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Abstract. We give a new construction of p-adic overconvergent Hilbert modular forms by using
Scholze’s perfectoid Shimura varieties at infinite level and the Hodge–Tate period map. The
definition is analytic, closely resembling that of complex Hilbert modular forms as holomorphic
functions satisfying a transformation property under congruence subgroups. As a special case,
we first revisit the case of elliptic modular forms, extending recent work of Chojecki, Hansen
and Johansson. We then construct sheaves of geometric Hilbert modular forms, as well as
subsheaves of integral modular forms, and vary our definitions in p-adic families. We show that
the resulting spaces are isomorphic as Hecke modules to earlier constructions of Andreatta,
Iovita and Pilloni. Finally, we give a new direct construction of sheaves of arithmetic Hilbert
modular forms, and compare this to the construction via descent from the geometric case.

1. Introduction

In a first introduction, modular forms are usually defined as certain holomorphic functions
f : H → C on the complex upper half-plane H satisfying a transformation property of the form

γ∗f = (cz + d)kf ∀γ =
(
a b
c d

)
∈ Γ,

where Γ ⊂ SL2(Z) is a congruence subgroup. More algebraically, one can consider modular forms
as sections of an automorphic line bundle ω on the complex modular curve Γ\H. This algebraic
definition admits a p-adic interpretation, giving rise to the theory of overconvergent modular
forms varying in p-adic families, which has proved extremely important with wide-ranging
applications in algebraic number theory and arithmetic geometry.

An analytic definition of p-adic overconvergent modular forms has, however, proved elusive,
until such an approach was recently introduced in the case of rational quaternionic modular
forms by Chojecki, Hansen and Johansson [CHJ17CHJ17].

In this article, we give an analytic definitions of both arithmetic and geometric p-adic Hilbert
modular forms over any totally real field F , for any prime p, and show that they agree with
earlier algebraic definitions of Andreatta–Iovita–Pilloni in [AIP16aAIP16a].

Following [CHJ17CHJ17], the key idea of the construction is to use Scholze’s perfectoid Shimura
varieties at infinite level over a perfectoid base field L, and the associated Hodge–Tate period
map πHT, all introduced in [Sch15Sch15]. These spaces can be viewed as p-adic analogues of H. In
the complex situation, the pullback of the automorphic bundle ω along the covering map

H → Γ\H
can be canonically trivialised, and the descent to Γ\H via the action of Γ gives rise to the usual
definition of complex modular forms, at least after dealing with compactifications.

Similarly, in the p-adic situation, there is an adic analytic moduli space X , which in our case
is a Hilbert modular variety, carrying an automorphic bundle ω. It has a cover

XΓ(p∞) → X
by a perfectoid Hilbert moduli space. Using πHT, the pullback of ω along this projection can be
canonically trivialised over open subspaces. Via the action of the associated covering group – a
p-adic level subgroup – one obtains a definition of overconvergent Hilbert modular forms.

More precisely, there are two different kinds of Hilbert modular forms: there are those
associated to the group G := ResF/Q GL2, which are called arithmetic; and those associated to
G∗ := G ×ResF/Q Gm Gm, which are called geometric. Shimura varieties for G∗ have a moduli
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interpretation in terms of abelian varieties with PEL structure. For any (narrow) ideal class
c ∈ Cl+(F ), we consider the c-polarised finite level Shimura variety Xc. Since the Shimura variety
for G∗ is in particular of Hodge type, one gets an associated infinite level Hilbert moduli space
Xc,Γ∗(p∞) in the limit over level structures at p. Inside of this we have for any small enough ε ≥ 0
an open subspace Xc,Γ∗(p∞)(ε)a, the ε-overconvergent anticanonical locus.

Definition 1.1. For any weight character κ : Z×p → L×, a geometric overconvergent Hilbert
modular form of weight κ is a function f ∈ O(Xc,Γ∗(p∞)(ε)a) satisfying

(1.1) γ∗f = κ−1(cz + d)f ∀γ =
(
a b
c d

)
∈ Γ∗0(p),

where Γ∗0(p) is a p-adic level subgroup, and κ(cz + d) is a factor of automorphy to be defined.

From modular forms for G∗, one can obtain an indirect definition of modular forms for G by
descent. As we shall show, one of the advantages of the analytic approach is that instead, one
can also work with perfectoid Shimura varieties attached to G, and give a completely intrinsic
definition. Let XG,c be the c-polarised Shimura variety for G. This is now not a fine moduli
space of abelian varieties, but one can still construct a perfectoid cover

XG,c,Γ(p∞) → XG,c.

Definition 1.2. An arithmetic overconvergent Hilbert modular form of weight κ is a function
f ∈ O(XG,c,Γ(p∞)(ε)a) satisfying

γ∗f = κ−1(cz + d)wκ(det γ)f ∀γ =
(
a b
c d

)
∈ PΓ0(p)

where PΓ0(p) is a p-adic level subgroup, and wκ is a character to be defined.

More generally, one can similarly define line bundles ωκ whose global sections are the modular
forms of Definitions 1.11.1 and 1.21.2. These bundles, and hence the modular forms, vary naturally
over p-adic families U in the respective weight spaces, by considering analytic functions on the
sousperfectoid space Xc,U,Γ∗(p∞)(ε)a := Xc,Γ∗(p∞)(ε)a ×L U (and analogously for G).

1.1. What is new. Several constructions of both geometric and arithmetic p-adic overconvergent
Hilbert modular forms have already appeared in the literature (e.g. amongst others [KL05KL05],
[AIP16aAIP16a] and most generally [AIP16bAIP16b]), so let us explain how our constructions differ and what,
in our opinion, are some of their advantages.

• Our main goal is to give a new intrinsic definition of the sheaf of arithmetic Hilbert
modular forms for G, which is arguably cleaner and easier to work with than the one via
descent from G∗.
• We also show how to define subspaces of integral geometric and arithmetic Hilbert

modular forms in the analytic setting, which match up with the ones constructed in
[AIP16bAIP16b]. An advantage of the perfectoid construction is that this does not require
formal models. Rather, the subspace of integral forms is given by simply replacing O
with the integral subsheaf O+ in the construction.
• As in [CHJ17CHJ17], the resulting framework is well-adapted to constructing overconvergent

Eichler–Shimura maps from overconvergent cohomology, namely maps of the form

Hg
c (Xc, Dκ)→ H0(X tor

c (ε), ωκ ⊗ Ωg

X tor
c (ε)

(−∂))(−g)

where Dκ is an étale sheaf of distribution modules, g = [F : Q], and ∂ ⊆ X tor
c (ε) is

the boundary of a chosen toroidal compactification. A proof of this will be included in
upcoming work.

As a secondary goal, we modify the strategy of [CHJ17CHJ17] in several ways:

• We work with the anticanonical locus rather than the canonical one, which makes it
easier to deal with the boundary of the Shimura varieties, an issue which is is not present
in op.cit. as there the construction is carried out for quaternionic modular forms.

As a minor but pleasant side effect, this results in the automorphic factor κ(cz + d)
appearing in (1.11.1), like in the complex case, rather than the κ(bz + d) from op.cit.
• We give a conceptually new proof that the resulting sheaves are line bundles.
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• Throughout we work with sousperfectoid spaces, a language that was not available at the
time that [CHJ17CHJ17] was written. This allows one to define automorphic sheaves uniformly
for arbitrary bounded weights U in a geometric way, by working over the fibre product
of the infinite level modular variety with U . In particular, one does not have to impose
restrictions on the shape of weights as in the construction using formal models.
• We also explain how the “perfect” modular forms of [AIP16bAIP16b] appear in this anticanonical

setting. In the elliptic case, this point of view has been used in [Heu19Heu19] for a perfectoid
approach to Coleman’s Spectral Halo, and one should be able to use our constructions
to obtain similar results for Hilbert modular forms.

We shall now explain our constructions and the organisation of the paper in some more detail.

1.2. Elliptic modular forms via the anticanonical locus. While the main focus of this
paper is to construct families of Hilbert modular forms, we start in §22, 33 and 44, by treating the
elliptic case. One reason to consider this seperately is that while the boundary in the higher
dimensional case can be dealt with via Koecher’s principle, in the elliptic case it requires an
explicit analysis. Our second reason to treat the elliptic case separately is to illustrate the ways
in which we deviate from the construction in [CHJ17CHJ17].

To explain this, we first summarise their construction. Let L be any perfectoid field over Qcyc
p ,

let X ∗ be the (compact) modular curve over L of some tame level considered as an adic space,
and let q : X ∗Γ(p∞) → X ∗ be Scholze’s infinite level perfectoid modular curve (denoted X∞ op.

cit.). It admits a Hodge–Tate period map πHT : X ∗Γ(p∞) → P1 with the key property

π∗HTO(1) = q∗ω.

To study this sheaf, they consider a family of open subspaces of P1, parametrised by w ∈ Q>0,
on which O(1) admits a non-vanishing section. Pulling back under πHT gives a family of
neighbourhoods X ∗Γ(p∞),w ⊂ X ∗Γ(p∞) of the (canonical) ordinary locus. There are then subspaces

X ∗w ⊆ X ∗ such that X ∗Γ(p∞),w → X ∗w is a pro-étale Γ0(p)-torsor, at least away from the cusps.

Here Γ0(p) ⊂ GL2(Zp) is the subgroup of matrices that are upper-triangular modulo p.
Pulling back the natural parameter at ∞ ∈ P1, they obtain a parameter z ∈ O(X ∗Γ(p∞),w). For

a certain class of p-adic weights κ, and w ≥ 0 sufficiently small, they then define the space of
“w-overconvergent” modular forms of weight κ to be the set of f ∈ O(X ∗Γ(p∞),w) satisfying

γ∗f = κ(bz + d)−1f ∀γ = ( a bc d ) ∈ Γ0(p).

1.2.1. The case of elliptic modular forms. The results of [CHJ17CHJ17] are only explicitly proved in
the quaternionic case where the Shimura curve is compact, though they do mention that their
methods can be extended to the elliptic case, where one can use “soft” techniques to deal with
ramification at the boundary. This is also noted in [How17How17]. We expand on these remarks and
explain how to extend to the cusps by using perfectoid Tate curve parameter spaces.

Instead of considering the canonical locus, we choose to work with the anticanonical locus
X ∗Γ(p∞)(ε)a everywhere. This definition is equivalent, since the two loci can be interchanged via

the action of the Atkin–Lehner matrix
(

0 1
p 0

)
.We define a sheaf

ωκ1 :=
{
f ∈ q∗OX∗

Γ(p∞)
(ε)a

∣∣γ∗f = κ−1(cz + d)f ∀γ = ( a bc d ) ∈ Γ0(p)
}

on X ∗Γ0(p)(ε)a, where now z is the parameter on X ∗Γ(p∞)(ε)a defined by pulling back the canonical

parameter on A1,an ⊆ P1 at 0, and q : X ∗Γ(p∞) → X ∗Γ0(p) is the projection. The space of ε-
overconvergent modular forms is then the space of global sections of this sheaf. We note that this
is very similar to the complex definition. We then use the Atkin–Lehner isomorphism to obtain a
sheaf ωκ = ωκ0 := AL∗ωκ1 on the tame level space X ∗(p−1ε). One could now prove, as in [CHJ17CHJ17],
that the sheaf ωκ is a line bundle, but we instead deduce this from our later comparison results.

1.2.2. Variation in families. Reinterpreting [CHJ17CHJ17] in the context of sousperfectoid spaces, we
show how to extend the definition to also work for p-adic families. The weights considered above
can be considered as points Spa(L,OL)

κ−→W in the rigid analytic weight space

W := Spf(Zp[[Z×p ]])ad
η × L,
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where throughout we consider all rigid spaces as adic spaces, and where L is our perfectoid field.
We can then consider more general (families of) weights κ : U → W, where U is a smooth rigid
space and κ has bounded image. This gives rise to a sheaf ωκ on the fibre product X ∗(p−1ε)×LU
whose fibre over any point κ0 ∈ U is the sheaf ωκ0 defined above.

By comparing the anticanonical locus with the Pilloni-torsor as described in [AIP18AIP18], in Thm.
4.84.8 we construct an isomorphism between ωκ and the bundle ωκAIP of forms op. cit.:

Theorem 1.3. Let κ : U → W be a bounded smooth weight (Defn. 3.13.1; e.g. a point or an
affinoid open in W). Then there is a natural Hecke-equivariant isomorphism ωκ ∼= ωκAIP.

One reason we prefer to work with the anticanonical locus over the canonical one is that
it simplifies the proof of the above comparison. A second reason is that it makes it easier to
study the boundary: the technical complication for defining elliptic modular forms rather than
quaternionic ones is that the cover X ∗Γ(p∞)(ε)a → X ∗Γ0(pn)(ε)a is pro-étale over XΓ0(pn)(ε)a, but is
ramified at the cusps. However, the situation at the cusps is easy to deal with in the anticanonical
tower, because here the cusps are totally ramified and give rise to perfectoid versions of Tate
curve parameter discs. This allows one to extend the arguments from [CHJ17CHJ17] to the boundary.

1.3. Generalisation to the Hilbert case. The main result of the present paper is a generali-
sation of this approach to the setting of Hilbert modular forms, that is, modular forms for GL2

over any totally real field F of degree g.
Having treated the elliptic case separately, we will assume g ≥ 2, and, by the Koecher principle,

largely ignore the boundary in this case. Whilst conceptually the constructions follow the same
lines as in the elliptic case, there are additional subtleties in the Hilbert case that do not arise
when the base field is Q. The most immediate is in the choice of classical definition. The
Shimura varieties arising from G∗ are of PEL (hence Hodge) type. They are fine moduli spaces
parametrising Hilbert–Blumenthal abelian varieties (HBAVs), namely abelian varieties equppied
with an OF -action and a polarisation, plus some fixed tame level structure. The Shimura varieties
for G, in contrast, are only of abelian type, and are only coarse moduli spaces, parametrising
instead only equivalence classes of polarisations. These distinctions make it technically easier to
work with G∗, although ultimately the case in which we are most interested is the arithmetic
case of G, which has a better theory of Hecke operators.

In both cases these Shimura varieties are called Hilbert modular varieties, for G∗ and G
respectively. In practice, we will work with the c-polarised part of the Hilbert modular variety.
We sometimes emphasize this with a subscript c, but usually drop this from the notation.

1.3.1. Hilbert modular varieties for G∗ at infinite level. As in the elliptic case, the key object
in the construction of overconvergent forms is an infinite level Hilbert modular variety for G∗,
which is a p-adic analogue of the classical complex Hilbert modular variety. It it is a special
case of Scholze’s perfectoid Shimura varieties of Hodge type [Sch15Sch15, §III and IV]. As we shall
recall in §5.25.2, it arises from the tower of (c-polarised) Hilbert modular varieties Xc,Γ∗(pn) as the
wild level Γ∗(pn) ⊂ G∗(Zp) varies. Once again, one can restrict to the anticanonical locus of an
ε-neighbourhood of the ordinary locus and obtain a Hilbert modular variety at infinite level

Xc,Γ∗(p∞)(ε)a ∼ lim←−
n

Xc,Γ∗(pn)(ε)a,

which is a pro-étale Γ∗0 (p)-torsor over Xc,Γ∗0 (p)(ε)a, where Γ∗0 (p) ⊂ G∗(Zp) is the subgroup of
matrices that are upper-triangular modulo p.

We also need a version of the Hodge–Tate period map, as defined in [Sch15Sch15, §IV] and
refined in [CS17CS17, §2]. If C is a perfectoid field extension of L, then a (C,C+)-point of Xc,Γ∗(p∞)

corresponds to a HBAV A equipped with a trivialisation α : O2
p
∼−→ TpA

∨ and extra data,
where Op := OF ⊗Z Zp. Here we note that the appearance of A∨ differs somewhat from [Sch15Sch15],
but in the presence of a polarisation λ, the two are always isomorphic after a choice of p-adic
generator of c. The reason we wish to parametrise TpA

∨ rather than TpA is that together with
the Hodge–Tate morphism

O2
p

α−→ TpA
∨ HTA−−−→ ωA,
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the trivialisation α gives rise to canonical differentials α(1, 0) and α(0, 1) of ωA (instead of ωA∨).
This construction can be made more conceptual by way of the Hodge–Tate period morphism

πHT : Xc,Γ∗(p∞)(ε)a −→ ResOF /Z P
1.

If F splits in L (which we do not assume in the main text), this decomposes canonically into
maps πHT =

∏
v∈Σ πHT,v : Xc,Γ∗(p∞)(ε)a → (P1)Σ, where Σ is the set of embeddings v : F ↪→ L.

On C-points, a point corresponding to an isomorphism α is then sent to the point in (P1(C))Σ

defined by the Hodge filtration

0→ Lie(A∨)(1) −→ TpA
∨ ⊗Zp C

HTA−−−→ ωA → 0.

Crucial here is that πHT allows one to extend this pointwise consideration to the universal
situation: If ωA denotes the conormal sheaf to the universal abelian variety A → Xc,Γ∗0(pn)(ε)a
and q : Xc,Γ∗(p∞)(ε)a → Xc,Γ∗0(pn)(ε)a is the forgetful map, then there is a canonical isomorphism

q∗ωA = π∗HT ResOF /ZO(1).

If F splits in L, then ResOF /ZO(1) is identified with the direct sum ⊕ΣO(1) on (P1)Σ, and using
canonical sections of O(1) near (0 : 1) ∈ P1, we obtain a canonical section s of q∗ωA which
is a geometric incarnation of the section α(1, 0) considered above. In general we work with a
canonical section of ResOF /ZO(1), an instance of Scholze’s “fake Hasse invariants” from [Sch15Sch15].

In the elliptic case, we had a canonical parameter z. In the Hilbert case, z is now simply the
restriction of πHT to a function z : Xc,Γ∗(p∞)(ε)a → ResOF /Z Ĝa where Ĝa ⊆ P1 is the closed unit

ball around (0 : 1) ∈ P1. When F splits in L, via the canonical decomposition ResOF /Z Ĝa = GΣ
a

this can be interpreted as a collection of functions z = (zv)v∈Σ in O+(Xc,Γ∗(p∞)(ε)a).
In order to define p-adic families of Hilbert modular forms, let W∗ denote the weight space

for G∗ (cf. Defn. 6.16.1) and let κ : U → W∗ be a bounded smooth weight. In §66, we use the
sousperfectoid adic space

Xc,U,Γ∗(p∞)(ε)a := Xc,Γ∗(p∞)(ε)a ×L U
to define the sheaf of c-polarised geometric Hilbert modular forms of weight κ on Xc,U,Γ∗0(p)(ε)a as

ωκ1,c :=
{
f ∈ OXc,U,Γ∗(p∞)(ε)a

∣∣γ∗f = κ−1(cz + d)f ∀γ = ( a bc d ) ∈ Γ∗0 (p)
}
.

Here ε > 0 is such that for any element of γ = ( a bc d ) ∈ Γ∗0 (p), we can make sense of κ(cz+d) as
an invertible function on Xc,U,Γ∗(p∞)(ε)a (Defn. 6.46.4). We describe the variation of this in families,
and a local version giving an overconvergent automorphic bundle ωκG∗on X (ε). We also have
integral versions of these spaces given by simply replacing OX with O+

X in the above definition. In
Thm. 7.147.14 we use the canonical sections of ωA at infinite level to define a comparison isomorphism
to the sheaf of Hilbert modular forms defined in [AIP16aAIP16a].

1.3.2. Hilbert modular varieties for G at infinite level. For arithmetic applications, it is desirable
to have a version of this theory for arithmetic Hilbert modular forms, that is for the group G.
For example, these are objects that arise in modularity of elliptic curves over totally real fields.

Towards this goal, we pass from G∗ to G and discuss in §88 the perfectoid Hilbert modular
variety at infinite level for G and the corresponding Hodge–Tate period map. In the case of
L = Cp, this is a special case of the construction of Shen of perfectoid Shimura varieties of
abelian type [She17She17]. For Hilbert modular varieties, this is easy to extend to general perfectoid
fields following the methods of [Sch15Sch15], as we shall describe.

In contrast to the definition in [AIP16aAIP16a] by descent from G∗, this allows us to define the sheaf
of p-adic overconvergent arithmetic Hilbert modular forms without reference to G∗.

While this definition is ultimately quite simple, in order to explain why this is the correct
definition, it is important for us to work out the geometric relation between the perfectoid
Hilbert modular varieties for G and G∗ rather explicitly, in particular keeping close track of all of
the relevant Galois actions. At tame level, this is easy: let X and XG be the adic analytifications
of the tame c-polarised Hilbert modular varieties for G∗ and G respectively. The natural map
X → XG can then be described as the quotient under the action of O×,+F on the polarisation,
which factors through the action of a finite group ∆(N).
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For level at p, however, the condition defining level structures for G∗ is not preserved by the
action of O×,+F , so there is no longer a full polarisation action on the spaces XΓ∗(pn). We therefore
work with an auxiliary ‘mixed’ moduli problem, and work with the spaces XΓ(pn) relatively
parametrising G-level structures over the space X arising from G∗. In the limit, combined with
the Weil pairing these give rise to a perfectoid space XΓ(p∞) with a canonical Z×p -torsor

(1.2) XΓ∗(p∞) ×O×p −→ XΓ(p∞).

Now, on XΓ(p∞), we do get an O×,+F action on polarisations. At infinite level, this extends to
an action of a profinite group ∆(p∞N), which makes the morphism XΓ(p∞) → XG,Γ(p∞) into a
pro-étale ∆(p∞N)-torsor. We thus obtain a morphism of pro-étale torsors (cf. (8.78.7))

(1.3)

XΓ(p∞) XG,Γ(p∞)

XΓ0(pn) XG,Γ0(pn).

Γ0(pn)

∆(p∞N)

PΓ0(pn)

∆(N)

The diagonal map is also a pro-étale torsor for some group E(pn), as we shall discuss in §8.

1.3.3. Hilbert modular forms for G. In §99, we use the above to define arithmetic Hilbert modular
forms. Let W be the weight space for G and let κ : U → W be a bounded smooth weight.

Definition 1.4. The sheaf of arithmetic Hilbert modular forms of weight κ on XG,c,U(ε) is

ωκG =
{
f ∈ O(XG,c,U,Γ(p∞)(ε)a)

∣∣γ∗f = κ−1(cz + d)wκ(det γ)f ∀γ = ( a bc d ) ∈ PΓ0(p)
}
.

Its global sections MG
κ (Γ0(p), ε, c) form the space of c-polarised ε-overconvergent arithmetic

Hilbert modular forms. We also have an integral subsheaf ωκ,+G by instead using the O+-sheaf.

Our approach yields various natural alternative definitions; for example, we could instead use
the torsor XΓ(p∞)(ε)a → XG,Γ0(p)(ε)a to define forms for G. In §99, we show that these alternatives
(see Defn. 9.19.1) are all equivalent to the one given above.

1.3.4. Comparison to other definitions. Using the canonical section s, we obtain a comparison
isomorphism to the Hilbert modular forms of Andreatta–Iovita–Pilloni in Thms. 7.147.14 and 9.129.12.

Theorem 1.5. There is a natural Hecke-equivariant isomorphism between ωκ,+G∗ (resp. ωκ,+G ) and
the sheaf of integral Hilbert modular forms for G∗ (resp. G) defined in [AIP16aAIP16a, AIP16bAIP16b].

We establish this for G∗, and prove that our modular forms for G are the descent of those for
G∗ under the action of ∆(N) (see Lem. 9.69.6); from this we we obtain the analogous result for G,
as the forms of [AIP16aAIP16a] are defined via this descent.
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1.5. Notation. We fix a rational prime p and a perfectoid field extension L of Qcyc
p . For instance,

we could take L = Qcyc
p , or any complete algebraically closed extension of Qp.

We use adic spaces in the sense of Huber [Hub13Hub13], and in particular the notion of smooth
adic spaces from [Hub13Hub13, Definition 1.6.5]. By a rigid space over L, we mean an adic space of
topologically finite type over Spa(L,OL). We use the pro-étale site of a smooth adic space in
the sense of [Sch13Sch13].

The letter X typically refers to modular curves and Hilbert modular varieties. We typically use
latin letters X to refer to schemes, gothic letters X to refer to formal schemes, and calligraphic
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letters X to refer to analytic adic spaces (typically over L), like rigid and perfectoid spaces. If X is
a modular variety of some tame level, we specify the level at p of a modular variety by a subscript
on the appropriate X. We will use a superscript ∗ to denote the minimal compactification X∗.

Lastly, if Γ is any profinite set we also write Γ for the associated profinite perfectoid space
Spa(Mapscts(Γ, L),Mapscts(Γ,OL)) when this is clear from the context. If Γ is a profinite group,
this will be a group object in perfectoid spaces over L.

2. Perfectoid modular curves and the Hodge–Tate period map

In this section we review the modular curve at infinite level and the Hodge–Tate period map,
and discuss the open subspaces which we are going to use to define p-adic elliptic modular forms.

2.1. Modular curves and their canonical and anticanonical loci. Let N be an integer
coprime to p. Let X be the modular curve over L of some tame level Γp at N such that
the corresponding moduli problem is representable by a scheme, e.g. Γ(N) or Γ1(N) for N ≥
3. Similarly, we let Γ0(p) ⊂ GL2(Zp) denote the usual upper triangular Iwahori subgroup,
corresponding to the choice of an order p sub-group-scheme of our elliptic curves.

We denote by X the rigid analytification, considered as an adic space.aa The space X represents
the moduli functor that sends any adic space S → Spa(L,OL) to isomorphism classes of pairs
(E,µ) where E is an elliptic curve over OS(S) with Γp-structure µ (see [HeuaHeua, Lemma 2.3]).

Let X∗ be the compactification of X, with analytification X ∗. The divisor of cusps X ∗\X
becomes a finite set of closed points after adding a primitive N -th root to L.

For any 0 ≤ ε < 1 with |p|ε ∈ |L|, we denote by X ∗(ε) ⊆ X ∗ the open subspace of the modular

curve where |H̃a| ≥ |p|ε, where H̃a is any local lift of the Hasse invariant. For any analytic adic
space Y → X ∗, we write Y(ε) ⊆ Y for the preimage of X ∗(ε) ⊆ X ∗. We call the elliptic curves
parametrised by this open subspace ε-nearly ordinary.

Let X ∗Γ(p∞) ∼ lim←−X
∗
Γ(pn) be the perfectoid modular “curve” at infinite level as defined in

[Sch15Sch15]. We in particular have the open subspace X ∗Γ(p∞)(ε) ∼ lim←−X
∗
Γ(pn)(ε).

Recall that for any n ∈ Z≥1, the modular curve XΓ0(pn) → X of level Γ0(pn) relatively represents
the choice of a cyclic rank pn subgroup scheme Dn ⊆ E[pn]. If 0 ≤ ε < 1/(p + 1)pn−2 then
by Lubin’s theory of the canonical subgroup, any elliptic curve corresponding to a morphism
S → X (ε) admits a canonical cyclic subgroup scheme Hn ⊆ E[pn] of rank pn, which in the
case of good reduction reduces to the kernel of the n-th iterate of Frobenius on E modulo p1−ε.
This defines a canonical section XΓ0(pn)(ε) ← X (ε) which in fact extends to the cusps. As a
consequence, for n = 1, the space X ∗Γ0(p)(ε) decomposes into two open and closed components

X ∗Γ0(p)(ε) = X ∗Γ0(p)(ε)c ṫ X ∗Γ0(p)(ε)a,

the first of which (away from the cusps) parametrises triples (E,α,H1) with α a tame level and
H1 the canonical subgroup, while the second parametrises (E,α,Dn) with Dn ⊆ E[p] a cyclic
rank p subgroup such that Dn ∩H1 = 0. The two components are called the canonical and the
anticanonical locus, respectively. At infinite level, these two components, via pullback, give rise
to canonical and anticanonical loci of X ∗Γ(p∞)(ε) respectively:

X ∗Γ(p∞)(ε) = X ∗Γ(p∞)(ε)c ṫ X ∗Γ(p∞)(ε)a

X ∗Γ0(p)(ε) = X ∗Γ0(p)(ε)c ṫ X ∗Γ0(p)(ε)a.

For any perfectoid (Qcyc
p ,Zcyc

p )-algebra (R,R+), the (R,R+)-points of XΓ(p∞) are in functorial
1-1 correspondence with isomorphism classes of triples (E,µ, α), where E is an elliptic curve
over R, µ is a Γp-structure, and α : Z2

p
∼−→ TpE is a trivialisation of the Tate module (see [HeuaHeua,

Cor. 3.2]). We have an action of GL2(Zp) on XΓ(p∞) given by

(2.1) γ · (E,µ, α) = (E,µ, α ◦ γ∨), γ∨ = det(γ)γ−1 =
(
d −b
−c a

)
for γ = ( a bc d ) ∈ GL2(Zp).

aWe note that this is the only way in which our notation deviates from that in [Sch15Sch15, §III], where X denotes the
good reduction locus.
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For notational convenience we also fix the following.

Definition 2.1. Let E be an ordinary elliptic curve. Then E has canonical cyclic subgroups
Hn of rank pn for all n. The canonical p-divisible subgroup of E is H = (Hn)n∈N ⊆ E[p∞].

2.2. The Hodge–Tate period map around 0 ∈ P1. We recall how the canonical and anti-
canonical loci behave under the Hodge–Tate period map

πHT : X ∗Γ(p∞) → P1.

By [Sch15Sch15, Lem. III.3.6], the preimage of P1(Zp) under πHT is given by the closure of the ordinary
locus X ∗Γ(p∞)(0). After removing the cusps, this parametrises isomorphism classes of triples

(E,µ, α) as above where E has potentially semistable or good ordinary reduction in every fibre.
Write e1, e2 for the standard basis of Z2

p. Away from cusps, the preimage π−1
HT(∞) of ∞ = (1 : 0)

parametrises triples where moreover α(e1) generates the canonical p-divisible subgroup.
Instead of using the canonical locus, we shall work with the anticanonical locus X ∗Γ(p∞)(ε)a,

which by contrast is sent by πHT to neighbourhoods of points of the form (b : 1) for b ∈ Zp.
In order to define overconvergent modular forms on X ∗Γ(p∞)(ε)a of weight κ for ε > 0, we

need to make sense of the expression κ(cπHT(x) + d) for x ∈ X ∗Γ(p∞)(ε)a. To account for the
overconvergence, we therefore need to consider open neighboorhods of these points:

Definition 2.2. Let B0(Zp : 1) ⊆ P1(Zp) ⊆ P1 be the subspace of points of the form (a : 1) for
a ∈ Zp considered as a profinite adic space. For any 0 < r ≤ 1 and any compact open subspace
U ⊆ Zp, let Br(U : 1) ⊆ P1 be the subspace defined as the union of all closed balls of radius r
around points (a : 1) ∈ P1(Zp) with a ∈ U

Definition 2.3. Let z be the parameter on P1 at 0 arising from the canonical isomorphism of
schemes A1 ∼−→ P1\{∞}, z 7→ (z : 1) and let z := π∗HTz. It is easy to see that Br(Zp : 1) ⊆ A1 is
closed both under the additive group structure as well as the multiplicative monoid structure.

Lemma 2.4. The action of Γ0(p) fixes Br(Zp : 1) ⊆ P1. In terms of the parameter z, we have

(2.2) ( a bc d ) · z =
az + b

cz + d
.

Proof. Let γ = ( a bc d ) ∈ Γ0(p). Then inside P1 we have ( a bc d ) (z : 1) = (az + b : cz + d) = (γz : 1).
Moreover, |cz + d| = 1 on Br(Zp : 1) since |z| ≤ 1 (as r ≤ 1) , c ∈ pZp, d ∈ Z×p . Consequently,
since (cz + d)−1 = d−1

∑
n≥0(cd−1z)n ∈ Br(Zp : 1), the fact that Br(Zp : 1) is closed under

multiplication and addition implies that also γz = (az+ b)(cz+d)−1 ∈ Br(Zp : 1) as desired. �

Remark 2.5. In the definition of modular forms in [CHJ17CHJ17], the automorphic factor features
the term (bz+d), since in their notation – where z is a parameter for a neighbourhood of∞ ∈ P1

– the action of Γ0(p) is given by z 7→ (b+ dz)/(a+ cz). In switching from the canonical to the
anticanonical locus, we instead get (cz + d) as in the complex case (see also Rem. 3.233.23).

The following proposition implies that for any weight κ, there is an ε > 0 such that for any
x ∈ X ∗Γ(p∞)(ε)a and any ( a bc d ) ∈ Γ0(p), the factor of automorphy κ(cz(x) + d) converges.

Proposition 2.6. Let 0 ≤ r < 1. Then for 0 ≤ ε ≤ r/2 if p ≥ 5 or ε ≤ r/3 if p = 3, or ε ≤ r/4
if p = 2, we have πHT(X ∗Γ(p∞)(ε)a) ⊆ Br(Zp : 1).

Proof. Away from the cusps, this is a special case of Prop. 5.185.18 below. For the cusps, the
statement is clear since these are contained in the ordinary locus and are thus sent to P1(Qp). �

3. Overconvergent elliptic modular forms

In this section we define line bundles of p-adic modular forms of weight κ, where κ is a smooth
bounded weight. Following [CHJ17CHJ17] with our slightly modified setup, these bundles are defined
using the structure sheaf of X ∗Γ(p∞)(ε)a by taking invariants under a group action with a factor
of automorphy to descend to finite level, mirroring the definition of complex modular forms.

We first explain what we mean by a smooth bounded weight:
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Definition 3.1. The weight space for GL2 is W := Spf(Zp[[Z×p ]])ad
η ×Qp L. A smooth weight

over L is a smooth adic space U over a perfectoid extension of L together with a map U → W.
A smooth weight is bounded if its image in W is contained in some affinoid subspace of W.

3.1. Sousperfectoid spaces. We would like to define sheaves of families of modular forms of
weight U to be functions on XΓ(p∞)(ε)a×U . In order to obtain a sheaf, we need to make sure that
the latter fibre product exists as an adic space. For this we use the language of sousperfectoid
spaces, which we briefly recall from [HKHK, Seection 7] and [SWSW, Section 6.3]. Their technical
importance stems from Prop. 3.33.3.

Definition 3.2. (1) A complete Tate Zp-algebra R is called sousperfectoid if there is a

perfectoid R-algebra R̃ such that R ↪→ R̃ splits in the category of topological R-modules.
(2) A Huber pair (R,R+) is called sousperfectoid if R is sousperfectoid.
(3) An adic space is called sousperfectoid if it can be covered by affinoid open subspaces of

the form Spa(R,R+) where R is sousperfectoid.

Proposition 3.3. [SWSW, Prop. 6.3.4] Any sousperfectoid Huber pair (R,R+) is stably uniform.
In particular, Spa(R,R+) is a sheafy adic space.

Corollary 3.4. Let X be a perfectoid space over L and let Y be a rigid space smooth over a
perfectoid extension of L′/L. Then the fibre product X ×LY exists as a sousperfectoid adic space.

Proof. By [Hub13Hub13, Cor. 1.6.10], the smooth rigid space Y can be covered by open subspaces which
are étale over some disc B = Spa(L′〈X1, . . . , Xn〉). Since the fibre product of perfectoid spaces
is perfectoid, we may without loss of generality assume that L = L′, and that X = Spa(S, S+)
is affinoid perfectoid. The fibre product X ×L B then exists and is sousperfectoid because the
algebra S〈X1, . . . , Xn〉 is sousperfectoid by [SWSW, Prop. 6.3.3.(i) and (iii)]. The fibre product
X ×L Y = (X ×L B) ×B Y now exists and is sousperfectoid because algebras étale over a
sousperfectoid algebra are again sousperfectoid (Prop. 6.3.3.(ii) op. cit.). �

Corollary 3.5. If U is a smooth adic space over L, then X ∗U,Γ(p∞)(ε)a := X ∗Γ(p∞)(ε)a×L U exists

as a sousperfectoid adic space. Moreover, if we define X ∗U,Γ(pn)(ε)a := X ∗Γ(pn)(ε)a ×L U , then

X ∗U,Γ(p∞)(ε)a ∼ lim←−
n∈N
X ∗U,Γ(pn)(ε)a.

Proof. The first part is immediate from the last corollary. The second part follows from the
observation that when (An)n∈N is a direct system of Tate algebras (by which we mean a Huber
pair with a topologically nilpotent unit), and A∞ is a Tate algebra with compatible morphisms
An → A∞ such that lim−→An ⊆ A∞ has dense image, and B is a Tate algebra over A1, then

lim−→(An⊗̂A1
B) ⊆ A∞⊗̂A1

B has dense image by pointwise approximation. �

Lemma 3.6 ([KLKL, Thm. 8.2.3]]). Let Y be a seminormal adic space (see [KLKL, Defn. 3.7.1]), for

example a smooth rigid space. Let v : Yproét → Yan be the natural map. Then v∗Ô+
Yproét

= O+
Y .

Proof. By [KLKL, Thm. 8.2.3], we have v∗ÔYproét
= OYan . Using the adjunction morphism of v,

we thus have inclusions O+
Y ⊆ v∗Ô+

Yproét
⊆ OY . On the other hand, for any affinoid V ⊆ Y,

we clearly have v∗Ô+
Yproét

(V ) ⊆ v∗ÔYproét
(V )◦ = OY(V )◦. Since Y is a rigid space, we have

OY(V )◦ = O+
Y (V ), which shows v∗Ô+

Yproét
⊆ O+

Y . �

Lemma 3.7. Let Y be an affinoid adic space over L that is either a smooth rigid space or a
perfectoid space. Let Γ be a profinite group. Let X ∈ Yproét be an affinoid perfectoid pro-étale
Γ-torsor. Let U be a smooth adic space over L, set XU := X ×L U and YU := Y ×L U , and denote
the induced map by h : XU → YU . Then

(h∗O+
XU )Γ = O+

YU and (h∗OXU )Γ = OYU .

Proof. As the statement is local on YU , it suffices to check that for an affinoid open V ⊆ Y
with affinoid perfectoid preimage W = h−1(V ) we have O+

XU (V × U)Γ = O+
YU (W × U). Since
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by our assumptions Y is stably uniform, [CHJ17CHJ17, Lem. 2.23 (2)] reduces this to checking that
(h∗O+

X )Γ = O+
Y . To see this, we first treat the case that Y is a smooth rigid space. Then in the pro-

étale site Yproét in the sense of [Sch13Sch13], we have the structure sheaf O+
Yproét

as well as the completed

structure sheaf Ô+
Yproét

. For the affinoid perfectoid space X , we have O+
X (X ) = Ô+

Yproét
(X ). The

Cartesian diagram expressing X → Y as a pro-étale Γ-torsor then shows that we have

O+
X (X )Γ = Ô+

Yproét
(X )Γ = Ô+

Yproét
(Y).

The first part of the Lemma now follows from Lem. 3.63.6. The second follows by inverting p.
If Y is a perfectoid space, the same argument works in the pro-étale site Yproét of [SchSch]. �

Proposition 3.8. Let U be a smooth adic space over a perfectoid field extension L′ of L. For
any n ≥ 1 denote by h : X ∗U,Γ(p∞)(ε)a → X ∗U,Γ0(pn)(ε)a the natural map. Then

(h∗O+
X∗U,Γ(p∞)

(ε)a
)Γ0(pn) = O+

X∗U,Γ0(pn)
(ε)a

and (h∗OX∗U,Γ(p∞)
(ε)a)Γ0(pn) = OX∗U,Γ0(pn)

(ε)a .

For the proof, we explain how to deal with the boundary, which was not treated in [CHJ17CHJ17].

Proof. After base-change to L′, we may without loss of generality assume that L = L′.
Over the open subspace away from the cusps, the map h : XU,Γ(p∞)(ε)a → XU,Γ0(pn)(ε)a is a

pro-étale Γ0(pn)-torsor for the action defined in (2.12.1). By Lem. 3.73.7, we thus have

(h∗O+
XU,Γ(p∞)(ε)a

)Γ0(pn) = O+
XU,Γ0(pn)(ε)a

.

We are left to extend this to the cusps. Let us first look at the case that U is a single point.
For this we can use Tate curve parameter discs as discussed in [HeuaHeua]: For any geometric point
c in the boundary of X ∗, there is an integer d|N (depending on the tame level structure and
the presence of unit roots in L) such that there is an open immersion D × µd ↪→ X ∗ where
D ⊆ L〈q〉 is the open disc defined by |q| < 1, such that the image of the origin contains c. For
X ∗Γ0(pn)(ε)a there is then also a Tate curve parameter disc D × µd ↪→ X ∗Γ0(pn)(ε)a. The induced

map over X ∗Γ0(pn)(ε)a → X ∗ is D → D, q 7→ qp
n

by Prop. 2.10 op. cit. Equivalently, we may

rewrite this as the open disc Dn ⊆ Spa(L〈q1/pn〉). By taking tilde-limits, we obtain a perfectoid
disc D∞ ∼ lim←−Dn ⊆ Spa(L〈q1/p∞〉). By [HeuaHeua, Thm. 3.8], there is then a Cartesian diagram

Γ0(p∞)×D∞ × µd Dn × µd

X ∗Γ(p∞)(ε)a X ∗Γ0(pn)(ε)

where Γ0(p∞) is the profinite perfectoid group of upper triangular matrices in GL2(Zp). By
Thm. 3.21 op. cit., the Γ0(pn)-invariance of a function f on Γ0(p∞) × D∞ × µd now means
precisely the following: first, the Γ0(p∞)-invariance means that f comes from a function on
D∞×µd via pullback along the projection Γ0(p∞)×D∞×µd → D∞×µd. It is thus of the form
f ∈ O+(D∞ × µd) = OL[ζd][[q

1/p∞ ]]. Second, the remaining Γ0(pn)/Γ0(p∞) = pnZp-action is the
one which sends q1/pm → ζhpmq

1/pm for all m ∈ N and h ∈ pnZp. For f to be invariant under this

action means that f ∈ O+(Dn × µd) = OL[ζd][[q
1/pn ]], as desired.

For general weight U , we may without loss of generality assume that U is affinoid. The same
argument then still works, adding a fibre product with U everywhere in the above and working
with q-expansions in O+(U)[ζd][[q

1/pn ]] instead. �

Remark 3.9. As pointed out to us by the referee, one can also use the rigid analytic Riemann
Hebbarkeitssatz for normal rigid spaces due to Bartenwerfer [Bar76Bar76] and Lütkebohmert [Lüt74Lüt74,
Satz 1.6] to extend over the boundary. One advantage of the perspective taken above is that it
explicitly describes the q-expansions associated to p-adic modular forms.

3.2. Overconvergent modular forms.

Definition 3.10. For any rational 0 < r ≤ 1, let Br(Z×p : 1) ⊂ Br(Zp : 1) ⊂ P1 be the union
of all balls Br(a) of radius r around points (a : 1) with a ∈ Z×p . For r = 0, we instead let
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B0(Z×p : 1) := Z×p , where we recall that we mean by this the perfectoid space associated to the
profinite group Z×p .

The adic space Br(Z×p : 1) inherits the structure of an adic group from Gm = P1\{0,∞} ⊆ P1.
Note that for r < 1, on Zp-points we have Br(Z×p : 1)(Zp) = Z×p compatible with the group
structure. We therefore regard Br(Z×p : 1) as an adic analytic thickening of Z×p .

Definition 3.11. (1) In the following, we will also denote by Ga the adic analytification of
the corresponding scheme over L. Its underlying adic space is A1,an, and it represents
the functor sending an adic space Z over (L,OL) to O(Z).

(2) We analogously define the adic group Gm as the adic analytification of the corresponding
scheme over L. It represents the functor sending an adic space Z over (L,OL) to O(Z)×.

(3) Denote by Ĝa the adic generic fibre of the formal completion of the OL-scheme Ga,OL ;

then Ĝa ⊆ Ga is an open subgroup, given by the closed ball of radius 1 around the origin
0 ∈ Ga. It represents the functor sending an adic space Z over (L,OL) to O+(Z).

(4) Similarly, let Ĝm be the adic generic fibre of the formal completion of Ga,OL ; then

Ĝm ⊆ Gm is an open subgroup, given by the closed ball of radius 1 around the origin
1 ∈ Gm. It represents the functor sending an adic space Z over (L,OL) to O+(Z)×.

Any continuous character κ : Z×p → L× has a geometric incarnation as a morphism of adic

spaces κ : Z×p → Ĝm. Indeed, by the universal property of Gm, any such morphism corresponds
to an element of O(Z×p )× = Mapcts(Z×p , L)× = Mapcts(Z×p , L×). Any such κ has an analytic
continuation to Br(Z×p : 1) for small enough r. In fact, this holds more generally: let U be any

bounded smooth weight (see Defn. 3.13.1). This corresponds to a morphism κ : Z×p × U → Ĝm or,
equivalently, a continuous morphism Z×p → OU(U)×, called the character of U .

Proposition 3.12. If κ : U → W is a bounded smooth weight, then there exists rκ such that for
rκ ≥ r > 0 there is a unique morphism

κan : Br(Z×p : 1)× U → Ĝm

such that the restriction of κan to Z×p × U via Z×p ↪→ Br(Z×p : 1), a 7→ (a : 1), is equal to κ.

Proof. If U is affinoid this is a special case of [Buz07Buz07, Prop. 8.3]. In general, the assumption that
U is bounded ensures that U is contained in some affinoid open subspace of W. For a precise
value of rκ see Prop. 6.36.3. �

Definition 3.13. For any smooth bounded weight κ : U → W , let rκ be the supremum of all r
such that the proposition holds. Similarly, let εdef

κ be the maximum ε satisfying the conditions
of Prop. 2.62.6 with respect to rκ, then πHT(X ∗Γ(p∞)(ε)a) ⊆ Br(Zp : 1).

Recall z := π∗HTz is the function on X ∗Γ(p∞)(ε)a defined by pullback of the function z on

Br(Zp : 1) from Defn. 2.32.3. Since πHT is GL2(Zp)-equivariant, Lem. 2.42.4 implies that for any
γ ∈ Γ0(p), we have

(3.1) γ∗z =
az + b

cz + d
.

Using this and Prop. 2.62.6, we can then make the following definition:

Definition 3.14. Let κ : U → W be a bounded smooth weight and εdef
κ > ε ≥ 0. For any

c ∈ pZp, d ∈ Z×p , we then let κ(cz + d) be the invertible function on XU,Γ(p∞)(ε)a defined by

κ(cz + d) : XU,Γ(p∞)(ε)a
πHT×id−−−−→ Br(Zp : 1)× U (z 7→cz+d)×id−−−−−−−−→ Br(Z×p : 1)× U κan

−−→ Ĝm.

We can now give the definition of sheaves of overconvergent modular forms of weight κ.

Definition 3.15. For κ : U → W a bounded smooth weight, n ∈ Z≥1 ∪ {∞} and 0 ≤ ε ≤ εdef
κ ,

we define a sheaf ωκn on X ∗U,Γ0(pn)(ε)a by

ωκn :=
{
f ∈ q∗OX∗U,Γ(p∞)

(ε)a

∣∣∣γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ0(pn)
}
,
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where we recall that q : X ∗U,Γ(p∞)(ε)a → X ∗U,Γ0(pn)(ε)a denotes the projection. We also have an

integral subsheaf ωκ,+n on X ∗U,Γ0(pn)(ε)a defined by using instead the O+-sheaf:

ωκ,+n :=
{
f ∈ q∗O+

X∗U,Γ(p∞)
(ε)a

∣∣∣γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ0(pn)
}
.

For n = 0 and εκ/p > ε ≥ 0, we use the Atkin–Lehner isomorphism AL : X ∗Γ0(p)(pε)a
∼−→ X ∗(ε)

to define the sheaf of overconvergent p-adic modular forms ωκ to be the sheaf AL∗ω
κ
1 on X ∗U(ε).

We also have the O+-submodule of integral p-adic modular forms ωκ,+ given by AL∗ω
κ,+
1 .

We will later see that these are all invertible sheaves. Note that for n =∞, this defines sheaves
of modular forms on X ∗U,Γ0(p∞)(ε)a which, by analogy to [AIP16aAIP16a], we call perfect modular forms.

Definition 3.16. Let κ : U → W be a bounded smooth weight and let n ∈ Z≥1 ∪ {∞}. We
define the space of overconvergent modular forms of weight U , wild level Γ0(pn), tame level Γp

and radius of overconvergence 0 ≤ ε < εdef
κ to be the L-vector space

Mκ(Γ0(pn), ε) := H0(X ∗U,Γ0(pn)(ε)a, ω
κ
n)

=
{
f ∈ O(X ∗U,Γ0(p∞)(ε)a)

∣∣γ∗f = κ−1(cz + d)f for all γ ∈ Γ0(pn)
}
,

and the analogous space of integral forms to be

M+
κ (Γ0(pn), ε) := H0(X ∗U,Γ0(pn)(ε)a, ω

κ,+
n ).

Finally, we set Mκ(ε) := Mκ(Γ0(p), pε), and analogously for the integral subspaces. We note that
for any n <∞, there is then a natural Atkin–Lehner isomorphism

M+
κ (Γ0(pn), ε) ∼= M+

κ (p−nε).

One can similarly define cusp forms by working instead with ωκn(−∂) where ∂ denotes the
boundary divisor in X ∗U,Γ0(pn)(ε)a. As usual, one now defines an action of Hecke operators T` for

` - Np and Up via correspondences. We shall discuss this in detail in the Hilbert case in §1010.

3.3. Comparison to overconvergent modular forms of classical weights. Recall that on
X ∗ we have the conormal sheaf ωE := π∗Ω

1
E|X of the universal semi-abelian scheme π : E → X ∗.

For a p-level structure Γp of the form Γ0(pn) or Γ(pn) for n ∈ Z≥0 ∪ {∞}, we write ωΓp for the
pullback of ωE to X ∗Γp(ε)a. In this section, we show that for characters κ of the form x 7→ xk,

for k ∈ Z≥1, the sheaf ωκn can be identified with ω⊗kΓ0(pn). This shows that for classical weights,
our definition agrees with the usual spaces of overconvergent modular forms, and contains the
spaces of classical modular forms. The key to the comparison is the isomorphism of line bundles

(3.2) π∗HTO(1) = ωΓ(p∞)

from [Sch15Sch15, Thm. III.3.18]. We recall that on (C,C+)-points, this has the following moduli
interpretation: The C-points of the total space T (1)→ P1 of the line bundle O(1) parametrise
pairs (L, y) of a line L ⊆ C2 together with a point y ∈ C2/L on the quotient. Equivalently, this
is the data (ϕ, y) of a linear projection ϕ : C2 � Q to a 1-dimensional C-vector space Q and a
point y ∈ Q. We sometimes just write this as the point y if Q is clear from context. Using this
description of O(1), one can now illustrate equation (3.23.2) as follows.

Lemma 3.17. Let x be a (C,C+)-point of XΓ(p∞), corresponding to data (E,µ, α : Z2
p
∼−→ TpE).

Let HTE : TpE → ωE be the Hodge–Tate map of E. In terms of the total spaces, the isomorphism
ωΓ(p∞) = π∗HTO(1) is given in the fibre of x by the morphism

(E, α, η ∈ ωE) 7→ (HT : TpE ⊗Zp C → ωE, η ∈ ωE).

Following [CHJ17CHJ17], we now compare our sheaf of modular forms ωκ for κ = id to the bundle
of differentials ωE by using an explicit trivialisation of O(1) over Br(Zp : 1):

Definition 3.18. Let s be the global section P1 → T (1) given by

(x : y) 7→
(
C2 → C2

/〈
( xy )

〉
, ( 1

0 ) +
〈

( xy )
〉)
,

where the second component lies in C2/〈( xy )〉. This section is non-vanishing away from the point
(1 : 0) =∞ ∈ P1, and in particular it is invertible over Br(Zp : 1) ⊆ P1.
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We need to compute the action of Γ0(p) on s over Br(Zp : 1) ⊆ Ga ⊆ P1 in terms of the
parameter (z : 1). For later reference in the Hilbert case, we record this in diagrammatic fashion:

Lemma 3.19. Let γ = ( a bc d ) ∈ Γ0(p), then γ∗s = (cz+d)s, i.e. the following diagram commutes:

Ĝm × T (1) T (1) T (1)

Ĝa Ĝa.

m γ−1

γ
(cz+d)×s

γ∗s s

Proof. We first note that the equivariant action of Γ0(p) on O(1) which is compatible with (2.12.1)
is by letting γ act via det(γ)−1γ. In particular, γ−1 acts as γ∨. The natural fibre action of γ on
s is by γ∗s = γ−1 ◦ s ◦ γ, i.e. the right square commutes by definition. We therefore have

(3.3) γ∗s(z) = γ∨ · ( 1
0 ) = ( d

−c ) ≡ ( d
−c ) + c ( z1 ) = ( cz+d0 ) = (cz + d) ( 1

0 ) mod 〈( z1 )〉,
which shows that γ∗s = (cz + d)s as desired. �

Definition 3.20. Let s := π∗HT(s) be the pullback of s to a section of π∗HTO(1) = q∗ω.

Since the isomorphism π∗HTO(1) is equivariant for the Γ0(p)-action, the action of Γ0(p) on s is

(3.4) γ∗s = (cz + d)s,

where we recall z is the pullback of the parameter z to a function on X ∗Γ(p∞)(ε)a. We have the
following consequence of Lem. 3.173.17.

Proposition 3.21. Let x be a (C,C+)-point of XΓ(p∞)(ε)a corresponding to a triple (E,µ, α :

Z2
p
∼−→ TpE). Then via the isomorphism π∗HTO(1) = ωΓ(p∞), we have

s(x) = HT(α(e1)) ∈ ωE.
Proposition 3.22. Let κ : x 7→ xk. Then there is a natural isomorphism ωκ ∼= ω⊗k.

Proof. As s is a non-vanishing section of q∗ω over X ∗Γ(p∞)(ε)a, the sections of q∗ω⊗k are all of

the form f · s⊗k for f ∈ O(X ∗Γ(p∞)(ε)a). Of these sections, the ones coming from sections of ω⊗k –

that is, those defined over X ∗Γ0(p)(ε)a – are exactly the Γ0(p)-equivariant ones. But

γ∗(f · s⊗k) = γ∗f · γ∗s⊗k (3.43.4)
== γ∗f · (cz + d)ks⊗k for all γ ∈ Γ0(p).

The Γ0(p)-equivariance of γ∗(f · s⊗k) is thus equivalent to γ∗f = (cz+ d)−kf = κ−1(cz+ d)f . �

Remark 3.23. While the analogy to the complex situation is very close, one notable difference
is that on the complex upper half plane H the canonical differential ηcan satisfies γ∗ηcan =
(cz + d)−1ηcan, whereas on X ∗Γ(p∞)(ε)a one has γ∗s = (cz + d)s. The different signs can be
explained as follows. Both constructions of modular forms depend on a canonical trivialisation of
the automorphic bundle ω on the covering space, which is H in the complex case and X ∗Γ(p∞)(ε)a
in the p-adic case. But there is a sign difference in the canonical trivialisation: consider the
universal trivialisation α : Z2 ∼−→ H1(E,Z) on H and let αi denote the image of the standard
basis vector ei of Z2. Then the canonical non-vanishing differential ηcan is defined to be the
unique differential such that

∫
α1
ηcan = 1 under the pairing∫

: H1(E,Z)→ ω∨E, α 7→
(
w 7→

∫
α
w
)
.

As a consequence, when we denote by q∗ω the pullback of ω via H → Y = SL2(Z)\H, then using

the natural period map ι : H ↪→ P1, α 7→
(∫

α2
wcan :

∫
α1
wcan

)
we have a natural isomorphism

q∗ω ∼= ι∗O(−1). On the other hand, in the p-adic case, the trivialisation is given using the image
α1 of e1 under the Hodge–Tate map α : Z2

p → TpE. The canonical differential is then the image

of α1 under HT : TpE = H ét
1 (E,Zp) → ωE∨ = ωE and as discussed earlier, the period map

πHT : X ∗Γ(p∞)(ε)a → P1 therefore induces an isomorphism q∗ωE ∼= π∗HTO(1).
In summary, in the complex case one trivialises ω∨E whereas in the p-adic case it is ωE∨ ,

therefore one description of ωE is by comparing to O(−1) whereas the other uses O(1). It is
this difference that ultimately leads to the different signs in the definition of modular forms.
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3.4. Comparison to Katz’ convergent modular forms. For ε = 0, it has long been known
how to construct sheaves of p-adic modular forms, going back to [Kat73Kat73, §4]. We briefly present
the construction here in the adic language, and sketch how it compares to our setting.

Let us for simplicity assume U = Spa(L); the discussion applies without changes for general
U . Let X ∗Ig(pn)(0) → X ∗(0) be the n-th Igusa curve, i.e. the (Z/pnZ)×-torsor parametrising

trivialisations Z/pnZ ∼−→H∨n of the canonical subgroup. Since this has a natural finite étale
formal model, we can form the inverse limit X ∗Ig(p∞)(0)→ X ∗(0) over n as a sousperfectoid space.

This is a pro-étale Z×p -torsor known as the Igusa tower, relatively parametrising isomorphisms
Zp ∼−→TpH∨. As we will see in more detail in the next section, there is a commutative diagram

X ∗Γ(p∞)(0)a X ∗Γ0(p)(0)a

X ∗Ig(p∞)(0) X ∗(0)

t

where t is given by using the canonical isomorphism H∨n = E[pn]/Hn and sending a trivialisation
α : Z2

p
∼−→TpE to

Zp
(1,0)−−→ Z2

p
∼−→TpE

α−→ TpH
∨.

One now observes that in the case of ε = 0, the function cz + d is of the form

cz + d : X ∗U,Γ(p∞)(0)→ Z×p ,
where as usual we consider Z×p as a profinite adic space. One now checks that t is equivariant with
respect to the map sending ( a bc d ) 7→ cz + d, in the sense that the following diagram commutes:

Γ0(p)×X ∗Γ(p∞)(0)a X ∗Γ(p∞)(0)a

Z×p ×X ∗Ig(p∞)(0) X ∗Ig(p∞)(0).

(cz+d)×t t

It follows formally (e.g. [Heu19Heu19, Lemma 2.8.4]) that ωκ is the pullback of the pro-étale line
bundle on X ∗(0) associated to the cocycle

κ : Z×p → O(U)×.

Returning to general ε ≥ 0 and U , we now use this to give a new proof that ωκ is analytic:

Proposition 3.24. For any 0 ≤ ε < εdef
κ , the sheaf ωκ is an analytic line bundle on X ∗U(ε).

Proof. Away from the boundary, it is clear that ωκ is a pro-étale line bundle, i.e. an invertible
module over the completed structure sheaf of XU(ε)proét, as it is defined via a descent datum for
the pro-étale torsor XΓ0(p∞)(ε)a → XΓ0(p)(ε)a. The crucial point is now that by [HeubHeub, Cor. 3.5],
such a pro-étale line bundle is already an analytic line bundle if it is analytic on any Zariski-dense
open subspace of XU(ε). We can thus reduce to proving the statement over the ordinary locus,
including the boundary; the analyticity will then automatically overconverge.

We now use that the Igusa tower admits a formal model which is still a pro-étale Z×p -torsor.
It follows from [HeubHeub, Prop. 3.8] that ωκ on X ∗(0) is locally trivial in the analytic topology. �

Remark 3.25. Alternatively, one could use the analyticity criterion [HeubHeub, Cor. 3.6], which
says that a pro-étale line bundle on X ∗(ε) × U is analytic if it is analytic in each fibre of a
Zariski-dense subset of points in each factor. It is clear that ωκ becomes trivial over the fibre
of any x ∈ X ∗(ε)(C) because the torsor X ∗Γ(p∞)(ε)→ X ∗(ε) becomes split over x. On the other
hand, Prop. 3.223.22 says that ωκ is analytic over the Zariski-dense set of classical points of W.

4. Comparison with Andreatta–Iovita–Pilloni’s modular forms

In this section, we prove that the sheaves of p-adic modular forms defined above are canonically
isomorphic to those defined by Pilloni in [Pil13Pil13] and Andreatta–Iovita–Pilloni in [AIP18AIP18]. In
order to distinguish their construction from ours, we shall denote the latter sheaf by ωκAIP.
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This extends the comparison for classical weights proved in Prop. 3.223.22 above. We first briefly
summarise the construction.

4.1. The Pilloni-torsor. The construction of ωκAIP relies on the Pilloni-torsor Fm(ε). In this
subsection, we will recall its definition, and show how the section s from Defn 3.203.20 induces a
natural map X ∗Γ(p∞)(ε)a → Fm(ε) into the Pilloni-torsor, allowing a direct comparison of the

modular forms in [AIP18AIP18] with those defined in Defn. 3.153.15 above. This is very similar to [CHJ17CHJ17,
§2.7], which also relies on the section s, but the present setup makes the comparison slightly
easier: it allows for a global comparison map from the perfectoid modular curve to the Pilloni
torsor, which makes it possible to avoid auxiliary choices.

We shall discuss the Pilloni-torsor in an analytic setting, rather than dealing with normal formal
schemes like in [AIP18AIP18]. This is mainly to avoid discussing normalisations in our non-Noetherian
setting over OL – while this is still possible, it would require more work.

Definition 4.1. For any m ∈ Z≥1, let 0 ≤ ε ≤ εcan
m := 1/pm+1. Like in [Sch15Sch15, Definition

III.2.12], one can define a canonical formal model X∗(ε) of X ∗(ε) with a semi-abelian formal
scheme E → X∗(ε). By [AIP18AIP18, Cor. A.2], this admits a canonical subgroup Hm ⊆ E of rank
pm characterised by the property that its reduction mod p1−ε equals kerFm where F is the
relative Frobenius. Let Hm ⊆ E → X ∗(ε) be the adic generic fibre, this is the universal canonical
subgroup of the semi-abelian adic space over X ∗(ε) (cf the discussion in §2.12.1).

The Igusa curve X ∗Ig(pm)(ε)→ X ∗(ε) is now the finite étale (Z/pmZ)×-torsor which relatively

represents isomorphisms of group schemes Z/pmZ→ H∨m.

Consider the pullback ωIg(pm) of the conormal sheaf ω to X ∗Ig(pm)(ε), and denote the total

space of ωIg(pm) by Tm(ε) → X ∗Ig(pm)(ε). Following [Pil13Pil13], the Pilloni-torsor is now a certain

open subspace Fm(ε) ⊆ Tm(ε). We recall this in an analytic setting.

Definition 4.2. For any formal scheme Y, the generic fibre Y = Yad
η comes equipped with a

morphism of locally ringed spaces s : (Y,O+
Y )→ Y. For any coherent sheaf G on Y with generic

fibre G, this gives rise to an integral O+
Y -module G+ := s∗G on Y.

Applying this to the conormal sheaf of E→ X∗(ε) and pulling back to X ∗Ig(pm)(ε), we see that

the sheaf ωIg(pm) carries a natural integral structure ω+
Ig(pm) ⊆ ωIg(pm). The same construction

applied to the conormal sheaf of the canonical subgroup Hm ⊆ E→ X∗(ε) gives a morphism of
O+
X∗

Ig(pm)
(ε)-modules π : ω+

Ig(pm) → ω+
Hm

. Let Hdg be the Hodge ideal on X ∗Ig(pm)(ε) [AIP18AIP18, §3.1].

Lemma 4.3. The following sequence of O+
X∗

Ig(pm)
(ε)-modules is exact:

0→ pmHdg−
pm−1
p−1 ω+

Ig(pm) −→ ω+
Ig(pm)

π−−−→ ω+
Hm
→ 0.

Proof. We have an exact sequence 0→ ωE[pm]/Hm → ωE[pm] → ωHm → 0 over X∗(ε). The middle

term is ωE/p
m, whilst the first term has annihilator Hdg(pm−1)/(p−1) by [AIP18AIP18, Cor. A.4.2]. We

thus have an isomorphism ωE/p
mHdg−(pm−1)/(p−1) ∼= ωHm . Pulling this back under the morphism

of ringed spaces (X ∗Ig(pm)(ε),O
+
X∗

Ig(pm)
(ε))→ (X ∗(ε),O+

X∗(ε))→ X∗(ε) gives the result. �

When we now regard H∨m as a sheaf of sections over X ∗Ig(pm)(ε), we have a morphism of sheaves

(4.1) ψ : Z/pmZ H∨m ω+
Hm

α HT

that defines a canonical section ψ(1) ∈ ω+
Hm

.

Definition 4.4. Let 0 ≤ ε ≤ εcan
m . The Pilloni-torsor Fm(ε) is the O+

X∗
Ig(pm)

(ε)-module defined by

Fm(ε) := {r ∈ ω+
Ig(pm) | π(r) = ψ(1)}.

Let Fm(ε) ↪→ Tm(ε)→ X ∗Ig(pm)(ε) be its total space. By Lem. 4.34.3, this is an analytic torsor under

the group (1 +pm Hdg−(pm−1)/(p−1) Ĝa)→ X ∗Ig(pm)(ε) and an étale torsor over X ∗(ε) for the group

Bm := Z×p (1 + pm Hdg−(pm−1)/(p−1) Ĝa) when combined with X ∗Ig(pm)(ε)→ X ∗(ε).
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Definition 4.5. (1) For the universal weight κun : W → W, let T be the weight space
parameter given by the function κun(q)−1 onW for a fixed topological generator q ∈ Z×p .

(2) For any k ∈ Z≥1, we define the annulus Wk :=W(|T |pk ≤ |p| ≤ |T |pk−1
). For k = 0, we

simply take the disc W0 :=W(|T | ≤ |p|). Then W = ∪k∈Z≥0
Wk.

(3) Let now κ : U → W be any bounded smooth weight, which we may regard as a function

κ : Z×p × U → Ĝm. We let |Tκ| := sup(x,u)∈Z×p ×U
|κ(x, u) − 1| and |δκ| := max(|p|, |Tκ|).

Let r := 3 if p > 2 and r := 5 if p = 2. Then we let 0 < εκ be implicitly defined by

|p|εκ = |δκ|1/p
r+1

. Finally, for any k ∈ Z≥0, we let Uk := κ−1(Wk); then U = ∪k∈Z≥0
Uk.

Remark 4.6. One checks easily that εκ ≤ εdef
κ . Moreover, we note that by definition, εdef

κ is
such that we can define our sheaf of integral modular forms on X (ε) for 0 ≤ ε < εdef

κ , while for
0 ≤ ε < εκ this sheaf will be invertible (although we do not claim this is the optimal bound).

The sheaf ωκAIP is then defined in [Pil13Pil13] and [AIP18AIP18] as follows.

Definition 4.7. Let κ : U → W be a bounded smooth weight. In order to define ωκAIP, we need
to split this up into opens Uk as in Defn. 4.54.5: Let 0 ≤ ε < εκ. Fix now any k ∈ Z≥0 and set
m = r + k − 1 (this implies εκ ≤ εcan

m and εκ ≤ εdef
κ ).

(1) Using the projection pr : Fm(ε)× U → X ∗U(ε), we define

ωκAIP|Uk(V ) := {f ∈ pr∗OFm(ε)×U(V )|γ∗f = κ−1(γ)f for all γ ∈ Z×p (1 + pmĜa)× U}.
Prop. 7.107.10 below shows that these sheaves for different k ∈ Z≥1 can then be glued over
U to get a sheaf ωκAIP. We similarly define ωκ,+AIP by using O+

Fm(ε)×U instead.

(2) For any n ∈ Z≥1 we set ωκ,+AIP,n := ALn∗ωκ,+AIP where ALn : X ∗Γ0(pn)(p
nε)a ∼−→ X ∗(ε) is the

Atkin–Lehner isomorphism (corresponding to the matrix
(
pn 0
0 1

)
). Let i : X ∗Γ0(pn)(ε)a →

X ∗Γ0(pn)(p
nε)a be the restriction map. Then by [AIP18AIP18, Théorème 6.2.4], there is a

canonical isomorphism
i∗ωκ,+AIP,n = q∗nω

κ,+
AIP,

where qn : X ∗Γ0(pn)(ε)a → X ∗(ε) is the forgetful map. For n = 0 we let ωκ,+AIP,0 := ωκ,+AIP.

(3) We therefore set ωκ,+AIP,∞ := q∗ωκ,+AIP where q : X ∗Γ0(p∞)(ε)a → X ∗(ε) is the forgetful map.

4.2. The comparison morphism. The following is the main result of this section.

Theorem 4.8. Let κ : U → W be a bounded smooth weight, let 0 ≤ ε ≤ εκ, and let n ∈ Z≥0∪{∞}.
Then there is a natural isomorphism of O+-modules on X ∗U,Γ0(pn)(ε)a

ωκ,+n
∼−→ ωκ,+AIP,n.

In particular, the ωκ,+n are invertible O+-modules. By inverting p, we also obtain isomorphisms of
invertible O-modules ωκn

∼−→ ωκAIP,n on X ∗U,Γ0(pn)(ε)a. Moreover, this induces a Hecke equivariant
isomorphism between the respective spaces of modular forms.

For n = 0, this in particular gives a canonical isomorphism ωκ,+ ∼= ωκ,+AIP on X ∗U(ε).
The proof of Thm. 4.84.8 now relies on the following lemma (cf [AIP18AIP18, p 31]):

Lemma 4.9. Let ε ≤ εcan
m . Then s induces a morphism over X ∗(ε)

s : X ∗Γ(p∞)(ε)a → Fm(ε).

Let s̃ := s ◦ un where un :=
(
pn 0
0 1

)
. Then for any γ = ( a bc d ) ∈ Γ0(pn), we have γ∗s̃ = (cz + d)s̃,

that is the diagram

(4.2)

X ∗Γ(p∞)(p
nε)a X ∗Γ(p∞)(p

nε)a X ∗Γ0(pn)(p
nε)a

Bm ×Fm(ε) Fm(ε) X ∗(ε),

γ

(cz+d)×s̃ s̃ ALn

m

commutes, where m denotes the respective action maps.

Remark 4.10. In fact, the map s factors through the forgetful map X ∗Γ(p∞)(ε)a → X ∗Γ1(p∞)(ε)a.
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Proof. Prop. 7.117.11 will prove a more general version of the first part away from the cusps. The
morphism extends since the relative moduli interpretation of Fm(ε)→ XIg(pm)(ε)→ X (ε) also
holds over the cusps.

A more general version of the second part will be proved in Lem. 7.127.12 below, we now explain
the argument in the elliptic case: Recall that s = π∗HTs. By GL2(Qp)-equivariance of πHT, we

therefore have s̃ = π∗HTs̃ for the section s̃ := u∗ns on Ĝa ⊆ P1. It therefore suffices to prove that
γ∗s̃ = (cz + d)s̃. For this we first note that the action of un sends (z : 1) to (pnz : 1), and
therefore

(4.3) u∗nz = pnz

In particular, un sends Ĝa ⊆ P1 onto pnĜa ⊆ P1. Note that this is preserved by the action of
Γ0(pn) := {( ∗ b∗ ∗ ) ⊆ GL2(Zp)|b ∈ pnZp}. By the same computation as in (3.33.3), we see that on

pnĜa, for any γ′ =
(
a′ b′

c′ d′

)
∈ Γ0(pn), we have γ′∗s = (c′z + d′)s. For γ′ := unγu

−1
n , this shows

γ∗s̃ = γ∗u∗ns = u∗n(unγu
−1
n )∗s = u∗n

(
a pnb

p−nc d

)∗
s = u∗n((p−ncz + d)s)

(4.34.3)
= (cz + d)s̃. �

Proof of Thm. 4.84.8. It suffices to prove this locally on W , so we may assume that κ has image in
Wk for some k ∈ Z≥0. Set m = r + k − 1. We start with the case of n ∈ Z≥1.

Let f be a section of ωκ,+AIP. For simplicity of notation, let us assume that f is a global section,

even though the proof works for any section. We may then regard f as a map Fm(ε)× U → Ĝa.
To see that s̃∗f = f ◦ s̃ is a section of ωκ,+n , we use that for any γ ∈ Γ0(pn), the diagram

X ∗Γ(p∞)(p
nε)a × U X ∗Γ(p∞)(p

nε)a × U

Z×p (1 + pmĜa)×Fm(ε)× U Fm(ε)× U

Ĝm × Ĝa Ĝa

γ

(cz+d)×s̃×id s̃×id

m×id

κ−1×f f

m

commutes, where m denotes the multiplication map. Here the top square commutes by Lem. 4.94.9
and the bottom square is commutative by definition of ωκ,+AIP. The outer square now shows that

γ∗(s̃∗f) = κ−1(cz + d)s̃∗f

as desired. This gives a natural morphism of O+
X∗U (ε)-modules ωκ,+AIP → ALn∗ω

κ,+
n which in turn

induces s̃∗ : ωκ,+AIP,n = ALn∗ωκ,+AIP → ωκn.

To see this is an isomorphism, recall that ωκ,+AIP is invertible, so locally on some open U ⊆ XU(ε)
we can find f that is invertible as an element of O+

Fm(ε)×U(U). Thus ωκ,+AIP|U = fO+
U . Let

V := AL−n(U); then s̃∗f ∈ q∗O+
X∗U,Γ(p∞)

(pnε)a
(V ) is invertible. It now follows from Prop. 3.83.8 that

we have ωκ,+|V = s̃∗fO+
V . Thus s̃∗ is an isomorphism locally over U . Since XU(ε) can be covered

by such U , this completes the proof in the case of n ∈ Z≥1.
The case of n = 0 follows from the case of n = 1 since we have ωκ,+ = AL∗ω

κ,+
1 = ωκ,+AIP. For

n =∞, the same argument works for the diagram

(4.4)

X ∗Γ(p∞)(ε)a X ∗Γ(p∞)(ε)a X ∗Γ0(p∞)(ε)a

Z×p ×Fm(ε) Fm(ε) X ∗(ε).

γ

d×s s q

m

which induces an isomorphism s∗ : q∗ω+
AIP → ωκ,+∞ as desired. Lastly, the statement about Hecke

equivariance is a special case of Prop. 10.810.8. �

5. Perfectoid Hilbert modular varieties for G∗

For the remainder of the paper, we move on to Hilbert modular forms. In this section, we
recall the classical Hilbert modular varieties for G and G∗, and the perfectoid versions for G∗.
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5.1. Classical Hilbert modular varieties for G and G∗. The content of this section is
mainly classical and can be found in many sources, e.g. [TX16TX16, §2] and [Hid04Hid04, §4].

Notation 5.1. (1) Let F be a totally real field of degree g over Q with ring of integers OF
and absolute different d ⊆ OF . Let Σ denote the set of infinite places of F .

(2) Recall that we fixed a rational prime p. We set Op := OF ⊗ Zp = ⊕p|pOFp , where p|p
ranges over the prime ideals of OF over p and where Fp is the completion of F at p.

(3) For any fractional ideal r, let r+ denote the totally positive elements in r; in general ‘+’
will denote ‘totally positive’. We have a non-degenerate trace pairing Tr : r× r−1d−1 → Z.

(4) Let G := ResF/Q GL2 and let G∗ := G×ResF/Q Gm Gm, where the map G→ ResF/Q Gm is

given by the determinant morphism and Gm → ResF/Q Gm is given by the diagonal map.

Let S := HΣ, where H ⊂ C is the standard upper half-plane. For K an open compact
subgroup of G(Af), there exists a Shimura variety ShK(G,S) of level K over Q. Similarly, if
K∗ is an open compact subgroup of G∗(Af ), there exists a Shimura variety ShK∗(G

∗,S) over Q.
These Shimura varieties are the Hilbert modular varieties. The Shimura variety ShK∗(G

∗,S) is
of PEL type, therefore of Hodge type, whereas the Shimura variety ShK(G,S) is of abelian type.

Definition 5.2. Let c ⊆ OF be any nonzero ideal and let N be coprime to c.

(1) Let Kc := G(Af ) ∩
(
ÔF (cd)−1ÔF

cdÔF ÔF

)
. Let K∗c := G∗(Af ) ∩Kc.

(2) Let K0(c, N) := {γ ∈ Kc|γ ≡ ( ∗ ∗0 ∗ ) mod N} and K∗0 (c, N) := K0(c, N) ∩K∗c .
(3) Let K1(c, N) := {γ ∈ Kc|γ ≡ ( ∗ ∗0 1 ) mod N}. Let K∗1 (c, N) := K1(c, N) ∩K∗c .
(4) Let K(c, N) := {γ ∈ Kc|γ ≡ ( 1 0

0 1 ) mod N}. Let K∗(c, N) := K(c, N) ∩K∗c .

5.1.1. Moduli problems for Hilbert–Blumenthal abelian varieties. Hilbert modular varieties arise
as solutions to moduli problems of abelian varieties with level structures.

Definition 5.3. Let S be any scheme. Let c ⊆ OF be an ideal.

(1) A Hilbert–Blumenthal abelian variety (HBAV) over S is a triple (A, ι, λ) consisting of an
abelian variety A over S with real multiplication ι : OF ↪→ End(A) and a c-polarisation
λ : A⊗ c ∼−→ A∨, such that ι is stable under the Rosati-involution.

(2) Given a HBAV (A, ι, λ), we refer to (A, ι) as the underlying abelian variety with real
multiplication (AVRM).

(3) A morphisms of HBAVs is an OF -linear morphisms f : A→ A′ of abelian S-schemes for
which λ = f∨ ◦ λ′ ◦ f .

The Shimura varieties for G∗ represent moduli problems given by c-polarised HBAVs with
additional rigidifying level structure, which we shall discuss next. In contrast, the Shimura
varieties for G are only coarse moduli spaces parametrising triples (A, ι, [λ]) where (A, ι) is an
AVRM and [λ] = {νλ|ν ∈ O×,+F } is a polarisation class, plus level structure.

Definition 5.4 (Level structures for G). Let (A, ι, λ) be a c-polarised HBAV, let N ∈ Z≥4 with
(N, p) = 1 and let n ∈ Z≥0.

(1) A µN -level structure is a closed immersion of OF -module schemes d−1 ⊗Z µN ↪→ A[N ].
(2) A Γ0(pn)-level structure is an OF -submodule scheme Φn : C ↪→ A[pn] that is étale locally

isomorphic to OF/pnOF . Via λ, this is equivalent to giving an OF -submodule scheme

C ′ := λ(C ⊗ c) ↪→ A∨[pn].

In the context of Shimura varieties for G∗, we also call the same data a Γ∗0(pn)-level
structure, since this level structure appears for both G∗ and G.

(3) A Γ1(pn)-level structure is a closed immersion of OF -module schemes

Φn : OF/pnOF ↪→ A∨[pn].

Again, we also call this a Γ∗1(pn)-level structure,
(4) A Γ(pn)-level structure is an isomorphism of OF -module schemes

αn : (OF/pnOF )2 ∼−→ A∨[pn].
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Remark 5.5. Our definition of level structures at p is slightly non-standard: usually one would
define a Γ(pn)-structure to be an isomorphism (OF/pnOF )2 ∼−→ A[pn]. The reason we use the
above modified version parametrising A∨[pn] is that the Hodge–Tate morphism is of the form
TpA

∨ → ωA, so it is this level structure which gives rise at infinite level to canonical sections of
ωA, as required for the definition of modular forms. The isomorphisms (OF/pnOF )2 ∼−→ A[pn]
would instead give sections of ωA∨ . We note, however, that given a fixed c-polarisation λ as in
the moduli problem for G∗, a Γ(pn)-level structure is equivalent to an isomorphism

(OF/pnOF )2 ⊗ c−1 αn⊗c−1

−−−−−→ A∨[pn]⊗ c−1 λ−1

−−→ A[pn].

In this case our notion is (non-canonically) isomorphic to the more standard definition.

We now define level structures for G∗. Recall that we have defined Γ∗0 = Γ0 and Γ∗1 = Γ1-level
structures to be the same, but at full level we need a slightly different definition, analogous to
[Rap78Rap78, §1.21]. To motivate this, observe that we can see G as a group preserving a pairing up
to similitude, whilst G∗ is the subgroup that preserves certain rational structures within this.
For the Shimura varieties associated to G∗, we therefore need isomorphisms αn preserving a
rational structure. We will now define the OF -structure in which the rational structure should
live, via an OF -linear version of the Weil pairing.

Definition 5.6. Let (A, ι, λ) be a HBAV. The Weil pairing epn : A[pn]×A∨[pn]→ µpn satisfies
epn(ax, y) = epn(x, ay) for a ∈ OF (see [Mum70Mum70, Section 20]). The Weil pairing can therefore be
extended to an OF -linear version, by using the trace map to write d−1 ' Hom(OF ,Z), setting

ẽn : A[pn]×A∨[pn] −→ d−1 ⊗Z µpn ,(5.1)

x, y 7−→ (a 7→ epn(ax, y))

which is OF -bilinear and perfect. We call ẽn the OF -linearisation of epn . Note epn = Tr ◦ ẽn.

We fix a non-degenerate OF -linear pairing on (OF/pnOF )2 ⊗ c−1 × (OF/pnOF )2 to compare
to the Weil pairing. To this end, fix an isomorphism of free Op-modules of rank 1

β : c−1Op → d−1 ⊗Z Tpµp∞ =: d−1(1),

or equivalently an Op-module generator β ∈ cd−1 ⊗Z Tpµp∞ = cd−1(1). Then we get a pairing

〈−,−〉β,n : (OF/pnOF )2 ⊗ c−1 × (OF/pnOF )2 β×id−−−→ (d−1/pn)2 ⊗Z µpn × (OF/pnOF )2

det−−→ d−1 ⊗Z µpn ,

where det : [(a, b), (c, d)] 7→ ad− bc. Given a Γ(pn)-level structure αn, this fits into a diagram

(5.2)

(OF/pnOF )2 ⊗ c−1 × (OF/pnOF )2 d−1 ⊗Z µpn µpn

A[pn] × A∨[pn] d−1 ⊗Z µpn µpn .

λ−1◦(αn⊗id) αn

〈−,−〉β,n Tr

b∼

ẽn Tr

The two pairings into d−1 ⊗Z µpn will always be similar, that is there always exists some
b ∈ Aut(d−1 ⊗Z µpn) = (OF/pnOF )× that makes the above diagram commute.

Definition 5.7. A Γ∗(pn)-level structure is a Γ(pn)-level structure αn : (OF/pn)2 ∼−→ A∨[pn]
such that the similitude b in (5.25.2) lies in the subgroup (Z/pnZ)× ⊆ (OF/pnOF )×. Equivalently,
it is an αn such that after composing both pairings with the trace map – the final horizontal
maps of (5.25.2) – the two pairings into µpn remain similar via b ∈ Aut(µpn) = (Z/pnZ)×.

Via its natural action on (OF/pnOF )2, the group G∗(Zp/pnZ) ⊆ GL2(OF/pnOF ) acts on
Γ∗(pn)-level structures by letting γ act as pre-composition with γ∨ := det(γ)γ−1.

Remark 5.8. We note that the dual ensures that we obtain a left-action. One reason for us to
use γ∨ rather than γ−1 to define the action is Lem. 8.238.23 below.

In the limit n → ∞, the pairings 〈−,−〉β,n are compatible and define a pairing 〈−,−〉β :
O2
p⊗ c−1×O2

p → d−1(1). A Γ∗(p∞)-structure is a compatible collection of Γ∗(pn)-level structures.
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Equivalently, this is an isomorphism O2
p → TpA

∨ inducing a (rational) similitude of pairings on

O2
p ⊗ c−1 ×O2

p → TpA× TpA∨ as above.bb

5.1.2. Hilbert modular varieties as moduli spaces. We now recall the moduli problems that the
Shimura varieties ShK∗(G

∗,S) represent. Consider the functor

Sch /Z[1/N ] −→ Set,

sending a scheme S to the set of isomorphism classes of (A, ι, λ, µ), where (A, ι, λ) is a c-polarised
HBAV and µ is a µN -level structure which we call the tame level. This functor is represented
by the Hilbert moduli scheme X(c, µN)Z[1/N ] over Z[1/N ]. We denote by X(c, µN)R the base
change to any Z[1/N ]-algebra R. Then there is an isomorphism

X(c, µN)C ∼= ShK∗1 (c,N)(G
∗,S).

Thus X(c, µN)Z[1/N ] is a model for ShK∗1 (c,N)(G
∗,S) over Z[1/N ]. We write X := X(c, µN)L

In the case ofG, the Shimura variety ShK1(c,N)(G,S) also has a canonical modelXG(c, µN)Z[1/N ],
but this is only a coarse moduli space; for an algebraically closed field C, and appropriate K,
the C-points of XG(c, µN)C parametrise isomorphism classes of tuples (A, ι, [λ], µN), where [λ] is
a polarisation class. We shall write XG := XG(c, µN)L.

We obtain the analogous results when we now add level structures at p. Let Γ∗p be one of
Γ∗0(pn), Γ∗1(pn) or Γ∗(pn), and let K∗p be the corresponding subgroup K∗0 (c, pn), K∗1 (c, pn) or
K∗(c, pn). Consider the functor Sch /Q → Set sending a scheme S to the set of isomorphism
classes of (A, ι, λ, µ, α), where (A, ι, λ, µ) is as above, and α is a Γ∗p-level structure. This functor
is represented by a Hilbert moduli scheme X(c, µN ,Γ

∗
p)Q whose base-change to C is isomorphic

to ShK∗1 (c,N)∩K∗p (G∗,S). Here for Γ∗p = Γ∗(pn) we recall that our definition of this level structure
depends on our chosen isomorphism β, and the isomorphism is given by transforming our
notion of a Γ∗(pn)-level structure into the usual notion, by using β, the complex unit root
exp(2πi/pn) and the given polarisation to make (OF/pnOF )2 → A∨[pn] into an isomorphism
d−1 ⊗ µpn ×OF/pnOF → A[pn].

Again we abbreviate XΓ∗p := X(c, µN ,Γ
∗
p)L. By the natural forgetful map between the moduli

functors, we can summarise these Hilbert moduli schemes in the tower of moduli schemes

XΓ∗(pn) −→ XΓ∗1(pn) −→ XΓ∗0(pn) −→ X.

Let X∗Γ∗p denote the minimal compactification of XΓ∗p over L. For tame level, we also have the

minimal compactification X∗OL over OL. These can all be defined via base-change from Q or
Z[1/N ], respectively.

Finally in this subsection, we pass to p-adic geometric spaces:

Definition 5.9. Let Γ∗p be a level at p of the form Γ∗0(pn),Γ∗1(pn),Γ∗(pn) for some n ∈ Z≥0.

(1) Let X∗ → Spf(OL) be the p-adic completion of XOL → Spec(OL).
(2) We denote by XΓ∗p the adic analytification of XΓ∗p . We thus obtain a tower of adic spaces

XΓ∗(pn) −→ XΓ∗1(pn) −→ XΓ∗0(pn) −→ X .
(3) In the case of tame level, we also have the compactification X∗ → Spf(OL) obtained by

completion of X∗OL . Its adic generic fibre coincides with the analytification X ∗ of X∗.

Remark 5.10. Our notation suppresses the dependence on the polarisation ideal c (and on the
tame level). If required, we will make this clear by writing X∗c,K∗p , X ∗c,K∗p , etc.

5.2. Hilbert modular varieties for G∗ at infinite level. Next, we recall the perfectoid
Hilbert modular varieties for the group G∗, following [Sch15Sch15] and [CS17CS17].

Let X ∗(ε) denote the admissible open subset of X ∗ defined by |H̃a| ≥ |p|ε, where H̃a denote
any local lift of the (total) Hasse invariant. Now, for n ∈ Z≥0 take ε ∈ [0, (p− 1)/pn) ∩ log |L|.
Then by [AIP16aAIP16a, Section 3.2] we have an integral model X∗(ε) of X ∗(ε). Moreover, abelian

bThe above choices may not seem natural, but we remark that they do not affect our construction for modular
forms G, and are just an auxiliary choice in our construction of G∗-forms. We also note that the Shimura varieties
are of course completely canonical, it is the moduli interpretation which requires the choice.
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schemes parametrised by X ∗(ε) have a canonical subgroup of level n which agrees with the
kernel of the n-th iterated power of the Frobenius map modulo p1−ε. Following [Sch15Sch15], we let
X ∗Γ∗0 (pn)(ε)a denote the anticanonical locus, parametrising subgroups that intersect the canonical

subgroup trivially. The forgetful maps then extend to the minimal compactification and give the
anticanonical tower

· · · −→ X ∗Γ∗0 (p2)(ε)a −→ X
∗
Γ∗0 (p)(ε)a −→ X ∗(ε).

One then has the following analogue of the results in [Sch15Sch15, §III]:

Theorem 5.11. There are perfectoid spaces that are the tilde-limits

(1) XΓ∗0 (p∞)(ε)a ∼ lim←−nXΓ∗0 (pn)(ε)a.

(2) XΓ∗1 (p∞)(ε)a ∼ lim←−nXΓ∗1 (pn)(ε)a.

(3) XΓ∗(p∞)(ε)a ∼ lim←−nXΓ∗(pn)(ε)a.

(4) XΓ∗(p∞) ∼ lim←−nXΓ∗(pn).

They fit into the following tower of pro-étale torsors for the indicated profinite groups

XΓ∗(p∞)(ε)a

XΓ∗1(p∞)(ε)a

XΓ∗0 (p∞)(ε)a

XΓ∗0 (pn)(ε)a.

Γ∗0 (p∞)

Γ∗0 (pn) O×p

where Γ∗0 (pn) ⊆ G∗(Zp) is the subgroup of matrices that are upper triangular mod pn, and
Γ∗0 (p∞) ⊆ G∗(Zp) is the subgroup of upper-triangular matrices.

Part (4) is proved in [Sch15Sch15, §Theorem IV.1.1] in the case that L is algebraically closed, and
under the additional assumption that the embedding G∗ ↪→ GSp2g sends Kp into a subgroup of

GSp2g(Ẑ). In our case, this means that c = 1. One can deduce the general case from this by
first shrinking the level and then quotienting by a Galois action, which by [HanHan, Theorem 1.4]
or [HJHJ, Theorem 5.8] is again a perfectoid space. Part (3) of the proposition then follows by
restriction, and one can modify the argument to also obtain statements (1) and (2).

Alternatively, to prove Theorem 5.115.11 one can follow Scholze’s construction in the Siegel case
[Sch15Sch15, §III], as we shall now demonstrate: here we note that since we ignore the boundary, we
do not need to worry about ramification. One first shows (cf [Sch15Sch15, Theorem III.2.15]):

Lemma 5.12. Division by the canonical subgroup defines a natural map

φ : X∗(p−1ε)→ X∗(ε)

that reduces to the relative Frobenius mod p1−δ where δ = p+1
p
ε.

Proof. We argue as in [Sch15Sch15, Thm. III.2.15]. Let A→ X(p−1ε) be the universal abelian scheme.
Then the abelian scheme A′ := A/H1 defines a morphism φ : X(p−1ε)→ X. Locally on any affine

open Spf(R) ⊆ X defined over Zp, this corresponds to a morphism φ : R→ R〈T 〉/(T H̃a− pp−1ε).

Since H1 ≡ kerF mod p1−p−1ε, we have A′ ≡ A(p) mod p1−p−1ε. Consequently, φ reduces mod

p1−p−1ε to the relative Frobenius on R. Here R(p) = R since R is already defined over Zp. In

particular, since Ha(A(p)) = Ha(A)p, we have φ(H̃a) ≡ H̃a
p

mod p1−p−1ε. Consequently,

T pφ(H̃a) ≡ T pH̃a
p

= pε mod p1−p−1ε

inside R〈T 〉/(T H̃a− pp−1ε). We can therefore find u ∈ R such that

T pφ(H̃a) = pε + p1−p−1εu = pε(1 + p1−δu).

Sending T 7→ φ(T ) := T p(1 + p1−δu)−1 therefore defines a unique extension

φ : R〈T 〉/(T H̃a− pε)→ R〈T 〉/(T H̃a− pp
−1ε)
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giving the desired lift to a map

(5.3) φ : X(p−1ε)→ X(ε).

Since φ mod p1−ε is given by the Frobenius on R, and by sending T 7→ T p(1 + p1−δu)−1 ≡
T p mod p1−δ, this map reduces to the relative Frobenius mod p1−δ as desired.

It remains to extend this to the minimal compactification. Since the boundary is already
contained in the ordinary locus, it suffices to consider the case of ε = 0, and thus δ = 0. It
moreover suffices to consider the case of L = Qcyc

p ; the general case follows by base-change.
Since X∗Fp is normal (see [Cha90Cha90, Thm. 4.3] and the discussion in [KL05KL05, 1.8.1]), and the cusps

are of codimension ≥ 2, we can now apply Scholze’s version of Hartog’s extension principle,
[Sch15Sch15, Lem. III.2.10] to see that φ extends uniquely over the boundary to a map

φ : X∗(0)→ X∗(0)

which still reduces to the relative Frobenius mod p. Glueing this to (5.35.3) proves the lemma. �

Proof of Thm. 5.115.11. We can argue as in [Sch15Sch15, Cor. III.2.19]. For every n ∈ N we have by
Lem. 5.125.12 a morphism φ : X∗(p−n−1ε)→ X∗(p−nε) that reduces to the relative Frobenius mod

p
1− p+1

pn+1 ε and in particular mod p1−δ where δ := p+1
p
ε. Consequently, X∗(p−∞ε) := lim←−φX

∗(p−nε)

is a flat formal scheme for which the relative Frobenius mod p1−δ is an isomorphism. It follows
that the generic fibre X ∗(p−∞ε) is perfectoid and moreover, by [SW13SW13, Prop. 2.4.2], on the
generic fibres we have

X ∗(p−∞ε) ∼ lim←−
φ

X ∗(p−nε).

By [SW13SW13, Prop. 2.4.3], we can now restrict to the open modular curve to deduce that there is
a perfectoid tilde-limit X (p−∞ε) ∼ lim←−φX (p−nε). Since the Atkin–Lehner isomorphisms ALn

define an isomorphism of inverse systems of the anticanonical tower to the system

· · · −→ X (p−n−1ε)
φ−−→ X (p−nε) −→ . . .

we equivalently have XΓ∗0 (p∞)(ε)a ∼ lim←−nXΓ∗0 (pn)(ε)a, as desired. This proves part (1).

To deduce parts (2) and (3), we use that the forgetful morphism XΓ∗1(pn)(ε)a → XΓ∗0 (pn)(ε)a is
finite étale. By pulling these back from varying n, we obtain a tower of finite étale morphisms

XΓ∗0 (p∞)(ε)a XΓ∗0 (p∞)∩Γ∗1(pn)(ε)a . . .

XΓ∗0 (pn)(ε)a XΓ∗1(pn)(ε)a

Since perfectoid tilde-limits of inverse systems of perfectoid spaces with affinoid transition maps
exist, we obtain a perfectoid tilde-limit

XΓ∗1(p∞)(ε)a ∼ lim←−
n

XΓ∗0 (p∞)∩Γ∗1(pn)(ε)a.

This proves part (2). Part (3) follows similarly using that XΓ∗1(pn) → XΓ∗0 (pn) is finite étale.
Since the morphisms XΓ∗1(pn)(ε)a → XΓ∗0 (pn)(ε)a and XΓ∗(pn)(ε)a → XΓ∗0 (p)(ε)a and XΓ∗(pn)(ε)a →

XΓ∗0 (pn)(ε)a are finite étale torsors for the groups (OF/pnOF )×, {( ∗ ∗c ∗ ) ∈ G∗(Z/pnZ)|c ∈ pOF/pnOF}
and {( ∗ ∗0 ∗ ) ∈ G∗(Z/pnZ)}, respectively, the last statement follows from the fact that perfectoid
tilde-limits commute with fibre products.

It remains to prove (4), which we deduce from (3) using the G∗(Qp)-action at infinite level
recalled in §8.4.18.4.1: like in [Sch15Sch15, §III.3], it suffices to prove that on the level of topological spaces
we have G∗(Qp)|XΓ(p∞)(ε)a| = |XΓ(p∞)| := | lim←−nXΓ(pn)|. But as it suffices to prove this after
passing to a smaller Kp and any field extension of C, we can reduce to the case considered in
[Sch15Sch15, Theorem IV.1.1]. This finishes the proof of the theorem. �

Remark 5.13. As in the elliptic case, we have a moduli description of the (C,C+)-points of
XΓ∗(p∞) for any perfectoid extension C of L: They are in functorial one-to-one correspondence
with isomorphism classes of tuples (A, ι, λ, µN , α) where (A, ι, λ) is an ε-nearly ordinary c-polarised
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HBAV over C with tame level µN , together with a Γ∗(p∞)-level structure α : O2
p
∼−→ TpA

∨. The
subspace XΓ∗0(p)(ε)a represents those tuples for which α(1, 0) generates a subgroup of A∨[p] that
is different to the canonical subgroup.

Definition 5.14. The G∗(Z/pnZ)-actions on XΓ∗(pn) in the limit give rise to a G∗(Zp)-action on
XΓ∗(p∞) which in terms of moduli can be described as follows: the action of γ ∈ G∗(Zp) ⊆ GL2(Op)
sends any HBAV (A, ι, λ, α : O2

p → TpA
∨) to (A, ι, λ, α ◦ γ∨).

5.3. The Hodge–Tate period morphism and its image. For any adic space S over Spa(L),
we denote by ResOF |Z S the functor on affinoid (L,OL)-algebras given by (R,R+) 7→ S(RF , R

+
F ),

where RF := R ⊗Q F and R+
F is the integral closure of R+ ⊗Z OF in RF . If S = Xan is the

analytification of a variety X over L for which the usual restriction of scalars ResOF |ZX is
representable by a variety, we have ResOF |Z S = (ResOF |ZX)an. For all spaces we need below,
this shows that ResOF |Z S is representable by an adic space.

For example, ResOF |Z P1 is the adic analytification of the finite type scheme representing the
functor that sends any L-algebra R to the set P1(R⊗Z OF ). This is the flag variety of G∗. By
[CS17CS17, Thm. 2.1.3], there is a Hodge–Tate period map of the form

πHT : XΓ∗(p∞) → ResOF |Z P
1.

Remark 5.15. On points, this map has the following moduli interpretation: let C/L be a
complete algebraically closed field and let A a c-polarised HBAV over C. Then the Hodge–Tate
filtration is a short exact sequence of C ⊗Zp Op-modules

0 −→ Lie(A∨)(1) −→ TpA
∨ ⊗Zp C

HTA−−−→ ωA −→ 0

Now, a point x ∈ XΓ∗(p∞)(C,C
+) gives rise to a trivialisation O2

p

∼−→ TpA
∨ which we can use

to consider the above as a filtration of O2
p ⊗Zp C of rank 1. This defines the desired point

πHT(x) ∈ ResOF |Z P1(C,C+) = P1(Op ⊗Zp C).

For the definition of Hilbert modular forms, it will be important for us to bound the image
of the anticanonical locus under the Hodge–Tate period map. More precisely, our goal is to
compare this to a family of neighbourhoods of P1(Op) ⊆ ResOF |Z P1 which we shall now define.

Definition 5.16. Recall from Defn. 3.113.11 that we had defined adic groups Ga, Gm, Ĝa, Ĝm.

(1) By applying the functor ResOF |Z−, we obtain adic spaces ResOF |Z Gm, ResOF |Z Ga, and

open subspaces ResOF |Z Ĝm, ResOF |Z Ĝa.
(2) Given a point x ∈ ResOF |Z Ga, and an element z ∈ L with |z| = r, we shall call the open

subspace Br(x) := x+ zResOF |Z Ĝa ⊆ Ga the ball of radius r around x.

Definition 5.17. The subspace P1(Op) = ResOF |Z P1(Zp) is a profinite set, and therefore has a
geometric incarnation as a morphism P1(Op)→ ResOF |Z P1, where as usual we also write P1(Op)
for the associated profinite perfectoid space.

We embedded Ga ↪→ P1 via z 7→ (z : 1). By applying ResOF |Z, this defines an open subspace
ResOF |Z Ga ↪→ ResOF |Z P1. We also have Op =: B0(Op : 1) ↪→ P1(Op) via a 7→ (a : 1) for a ∈ Op.
For r ∈ (0, 1] ∩ |L|, we define the open neighbourhood Br(Op : 1) ⊆ ResOF |Z Ĝa ⊆ ResOF |Z P1 of

B0(Op : 1) to be the union of all balls of radius r around points in Op ↪→ Ĝa ⊆ ResOF |Z P1. We
make analogous definitions for open subspaces Br(O×p : 1) and Br(1 : pOp) of ResOF |Z P1.

Proposition 5.18. Let 1 > r ≥ 0. Then for any m ∈ Z≥1 with 1/pm ≤ r and any 0 ≤ ε ≤ 1/2pm,
or ε ≤ 1/3pm if p = 3, or ε ≤ 1/4pm if p = 2, we have:

(1) πHT(XΓ∗(p∞)(ε)c) ⊆ Br(1 : pOp),
(2) πHT(XΓ∗(p∞)(ε)a) ⊆ Br(Op : 1).

For the proof, we need the following technical input on the Hodge–Tate morphism:

Proposition 5.19. Let K be a completely valued extension of Qp with algebraic closure K. For
any v ∈ |R|, let (pv) := {x ∈ K | |x| ≤ v}. Let D be a p-divisible group over OK of dimension d
and height h. Let 0 ≤ ε be such that the Hodge ideal is Hdg(D) = (pε). Let n ∈ Z≥0 be such that

ε ≤ 1/2pn−1 if p ≥ 5, or ε ≤ 1/3pn−1 if p = 3, or ε ≤ 1/4pn−1 if p = 2. Let δ := εp
n−1
p−1

< 1.
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(1) D has canonical subgroups 1 ⊆ H1 ⊆ · · · ⊆ Hm · · · ⊆ Hn ⊆ D of level m, finite locally
free of rank pmd, for all m ≤ n. They reduce to the kernel of Frobenius on D mod (p1−δ).

(2) The map ωD[pn] → ωHn induces an isomorphism ωD[pn]/(p
n−δ) = ωHn/(p

n−δ).

(3) The Hodge–Tate map Hn(K)∨ ⊗Z OK → ωHn ⊗OK OK has cokernel of degree ε/(p− 1).

Proof. (1) is a special case of [AIP18AIP18, Cor. A.2, parts 1,2]. For (2), in the case of p > 2, this is
[AIP15AIP15, Prop. 3.2.2]. For the case of p = 2, we can in the proof replace [AIP15AIP15, Thm. 3.1.1]
by [AIP18AIP18, Cor. A.2.4]. Finally, for p > 2, (3) is again [AIP15AIP15, Prop. 3.2.2]. The case of (3)
for p = 2 follows from [AIP18AIP18, Prop. A.3], which applies by 2 ∈ Hdg(D)4 and which says that
det coker = detωHn/HdgT for an ideal HdgT ⊆ OK satisfying HdgTp−1 = Hdg(D) = (pε). �

Proof of Prop. 5.185.18. It suffices to check this on (C,C+)-points for C algebraically closed.
Let z ∈ XΓ(p∞)(ε)(C,C

+) correspond to a c-polarised HBAV A/C with extra data and an
isomorphism α : O2

p → TpA
∨. Let A∨0 be the semi-abelian scheme over OC associated to A∨ and

let V be the kernel of the integral Hodge–Tate-map; then there is a left exact sequence

0→ V → TpA
∨
0 ⊗OC

HT−−→ ωA0

and by definition, V ⊆ TpA
∨
0 ⊗ OC is saturated. Via α, it thus gives a point (a : b) ∈

P1(Op ⊗Zp OC) ∼= P1(OC)Σ with a = (av)v, b = (bv)v ∈ OΣ
C , which is the image of z under πHT.

Let n := m+ 1. Upon reduction mod pn, we get an injection V/pn → A∨0 [pn]⊗Z OC which
fits into a (not necessarily exact) complex

0→ V/pn → A∨0 [pn]⊗OC → ωA0[pn].

The Hodge ideals of the p-divisible groups of A and A∨ are the same (e.g. [AIP15AIP15, Thm. 3.1.1]);
thus by Prop. 5.195.19 (1) and our choice of ε, there is a canonical subgroup Hn ⊆ A∨0 [pn] of rank
pn. Modulo a certain power of p, the position of V/pn coincides with that of Hn inside A∨0 [pn]:

Claim. Let x = n− pn

p−1
ε. Then inside A∨0 [pn]⊗OC/px, we have V/px = Hn ⊗OC/px.

To see that this proves the proposition, note that Hn ⊗Z OC ⊆ A∨0 [pn]⊗Z OC has Zp/pnZp-
coordinates. Moreover, the case (1) that z ∈ XΓ(p∞)(ε)c(C,C

+) is equivalent to the coordinates
of Hn being of the form (1 : 0) ∈ P1(Z/pZp)Σ after reducing modulo p. The claim then implies
that b/a ∈ pOp + pxOΣ

C , and hence πHT(z) = (a : b) ∈ B|px|(1 : pOp). Since x > n− 1, we have
|px| = 1/px ≤ 1/pn−1 ≤ r. This implies πHT(z) ∈ Br(1 : pOp), as desired.

The proof of (2) follows in the same way, using that z ∈ XΓ(p∞)(ε)a(C,C
+) is equivalent to

the coordinates of Hn being of the form (c : 1) ∈ P1(Z/pZp)Σ for some c ∈ Z/pZp, and therefore

(5.4) πHT(z) = (a : b) ∈ B|px|(Op : 1).

Proof of claim: Let y := n− δ = n− pn−1
p−1

ε. By Prop. 5.195.19 (2), modulo py the Hodge–Tate map

can be described as

HTy : A∨0 [pn]⊗OC/py → ωA∨0 [pn] ⊗OC/py = ωHn ⊗OC/py.
Let now N := ker HTy and Q := coker HTy and consider the exact sequence

0→ N → A∨0 [pn]⊗Zp OC/py
HTy−−→ ωHn/p

y → Q→ 0

By Prop. 5.195.19 (3), the OC-module Q = coker HTy has degree ∂ := ε/(p− 1). Using additivity of
degrees of OC-modules in extensions, we calculate that

degN = deg(A0[pn]⊗Zp OC/py)− degωHn/p
y + degQ = 2gy − gy + ∂ = gy + ∂.

Observe now that M1 := V/py and M2 := Hn ⊗Zp OC/py are both free OC/py-submodules
of rank g of A0[pn] ⊗Zp OC/py that are contained in N . Since N is py-torsion and of degree
gy + ∂, we conclude from this that N is of the form (OC/py)g ⊕ T as an OC-module, where T is
p∂-torsion. Second, this shows that inside p∂N , the modules p∂M1 and p∂M2 coincide. Thus the
same is true inside A∨0 [pn] ⊗ p∂OC/py. Via multiplication by p∂ : OC/py−∂ ∼−→ p∂OC/py, this
shows that the images of M1 and M2 in OC/py−∂ coincide. Since by definition x = y − ∂, this
gives the desired statement, proving the claim, and hence the proposition. �
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Definition 5.20. We write z for the restriction of πHT to the open subspaces

z : XΓ∗(p∞)(ε)a → Br(Op : 1) ⊆ ResOF |Z Ĝa ⊆ ResOF |Z P
1.

Remark 5.21. If F is split in L, we also consider for any v : F → L the projection

zv : XΓ∗(p∞)(ε)a → ResOF |Z Ĝa = ĜΣ
a

πv−→ Ĝa.

By the universal property of Ĝa, we can interpret each zv as a function in O+(XΓ∗(p∞)(ε)a).
However, we caution that for general L, the morphism z admits no such canonical interpretation.

5.4. The canonical differential.

Definition 5.22. We define a G∗-equivariant vector bundle ResOF |ZO(1) of rank g on ResOF |Z P1

as follows: recall that on P1 we have the line bundle O(1) whose total space π : T (1) → P1

is therefore a Gm-bundle with fibres A1. It moreover has a natural GL2-equivariant action.
By applying the functor ResOF |Z, we see that ResOF |Z π : ResOF |Z T (1) → ResOF |Z P1 is a
ResOF |Z Gm-bundle with fibres ResOF |Z A1. As any choice of Z-basis of OF induces an isomor-
phism ResOF |Z A1 ∼= Ag, we conclude that ResOF |Z π is a vector bundle of rank g. It moreover
receives a natural equivariant ResOF |Z GL2 = G-action (and hence a G∗-action) by functoriality.

Remark 5.23. The vector bundle ResOF |Z T (1) has the following moduli interpretation: for
any Zp-algebra R, the R-points of ResOF |Z P1 parametrise quotients R2 ⊗Z OF → Q of rank 1 as
R⊗Z OF -modules. Then ResOF |Z T (1)→ ResOF |Z P1 represents the choice of a point of Q.

Definition 5.24. Let ωA be the conormal sheaf of the universal abelian variety A → X , an
invertible OX ⊗Z OF -module. Its total space T (ωA)→ X is a ResOF |Z Gm-bundle. As before, if
q : XKp → X is the forgetful map with Kp any of our wild levels, we let ωKp := q∗ωA.

As a special case of [CS17CS17, Thm. 2.1.3. (2)], we then have the following result which forms
the basis of our definition of Hilbert modular forms.

Proposition 5.25. There is a ResOF |Z Gm-equivariant isomorphism

ωΓ∗(p∞) = π∗HT ResOF |ZO(1).

Recall that in §4 we have defined a canonical section s : P1 → T (1) of O(1), non-vanishing
away from ∞. We shall now change notation and denote this by sell : A1 → T (1). We now set:

Definition 5.26. Let s := ResOF |Z sell : ResOF |Z P1 → ResOF |Z T (1). This is a section of the
vector bundle ResOF |ZO(1), non-vanishing over ResOF |Z A1 ⊆ ResOF |Z P1.

Remark 5.27. From the moduli description in the case of g = 1, we see that in the moduli
interpretation, s sends a quotient R2 ⊗Z OF → Q to the image of (1, 0)⊗ 1.

Remark 5.28. If F is split in L, we have OF ⊗Z L =
∏
v∈Σ L where we interpret Σ as the

set HomZ(OF , L) and where the morphism into the v-component comes from the natural

map OF ⊗Z L
v⊗id−−−→ L. Consequently, we then get a canonical splitting ResOF |Z P1 = (P1)Σ.

Similarly, we see on total spaces that the vector bundle ResOF |ZO(1) becomes the direct sum
ResOF |ZO(1) =

⊕
v∈Σ π

∗
vO(1) of the pullbacks of O(1) on P1 along the projections πv : (P1)Σ →

P1. The section s then decomposes into partial sections s =
∑

v:F↪→L sv where sv := π∗vsell.

Lemma 5.29. For any γ = ( a bc d ) ∈ Γ∗0(p), let (cz+d) be the map ResOF |Z Ĝa
·c−→ pResOF |Z Ĝa

+d−→
ResOF |Z Ĝm. Then we have γ∗s = (cz + d)s, in the sense that the following diagram commutes:

ResOF |Z Ĝm × ResOF |Z T (1) ResOF |Z T (1) ResOF |Z T (1)

ResOF |Z Ĝa ResOF |Z Ĝa.

m γ

γ
(cz+d)×s

γ∗s s

Proof. It suffices to show that this diagram commutes after extending L, so we may without loss
of generality assume that F is split in L. Then by Rem. 5.285.28, ResOF |Z P1 = (P1)Σ is canonically
split, as is the bundle ResOF |Z T (1) = ⊕ΣO(1), and the diagram becomes a product over Σ of
the diagram in Lem. 3.193.19. �
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Definition 5.30. Let s := π∗HTs. This is a section of π∗HT ResOF |ZO(1) = ωΓ∗(p∞). Write
T (ωΓ∗(p∞))→ X for the total space of ωΓ∗(p∞); then we may regard s as a morphism

s : XΓ∗(p∞) → T (ωΓ∗(p∞)).

As in the elliptic case, one checks that:

Lemma 5.31. For any γ = ( a bc d ) ∈ Γ∗0(p), we write cz + d for the composition

cz + d : XΓ∗(p∞)(ε)a
z−→ ResOF |Z Ĝa

z 7→cz+d−−−−−→ ResOF |Z Ĝm.

Then we have γ∗s = (cz + d)s, in the sense that the following diagram commutes:

XΓ∗(p∞)(ε)a XΓ∗(p∞)(ε)a

ResOF |Z Ĝm × T (ωA) T (ωA)

γ

(cz+d)×s s

m

Proof. This follows from Lem. 5.295.29 by pullback along πHT. �

The crucial property of s is given by the following moduli interpretation.

Lemma 5.32. Let x ∈ XΓ∗(p∞)(C,C
+) be a point corresponding to a HBAV A equipped with a

Γ∗(p∞)-level α : O2
p
∼−→ TpA

∨ and extra structures. Then via π∗HT ResOF |ZO(1) = ωΓ∗(p∞),

s(x) = HTA(α(1, 0)) ∈ ωA.

Proof. In terms of the total spaces T (ωΓ∗(p∞)) → XΓ∗(p∞) and ResOF |Z T (1) → ResOF |Z P1, by
Rem. 5.155.15 the isomorphism ωΓ∗(p∞) = π∗HT ResOF |ZO(1) is defined in the fibre of x by sending

(A,α, η ∈ ωA) 7→ (O2
p ⊗Zp C

α−→ TpA
∨ ⊗Zp C

HT−−→ ωA, η ∈ ωA).

Since s by Rem. 5.275.27 sends a quotient x : O2
p ⊗Zp C → Q to the image of (1, 0)⊗ 1 under x, it

follows that s sends x to the image of (1, 0) under HT ◦ α. �

6. Geometric overconvergent Hilbert modular forms

6.1. Weights and analytic continuation. Next we define the relevant weight spaces for G∗

and G, and set up some notational conventions as to how they are related.

Definition 6.1. Let T := ResOF |Z Gm, then define:

(i) W := Spf(ZpJT(Zp)× Z×p K)an
η × L, the weight space for G.

(ii) W∗ := Spf(ZpJT(Zp)K)an
η × L, the weight space for G∗.

An L-point (w, t) ∈ W(L) is a pair of maps w : T(Zp)→ L× and t : Z×p → L× (and analogously,
an L-point of W∗ is just a map T(Zp) → L×). Following [AIP16bAIP16b], we let ρ : W → W∗ be
the morphism associated to the map T(Zp)→ T(Zp)× Z×p defined by x 7→ (x2, NF/Q(x)). For
(w, t) ∈ W(Cp) we write κ = w2 · (t−1 ◦NF/Q) for its image in W∗(Cp), noting that κ(x) ·w(x−2)
factors through some power of the norm.

Definition 6.2. In order to be able to treat single weights and families in a uniform way, we
define a weight to be a morphism κ : U → W or κ : U → W∗ for G and G∗ respectively, where
U is a smooth rigid space over some perfectoid field extension of L. We say that κ is bounded if
its image in W or W∗ is contained in some affinoid open subspace. This generalises Defn. 3.13.1.

By unravelling the definitions, a weight κ : U → W∗ determines a morphism

κ : O×p × U → Ĝm,

which in an abuse of notation we also denote κ. The weight κ is then bounded if and only if

|Tκ| := sup
(t,x)∈O×p ×U

|κ(t, x)− 1| < 1

Similarly, for G we have associated to any κ : U → W a pair of maps (wκ, tκ) of the form

wκ : O×p × U → Ĝm and tκ : Z×p × U → Ĝm. By composing with ρ, we get an associated weight
ρ(wκ, tκ) = w2

κ · (t−1
κ ◦NF/Q) for G∗, which we use to see any weight for G as a weight for G∗.
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Recall from Definition 5.175.17 that we embed Op as a profinite set into ResOF |Z P1 by sending
z 7→ (z : 1). Given a bounded weight, one can then always find an analytic continuation of κ to
a neighbourhood of O×p in ResOF |Z P1. More precisely:

Proposition 6.3. Let κ : U → W∗ be a bounded smooth weight. Let r0 = 1 if p > 2 and r0 = 3
if p = 2. Let rκ := |p|r0 |Tκ|, then for rκ ≥ r > 0, the morphism κ extends uniquely to a morphism

κan : Br(O×p : 1)× U → Ĝm.

Proof. We first prove that such a bound exists. In case that F is split in L, this is completely
analogous to Prop. 3.123.12. In general, we first pass to a finite Galois extension L′|L, with group

H and in which F is split, to obtain a morphism Br(O×p : 1)×L L′ × U → Ĝm. Passing to the
quotient by H, the result follows.

The precise value of rκ follows from [AIP16aAIP16a, Prop. 2.8]. �

Definition 6.4. Let κ : U → W∗ be a smooth bounded weight. Let εdef
κ > 0 be such that

XΓ(p∞)(ε
def
κ )a ⊆ Brκ(Op : 1), see Prop. 5.185.18 for a precise bound on εdef

κ . Then for any c ∈ pOp,
d ∈ O×p , we define the invertible function κ(cz + d) ∈ O+(XU,Γ∗(p∞)(ε)a)

× to be the composition

κ(cz + d) : XU,Γ∗(p∞)(ε)a
πHT×id−−−−→ Br(Op : 1)× U (cz+d)×id−−−−−−→ Br(O×p : 1)× U κan

−−→ Ĝm,

where XU,Γ∗(p∞)(ε)a := XΓ∗(p∞)(ε)a ×L U .

6.2. Definition of overconvergent Hilbert modular forms.

Definition 6.5. For κ : U → W∗ a bounded smooth weight, 0 ≤ ε ≤ εdef
κ and n ∈ Z≥1 ∪ {∞},

we define a sheaf ωκn on XU,Γ∗0 (pn)(ε)a by setting

ωκn(U) := {f ∈ q∗OXU,Γ∗(p∞)(ε)a(U)|γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ∗0 (pn)},

where q : XU,Γ∗(p∞)(ε)a → XU,Γ∗0 (pn)(ε)a is the projection. We similarly get the integral subsheaf

ωκ,+n (U) := {f ∈ q∗O+
XU,Γ∗(p∞)(ε)a

(U)|γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ∗0 (pn)},

by using the O+-sheaf instead. For n = 0, as before, via the Atkin–Lehner isomorphism AL :
XU,Γ∗0 (p)(pε)a ∼−→ XU(ε) we define the sheaves ωκ := ωκ0 := AL∗ω

κ
1 and ωκ,+ := ωκ0 := AL∗ω

κ,+
1 on

XU(ε) thus giving a sheaf on the tame level Hilbert modular variety. If needed we will add a
subscript G∗ to make clear these are sheaves for G∗.

Exactly like in Prop. 3.243.24, we see:

Proposition 6.6. ωκn is an analytic line bundle on XU(ε).

We will also see this in Thm. 7.147.14, which moreover shows that ωκ,+n is an invertible O+-modules.

Proof. Exactly as in the elliptic case, [HeubHeub, Cor. 4.1] shows that the analyticity overconverges
if we can prove it for ε = 0. By the same argument, we may restrict to the good reduction locus,
as this is Zariski-dense in XU . Over this, we again have an Igusa tower with a pro-étale formal
model, and like in the elliptic case, [HeubHeub, Prop. 4.8] gives the desired statement. �

Warning 6.7. We caution the reader that ω1
n is not the same as ωΓ∗0(pn) from Defn. 5.245.24, as the

latter is not an invertible sheaf, when [F : Q] > 1. Instead, we have ω1
n = detωΓ∗(pn).

Definition 6.8. Let κ : U → W∗ be a bounded smooth weight, 0 ≤ ε ≤ εdef
κ and n ∈ Z≥0 ∪{∞}.

We define the space of c-polarised overconvergent Hilbert modular forms for G∗ of weight κ, wild
level Γ∗0 (pn), tame level µN and radius of overconvergence ε to be the L-vector space

MG∗

κ (Γ∗0 (pn), µN , ε, c) := H0(Xc,U,Γ∗0 (pn),µN (ε)a, ω
κ
G∗,n).

Similarly, we define the space of integral overconvergent Hilbert modular forms for G∗ to be

MG∗,+
κ (Γ∗0 (pn), µN , ε, c) := H0(Xc,U,Γ∗0 (pn),µN (ε)a, ω

κ,+
G∗,n).

Remark 6.9. By the Koecher principle (see [AIP16aAIP16a, Prop. 8.4]) or [AIP16bAIP16b, Theorem 5.5.1],
ωκc extends uniquely to a line bundle on a suitable toroidal compactification X tor(c). Let ∂
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denote the boundary divisor, then one can define the subspaces of cusp forms as sections of the
subsheaf ωκc (−∂). Via Thm. 7.147.14 below, these agrees with the spaces of cusp forms defined in
[AIP16bAIP16b]. In particular, they will be projective Banach modules with surjective specialisation
maps (see [AIP16aAIP16a, Thm. 3.16]).

7. Comparison to Andreatta–Iovita–Pilloni’s geometric Hilbert modular forms

In this section, we will show that our spaces of overconvergent Hilbert modular forms for G∗

coincide with those defined in [AIP16aAIP16a].

7.1. The Andreatta–Iovita–Pilloni-torsor. Like in the elliptic case, Andreatta–Iovita–Pilloni
construct integral sheaves of Hilbert modular forms on the Hilbert modular variety as a formal
scheme over OF . In order to define such a sheaf on the full Hilbert modular variety over OF , the
definition of the Pilloni-torsor in the Hilbert case is not just the straightforward adaptation of
the elliptic case (the issue appears away from the Rapoport locus, i.e. on the closed subscheme
concentrated in the special fibre where the abelian scheme does not satisfy the Rapoport condi-
tion). Instead, Andreatta–Iovita–Pilloni in [AIP16aAIP16a, §4.1] explain how this definition needs to be
modified by endowing the sheaf ωA with an integral structure ωint (denoted by F op. cit.) which,
when p is ramified in F , is different to the canonical one. We briefly recall the construction,
with the minor modification that as before we present it in the analytic setting over L rather
than in the excellent Noetherian setting of [AIP16aAIP16a, §4.1].

Definition 7.1. (1) For any m ∈ Z≥1, let εcan
m := 1/pm+1 as before. Then [AIP18AIP18, Cor. A.2]

implies that, for 0 ≤ ε ≤ εcan
m , the universal semi-abelian variety A on X (ε) admits a

canonical subgroup Hm ⊆ A of order pm, étale locally isomorphic to OF/pmOF .
(2) We denote by XIg(pm)(ε) → X (ε) the finite étale (OF/pmOF )×-torsor which relatively

represents isomorphisms OF/pmOF → H∨m of adic spaces with OF -module structure

Let ωIg(pm) be the conormal sheaf of the pullback of A to XIg(pm)(ε). It has an integral subsheaf
ω+

Ig(pm) obtained from its formal model on X∗(ε). The canonical subgroup Hm ⊆ A, considered

as a finite flat group over XIg(pm)(ε) induces a map π : ω+
Ig(pm) → ω+

Hm
. As in Lem. 4.34.3, we see:

Lemma 7.2 ([AIP18AIP18, Cor. A.4]). We have a right exact sequence of O+
XIg(pm)(ε)-modules

Im · ω+
Ig(pm) → ω+

Ig(pm)

π−→ ω+
Hm
→ 0, where Im := pm Hdg−

pm−1
p−1 .

The Hodge–Tate map now defines a morphism of sheaves of OF -modules over XIg(pm)(ε)

ψ : OF/pmOF → H∨m
HT−−→ ω+

Hm
→ ω+

Ig(pm)/Im.

Definition 7.3. Let ωint
Ig(pm) be theOF⊗ZO+

XIg(pm)(ε)-submodule of ω+
Ig(pm) defined as the preimage

of the OF -submodule of ω+
Ig(pm)/Im generated by ψ(1).

The sheaf ωint
Ig(pm) gives a second integral structure on ωIg(pm). If p is ramified in OF , it is

better behaved than ω+
Ig(pm), because it always satisfies the analogue of the Rapoport condition:

Proposition 7.4 ([AIP16aAIP16a, Prop. 4.1]).

(1) The sheaf ωint
Ig(pm) is a locally free OF ⊗Z O+

XIg(pm)(ε)-module on XIg(pm)(ε).

(2) The cokernel of ωint
Ig(pm) ⊆ ω

+
Ig(pm) is annihilated by Hdg1/(p−1). We thus have an injection

ωint
Ig(pm)/Im ↪→ ω+

Ig(pm)/Im

whose image is precisely the OF ⊗Z O+
XIg(pm)(ε)-submodule generated by ψ(1).

(3) Let I ′m := pm Hdg−
pm

p−1 ⊇ Im. Sending 1 7→ ψ(1) induces an isomorphism

HT′ : OF ⊗Z O+
XIg(pm)(ε)/I

′
m
∼−→ ωint

Ig(pm)/I
′
m.
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Definition 7.5. The Andreatta–Iovita–Pilloni-torsor is the subsheaf of ωint
Ig(pm) defined by

Fm := {w ∈ ωint
Ig(pm)|w ≡ HT′(1) mod I ′m}.

We denote the analytic total space of Fm ⊆ ω+
Ig(pn) over XIg(pm)(ε) by

Fm(ε)→ XIg(pm)(ε).

By Prop. 7.47.4.(3), this is a torsor in the analytic topology for the subgroup 1 + I ′m ResOF |Z Ĝa|X (ε)

of ResOF |Z Ĝm|X (ε), where ResOF |Z Ĝa|X (ε) is the pullback of ResOF |Z Ĝa → Spa(L) to X (ε), and

similarly for ResOF |Z Ĝm|X (ε). In particular, the composition Fm(ε) → X (ε) is a torsor in the

étale topology for the subgroup Bm := O×p (1 + I ′m ResOF |Z Ĝa|X (ε)) ⊆ ResOF |Z Ĝm|X (ε). This
also shows that the natural map Fm(ε) → T (ω) into the total space of ω over X is an open
immersion. Finally, we note that since pε ∈ Hdg, we have for x := m− εpm/(p− 1) that

(7.1) O×p (1 + px ResOF |Z Ĝa)|X (ε) ⊆ Bm.

The following corollary relates Fm to the definition in the elliptic case:

Corollary 7.6. Let w ∈ ω+
Ig(pm) be any lift of ψ(1) ∈ ω+

Hm
under ω+

Ig(pm) → ω+
Hm

. Then w ∈ Fm.

Proof. By Lem. 7.27.2, for w to be a lift of ψ(1) means that w and the image of ψ(1) in ω+
Ig(pm)/Im

agree. Thus w ∈ ωint
Ig(pm). By the injective morphism from Proposition 7.47.4.(2), this shows that

ψ(1) and w also agree in ωint
Ig(pm)/Im and thus in its quotient ωint

Ig(pm)/I
′
m. This means w ∈ Fm. �

Definition 7.7. Let κ : U → W∗ be a bounded smooth weight. Recall that we may regard κ
as a morphism O×p × U → Ĝm. As before, we let |δκ| := max(|p|, |Tκ|). Let r = 3 if p > 2 and

r = 5 if p = 2. Let εκ > 0 be implicitly defined by |p|εκ = |δκ|1/p
r+1

. We note that εκ ≤ εdef
κ .

Definition 7.8. For any k ∈ Z≥1, let W∗k be the open in weight space denoted by WF,[pk−1,pk]

in [AIP16aAIP16a, §2], and let W∗0 be the open denoted by WF,[0,1]. Explicitly, for any k ∈ Z≥0, we

have W∗k :=W∗(|δκ|p
k ≤ |p| ≤ |δκ|p

k−1
). Then W∗ = ∪k∈Z≥0

W∗k .

If κ : U → W∗ is a bounded smooth weight, we let Uk := κ−1(W∗k), then U = ∪k∈Z≥0
Uk.

Definition 7.9. Let κ : U → W∗ be a smooth bounded weight and let 0 ≤ ε ≤ εκ. For each
k ∈ Z≥0, let m = k + r (this is the variable “n” in [AIP16aAIP16a]), so that εκ ≤ εcan

m . The sheaf ωκAIP

on X (ε)× Uk of modular forms of weight κ, as defined in [AIP16aAIP16a], is given locally as

ωκAIP|Uk := OFm(ε)×Uk [κ−1] =
{
f ∈ OFm(ε)×Uk |γ

∗f = κ−1(γ)f for all γ ∈ Bm
}
.

As usual, we define an integral subspace ωκ,+AIP|Uk
by using O+ instead.

Proposition 7.10 ([AIP16aAIP16a, Prop. 4.3]). Let κ : U → W∗ be a smooth bounded weight and let 0 ≤
ε ≤ εκ. Then the sheaves ωκ,+AIP|Uk

can be canonically identified on intersections X (ε)× (Uk∩Uk+1),

so that they glue to give an O+-module ωκ,+AIP on XU(ε) = X (ε)×U . This O+-module is invertible.
Similarly, we can glue the ωκAIP|Uk

to get a line bundle ωκAIP on XU(ε).

Proof. We first need to explain how our variable ε is related to the radius variable r used
in [AIP16aAIP16a, §3]. The sheaf “wn,r,I” constructed in [AIP16aAIP16a, §4] for I = [pk−1, pk] lives on a
formal scheme “Xr,[pk−1,pk]” over Zp. The base-change to L of the generic fibre of this formal

scheme is the subspace of X ×W∗k cut out by the condition |Hap
r+1

| ≥ |δκ|. Since we have set

|p|εκ = |δκ|1/p
r+1

, this is contained in X (ε)×W∗k . By [AIP16aAIP16a, Prop. 4.3], the sheaf “wn,r,I” is a
line bundle. It now follows from our definition that the sheaf ωκ,+AIP|Uk

is the pullback of “wn,r,I”

along the morphism of ringed spaces (X (ε)×Uk,O+)→ Xr,k. In particular, ωκ,+AIP|Uk
is invertible.

By [AIP16aAIP16a, Prop. 4.7], there is a canonical isomorphism between this sheaf and the one
defined using m+ 1 instead of m. This shows that the ωκ,+AIP|Uk

glue on intersections Uk ∩ Uk+1.

Since ωκ,+AIP|Uk
is invertible on each open X (ε)× Uk, it is clearly also invertible on XU(ε). �
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7.2. The comparison morphism. Recall from Defn. 5.305.30 that over XΓ(p∞), the conormal
sheaf ωΓ∗(p∞) has a canonical section s that we may regard as a morphism into the total space
s : X ∗Γ(p∞) → T (ωΓ∗(p∞))→ T (ω). Let us simply write T (ε)→ X (ε) for the restriction of T (ω)

to X (ε), then s restricts to
s : XΓ∗(p∞)(ε)a → T (ε).

The comparison of our Hilbert modular forms to the ones defined by [AIP16aAIP16a] relies on the
following proposition saying that s compares XΓ∗(p∞)(ε)a to the Andreatta–Iovita–Pilloni-torsor.

Proposition 7.11. Let 0 ≤ ε ≤ εcan
m . Then s : XΓ∗(p∞)(ε)a → T (ε) factors through the subspace

s : XΓ∗(p∞)(ε)a → Fm(ε) ⊂ T (ε)

defined by the Andreatta–Iovita–Pilloni torsor (see Definition 7.57.5).

Proof. It suffices to check that for C any complete algebraically closed extension of L, the
(C,C+)-points that the image of s are contained in the open subspace Fm(ε) ⊆ T (ε).

There is a natural map ϕ : XΓ∗(p∞)(ε)a → XIg(pm)(ε) defined by sending a point valued in
some stably uniform adic ring (R,R+) corresponding to an abelian variety A and a trivialisation
α : O2

p
∼−→ TpA

∨ to the trivialisation of H∨m(A) given by the composition

Op/pmOp
(1,0)−−→ (Op/pmOp)2 α mod pm−−−−−−→ A∨[pm]→ H∨m

with the dual of the inclusion Hn → A[pm], where as usual we identify A[pm]∨ = A∨[pm] via the
Weil pairing. By functoriality of the Hodge–Tate map we then have a commutative diagram

O2
p TpA

∨ ω+
A

ψ : Op/pmOp H∨m ω+
Hm
.

α

(1,0) mod pn

HT

HT

For (R,R+) = (C,C+), we then have s(x) = HT ◦ α(1, 0) by Lem. 5.325.32. This shows that s(x) is
a lift of ψ(1) ∈ ω+

Hm
. By Cor. 7.67.6, this implies that s(x) ∈ Fm(ε)(C,C+) as desired. �

Lemma 7.12. The following diagram commutes

Γ∗0 (p)×XΓ∗(p∞)(ε)a XΓ∗(p∞)(ε)a XΓ∗0 (p∞)(ε)a

Bm ×Fm(ε) Fm(ε) X (ε).

m

(cz+d)×s s q

m

Proof. We first note that the morphism XΓ∗(p∞)(ε)a → Bm is well-defined: for this we use that

by (7.17.1), we have O×p (1 + px ResOF |Z Ĝa) |X (ε)⊆ Bm. Moreover, by (5.45.4), the map z already

restricts to XΓ∗(p∞)(ε)a → B|px|(Op : 1) = O×p (1 +px ResOF |Z Ĝa). The left square now commutes
by Lem. 5.315.31. Commutativity of the right square is clear. �

Combining this with the morphism un : XΓ∗(p∞)(p
nε)a → XΓ∗(p∞)(ε)a defined by the action of

the matrix
(
pn 0
0 1

)
, we obtain from the lemma a commutative diagram

(7.2)

Γ∗0 (p)×XΓ∗(p∞)(p
nε)a XΓ∗(p∞)(p

nε)a XΓ∗0 (pn)(p
nε)a

Bm ×Fm(ε) Fm(ε) X (ε)

m

(cz+d)×s̃ s̃ ALn∼

m

where s̃ = s ◦ un. From this, we finally deduce the following Hilbert analogue of Thm. 4.84.8.

Definition 7.13. (1) For any n ∈ Z≥0 we set ωκ,+AIP,n := ALn∗ωκ,+AIP where

ALn : XΓ∗0 (pn)(p
nε)a ∼−→ X (ε)

is the Atkin–Lehner isomorphism. By [AIP16aAIP16a, Thm. 6.7.3], the restriction of ωκ,+AIP,n to

XΓ0(pn)(ε)a equals q∗nω
κ,+
AIP, where qn : XΓ∗0 (pn)(ε)a → X (ε) is the forgetful map.

(2) We then set ωκ,+AIP,∞ := q∗ωκ,+AIP where q : XΓ∗0 (p∞)(ε)a → X (ε) is the forgetful map.
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Theorem 7.14. Let κ : U → W∗ be a bounded smooth weight. Let 0 ≤ ε ≤ εκ. Then for any
n ∈ Z≥0 ∪ {∞}, the map s̃∗ induces a Hecke-equivariant isomorphism of O+

XU,Γ0(pn)(ε)a
-modules

s̃∗ : ωκ,+n
∼−→ ωκ,+AIP,n.

In particular, ωκ,+n is an invertible O+
XU,Γ0(pn)(ε)a

-module, and ωκ ∼= ωκAIP.

Proof. With the preparations from this and the last section, we can argue as in the elliptic case.
It suffices to prove this locally on W∗. We may therefore without loss of generality assume that
κ has image in W∗k for some k ∈ Z≥1 and set m := k + r.

We first check that s induces a map ωκ,+AIP,n → ωκ,+n . This is because for any section f of ωκ,+AIP,n

and for any γ ∈ Γ∗0 (pn), diagram (7.27.2) implies that the following diagram commutes:

XU,Γ∗(p∞)(p
nε)a Bm ×Fm(ε) Gm × Aan

XU,Γ∗(p∞)(p
nε)a Fm(ε) Aan,

γ

(cz+d)×s̃

m

κ−1×f

m

s̃ f

As before, this together with ωκ,+AIP,n being invertible proves the theorem for n ∈ Z≥1 since

(O+
XU,Γ∗(p∞)(ε)a

)Γ∗0 (pn) = O+
XU,Γ∗0 (pn)(ε)a

by Lem. 3.73.7. The case of n =∞ follows by the same argument from the diagram in Lem. 7.127.12.
The case of n = 0 follows from ωκ,+ = AL∗ωκ,+1 = ωκ,+AIP,1. Finally, the isomorphism ωκ = ωκAIP is
induced from the integral one by inverting p.

We postpone the proof of Hecke equivariance to §1010 where we discuss the Hecke action. �

8. Perfectoid Hilbert modular varieties for G

We now pass from modular forms for G∗ to those for G, the so-called arithmetic Hilbert
modular forms. This requires a closer study of the perfectoid modular varieties attached to G,
and their relation to the perfectoid modular varieties of G∗, which is the subject of this section.

Notation 8.1. Recall that in §5.1.25.1.2 we have defined Hilbert modular varieties X,XG over L
which are base-changes of models for the Shimura varieties attached to G∗ and G respectively.
In doing so, we had fixed a choice of tame level µN as well as polarisation ideal c and omit these
notation. We denote by X ,XG the adic analytifications of X,XG.

We begin by recalling that the action of OF is a source of isomorphisms of HBAV:

Lemma 8.2. Let S be any ring and let (A, ι, λ, µ, α) be a HBAV over S where µ is a µN -
structure and α is either a Γ0(pn), Γ1(pn) or Γ(pn)-level structure. Then for any η ∈ O×F , the
map ι(η) : A→ A induces an isomorphism of HBAV

η : (A, ι, η2λ, η−1µN , ηα) ∼−→ (A, ι, λ, µN , α).

Here we write ηα as a shorthand notation for the composition of the OF -linear map α with
multiplication by η on either side of α. Similarly for η2λ and η−1µN .

Proof. A morphism of HBAVs (B, ι′, λ′, µ′, α′)→ (A, ι, λ, µ, α) is an OF -linear isogeny ϕ : B → A
making the following diagrams commute:

B∨ A∨ d−1 ⊗ µN d−1 ⊗ µN (O/pn)2 (O/pn)2

B ⊗ c A⊗ c B A B∨[pn] A∨[pn].

ϕ∨

µ′N µN α′ α

ϕ

λ′ λ

ϕ ϕ∨

Setting B = A, and ϕ = [η], we see that λ′ = [η]∨ ◦ λ ◦ [η] = η2λ, where in the second step
we have used that [η]∨ ◦ λ = λ ◦ [η] since ι is stable under the Rosati involution. The second
diagram implies µ′N = [η]−1 ◦ µN = η−1µN . The third diagram implies α′ = [η]∨ ◦ α = ηα. �
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Definition 8.3. The polarisation action of O×,+F on X is given by letting η ∈ O×,+F act via

η ·pol (A, ι, λ, µN) = (A, ι, ηλ, µN).

As a consequence of Lemma 8.28.2 we see:

Proposition 8.4. [AIP16aAIP16a, Lem. 8.1]. This action of O×,+F on X factors through the finite
group ∆(N) := O×,+F /(1 +NOF )×2, and makes X → XG into a finite étale ∆(N)-torsor.

8.1. The anti-canonical tower for G. Our next goal is to construct from the anti-canonical
tower of G∗ the anti-canonical tower for G. For this, we move on from schemes to adic spaces.

Recall that, for either G or G∗, the datum of a Γ0(pn)-level structure is a the choice of an
OF -submodule C ⊆ A[pn] etale locally isomorphic to OF/pnOF . If necessary we will denote this
level structure by Γ0(pn) and Γ∗0 (pn) on G and G∗ respectively. Similarly, on both G∗ and G the
notions of anticanonical level structures coincide. We thus obtain commutative diagrams

XΓ∗0 (pn) XG,Γ0(pn) XΓ∗0 (pn)(ε)a XG,Γ0(pn)(ε)a

X XG X (ε) XG(ε)

Lemma 8.5. The above diagrams are both Cartesian. In particular, the morphism of adic spaces
XΓ∗0 (pn)(ε)a → XG,Γ0(pn)(ε)a is a finite étale ∆(N)-torsor.

Proof. The points of XΓ∗0 (pn) correspond to HBAV (A, ι, λ, µN , D) where D ⊆ A[pn] is a subgroup
étale locally isomorphic to O/pn. For any η ∈ O×F , as D is an OF -module, we have ηD = D, and
hence the isomorphism of HBAVs induced by η from Lem. 8.28.2 identifies the tuples (A, ι, η2λ, η−1 ·
µN , D) and (A, ι, λ, µN , D) in XΓ∗0 (pn). Thus, exactly as in Prop. 8.48.4, the polarisation action
factors through ∆(N). It follows on the level of relative moduli descriptions that the top map in
the above diagram is a ∆(N)-torsor. This shows that the left diagram is Cartesian.

The case of the right hand side follows after adic analytification and restriction. �

By the following lemma, this allows us to pass to tilde-limits in the diagram on the right:

Lemma 8.6. Let ∆ be a finite group. Let (Xn → Yn)n∈N be an inverse system of étale ∆-torsors
of adic spaces over L. Suppose there is a perfectoid tilde-limit X∞ ∼ lim←−Xn. We moreover
impose the technical condition that there is a cover of Y0 by open affinoid spaces V0, with affinoid
pullbacks Un := Spa(Rn, R

+
n ) to Xn, such that R∞ is affinoid perfectoid and lim−→n

Rn → R∞ has

dense image. Then X∞/∆ =: Y∞ is perfectoid, X∞ → Y∞ is an étale ∆-torsor, and Y∞ ∼ lim←−Yn.

This is a special case of the statement of [She17She17, Cor. 2.3.5]. We focus on this special case
since it suffices for our applications, and has the following simple proof:

Proof. Since the conclusions are local, by restricting to V0 we are immediately reduced to the
case that all Xn = Spa(Rn, R

+
n ) are affinoid, X∞ = Spa(R∞, R

+
∞) is affinoid perfectoid and

lim−→Rn → R∞ has dense image. Then Yn = Spa(R∆
n , R

+,∆
n ). It follows from [HanHan, Thm. 1.4] that

Y∞ := X∞/∆ = Spa(R∆
∞, R

+,∆
∞ ) is perfectoid. Note that the assumptions are satisfied because

we work over the perfectoid field L over Qp.
We claim that lim−→n

R∆
n → R∆

∞ has dense image. To see this, let r ∈ R∆
∞ and let r′ := r/|∆|.

Then we can find r′n ∈ Rn such that r′n → r′ inside R∞. Let now rn :=
∑

g∈∆ gr
′
n, then clearly

rn ∈ R∆
n . Since the ∆-action is continuous, and r ∈ R∆

∞, we then have rn →
∑

g∈∆ gr
′ =

1
|∆|

∑
g∈∆ gr = r, as desired. This shows that Y∞ ∼ lim←−Yn, since the condition on topological

spaces follows from |Y∞| = |X∞|/∆.
That X∞ → Y∞ is a ∆-torsor now follows from the Cartesian diagrams expressing that

Xn → Yn is a ∆-torsor, by commuting product and perfectoid tilde-limit. �

Proposition 8.7. There exists a perfectoid tilde-limit

XG,Γ0(p∞)(ε)a ∼ lim←−XG,Γ0(pn)(ε)a.

Moreover, the natural map XΓ∗0 (p∞)(ε)a → XG,Γ0(p∞)(ε)a is a finite étale ∆(N)-torsor.
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Proof. We apply Lem. 8.68.6 to the system of ∆(N)-torsors XΓ0(pn)(ε)a → XG,Γ0(pn)(ε)a. To see that
the technical condition is satisfied, we note that by construction in Prop. 5.115.11, and by [SW13SW13,
Prop. 2.4.2], any affine open formal subscheme of the formal model X∗(ε) of X ∗(ε) pulls back
to opens Spa(Rn, R

+
n ) ⊆ XΓ∗0 (pn)(ε)a for all n ∈ Z≥0 ∪ {∞} such that R∞ is affinoid perfectoid

and lim−→Rn → R∞ has dense image. Thus also for any rational subset Spa(R0, R
+
0 )(T

s
), the map

lim−→Rn〈Ts 〉 → R∞〈Ts 〉 has dense image. We conclude that any affinoid cover of XG that is a

rational refinement of an affine formal cover of X∗G(ε) := X∗(ε)/∆(N) is of the desired form. �

8.2. Wild full level structures. As before, we ultimately want to work with the full level
structures Γ(pn) for G defined in §5.1.15.1.1, since this will provide the appropriate universal covering
spaces we need to define overconvergent Hilbert modular forms. In this case, though, there are
differences between Γ(pn) and Γ∗(pn)-level structures which introduce new subtleties.

There is a space XG,Γ(pn) → XG,Γ0(p) which relatively represents a choice of an isomorphism
αn : (O/pn)2 → A∨[pn] such that αn(1, 0) generates the corresponding subgroup for the Γ0(pn)-
level, and there is a natural map XΓ∗(pn) → XG,Γ(pn). However, this map is not a torsor, as it

is not surjective. In addition, O×,+F no longer admits a polarisation action on XΓ∗(pn), due to
the restrictive additional conditions on Γ∗(pn)-level structures: indeed, changing λ changes the
isomorphism b in diagram (5.25.2), and in general true this will not result in a similitude of pairings.

8.2.1. ‘Hybrid’ full level structures. Bearing all of the above in mind, it is convenient to also
introduce an intermediate space XΓ(pn) → X , relatively representing a choice of Γ(pn)-level
structure αn over the Shimura variety X for G∗. This fits into a diagram

(8.1)

XΓ∗(pn) XΓ(pn) XG,Γ(pn)

X X XG.

β1 β2

The polarisation action (8.38.3) now gives a well-defined action on this ‘hybrid’ space XΓ(pn),
since the Γ(pn)-level structures require no Weil pairing compatibility.

We also have a second natural left-action on this space:

Definition 8.8. The level structure (LS) action of G(Z/pnZ) = GL2(OF/pnOF ) on XΓ(pn) is
given by letting γ ∈ G(Z/pnZ) act as

γ ·LS (A, ι, λ, µN , αn) 7→ (A, ι, λ, µN , αn ◦ γ∨), γ∨ = det(γ)γ−1.

8.2.2. Components and the OF -linear Weil pairing. To understand the map XΓ∗(pn) → XG,Γ(pn),
we begin by analysing β1. For this, we require a description of the components of XΓ(pn) through
the OF -linear Weil pairing ẽn (Defn. 5.65.6): Suppose (A, ι, λ) is a c-HBAV over S with Γ(pn)-level
structure αn : (OF/pnOF )2 ∼−→ A∨[pn]. Then ẽn induces an OF -linear isomorphism

OF/pnOF ⊗ c−1 =(OF/pnOF )2 ∧ (OF/pnOF ⊗ c−1)2(8.2)

αn∧(αn⊗c−1)−−−−−−−−→A∨[pn] ∧A∨[pn]⊗ c−1 (1,λ−1⊗id)−−−−−−→ A∨[pn] ∧A[pn]
ẽn−→ d−1 ⊗Z µpn .

Equivalently, by tensoring with c, this can be described as a generator of the OF -module scheme
cd−1 ⊗Z µpn . We denote the subscheme of generators by (cd−1 ⊗Z µpn)×.

In the universal situation over XΓ(pn), we conclude that the Weil pairing gives rise to a map

(8.3) en,β : XΓ(pn) → (cd−1 ⊗Z µpn)×
β−1

−−→ (OF/pnOF )×.

where we recall that β ∈ cd−1 ⊗Z µpn is the isomorphism chosen in Defn. 5.65.6.
Similarly for G we get a map en : XG,Γ(pn) → (cd−1⊗Zµpn)×. Next, we record two equivariance

properties of the linearised Weil pairing.

Lemma 8.9. (1) For γ ∈ G(Z/pnZ), the action on XΓ(pn) fits into a commutative diagram
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XΓ(pn) (OF/pnOF )×

XΓ(pn) (OF/pnOF )×.

γ

en,β

det(γ)

en,β

(2) For η ∈ O×,+F , the polarisation action on XΓ(pn) fits into a commutative diagram

XΓ(pn) (OF/pnOF )×

XΓ(pn) (OF/pnOF )×.

η

en,β

η−1

en,β

Proof. Recall that γ acts by sending αn to αn ◦ γ∨. From (8.28.2) it is then clear that en,β ◦ γ =
det(γ∨)en,β. The first part then follows from det γ∨ = det γ. The second part holds since
replacing λ→ η ◦ λ multiplies (8.28.2) by η−1 due to the λ−1 appearing. �

For any c ∈ (OF/pnOF )×, the fibre of en,β over c gives a component of XΓ(pn). This will be
a connected component, as we shall discuss in the next section. Recall that by Defn. 5.45.4, the
Γ∗(pn)-level depends on β ∈ cd−1(1). We can now describe the space XΓ∗(pn) as follows:

Lemma 8.10. The morphism XΓ∗(pn) → XΓ(pn) fits into a Cartesian diagram

XΓ∗(pn) (Z/pnZ)×

XΓ(pn) (OF/pnOF )×

en,β

en,β

Proof. We can check this on the level of schemes, where we can check on the level of moduli
functors. Let (A, ι, λ, µN , α) be a HBAV over S corresponding to a point x ∈ XΓ∗(pn)(S). Then
by (5.15.1), we recover the Weil pairing epn from ẽn,β by composing with Tr. The level structure α
therefore composes with λ−1 and ẽn,β to a pairing

(OF/pnOF )2 × (OF/pnOF )2 ⊗ c−1 → d−1 ⊗ µpn
Tr−→ µpn .

By definition, α is a Γ∗c(p
n)-level structure if and only if this pairing is similar to the pairing

(OF/pnOF )2 × (OF/pnOF )2 ⊗ c−1 id⊗β−−−→ (OF/pnOF )2 × (d−1 ⊗Z µpn)2 Tr−→ µpn .

After evaluation at 1 in the second factor, and tensoring with c, these each induce isomorphisms
ϕ1, ϕ2 : OF/pnOF → cd−1 ⊗ µpn . After composing with β−1, the map ϕ2 derived from the
second pairing has image in (Z/pnZ)×. The above pairings are now similar if and only if their
ratio ϕ1/ϕ

−1
2 is in Aut(µpn) ⊆ Aut(cd−1 ⊗ µpn), i.e. given by multiplication with (Z/pnZ)× ⊆

(OF/pnOF )×. Thus α is a Γ∗(pn)-level structure if and only if en,β(x) is in (Z/pnZ)×. �

8.2.3. The map β1. Lems. 8.98.9 and 8.108.10 immediately imply that XΓ(pn) is a disjoint union of
copies of XΓ∗(pn). More precisely, they imply the following corollary.

Corollary 8.11. Let (OF/pnOF )× act on XΓ(pn) by letting η act via the level structure action
of the matrix ( η 0

0 1 ). The restriction of the action map to

(OF/pnOF )× ×XΓ∗(pn) → XΓ(pn)

is then a (Z/pnZ)×-torsor for the antidiagonal action and induces an isomorphism[
(OF/pnOF )× ×XΓ∗(pn)

]
/(Z/pnZ)× → XΓ(pn).

8.2.4. The map β2. Next, we study the second map from (8.18.1), namely β2 : XΓ(pn) → XG,Γ(pn).

Lemma 8.12. For any η ∈ (1 + NOF )×, set γ :=
(
η 0
0 η

)
. Then the polarisation action

of η2 ∈ O×,+F on XΓ(pn) coincides with the LS action on XΓ(pn) by γ−1. In particular, if
η ∈ (1 + pnNOF )×, then the polarisation action of η2 on XΓ(pn) is trivial.

Proof. If η ∈ (1+NOF )×, then η−1 ·µN = µN . We note that acting on the polarisation via η2 and
then composing with the LS action by γ = γ∨ sends an HBAV (A, ι, λ, µN , α) to (A, ι, η2λ, µN , ηα)
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which is isomorphic to (A, ι, λ, µN , α) by Lem. 8.28.2, giving the first statement. The second is
immediate, since if η ∈ (1 + pnNOF )×, then η acts trivially on the level structure. �

Definition 8.13. For the tame levels we consider, the space X is connected, but this is no
longer true of the spaces XΓ(pn) and XG,Γ(pn) for n ≥ 1. We denote by X 0

Γ(pn) and X 0
G,Γ(pn) the

respective identity components.

Definition 8.14. Let Un be the cokernel in the exact sequence

1→ (1 + pnOF )×,+ → O×,+F → (O/pnO)× → Un → 1.

Lemma 8.15. Via the Weil pairing, the sets of connected components are:

(1) π0(Xc,Γ(pn)) = (OF/pnOF )×,
(2) π0(XG,c,Γ(pn)) = Un.

Proof. It suffices to prove this for L = Qcyc
p , and we may choose a Q-linear embedding L ↪→ C.

The C-points of Xc,Γ∗(pn) then admit a description as G∗(Q)+\[G∗(Af)× S]/K∗, where K∗ :=
K∗(pn) ∩K∗1 (N) ⊂ G∗(Af) is an open compact level subgroup. For ` - p, our choice of tame
level ensures that det(K∗` ) = Z×` , whilst K∗p = Γ∗(pn) has determinant 1 + pnZp. By strong
approximation, the determinant thus induces an isomorphism from the component group

G∗(Q)+\G∗(Af )/K∗ ∼−→ Ẑ×/(1 + pnẐ)× ∼= (Z/pnZ)×.

Thus π0(Xc,Γ∗(pn)(C)) = (Z/pnZ)×, which implies π0(Xc,Γ(pn)(C)) = (OF/pnOF )× by Lem. 8.118.11.
Similarly, for G we have K := K(pn) ∩K1(N) ⊂ G(Af ) and G(Q)+\G(Af )/K equals

GL2(OF )+\GL2(Ẑ⊗OF )/K(pn) ∩K1(N) ∼−→ O×,+F \(Ẑ⊗OF )×/(1 + pnẐ⊗OF )×.

This is the strict ray class group of conductor pn, which is an extension of Cl+(OF ) by Un. After
taking the fibre of [c] ∈ Cl+(OF ), this equals Un as desired. �

Lemma 8.16.

(1) The map β2 : XΓ(pn) → XG,Γ(pn) is a torsor for ∆(pnN) := O×,+F /(1 + pnNOF )×2.
(2) The map β2 : X 0

Γ(pn) → X 0
G,Γ(pn) is a torsor for ∆n(N) := (1 +pnOF )×,+/(1 +pnNOF )×2.

Proof. Setup and notation like in the last proof, it suffices to see this for XΓ(pn)(C)→ XG,Γ(pn)(C).
We first see from Lem. 8.158.15 that β2 on connected components is the quotient (OF/pnOF )× →
(OF/pnOF )×/(O×,+F /(1 + pnOF )×,+). It therefore suffices to prove that on identity components,

X0
Γ∗(pn)(C) = X0

Γ(pn)(C)→ X0
G,Γ(pn)(C)

is a torsor for the group ∆n(N) := (1 + pnOF )×,+/(1 + pnNOF )×,2. This map is the cover

(8.4) G∗\Hg → G\Hg

where G∗ = K∗ ∩G∗(Q)+ where K∗ = K∗(pn) ∩K∗1 (N), and analogously for G. Recall that the
kernel for the action of G(Q)+ on Hg are the scalar matrices. Denoting by PG the quotient of G
by scalar matrices in G. We note that the only scalar matrix in G∗ is the identity. We therefore
have a commutative diagram with exact rows and columns

1 (1 + pnNOF )× (1 + pnNOF )×,2 1

1 G∗ G (1 + pnOF )×,+ 1

1 G∗ PG ∆n(N) 1.

x 7→x2

det

The bottom row tells us that the Galois group of the cover (8.48.4) is ∆n(N), as desired. �

8.3. Torsors over tame level. To define overconvergent modular forms, we also need to
understand the torsor structures obtained as we vary the wild level.

Definition 8.17. Let m ≤ n.
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(1) Let Γ0(pm, pn) ⊂ G(Z/pnZ) and Γ
∗
0 (pm, pn) ⊂ G∗(Z/pnZ) denote the subgroups of

matrices of the form ( ∗ ∗c ∗ ) with pm|c.
(2) Let Zn := (1 +NOF )×/(1 + pnNOF )×, embedded diagonally into Γ0(pm, pn).
(3) Let PΓ0(pm, pn) := Γ0(pm, pn)/Zn be the quotient group.

By Lems. 8.98.9 and 8.108.10, the level structure action of Γ(pn) on XΓ(pn) restricts to an action of
Γ∗(pn) on XΓ∗(pn). We then have:

Proposition 8.18. Via actions on the level structure:

(1) XΓ∗(pn) → XΓ∗0 (pm) is a finite étale torsor for the group Γ
∗
0 (pm, pn),

(2) XΓ(pn) → XΓ∗0 (pm) is a finite étale torsor for the group Γ0(pm, pn),

(3) XG,Γ(pn) → XG,Γ0(pm) is a finite étale torsor for the group PΓ0(pm, pn).

Proof. Parts (1) and (2) follow from the moduli description. Part (3) follows from Lem. 8.168.16.1
and Lem. 8.198.19 below: the proof only uses the left hand side of (8.58.5), so this is not circular. �

8.3.1. The diagonal torsor. We now have a commutative diagram of towers of finite étale torsors

(8.5)

XΓ(pn) XG,Γ(pn)

XΓ0(pm) XG,Γ0(pm)

Γ0(pm,pn)

∆(pnN)

PΓ0(pm,pn)

∆(N)

Next, we describe the diagonal map in the above diagram, which should be a torsor for some
group E(pm, pn) which can be described as an extension in two ways:

0→ Γ0(pm, pn)→ E(pm, pn)→ ∆(N)→ 0,

0→ ∆(pnN)→ E(pm, pn)→ PΓ0(pm, pn)→ 0.

It transpires that both extensions are non-split, reflecting our earlier observation that there is
no polarisation action by ∆(N) on XΓ(pn).

In order to describe E(pm, pn) and its action, recall from Lem. 8.128.12 that for any η ∈ (1+NOF )×,

the polarisation action of η2 coincides with the action on the level structure via
(
η−1 0

0 η−1

)
. We

conclude that the combined action of Γ0(pm, pn)×O×,+F is such that the subgroup

(1 +NOF )× ↪→ Γ0(pm, pn)×O×,+F , η 7→
((

η 0
0 η

)
, η2
)

acts trivially on XΓ(pn). We therefore obtain an action of the quotient

E(p, pn) :=
(
Γ0(pm, pn)×O×,+F

)
/(1 +NOF )×.

We now obtain a short exact sequences as above: first, we clearly have a sequence

0→ Γ0(pm, pn)
γ 7→(γ,1)−−−−−→ E(pm, pn)

(γ,x)7→x−−−−−→ ∆(N)→ 0.

Second, projection to the first factor induces a natural map E(pm, pn)→ PΓ0(pm, pn). From the
snake lemma diagram

0 (1 + pnNOF )×

0 (1 +NOF )× (1 +NOF )× 0

0 O×,+F O×,+F × Γ0(pm, pn) Γ0(pm, pn) 0

O×,+F E(pm, pn) PΓ0(pm, pn) 0

(x 7→ x2)

we see the kernel of this map is ∆(pnN) embedded into E(pm, pn) via x 7→ (1, x), from which
the second exact sequence follows. This shows:

Lemma 8.19. The map XΓ(pn) → XG,Γ0(pm) is an étale torsor for the group E(pm, pn).
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Proof. By definition in diagram (8.58.5), this map is the composition of an étale Γ0(pm, pn)-torsor
with an étale ∆(N)-torsor. It is therefore finite étale. From the fact that E(pm, pn) acts on
XΓ(pn) → XG,Γ0(pm), it is clear that the diagram defining the torsor property commutes. One
then verifies that the diagram is Cartesian by decomposing it into smaller Cartesian diagrams
induced from the torsor properties of XΓ(pn) → XΓ0(pm) and XΓ0(pm) → XG,Γ0(pm). �

8.4. Passing to infinite level. The following proposition is proven over Cp by Xu Shen [She17She17,
Thm. 3.3.9] in the much greater generality of Shimura varieties of abelian type. In our special
case, the version over Qcyc

p is easy to deduce from our preparations. We first note:

Lemma 8.20. The group ∆∞(N) = lim←−n ∆n(N) is finite and ∆∞(N) = ∆n(N) for n� 0.

Proof. There is a natural injective map, compatible for varying n,

∆n(N) = (1 + pnOF )×,+/(1 + pnNOF )×,2 ↪→ O×,+F /(1 +NOF )×,2 = ∆(N).

Since ∆(N) is finite, it follows that ∆n(N) stabilises for n� 0. �

Proposition 8.21. (1) There exist perfectoid spaces XΓ(p∞) and XG,Γ(p∞) such that

XΓ(p∞) ∼ lim←−XΓ(pn) and XG,Γ(p∞) ∼ lim←−XG,Γ(pn).

(2) There also exist perfectoid spaces X 0
Γ(p∞) ∼ lim←−X

0
Γ(pn) and X 0

G,Γ(p∞) ∼ lim←−X
0
G,Γ(pn).

(3) There is a natural morphism XΓ(p∞) → XG,Γ(p∞) which is a pro-étale torsor for the
profinite group ∆(p∞N) = lim←−n ∆(pnN).

(4) When restricted to connected components of the identity, it is a finite étale torsor
X 0

Γ(p∞) → X 0
G,Γ(p∞) for the finite group ∆∞(N) = lim←−n ∆n(N).

Proof. By Theorem 5.115.11.4, there is a perfectoid space XΓ∗(p∞) ∼ lim←−XΓ∗(pn). By Cor. 8.118.11

we have XΓ(pn) = XΓ∗(pn) × [(OF/pnOF )×/(Z/pnZ)×] on the level of adic spaces, and thus
XΓ(p∞) := XΓ∗(p∞) ×O×p /Z×p ∼ lim←−nXΓ∗(pn) × [(OF/pnOF )×/(Z/pnZ)×] = lim←−nXΓ(pn).

For (2) we note that X 0
Γ(pn) = X 0

Γ∗(pn), and the existence of the perfectoid space X 0
Γ∗(p∞) ∼

lim←−X
0
Γ∗(pn) follows from [She17She17, Cor. 3.3.4]. From this we obtain the perfectoid space X 0

G,Γ(p∞),

using Lem. 8.68.6, Lem. 8.168.16.2 and the fact that ∆∞(N) = ∆n(N) for n � 0. This lemma also
gives (4). We deduce the second part of (1) from the second part of (2) by [She17She17, Prop. 3.3.5].

Finally, (3) follows from Lem. 8.168.16.1 by as usual applying the fact that perfectoid tilde-limits
commute with fibre products to the diagram defining the torsor property. �

8.4.1. The action of G(Qp). Since each XΓ(pn) → X is an étale G(Z/pnZ) = GL2(OF/pnOF )-
torsor, it follows that XΓ(p∞) → X is a pro-étale G(Zp) = GL2(Op)-torsor. Here we recall that
γ ∈ GL2(Op) acts by precomposition with γ∨ = det(γ)γ−1 on the level structure O2

p
∼−→ TpA

∨.
We shall now for a moment include the dependence on the polarisation ideal c into the notation

because, as in the Siegel case, the G(Zp)-action extends naturally to a G(Qp)-action which, in
our case, permutes the spaces Xc,Γ(p∞) over the polarisation ideals c, as we shall now describe.

Lemma 8.22. Let (A, ι, λ, µN) be a HBAV. Let a ⊆ OF be an ideal coprime to N and let
D ⊆ A[a] be any OF -submodule scheme. Then there is a unique way to make the isogeny
ϕ : A→ B := A/D into a morphism of HBAVs (A, ι, λ, µN)→ (B, ι′, λ′, µ′N). If D ∼= ⊕ki=1OF/bi
and b := b1 · · · bk, then λ′ is the unique cb-polarisation making the following diagram commute:

(8.6)
A⊗ c A∨

B ⊗ cb B∨.

λ

ϕD⊗c
λ′

ϕ∨

Here ϕD is such that B ⊗ b
ϕD−−→ A

ϕ−→ B is the natural map B ⊗ b→ B ⊗OF = B.

Proof. Let ι′ be the quotient action and let µ′N be the composition of µN with A → A/D. It
remains to construct λ′ and show that it is a Deligne–Pappas polarisation as described. We refer
to [KL05KL05, §1.9] for the construction if D is of the form D = OF/bi. The general case follows by
decomposing into a chain of isogenies of this form. �
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Let now γ ∈ G(Qp) = GL2(Fp). If γ is an element of the form ( x 0
0 x ) for some x ∈ Op, we will

see that the action we now define sends A 7→ A/A[x] = A ⊗ (x)−1. For general γ = ( a bc d ), we
may therefore after rescaling assume that γ ∈M2(Op) ∩GL2(Fp).

We may regard γ as acting on O2
p ⊗ c−1. In particular, via λ−1 ◦ α : O2

p ⊗ c−1 ∼−→ TpA, the
matrix γ acts OF -linearly on TpA and thus on A[pn] for all n. For n → ∞, the kernel D of
γ : A[pn] → A[pn] stabilises. The automorphism γ now sends (A, ι, λ, µN , α) to the HBAV
(B := A/D, ι′, λ′, µ′N , α

′) from Lem. 8.228.22, where α′ : O2
p
∼−→ TpB

∨ is determined as follows:

Lemma 8.23. There is a unique α′ : O2
p
∼−→ TpB

∨ such that the following diagram commutes:

O2
p TpA

∨

O2
p TpB

∨.

α

α′
γ∨ ϕ∨

Proof. By Lem. 8.228.22, it suffices to show that there is a unique dotted arrow making the diagram

O2
p TpA⊗ c TpA

∨

O2
p TpB ⊗ cb TpB

∨

α λ

γ∨ ϕD

λ′
ϕ∨

commutative. Since all arrows become isomorphisms upon inverting p, it suffices to show
that the cokernels of γ∨ and ϕD are identified by α. As usual, one sees that the cokernel of
ϕD is given by A[b]/D. Since γ ◦ γ∨ =

(
det γ 0

0 det γ

)
, we have coker γ∨ = coker(det γ)/ coker γ.

Let now n be large enough that pn kills coker γ, then the Tor-sequence for quotienting by pn

shows that α sends coker γ to coker(γ : TpA → TpA) = (ker γ : A[pn] → A[pn]) = D. Second,
we have det(γ)Op = bOp, and the same Tor-argument shows that α sends coker(det γ) to
ker(det γ : A[pn]→ A[pn]) = A[b]. This shows that α sends coker γ∨ to A[b]/D = cokerϕD. �

It is clear from this characterisation of γ and the contravariance of −∨ that this is compatible
with the multiplication in G(Qp), and thus defines an action as desired. We moreover note that
for γ ∈ G(Zp), we have ϕ = id and therefore the action thus defined coincides with the action by
precomposition with γ∨. Thus the G(Qp)-action extends the G(Zp)-action defined earlier.

Lemma 8.24. Let n ∈ Z≥1 ∪ {∞}.
(1) XΓ(p∞) → XΓ0(pn) is a pro-étale torsor for the group Γ0(pn) := lim←−m Γ0(pn, pm).

(2) XG,Γ(p∞) → XG,Γ0(pn) is a pro-étale torsor for the group PΓ0(pn) := lim←−m PΓ0(pn, pm).

(3) XΓ(p∞) → XG,Γ0(pn) is a pro-étale torsor for the group E(pn) := lim←−mE(pn, pm).

(Notice we have swapped n and m; this is for notational convenience later on).

Proof. The diagrams expressing the torsor property are Cartesian since the corresponding
Cartesian diagrams at finite level are, and perfectoid tilde-limits commute with fibre products. �

In summary, taking the limit over diagram (8.58.5), we thus get a diagram of pro-étale torsors

(8.7)

XΓ∗(p∞) XΓ(p∞) XG,Γ(p∞)

XΓ0(pn) XG,Γ0(pn)

Γ∗0 (pn)
Γ0(pn)

E(pn)

∆(p∞N)

PΓ0(pn)

∆(N)

where ∆(p∞N) := lim←−n ∆(pnN).

8.4.2. Comparison to XΓ∗(p∞). Taking limits, the Weil pairing morphism (8.38.3) induces maps

lim←− en,β =: eβ : XΓ(p∞) → O×p and lim←− en =: e : XG,Γ(p∞) → cd−1(1)×,

where the targets refer to the associated profinite perfectoid groups. Moreover, in the limit we
obtain a level action of G(Zp). Through this we define a level structure action of η ∈ O×p acting

by ( η 0
0 1 ). In the limit, Lem. 8.98.9 and Cor. 8.118.11 give the following two lemmas.
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Lemma 8.25. The anti-diagonal action of O×p restricts to a Z×p -torsor

XΓ∗(p∞) ×O×p −→ XΓ(p∞).

Lemma 8.26. For any (γ, x) ∈ E(p), the following diagram commutes:

XΓ(p∞) O×p

XΓ(p∞) O×p .
(γ,x)

eβ

det(γ)x−1

eβ

Remark 8.27. We note that if we take the diagram from Lem. 8.58.5 and fiber it with (8.78.7) we
can see that everything restricts to the anticanonical locus, i.e., in the statements above, we can
replace XΓ(p∞),XG,Γ(p∞), etc with XΓ(p∞)(ε)a,XG,Γ(p∞)(ε)a, etc.

8.5. Hodge–Tate period maps.

Lemma 8.28. There exist Hodge–Tate period maps making the following diagram commute:

XΓ∗(p∞) XΓ(p∞) XG,Γ(p∞)

ResOF |Z P1 ResOF |Z P1 ResOF |Z P1.

πHT πHT πHT

The map XΓ(p∞) → ResOF |Z P1 is invariant for the polarisation action of O×,+F on XΓ(p∞).

Proof. We may define a map πHT on XΓ∗(p∞)×O×p by projection from the first factor. This map
is Z×p -invariant for the antidiagonal action since the Z×p -action on Γ∗(p∞) just amounts to a
rescaling of the basis vectors, which leaves the relative position of the kernel of the Hodge–Tate
morphism invariant. Using the Z×p -torsor property from Lem. 8.258.25 in the pro-étale site, we
conclude that πHT descends to the second vertical map in the following diagram.

XΓ∗(p∞) ×O×p XΓ(p∞) XG,Γ(p∞)

ResOF |Z P1 ResOF |Z P1 ResOF |Z P1

Z×p ∆(p∞N)

Similarly, the polarisation action of ∆(p∞N) clearly leaves πHT invariant since it does not change
the level structure. The same descent argument gives the third vertical map.

For the last statement, we note that XΓ∗(p∞) → ResOF |Z P1 is invariant under the polarisation

action by Z×p ∩ O
×,+
F since the polarisation does not feature in the Hodge–Tate sequence. The

result then follows from the construction via the Z×p -torsor XΓ∗(p∞) ×O×p → XΓ(p∞). �

9. Arithmetic overconvergent Hilbert modular forms

In §88, we exhibited various pro-étale torsors of perfectoid Hilbert modular varieties over XG.
In this section, we use these to define overconvergent modular forms for G and compare them to
those for G∗. We do this by defining four different sheaves, each using a different torsor, and
then give a chain of comparisons that relate them. This will show that our modular forms for G
agree with the previous sheaves defined in [AIP16aAIP16a] by descending the sheaves for G∗.

Let κ : U → W be a bounded smooth weight. Recall from 6.26.2 that by composition with
ρ :W →W∗ this also defines a bounded smooth weight forG∗ which by Prop. 6.36.3 we may interpret
as a morphism of adic spaces κ : Br(O×p : 1)×U → Ĝm. It follows from Lem. 8.288.28 that Defn. 6.46.4
goes through also for the infinite level spaces XΓ∗(p∞)(ε)a and XG,Γ(p∞)(ε)a. In particular, this gives
us invertible functions κ(cz+d) on each of these spaces. We denote them by the same letter since
by definition they are compatible via pull-back along XΓ∗(p∞)(ε)a → XΓ(p∞)(ε)a → XG,Γ(p∞)(ε)a.

Definition 9.1. Let n ∈ Z≥1∪{∞}. In the following, all infinite level sheaves are tacitly pushed
forward to the indicated finite level base.
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(1) The sheaf ωκ,+G∗,(G∗,Γ∗,n) of integral modular forms for G∗ via XU,Γ∗(p∞) is{
f ∈ O+

XU,Γ∗(p∞)(ε)a

∣∣ γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ∗0 (pn)
}
.

(2) The sheaf ωκ,+G∗,(G∗,Γ,n) of integral modular forms for G∗ via XU,Γ(p∞) is{
f ∈ O+

XU,Γ(p∞)(ε)a

∣∣ γ∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ0(pn)
}
.

(3) The sheaf ωκ,+G,(G∗,Γ,n) of integral modular forms for G via XU,Γ(p∞) is{
f ∈ O+

XU,Γ(p∞)(ε)a

∣∣(γ, x)∗f = κ−1(cz + d)wκ(x)f for all (γ, x) ∈ E(pn)
}
.

(4) The sheaf ωκ,+G,(G,Γ,n) of integral modular forms for G via XG,U,Γ(p∞) is{
f ∈ O+

XG,U,Γ(p∞)(ε)a

∣∣ γ∗f = κ−1(cz + d)wκ(det γ)f for all γ ∈ PΓ0(pn)
}
.

We note that (1) is the sheaf of modular forms for G∗ from Defn. 6.56.5, denoted there by ωκn.
We have switched to the notation above for clearer comparison to (2), (3) and (4). The goal of
this secion is to relate these sheaves. More precisely:

(i) in Lem. 9.39.3 below, we will see that the sheaves (1) and (2) are isomorphic;
(ii) in Lem. 9.69.6, we will see that sheaf (3) is obtained from (2) by taking ∆(N)-invariants;

(iii) in Lem. 9.79.7, we will see that the sheaves (3) and (4) are isomorphic.

Before we start giving comparison maps, however, we need to check:

Lemma 9.2. The conditions in (3) and (4) above are well-defined; that is, they do not depend
on the choice of representatives (γ, x) or γ respectively.

Proof. The relation of wκ and κ given in Def. 6.26.2 implies that

(9.1) κ−1(η)wκ(η2) = tκ ◦NF/Q(η) = 1 for all η ∈ O×,+F .

For (3), this implies that for any (γ, x) ∈ Γ0(pn) × O×,+F , the factor κ−1(cz + d)wκ(x) only
depends on the image of (γ, x) in E(pn); indeed, for any η ∈ O×,+F the translate (γ

(
η 0
0 η

)
, xη2)

has the same associated factor

κ−1(cηz + dη)wκ(xη2) = κ−1(η)wκ(η2)κ−1(cz + d)wκ(x) = κ−1(cz + d)wκ(x).

For (4), we similarly note that for any η ∈ (1 + NOF )×,+, setting γ =
(
η 0
0 η

)
results in the

factor κ−1(η)wκ(η2) = 1. By continuity, the same is true for γ in the topological closure Z∞
of (1 +NOF )×,+ in O×,+p . As PΓ0(pn) = lim←−m PΓ0(pn, pm) = lim←−m Γ0(pn, pm)/Zm = Γ0(pn)/Z∞ ,

this shows that for any γ ∈ Γ0(pn), the factor κ−1(cz + d)wκ(det γ) only depends on the image
of γ in PΓ0(pn). This shows that the condition in (4) is well-defined. �

Lemma 9.3. Let κ : U → W∗ be a smooth weight. The natural morphism of torsors
XU,Γ∗(p∞)(ε)a → XU,Γ(p∞)(ε)a over XU,Γ∗0 (pn)(ε)a induces a natural isomorphism

ωκ,+G∗,(G∗,Γ∗,n)
∼= ωκ,+G∗,(G∗,Γ,n).

In particular, the definition of forms for G∗ is independent of the choice of Γ or Γ∗.

Proof. By Lem. 8.288.28, for any γ ∈ Γ∗0 (pn), the function κ−1(cz + d) on XU,Γ(p∞)(ε)a pulls back to
κ−1(cz + d) on XU,Γ∗(p∞)(ε)a. Since the map XU,Γ∗(p∞)(ε)a → XU,Γ(p∞)(ε)a is equivariant under
Γ∗0 (pn)→ Γ0(pn), it follows that the associated map O+

XU,Γ(p∞)(ε)a
→ O+

XU,Γ∗(p∞)(ε)a
restricts to

(9.2) ωκ,+G∗,(G∗,Γ,n) → ωκ,+G∗,(G∗,Γ∗,n).

To construct an inverse, let f ∈ ωκ,+G∗,(G∗,Γ∗,n). Note that f is invariant under the action of Z×p ,

since for any ε ∈ Z×p , we have γε = ( ε 0
0 1 ) acting via γ∗ε f = κ−1(1)f = f. Consider now

XU,Γ∗(p∞)(ε)a ←− XU,Γ∗(p∞)(ε)a ×O×p −→ XU,Γ(p∞)(ε)a,

where the right hand morphism is the Z×p -torsor from Lem. 8.258.25 and the left hand morphism
is simply the projection. Since f is Z×p -invariant, the pullback f ′ of f under the left map is
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invariant under the antidiagonal Z×p -action. Since the morphism on the right is a Z×p -torsor of
affinoid perfectoid spaces, this implies that f ′ descends uniquely down the right to a function
f ′′ on XU,Γ(p∞)(ε)a. We claim that f ′′ ∈ ωκG∗,(G∗,Γ∗,n), that is, it transforms as required under

Γ0(pn). This group is generated by
(
O×p 0

0 1

)
and Γ∗0 (pn), so it suffices to check that

(9.3) γ∗ε f
′′ = κ−1(0z + 1)f ′′ = f ′′ for all ε ∈ O×p ,

(9.4) γ∗f ′′ = κ−1(cz + d)f ′′ for all γ ∈ Γ∗0 (pn).

As f ′′ came from pullback from the left, the function f ′ is invariant for the O×p -action, and thus
the same is true for f ′′, where ε ∈ O×p acts via γε = ( ε 0

0 1 ). This gives (9.39.3). Also, since f was a
modular form and the above maps are all equivariant for the natural Γ∗0(pn)-action, we also have
(9.49.4). Thus f ′′ ∈ ωκG∗,(G∗,Γ∗,n), and we see directly that f 7→ f ′′ gives an inverse to (9.29.2). �

We now use étale descent along π : XU(ε) → XG,U(ε) to relate the sheaves for G∗ and G.
Explicitly, this can be done by endowing π∗ω

κ,+
G∗,(G∗,Γ,n) with a ∆(N)-action given by a twist of

the O×,+F -action on XU,Γ(p∞)(ε)a → XG,U,Γ(p∞)(ε)a, as follows:

Definition 9.4. Let κ : U → W be a smooth bounded weight. We define a wκ-twisted
polarisation left-action of O×,+F on π∗q∗O+

XU,Γ(p∞)(ε)a
by letting ε ∈ O×,+F act as

ε ·wκ f := wκ(ε) · (ε−1)∗f

where wκ is as in 6.26.2 and the action on the right side is the polarisation action on XU,Γ(p∞)(ε)a.

Lemma 9.5. The wκ-twisted action of O×,+F restricts to π∗ω
κ,+
G∗,(G∗,Γ,n), where it factors through

an action of ∆(N). Furthermore, this action coincides with the action defined by [AIP16aAIP16a].

Proof. It is clear from the moduli description that the polarisation action of O×,+F and the level
structure action of Γ0(pn) commute on XU,Γ(p∞)(ε)a. By Lemma 8.288.28, the action moreover leaves

πHT and thus z invariant. We therefore have for any ε ∈ O×,+F and any f ∈ π∗ωκ,+G∗,(G∗,Γ,n)

γ∗(ε ·wκ f) = wκ(ε)ε−1∗γ∗f = wκ(ε)ε−1∗(κ−1(cz + d)f) = κ−1(cz + d)ε ·wκ f.
This shows that the action restricts. Next, if η ∈ O×,+F , then η2 acts on f ∈ π∗ωκ,+G∗,(G∗,Γ,n) via

η2 ·wκ f = wκ(η2) · (η−2)∗f
Lem. 8.128.12

== wκ(η2) ·
(
η 0
0 η

)∗
f = wκ(η2)κ−1(η)f

(9.19.1)
= f,

and in particular the subgroup (1 +NOF )×2 acts trivially; thus the action factors through ∆(N)
as desired. The last statement follows from Lem. 9.39.3 and Thm. 7.147.14 since Defn. 9.49.4 and the
definition in [AIP16bAIP16b, Section 4.1] match up: here we use that the polarisation action commutes
with s since it leaves the wild level α and the Hodge–Tate morphism unchanged. �

Lemma 9.6. We have an equality of subsheaves of O+
XU,Γ(p∞)(ε)a

on XG,U,Γ0(p)(ε)a

ωκ,+G,(G∗,Γ,n) = (π∗ω
κ,+
G∗,(G∗,Γ,n))

∆(N).

Proof. Let f ∈ ωκ,+G,(G∗,Γ,n). By Lem. 9.29.2, the action of E(pn) that defines the modular forms

property for f is induced by an action of Γ0(pn)×O×,+F ; from this, it is clear that

γ∗f = (γ, 1)∗f = κ−1(cz + d)f for all γ = ( a bc d ) ∈ Γ0(pn),

and thus f ∈ π∗ωκ,+G∗,(G∗,Γ,n). To see that it is also ∆(N)-equivariant, it suffices to note that

x∗f = (1, x)∗f = wκ(x)f for all x ∈ O×,+F ,

which implies that for the wκ-twisted action of x we have x ·wκ f = wκ(x)(x−1)∗f = f . Thus

f ∈ (π∗ω
κ,+
G∗,(G∗,Γ,n))

∆(N) as desired. The converse follows by reversing the above calculations. �

To compare ωκ,+G,(G∗,Γ,n) to ωκ,+G,(G,Γ,n), pulling back functions along XU,Γ(p∞) → XG,U,Γ(p∞) is not

enough: We also need an additional twist that changes the factor of κ−1(cz + d)wκ(x) in the
definition of the former into the factor of κ−1(cz + d)wκ(det γ) used in the latter. To describe
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this, let κ : U → W →W∗ be a smooth weight and recall from the discussion before Lem. 8.268.26
the Weil pairing morphism eβ : XU,Γ(p∞) → O×p . We use this to define a composite morphism

wκ(eβ) : XU,Γ(p∞)

eβ−→ O×p
wκ−−→ Ĝm.

Restricting to the subspace XU,Γ(p∞)(ε)a, the universal property of Ĝm associates to wκ(eβ) a
function in O+(XU,Γ(p∞)(ε)a)

× that we might reasonably also denote by wκ(eβ). By Lem. 8.268.26,

(9.5) (γ, x)∗wκ(eβ) = wκ(x−1)wκ(det γ)wκ(eβ) for any (γ, x) ∈ E(pn).

Lemma 9.7. Let π∞ be the natural morphism of torsors

XU,Γ(p∞)(ε)a XG,U,Γ(p∞)(ε)a

XG,U,Γ0(pn)(ε)a XG,U,Γ0(pn)(ε)a.

E(pn)

π∞

PΓ0(pn)

Then sending f 7→ w−1
κ (eβ) · π∗∞f defines an isomorphism of O+-modules on XG,U,Γ0(pn)(ε)a

ωκ,+G,(G,Γ,n)

∼−→ ωκ,+G,(G∗,Γ,n).

Proof. Let f ∈ ωκ,+G,(G,Γ,n). For any (γ, x) ∈ E(pn), we have

(γ, x)∗(w−1
κ (eβ)π∗∞f) = (γ, x)∗w−1

κ (eβ) · (γ, x)∗π∗∞f

= wκ(x)w−1
κ (det γ)w−1

κ (eβ)π∗∞γ
∗f

= wκ(x)w−1
κ (det γ)w−1

κ (eβ)π∗∞(κ−1(cz + d)wκ(det γ)f)

= κ−1(cz + d)wκ(x)w−1
κ (eβ)π∗∞f.

In the second step we have used equation (9.59.5) and the fact that π∞ is equivariant with respect
to the projection E(pn)→ PΓ0(pn), (γ, x) 7→ γ, in the third step we use f ∈ ωκ,+G,(G,Γ,n), and in

the last step we use that by Lem. 8.288.28, π∗∞(κ−1(cz + d)) = κ−1(cz + d). This identity shows that
indeed w−1

κ (eβ)π∗∞f ∈ ωκG,(G∗,Γ,n), so the map in the statement of the proposition is well-defined.

To see that the map is an isomorphism, take now f ∈ ωκ,+G,(G∗,Γ,n) and consider the function

g = wκ(eβ)f on XU,Γ(p∞)(ε)a. We claim that g descends uniquely to a function on XG,U,Γ(p∞)(ε)a.
To see this, since π∞ : XU,Γ(p∞)(ε)a → XG,U,Γ(p∞)(ε)a is a perfectoid ∆(p∞N)-torsor, it suffices
to show that g is ∆(p∞N)-invariant. It suffices by continuity to show that it is invariant for the
dense subgroup O×,+F ↪→ ∆(p∞N). For this we calculate that for any x ∈ O×,+F we have

x∗g = (1, x)∗g = (1, x)∗(wκ(eβ))(1, x)∗f = wκ(x)−1wκ(eβ)κ−1(1)wκ(x)f = wκ(eβ)f = g,

where we have again used equation (9.59.5). This shows that g indeed arises as pullback of a unique
function h = h(f) on XG,U,Γ(p∞)(ε)a with π∗∞h = g. We claim that h ∈ ωκ,+G,(G,Γ,n). For this we

have to check by definition that γ∗h equals κ−1(cz + d)wκ(det γ)h. The morphism of sheaves
π∗∞ : O+

XU,Γ(p∞)(ε)a
→ O+

XU,Γ0(p∞)(ε)a
is the pullback of a pro-étale map, hence injective; thus, as

it is also Γ0(pn)-equivariant, it suffices to check this property on π∗∞h = g with respect to the
action of Γ0(pn)→ E(pn). But by definition of g as wκ(eβ)f , we have for any γ ∈ Γ0(pn) that

γ∗g = (γ, 1)∗(wκ(eβ))(γ, 1)∗f = wκ(det(γ))wκ(eβ)κ−1(cz + d)f = κ−1(cz + d)wκ(det(γ))g.

This shows that g transforms under the action of Γ0(pn) as desired, and thus so does h. This
shows h ∈ ωκ,+G,(G,Γ,n) as desired. Moreover, by construction we have f = w−1

κ (eβ)π∗∞h.
This shows that the map in the proposition is injective and surjective, thus an isomorphism. �

Definition 9.8. Let κ : U → W be a bounded smooth weight and n ∈ Z≥0 ∪ {∞}. For n 6= 0,
let ωκ,+G,c,n be the sheaf ωκ,+G,(G,Γ,n) from Defn. 9.19.1 (4), noting that we have reintroduced our fixed c

to the notation. As before, we define the rational version ωκG,c,n by replacing O+
X with OX , or

equivalently by inverting p. We use the Atkin–Lehner isomorphism to define ‘n = 0’ versions

ωκG,c = ωκG,c,0 := AL∗ω
κ
G,c,1, ωκ,+G,c = ωκ,+G,c,0 := AL∗ω

κ,+
G,c,1

which are sheaves on XG,c,U(ε). For any n ∈ Z≥0 ∪ {∞}, the space of overconvergent arith-
metic Hilbert modular forms of tame level µN , p-level Γ0(pn), polarisation ideal c, radius of
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overconvergence ε and weight κ, and its integral subspace, are then

MG
κ (Γ0(pn), µN , ε, c) := H0(XG,c,U(ε), ωκG,c,n),

MG,+
κ (Γ0(pn), µN , ε, c) := H0(XG,c,U(ε), ωκ,+G,c,n).

Remark 9.9. One can define cusp forms for G in much the same way as for G∗ (Rem. 6.96.9).

As in [AIP16bAIP16b, Lem. 4.5], the polarisation action by p-adic units x ∈ F×,+ defines isomorphisms

Px : MG
κ (Γ0(pn), µN , ε, c) ∼−→MG

κ (Γ0(pn), µN , ε, xc)

We will see below that the action of the Hecke operators permutes the spaces MG
κ (µN , ε, c) by

scaling the polarisation ideal. To obtain a Hecke stable space, one therefore also defines:

Definition 9.10. Let R
(p)
F be the group of fractional ideals of F coprime to p and T

+,(p)
F be the

positive elements which are p-adic units, then R
(p)
F /T

+,(p)
F is the narrow class group. We let

MG
κ (Γ0(pn), µN , ε) :=

( ⊕
c∈R(p)

F

MG
κ (Γ0(pn), µN , ε, c)

)/〈
Px(f)− f for all x ∈ T

+,(p)
F

〉
.

This is the space of arithmetic overconvergent Hilbert modular forms of weight κ, tame level µN
and radius of overconvergence ε. One can define integral versions of these spaces by using ωκ,+G,c,n.

Putting everything together, we obtain the desired comparison to the sheaf of Hilbert modular
forms for G as defined by Andreatta–Iovita–Pilloni. For this we first recall the definition:

Definition 9.11. Let ωκ,+G,c,AIP,n := (π∗ω
κ,+
G∗,c,AIP,n)∆(N). This is the integral analytic incarnation

of the sheaf of Hilbert modular forms for G on XG,c,U(ε) denoted by ωκ
un
G in [AIP16aAIP16a, §8.2].

Theorem 9.12. Let κ : U → W be a smooth bounded weight, n ∈ Z≥0 ∪ {∞} and 0 ≤ ε ≤ εκ.
There is a natural isomorphism

ωκ,+G,c,n
∼= ωκ,+G,c,AIP,n

of O+-modules on XG,c,U(ε). In particular, ωκ,+G,c,n is an invertible O+-module. By inverting p, it
induces a Hecke-equivariant isomorphism of line bundles ωκG,c,n = ωκG,c,AIP,n.

Proof. To ease notation, we suppress the dependence on c. By Thm. 7.147.14, we have ωκ,+G∗ = ωκ,+G∗,AIP.
By combining the lemmas of §9, we conclude that

ωκ,+G,n

(9.89.8)
= ωκ,+G,(G,Γ,n)

(9.79.7)
= ωκ,+G,(G∗,Γ,n)

(9.69.6)
= (π∗ω

κ,+
G∗,(G∗,Γ,n))

∆(N)

(9.39.3)
= (π∗ω

κ,+
G∗,(G∗,Γ∗,n))

∆(N) (7.147.14)&(9.59.5)
= (π∗ω

κ,+
G∗,AIP,n)∆(N) (9.119.11)

= ωκ,+G,AIP,n

as desired. We postpone the proof of Hecke-equivariance to §1010. �

10. Hecke operators

Throughout this section, we fix a smooth bounded weight κ : U → W →W∗ and 0 ≤ ε ≤ εκ.
To ease notation, in this section we suppress the subscript U from our Hilbert modular varieties.

10.1. The tame Hecke operators. Let a ⊆ OF be any ideal coprime to n and p. Let us
denote by Xc,Γ0(a)(ε) the Hilbert modular variety of tame level µN ∩ Γ0(a), representing tuples
(A, ι, λ, µN , D) where D ⊆ A[a] is a closed OF -submodule scheme that is étale locally isomorphic
to OF/a, and λ : A⊗ c ∼−→ A∨. Let us denote by π1 : Xc,Γ0(a)(ε)→ Xc(ε) the forgetful morphism.
By Lem. 8.228.22, there is a second map defined by sending A 7→ A/D:

π2 : Xc,Γ0(a)(ε)a → Xca(ε), (A, ι, λ, µN , D)→ (A′ := A/D, ι′, λ′, µ′N).

Now let n ∈ Z≥1 ∪ {∞}. Then it is clear that the morphisms π1 and π2 extend uniquely when
we add level structures at p: more precisely, we obtain a natural commutative diagram

(10.1)

Xca,Γ(p∞)(ε)a Xc,Γ(p∞)∩Γ0(a)(ε)a Xc,Γ(p∞)(ε)a

Xca,Γ0(pn)(ε)a Xc,Γ0(pn)∩Γ0(a)(ε)a Xc,Γ0(pn)(ε)a,

π2,∞ π1,∞

π2 π1
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where π2,∞ sends α : O2
p → TpA

∨ to α′ : O2
p

α−→ TpA
∨ (ϕ∨)−1

−−−−→ TpA
′∨, where the isomorphism

ϕ∨ : TpA
′∨ → TpA

∨ is the one induced from the prime-to-p isogeny ϕ∨ : A′∨ = (A/D)∨ → A∨.

Lemma 10.1. There is a canonical isomorphism π∗1ω
κ,+
n = π∗2ω

κ,+
n of sheaves on Xc,Γ0(pn)∩Γ0(a)(ε)a.

Proof. By diagram (10.110.1), we have

π∗1ω
κ,+
n = {f ∈ O+

Xc,Γ(p∞)∩Γ0(a)(ε)a
| γ∗f = π∗1,∞κ

−1(cz + d)f for all γ ∈ Γ0(pn)}.

The same applies to π∗2ω
κ,+
n , so we are left to see that π∗1,∞κ

−1(cz + d) = π∗2,∞κ
−1(cz + d). To

see this, observe that ϕ : A→ A/D induces an isomorphism of Hodge–Tate sequences

(10.2)

O2
p Tp(A/D)∨ ωA/D

O2
p TpA

∨ ωA

α HT

ϕ∨ ϕ∗

α′ HT

by definition of α. This shows that πHT ◦ π1,∞ = πHT ◦ π2,∞, giving the desired equality. �

Definition 10.2. The Ta-operator is defined as the composition

MG∗,+
κ (Γ0(pn), µN , ε, ca) = Γ(Xca,Γ0(pn)(ε)a, ω

κ,+
n )→ Γ(Xc,Γ0(pn)∩Γ0(a)(ε)a, π

∗
2ω

κ,+
n )

∼−→ Γ(Xc,Γ0(pn)∩Γ0(a)(ε)a, π
∗
1ω

κ,+
n )

1
qa

Trπ1−−−−→ Γ(Xc,Γ0(pn)(ε)a, ω
κ,+
n ) = MG∗,+

κ (Γ0(pn), µN , ε, c).

where Trπ1
is the trace of the finite locally free map π1, and where qa := |OF/a|.

10.2. The Up-operators. Let n ∈ Z≥1 and p be a prime ideal of OF above p of ramification
index e. Set l := ne+ 1. For the definition of the Up-operator, we then use the moduli space
Xc,Γ0(pn)∩Γ0(pl)(ε)a → Xc(ε) which relatively represents the data of an anticanonical OF -submodule
scheme C ⊆ A[pn] étale locally isomorphic to OF/pnOF together with an OF -submodule scheme
D ⊆ A[pl] étale locally isomorphic to OF/pl such that C[pen] = D[pen]. In particular, D is then
anticanonical. There is a forgetful map π1 : Xc,Γ0(pn)∩Γ0(pl)(ε)a → Xc,Γ0(pn)(ε)a which is finite flat
of degree qp := |OF/p|. There is also a second map

π2 : Xc,Γ0(pn)∩Γ0(pl)(ε)a →Xcp,Γ0(pn)(ε)a

(A, ι, λ, µN , C,D) 7→(A′ := A/D[p], ι′, λ′, µ′N , C
′ := (C +D)/D[p])

where (A′, ι′, λ′, µ′N) is like in Lem. 8.228.22 and where C +D ⊆ A[pn+1] is the submodule scheme
generated by C and D. Then C ′ is étale locally isomorphic to OF/pnOF . We note that this map
is not surjective, and the image is already contained in an open subspace that can be described
using the partial Hasse invariant at p (for example, if F = Q, then it lands in Xpc,Γ0(pn)(p

−1ε)a).
Let us now fix any uniformiser $ ∈ Op such that $Op = pOp and let up := ($ 0

0 1 ) ∈ G(Qp).
Then letting up act in terms of the G(Qp)-action, we obtain a commutative diagram

(10.3)

Xcp,Γ(p∞)(ε)a Xc,Γ(p∞)(ε)a Xc,Γ(p∞)(ε)a

Xcp,Γ0(pn)(ε)a Xc,Γ0(pn)∩Γ0(pl)(ε)a Xc,Γ0(pn)(ε)a.

q

up

q

π2 π1

Lemma 10.3. The action of up defines a map π∗2ω
κ,+
n → π∗1ω

κ,+
n of invertible sheaves on

Xc,Γ0(pn)∩Γ0(pl)(ε)a. It is independent of the choice of the uniformiser $.

Proof. By diagram (10.310.3), we have

π∗1ω
κ,+
n = {f ∈ O+

Xc,Γ(p∞)(ε)a
| γ∗f = κ−1(cz + d)f for all γ ∈ Γ0(pn) ∩ Γ0(pl)}.

We claim that u∗pω
κ,+
n admits the same description. To see this, we first recall that the action of

up is equivariant with respect to the morphism Γ0(pn) ∩ Γ0(pl)→ Γ0(pn) given by conjugation by
up, namely j : ( a bc d ) 7→

(
a $b

$−1c d

)
. Second, we see from G(Qp)-equivariance of πHT that u∗pz = $z.

Consequently, κ(γ, z) := κ(cz + d) is sent by up to (γ, z) 7→ κ(j(γ), $z) = κ($−1$cz + d) =
κ(cz + d). This together with the fact that shows that Xc,Γ(p∞)(ε)a → Xc,Γ0(pn)∩Γ0(pl)(ε)a is a

pro-étale Γ0(pn) ∩ Γ0(pl)-torsor shows that u∗pω
κ,+
n has the desired form. �
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Definition 10.4. The Up-operator is defined as the composition

MG∗

κ (Γ0(pn), µN , ε, cp) = Γ(Xcp,Γ0(pn)(ε)a, ω
κ
n)→ Γ(Xc,Γ0(pn)∩Γ0(pl)(ε)a, π

∗
2ω

κ
n)

−→ Γ(Xc,Γ0(pn)∩Γ0(pl)(ε)a, π
∗
1ω

κ
n)

1
qp

Trπ1−−−−→ Γ(Xc,Γ0(pn)(ε)a, ω
κ
n) = MG∗

κ (Γ0(pn), µN , ε, c).

10.3. The Hecke action on arithmetic Hilbert modular forms. For c a polarisation ideal,
we let [c] denote its class in the narrow class group. One can then define Hecke operators on the
spaces of overconvergent Hilbert modular forms for G of the form

Ta : MG
κ (Γ0(pn), µN , ε, [ca])→MG

κ (Γ0(pn), µN , ε, [c])

Up : MG
κ (Γ0(pn), µN , ε, [cp])→MG

κ (Γ0(pn), µN , ε, [c])

by taking ∆-invariants of the operators defined in the last section. Alternatively, one can define
these operators more directly and without any reference to G∗ based on Defns. 9.19.1 and Defn. 9.89.8;
copying the definitions for G∗ and replacing X by XG throughout. The proofs go through without
change. The natural morphisms of Hecke correspondences over the map X → XG shows that
the operators thus defined coincide with the ones obtained via G∗.

It is clear from either definition that the Hecke operators commute with the polarisation
action from Defn. 9.109.10. Consequently, they induce a Hecke action on MG

κ (Γ0(pn), µN , ε).

Remark 10.5. Via the Koecher principle the Hecke operators also extend to the boundary.
Moreover, the subspaces of cusp forms will be preserved by the action of Hecke operators.

Remark 10.6. As defined, the Hecke operators for G∗ are canonical. If one fixes a set of
representatives (ci) of the narrow class group and considers the Hecke operators as mapping
between the spaces for these fixed ci, then the Hecke operators for G∗ become non-canonical,
depending on the choice of representatives (cf. [AIP16bAIP16b, Section 4.3]). For G, the operators
remain canonical as picking different representatives does not affect our polarisation class. In
particular, we get commuting Hecke operators on MG

k (Γ0(pn), µN , ε).
Lastly, one can check directly that for G∗ or G the Hecke operator Up =

∏
p|p U

ei
p is a compact

operator. Alternatively, this follows from Prop. 10.810.8 together with [AIP16bAIP16b, Lem. 3.27].

Remark 10.7. It is clear from the definition that the tame Hecke operators preserve the integral
spaces of overconvergent forms, while for Up this is in general only true after renormalisation.

10.4. Hecke-equivariance of the comparison. We can now finish the proof of Thms. 7.147.14
and 9.129.12 by proving that the comparison isomorphisms are Hecke equivariant.

Proposition 10.8. The isomorphisms ωκ,+G∗,n
∼−→ ωκ,+G∗,AIP,n and ωκ,+G,n

∼−→ ωκ,+G,AIP,n are Hecke
equivariant on global sections.

Proof. We consider the case of G∗, the case of G follows from this. As in the proof of Thm. 9.129.12,
we can assume that κ has image in W∗k for some k > 0. It is clear from comparing Def-
initions 10.210.2 and 10.410.4 to the definition in [AIP16aAIP16a, §8.5] that it suffices to prove that the
isomorphism π∗2ω

κ
G∗,n = π∗1ω

κ
G∗,n from Lem. 10.110.1 and 10.310.3 is identified with the isomorphisms

π∗2ω
κ
G∗,n,AIP = π∗1ω

κ
G∗,n,AIP from [AIP16aAIP16a, Lem. 8.5] under the comparison isomorphism. For this it

suffices to see that the comparison map s from §7.27.2 induces a morphism of Hecke correspondences

(10.4)

Xcp,Γ(p∞)(ε)a Xc,Γ(p∞)(ε)a Xc,Γ(p∞)(ε)a

Fm(ε) Fm,Γ0(a)(ε) Fm(ε)

s

π2,∞ π1,∞

s s

π2 π1

where Fm,Γ0(a)(ε) is the pullback along π1 : Xc,Γ0(a)(ε)→ Xc(ε) of the Andreatta–Iovita–Pilloni
torsor, and where π2 is induced by the map ωA/D → ωA. Commutativity of the right square is
clear. In terms of moduli, commutativity of the left square is now precisely that of diagram (10.210.2).

For the Up-operator, the top left map in diagram is replaced by the action of up = ($ 0
0 1 ). Let A

be the universal abelian variety over Xc,Γ0(pn)∩Γ0(pl)(ε)a with its anticanonical subgroup D ⊆ A[pl],
then the map π∗2ω

κ
G∗,n,AIP = π∗1ω

κ
G∗,n,AIP is induced via the adjoint ωκG∗,n,AIP → π2,∗π

∗
1ω

κ
G∗,n,AIP

obtained by restriction from the map ϕ∗ : ωA/D[p] → ωA associated to the isogeny A→ A/D[p].
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On the other hand, the morphism ωκG∗,n → π2,∗π
∗
1ω

κ
G∗,n in Lem. 10.310.3 is given by restriction of

the action of up. To prove that the comparison is equivariant for the Up-operator, it thus suffices
to prove that these two morphisms commute with the comparison morphism s.

Using Lem. 8.238.23 and the identity u∨p (1, 0) = (1, 0), we see that the following diagram commutes

(1, 0) O2
p TpA

∨ ωA

(1, 0) O2
p Tp(A/D[p])∨ ωA/D[p].

u∨p

α HT

α′ HT

ϕ∨ ϕ∗

This shows that also s◦up = ϕ∗◦s, and thus Up commutes with the comparison isomorphism. �
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