover, we
have

"f"sup = mzax ||ﬂz'||1/i~
In particular, there exists x € Sp A with | f||, = [f(x)].

Lemma 84. Letp = X" + b X" 4+ b, € K[X] be a polynomial and let
B> B, € K be the roots of p. Then, we have

max |8,| = max |5,|'/".
Proof. Each coeflicient b; can be expressed as the jth elementary symmetric
polynomial in the ;. Hence, we have |bj|1/j < max, |4;].
Suppose that max; |4;] is achieved by §; , ..., B; . Then, we have |5,| =
|8, 8- O

Proof of Proposition 83. Consider f as an element of Frac 4. Then, the element
f is the zero of an irreducible polynomial p over Frac T;. The coefficients of
p arein T, as we now explain. Since f is integral over T, there exists h(X) €

T,[X] with h(f) = 0. Then, the polynomial p divides b. Since T, is factorial by
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Warning 78. Some sources refer to the supre-
mum seminorm as the “supremum norm”,
bug, strictly speaking, this is a misnomer.

Exercise 79. Show that the supremum
seminorm on 7, coincides with the Gauss
norm.

Exercise 80. Show that the supremum norm
is “power-multiplicative” in the sense that for
every f € A, we have

1" lsap = 1A NSup-

Deduce that an element f € A4 is nilpotent if

and only if || /|y, equals 0.

sup

Exercise 81. Show that affinoid algebra
morphisms decrease the supremum seminorm,
ie,if @: A — Bisamorphism of affinoid
algebras and « € 4 is any element, then we have

I2(2)lsup < 1lsup-
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Proposition 54, Gauss’s Lemma implies that p lies in 7;[X]. The uniqueness of p
is clear.

Consider the finite extensions 7, — T,[f] — A. The corresponding
mapsSpAd — SpT,[f] — SpT, are surjective with finite fibers. Then, we
have | f] spd = 171 sup,[£] 50 without loss of generality we can assume that
T,[f1is all of 4. Let y be a pointin Sp T and let x4, ..., x;, € Sp A be the finitely
many points lying over y. Then, letting L denote T;/ y and p the reduction of p
modulo y, themap7; — A reducestoamap L — Ay = L[X]/p(X). Let
ay, ..., a, be the roots of p in K = L. Then, the x; are the kernels of the maps
A—(dly->K:xo oej). By lemma 84, we have

max | £ (x5;)| = max|a,| = max |2, (y)|"/".

Thus, we have

1fllsup = sup 1/ ()]

xeSp 4
= sup max|g(y)|"/*

yesply !

1/i
=max| sup |a;(y)|
: eSp T,
= max a1,
and the supremum is attained by Proposition 38. O

Proposition 85. Let A — B be a finite injective morphism of affinoid K-algebras.
Then, for every f € B, there exists a polynomial p(X) = X* + b X L, b, with

e p(f) = 0and | f|, equals sap, ||bl||slu/;) In particular, there exists x € Sp B with
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Rings of Definition and Power-bounded Elements

As before, we let 4 be an affinoid K-algebra; and we denote by Oy the ring of
integers of the non-Archimedean field K, by m; the maximal ideal of O, and by
& anonzero element of M.

When doing commutative algebra on 7, we frequently used the integral
subring O (X7, ..., X,). For general affinoid algebras, we have several ways to get

analagous subrings.

Definition 86. A ring of definition is an open subring 4, < A4 such that the

subspace topology on 4 coincides with the &-adic topology on 4,,. It makes sense to speak of the &-adic topology
on A4 because 4, being open, contains some
Example 87. The ring Oy (X, ..., X,) is a ring of definition for K(Xj, ..., X,). power of #. Note that rings of definition are
automatically &-adically complete since open
We deduce: Zlcl))sizioups of topological groups are always also

Lemma 88. Let A be an affinoid algebra and let a: T, — A is a surjective
morphism. Then, the ring Ay := {f € A : |f|, < 1} isa ring of definition for A. Of course, the ring 4, depends on &, and it

might therefore be a good idea to include « in
the notation; however, it is customary not to
do this, and we shall follow this convention.
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Proof. By definition, the morphism « restricts to a surjection & : O (X, ..., X,) >
Ay. We now use that « is a quotient map: this shows that 4, < A4 is open. As the
topology on O (X, ..., X,) is the &-adic topology, the same is true for its quo-

tient A4,). O

Here is an example of a ring of definition that is not of the form described in

lemma 88:

Example 89. The subring O +m O (X) of O (X) consisting of those elements
> a,X" such that forall z > 1, there holds |,| < 1isaring of definition for

n=0"n

1.
Lemma 90. Let Ay € A be a subring of definition. Then, the ring Ay[1]&] is A.

Proof. If f is any element of 4, then the sequence (#” f) ¢z, converges to 0.
Thus, for # sufficiently large, the open subring 4, contains &” f. O

Definition 91. A subset.S € 4 is called bounded if for any open neighborhood
U < A of0, there exists £ € Z,, such that &*S is contained in U. An element

27

f € Ais called power-bounded if the set {f” : n € Z,} is bounded. The subring Exercise 92. Let f be an clement of A. Show
of power-bounded elements in A4 is denoted A°. that the following are equivalent:

1. The element f is power-bounded.
Proposition 97. Leta: T, — A be a surjection. Then, the subring A; = 2. There exists a surjective map @: T}, - A
a(Ox (X, ..., X)) is contained in A°. :ﬁ‘n‘iﬁt}‘e set{|f"],: n € Zyo} < Ris
P}"DOJI. Letf be an element of A. Then, we have |fn |a < |f|Z Thus, if |f|x is less 3. Forall surjective maps a: 7,, —» A, the set
than 1, then £ lies in 4°. O {1f"la s n € Zop} < Ris bounded.
Proposition 98. Let a: T, - A be a surjection and let | be an element of A. The Exercise 93. Show that 72 is O (X, .., X, ).

following are equivalent:

1. The element f is power-bounded. Exercise 94. Show that A° is an open subring

of A and that 4°[1/&] is A.
2. The element f is integral over A,,.

Exercise 95. Show that any morphism

3. There bolds | f||

A° — B°.
Proof. Condition (1) implies condition (3) because, by Exercise 80 and lemma 82,

we have
Exercise 96. Show that (K[X]/X%)° is

”f"sup ”fn"sup = |fn|oc’ Oy +KX.

To see that (3) implies (2), first note that by Proposition 55, we can find an
injective and finite map @: 7; — A such that the diagram

N,

Td(—)A

commutes. If || /|y, is less than or equal to 1, then by Proposition 85, we can find

sup

elements 5, ..., 4, € T, with

o)+ +o(a,) =0

sup = A — B of affinoid algebras restricts to a map
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Sll{}l) < 1. By Exercises 79 and 81, themap T; < 7, Scribe’s note: I added a few details to the second
part of the proof of Proposition 98 from §1.4

of Bosch’s Lectures on Formal and Rigid

Finally, that (3) implies (1) follows from the fact that if /* € A is integral over Geometry.

AG, then AF[f] is a finite 45 -module. O

such that for all 7, we have ||4;|

is decreases Gauss norms. Thus, for all 7, we have |p(4,)|, < 1.

Proposition 99. Let fi, ..., f, be elements of A. The following are equivalent:
1. There is a homomorphism T,, — A sending X; to f;.
2. Forall i, the element f; is power-bounded.

In other words, the algebra T, corepresents the functor A — (A°)".

AFRe

Proof. The fact that (1) implies (2) follows from Exercise 95. Let’s show that (2)
implies (1). Let

be an element of K (X, ..., X). Then, the sequence (ﬂlfz)iezno converges to 0.
Hence, sending F to F(f3, ..., f;,) is a well-defined continuous K-algebra homo-

morphism. O

Corollary 100. Forany fi,..., f,, € A°, the subring A(fy, ..., f,,] € A isaring
of definition associated with the surjection T, — A: X, ,; v [, in the sense of

n+m n+i

lemma 88. O
Corollary 101. Let A be the ring of definition arising from a surjection T, - A.
1. The ring A° is integral over A,

2. The ring A° is integrally closed in A.

In particular, the ring AC is the integral closure of A in A.

Proof. (1) is clear from Proposition 98. For (2), first, let x € A be such that there

exist 4, ..., 4, € A° such thatx” + ﬂlx”_l + -+ a, = 0. Then, the element x
is integral over the ring of definition 4[4, ..., 4,]. Thus, the element f is power-

bounded. ]

Example 102. For a ring of definition 4, arising from a surjection 7,, - 4, the
ring 4° might not be finite over 4. For example, consider K = Qp(pl/pw)A. This
is an example of a perfectoid field, the definition of which we will not give here.
Supposing now that p is not equal to 2, consider the field L = K( pl/ 2). Then, the
extension L/K is finite. Letting L, denote the ring of definition arising from the

surjection K(X) —» K(X)/(x* = p), we leave it as an exercise to show that L° /L,
Exercise 103. In the notation of Example 102,

show that L° /L is not finite. Hint: Write
1/(2p") = al2+b]p" fora,b e L.

is not finite.
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Theorem 104 (Bosch-Giintzer-Remmert). Assume that K is a non-Archimedean
feld that is algebraically closed or discretely valued. Then, for any surjection T, —
A, the associated homomorphism Tn'o — A% s finite. O

Theorem 105. Assume that A is reduced.

1. All residue norms on A are equivalent to || * ||,

2. Thering A° is &r-adically complete. O

Completed Tensor Products

As before, we let & denote a nonzero element of the maximal ideal 1.
We would like the category AffAlg,. to have a symmetric monoidal structure,

i.c., amalgamated sums.

Proposition 106. Given a diagram B il A P, C in AffAlgy, the pushout
B® ,C always exists in AffAlgy.

Proof. Let Ay A be the ring of definition associated to some surjection 7,, —»
A. By Corollaries 100 and 101, we can find rings of definition B, ¢ Band G, ¢ C
such that ¢; and @, restrict to maps 4, — B, and 4, — C, respectively. We now
set

By®4,Co = (By ® 4, Co)iy

and )
B®,C = By®, C, [E] .

We will show that B® ,C satisfies the universal property of pushouts. Let D be an
affinoid algebra such that the diagram

A2 B

!l

C——D

commutes. By Corollaries 100 and 101, we can find a ring of definition D, € D
such that @, and @, restrict to maps B, — D, and C; — D, respectively.
Thus, we getamap By ® 4 ¢, — D,. Completing and inverting & yields a
map B® ,C — D. The uniqueness of this map follows from the density of

By ® A4, ® C,in BO@AO ® C,. It remains to show that B@AC is affinoid; we leave

this as an exercise. O Exercise 107. In the notation of the proof of
Proposition 106, show that B& ,C is affinoid.
Hint: First, show that T, ®T,,, is T),,,,. Then,
treat the case in which A is K by showing
that foridealsz ¢ 7,y and & < T,,, we have
T,/a®xT,,|b = T,,,,/(a,b). Finally, treat
the general case by showing that there is a
sutjection B®x C —» B® ,C.
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Afhinoid Spaces

As before, we fix a non-Archimedean field K and an affinoid K-algebra 4.

Definition 108. The category of affinoid spaces, denoted AffSp,, is the oppo-
site category of AffAlg, .

Affinoid Subdomains

Our next goal is to make Sp 4 into a ringed space by endowing Sp 4 with a topol-
ogy and a structure sheaf.

There are a few natural candidates for this.

Zariski topology. We could endow Sp 4 with the Zariski topology on Sp 4 <

Spec A, but this is too coarse for an analytic theory.

Canonical topology. We could endow Sp 4 with the topology induced by the
non-Archimedean topologyonSp4 < Sp7, = B (K)/ Gal(K/K) < I_<d.
Concretely, this is generated by the spaces X (| /] < ¢) :== {x € X : |f(x)| < ¢}
for f € Aande € R,. In fact, it suffices to take ¢ = 1, since we can restrict
attention to those ¢ equal to |¢| for ¢ € K* and then replace £ by fc™". We have
seen, though, that the canonical topology is totally discrete, so it is too fine.

We need to find something in between!

Definition 109. Asubset U < Sp A is called an affinoid subdomain if the

functor
Y — {morphismsY — X that factor (setwise) through U}

is representable by an affinoid space.
Lemma 112. IfU < Sp A is an affinoind subdomain with universal morphism
12 SpB — U, then 1 is a bijection.

Proof. Letx beapointin U andletm ¢ A be the corresponding maximal ideal.

By the universal property, we get a commutative pushout diagram

B —% B/mB
[T

A—> 4/m.

Exercise 110. Suppose that X is algebraically
closed and that 4 is K(T'). Let U denote the
closed ball of radius |p| with origin 0. Show
that U is the affinoid subdomain represtented
by B = K(T')via K(T) — K(T"): T ~ pT".
We often denote B by K(T'/p).

Exercise 111.  Adapt Definition 109 to
schemes.
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Thus, we get a fiber diagram

SpB <—— SpB/mB

which shows that the fibers of Sp B — Sp 4 consist of one element. O

AFRe

Lemma 115. IfSp B < Sp A is an affinoid subdomain, then for any x € Sp B cor-
responding to the maximal ideal m < A, and any n € L, there is an isomorphism
A/m” = B/m”B.

Proof. Essentially the same as that of lemma 112, modulo a slightly more involved

diagram chase. O

Proposition 116. IfSp(B) < Sp(A) is an affinoid subdomain, then A — B is

flat.

Proof. Ttis easy to show that it suffices to prove that for every m € Sp B, the
morphism 4 — B, is flat. For this, we use Bourbaki’s local flatness criterion
[Bourbaki, Algebre commutative, Chapitre III, §5, Théoréme 1 ]: since 4 and

B are Noetherian, and for all z the map 4/m” — B/m" is flat, this shows that
already 4 — B, is flat. O

Proposition 117. Every affinoid subdomain U < Sp A is open in the canonical
topology. O

Rational Subdomains

Let X denote Sp 4.

The most important kind of affinoid subdomain is:

Definition 118. Let £, f1, ..., f, € A be elements generating the unit ideal of 4.
We define

fooks) : < x)|,7 = r
X(T) ={xeX:|fi(x)] <|f(x)],i=1,...7}

Any subset of this form is called a rational subdomain.

Exercise 120. Show that the condition that £, £, ..., /. generate the unit ideal

.....

if £y, ..., /. generate the unit ideal of 4, then forallx € X(f7, ..., /.| /), we have
| fo(x)| > & in particular f(x) # 0.

RIGID ANALYTIC GEOMETRY 31

Exercise 113. If U is an affinoid subdomain
of Sp A4 and V' is an affinoid subdomain of U,
show that V" is an affinoid subdomain of Sp 4.

Exercise 114. Show that the pullback of any
affinoid subdomain U < X along a morphism
of affinoid spaces is an affinoid subdomain.
Conclude that affinoid subdomains are closed
under finite intersection.

Exercise 119. Show that any rational
subdomain is open in the canonical topology.
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Proposition 122. Any rational subdomain U = X(fi, ..., f,|g) € X is an affinoid
subdomain. Letting ATy, ..., T,) denote A®T,, the algebra representing U is

pom (Pl )T, = vt - )

Proof. Letp: A — C be the homomorphism of affinoid algebras. For each 7, let
f; denote o(f;), and let ¢’ denote ¢(g). Then, to say that the map Spp: SpC —
Sp 4 factors through U as a set map is to say that for each 7 and each x € Sp C,
we have | £/ (x)| < |¢'(x)| # 0; the latter condition implies in particular that the
element g’ is a unit, which implies that for each 7, we can consider the fraction

/i /¢ asan element of C.

If Sp @ factors through U, then for all x € Sp C, we have | £} (x) /¢’ (x)| < 1,
which implies that ||/ /¢'|| is no greater than 1. By the universal property of Tate
algebras, we get a morphism 4(T3, ..., T,) — C: T, — f; ¢ thatsends ¢7; — f;
to g'ﬂ /g' - ﬁ' = 0and, as such, factors through 4(f1, ..., f,|g) — C. Thisis
uniquely determined, as 4[1/¢] is dense in A(f}, ..., f,|2)-

On the other hand, suppose that ¢ factors through a morphism B — C. Let ¢,
denote the image of 7; in C. By the universal property of the Tate algebra, for all
x € Sp C, we have |#,(x)| < 1, which yields

|f'(x)] = |g'(x)5;(%)] < [ (x)] # 0.
This implies that Sp @: Sp(C) — Sp(4) factors through U. O

Definition 123. For f € A, we write X(f) to denote the rational subdomain
X(f]1), and we write X (f ') to denote the rational subdomain X(1|f). Observe
that X is covered by X (f) and X (f~ D;sucha covering is called a simple Laurent

covering. More generally, a Laurent domain is an affinoid subdomain of the

form X (f) N+ n X(f,) n X(g") n 0 X(g,'), for f,g; € 4.

Example 124. X = Sp(K(T)).

1. X(%): Weierstrass domain X (7') represented by K(7T,Y) /(Y — T') = K(T).

2. X(5): Weierstrass domain X (p™'7) represented by K(T,Y)/(pY - T) = K(¥)

3. X(%): Laurent domain represented by K(7,Y) /(YT - 1) = K(Y*1), clements
are Znez a,Y” with a4, — 0,4_, — 0 forn — .

-1

4. X(’ﬂT): represented by K(T,Y) /(YT = p~') = 0 because pYT — 1 is a unit.
5. X( T’Tl;_l): represented by
T(T-1
k) - Ky i 0 = g - - 1) = () <)

P

This is a disjoint unit of two disks X = X; U X,. Note: If we take Spec
instead of MaxSpec, then it is not true in that Spec(K(T,Y) /(YT - p™')) <
Spec(K(T)) is injective: The generic points of X; and X, each go to that of X.

Exercise 121. Show that the intersection

of two rational subdomains is a rational
subdomain. Hint: If £, ..., /. and g, ..., g,
both generate the unit ideal, then so does the

set of their products (f;¢;) ;-

this to show that X( x

(fig, j)r'.j )
0£0

..... 7j =058 Use

is the intersection.
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Finally, we mention without proof an important result about affinoid subdo-

mains:

Theorem 125 (Gerritzen—Grauert, 1969). Every affinoid subdomain of X is a

finite union of rational subdomains of X.

Remark 126. The meaning of this Theorem is the following: It implies that in
order to construct and understand the structure sheaf on X, we can reduce to
understanding rational subdomains. This is important because for these we have a
concrete description of the functions.

Note that in algebraic geometry, we do something similar: We work with
standard open subspaces (complements of vanishing sets of a single function)
rather than all representable open subspaces. From this perspective, it is actually
more natural to develop the whole theory using rational open subdomains as the
building blocks of the topology (and in fact, this is the approach taken in adic
spaces). The Theorem of Gerritzen Grauert then tells us that this is already the
finest topology for which we get representable opens.

Now for historical reasons, and in order to match the definition of the litera-
ture, we will still use affinoid subdomains in the following to build rigid spaces.
But the upshot of this discussion is that we would get an equivalent definition if

we replaced them by rational subdomains everywhere.

Tate’s Acyclycity Theorem

Let A4 be an affinoid K-algebra and let X denote Sp 4.

Our goal is to endow X with a structure sheaf. For now, we know what func-
tions should be on rational subdomains. As a first approximation, we define I to
be the category of affinoid subdomains of X with inclusions as morphisms. Then,
there is a presheaf Oy on I sending a subdomain of X to an algebra representing
1t.

Definition 127. We say that a set of affinoid subdomains % = {U; : 7 € [} isa
covering of X if (., U is all of X. With respect to a fixed ordering of 7, we define
for a covering % of X the Cech complex

B(U,Oy) = H@X )3 Ox(UnU) F [] 0x(UnUnU) T
i<j<k

Its cohomology is denoted H (%, 04)

Definition 128. A covering % of X is called Oy-acyclic if Oy (X) — ‘g(%, Oy)
is a resolution, i.e., if 28 (%, Oy) is A while higher cohomology vanishes. This
implies in particular that the sheaf property holds for %.

Theorem 129 (Tate’s Acyclicity Theorem). Any finite covering of X by affinoid

subdomains is acyclic.

33
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AFRe

Proof. The proof takes an entire lecture.

Step 1: the first sheaf axiom for 2 (local vanishing implies vanishing)
Lemma 130. The map A — [], Ox(U,) is injective.

Proof. Let f be in the kernel. Let x € Sp(A), m the corresponding ideal, then
x € U, forsome 7. Let B = Oy (U;) and consider the diagram

A—— A4, —— A

Ll

B —— B, —— B

The map on the right is isomorphism (last time). The top right morphism is
injective by Krull’s intersection Theorem. Thus x goes to 0 under each 4 — 4,

this implies x = 0. ]
Step 2: Simple Laurent coverings:

Proposition 131. Forany f € A, the following sequence of A-modules is split exact:
0—Ad— A(f)x A(f ") = A(f,f') =0
In other words, any simple Laurent cover U = {X(f), X (f~ N s acyclic.

Proof. By definition of these respective algebras, we have a commutative diagram

(T = PAT) x A =T AT —E (1= fra

l l

0 > A s A(T) x A(T™") z s ATy ——— 0
0 > A > A(f) x A(f ) ———— A, f) —— 0.

The columns are short exact: Here in the top right, we use that 1 — 7! f =

T - ).

The middle row is split exact: Left-exactness is clear, and a splitting of « is given

bysendingg = > . a,7" to (5,(¢), 5,(¢)) where

51(g) = ZﬂnT”, 5(g) = ZﬂnT”.

n=0 n<0

By Step 1, the bottom left map is injective. It thus suffices to prove that 4 is
surjective. For thisletg = (7" = f)hwhereh = 3 _, a,T" and write this as

s ¢ = g + g, where

a=T =), g=Q0-T"f)T 5(h)

Then (g1, 2) = ¢ ]
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Step 3: Any Laurent covering

Corollary 132. Let f1, ..., f, in A and consider the Laurent covering given by the
set Wof all Laurent domains X(ﬁ", ,f,f")for anyey, ...,e, € {x1}. Then Wis
O x-acyclic.

Such a U is called a Laurent covering.

Proof. The Cech complex for W is the completed tensor product of complexes

& LA(f;) x A(f) — Alfir 7]

Since split exactness is preserved by the additive functor 4, this is still acyclic. O

Corollary 133. Let U = {U,, ..., U,} be a cover of X and let | € A be such that the
induced covers A NY onY = X(f),X(f_l), X(f,f_l) are Oy-acyclic. Then W is
O y-acyclic.

Proof. By the Proposition, the sequence of Cech complexes for the sheaf 0
0— C'U) - C"UNX(A)) xCAUNX(F) - CUNX(FF) — 0

is a short exact sequence of complexes. The statement follows from the long exact

sequence of cohomology for a sequence of complexes. O

Step 4: Refinements: Let B = {V},j € J}and W = {U,.7 € I} be coverings of
X. Then B is called a refinement of W if each V; is contained in some U;.

Lemma 134. Let W be a covering of X. Let B be a covering refining W, and such
that for each U, U with Ui =Un-nU, the covering B 0 U, . B

,,,,,,

Proof. This is formal and has nothing to do with rigid geometry, see [BGR, §8.1.4
Corollary3]. [

Note: If Wis a Laurent covering of X, and V' ¢ X is affinoid open, then /"' n U
is a Laurent covering of V.

Step 5: Rational coverings:

Definition 135. Let £, ..., f,, € A generate the unit ideal. Then the sets

U={xeX||f(x)] < |fi(x)]forj=1,..,n}
clearly form a covering of X. We call this a “rational covering”.

Lemma 136. Rational coverings are O y-acyclic.

Proof. We argue by induction on 7, and for each 2 by induction on the number
of f; that are non-units:

If all £; are units, then W is refined by the Laurent covering defined by the
&ij = fl/f; In this case, steps 3 and 4 give the result.

35
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Otherwise, suppose that £, is a non-unit. By the exercise, we can find 2 € K~
such that

la] < inf max{| (<) .

Let f := f, /4 and consider the Laurent covering X = X(f) u X(f“l).

By Step 3, it suffices to prove that for Y = X(f),X(f_l) or X(f,fl), the
cover U nY is Op-acyclic.

OnY = X(f_l) or X(f,fl), the function fl becomes a unit, so this holds
by induction hypothesis.

OnY = X(f), we have

1/, ()] < la] < max|£;(x)],

hence the rational covering 2l given by the f;, ..., f,_; is a refinement of that
for f3, ..., f, (because the condition added by £, is automatic). By induction
hypothesis and refinement Lemma, it follows that 2l n ¥ is Oy-acyclic.

This finishes the proof of Tate’s Acyclicity Theorem.
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Rigid spaces

Affinoid rigid spaces

Starting from Tate’s Acyclicity Theorem, the idea is now that the presheaf Oy is
a “sheaf with respect to finite covers”. In order to make this precise, we need to
use a notion that is more general than topological spaces and allows for a more

restrictive notion of covers:

Grothendieck topologies

The most powerful framework to deal with “things more general than topological

spaces” are sites. For our purposes, a slightly weaker notion is more convenient:

Definition 137. A “Grothendieck topological space”, for short “G-topological
space”, is a triple (X, B, Cov(X)) where X is a set, 6 is a full subcategory of the
subsets of X with inclusions as morphisms and Cov(X) is a family of coverings
U = {U,,7 € I} of subsets U = LU, in € by U, € B satisfies the following axioms:

1. Forany U € 6, the trivial covering Ul = {U} is in Cov(X).

2. If{U,|7 € I} € Cov(X), and for each 7 € J we have a covering {V;J |7 € J.}of U,
in Cov(X), then also {V,j|1,]} € Cov(X).

3. If{U;} e Band V" € 6, then {U, NV} isa cover of V in Cov(X).

We call U € 6 the “admissible opens” and the covers in Cov(X) the “admissible

covers”.

Example 138. Let X be a topological space. This induces a G-topological space
where € is the category of open subsets of X, and Cov(X) := the set of coverings.

As usual, we often drop €, Cov(X) from notation and just refer to X asa
G-top space.
(Note: The definition of a sheaf on a topological space only uses the axioms of

a G-topological space:)

Definition 139. A sheaf & on a G-topological space (X, 6, Cov(X)) is a con-
travar functor

F : € — Ab/Rings/...
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such that for any covering {U,} € Cov(X) of U € 8, the following sequence is
exact

0 FWU) - [[FW) - H F(U;nU)

i\j

Definition 140. Let X be an affinoid space. Let I be the category of affinoid
subdomains of X, with morphisms the open inclusions. Let Cov(X) be the col-
lection of finite coverings {U;, ..., U, } of affinoid subspaces by affinoid subspaces.
This is a G-topological space. We call this the “weak Grothendieck topology” on
X.

Exercise 141. Check that this satisfies the axioms.

We can now rephrase Tate acyclicity in the following way: Oy is a sheaf on 7.
Next goal (like in algebraic geometry): extend Oy to functions on “reasonable”
open subsets of X that are not affinoid, for example the open unit disc inside B.
Idea: test by affinoid subdomains.
First observe: The refinement lemma shows that we can more generally al-
low also infinite coverings that admit a refinement by a finite cover by affinoid

subdomains! Let us call such a cover “admissible”.
Definition 142. Let X be an affinoid space.

1. Anysubset U ¢ X is called “admissible open” if there is a (not nec finite)
covering U = U,;U; by affinoid subdomains such that for every morphism
f + Z — X ofaffinoid spaces such that f(Z) < U, the induced cover
Z = U, f ' (U,) is admissible, i.e. admits a refinement by a finite cover by
affinoids.

2. A covering U = U,;U; of an admissible open subset by admissible open subsets
of X is called admissible if for every morphism f : Z — X of affinoid spaces,
the covering Z = U, £~ (U;) is admissible, i.e. admits a refinement by a finite

cover by affinoids.
Upshot: “open/cover is admissible if it looks admissible to affinoid spaces”

Example 143. LetU < B' = Sp(K(T')) be the open unit disc, consisting of
x € B'such that |7'| < 1. Let & € K*, & < 1, then we have an infinite cover by

affinoid subdomains
B' = [ JB'(|T| < |&"/")).
neN
Letp : Z — B' be any morphism of affinoid spaces that factors through U.
Letz € O(Z) be the image of 7', then [¢| < 1. Butthena := |¢||,, < 1by the
Maximum Modulus Principle, hence Z is covered by the one set ¢~ (B (7] =
|&'/"])) for any 7 such that z < |&"/"|.

Hence the cover is admissible

Example 144. Let X = B' and consider the cover X = X(|T| < )uX(|T] =1).
This is a finite cover, but it is not admissible: Testing by the identity Z = X — X,
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we would have to give a finite refinement by affinoids. But on any finite cover of

X(|T'| < 1) by affinoids, T would attain a maximum.
Example 145. In contrast, X = X(|7'| < 1) uX(|T| = |p|) is admissible.

Definition 146. Let T be the category of admissible opens in X and let Cov(X)
be the admissible covers. Then (X, T, Cov(X)) is called the “strong Grothendieck
topology on X”.

Proposition 147. (X, T, Cov(X)) is a G-top space satisfying the following adds-

tional “completeness axioms’:

5k Gy) @ and X are admissible open.

(Gy) If(U,), s an admissible cover of U and V' < U is any subset such that each

V 0 U, is admissible, then V is admissible open (i.e. admissibility can be checked
locally)

(G,) A set-theoretic covering (U)ot of an admissible open U by admissible opens that

985

990

1000

can be refined by an admissible covering is admissible.

Exactly as for schemes, we can now extend the structure sheaf: Let U ¢ X be
any admissible open. Let U = uU be an admissible cover by affinoids. Then we

set

0x(U) =ker ([ ] 0x(W) = [] 05U n 1)),

i,j
Proposition 148. Oy is a sheaf with respect to the strong Grothendieck topology.

Proof. Only need to check that two admissible covers give the same result. For

this use:

Exercise 149. If M and B are admissible, then U NV = {UnV,U € W,V € B} is

admissible.

For refinements, the statement follows as before. O

Remark 150. In fact, this is really just a formality about sites: What we have really
done is consider the morphism of sites 7 : T — J and defined Oy = 7" Oy.

An advantage of G-ringed spaces over sites is that we have a straightforward

notion of stalks:

Definition 151. Let X be a G-ringed space. Then for any x € X, the stalk at x is

where U ranges through the admissible opens.

Lemma 152. Let X be an affinoid space with the strong G-topology and x € X.
Then Oy, is a local ring.

39
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Proof. The point x defines a maximal ideal m;; , € Ox(U) for each U such that
Ox(U) /My, = Ox(X)[my, = K'

is a field. We thus have a quotient map Oy, — K'. Let m_ be its maximal
ideal. If f € Oy, \m,, thenthereisx € U ¢ X such that f € Oy (U) and
|7 (x)| # 0. Hence | f(x)| > e forsome e > 0. Then U(|f]| 2 ¢) is also an affinoid

neighbourhood of x, and £ is invertible, hence is invertible in Oy . O

Definition 153. A locally G-ringed K-space is a pair (X, O ) where X isa G-
topological space and Oy is a sheaf of K-algebras on X such that all stalks O , are
local rings.

A morphism of locally G-ringed K-spaces (X, 0y) — (¥, Oy) is a pair (p, ¢")
where ¢ : X — Y is a morphism of G-topological spaces and 9" : ¢, Oy — Oy
is a morphism of sheaves of K-algebras such that for each x € X, the induced
morphism

@Y,¢(x) - ®X,x

is local, i.e. sends the maximal ideal into the maximal ideal.

Proposition 154. Any affinoid space X equipped with the strong Grothendieck
topology defines a locally G-ringed K-space (X, Oy).
More precisely, sending A to (X = Sp(A), Oy) defines a fully faithful con-

travariant functor
{affinoid K-algebrasy — {locally G-ringed K-spaces}.
We call a locally ringed G-space an affinoid rigid space if it is in the essential image.

Proof. Exercise to fill in the details. As usual, the “locally ringed” is required to
make this fully faithful, i.e. to ensure that Oy (Y) — O (X) uniquely determines
X Y. O

Definition 155. A rigid analytic space is a locally G-ringed K-space (X, Oy)
satisfying completeness axioms (G; ), (G, ) such that X admits an admissible cover
X = U, U, for which each (U, O,;) is an affinoid rigid space. We recall the

axioms:

(Gy) If(U,),es is an admissible cover of U € X and V' < X is such thateach V' n U is

admissible, then /" is admissible open.

1034 G,) A set-theoretic covering (U;) ; of an admissible open U by admissible opens

1035

that can be refined by an admissible covering is admissible.
Exercise 156. Show that a rigid space automatically satisfies (G;).

Exercise 157. Any affinoid space X is quasi-compact wrt the strong Grothendieck
topology, in the following sense: If X' = u, ;U is an admissible cover of X, then
thereis a finite / < / such that X' = U, U, is an admissible cover.
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Remark 158. There are various other names in the literature, but they all refer

to the same definition: “Rigid spaces” = “Rigid K-spaces” = “Rigid analytic
spaces”, and even just “analytic spaces” in some of the very early articles on the
subject. If people say “rigid analytic varieties”, they sometimes make an additional
assumption that X is connected and one has a cover by affinoid spaces whose
affinoid algebras are integral domains. We now discuss some examples of rigid

spaces. The first is admissible open subspaces of affinoid spaces:

Lemma 159. Let (X, Oy) be a rigid space. Then any admissible open subspace
U < X inberits the structure of a rigid space (U, Oy,y,). We call this a rigid open

subspace.
Proof. Define admissible open in U to be admissible open in X. O

Example 160. 1. Theopendisc U ¢ B' = Sp(K(T')) defined by |T'| < 1is
a non-affinoid rigid space. Explicitly, it admits an admissible cover by affinoid
rigid spaces
U=, B'(T| < |5"")).

2. The Zariski-open complement of a function f € B” = Sp(K(T}, ..., T},)):
B'(f % 0) = U, BY(If] > |2")
is a rigid open subspace. This is usually not affinoid.

Second, we can glue rigid spaces:

Lemma 161. Let (X;),; be rigid spaces. Assume we are given foreachi,j € I

an admissible open V, ; < X, and isomorphisms ; : V, ;

such that the cocycle condition bolds. Then there is a unique (up to isomorphism)

— V;; of rigid spaces
rigid space X such that the X, form an admissible cover of X with intersections
X0 % =7

Proof- We define a subspace of X to be admissible if its intersection with every X;
is admissible, and similarly for covers. Exercise: well-defined and unique. NOTE:

We crucially need to use the axioms G1,G2! O

Analytification

Proposition 162. Let X be any scheme of locally finite type over K. Then there is a
rigid space X*" and a morphism of locally G-ringed K-spaces

Xan — X

such that for any rigid spaceY and any morphism of locally G-ringed K-spaces
Y — X, thereis a unique morphismY — X" making the obvious diagram
commute.

Moreover, X*" — X induces a bijection between X* and the closed points of X.

Definition 163. We call X*" the rigid analytification of X.

41
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Proof. Itsuffices to consider X = Spec(A4) where 4 = K[13,...,7,]/] and
Y = Sp(B), the universal property will do the rest using the gluing lemma. First
ty:
X5 = Sp(K(Ty, .., T,) 1),
but by the universal property of the Tate algebra this only works if the images
t; € Bof T, satisfy ||;|| < 1 onY. The trick is therefore to consider for any m € N

the space
X3 = Sp(K(&™ Ty, ..., &"T,) 1),

ThenY — X factors uniquely through X}, for any 7 such that ||z,|| < |&|™.
Moreover, for any £ € W,
X‘;/ln c Xan

m+k
is the affinoid subdomain defined by |7;| < |&|™. It follows that we can glue the
X3 to arigid space
X =u,, X
This now has the desired universal property. The description of the points follows
from testing by ¥ = Sp(L) for finite field extensions L| K. O

Example 164. Let X = A”. Then X*" = u,,., B}, is the rigid affine space: A
union of closed discs of increasing radius. Note: |T'| is not bounded on X, so X
cannot be affinoid!

Let’s calculate the global sections: We have
lany _ 1 m _ n
O6(A™™) =n, 0(X,) = l(inK(@‘ T) = {Zﬂnﬂanx — 0 forallx € Ry}

An example for an element that is not a polynomial is > & X",
Recall that X = A’ represents the functor (¥, 0y) — Oy (Y) on locally ringed
spaces. It follows that for any rigid space ¥,

Mor(Y,A) = 6(Y)
Exercise 165. Show this directly from the explicit description of Al

Example 166. For example, over K = Qf’ we can make sense of the p-adic
logarithm
(=x)"

n

U — Al

NgE

log(1+x) = -

I
—_

n

from the open unit disc around 1 as a morphism of rigid spaces.

Remark 167. WARNING: Note in particular that the morphism
Mor(A!, A') — Mor(A*, A1)

is not surjective! SO analytification is not fully faithful.

This in itself is not necessarily a problem, but what would be really awkward
is if this made separated things non-quasi-separated! As it turns out, this is not
a problem for separated spaces, whose analytification is again separated. But the

analytification of a quasi-separated space can be non-quasi-separated.
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Example 168. For X = P”, we get the rigid projective space P**". By construc-
tion of —*", this is glued from 7 + 1 copies of A”. But one can also give a fznite
admissible affinoid cover: Let x, ..., x, be homogeneous coordinates on P”, then
set

V.= Pn’m(|xj| < |x;| forall ) = Sp(K (X, ..., X,))

1 n

where we think of X, = ;—j’ ThenP” =V u-.uUV,.

For example, for » = 1, this means that we can either construct p! by glueing
two copies of A" along A™" (X # 0) via X > X', Or we can take two affinoid
closed discs B and glue them along the boundary B'( |X| = 1). In particular, P*

is quasi-compact:

Definition 169. A rigid space is called quasi-compact if it admits an admissible

cover by finitely many affinoid spaces.

rigid GAGA

Theorem 170. Let X, Y be proper K-schemes. Then Mor(X,Y) — Mor(X™,Y™")
is bijective. (Moreover, analytication identifies categories of coberent modules on X
and X*°).

Definition 171. A Zariski-closed subspace Z ¢ P is called a projective rigid
space. This means that for each 7, the map Z n V; — V is defined by a surjection
(V) - 0 n2).

Corollary 172 (Chow’s Theorem). Any projective rigid space is the analytification
of a projective K -scheme.

WARNING: This fails for proper K-schemes!

Say I care a lot about projective varieties. Does that mean that rigid geometry
doesn’t give us anything new? Quite the opposite! We can use rigid geometry
to gain new insights using analytic methods, and then translate them back to
schemes. Historically, the most important example is the following, which was

literally what rigid spaces were invented for:

The Tate curve

Let E be an elliptic curve over C. Then we have a complex uniformisation
E*™ = FE(C) =C/Awhere A=Z & 7Z.

Recall: over alg closed field, an elliptic curve is uniquely determined by its /-
invariant j(E). One can recover the algebraic curve £ from 7 in terms of the
j-invariant ;(7), a holomorphic function j : H — C that is SL, (Z)-invariant.
Alternatively, we can rewrite

xexp(27ix)

C/A Cc/ qZ where g =: exp(27i7).

43
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uso Note: j has g-expansion j = 1/g + 744 + 1968844 + - € Z((g)). Conversely, we
can recover j(E) from ¢ by this formula, g = 1/7 + 744%Z -

We can now have a (partial) analogue in p-adic geometry!

Theorem 173. Assume that K is algebraically closed, e.g. K = Cp. Let E be an
elliptic curve over K such that j(E) € K satisfies |j(E)| > 1. Then thereisa

s canonical isomorphism
an _ an | Z
E" =G,)/q

whereq =1/7 + 744%2

This is super cool! It’s literally the reason why Tate invented rigid spaces.
Namely, Tate saw that the g-periodic meromorphic functions on G}, form an

elliptic function field. Example application:
uso  Corollary 174. There is a short exact sequence
0— uy — E[N] > Z/NZ — 0.
The quotient G2 /4% is something we cannot take in schemes, but we can in

rigid space:

Construction:  First observe that 0 < |g| < 1,s0 qZ c G, isdiscrete. Let
G, = K[X*]. Foranyn € Z,let U, := G;Lln(|q|%1 < |X| < |q%|). This is an

s affinoid subspace

X 47
U, = Sp(K (= L),
qZ

and G,, = U, ,U, is an admissible cover (exercise). Let
Uy =U(lg7 | = 1X1), U =U,(lq%] = X)),

Then we can reconstruct G, from the U, by glueing U, to U}, via the map
XX

Now let’s furthermore glue U, to U, , via the map
U= Upp gX X
nso and call the result U. Then the natural maps U, € U glue to a map
q:G, —>U
and for any x € G,,', we have q_l (g(x)) = qzx. So this deserves to be called
U=Gylq".
Observe: Already U and U cover U, namely we can construct U by glueing
Uy -U;, X«X

U S U5, XX
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Hence G/ 4% is quasi-compact! The group structure on G2 induces on G2/ 4*
the structure of a “rigid group variety” (i.e. a group object in rigid spaces).

Sketch of proof of Theorem: Can cook up aline bundle L on G,/ qZ by de-
scent from G2, Use a version of Riemann-Roch to show that dim A#°(G*"/ qz, L) =
3 and defines an embedding G /4% < P*. Then G/ 4 is projective = is ana-
lytification of projective curve C. By GAGA, get a group structure on C = is an
elliptic curve E. Show that j(E) = j(g).
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