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ABSTRACT. We give a new construction of p-adic overconvergent Hilbert modular forms by using
Scholze’s perfectoid Shimura varieties at infinite level and the Hodge—Tate period map. The
definition is analytic, closely resembling that of complex Hilbert modular forms as holomorphic
functions satisfying a transformation property under congruence subgroups. As a special case,
we first revisit the case of elliptic modular forms, extending recent work of Chojecki, Hansen
and Johansson. We then construct sheaves of geometric Hilbert modular forms, as well as
subsheaves of integral modular forms, and vary our definitions in p-adic families. We show that
the resulting spaces are isomorphic as Hecke modules to earlier constructions of Andreatta,
Tovita and Pilloni. Finally, we give a new direct construction of sheaves of arithmetic Hilbert
modular forms, and compare this to the construction via descent from the geometric case.

1. INTRODUCTION

In a first introduction, modular forms are usually defined as certain holomorphic functions

f +H — C on the complex upper half-plane H satisfying a transformation property of the form
vi=(z+d)"f vy=(2}) €T,

where I' C SLy(Z) is a congruence subgroup. More algebraically, one can consider modular forms

as sections of an automorphic line bundle w on the complex modular curve I'\H. This algebraic

definition admits a p-adic interpretation, giving rise to the theory of overconvergent modular

forms varying in p-adic families, which has proved extremely important with wide-ranging

applications in algebraic number theory and arithmetic geometry.

An analytic definition of p-adic overconvergent modular forms has, however, proved elusive,
until such an approach was recently introduced in the case of rational quaternionic modular
forms by Chojecki, Hansen and Johansson [CHJ17].

In this article, we give an analytic definitions of both arithmetic and geometric p-adic Hilbert
modular forms over any totally real field F', for any prime p, and show that they agree with
earlier algebraic definitions of Andreatta—Iovita—Pilloni in [AIP16a].

Following [CHJ17], the key idea of the construction is to use Scholze’s perfectoid Shimura
varieties at infinite level over a perfectoid base field L, and the associated Hodge—Tate period
map 7y, all introduced in [Sch15]. These spaces can be viewed as p-adic analogues of H. In
the complex situation, the pullback of the automorphic bundle w along the covering map

H—T\H

can be canonically trivialised, and the descent to I'\'H via the action of I" gives rise to the usual
definition of complex modular forms, at least after dealing with compactifications.

Similarly, in the p-adic situation, there is an adic analytic moduli space X', which in our case
is a Hilbert modular variety, carrying an automorphic bundle w. It has a cover

Xr(poo) — X

by a perfectoid Hilbert moduli space. Using myr, the pullback of w along this projection can be
canonically trivialised over open subspaces. Via the action of the associated covering group — a
p-adic level subgroup — one obtains a definition of overconvergent Hilbert modular forms.
More precisely, there are two different kinds of Hilbert modular forms: there are those
associated to the group G := Resp/q GL2, which are called arithmetic; and those associated to
G := G XRes, /QCm G,,, which are called geometric. Shimura varieties for G* have a moduli
1
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interpretation in terms of abelian varieties with PEL structure. For any (narrow) ideal class
¢ € CI"(F), we consider the c-polarised finite level Shimura variety X,. Since the Shimura variety
for G* is in particular of Hodge type, one gets an associated infinite level Hilbert moduli space
X r*(peoy in the limit over level structures at p. Inside of this we have for any small enough € > 0
an open subspace X r«(yoc)(€)q, the e-overconvergent anticanonical locus.

Definition 1.1. For any weight character x : Z; — L*, a geometric overconvergent Hilbert
modular form of weight k is a function f € O(X. rx(po)(€)q) satisfying

(1.1) V= Ha+d)f Yy=(2}) € Tip),
where I'j(p) is a p-adic level subgroup, and k(c3 + d) is a factor of automorphy to be defined.

From modular forms for G*, one can obtain an indirect definition of modular forms for G by
descent. As we shall show, one of the advantages of the analytic approach is that instead, one
can also work with perfectoid Shimura varieties attached to G, and give a completely intrinsic
definition. Let Xy . be the c-polarised Shimura variety for G. This is now not a fine moduli
space of abelian varieties, but one can still construct a perfectoid cover

Xaerpe) = Xae-

Definition 1.2. An arithmetic overconvergent Hilbert modular form of weight k is a function
f € O(Xg c.rpe=)(€),) satisfying

Y f =k ez + d)wg(dety)f Yy = (‘; 3) € PT'y(p)

where PT'y(p) is a p-adic level subgroup, and wy is a character to be defined.

More generally, one can similarly define line bundles w” whose global sections are the modular
forms of Definitions 1.1 and 1.2. These bundles, and hence the modular forms, vary naturally
over p-adic families I/ in the respective weight spaces, by considering analytic functions on the
sousperfectoid space Xy r+(poo)(€)a := Xer+(poe)(€)q X U (and analogously for G).

1.1. What is new. Several constructions of both geometric and arithmetic p-adic overconvergent
Hilbert modular forms have already appeared in the literature (e.g. amongst others [KLO5],
[AIP16a] and most generally [AIP16b]), so let us explain how our constructions differ and what,
in our opinion, are some of their advantages.

e Our main goal is to give a new intrinsic definition of the sheaf of arithmetic Hilbert
modular forms for G, which is arguably cleaner and easier to work with than the one via
descent from G*.

e We also show how to define subspaces of integral geometric and arithmetic Hilbert
modular forms in the analytic setting, which match up with the ones constructed in
[AIP16b]. An advantage of the perfectoid construction is that this does not require
formal models. Rather, the subspace of integral forms is given by simply replacing O
with the integral subsheaf O in the construction.

e As in [CHJ17], the resulting framework is well-adapted to constructing overconvergent
Eichler—Shimura maps from overconvergent cohomology, namely maps of the form

H(Xe, D) = HY(X (), 0" ® Qror ) (=0))(—9)

XEOT(e)
where D, is an étale sheaf of distribution modules, g = [F' : Q], and 0 C X" (¢) is
the boundary of a chosen toroidal compactification. A proof of this will be included in
upcoming work.

As a secondary goal, we modify the strategy of [CHJ17] in several ways:

e We work with the anticanonical locus rather than the canonical one, which makes it
easier to deal with the boundary of the Shimura varieties, an issue which is is not present
in op.cit. as there the construction is carried out for quaternionic modular forms.

As a minor but pleasant side effect, this results in the automorphic factor x(c3 + d)
appearing in (1.1), like in the complex case, rather than the k(b3 + d) from op.cit.

e We give a conceptually new proof that the resulting sheaves are line bundles.
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e Throughout we work with sousperfectoid spaces, a language that was not available at the
time that [CHJ17] was written. This allows one to define automorphic sheaves uniformly
for arbitrary bounded weights U in a geometric way, by working over the fibre product
of the infinite level modular variety with ¢. In particular, one does not have to impose
restrictions on the shape of weights as in the construction using formal models.

e We also explain how the “perfect” modular forms of [AIP16b] appear in this anticanonical
setting. In the elliptic case, this point of view has been used in [Heul9] for a perfectoid
approach to Coleman’s Spectral Halo, and one should be able to use our constructions
to obtain similar results for Hilbert modular forms.

We shall now explain our constructions and the organisation of the paper in some more detail.

1.2. Elliptic modular forms via the anticanonical locus. While the main focus of this
paper is to construct families of Hilbert modular forms, we start in §2, 3 and 4, by treating the
elliptic case. One reason to consider this seperately is that while the boundary in the higher
dimensional case can be dealt with via Koecher’s principle, in the elliptic case it requires an
explicit analysis. Our second reason to treat the elliptic case separately is to illustrate the ways
in which we deviate from the construction in [CHJ17].

To explain this, we first summarise their construction. Let L be any perfectoid field over Q3°,
let X* be the (compact) modular curve over L of some tame level considered as an adic space,
and let ¢ : AP0y = X" be Scholze’s infinite level perfectoid modular curve (denoted X, op.

cit.). It admits a Hodge-Tate period map myr : le(poo) — P! with the key property
ThrO(1) = ¢*w.

To study this sheaf, they consider a family of open subspaces of P!, parametrised by w € Q~,,
on which O(1) admits a non-vanishing section. Pulling back under 7yt gives a family of
neighbourhoods Xy e, ,, C (0 of the (canonical) ordinary locus. There are then subspaces
X C X* such that Xr*(poo),w — X is a pro-étale I'y(p)-torsor, at least away from the cusps.
Here T}y(p) € GL2(Z,) is the subgroup of matrices that are upper-triangular modulo p.

Pulling back the natural parameter at oo € P!, they obtain a parameter 3 € O(X;(poo),w>' For
a certain class of p-adic weights x, and w > 0 sufficiently small, they then define the space of
“w-overconvergent” modular forms of weight x to be the set of f € O(le(poo),w) satisfying

Vf=kbz+d) ' f Vy=(2}4) €L(p).

1.2.1. The case of elliptic modular forms. The results of [CHJ17] are only explicitly proved in
the quaternionic case where the Shimura curve is compact, though they do mention that their
methods can be extended to the elliptic case, where one can use “soft” techniques to deal with
ramification at the boundary. This is also noted in [How17]. We expand on these remarks and
explain how to extend to the cusps by using perfectoid Tate curve parameter spaces.

Instead of considering the canonical locus, we choose to work with the anticanonical locus
X;(poo)(e)a everywhere. This definition is equivalent, since the two loci can be interchanged via

the action of the Atkin—Lehner matrix (2 é).We define a sheaf

Y=k +d)f Vy=(20) €Lyp)}
on X7

T () (€)as Where now 3 is the parameter on A7« (€), defined by pulling back the canonical
parameter on Ab** C P! at 0, and ¢ : Aoy = Xy 18 the projection. The space of e-
overconvergent modular forms is then the space of global sections of this sheaf. We note that this
is very similar to the complex definition. We then use the Atkin—Lehner isomorphism to obtain a
sheaf w" = wf := AL"w} on the tame level space X*(p~'€). One could now prove, as in [CHJ17],
that the sheaf w” is a line bundle, but we instead deduce this from our later comparison results.

wlf = {f € q*OXf‘k(pOO)(e)a

1.2.2. Variation in families. Reinterpreting [CHJ17] in the context of sousperfectoid spaces, we
show how to extend the definition to also work for p-adic families. The weights considered above
can be considered as points Spa(L,O;) = W in the rigid analytic weight space

W = Spf(Z,[[Z])2 x L,
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where throughout we consider all rigid spaces as adic spaces, and where L is our perfectoid field.
We can then consider more general (families of) weights  : i/ — W, where U is a smooth rigid
space and « has bounded image. This gives rise to a sheaf w” on the fibre product X*(p~'e) x , U
whose fibre over any point ko € U is the sheaf w0 defined above.

By comparing the anticanonical locus with the Pilloni-torsor as described in [AIP18], in Thm.
4.8 we construct an isomorphism between w” and the bundle wfp of forms op. cit.:

Theorem 1.3. Let k : U — W be a bounded smooth weight (Defn. 3.1; e.g. a point or an
affinoid open in W). Then there is a natural Hecke-equivariant isomorphism w" = wh p.

One reason we prefer to work with the anticanonical locus over the canonical one is that
it simplifies the proof of the above comparison. A second reason is that it makes it easier to
study the boundary: the technical complication for defining elliptic modular forms rather than
quaternionic ones is that the cover X7 o) (€)a — Ay (n(€)a is pro-étale over Af,(n)(€)q, but is
ramified at the cusps. However, the situation at the cusps is easy to deal with in the anticanonical
tower, because here the cusps are totally ramified and give rise to perfectoid versions of Tate
curve parameter discs. This allows one to extend the arguments from [CHJ17] to the boundary.

1.3. Generalisation to the Hilbert case. The main result of the present paper is a generali-
sation of this approach to the setting of Hilbert modular forms, that is, modular forms for GL,
over any totally real field F' of degree g.

Having treated the elliptic case separately, we will assume g > 2, and, by the Koecher principle,
largely ignore the boundary in this case. Whilst conceptually the constructions follow the same
lines as in the elliptic case, there are additional subtleties in the Hilbert case that do not arise
when the base field is Q. The most immediate is in the choice of classical definition. The
Shimura varieties arising from G* are of PEL (hence Hodge) type. They are fine moduli spaces
parametrising Hilbert-Blumenthal abelian varieties (HBAVSs), namely abelian varieties equppied
with an Op-action and a polarisation, plus some fixed tame level structure. The Shimura varieties
for GG, in contrast, are only of abelian type, and are only coarse moduli spaces, parametrising
instead only equivalence classes of polarisations. These distinctions make it technically easier to
work with G*, although ultimately the case in which we are most interested is the arithmetic
case of G, which has a better theory of Hecke operators.

In both cases these Shimura varieties are called Hilbert modular varieties, for G* and G
respectively. In practice, we will work with the c-polarised part of the Hilbert modular variety.
We sometimes emphasize this with a subscript ¢, but usually drop this from the notation.

1.3.1. Hilbert modular varieties for G* at infinite level. As in the elliptic case, the key object
in the construction of overconvergent forms is an infinite level Hilbert modular variety for G*,
which is a p-adic analogue of the classical complex Hilbert modular variety. It it is a special
case of Scholze’s perfectoid Shimura varieties of Hodge type [Sch15, §IIT and IV]. As we shall
recall in §5.2, it arises from the tower of (c-polarised) Hilbert modular varieties X r«(,n) as the
wild level I'*(p™) C G*(Z,) varies. Once again, one can restrict to the anticanonical locus of an
e-neighbourhood of the ordinary locus and obtain a Hilbert modular variety at infinite level
Xer=(poe)(€)a ~ Hm & p= ) (€)a

which is a pro-étale Iy (p)-torsor over X rs(,)(€)q, where Iy (p) C G*(Z,) is the subgroup of
matrices that are upper-triangular modulo p.

We also need a version of the Hodge-Tate period map, as defined in [Sch15, §IV] and
refined in [CS17, §2]. If C is a perfectoid field extension of L, then a (C, C™)-point of X p«(yee)
corresponds to a HBAV A equipped with a trivialisation o : O =% T,A" and extra data,
where O, := Op ®; Z,. Here we note that the appearance of A differs somewhat from [Schl15],
but in the presence of a polarisation A, the two are always isomorphic after a choice of p-adic
generator of ¢. The reason we wish to parametrise 7,,A" rather than 7, A is that together with
the Hodge—Tate morphism

HT
Y LN
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the trivialisation « gives rise to canonical differentials (1, 0) and «(0,1) of wy (instead of wav).
This construction can be made more conceptual by way of the Hodge—Tate period morphism

THT XCI‘*(poo)(E)a — ReSoF/Z P!.

If F splits in L (which we do not assume in the main text), this decomposes canonically into
maps Tyt = | [,ex TaT,0 @ Xers (o) (€)a — (P1)*, where ¥ is the set of embeddings v : F' < L.
On C-points, a point corresponding to an isomorphism « is then sent to the point in (P'(C))*
defined by the Hodge filtration

0 — Lie(AY)(1) — T,AY ©z, C =2 w, — 0.

Crucial here is that 7wy allows one to extend this pointwise consideration to the universal
situation: If wy denotes the conormal sheaf to the universal abelian variety A — X, rs ) (€)a
and q : X r=(pooy(€)a — Xc’ra(pn)(e)a is the forgetful map, then there is a canonical isomorphism

q¢"wa = 51 Reso,. 2 O(1).

If F splits in L, then Resep,./z O(1) is identified with the direct sum @5O(1) on (P')*, and using
canonical sections of O(1) near (0 : 1) € P!, we obtain a canonical section s of ¢*w4 which
is a geometric incarnation of the section a(1,0) considered above. In general we work with a
canonical section of Resp,,/z O(1), an instance of Scholze’s “fake Hasse invariants” from [Sch15].

In the elliptic case, we had a canonical parameter 3. In the Hilbert case, 3 is now simply the
restriction of myr to a function 3 : X r+(ye0)(€)s = Reso,/z Ga where Ga C P! is the closed unit
ball around (0 : 1) € P'. When F splits in L, via the canonical decomposition Rese,./z G, =G>
this can be interpreted as a collection of functions 3 = (3,)vex In OF (X r+(poo)(€)a)-

In order to define p-adic families of Hilbert modular forms, let W* denote the weight space
for G* (cf. Defn. 6.1) and let x : i/ — W* be a bounded smooth weight. In §6, we use the
sousperfectoid adic space

Xe i (p)(€)a 1= Xepr(pooy(€)a XL U

to define the sheaf of c-polarised geometric Hilbert modular forms of weight x on Xc%pa (»)(€)q aS

wllic = {f € OXCJ/{,F*(;)OO)(E)G Y= H_l(q’ +d)f Vy= (CCL 2) € Fg(p)}.

Here € > 0 is such that for any element of v = (¢ %) € I';(p), we can make sense of k(c3+d) as
an invertible function on X 1/ r+(pe0)(€), (Defn. 6.4). We describe the variation of this in families,
and a local version giving an overconvergent automorphic bundle wf.on X'(¢). We also have
integral versions of these spaces given by simply replacing Oy with OF in the above definition. In
Thm. 7.14 we use the canonical sections of w4 at infinite level to define a comparison isomorphism
to the sheaf of Hilbert modular forms defined in [AIP16a)].

1.3.2. Hilbert modular varieties for G at infinite level. For arithmetic applications, it is desirable
to have a version of this theory for arithmetic Hilbert modular forms, that is for the group G.
For example, these are objects that arise in modularity of elliptic curves over totally real fields.

Towards this goal, we pass from G* to G and discuss in §8 the perfectoid Hilbert modular
variety at infinite level for G and the corresponding Hodge—Tate period map. In the case of
L = C,, this is a special case of the construction of Shen of perfectoid Shimura varieties of
abelian type [Shel7]. For Hilbert modular varieties, this is easy to extend to general perfectoid
fields following the methods of [Sch15], as we shall describe.

In contrast to the definition in [AIP16a] by descent from G*, this allows us to define the sheaf
of p-adic overconvergent arithmetic Hilbert modular forms without reference to G*.

While this definition is ultimately quite simple, in order to explain why this is the correct
definition, it is important for us to work out the geometric relation between the perfectoid
Hilbert modular varieties for G and G* rather explicitly, in particular keeping close track of all of
the relevant Galois actions. At tame level, this is easy: let X and Xg be the adic analytifications
of the tame c-polarised Hilbert modular varieties for G* and G respectively. The natural map
X — Xg can then be described as the quotient under the action of O3'* on the polarisation,
which factors through the action of a finite group A(N).
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For level at p, however, the condition defining level structures for G* is not preserved by the
action of O, so there is no longer a full polarisation action on the spaces Xrp=(pny. We therefore
work with an auxiliary ‘mixed’ moduli problem, and work with the spaces Ap(,») relatively
parametrising G-level structures over the space X arising from G*. In the limit, combined with
the Weil pairing these give rise to a perfectoid space Xr(,~) with a canonical Z)-torsor

(12) XF*(poo) X O; — Xp(poo).
Now, on Xp(yey, we do get an O;" action on polarisations. At infinite level, this extends to

an action of a profinite group A(p>*N), which makes the morphism Xp(peey = Xg r(peo) into a
pro-étale A(p>°N)-torsor. We thus obtain a morphism of pro-étale torsors (cf. (8.7))

Ap(pee) 2 Xe.r(po)
(1.3) o™ e
A(N)
XFo(p”) XG,Fo(p")'

The diagonal map is also a pro-étale torsor for some group E(p™), as we shall discuss in §8.

1.3.3. Hilbert modular forms for G. In §9, we use the above to define arithmetic Hilbert modular
forms. Let W be the weight space for G and let x : i/ — VW be a bounded smooth weight.

Definition 1.4. The sheaf of arithmetic Hilbert modular forms of weight k on Xg 1 (€) is
we = {f € O(Xg,curepe)(€)a) [V f = k7 (c3+ d)we(dety) f Yy = (24) € PLy(p)} -

Its global sections MY (I (p), €, ¢) form the space of ¢-polarised e-overconvergent arithmetic
Hilbert modular forms. We also have an integral subsheaf wg;™ by instead using the O*-sheaf.

Our approach yields various natural alternative definitions; for example, we could instead use
the torsor Xp(pe)(€)a = Xar(p)(€)q to define forms for G. In §9, we show that these alternatives
(see Defn. 9.1) are all equivalent to the one given above.

1.3.4. Comparison to other definitions. Using the canonical section s, we obtain a comparison
isomorphism to the Hilbert modular forms of Andreatta—Iovita—Pilloni in Thms. 7.14 and 9.12.

Theorem 1.5. There is a natural Hecke-equivariant isomorphism between wen (resp. wy™ ) and

the sheaf of integral Hilbert modular forms for G* (resp. G) defined in [AIP16a, AIP16b].

We establish this for G*, and prove that our modular forms for G are the descent of those for
G* under the action of A(NN) (see Lem. 9.6); from this we we obtain the analogous result for G,
as the forms of [AIP16a] are defined via this descent.
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1.5. Notation. We fix a rational prime p and a perfectoid field extension L of Q3¥°. For instance,
we could take L = @Q}Y, or any complete algebraically closed extension of Q.

We use adic spaces in the sense of Huber [Hub13], and in particular the notion of smooth
adic spaces from [Hub13, Definition 1.6.5]. By a rigid space over L, we mean an adic space of
topologically finite type over Spa(L,Or). We use the pro-étale site of a smooth adic space in
the sense of [Sch13].

The letter X typically refers to modular curves and Hilbert modular varieties. We typically use
latin letters X to refer to schemes, gothic letters X to refer to formal schemes, and calligraphic
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letters X to refer to analytic adic spaces (typically over L), like rigid and perfectoid spaces. If X is
a modular variety of some tame level, we specify the level at p of a modular variety by a subscript
on the appropriate X. We will use a superscript * to denote the minimal compactification X*.

Lastly, if I" is any profinite set we also write I for the associated profinite perfectoid space
Spa(Maps,. (I, L), Maps,.(I', Or)) when this is clear from the context. If I' is a profinite group,
this will be a group object in perfectoid spaces over L.

2. PERFECTOID MODULAR CURVES AND THE HODGE—TATE PERIOD MAP

In this section we review the modular curve at infinite level and the Hodge—Tate period map,
and discuss the open subspaces which we are going to use to define p-adic elliptic modular forms.

2.1. Modular curves and their canonical and anticanonical loci. Let N be an integer
coprime to p. Let X be the modular curve over L of some tame level I'? at N such that
the corresponding moduli problem is representable by a scheme, e.g. I'(N) or I'; (V) for N >
3. Similarly, we let I'o(p) C GL2(Z,) denote the usual upper triangular Iwahori subgroup,
corresponding to the choice of an order p sub-group-scheme of our elliptic curves.

We denote by X the rigid analytification, considered as an adic space.” The space X represents
the moduli functor that sends any adic space S — Spa(L,O}) to isomorphism classes of pairs
(E, ) where E is an elliptic curve over Og(S) with I'P-structure p (see [Heua, Lemma 2.3]).

Let X* be the compactification of X, with analytification X*. The divisor of cusps X*\X
becomes a finite set of closed points after adding a primitive N-th root to L.

For any 0 < e < 1 with |p| € |L|, we denote by X*(¢) C X* the open subspace of the modular
curve where ]ﬁz/ﬂ > |p|¢, where Ha is any local lift of the Hasse invariant. For any analytic adic
space Y — X*, we write ) (e) C ) for the preimage of X*(¢) C X*. We call the elliptic curves
parametrised by this open subspace e-nearly ordinary.

Let A7 (,00) ~ Nm A7) be the perfectoid modular “curve” at infinite level as defined in
[Sch15]. We in particular have the open subspace A7, (€) ~ Hm X7 ) (€).-

Recall that for any n € Z>q, the modular curve Xp,(,n) — X of level Iy (p™) relatively represents
the choice of a cyclic rank p" subgroup scheme D, C E[p"]. If 0 < e < 1/(p + 1)p"~? then
by Lubin’s theory of the canonical subgroup, any elliptic curve corresponding to a morphism
S — X(e) admits a canonical cyclic subgroup scheme H,, C E[p"| of rank p", which in the
case of good reduction reduces to the kernel of the n-th iterate of Frobenius on E modulo p'~¢.
This defines a canonical section Af(,n)(€) <— X(€) which in fact extends to the cusps. As a
consequence, for n = 1, the space A} ) (e) decomposes into two open and closed components

lfo(p)(e) = Xl:ko(p)(e)c u XI::J(P)(G)G’

the first of which (away from the cusps) parametrises triples (E, «, H;) with « a tame level and
H, the canonical subgroup, while the second parametrises (F, «, D,) with D,, C E[p] a cyclic
rank p subgroup such that D, N H; = 0. The two components are called the canonical and the
anticanonical locus, respectively. At infinite level, these two components, via pullback, give rise
to canonical and anticanonical loci of A7 (€) respectively:

Aoy (€)= ooy (€)e U X0 (€)a
X6 = A (@ U A (€)a

For any perfectoid (Q5°, Zs¥°)-algebra (R, R*), the (R, R*)-points of Ap(,e) are in functorial
1-1 correspondence with isomorphism classes of triples (E, i, o), where E is an elliptic curve
over R, u is a I'P-structure, and o : Zf, = T,E is a trivialisation of the Tate module (see [Heua,
Cor. 3.2]). We have an action of GLy(Z,) on Ap(,e) given by

(21) - (Bypa)=(E,paocy’), Y =det(y)y = (%L L) fory=(2}4) € GLy(Zy).

8We note that this is the only way in which our notation deviates from that in [Sch15, §I1I], where X denotes the
good reduction locus.
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For notational convenience we also fix the following.

Definition 2.1. Let E be an ordinary elliptic curve. Then E has canonical cyclic subgroups
H,, of rank p™ for all n. The canonical p-divisible subgroup of E is H = (H,)nen € E[p™].

2.2. The Hodge—Tate period map around 0 € P!. We recall how the canonical and anti-
canonical loci behave under the Hodge-Tate period map

THT * A (poo) — P

By [Sch15, Lem. II1.3.6], the preimage of P!(Z,) under 7y is given by the closure of the ordinary
locus X;(poo)((]). After removing the cusps, this parametrises isomorphism classes of triples
(E, u, ) as above where E has potentially semistable or good ordinary reduction in every fibre.
Write ey, 5 for the standard basis of Z2. Away from cusps, the preimage my1(00) of co = (1:0)
parametrises triples where moreover a(e;) generates the canonical p-divisible subgroup.

Instead of using the canonical locus, we shall work with the anticanonical locus Xr*(poo)(e)a,
which by contrast is sent by myr to neighbourhoods of points of the form (b: 1) for b € Z,,.

In order to define overconvergent modular forms on X;(poo)(e)a of weight x for ¢ > 0, we
need to make sense of the expression r(cmur(2) + d) for © € A7 (0 (€)s. To account for the
overconvergence, we therefore need to consider open neighboorhods of these points:

Definition 2.2. Let By(Z, : 1) C P*(Z,) C P' be the subspace of points of the form (a : 1) for
a € Z, considered as a profinite adic space. For any 0 < r <1 and any compact open subspace
UCZ,let B.(U:1)C P! be the subspace defined as the union of all closed balls of radius r
around points (a : 1) € P}(Z,) with a € U

Definition 2.3. Let z be the parameter on P! at 0 arising from the canonical isomorphism of
schemes A' =5 P\{oo}, z — (2 : 1) and let 3 := mjp2. It is easy to see that B,.(Z, : 1) C Al is
closed both under the additive group structure as well as the multiplicative monoid structure.

Lemma 2.4. The action of Ty(p) fizes B.(Z, : 1) CP'. In terms of the parameter z, we have

az+b
2.2 ab).y= .
(2 (29)-2= 212
Proof. Let v = (%) € Iy (p). Then inside P' we have (24)(2:1) = (az+b:cz+d) = (yz:1).
Moreover, |cz +d| =1 on B.(Z, : 1) since |z| <1 (asr < 1), ¢ € pZ,, d € Z). Consequently,
since (cz +d)™' = d ') S (cd'2)" € B.(Z, : 1), the fact that B,(Z, : 1) is closed under
multiplication and addition implies that also vz = (az+b)(cz +d)™* € B.(Z, : 1) as desired. O

Remark 2.5. In the definition of modular forms in [CHJ17], the automorphic factor features
the term (b3 + d), since in their notation — where z is a parameter for a neighbourhood of oo € P*
— the action of Ty(p) is given by z — (b + dz)/(a + cz). In switching from the canonical to the
anticanonical locus, we instead get (c3 + d) as in the complex case (see also Rem. 3.23).

The following proposition implies that for any weight «, there is an € > 0 such that for any
T € Af,00)(€)a and any (¢ }) € Iy(p), the factor of automorphy r(c3(x) + d) converges.

Proposition 2.6. Let 0 <r < 1. Then for0<e<r/2ifp>5ore<r/3ifp=3, ore<r/4
if p =2, we have WHT(X;(pOO)(e)a) C B,.(Z,:1).

Proof. Away from the cusps, this is a special case of Prop. 5.18 below. For the cusps, the
statement is clear since these are contained in the ordinary locus and are thus sent to P*(Q,). O

3. OVERCONVERGENT ELLIPTIC MODULAR FORMS

In this section we define line bundles of p-adic modular forms of weight , where k is a smooth
bounded weight. Following [CHJ17] with our slightly modified setup, these bundles are defined
using the structure sheaf of X;‘(poo)(e)a by taking invariants under a group action with a factor
of automorphy to descend to finite level, mirroring the definition of complex modular forms.

We first explain what we mean by a smooth bounded weight:
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Definition 3.1. The weight space for GLy is W := Spf(Z,[[Z}]])2 xq, L. A smooth weight
over L is a smooth adic space U over a perfectoid extension of L together with a map U — W.
A smooth weight is bounded if its image in W is contained in some affinoid subspace of W.

3.1. Sousperfectoid spaces. We would like to define sheaves of families of modular forms of
weight U to be functions on Xp(,e0)(€), X U. In order to obtain a sheaf, we need to make sure that
the latter fibre product exists as an adic space. For this we use the language of sousperfectoid
spaces, which we briefly recall from [HK, Seection 7] and [SW, Section 6.3]. Their technical
importance stems from Prop. 3.3.

Definition 3.2. (1) A complete Tate Z,-algebra R is called sousperfectoid if there is a
perfectoid R-algebra R such that R < R splits in the category of topological R-modules.
(2) A Huber pair (R, R") is called sousperfectoid if R is sousperfectoid.
(3) An adic space is called sousperfectoid if it can be covered by affinoid open subspaces of
the form Spa(R, R") where R is sousperfectoid.

Proposition 3.3. [SW, Prop. 6.3.4] Any sousperfectoid Huber pair (R, R") is stably uniform.
In particular, Spa(R, R") is a sheafy adic space.

Corollary 3.4. Let X be a perfectoid space over L and let Y be a rigid space smooth over a
perfectoid extension of L' /L. Then the fibre product X x 1) exists as a sousperfectoid adic space.

Proof. By [Hub13, Cor. 1.6.10], the smooth rigid space ) can be covered by open subspaces which
are étale over some disc B = Spa(L’(X1,...,X,)). Since the fibre product of perfectoid spaces
is perfectoid, we may without loss of generality assume that L = L/, and that X = Spa(S, S™)
is affinoid perfectoid. The fibre product X x; B then exists and is sousperfectoid because the
algebra S(Xi,...,X,) is sousperfectoid by [SW, Prop. 6.3.3.(i) and (iii)]. The fibre product
X xp Y = (X x;, B) xg Y now exists and is sousperfectoid because algebras étale over a
sousperfectoid algebra are again sousperfectoid (Prop. 6.3.3.(ii) op. cit.). O

Corollary 3.5. If U is a smooth adic space over L, then Xj 00y (€)a 1= X (o0 (€)a XL U eists
as a sousperfectoid adic space. Moreover, if we define XJ,F(pn)(e)a = le(pn)(e)a XU, then

X ooy (€)a ~ %X;,F(W(e)a.

Proof. The first part is immediate from the last corollary. The second part follows from the
observation that when (A, ),ecn is a direct system of Tate algebras (by which we mean a Huber
pair with a topologically nilpotent unit), and A, is a Tate algebra with compatible morphisms
A, — A, such that liﬂAn C A, has dense image, and B is a Tate algebra over A;, then

lig(An@) 4, B) € A.®4, B has dense image by pointwise approximation. O

Lemma 3.6 ([KL, Thm. 8.2.3]]). Let Y be a seminormal adic space (see [KL, Defn. 3.7.1]), for
example a smooth rigid space. Let v : Vyroet — Van be the natural map. Then ’U*O;pmét = (9;.

Proof. By [KL, Thm. 8.2.3], we have v,0y,

proét

C Oy. On the other hand, for any affinoid V C Y,
we clearly have v*@;pmét(V) C v*@ypmét(V)o = Oy(V)°. Since Y is a rigid space, we have
Oy(V)° = 03(V), which shows v. 0y, C O3, O

proé

= 0y,,. Using the adjunction morphism of v,

we thus have inclusions O3 C v, 05,
proét

Lemma 3.7. Let Y be an affinoid adic space over L that is either a smooth rigid space or a
perfectoid space. Let I' be a profinite group. Let X € Vet be an affinoid perfectoid pro-étale
I'-torsor. Let U be a smooth adic space over L, set Xy := X X U and Yy := Y X U, and denote
the induced map by h : Xy — Y. Then

(h*Oj—(M)F = O;’;M and (h*OXu)F = Oyu.

Proof. As the statement is local on ), it suffices to check that for an affinoid open V C )
with affinoid perfectoid preimage W = h~'(V)) we have Oy (V xU)" = Oy, (W x U). Since
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by our assumptions ) is stably uniform, [CHJ17, Lem. 2.23 (2)] reduces this to checking that
(h.O%)" = O3, To sce this, we first treat the case that ) is a smooth rigid space. Then in the pro-
étale site V06t in the sense of [Sch13], we have the structure sheaf O;pmét as well as the completed

structure sheaf @;pmét. For the affinoid perfectoid space X, we have O%(X) = 03 (x). The

Vproét
Cartesian diagram expressing X — ) as a pro-étale I-torsor then shows that we have
O;;(X)F = O;;proét (X)F = O;’;proét (y)
The first part of the Lemma now follows from Lem. 3.6. The second follows by inverting p.
If Y is a perfectoid space, the same argument works in the pro-étale site Vpro6r of [Sch]. O

Proposition 3.8. Let U be a smooth adic space over a perfectoid field extension L' of L. For
any n > 1 denote by h: X r00)(€)a = X 1y (pn) (€)a the natural map. Then
(h.O%. )R =03, and  (h.Ox; | JRe™) = Oy

2T (poo) (€ U, Ty (pm) ()a U, r(poe) ()a U, T (pr) (e
For the proof, we explain how to deal with the boundary, which was not treated in [CHJ17].

Proof. After base-change to L', we may without loss of generality assume that L = L.
Over the open subspace away from the cusps, the map h : Xy rpee)(€)a = Xunpn)(€)a is @
pro-étale I'y(p™)-torsor for the action defined in (2.1). By Lem. 3.7, we thus have

L") _

(h*ozu,r(pOO)(ﬁ)a) " = O‘;M,Fg(pn)(é)a'

We are left to extend this to the cusps. Let us first look at the case that U is a single point.
For this we can use Tate curve parameter discs as discussed in [Heual]: For any geometric point
¢ in the boundary of X*, there is an integer d|N (depending on the tame level structure and
the presence of unit roots in L) such that there is an open immersion D X ug < X™* where
D C L{q) is the open disc defined by |¢| < 1, such that the image of the origin contains ¢. For
Xy (€)a there is then also a Tate curve parameter disc D X g <> A ,n)(€)a. The induced
map over Xli‘o(pn)(e)a — X*is D — D,q — ¢”" by Prop. 2.10 op. cit. Equivalently, we may
rewrite this as the open disc D,, C Spa(L{g'/?")). By taking tilde-limits, we obtain a perfectoid
disc Do ~ lim D;, © Spa(L{(g'/?™)). By [Heua, Thm. 3.8], there is then a Cartesian diagram

FO(pOO) X Doo X Ha —_— Dn X Ha

[ [

le(p"o) (6)“ leo(p”) (6)

where I'g(p™) is the profinite perfectoid group of upper triangular matrices in GLy(Z,). By
Thm. 3.21 op. cit., the T(p™)-invariance of a function f on I'y(p™) X D X pg now means
precisely the following: first, the I,(p*)-invariance means that f comes from a function on
D, x pg via pullback along the projection I'g(p®°) X Dy, X ftg — Doo X pig. It is thus of the form
f € 0T (Dy x p1a) = OL[Ca)[[¢"*™]]. Second, the remaining Ty(p")/Ty(p™) = p"Z,-action is the
one which sends ¢'/?"" — ¢hngt P for all m € N and h € p"Z,. For f to be invariant under this
action means that f € OF(D, x pq) = OL[¢][[¢"/*"]], as desired.

For general weight U, we may without loss of generality assume that U is affinoid. The same
argument then still works, adding a fibre product with U everywhere in the above and working
with g-expansions in OF(U)[¢4][[¢"/*"]] instead. O

Remark 3.9. As pointed out to us by the referee, one can also use the rigid analytic Riemann
Hebbarkeitssatz for normal rigid spaces due to Bartenwerfer [Bar76] and Liitkebohmert [Liit74,
Satz 1.6] to extend over the boundary. One advantage of the perspective taken above is that it
explicitly describes the g-expansions associated to p-adic modular forms.

3.2. Overconvergent modular forms.

Definition 3.10. For any rational 0 < r < 1, let B,(Z* : 1) C B,(Z, : 1) C P! be the union
of all balls B,(a) of radius  around points (a : 1) with a € Z;. For r = 0, we instead let
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By(Z) : 1) := Z), where we recall that we mean by this the perfectoid space associated to the
profinite group Z.

The adic space B,(Z) : 1) inherits the structure of an adic group from G,, = P'\{0,00} C P".
Note that for » < 1, on Z,-points we have B,.(Z); : 1)(Z,) = Z,; compatible with the group
structure. We therefore regard B,.(Z, : 1) as an adic analytic thickening of Z.

Definition 3.11. (1) In the following, we will also denote by G, the adic analytification of
the corresponding scheme over L. Its underlying adic space is A", and it represents
the functor sending an adic space Z over (L,Op) to O(Z2).

(2) We analogously define the adic group G,,, as the adic analytification of the corresponding
scheme over L. It represents the functor sending an adic space Z over (L, Op) to O(Z)*.

(3) Denote by (C}a the adic generic fibre of the formal completion of the Op-scheme G, 0, ;
then G, C G, is an open subgroup, given by the closed ball of radius 1 around the origin
0 € G,. It represents the functor sending an adic space Z over (L,Op) to OT(2).

(4) Similarly, let G,, be the adic generic fibre of the formal completion of Gq,0,; then
G C G,, is an open subgroup, given by the closed ball of radius 1 around the origin
1 € G,,. It represents the functor sending an adic space Z over (L,Op) to O1(Z)*.

Any continuous character  : Z; — L* has a geometric incarnation as a morphism of adic

spaces K : Z, — Gm. Indeed, by the universal property of G,,, any such morphism corresponds
to an element of O(ZX)* = Map, (Z);,L)* = Map(Z);,L*). Any such x has an analytic
continuation to B,(Z) : 1) for small enough r. In fact, this holds more generally: let U be any
bounded smooth weight (see Defn. 3.1). This corresponds to a morphism & : Z x U — G or,
equivalently, a continuous morphism Z) — O (U)*, called the character of U.

Proposition 3.12. If x : U — W is a bounded smooth weight, then there exists r. such that for
r. > r > 0 there is a unique morphism

KM B (Zy 1) xU — G
such that the restriction of K™ to 3 x U via ) — B.(Z) : 1), a+ (a: 1), is equal to k.

Proof. If U is affinoid this is a special case of [Buz07, Prop. 8.3]. In general, the assumption that
U is bounded ensures that I/ is contained in some affinoid open subspace of WW. For a precise
value of r, see Prop. 6.3. O

Definition 3.13. For any smooth bounded weight « : f — W, let r, be the supremum of all
such that the proposition holds. Similarly, let ¢ be the maximum e satisfying the conditions
of Prop. 2.6 with respect to 74, then mur(Ap 00y (€)a) € B(Zy 1 1).

Recall 3 := mjip2 is the function on Xr*(poo)(e)a defined by pullback of the function z on
B,.(Z, : 1) from Defn. 2.3. Since myr is GL2(Z,)-equivariant, Lem. 2.4 implies that for any
v € Ty(p), we have
a3+ b
c3+d
Using this and Prop. 2.6, we can then make the following definition:

(3.1) 'y =

Definition 3.14. Let x : Y/ — W be a bounded smooth weight and €' > ¢ > 0. For any
c € pZy, d € Z), we then let k(c3 + d) be the invertible function on Ay p(p~)(€)q defined by

T Xid (z—cz+d)xid
_—>

K(c3 + d) + Xyriee (€)a B,(Z,:1)xU B.(Z) 1) xU E5 G,

We can now give the definition of sheaves of overconvergent modular forms of weight &.

Definition 3.15. For x : i — W a bounded smooth weight, n € Z>; U {oo} and 0 < € < ed°f,
we define a sheaf w;; on Ay (0 (€)a by

wp = {f€a0y v f=r" G+ d)f forally = (1}) € To")},

U, r(poe) (€
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where we recall that ¢ : X p(,00)(€)a = Ap 1 (,n)(€)a denotes the projection. We also have an
integral subsheaf w/"* on le;,l—b(p")(e)a defined by using instead the OT-sheaf:

wiet = {f € ¢.0%. WY = k' (cz+d)f forally=(2%) € Fo(p”)}.

ooy (€
U,T(p™>)

For n =0 and €,/p > € > 0, we use the Atkin-Lehner isomorphism AL : A7, ) (pe)a = X (e)
to define the sheaf of overconvergent p-adic modular forms w” to be the sheaf AL,wf on A}(e).
We also have the O*-submodule of integral p-adic modular forms w*™* given by AL,w{"*.

We will later see that these are all invertible sheaves. Note that for n = oo, this defines sheaves
of modular forms on XZ:;,FO(pOO)(e)a which, by analogy to [AIP16a], we call perfect modular forms.

Definition 3.16. Let x : i/ — W be a bounded smooth weight and let n € Zs; U {oco}. We
define the space of overconvergent modular forms of weight U, wild level Ty(p™), tame level T'?
and radius of overconvergence 0 < € < ¢! to be the L-vector space

M, (To(p"), €) :=H (A 1 () (€)as wiy)
= {f € (Q(Xzipo(poo)(e)a)h*f =k ez +d)f forall v € Fo(p")} ,
and the analogous space of integral forms to be
M (To(p"), €) := H° (A 1oy (€)as ™).

Finally, we set M, (¢) := M, (Iu(p), pe), and analogously for the integral subspaces. We note that
for any n < oo, there is then a natural Atkin—Lehner isomorphism

M (To(p"), €) = M (p~"e).
One can similarly define cusp forms by working instead with w/(—9) where 0 denotes the

boundary divisor in Xi;,n,(pn)(ﬁ)a- As usual, one now defines an action of Hecke operators T}, for
¢+ Np and U, via correspondences. We shall discuss this in detail in the Hilbert case in §10.

3.3. Comparison to overconvergent modular forms of classical weights. Recall that on
X* we have the conormal sheaf wg := TF*Q};‘ , of the universal semi-abelian scheme 7 : & — X',
For a p-level structure I', of the form I'y(p") or I'(p") for n € Z>o U {00}, we write wr, for the
pullback of we to Af (€)q. In this section, we show that for characters x of the form x — z*,
for k € Z>,, the sheaf w}; can be identified with wl@ok’(pn). This shows that for classical weights,
our definition agrees with the usual spaces of overconvergent modular forms, and contains the
spaces of classical modular forms. The key to the comparison is the isomorphism of line bundles

(3.2) TirO(1) = wrpe)

from [Sch15, Thm. I11.3.18]. We recall that on (C,C")-points, this has the following moduli
interpretation: The C-points of the total space T(1) — P! of the line bundle O(1) parametrise
pairs (L, y) of a line L C C? together with a point y € C?/L on the quotient. Equivalently, this
is the data (¢, y) of a linear projection ¢ : C? — @ to a 1-dimensional C-vector space @ and a
point y € ). We sometimes just write this as the point y if ) is clear from context. Using this
description of O(1), one can now illustrate equation (3.2) as follows.

Lemma 3.17. Let x be a (C,C")-point of Xrgeey, corresponding to data (E,p, o : 22 = T, E).
Let HT g : T, E — wg be the Hodge—Tate map of E. In terms of the total spaces, the isomorphism
wrpee)y = ThrO(1) is given in the fibre of x by the morphism
(E, a, ncwg)— (HT : T,E ®z, C — wg, 1 € wg).

Following [CHJ17], we now compare our sheaf of modular forms w” for x = id to the bundle
of differentials wg by using an explicit trivialisation of O(1) over B,(Z, : 1):
Definition 3.18. Let s be the global section P! — 7(1) given by

(@:y) = (C*=C*/((5)), () +((3)))

where the second component lies in C?/{(( 3 )). This section is non-vanishing away from the point
(1:0) = oo € P!, and in particular it is invertible over B,(Z, : 1) C P'.
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We need to compute the action of I'y(p) on s over B.(Z, : 1) C G, C P! in terms of the
parameter (z : 1). For later reference in the Hilbert case, we record this in diagrammatic fashion:

Lemma 3.19. Let v = (2%) € Iu(p), then v*s = (cz+d)s, i.e. the following diagram commutes:
G x T(1) =2 T(1) < T(1)

(cz+(d)><\ T ATS
Gy,

Proof. We first note that the equivariant action of I'y(p) on O(1) which is compatible with (2.1)
is by letting v act via det(y)~'~. In particular, 7! acts as v¥. The natural fibre action of v on
sis by 7v*s =y~ ! 0 s 0, i.e. the right square commutes by definition. We therefore have

(33)  s(2) =77 () = (L) = (L) + (i) = (1) = (2 +d) (§) mod ((7)),
which shows that 7*s = (cz + d)s as desired. O

Definition 3.20. Let s := 7jjp(
Since the isomorphism 7 O(
(3.4) 7' = (c3+ d)s,

where we recall 3 is the pullback of the parameter z to a function on Xy, (€).. We have the
following consequence of Lem. 3.17.

G, —

s) be the pullback of s to a section of 7j;:O(1) = ¢*w.

1) is equivariant for the Ty(p)-action, the action of Iy(p) on s is

Proposition 3.21. Let x be a (C,C™")-point of Xr(poo)(e)a corresponding to a triple (E, pu, «
7: = T,E). Then via the isomorphism mjpO(1) = wr(pee), we have

s(x) =HT(a(e1)) € wg.

Proposition 3.22. Let k : x — x¥. Then there is a natural isomorphism w® = w®*.

Proof. As s is a non-vanishing section of ¢*w over Xli‘(poo)(e)a, the sections of ¢*w®* are all of
the form f-5%" for f € O(&},(€)a). Of these sections, the ones coming from sections of w®* —

that is, those defined over A} (€), — are exactly the I'y(p)-equivariant ones. But

V(f-s®F) =y f s ®E ey v f - (c3+d)Fs®  for all v € Ty(p).
The T (p)-equivariance of v*(f - s°¥) is thus equivalent to v*f = (c3 +d) " f =x ez +d)f. O

Remark 3.23. While the analogy to the complex situation is very close, one notable difference
is that on the complex upper half plane H the canonical differential 7.,, satisfies Y*nean =
(cz + d) '1can, Whereas on Ayci(€), one has v*s = (c3 + d)s. The different signs can be
explained as follows. Both constructions of modular forms depend on a canonical trivialisation of
the automorphic bundle w on the covering space, which is A in the complex case and le(poo)(e)a
in the p-adic case. But there is a sign difference in the canonical trivialisation: consider the
universal trivialisation « : Z? = H,(FE,Z) on H and let ; denote the image of the standard
basis vector e; of Z?. Then the canonical non-vanishing differential 7., is defined to be the
unique differential such that fal Nean = 1 under the pairing

[ H(E,Z) »wy, a— (w— [ w).

As a consequence, when we denote by ¢*w the pullback of w via H — Y = SLy(Z)\H, then using
the natural period map ¢ : H — P!, o ( faz Wean * fal wcan) we have a natural isomorphism
¢*w = 1*O(—1). On the other hand, in the p-adic case, the trivialisation is given using the image
«; of e; under the Hodge—Tate map « : Zi — T,E. The canonical differential is then the image
of ay under HT : T,E = H{(E,Z,) — wgv = wgp and as discussed earlier, the period map
THT @ A (00 (€)a — P! therefore induces an isomorphism ¢*wp = 7 O(1).

In summary, in the complex case one trivialises w} whereas in the p-adic case it is wgv,

therefore one description of wg is by comparing to O(—1) whereas the other uses O(1). It is
this difference that ultimately leads to the different signs in the definition of modular forms.
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3.4. Comparison to Katz’ convergent modular forms. For ¢ = 0, it has long been known
how to construct sheaves of p-adic modular forms, going back to [Kat73, §4]. We briefly present
the construction here in the adic language, and sketch how it compares to our setting.

Let us for simplicity assume U = Spa(L); the discussion applies without changes for general
U. Let AT ,n)(0) — X7(0) be the n-th Igusa curve, i.e. the (Z/p"Z)*-torsor parametrising
trivialisations Z/p"Z-~»H, of the canonical subgroup. Since this has a natural finite étale
formal model, we can form the inverse limit Ay ) (0) — X*(0) over n as a sousperfectoid space.
This is a pro-étale Z,-torsor known as the Igusa tower, relatively parametrising isomorphisms
Z,=~T,H". As we will see in more detail in the next section, there is a commutative diagram

X*

T'(po>®

1(0)a —— &7 () (0)a

! |

X ey (0) ——— X%(0)

Ig(pe®
where t is given by using the canonical isomorphism H) = E[p"]/H, and sending a trivialisation
a: Z:-=T,E to

z, % 72T, E % T,HY.

One now observes that in the case of € = 0, the function c¢3 + d is of the form
3+ d ) rpe(0) = Z,
where as usual we consider Z) as a profinite adic space. One now checks that t is equivariant with
respect to the map sending (24) + ¢3 + d, in the sense that the following diagram commutes:

Lo(p) X A (oo (0)a — A (00 (0)a

T'(p>®

i(cﬁd) xt lt

L X X ey (0) —— &) (0)

It follows formally (e.g. [Heul9, Lemma 2.8.4]) that w” is the pullback of the pro-étale line
bundle on X*(0) associated to the cocycle

KLy —OMU)”.
Returning to general € > 0 and U, we now use this to give a new proof that w” is analytic:

Proposition 3.24. For any 0 < e < €| the sheaf w" is an analytic line bundle on X};(e).

KR

Proof. Away from the boundary, it is clear that w"” is a pro-étale line bundle, i.e. an invertible
module over the completed structure sheaf of Xy (€)prost, as it is defined via a descent datum for
the pro-étale torsor Ap(ye0)(€)s = Xry(p)(€)a- The crucial point is now that by [Heub, Cor. 3.5],
such a pro-étale line bundle is already an analytic line bundle if it is analytic on any Zariski-dense
open subspace of Ay(€). We can thus reduce to proving the statement over the ordinary locus,
including the boundary; the analyticity will then automatically overconverge.

We now use that the Igusa tower admits a formal model which is still a pro-étale Z -torsor.
It follows from [Heub, Prop. 3.8] that w” on A*(0) is locally trivial in the analytic topology. O

Remark 3.25. Alternatively, one could use the analyticity criterion [Heub, Cor. 3.6], which
says that a pro-étale line bundle on X™*(e) x U is analytic if it is analytic in each fibre of a
Zariski-dense subset of points in each factor. It is clear that w” becomes trivial over the fibre
of any x € X*(€)(C) because the torsor Xy« (€) = A™(e) becomes split over z. On the other
hand, Prop. 3.22 says that w” is analytic over the Zariski-dense set of classical points of W.

4. COMPARISON WITH ANDREATTA—IOVITA—PILLONI’S MODULAR FORMS

In this section, we prove that the sheaves of p-adic modular forms defined above are canonically
isomorphic to those defined by Pilloni in [Pil13] and Andreatta—Iovita—Pilloni in [AIP18]. In
order to distinguish their construction from ours, we shall denote the latter sheaf by wfp.
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This extends the comparison for classical weights proved in Prop. 3.22 above. We first briefly
summarise the construction.

4.1. The Pilloni-torsor. The construction of wfp relies on the Pilloni-torsor F,,(¢). In this
subsection, we will recall its definition, and show how the section s from Defn 3.20 induces a
natural map X;(pw)(e)a — Fu(€) into the Pilloni-torsor, allowing a direct comparison of the
modular forms in [AIP18] with those defined in Defn. 3.15 above. This is very similar to [CHJ17,
§2.7], which also relies on the section s, but the present setup makes the comparison slightly
easier: it allows for a global comparison map from the perfectoid modular curve to the Pilloni
torsor, which makes it possible to avoid auxiliary choices.

We shall discuss the Pilloni-torsor in an analytic setting, rather than dealing with normal formal
schemes like in [ATP18]. This is mainly to avoid discussing normalisations in our non-Noetherian
setting over O — while this is still possible, it would require more work.

Definition 4.1. For any m € Z>, let 0 < € < € := 1/p™™!. Like in [Sch15, Definition
I11.2.12], one can define a canonical formal model X*(e) of X*(¢) with a semi-abelian formal
scheme € — X*(e). By [AIP18, Cor. A.2], this admits a canonical subgroup $),, C € of rank
p™ characterised by the property that its reduction mod p'~¢ equals ker F'™ where F is the
relative Frobenius. Let H,, C & — X™*(¢) be the adic generic fibre, this is the universal canonical
subgroup of the semi-abelian adic space over X'*(¢€) (cf the discussion in §2.1).

The Igusa curve X ,m(€) — X”(€) is now the finite étale (Z/p™Z)*-torsor which relatively
represents isomorphisms of group schemes Z/p™7Z — H .

Consider the pullback wig(m) of the conormal sheaf w to A, ,m(€), and denote the total
space of wigpm) by T(€) — Xy (,m)(€). Following [Pill3], the Pilloni-torsor is now a certain

open subspace F,,(€) C T,,(e). We recall this in an analytic setting.

Definition 4.2. For any formal scheme %), the generic fibre Y = @2‘1 comes equipped with a
morphism of locally ringed spaces s : (Y, O; ) — 2). For any coherent sheaf & on ) with generic
fibre G, this gives rise to an integral O;—module Gt :=5"® on ).

*

Applying this to the conormal sheaf of € — X*(¢) and pulling back to Ay, ,m)
the sheaf wyy(,m) carries a natural integral structure WIE (pmy & Wigpm)- The same construction

(€), we see that

applied to the conormal sheaf of the canonical subgroup ,, C & — X*(¢) gives a morphism of
(@) -modules 7 : wf;(pm) — wj; . Let Hdg be the Hodge ideal on X\ (€) [AIP18, §3.1].

Te(pm) (€) Ig(p™)
Lemma 4.3. The following sequence of Oj{*( )(6)—m0dules s exact:
Ig(p™
m71 -
0 — pmHdg™ Ea ler(pm) — WIZ(pm) — w}}m — 0.

Proof. We have an exact sequence 0 — wepmi/g,, — Wepm] — Ws,, — 0 over X*(e). The middle

term is we /p™, whilst the first term has annihilator Hdg®" ~/®~Y by [AIP18, Cor. A.4.2]. We

~(™ 1)/ (1) o

thus have an isomorphism we /p™Hdg ws,, - Pulling this back under the morphism

of ringed spaces (A7 ,m)(€), O;*( )(6)) — (X*(€), 0% (o) = X*(€) gives the result. O
Ig(p™
When we now regard H,, as a sheaf of sections over A, m,(€), we have a morphism of sheaves
(4.1) V:Z/p"L —2— HY — w

that defines a canonical section (1) € wj; .

Definition 4.4. Let 0 < e < €. The Pilloni-torsor §,,(€) is the (’);*( )(e)—module defined by
Ig(p™

Sm(e) :={r e le(pm) | m(r) = (1)}
Let o (€) = Trn(€) — Ay m (€) be its total space. By Lem. 4.3, this is an analytic torsor under
the group (1+p™ Hdg~®"~V/®=V G,y — Xy (o) (€) and an étale torsor over X*(e) for the group

g
- e @1/ 1) ¢ : . .
By, :==7Z;(1+p™Hdg™ " ="' G,) when combined with X (e)— X*(e).

Ig(p™)
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Definition 4.5. (1) For the universal weight "™ : WW — W, let T be the weight space
parameter given by the function " (q) — 1 on W for a fixed topological generator ¢ € /e
(2) For any k € Z>1, we define the annulus W, := W(T|P" < |p| < |T|”" ). For k =0, we
simply take the disc Wy := W(|T| < |p|). Then W = Uyez_ Wi
(3) Let now x : Y — W be any bounded smooth weight, which we may regard as a function
k2 XU — Gy, We let [T, = SUD(, ez wylr(x,u) — 1| and [0,| := max(|p|, |T,|).
Let r:=3if p > 2 and r := 5 if p = 2. Then we let 0 < ¢, be implicitly defined by
Ip|= = \5H|1/pr+1. Finally, for any k € Zsq, we let Uy := k= (W,,); then U = UrezsoUs-

Remark 4.6. One checks easily that ¢, < ¢d°f. Moreover, we note that by definition, e is

K

such that we can define our sheaf of integral modular forms on X (¢) for 0 < € < €2, while for
0 < e < ¢, this sheaf will be invertible (although we do not claim this is the optimal bound).

The sheaf wfp is then defined in [Pil13] and [AIP18] as follows.

Definition 4.7. Let x : U/ — VYV be a bounded smooth weight. In order to define wjp, we need
to split this up into opens U, as in Defn. 4.5: Let 0 < € < ¢,. Fix now any k € Z>, and set
m =17+ k — 1 (this implies €, < € and ¢, < ed°f).

(1) Using the projection pr : F,,(¢) x U — A;j(€), we define

Wil (V) = {f € pr.0z (V)" f = 671 () for all v € Z) (1 4 p"Ga) x U}
Prop. 7.10 below shows that these sheaves for different £ € Z>, can then be glued over
U to get a sheaf w;p. We similarly define w5 by using O;m (O)xu instead.
(2) For any n € Zs; we set wipp ,, := AL" wjjp where AL" : A7 oy (P€)a = X7 (€) is the

Atkin-Lehner isomorphism (corresponding to the matrix (7' 9)). Let i : X% . (€)a —

01 Lo(p™)
XL ay(p"€)q be the restriction map. Then by [AIP18, Théoreme 6.2.4], there is a

To(prt) A7 .
canonical isomorphism
N s N N
U Watp,n = nWarps
. * * : _ Kyt — Kyt
where g, 1 A7, ,n)(€)a — X*(€) is the forgetful map. For n =0 we let wipp o = wiip.

(3) We therefore set wiip . = ¢*wiip where ¢ : Xr (poo) (€)a — X7 (€) is the forgetful map.
4.2. The comparison morphism. The following is the main result of this section.

Theorem 4.8. Let k : U — W be a bounded smooth weight, let 0 < € < ¢€,,, and let n € ZsoU{oo}.

. . . + *

Then there is a natural isomorphism of OT -modules on Xuypo(pn)(e)a
K, o Kyt

W O‘)AIP,n’

In particular, the w>* are invertible O -modules. By inverting p, we also obtain isomorphisms of
invertible O-modules wy, = Wip ,, on Xi;,ro(pn)(e)a- Moreover, this induces a Hecke equivariant
isomorphism between the respective spaces of modular forms.

For n = 0, this in particular gives a canonical isomorphism w®™* 2 Wi on A ().
The proof of Thm. 4.8 now relies on the following lemma (cf [AIP18, p 31)):

Lemma 4.9. Let € < 2", Then s induces a morphism over X*(e)
51 A ooy (€)a — Fn(e€).

Let & := s ou, where u, := (% 9). Then for any v = (2}) € [o(p"), we have v*§ = (c3 + d)3,
that is the diagram

A ooy (P"€)a — Xy ooy (P"€)a —> A (yny (D" €)a
(4.2) (c3+d)><§l gl lAL"

By, X F(€) — 22— Fo(e) ———— X*(e),
commutes, where m denotes the respective action maps.

Remark 4.10. In fact, the map s factors through the forgetful map A7 00)(€)a = AT (oo (€)a-
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Proof. Prop. 7.11 will prove a more general version of the first part away from the cusps. The
morphism extends since the relative moduli interpretation of F,,(€) = Xigm)(€) = X' (€) also
holds over the cusps.

A more general version of the second part will be proved in Lem. 7.12 below, we now explain
the argument in the elliptic case: Recall that s = 7j;1s. By GL2(Q,)-equivariance of myr, we
therefore have § = mf;;8 for the section § := u*s on G, C P'. It therefore suffices to prove that
v*§ = (cz + d)5. For this we first note that the action of w, sends (z : 1) to (p"z : 1), and
therefore

(4.3) Uz =p"z

In particular, u, sends G, C P! onto p"G, C P'. Note that this is preserved by the action of

") :={(x%) € GLy(Z,)|b € p"Z,}. By the same computation as in (3.3), we see that on

p"G,, for any 7/ = (Z,/ Zi) e I'%(p"), we have v*s = (¢’z + d')s. For v/ := u,yu, ', this shows
¥E =y ulks = ul (unyu, ) s = ul, <p ‘ pnb> s=u ((p™"cz +d)s) () (cz+d)s. O

“"c d
Proof of Thm. 4.8. 1t suffices to prove this locally on W, so we may assume that x has image in
W, for some k € Z>. Set m =r + k — 1. We start with the case of n € Z>;.
Let f be a section of wy;s. For simplicity of notation, let us assume that f is a global section,

even though the proof works for any section. We may then regard f as a map F,,(e) x U — Ga.
To see that §*f = f o5 is a section of w™, we use that for any v € I)(p"), the diagram

X;(poo)(pnﬁ)a xU - le(poo)(pne)a xU
(c3+d)><§><idl ﬁxidJ/
m e mXxid
ZY(1+p"Gy) x Ful€) x U ———— F(e) xU
milel fl
Gm X @a = ’ Ga

commutes, where m denotes the multiplication map. Here the top square commutes by Lem. 4.9
and the bottom square is commutative by definition of w};5. The outer square now shows that

VEf) =k e+ d)Ef

as desired. This gives a natural morphism of 0+i? (o~modules whip — ALTw®* which in turn

induces & : wiip,, = AL Wiy — wp

To see this is an isomorphism, recall that wii5 is invertible, so locally on some open U C Ay(e)
we can find f that is 1nvert1ble as an element of OF 6)XM(U ). Thus w} AIP|M = fOf. Let
V= AL™"(U); then 5* f € ¢.O x* oo ) (V) is invertible. It now follows from Prop. 3.8 that

we have w™* |y, = §* fO}. Thus §* is an isomorphism locally over U. Since Xj,(¢) can be covered
by such U, this completes the proof in the case of n € Z>;.

The case of n = 0 follows from the case of n = 1 since we have w®* = AL,w{"" = wih. For
n = 0o, the same argument works for the diagram
* Y * *
Xr(poo)(f)a - XF(pOO)(E)a I Xrg(poo)(e)a

(44) x5 | s

L) X Fn(€) —— F(e) ——— X*(e).

which induces an isomorphism s* : ¢*wip — w® T as desired. Lastly, the statement about Hecke
equivariance is a special case of Prop. 10.8. O

5. PERFECTOID HILBERT MODULAR VARIETIES FOR G*

For the remainder of the paper, we move on to Hilbert modular forms. In this section, we
recall the classical Hilbert modular varieties for G and G*, and the perfectoid versions for G*.
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5.1. Classical Hilbert modular varieties for G and G*. The content of this section is
mainly classical and can be found in many sources, e.g. [TX16, §2] and [Hid04, §4].

Notation 5.1. (1) Let F be a totally real field of degree g over Q with ring of integers O
and absolute different 9 C Op. Let % denote the set of infinite places of F'.
(2) Recall that we fixed a rational prime p. We set O, := Op ® Z,, = ©,,0p,, where p|p
ranges over the prime ideals of O over p and where F, is the completion of F' at p.
(3) For any fractional ideal ¢, let t™ denote the totally positive elements in t; in general ‘4’
will denote ‘totally positive’. We have a non-degenerate trace pairing Tr : t x =107 — Z.
(4) Let G := Resp/g GL, and let G* := G X Res /g Gm Gy, where the map G — Resp/g Gy, is
given by the determinant morphism and G,, — Resp/qg G,, is given by the diagonal map.

Let S := H*, where H C C is the standard upper half-plane. For K an open compact
subgroup of G(Ay), there exists a Shimura variety Shy (G, S) of level K over Q. Similarly, if
K* is an open compact subgroup of G*(Ay), there exists a Shimura variety Shg«(G*,S) over Q.
These Shimura varieties are the Hilbert modular varieties. The Shimura variety Shx«(G*,S) is
of PEL type, therefore of Hodge type, whereas the Shimura variety Shx (G, S) is of abelian type.

Definition 5.2. Let ¢ C Op be any nonzero ideal and let N be coprime to c.
9 ¢ 1o * *
(1) Let K. := G(A;) N (ng ( °>5FOF). Let K* := G*(A;) N K.
(2) Let Ko(¢, N) :=={y € K |y=({i) mod N} and K;(¢,N) := Ko(¢c, N) N K*.
(3) Let K1(¢, N) :={y € K J|y=({i) mod N}. Let Kj(¢, N) := K;(¢c, N)N K.
(4) Let K(¢, N):={y € K |y=(}?) mod N}. Let K*(¢, N) := K(¢, N)N K.

5.1.1. Moduli problems for Hilbert—Blumenthal abelian varieties. Hilbert modular varieties arise
as solutions to moduli problems of abelian varieties with level structures.

(o
(o

Definition 5.3. Let S be any scheme. Let ¢ C Of be an ideal.

(1) A Hilbert-Blumenthal abelian variety (HBAV) over S is a triple (A, ¢, A) consisting of an
abelian variety A over S with real multiplication ¢ : Or < End(A) and a c-polarisation
A A®c¢ = AV, such that ¢ is stable under the Rosati-involution.

(2) Given a HBAV (A4,, ), we refer to (A,:) as the underlying abelian variety with real
multiplication (AVRM).

(3) A morphisms of HBAVs is an Op-linear morphisms f : A — A’ of abelian S-schemes for
which A= f¥o XN o f.

The Shimura varieties for G* represent moduli problems given by c¢-polarised HBAVs with
additional rigidifying level structure, which we shall discuss next. In contrast, the Shimura
varieties for G are only coarse moduli spaces parametrising triples (A, ¢, [A]) where (A4,:) is an
AVRM and [\ = {vAlv € OF"} is a polarisation class, plus level structure.

Definition 5.4 (Level structures for G). Let (A, ¢, A) be a c-polarised HBAV, let N € Z, with
(N,p) =1 and let n € Z>,.

(1) A pn-level structure is a closed immersion of Op-module schemes 97! @7 uy — A[N].
(2) A T'o(p™)-level structure is an Op-submodule scheme ®,, : C' — A[p"] that is étale locally
isomorphic to Or/p"OF. Via A, this is equivalent to giving an Op-submodule scheme
C':=XNC®c)— A'p"].

In the context of Shimura varieties for G*, we also call the same data a I'jj(p™)-level
structure, since this level structure appears for both G* and G.
(3) A T'y(p™)-level structure is a closed immersion of Op-module schemes

q)n : Op/pnOF — AV[pn]

Again, we also call this a I'j(p™)-level structure,
(4) A I'(p™)-level structure is an isomorphism of Op-module schemes

a, : (Op/p"Op)* = AY[p"].
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Remark 5.5. Our definition of level structures at p is slightly non-standard: usually one would
define a I'(p™)-structure to be an isomorphism (Op/p"Or)?* = A[p"]. The reason we use the
above modified version parametrising A" [p"] is that the Hodge—Tate morphism is of the form
T,AY — way, so it is this level structure which gives rise at infinite level to canonical sections of
w4, as required for the definition of modular forms. The isomorphisms (Or/p"Or)? = A[p"]
would instead give sections of w,v. We note, however, that given a fixed c-polarisation A as in
the moduli problem for G*, a I'(p™)-level structure is equivalent to an isomorphism

—1 —1
(Or/p"Or)? @ ' 2 AV @ ¢! 2 A]p"].
In this case our notion is (non-canonically) isomorphic to the more standard definition.

We now define level structures for G*. Recall that we have defined I'|j = I}y and I'} = I';-level
structures to be the same, but at full level we need a slightly different definition, analogous to
[Rap78, §1.21]. To motivate this, observe that we can see G as a group preserving a pairing up
to similitude, whilst G* is the subgroup that preserves certain rational structures within this.
For the Shimura varieties associated to G*, we therefore need isomorphisms «,, preserving a
rational structure. We will now define the Og-structure in which the rational structure should
live, via an Op-linear version of the Weil pairing.

Definition 5.6. Let (A4,:,\) be a HBAV. The Weil pairing e,n : A[p"] x AY[p"] — p,n satisfies
epn(ax,y) = eyn(z,ay) for a € Op (see [Mum?70, Section 20]). The Weil pairing can therefore be
extended to an Op-linear version, by using the trace map to write 9~ ~ Hom(Op,Z), setting

(5.1) e, : A[p"] x AY[p"] — 07 @y ppn,
z,y — (a > epn(ax,y))
which is Op-bilinear and perfect. We call e,, the Op-linearisation of e,n. Note e,n = Troe,,.
We fix a non-degenerate Op-linear pairing on (Or/p"Or)? @ ¢! x (Op/p"Or)? to compare
to the Weil pairing. To this end, fix an isomorphism of free O,-modules of rank 1
B0, =07 @z Tyupo =107 (1),
or equivalently an O,-module generator 3 € 0! ®z Ty« = @ *(1). Then we get a pairing

(= =)o (Op/p"Op)? @ ¢ % (O /p"Op)? 255 (071 /p™)? @ pin X (Op /p"Or)?

E) 0_1 ®Z ,Ll,pn7
where det : [(a,b), (¢,d)] — ad — be. Given a I'(p™)-level structure «,, this fits into a diagram

<_1_>B,n

(Op/p"Or)? @ ¢! x (Op /p"Op)? ———"—— 071 @ piyn ———— fin
(5.2) l)\—lo(an(g)id) lan Zlb
Alp"] x A = P T pp——

The two pairings into 07! ®z p,» will always be similar, that is there always exists some
be Aut(d! @z ppn) = (Op/p"OFp)* that makes the above diagram commute.

Definition 5.7. A T'*(p")-level structure is a T'(p")-level structure o, : (Op/p™)? = AV[p"]
such that the similitude b in (5.2) lies in the subgroup (Z/p"Z)* C (Or/p"Or)*. Equivalently,
it is an «,, such that after composing both pairings with the trace map — the final horizontal
maps of (5.2) — the two pairings into p,» remain similar via b € Aut(u,n) = (Z/p"Z)*.

Via its natural action on (Op/p"Or)?, the group G*(Z,/p"Z) C GLy(Or/p"OF) acts on
I'*(p™)-level structures by letting v act as pre-composition with vV := det(y)y~ .

Remark 5.8. We note that the dual ensures that we obtain a left-action. One reason for us to
use 7" rather than v~! to define the action is Lem. 8.23 below.

In the limit n — oo, the pairings (—, —)s, are compatible and define a pairing (—, =)z :
Or@c ! x 02 = 027(1). A T*(p>)-structure is a compatible collection of I'*(p™)-level structures.
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Equivalently, this is an isomorphism (’)ﬁ — T,AY inducing a (rational) similitude of pairings on
O2@ ¢! x O = T,Ax T,A" as above.”

5.1.2. Hilbert modular varieties as moduli spaces. We now recall the moduli problems that the
Shimura varieties Shy«(G*,S) represent. Consider the functor

Sch /Z[l/N] — Set,

sending a scheme S to the set of isomorphism classes of (A, ¢, A, ), where (A, ¢, \) is a c-polarised
HBAV and p is a puy-level structure which we call the tame level. This functor is represented
by the Hilbert moduli scheme X (¢, pn)zp/n) over Z[1/N]. We denote by X (¢, un)r the base
change to any Z[1/N]-algebra R. Then there is an isomorphism

X(C7MN)(C = ShKf(c7N)(G*,S).

Thus X (¢, in)zp1/n is @ model for Shyex (o vy (G*, S) over Z[1/N]. We write X := X (¢, un)z

In the case of G, the Shimura variety Shg, (, v)(G, S) also has a canonical model X¢ (¢, n)zpn/n,
but this is only a coarse moduli space; for an algebraically closed field C', and appropriate K,
the C-points of X (¢, un)c parametrise isomorphism classes of tuples (A, ¢, [A], un), where [A] is
a polarisation class. We shall write X¢g := X (¢, un)z-

We obtain the analogous results when we now add level structures at p. Let I'; be one of
rs5(p"), Ti(p™) or I'*(p"), and let K be the corresponding subgroup K;(c,p"), K (c,p") or
K*(¢,p™). Consider the functor Sch /g — Set sending a scheme S to the set of isomorphism
classes of (A, ¢, A, i, ), where (A, ¢, A, p) is as above, and « is a I'}-level structure. This functor
is represented by a Hilbert moduli scheme X (¢, uy,I';)q whose base-change to C is isomorphic
to Shyc; (¢, vynrs (G*, S). Here for I'; = I'*(p") we recall that our definition of this level structure
depends on our chosen isomorphism 3, and the isomorphism is given by transforming our
notion of a I'*(p™)-level structure into the usual notion, by using (3, the complex unit root
exp(2mi/p™) and the given polarisation to make (Or/p"Or)? — AY[p"] into an isomorphism
0! &® Hpn X OF/pnOF — A[pn]

Again we abbreviate Xrs = X(¢, iy, ). By the natural forgetful map between the moduli
functors, we can summarise these Hilbert moduli schemes in the tower of moduli schemes

Xprpny = Xrypr) — Xrjon) — X
Let Xf:; denote the minimal compactification of Xp; over L. For tame level, we also have the
minimal compactification X —over Or. These can all be defined via base-change from Q or
Z[1/N], respectively.
Finally in this subsection, we pass to p-adic geometric spaces:

Definition 5.9. Let I'; be a level at p of the form I'j(p"), ' (p"), I (p") for some n € Z,.
(1) Let X* — Spf(O_) be the p-adic completion of Xo, — Spec(Oy).
(2) We denote by A the adic analytification of Xrs. We thus obtain a tower of adic spaces
XF*(p”) — XI"{(pn) — XFS(P") — X

(3) In the case of tame level, we also have the compactification X* — Spf(O.) obtained by
completion of X . Its adic generic fibre coincides with the analytification X* of X™.

Remark 5.10. Our notation suppresses the dependence on the polarisation ideal ¢ (and on the
tame level). If required, we will make this clear by writing X} K5 X! K> ete.

5.2. Hilbert modular varieties for G* at infinite level. Next, we recall the perfectoid
Hilbert modular varieties for the group G*, following [Sch15] and [CS17].

Let X*(e) denote the admissible open subset of X* defined by \ﬁéq > |p|¢, where Ha denote
any local lift of the (total) Hasse invariant. Now, for n € Z>, take € € [0, (p — 1)/p™) Nlog |L|.
Then by [AIP16a, Section 3.2] we have an integral model X*(e) of X*(e). Moreover, abelian

PThe above choices may not seem natural, but we remark that they do not affect our construction for modular
forms G, and are just an auxiliary choice in our construction of G*-forms. We also note that the Shimura varieties
are of course completely canonical, it is the moduli interpretation which requires the choice.
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schemes parametrised by X*(e) have a canonical subgroup of level n which agrees with the
kernel of the n-th iterated power of the Frobenius map modulo p'~¢. Following [Sch15], we let
XF*S (pn)(e)a denote the anticanonical locus, parametrising subgroups that intersect the canonical
subgroup trivially. The forgetful maps then extend to the minimal compactification and give the
anticanonical tower

C— leo*(pz)(e)a — X*o*(p)(e)a — X*(e).
One then has the following analogue of the results in [Sch15, §III]:

Theorem 5.11. There are perfectoid spaces that are the tilde-limits
(1) Xy ey () ~ 1. Xy (€
(2) Xz ooy (€)a ~ Im X pn)(€)a-
(3) Xr=(poo)(€)a ~ lm Xpepn)(€)a-
(4) Xrepoey ~ Ll Xpen).
They fit into the following tower of pro-étale torsors for the indicated profinite groups

************** XFO* (pn) (6)(1'

where I3 (p™) C G*(Z,) is the subgroup of matrices that are upper triangular mod p", and
I3 (p™) € G*(Z,) is the subgroup of upper-triangular matrices.

Part (4) is proved in [Sch15, §Theorem IV.1.1] in the case that L is algebraically closed, and
under the additional assumption that the embedding G* < GSp,, sends K? into a subgroup of

GSpy, (Z ) In our case, this means that ¢ = 1. One can deduce the general case from this by
first shrinking the level and then quotienting by a Galois action, which by [Han, Theorem 1.4]
or [HJ, Theorem 5.8] is again a perfectoid space. Part (3) of the proposition then follows by
restriction, and one can modify the argument to also obtain statements (1) and (2).

Alternatively, to prove Theorem 5.11 one can follow Scholze’s construction in the Siegel case
[Sch15, §III], as we shall now demonstrate: here we note that since we ignore the boundary, we
do not need to worry about ramification. One first shows (cf [Sch15, Theorem II1.2.15]):

Lemma 5.12. Division by the canonical subgroup defines a natural map
¢:X"(p'e) > X7(e)
that reduces to the relative Frobenius mod p'~° where 6 = p“e

Proof. We argue as in [Sch15, Thm. I11.2.15]. Let A — X(p~'¢) be the universal abelian scheme.
Then the abelian scheme A’ := A/H,; defines a morphism ¢ : X(p~'¢) — X. Locally on any affine

open Spf(R) C X defined over Z,, this corresponds to a morphism ¢ : R — R<T>/(TI?IEL —pp_le).
Since H; = ker F mod p'=? ¢, we have A’ = A® mod p'~? 'c. Consequently, ¢ reduces mod
p=P '€ to the relative Frobenius on R. Here R® = R since R is already defined over Z,. In
particular, since Ha(A®) = Ha(A)?, we have ¢(Ha) = Ha mod plfp_lf. Consequently,
T”(;S(Iilva) = TPHa — p° mod p'?
inside R(T')/ (TI?IE; = p”ilf). We can therefore find v € R such that
T7¢(Ha) = p° +p' " “u=p (1 +p'"u).
Sending T + ¢(T') := TP(1 + p'~%u)~! therefore defines a unique extension
~ ~ -1
¢ : R(T')/(THa — p°) = R(T)/(THa — p* )

_16
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giving the desired lift to a map
(5.3) ¢:X(pe) = X(e).

Since ¢ mod p'~¢ is given by the Frobenius on R, and by sending 7' + TP(1 + p'~%u)~! =

TP mod p'~°, this map reduces to the relative Frobenius mod p'~° as desired.

It remains to extend this to the minimal compactification. Since the boundary is already
contained in the ordinary locus, it suffices to consider the case of ¢ = 0, and thus § = 0. It
moreover suffices to consider the case of L = Q“; the general case follows by base-change.

Since Xy is normal (see [Cha90, Thm. 4.3] and the discussion in [KL05, 1.8.1]), and the cusps
are of codimension > 2, we can now apply Scholze’s version of Hartog’s extension principle,
[Sch15, Lem. II1.2.10] to see that ¢ extends uniquely over the boundary to a map

¢ X"(0) = X*(0)
which still reduces to the relative Frobenius mod p. Glueing this to (5.3) proves the lemma. [

Proof of Thm. 5.11. We can argue as in [Sch15, Cor. II1.2.19]. For every n € N we have by
Lem. 5.12 a morphism ¢ : X*(p~""'e) — X*(p~"¢) that reduces to the relative Frobenius mod

pt1
p 7" and in particular mod p'~® where ¢ := 2. Consequently, X*(p~>¢) := yin(b X*(p~"e)

p
is a flat formal scheme for which the relative Frobenius mod p!~° is an isomorphism. It follows

that the generic fibre X*(p~>°¢) is perfectoid and moreover, by [SW13, Prop. 2.4.2], on the
generic fibres we have

X (p™€) ~ Lm X" (p~"e).
é

By [SW13, Prop. 2.4.3], we can now restrict to the open modular curve to deduce that there is
a perfectoid tilde-limit X (p~>°¢) ~ @¢ X (p~"¢). Since the Atkin—-Lehner isomorphisms AL"

define an isomorphism of inverse systems of the anticanonical tower to the system
o — X(p" ) N X(p™e) — ...
we equivalently have Apx(pee(€)q ~ fm = X () (€)a, as desired. This proves part (1).

To deduce parts (2) and (3), we use that the forgetful morphism Xps(n)(€)s — Xprn)(€)a is
finite étale. By pulling these back from varying n, we obtain a tower of finite étale morphisms

Xy (p) (€)a —— Xy poo)nrypmy (€)a —— ...

l l

XFU* (p™) (G)a «— XFI (pn) (G)a

Since perfectoid tilde-limits of inverse systems of perfectoid spaces with affinoid transition maps
exist, we obtain a perfectoid tilde-limit

X poe) (€)a ~ L Xz (oo o) (€) -
n

This proves part (2). Part (3) follows similarly using that Xrsn) — Xy (pn) is finite étale.

Since the morphisms Xrs(yn)(€)a — Xy (pn)(€)a and Xpspny(€)a — Xz (p)(€)a and Xps(pny(€)a —
AT (pn) (€)q are finite étale torsors for the groups (O /p"Op)*, {(: 1) € G*(Z/p"Z)|c € pOr /p"Op}
and {({ 1) € G*(Z/p"Z)}, respectively, the last statement follows from the fact that perfectoid
tilde-limits commute with fibre products.

It remains to prove (4), which we deduce from (3) using the G*(Q,)-action at infinite level
recalled in §8.4.1: like in [Sch15, §IIL.3], it suffices to prove that on the level of topological spaces
we have G*(Q,)|Xrpoe)(€)a] = |Xrpeey| = uinn Xrny|. But as it suffices to prove this after
passing to a smaller K? and any field extension of C, we can reduce to the case considered in
[Sch15, Theorem IV.1.1]. This finishes the proof of the theorem. O

Remark 5.13. As in the elliptic case, we have a moduli description of the (C,C*")-points of
A= (pooy for any perfectoid extension C' of L: They are in functorial one-to-one correspondence
with isomorphism classes of tuples (A, ¢, A, i, &) where (A, ¢, \) is an e-nearly ordinary c-polarised
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HBAV over C' with tame level py, together with a I'*(p>°)-level structure « : O = T,A. The
subspace Aty (,)(€), represents those tuples for which a(1,0) generates a subgroup of AY[p] that
is different to the canonical subgroup.

Definition 5.14. The G*(Z/p"Z)-actions on Ap=(,n in the limit give rise to a G*(Z
X+ (pooy Which in terms of moduli can be described as follows: the action of v € G*(Z,)
sends any HBAV (4,1, A\, a: OF — T,AY) to (A, 1, \,a07").

5.3. The Hodge—Tate period morphism and its image. For any adic space S over Spa(L),
we denote by Resp,.z S the functor on affinoid (L, Oy )-algebras given by (R, R") — S(Rp, R},
where Rp := R ®g F and R; is the integral closure of Rt ®; O in Rp. If § = X" is the
analytification of a variety X over L for which the usual restriction of scalars Resp,z X is
representable by a variety, we have Resp,z S = (Resp, |z X)*". For all spaces we need below,
this shows that Resp,|z S is representable by an adic space.

For example, Reso,jz P' is the adic analytification of the finite type scheme representing the
functor that sends any L-algebra R to the set P'(R ®z Op). This is the flag variety of G*. By
[CS17, Thm. 2.1.3], there is a Hodge-Tate period map of the form

action on

p)-
C GL?(OP)

THT XF*(])OO) — Res@F‘Z P'.

Remark 5.15. On points, this map has the following moduli interpretation: let C/L be a
complete algebraically closed field and let A a c-polarised HBAV over C. Then the Hodge—Tate
filtration is a short exact sequence of C' ®z, O,-modules

0 — Lie(AY)(1) — T,A" ®;, C —% wy — 0

Now, a point & € Xp«(pe)(C, CT) gives rise to a trivialisation 02 = T,A" which we can use
to consider the above as a filtration of (9[2) ®z, C of rank 1. This defines the desired point
7THT<LL') € ReSOF\Z Pl(C, CJr) = ]P’l((’)p ®Zp C)

For the definition of Hilbert modular forms, it will be important for us to bound the image
of the anticanonical locus under the Hodge—Tate period map. More precisely, our goal is to
compare this to a family of neighbourhoods of P*(O,) C Reso,.;z P' which we shall now define.

Definition 5.16. Recall from Defn. 3.11 that we had defined adic groups G,, G,,, (@a, Gm.
(1) By applying the functor Resp,.jz —, we obtain adic spaces Reso .z G, Reso,z G, and
open subspaces Resp |z Gm, Reso .z Ga.
(2) Given a point z € Resp,.;z G,, and an element z € L with |z| = r, we shall call the open
subspace B, (z) := x + zReso,z Ga C G, the ball of radius r around =z.
Definition 5.17. The subspace P'(0,) = Reso,.;zP'(Z,) is a profinite set, and therefore has a
geometric incarnation as a morphism P'(0,) — Resp,.jz P!, where as usual we also write P'(O,)
for the associated profinite perfectoid space.

We embedded G, < P' via z — (z : 1). By applying Reso,.|z, this defines an open subspace
Reso, 1z G, = Resp .z P'. We also have O, =: By(0,, : 1) — P'(0,) via a — (a: 1) for a € O,,.
For r € (0,1] N |L|, we define the open neighbourhood B, (O, : 1) C Reso,|z G, C Reso,z P* of
By(O, : 1) to be the union of all balls of radius r around points in O, — G, C Reso, |z P'. We
make analogous definitions for open subspaces B,.(O) : 1) and B, (1 : pO,) of Resp,z P'.

Proposition 5.18. Let1 > r > 0. Then for anym € Z>; with 1/p™ <r and any0 < e <1/2p™,
ore<1/3p™ if p=3, ore<1/4p™ if p =2, we have:

(1) mar(Freer () € Bl 9O,),

(2) T (X pe) (€)a) € Br(Op 1 1).

For the proof, we need the following technical input on the Hodge-Tate morphism:
Proposition 5.19. Let K be a completely valued extension of Q, with algebraic closure K. For
any v € |R|, let (p¥) :={x € K| |z| <v}. Let D be a p-divisible group over O of dimension d
and height h. Let 0 < € be such that the Hodge ideal is Hdg(D) = (p). Let n € Zxq be such that
e<1/2p" ' ifp>5,0re<1/3p"t if p=3, ore <1/4p" ' if p=2. Let § := 61’;%11 < 1.
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(1) D has canonical subgroups 1 € Hy C --- C H,,--- C H, C D of level m, finite locally
free of rank p™?, for all m < n. They reduce to the kernel of Frobenius on D mod (p'~?).
(2) The map wpppn) — wa, induces an isomorphism wppn)/(p"~°) = wa,, /(p"7°).

(3) The Hodge—Tate map H,(K)" ®z Og — wp, o, O has cokernel of degree €/(p — 1).

Proof. (1) is a special case of [AIP18, Cor. A.2, parts 1,2]. For (2), in the case of p > 2, this is
[AIP15, Prop. 3.2.2]. For the case of p = 2, we can in the proof replace [AIP15, Thm. 3.1.1]
by [AIP18, Cor. A.2.4]. Finally, for p > 2, (3) is again [AIP15, Prop. 3.2.2]. The case of (3)
for p = 2 follows from [ATIP18, Prop. A.3|, which applies by 2 € Hdg(D)* and which says that
det coker = det wy, /HdgT for an ideal HdgT C Ok satisfying HdgT? " = Hdg(D) = (p). O

Proof of Prop. 5.18. Tt suffices to check this on (C, C'")-points for C' algebraically closed.

Let z € Ap(peey(€)(C,CT) correspond to a c-polarised HBAV A/C with extra data and an
isomorphism a : O — T,A". Let Ay be the semi-abelian scheme over O¢ associated to A" and
let V' be the kernel of the integral Hodge—Tate-map; then there is a left exact sequence

O—>V—>TpAg®OC£>wAO

and by definition, V' C T,Ay ® O¢ is saturated. Via «, it thus gives a point (a : b) €
PY (O, ®z, Oc) = P(Oc)” with a = (a,),,b = (b,), € OF, which is the image of z under myr.

Let n := m + 1. Upon reduction mod p", we get an injection V/p™ — AJ[p"] ®z Oc which
fits into a (not necessarily exact) complex

0= V/p" = Aj[p"] ® Oc = wagppny-

The Hodge ideals of the p-divisible groups of A and A" are the same (e.g. [AIP15, Thm. 3.1.1]);
thus by Prop. 5.19 (1) and our choice of ¢, there is a canonical subgroup H,, C Ay [p"] of rank
p™. Modulo a certain power of p, the position of V/p" coincides with that of H,, inside Aj[p"]:

Claim. Let x =n — pp—_nle. Then inside Ay [p"] ® Oc/p*, we have V/p* = H,, @ Oc/p".

To see that this proves the proposition, note that H, ®z Oc C Ay [p"] ®z Oc¢ has Z,/p"Z,-
coordinates. Moreover, the case (1) that z € Xp,)(€).(C, CT) is equivalent to the coordinates
of H, being of the form (1 :0) € P(Z/pZ,)* after reducing modulo p. The claim then implies
that b/a € pO, + p”OZ, and hence mur(z) = (a : b) € Byy=((1 : pO,). Since z > n — 1, we have
Ip*| = 1/p* < 1/p™~' < r. This implies mur(2) € B,.(1 : pO,), as desired.

The proof of (2) follows in the same way, using that z € Xp(,e)(€)q(C,CY) is equivalent to
the coordinates of H,, being of the form (c¢: 1) € P*(Z/pZ,)* for some ¢ € Z/pZ,, and therefore

(5.4) mur(2) = (a : b) € Bje (O, : 1).
i) - - _ "1
Proof of claim: Let y:=n—90=n— pp71 e. By Prop. 5.19 (2), modulo p? the Hodge-Tate map

can be described as
HT, : Aj[p"] ® Oc/p" = waypm) ® Oc/p” = wa, @ Oc/p.

Let now N :=ker HT, and () := coker HT,, and consider the exact sequence

0— N — AJ[p"] ®z, Oc/p? ﬂ)an/py —Q—0

By Prop. 5.19 (3), the Oc-module @ = coker HT,, has degree 0 := €¢/(p — 1). Using additivity of
degrees of Oc-modules in extensions, we calculate that

deg N = deg(Ao[p"] ®z, Oc/p’) — degwp, /p” +deg Q =29y — gy + 0 = gy + 0.

Observe now that M, := V/p¥ and M, := H,, ®;z, O¢/p? are both free O¢ /p?-submodules
of rank g of Ay[p"] ®z, Oc¢/p? that are contained in N. Since N is p¥-torsion and of degree
gy + 0, we conclude from this that N is of the form (O¢/p¥)? @ T as an Oc-module, where T' is
p?-torsion. Second, this shows that inside p® N, the modules p? M; and p® M, coincide. Thus the
same is true inside Ay[p"] ® p?Oc/p?. Via multiplication by p° : Oc/p?=? == p?O¢ /pY, this
shows that the images of M; and M, in O¢/p?~? coincide. Since by definition z = y — 9, this
gives the desired statement, proving the claim, and hence the proposition. O
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Definition 5.20. We write 3 for the restriction of 7wyt to the open subspaces
31 Xpe o) (€)a = Br(Op 1 1) C Reso,z G, C Reso,z P'.

Remark 5.21. If F' is split in L, we also consider for any v : F' — L the projection

¥ T

F XF*(poo)(e)a — Reso,z G, = Ga o Gy

By the universal property of G,, we can interpret each 3, as a function in Ot (AL, () (€)a)-
However, we caution that for general L, the morphism 3 admits no such canonical interpretation.

5.4. The canonical differential.

Definition 5.22. We define a G*-equivariant vector bundle Resp,.;z O(1) of rank g on Resp,,jz P!
as follows: recall that on P! we have the line bundle O(1) whose total space 7 : T (1) — P!
is therefore a G,,-bundle with fibres A!. It moreover has a natural GLs-equivariant action.
By applying the functor Resp,z, we see that Resp,z 7 : Reso,z T (1) — Resp,zP' is a
Reso |z Gn,-bundle with fibres Reso .|z A'. As any choice of Z-basis of Op induces an isomor-
phism Resp .z A' = A9, we conclude that Resp,z 7 is a vector bundle of rank g. It moreover
receives a natural equivariant Reso .z GLo = G-action (and hence a G*-action) by functoriality.

Remark 5.23. The vector bundle Resp,.z 7(1) has the following moduli interpretation: for
any Z,-algebra R, the R-points of Resp,.z P' parametrise quotients R? ®z Op — @ of rank 1 as
R ®z Op-modules. Then Resp,.z T (1) — Resop,jz P' represents the choice of a point of Q.

Definition 5.24. Let w4 be the conormal sheaf of the universal abelian variety A — X, an
invertible Ox ®z Op-module. Its total space T (wa) — & is a Resp,z G,,-bundle. As before, if
q: Xk, — & is the forgetful map with K, any of our wild levels, we let wg, 1= ¢*w4.

As a special case of [CS17, Thm. 2.1.3. (2)], we then have the following result which forms
the basis of our definition of Hilbert modular forms.

Proposition 5.25. There is a Reso, |z G, -equivariant isomorphism
wp*(poo) = 7TI*{T Res@F‘Z 0(1)
Recall that in §4 we have defined a canonical section s : P* — T(1) of O(1), non-vanishing
away from co. We shall now change notation and denote this by s : A’ — T(1). We now set:

Definition 5.26. Let s := Reso,.z Sen : Reso,jzP' — Reso,z T(1). This is a section of the
vector bundle Resp,,jz O(1), non-vanishing over Resp,.;z A' C Reso,z P'.

Remark 5.27. From the moduli description in the case of ¢ = 1, we see that in the moduli
interpretation, s sends a quotient R? ®; Or — Q to the image of (1,0) ® 1.

Remark 5.28. If F is split in L, we have Op ®z L = [], .y, L where we interpret ¥ as the
set Homz(Op, L) and where the morphism into the v-component comes from the natural
map O @7 L “2% L. Consequently, we then get a canonical splitting Resp,z P = (PY)*.
Similarly, we see on total spaces that the vector bundle Resp, |z O(1) becomes the direct sum
Resp,z O(1) = @, 5 7 O(1) of the pullbacks of O(1) on P' along the projections =, : (P')* —

P'. The section s then decomposes into partial sections s = Y ..., s, where s, := 7} san.

Lemma 5.29. For anyy = (*4) € I't(p), let (cz+d) be the map Reso |z G, S pReso, 1z G, %
Reso,z G,n. Then we have v*s = (cz + d)s, in the sense that the following diagram commutes:

Reso,z G,, x Reso,iz T(1) —— Reso,z T (1) 1 Reso .1z T(1)

. - .
Reso, 1z Go —— Resp,z Ga.

Proof. 1t suffices to show that this diagram commutes after extending L, so we may without loss
of generality assume that F is split in L. Then by Rem. 5.28, Resop,.;z P' = (P')* is canonically
split, as is the bundle Resp,z T (1) = ®xO(1), and the diagram becomes a product over ¥ of
the diagram in Lem. 3.19. U



26 CHRISTOPHER BIRKBECK, BEN HEUER, AND CHRIS WILLIAMS

Definition 5.30. Let s := mj;rs. This is a section of 7jir Resp, iz O(1) = wrs(peoy. Write
T (wr=peey) — X for the total space of wr«(y); then we may regard s as a morphism
5 XF*(pOO) — T(L(.)F*(poo)).
As in the elliptic case, one checks that:

Lemma 5.31. For any v = (2%) € Ty(p), we write c3 + d for the composition

z—cz+d

Cc3 + d: XF*(pOO)(e)a i) ReSOF‘Z Ga _— ReSOF‘Z Gm
Then we have v*s = (c3 + d)s, in the sense that the following diagram commutes:

X ooy (€)a ———— Xpe(poo)(€)a

(c3+d) Xﬁl 5i

Resoppz Gm X T(wa) —2— T(wa)
Proof. This follows from Lem. 5.29 by pullback along myr. (]
The crucial property of s is given by the following moduli interpretation.
Lemma 5.32. Let € Ap+(,00)(C,CT) be a point corresponding to a HBAV A equipped with a
I*(p>®)-level o : O2 = T, AV and extra structures. Then via mjp Reso .z O(1) = wrs(poey,
s(z) =HT 4(a(1,0)) € wa.

Proof. In terms of the total spaces T (wr«(p)) — Xrx(peo) and Reso,z T(1) = Resp,z P, by
Rem. 5.15 the isomorphism wr«(ye) = Tjp Reso .z O(1) is defined in the fibre of x by sending

(A, a,n € wa) = (02 @z, C 2 T,AY @z, C 15 wa,n € wa).

Since s by Rem. 5.27 sends a quotient z : (’)127 ®z, C — Q to the image of (1,0) ® 1 under z, it
follows that s sends x to the image of (1,0) under HT o . O

6. GEOMETRIC OVERCONVERGENT HILBERT MODULAR FORMS

6.1. Weights and analytic continuation. Next we define the relevant weight spaces for G*
and G, and set up some notational conventions as to how they are related.

Definition 6.1. Let T := Resp,z G, then define:

(i) W :=Spf(Z,[T(Z,) x Z;])3* x L, the weight space for G.

(i) W* := Spf(Z,[T(Z,)]);" x L, the weight space for G*.
An L-point (w,t) € W(L) is a pair of maps w : T(Z,) — L* and ¢ : Z — L* (and analogously,
an L-point of W* is just a map T(Z,) — L*). Following [AIP16b], we let p : W — W* be
the morphism associated to the map T(Z,) — T(Z,) x Z} defined by = — (2*, Np/q(x)). For
(w,t) € W(C,) we write kK = w? - (t7! 0 Np/qg) for its image in W*(C,,), noting that x(z) - w(z~?)
factors through some power of the norm.

Definition 6.2. In order to be able to treat single weights and families in a uniform way, we

define a weight to be a morphism x : U — W or k : U — W* for G and G* respectively, where

U is a smooth rigid space over some perfectoid field extension of L. We say that x is bounded if

its image in W or W* is contained in some affinoid open subspace. This generalises Defn. 3.1.
By unravelling the definitions, a weight x : Y — W* determines a morphism

k:OF xU — G,
which in an abuse of notation we also denote k. The weight « is then bounded if and only if

|T.| := sup |k(t,z)—1| <1
(t,x)eO) xU
Similarly, for G we have associated to any k : U — W a pair of maps (wg, tx) of the form
wg : Opf xU = Gy, and ty 0 Z; XU — G, By composing with p, we get an associated weight
p(wg,tx) = w; - (t' o Npjg) for G*, which we use to see any weight for G as a weight for G*.
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Recall from Definition 5.17 that we embed O, as a profinite set into Resp .z P! by sending
z+ (z:1). Given a bounded weight, one can then always find an analytic continuation of x to
a neighbourhood of O in Resp,zP'. More precisely:

Proposition 6.3. Let k : U — W* be a bounded smooth weight. Let ro =1 if p > 2 and ro = 3
if p=2. Letr, := |p|"|T,|, then for r, > r > 0, the morphism r extends uniquely to a morphism

KM B(O) 1 1) xU — G,

Proof. We first prove that such a bound exists. In case that F' is split in L, this is completely
analogous to Prop. 3.12. In general, we first pass to a finite Galois extension L’|L, with group
H and in which F is split, to obtain a morphism B,(O) : 1) xy L' xU — G,,. Passing to the
quotient by H, the result follows.

The precise value of r, follows from [AIP16a, Prop. 2.8]. O

Definition 6.4. Let x : U — W* be a smooth bounded weight. Let ¢&f > 0 be such that
Xp ooy (€37),, C B, (O, : 1), see Prop. 5.18 for a precise bound on €. Then for any ¢ € pO,,

K K

d € O), we define the invertible function (c3 +d) € O (X, ru(,00)(€)a)* to be the composition

T Xid cz+d)xid
_—

H(Cﬁ + d) : XL{,F*(pOO)(E)a BT(OP . 1) x U (
where XL{,F*(pOO)(6>a = Xp*(poo)(e)a X U.

B.(OX: 1) x U =5 G,

p

6.2. Definition of overconvergent Hilbert modular forms.

Definition 6.5. For x : U — W* a bounded smooth weight, 0 < ¢ < € and n € Zs; U {00},
we define a sheaf w;; on Ay rx,n)(€), by setting

wi(U) = {f € ¢.0x (oo, 0a U)y f = 57 (es +d) f for all v = (2}) € Ty (0")},
where ¢ : Xy p+(poo)(€)a = Xy (pn)(€)q is the projection. We similarly get the integral subsheaf
wnt(U) == {f € ¢.0y, WO f =k e+ d)f forall v = (24) € Ty (p™)},

Xy, (poo) (€

by using the OT-sheaf instead. For n = 0, as before, via the Atkin—Lehner isomorphism AL :

Xy v () (PE)a = Xy(€) we define the sheaves w" := wf := AL,w} and w™" := wf§ := AL,w;"" on

Xy (€) thus giving a sheaf on the tame level Hilbert modular variety. If needed we will add a
subscript G* to make clear these are sheaves for G*.

Exactly like in Prop. 3.24, we see:
Proposition 6.6. w! is an analytic line bundle on Xy (e).
We will also see this in Thm. 7.14, which moreover shows that w!* is an invertible O*-modules.

Proof. Exactly as in the elliptic case, [Heub, Cor. 4.1] shows that the analyticity overconverges
if we can prove it for e = 0. By the same argument, we may restrict to the good reduction locus,
as this is Zariski-dense in Aj,. Over this, we again have an Igusa tower with a pro-étale formal
model, and like in the elliptic case, [Heub, Prop. 4.8] gives the desired statement. O

Warning 6.7. We caution the reader that w, is not the same as wrs(,n) from Defn. 5.24, as the
latter is not an invertible sheaf, when [F' : Q] > 1. Instead, we have w), = det wrsn).

Definition 6.8. Let x : U/ — W* be a bounded smooth weight, 0 < € < € and n € Zs,U{oc}.
We define the space of ¢-polarised overconvergent Hilbert modular forms for G* of weight k, wild
level Ty (p™), tame level uy and radius of overconvergence e to be the L-vector space
MKG (Lo (P"), pn, €, ¢) = HO(Xc,Z/I,FO*(Pn)7MN (€)as wg‘*,n)‘
Similarly, we define the space of integral overconvergent Hilbert modular forms for G* to be
MnG ’+(F(;F (pn)v KUN, €, C) = HO(‘)(CvUvE;‘(P"),HN (6)(17 wg"*—’:n)'

Remark 6.9. By the Koecher principle (see [AIP16a, Prop. 8.4]) or [AIP16b, Theorem 5.5.1],
w? extends uniquely to a line bundle on a suitable toroidal compactification X**(c). Let O
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denote the boundary divisor, then one can define the subspaces of cusp forms as sections of the
subsheaf w?(—09). Via Thm. 7.14 below, these agrees with the spaces of cusp forms defined in
[AIP16b]. In particular, they will be projective Banach modules with surjective specialisation
maps (see [AIP16a, Thm. 3.16]).

7. COMPARISON TO ANDREATTA-IOVITA—PILLONI’S GEOMETRIC HILBERT MODULAR FORMS

In this section, we will show that our spaces of overconvergent Hilbert modular forms for G*
coincide with those defined in [AIP16a].

7.1. The Andreatta—Tovita—Pilloni-torsor. Like in the elliptic case, Andreatta—Iovita—Pilloni
construct integral sheaves of Hilbert modular forms on the Hilbert modular variety as a formal
scheme over Or. In order to define such a sheaf on the full Hilbert modular variety over O, the
definition of the Pilloni-torsor in the Hilbert case is not just the straightforward adaptation of
the elliptic case (the issue appears away from the Rapoport locus, i.e. on the closed subscheme
concentrated in the special fibre where the abelian scheme does not satisfy the Rapoport condi-
tion). Instead, Andreatta-lovita-Pilloni in [AIP16a, §4.1] explain how this definition needs to be
modified by endowing the sheaf w4 with an integral structure w™* (denoted by F op. cit.) which,
when p is ramified in F', is different to the canonical one. We briefly recall the construction,
with the minor modification that as before we present it in the analytic setting over L rather
than in the excellent Noetherian setting of [AIP16a, §4.1].

Definition 7.1. (1) For any m € Zs, let €2 := 1/p™*! as before. Then [AIP18, Cor. A.2]
implies that, for 0 < e < €%, the universal semi-abelian variety A on X(€) admits a
canonical subgroup H,, C A of order p™, étale locally isomorphic to Or/p™OF.

(2) We denote by Xigym)(€) = X(€) the finite étale (Op/p™Op)*-torsor which relatively
represents isomorphisms Or/p™Or — H of adic spaces with Op-module structure

Let wig(pm) be the conormal sheaf of the pullback of A to Xjg,m)(€). It has an integral subsheaf
wit (pmy obtained from its formal model on X*(¢). The canonical subgroup H,, C A, considered
as a finite flat group over Ayg(m)(€) induces a map m : W m) — wpy, . As in Lem. 4.3, we see:

Lemma 7.2 ([AIP18, Cor. A.4]). We have a right ezact sequence of O )-modules

Xig(pm) (e
” m _p-t
I, - wfé(pm) — wf"g(pm) — w?}m — 0, where I, :=p™Hdg »-1T
The Hodge-Tate map now defines a morphism of sheaves of Op-modules over Xyg(,m (€)
Y : Op/p"Op — H,, B Wi, — Wi‘;(pm)/-[m'
Definition 7.3. Let wint () be the OF@ZOXI (pm) (€)
of the Op-submodule of ng(pm)/fm generated by ¥(1).

-submodule of wfé (™) defined as the preimage

The sheaf w}g (ym) 8ives a second integral structure on wig(pm). If p is ramified in Op, it is
better behaved than w;; (pm)? because it always satisfies the analogue of the Rapoport condition:

Proposition 7.4 ([AIP16a, Prop. 4.1]).
(1) The sheaf wi™ my 18 a locally free Op ®z (’)j{,l

Ig(p
(2) The cokernel of wint (pm) C wlg( my 18 annihilated by Hdg"/*~Y. We thus have an injection

e o-module on Xig(ym)(€).
Wigtpmy/Im <= Wi/ Im
whose image is precisely the O ®yz OXI ( m)(e)—submodule generated by ¥ (1).
g(p
(3) Let I, :=p™ Hdg 7T D I,,. Sending 1 +— P(1 ) induces an isomorphism
HT' : O @y OXI Lo (©) /I’ wigt Yo
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Definition 7.5. The Andreatta-Tovita-Pilloni-torsor is the subsheaf of w;} ., defined by
Fm = {w € wig{ym)|w = HT'(1) mod I, }.
We denote the analytic total space of §,, C wfé (pn) OVer Xlg(pm)(ﬁ) by

./_"m(ﬁ) — XIg(pm) (6)

By Prop. 7.4.(3), this is a torsor in the analytic topology for the subgroup 14 I/ Reso,.z Ga|x(€)
of Reso .1z Gm|X(e)7 where Reso |z Ga|x(5) is the pullback of Resp,. |z G, — Spa(L) to X(e), and
similarly for Resop .z Gm\x(e)- In particular, the composition F,,(¢) — X'(¢€) is a torsor in the
étale topology for the subgroup B,, := O) (1 + I}, Resp,.z Ga|X(€)) C Reso,z Gm|X(€). This
also shows that the natural map F,,(¢) — 7T (w) into the total space of w over X is an open
immersion. Finally, we note that since p® € Hdg, we have for x := m — ep™/(p — 1) that

(7.1) O, (1 +p”" Reso,z Ga)|X(e) C B,,.
The following corollary relates §,, to the definition in the elliptic case:

Corollary 7.6. Let w € wf;(pm) be any lift of (1) € w;}m under wf;(pm) — wpy . Then w € §p,.

Proof. By Lem. 7.2, for w to be a lift of ¢(1) means that w and the image of ¥(1) in wf’é;(pm)/lm

nt
g(p™)
(1) and w also agree in w

agree. Thus w € w} By the injective morphism from Proposition 7.4.(2), this shows that

in

Igzpm)/Im and thus in its quotient wi™ m)/L’n. This means w € §,,. O

Ig(p

Definition 7.7. Let x : U — W* be a bounded smooth weight. Recall that we may regard
as a morphism O} x U — G,,. As before, we let |0,| := max(|p|, |T.|). Let r = 3 if p > 2 and

r=5if p=2. Let e, > 0 be implicitly defined by |p|* = |6,|"/7""". We note that ¢, < €.

Definition 7.8. For any k € Z>1, let W be the open in weight space denoted by W, k-1 k]
in [AIP16a, §2], and let W; be the open denoted by Wgo1). Explicitly, for any k € Z>, we

have Wi == W*(|6,]"" < [p| < |0,]"""). Then W* = Uez. ,Wj.
If k : U — W* is a bounded smooth weight, we let U, := £~ (W), then U = Ugez_ Uy

Definition 7.9. Let k : Y — W* be a smooth bounded weight and let 0 < ¢ < ¢,. For each
k € Z>o, let m = k + r (this is the variable “n” in [AIP16a]), so that €, < €2". The sheaf w}p
on X(e) x Uy, of modular forms of weight x, as defined in [AIP16a], is given locally as

wzlp‘uk = Or,(e)xu, k1] = {f € Oz, |V f = k() f for all v € Bm} .

As usual, we define an integral subspace wg’;{)'uk by using O% instead.

Proposition 7.10 ([AIP16a, Prop. 4.3]). Let k : U — W* be a smooth bounded weight and let 0 <
€ < €,. Then the sheaves wZ’IJf,‘uk can be canonically identified on intersections X (€) x (U, N\Uy11),

so that they glue to give an OF-module wiih on Xy (e) = X(€) x U. This O -module is invertible.
Similarly, we can glue the Wiyp,, to get a line bundle wip on Xy (e).

Proof. We first need to explain how our variable € is related to the radius variable r used
in [AIP16a, §3]. The sheaf “tv, ,;” constructed in [AIP16a, §4] for I = [p*~', p*] lives on a
formal scheme “X, k-1 4" over Z,. The base-change to L of the generic fibre of this formal
scheme is the subspace of X x W} cut out by the condition |Ha” TH\ > |0,|. Since we have set
Ip|~ = \5H|1/pr+1, this is contained in X'(€) x Wy. By [AIP16a, Prop. 4.3], the sheaf “to,, ,.;” is a
line bundle. It now follows from our definition that the sheaf wg};m is the pullback of “w,, , "
along the morphism of ringed spaces (X (¢) x Uy, OF) — X, . In particular, W:I;\uk is invertible.

By [AIP16a, Prop. 4.7], there is a canonical isomorphism between this sheaf and the one
defined using m + 1 instead of m. This shows that the wZﬂSle glue on intersections Uy N Uy 1.
Since wZ’ﬁS‘uk is invertible on each open X'(€) x Uy, it is clearly also invertible on Ay, (e). O
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7.2. The comparison morphism. Recall from Defn. 5.30 that over Ap(,e~), the conormal
sheaf wr«(,) has a canonical section s that we may regard as a morphism into the total space
51 X o0y = T (wre(pe)) = T(w). Let us simply write 7 (e) — X(e) for the restriction of T (w)
to X(e), then s restricts to
§ 0 Xps(pooy(€)a — T (€).
The comparison of our Hilbert modular forms to the ones defined by [AIP16a] relies on the
following proposition saying that s compares &p«(,e)(€), to the Andreatta—lovita—Pilloni-torsor.

Proposition 7.11. Let 0 < € < €. Then s : Xr«poo)(€)q — T (€) factors through the subspace
S XF*(pOO)(G)a — fm(f) C T(f)
defined by the Andreatta—Iovita—Pilloni torsor (see Definition 7.5).

Proof. 1t suffices to check that for C' any complete algebraically closed extension of L, the
(C,C*)-points that the image of s are contained in the open subspace F,,(€) C T (e).

There is a natural map ¢ : Ap«(pe)(€)a — Xigpm)(€) defined by sending a point valued in
some stably uniform adic ring (R, R") corresponding to an abelian variety A and a trivialisation
a: 02 =5 T,A" to the trivialisation of H, (A) given by the composition

(1,0)

m m «a mod p"™ m
Op/p"Op — (Op/p Op)2 — A'p" — H,,
with the dual of the inclusion H, — A[p™], where as usual we identify A[p™]¥ = AY[p™] via the
Weil pairing. By functoriality of the Hodge-Tate map we then have a commutative diagram

2 a V; HT +
RN —
Op CTPA Wy

(1,0) mod p"l l l

¥ 0,/p"0, —— HY —1 wf; .
For (R, R") = (C,C™), we then have s(x) = HT o «(1,0) by Lem. 5.32. This shows that s(z) is
a lift of 1(1) € wy; . By Cor. 7.6, this implies that s(z) € F,,(¢)(C,C") as desired. O
Lemma 7.12. The following diagram commutes
I3 (p) X Xpxpee)(€)a —— Apepee)(€)a — Ay ) (€)a

(c3+d) xsl sl lq

B, X F(e) —=—— F(e) ———— X(e).

Proof. We first note that the morphism Xp«(,00)(€), = By, is well-defined: for this we use that
by (7.1), we have O} (1 + p® Reso,.z G.) |x(C Bp,. Moreover, by (5.4), the map 3 already
restricts to Xp«(po0)(€)a — Blpe|(Op 1 1) = O (1+p” Reso |z G,). The left square now commutes
by Lem. 5.31. Commutativity of the right square is clear. O

Combining this with the morphism u,, : X« (o0 (p™€)q — Xp=(pooy(€), defined by the action of
the matrix (pg ‘1)), we obtain from the lemma a commutative diagram
Fg(p) X XF*(poo)(an)a L) XF*(poo)(pHE)a e XFO*(p")(an)a

(7.2) (c3+d) x%l l Z‘LAL”

By, X Fle) ——2—— Fru(e) ———— X(e)

o

where § = s o u,,. From this, we finally deduce the following Hilbert analogue of Thm. 4.8.

Definition 7.13. (1) For any n € Zsq we set wijp,, := AL™ w}jj, where

AL"™ : A (pny (p"€)a = X (€)
is the Atkin—Lehner isomorphism. By [AIP16a, Thm. 6.7.3], the restriction of wjih ,, to

Xr, oy (€)0 equals ¢ wiih, where g, @ Xps(pn)(€)a — X (€) is the forgetful map.
(2) We then set wiit o, := q*wiip where q : Xps(po0)(€)s — X (€) is the forgetful map.
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Theorem 7.14. Let k : U — W* be a bounded smooth weight. Let 0 < € < ¢,. Then for any

n € Zso U {0}, the map §* induces a Hecke-equivariant isomorphism of (’)}M — -modules
- ;To(p a
g* : wz7+ - W,Zi;n

+

. [ . .
In particular, wi™ is an invertible OXu,nJ(p")(f)a

K Y K
-module, and w" = Wiip.

Proof. With the preparations from this and the last section, we can argue as in the elliptic case.
It suffices to prove this locally on W*. We may therefore without loss of generality assume that
x has image in W}, for some k € Z>, and set m :=k +r.

We first check that s induces a map wjjp,,, — wi*+. This is because for any section f of wiyp ,
and for any v € I}y (p"), diagram (7.2) implies that the following diagram commutes:

-1
XZ/{,I‘*(pOO)(pn6>a Bm X fm(e) H—Xf) Gm x Aan

| | |

Xy pe ooy (P €)a ————— Fon(e€) » A

(c3+d) x5

As before, this together with wZ’f{,,n being invertible proves the theorem for n € Z-; since
( IU,F*@OO)(E)&)FO ) = 0j‘u$$(p”)(€)“
by Lem. 3.7. The case of n = oo follows by the same argument from the diagram in Lem. 7.12.
The case of n = 0 follows from w™*+ = AL"wi"" = wjjp ;. Finally, the isomorphism w® = wfp is
induced from the integral one by inverting p.
We postpone the proof of Hecke equivariance to §10 where we discuss the Hecke action. [

8. PERFECTOID HILBERT MODULAR VARIETIES FOR G

We now pass from modular forms for G* to those for G, the so-called arithmetic Hilbert
modular forms. This requires a closer study of the perfectoid modular varieties attached to G,
and their relation to the perfectoid modular varieties of G*, which is the subject of this section.

Notation 8.1. Recall that in §5.1.2 we have defined Hilbert modular varieties X, X5 over L
which are base-changes of models for the Shimura varieties attached to G* and G respectively.
In doing so, we had fixed a choice of tame level uy as well as polarisation ideal ¢ and omit these
notation. We denote by X, X the adic analytifications of X, X.

We begin by recalling that the action of O is a source of isomorphisms of HBAV:

Lemma 8.2. Let S be any ring and let (A1, A\, p, ) be a HBAV over S where pu is a py-
structure and « is either a To(p™), T'1(p™) or I'(p™)-level structure. Then for any n € OF, the
map t(n) : A — A induces an isomorphism of HBAV

n: (A) L, 772)‘7 n71MN7 ’I’]Oé) g (A7 L, )‘7 KN, O[)
Here we write na as a shorthand notation for the composition of the Op-linear map o with
multiplication by n on either side of o. Similarly for X and n™ uy.

Proof. A morphism of HBAVs (B, /, N, i/, o) — (A, 1, A\, i, ) is an Op-linear isogeny ¢ : B — A
making the following diagrams commute:

Vv
BY <% 7V @ uy = 071 ® un (O/p)? = (O/p")*
b h [ [ |« Js
Boc -2 Axc B—*" A BY[p"] ﬁAv[p”]-

Setting B = A, and ¢ = [n], we see that X' = [n]Y o XA o [n] = n?)\, where in the second step
we have used that [n]¥ o A = X o [n] since ¢ is stable under the Rosati involution. The second
diagram implies py = [7] 7! o uy = n~'uy. The third diagram implies o’ = [n]¥ ca =na. O
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Definition 8.3. The polarisation action of O5'" on X is given by letting n € O3 act via
7 *pol (A7 L, Av MN) = <A7 Ly 77)‘7 /’LN>
As a consequence of Lemma 8.2 we see:

Proposition 8.4. [AIP16a, Lem. 8.1]. This action of O on X factors through the finite
group A(N) := OFF /(1 + NOg)*?, and makes X — X into a finite étale A(N)-torsor.

8.1. The anti-canonical tower for G. Our next goal is to construct from the anti-canonical
tower of G* the anti-canonical tower for G. For this, we move on from schemes to adic spaces.
Recall that, for either G or G*, the datum of a I'y(p™)-level structure is a the choice of an
Op-submodule C' C A[p"] etale locally isomorphic to Op/p"OF. If necessary we will denote this
level structure by I'y(p") and I} (p™) on G and G* respectively. Similarly, on both G* and G the
notions of anticanonical level structures coincide. We thus obtain commutative diagrams

XFO*(p”) e XG’,FU(p”) XFO*(p”)(E)a e XG,FO(p")(e)a
X — X¢ X(e) ——— Xg(e)

Lemma 8.5. The above diagrams are both Cartesian. In particular, the morphism of adic spaces
Xrr ) (€)a = Xaryny(€)a 05 a finite étale A(N)-torsor.

Proof. The points of Xpx«(,n) correspond to HBAV (A, ¢, A, iy, D) where D C A[p™] is a subgroup
étale locally isomorphic to O/p™. For any n € O, as D is an Op-module, we have nD = D, and
hence the isomorphism of HBAVs induced by 7 from Lem. 8.2 identifies the tuples (A, ¢, n?A\,n~1-
pn, D) and (A, 1, A, pn, D) in Xprpny. Thus, exactly as in Prop. 8.4, the polarisation action
factors through A(N). It follows on the level of relative moduli descriptions that the top map in
the above diagram is a A(NV)-torsor. This shows that the left diagram is Cartesian.

The case of the right hand side follows after adic analytification and restriction. (|

By the following lemma, this allows us to pass to tilde-limits in the diagram on the right:

Lemma 8.6. Let A be a finite group. Let (X, — Vn)nen be an inverse system of étale A-torsors
of adic spaces over L. Suppose there is a perfectoid tilde-limit X, ~ limX,,. We moreover
impose the technical condition that there is a cover of Yy by open affinoid spaces Vi, with affinoid
pullbacks U,, := Spa(R,, R}) to X, such that R, is affinoid perfectoid and hﬂn R, — R has
dense image. Then X /A =: V., is perfectoid, X, — Vo is an étale A-torsor, and Vs, ~ @yn.

This is a special case of the statement of [Shel7, Cor. 2.3.5]. We focus on this special case
since it suffices for our applications, and has the following simple proof:

Proof. Since the conclusions are local, by restricting to Vy we are immediately reduced to the
case that all X,, = Spa(R,, R,) are affinoid, X, = Spa(R., R%) is affinoid perfectoid and
lim R,, — R has dense image. Then Y, = Spa(R%, R2). Tt follows from [Han, Thm. 1.4] that
Voo i= Xoo/A = Spa(R%, R1:?) is perfectoid. Note that the assumptions are satisfied because
we work over the perfectoid field L over Q,.

We claim that ling R% — RZ has dense image. To see this, let r € RS and let r' := r/|A|.
Then we can find r;, € R, such that r, — 1’ inside R.. Let now r, := > . gr,, then clearly
r, € RS. Since the A-action is continuous, and r € R%, we then have r, — dgendr’ =
|%| > gea 97 =1, as desired. This shows that Ve ~ l'glyn, since the condition on topological
spaces follows from |V, | = |X.|/A.

That X, — YV is a A-torsor now follows from the Cartesian diagrams expressing that
X, — Y, is a A-torsor, by commuting product and perfectoid tilde-limit. O

Proposition 8.7. There exists a perfectoid tilde-limit

XG,Fo(p"O)(E)a ~ @ XG,Fn(p”) (E)a'

Moreover, the natural map Xrs(ye0)(€)a — Xarypee)(€)a s a finite étale A(N)-torsor.
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Proof. We apply Lem. 8.6 to the system of A(N)-torsors X, ,ny(€)a — Xa rpn)(€)q. To see that
the technical condition is satisfied, we note that by construction in Prop. 5.11, and by [SW13,
Prop. 2.4.2], any affine open formal subscheme of the formal model X*(e) of X*(e) pulls back
to opens Spa(R,, R}) C Xnxpny(€), for all n € Zso U {oco} such that R, is affinoid perfectoid
and lim R,, — Ry has dense image. Thus also for any rational subset Spa(Ry, Ry )(%), the map
hgan<€> — Roo(%) has dense image. We conclude that any affinoid cover of Xy that is a
rational refinement of an affine formal cover of X, (¢) := X*(€)/A(N) is of the desired form. O

8.2. Wild full level structures. As before, we ultimately want to work with the full level
structures I'(p™) for G defined in §5.1.1, since this will provide the appropriate universal covering
spaces we need to define overconvergent Hilbert modular forms. In this case, though, there are
differences between I'(p™) and I'*(p")-level structures which introduce new subtleties.

There is a space Xg rpny — Xa () Which relatively represents a choice of an isomorphism
a, : (O/p™)* — AV[p"] such that a,(1,0) generates the corresponding subgroup for the Ty(p™)-
level, and there is a natural map Xp«n) — Xg rpn). However, this map is not a torsor, as it
is not surjective. In addition, O no longer admits a polarisation action on Xpspny, due to
the restrictive additional conditions on I'*(p™)-level structures: indeed, changing A changes the
isomorphism b in diagram (5.2), and in general true this will not result in a similitude of pairings.

8.2.1. ‘Hybrid’ full level structures. Bearing all of the above in mind, it is convenient to also
introduce an intermediate space Xr(ny — X, relatively representing a choice of I'(p™)-level
structure o, over the Shimura variety X for G*. This fits into a diagram

B
X (pm) —— Xpgm) = AXe,rpm)
(8.1) l l l
X X —m X,

The polarisation action (8.3) now gives a well-defined action on this ‘hybrid’ space Xp(n),
since the I'(p™)-level structures require no Weil pairing compatibility.
We also have a second natural left-action on this space:

Definition 8.8. The level structure (LS) action of G(Z/p"Z) = GL2(Or/p"Op) on Xpny is
given by letting v € G(Z/p"Z) act as

f}/ ‘LS (A7 L, >\7 MN; an) = (A7 L, )‘7 /’LNa Qo O ’yv)a ’YV = det(’}/)f}/il
8.2.2. Components and the Op-linear Weil pairing. To understand the map Xp«ny — Xg rpn),
we begin by analysing 3,. For this, we require a description of the components of A,y through

the Op-linear Weil pairing €,, (Defn. 5.6): Suppose (A4, ¢, A) is a ¢-HBAV over S with T'(p™)-level
structure «, : (Op/p"Or)? = AY[p"]. Then €, induces an Op-linear isomorphism

(82) Op/pnOF ® C_1 :(Op/pnOF)z VAN (OF/pnOF ® C_l)2

anA(an®c! — A @i en  ~—
MO AV A AV @ et S AV A A 2 0 @ g

Equivalently, by tensoring with ¢, this can be described as a generator of the Op-module scheme
! ®z pn. We denote the subscheme of generators by (@' ®z g ).
In the universal situation over Xp(,»), we conclude that the Weil pairing gives rise to a map

-1
(83) e Xp(pn) — (C071 Xz /Lpn)>< ﬁ—> (Op/pnOF)X

where we recall that 8 € €@~! ®g p,n is the isomorphism chosen in Defn. 5.6.
Similarly for G we get a map e,, : Xg rpn) — (€07 ®z ) *. Next, we record two equivariance
properties of the linearised Weil pairing.

Lemma 8.9. (1) For v € G(Z/p"Z), the action on Xrn) fits into a commutative diagram
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Xl"(pn) Lﬁ) (Op/p"OF) x

I Jaetn

en,B n
Xp(pn) EE— (OF/p OF)X.
(2) Forn € O™, the polarisation action on Xrgny fits into a commutative diagram

KXoy —2 (Op /p"Op)*

L [

Xrgny —2 (O /p"Op)*.

Proof. Recall that v acts by sending «,, to a,, oY. From (8.2) it is then clear that e, g0y =
det(vy")en 3. The first part then follows from dety' = dety. The second part holds since
replacing A — 7 o A\ multiplies (8.2) by n~! due to the A= appearing. O

For any ¢ € (Op/p"OF)*, the fibre of e, 5 over ¢ gives a component of Xp,ny. This will be
a connected component, as we shall discuss in the next section. Recall that by Defn. 5.4, the
I'*(p™)-level depends on 3 € cd~*(1). We can now describe the space Xp«(,n) as follows:

Lemma 8.10. The morphism Xp«ny — Xrpn) fits into a Cartesian diagram
en,ﬁ n
XF*(p") e (Z/p Z)X

[ [

ey —2 (Op/p"OF)*

Proof. We can check this on the level of schemes, where we can check on the level of moduli
functors. Let (A,¢, A, un, @) be a HBAV over S corresponding to a point & € Xp«(,ny(S). Then
by (5.1), we recover the Weil pairing e,» from €, 3 by composing with Tr. The level structure «
therefore composes with A~! and €, 5 to a pairing

(OF/pnOF)2 X ((DF/pn(DF)2 & 5_1 — D_l ® Hpn Er—) Hpn .

By definition, « is a I'}(p™)-level structure if and only if this pairing is similar to the pairing

(OF/p"OF)? X (O /p"Or)? @ ¢ 225 (O /p"OF)? x (07! @z pipn)> 5 .
After evaluation at 1 in the second factor, and tensoring with ¢, these each induce isomorphisms
01,02 2 Op/p"Op — @' @ pyn. After composing with 71, the map ¢, derived from the
second pairing has image in (Z/p"Z)*. The above pairings are now similar if and only if their
ratio ¢, /5 " is in Aut(pyn) C Aut(cd~! @ ppn), ie. given by multiplication with (Z/p"Z)* C
(Or/p"Op)*. Thus « is a I'*(p")-level structure if and only if e,, 5(z) is in (Z/p"Z)*. O

8.2.3. The map (3. Lems. 8.9 and 8.10 immediately imply that Xpn) is a disjoint union of
copies of Xp«(,ny. More precisely, they imply the following corollary.

Corollary 8.11. Let (Or/p"Op)* act on Xrgny by letting 1 act via the level structure action
of the matriz (). The restriction of the action map to
(Or/p"Or)™ X Xpspn) = Xrem)
is then a (Z/p"7Z)* -torsor for the antidiagonal action and induces an isomorphism
[(Or /" OF)* X Xpem)] /(Z/p"2)* = Xpn).
8.2.4. The map [3>. Next, we study the second map from (8.1), namely 35 : Xpny = X rpmn)-

Lemma 8.12. For any n € (1 + NOg)*, set vy := (82) Then the polarisation action
of N* € O on Xpny coincides with the LS action on Xpgny by v~

ne€ (1+p"NOg)*, then the polarisation action of n° on Xpmn) is trivial.

In particular, if

Proof. Ifn € (1+NOg)*, then ™' uny = pn. We note that acting on the polarisation via n? and
then composing with the LS action by v = v sends an HBAV (A, ¢, \, un, ) to (A4, ¢, n? X, pn, na)
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which is isomorphic to (A, ¢, A, un, @) by Lem. 8.2, giving the first statement. The second is
immediate, since if n € (14 p"NOp)*, then 7 acts trivially on the level structure. O

Definition 8.13. For the tame levels we consider, the space X is connected, but this is no
longer true of the spaces Xr(n) and Xgrny for n > 1. We denote by AP« and XG p,ny the
respective identity components.

Definition 8.14. Let U, be the cokernel in the exact sequence
1= (1+p"0p)“T = 05" = (0O/p"O)* = U, — 1.

Lemma 8.15. Via the Weil pairing, the sets of connected components are:

(1) mo(Xereny)) = (Or/p"Or)*,
(2) 7l'o(XG,c,r(pn)) =U,.

Proof. Tt suffices to prove this for L = Q¥¢, and we may choose a Q-linear embedding L — C.

The C-points of X, r«(,n) then admit a description as G*(Q)*\[G*(A;) x S]/K*, where K* :=
K*(p") N K7 (N) C G*(Ay) is an open compact level subgroup. For ¢ { p, our choice of tame
level ensures that det(K}) = Z;, whilst K = I'*(p") has determinant 1 + p"Z,. By strong
approximation, the determinant thus induces an isomorphism from the component group
G QNG (Af) /K" =3 2 /(1 +p"L)* = (Z/p"L)".

Thus 7o (X r+pn)(C)) = (Z/p"Z)*, which implies mo(Xc rpn)(C)) = (Op/p"Op)* by Lem. 8.11.
Similarly, for G we have K := K(p") N K;(N) C G(Af) and G(Q)T\G(A)/K equals

GLy(Op) "\ GLo(Z @ Op)/K(p") N K1 (N) = O N\(Z.® Op)* /(1 + p"Z @ Op)*.

This is the strict ray class group of conductor p”, which is an extension of C1*(Op) by U,. After
taking the fibre of [¢] € C1"(Op), this equals U, as desired. O

Lemma 8.16.
(1) The map Bs : Xrpny — Xa.rpn) is a torsor for A(p"N) := Op" /(1 + p"NOp)*2.
(2) The map Ba : XL (yny — X ppny B8 a torsor for A, (N) == (1+p"Op)**/(1+p"NOp)*2.

(p I(p

Proof. Setup and notation like in the last proof, it suffices to see this for Xp(,n)(C) = X¢ rpn)(C).
We first see from Lem. 8.15 that 3, on connected components is the quotient (Or/p"Or)* —
(Op/p"Op)* /(05T /(14 p"Op)* ). Tt therefore suffices to prove that on identity components,

Xp () (C) = XP(m)(C) = X& r(m)(C)
is a torsor for the group A, (N) := (14 p"Op)* /(1 + p"NOp)*2. This map is the cover
(8.4) G\H? — G\H!

where G* = K* N G*(Q)" where K* = K*(p") N K;(V), and analogously for G. Recall that the
kernel for the action of G(Q)" on H? are the scalar matrices. Denoting by PG the quotient of G
by scalar matrices in G. We note that the only scalar matrix in G* is the identity. We therefore
have a commutative diagram with exact rows and columns

1 —— (1+p"NO)* 227 (14 p"NOR)*? — 5 1

! ! !
1 g* ' G det (1+p"Op)t —— 1
I ! !
1 g* PG » A, (N) ———— 1.
The bottom row tells us that the Galois group of the cover (8.4) is A, (IV), as desired. O

8.3. Torsors over tame level. To define overconvergent modular forms, we also need to
understand the torsor structures obtained as we vary the wild level.

Definition 8.17. Let m < n.
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(1) Let Ty(p™,p") C G(Z/p"Z) and T, (p™,p") C G*(Z/p"Z) denote the subgroups of
matrices of the form () with p™|ec.

(2) Let Z,, := (1 + NOg)*/(1 + p"NOp)*, embedded diagonally into T(p™, p").

(3) Let PTy(p™, p") := Ly(p™, p")/Z, be the quotient group.

By Lems. 8.9 and 8.10, the level structure action of I'(p™) on Xp(,n restricts to an action of
I*(p") on Ap«(ny. We then have:

Proposition 8.18. Via actions on the level structure:
(1) Xpxny = Xpxpmy is a finite étale torsor for the group fg (™, p"),
(2) Xrny = Xrrpm) is a finite étale torsor for the group Ty(p™, p™),
(3) Xerpr)y = Xampm is a finite étale torsor for the group PLy(p™,p™).

Proof. Parts (1) and (2) follow from the moduli description. Part (3) follows from Lem. 8.16.1
and Lem. 8.19 below: the proof only uses the left hand side of (8.5), so this is not circular. O

8.3.1. The diagonal torsor. We now have a commutative diagram of towers of finite étale torsors

AN
Xrpn) = X, rpm)

(8-5) fn(pm,p")l ) lPiFo(Pm-,Pn)

XFU(Pm) A(N) XGIU(Pm)

Next, we describe the diagonal map in the above diagram, which should be a torsor for some
group E(p™,p™) which can be described as an extension in two ways:

0— To(p™,p") — E(p™,p") = A(N) = 0,
0— A(p"N) — E(p™,p") — PTy(p™,p") — 0.
It transpires that both extensions are non-split, reflecting our earlier observation that there is
no polarisation action by A(N) on Xpn).
In order to describe E(p™, p") and its action, recall from Lem. 8.12 that for any n € (1+ NOr)*,

—1
the polarisation action of n? coincides with the action on the level structure via ”0 ngl . We

conclude that the combined action of Ty(p™, p") x O;’+ is such that the subgroup
L+ NOp)* = o™, p") x Op", e ((85),7°)
acts trivially on &p,n). We therefore obtain an action of the quotient
E(p,p") == (Lo(p™,p") x Op") /(1 + NOp)*.
We now obtain a short exact sequences as above: first, we clearly have a sequence
0= To(p™, p") 20 B, pr) L2225 A(N) = 0.

Second, projection to the first factor induces a natural map E(p™,p") — PIy(p™,p"). From the
snake lemma diagram

0—— (1+p"NOp)*

l ! (x — 2?)

t—t —
0— Op" = O™ xL(p™,p") — L(p™, p") — 0
\ l l

Op" —— E(p™,p") — PLy(p™,p") — 0

we see the kernel of this map is A(p"N) embedded into E(p™, p") via x + (1, ), from which
the second exact sequence follows. This shows:

Lemma 8.19. The map Xpny — Xgr,pm) is an étale torsor for the group E(p™,p™).
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Proof. By definition in diagram (8.5), this map is the composition of an étale T'y(p™, p™)-torsor
with an étale A(N)-torsor. It is therefore finite étale. From the fact that E(p™,p") acts on
Xrpny — Xanpmy, it is clear that the diagram defining the torsor property commutes. One
then verifies that the diagram is Cartesian by decomposing it into smaller Cartesian diagrams
induced from the torsor properties of Xpny — X (pmy and A my — Xa 1 pm)- O

8.4. Passing to infinite level. The following proposition is proven over C, by Xu Shen [Shel7,
Thm. 3.3.9] in the much greater generality of Shimura varieties of abelian type. In our special
case, the version over Q¢ is easy to deduce from our preparations. We first note:

Lemma 8.20. The group A(N) =lim A, (N) is finite and Ao (N) = An(N) for n>> 0.
Proof. There is a natural injective map, compatible for varying n,
An(N) = (14p"0p) " /(14+p"NOp)*? = O /(1+ NOp)** = A(N).
Since A(N) is finite, it follows that A, (N) stabilises for n > 0. O
Proposition 8.21. (1) There exist perfectoid spaces Xrpooy and Xg rpooy such that
Appoey ~ Hm Xpny  and  Xg ppee) ~ Hm X pipn).-
(2) There also exist perfectoid spaces Xp(oc) ~ UM XLy and XG pyee) ~ WM XG 1y -
(3) There is a natural morphism Xppeey — Xgrpe) which is a pro-étale torsor for the
profinite group A(p>®N) = Hm A(p"N).

(4) When restricted to connected components of the identity, it is a finite étale torsor
Xlg(poo) — ngp(poo) for the finite group A (N) = @7l A,(N).

Proof. By Theorem 5.11.4, there is a perfectoid space Xp«(oc) ~ l'glé\,’r*@n). By Cor. 8.11
we have Xppny = Xpeny X [(Op/p"OF)* /(Z/p"Z)*] on the level of adic spaces, and thus
Xr(poe) 1= Xpepoey X OF /2y ~ lim Xpwny X [(Op /p"Op)* [(Z/p"Z)*] = lim  Xrn).

For (2) we note that A7 ny = A (,n), and the existence of the perfectoid space Xp. (o) ~
@XO*(M) follows from [Shel7, Cor. 3.3.4]. From this we obtain the perfectoid space X (o),
using Lem. 8.6, Lem. 8.16.2 and the fact that A (N) = A, (N) for n > 0. This lemma also
gives (4). We deduce the second part of (1) from the second part of (2) by [Shel7, Prop. 3.3.5].

Finally, (3) follows from Lem. 8.16.1 by as usual applying the fact that perfectoid tilde-limits
commute with fibre products to the diagram defining the torsor property. O

8.4.1. The action of G(Q,). Since each Appn) — X is an étale G(Z/p"Z) = GL2(Op /p"OF)-
torsor, it follows that Xp,e) — X is a pro-étale G(Z,) = GLy(O,)-torsor. Here we recall that
v € GLy(0,) acts by precomposition with 7" = det(y)y~" on the level structure O} == T, A".
We shall now for a moment include the dependence on the polarisation ideal ¢ into the notation
because, as in the Siegel case, the G(Z,)-action extends naturally to a G(Q,)-action which, in
our case, permutes the spaces X p(,) over the polarisation ideals ¢, as we shall now describe.

Lemma 8.22. Let (A,t,\,un) be a HBAV. Let a C Op be an ideal coprime to N and let

D C Ala] be any Op-submodule scheme. Then there is a unique way to make the isogeny

¢:A— B:=A/D into a morphism of HBAVs (A, 1, \, un) — (B, /', N, ). If D = ®F  Or/b;

and b := by --- by, then X' is the unique cb-polarisation making the following diagram commute:
Agc —2— A

(8‘6) wD®CT ‘PVT

B®ch>BV.

D
Here P is such that B b 2= A 5 B is the natural map B®b — B® Op = B.

Proof. Let ' be the quotient action and let uy be the composition of puy with A — A/D. Tt
remains to construct A’ and show that it is a Deligne—Pappas polarisation as described. We refer
to [KLO05, §1.9] for the construction if D is of the form D = Og/b;. The general case follows by
decomposing into a chain of isogenies of this form. O
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Let now v € G(Q,) = GLy(F}). If v is an element of the form (§ 2) for some xz € O, we will
see that the action we now define sends A — A/A[z] = A® (x)~*. For general v = (24), we
may therefore after rescaling assume that v € M5(O,) N GLy(F)).

We may regard v as acting on 02 ® ¢~'. In particular, via A o : O2 @ ¢=' = T, A, the
matrix v acts Op-linearly on 7,A and thus on A[p"] for all n. For n — oo, the kernel D of
v : A[p"] — A[p"| stabilises. The automorphism v now sends (A, ¢, A, un, @) to the HBAV
(B:=A/D,/, N, iy, a’) from Lem. 8.22, where o/ : O2 = T,B" is determined as follows:

Lemma 8.23. There is a unique o/ : (92 = T,BY such that the following diagram commutes:
02 —— T,AY

i o~

0; —— T,B".
Proof. By Lem. 8.22, it suffices to show that there is a unique dotted arrow making the diagram

02 5 T,A®c —>— T,AY

N o

02 » T,B®cb —*— T,BY

commutative. Since all arrows become isomorphisms upon inverting p, it suffices to show
that the cokernels of vV and P are identified by . As usual, one sees that the cokernel of

P is given by A[b]/D. Since yo~vY = (deg“* dc(iv), we have coker~" = coker(det )/ coker ~.

Let now n be large enough that p™ kills coker «, then the Tor-sequence for quotienting by p"
shows that a sends coker~y to coker(y : T,A — T,A) = (ker~y : A[p"] — A[p"]) = D. Second,
we have det(y)O, = bO,, and the same Tor-argument shows that « sends coker(dety) to
ker(det~y : A[p"] — A[p"]) = A[b]. This shows that « sends cokery" to A[b]/D = coker p”. O

It is clear from this characterisation of v and the contravariance of —V that this is compatible
with the multiplication in G(Q,), and thus defines an action as desired. We moreover note that
for v € G(Z,), we have ¢ = id and therefore the action thus defined coincides with the action by
precomposition with V. Thus the G(Q,)-action extends the G(Z,)-action defined earlier.

Lemma 8.24. Let n € Zs; U {o0}.
(1) Xrpeoy = Xrypmy s a pro-étale torsor for the group Iy(p™) == @ To(p™, p™).
(2) Xgrpe) = Xanen) is a pro-étale torsor for the group PLy(p L PL,(p™, p™).
(3) Xrpee)y = X 5 a pro-étale torsor for the group E(p") := Lm (p™,p™).
(Notice we have swapped n and m; this is for notational convenience later on).

Proof. The diagrams expressing the torsor property are Cartesian since the corresponding
Cartesian diagrams at finite level are, and perfectoid tilde-limits commute with fibre products. [

In summary, taking the limit over diagram (8.5), we thus get a diagram of pro-étale torsors

A(p™
XF* (p>°) E— XF (p°) —> XG D (po®

(8.7) FN(p”)l X(pnj ipro

XI}] (pn) W XG,Fo(p")

where A(p™N) := %gnn A(p"N).
8.4.2. Comparison to Xp«(y~y. Taking limits, the Weil pairing morphism (8.3) induces maps
I'&Hen_ﬂ =:1ep: Appey) — O) and @en =:1e: Xgrpe) — @ '(1)%,

where the targets refer to the associated profinite perfectoid groups. Moreover, in the limit we
obtain a level action of G(Z,). Through this we define a level structure action of n € O, acting
by (79). In the limit, Lem. 8.9 and Cor. 8.11 give the following two lemmas.
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Lemma 8.25. The anti-diagonal action of O} restricts to a Z,) -torsor
Ape(pee) X Opf — Aree).

Lemma 8.26. For any (v,x) € E(p), the following diagram commutes:
Kooy —— OF

l(w:) ldcc(y)fl

©p
Xrpeoy — O

Remark 8.27. We note that if we take the diagram from Lem. 8.5 and fiber it with (8.7) we
can see that everything restricts to the anticanonical locus, i.e., in the statements above, we can
replace Xrpe), X rpee), etc with Xre0)(€)a, Xa rpee)(€)q, ete.

8.5. Hodge—Tate period maps.

Lemma 8.28. There exist Hodge—Tate period maps making the following diagram commute:

X+ (pooy ———— Appee) ——— Xarpeo)

| | [

Reso,z P! —— Reso,z P! —— Resp,z P

The map Ar(,e) = Reso,z P! is invariant for the polarisation action of (’);* on Xp(peo).

Proof. We may define a map 7yt on Aps(,=) x O by projection from the first factor. This map
is Zx-invariant for the antidiagonal action since the ZX-action on I'*(p>) just amounts to a
rescaling of the basis vectors, which leaves the relative position of the kernel of the Hodge—Tate
morphism invariant. Using the Z-torsor property from Lem. 8.25 in the pro-étale site, we
conclude that myr descends to the second vertical map in the following diagram.

Zy A(p™N)
s (pooy X Of ——— Xp(pooy ——— Xarpe)

l . .

Reso .z P! Reso,z P! == Resp, |z P

Similarly, the polarisation action of A(p>N) clearly leaves 7yt invariant since it does not change
the level structure. The same descent argument gives the third vertical map.

For the last statement, we note that A=) — Reso,z P! is invariant under the polarisation
action by Z; N 07" since the polarisation does not feature in the Hodge Tate sequence. The
result then follows from the construction via the Z;-torsor Xp«(yec) X O) — Xp(poo). O

9. ARITHMETIC OVERCONVERGENT HILBERT MODULAR FORMS

In §8, we exhibited various pro-étale torsors of perfectoid Hilbert modular varieties over Xg.
In this section, we use these to define overconvergent modular forms for G and compare them to
those for G*. We do this by defining four different sheaves, each using a different torsor, and
then give a chain of comparisons that relate them. This will show that our modular forms for G
agree with the previous sheaves defined in [AIP16a] by descending the sheaves for G*.

Let k : U — W be a bounded smooth weight. Recall from 6.2 that by composition with
p: W — W* this also defines a bounded smooth weight for G* which by Prop. 6.3 we may interpret
as a morphism of adic spaces  : B,(O) : 1) xU — G- Tt follows from Lem. 8.28 that Defn. 6.4
goes through also for the infinite level spaces X+ (y00)(€), and Xg,p(po)(€)q. In particular, this gives
us invertible functions k(c3 +d) on each of these spaces. We denote them by the same letter since
by definition they are compatible via pull-back along Xp«(ye)(€)q — Xr(peo)(€)a = Xa,rpee)(€)a-

Definition 9.1. Let n € Z>;U{oco}. In the following, all infinite level sheaves are tacitly pushed
forward to the indicated finite level base.
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(1) The sheaf Wg:f(c*,r*,n) of integral modular forms for G* via Xy px(peoy is

{fEOJr 'y*f:[{_l(03+d)f forallfy:(zg)erg(pn)}

XZ/{,F* (poo) (6)@

(2) The sheaf wg’:(G*,F,n) of integral modular forms for G* via Xy @) is

{feo; | =r gt d)f forall y = (2 §) € (") }.

Xy, r(pee)(€)a

(3) The sheaf wg’7J(rG*7F7n) of integral modular forms for G via Xy o) is

{f c Ot ’(ry,x)*f =Kk ez + d)wk(x) f for all (y,x) € E(p") }

Xy, r(poe)(€)a

(4) The sheaf wé’f{anm of integral modular forms for G via Xgy rpee) is
{F €08, rpmy@al VT =5 es + dywr(detn)f  for all y € PIy(p") }.

We note that (1) is the sheaf of modular forms for G* from Defn. 6.5, denoted there by w.
We have switched to the notation above for clearer comparison to (2), (3) and (4). The goal of
this secion is to relate these sheaves. More precisely:

(i) in Lem. 9.3 below, we will see that the sheaves (1) and (2) are isomorphic;
(ii) in Lem. 9.6, we will see that sheaf (3) is obtained from (2) by taking A(N)-invariants;
(iii) in Lem. 9.7, we will see that the sheaves (3) and (4) are isomorphic.

Before we start giving comparison maps, however, we need to check:

Lemma 9.2. The conditions in (3) and (4) above are well-defined; that is, they do not depend
on the choice of representatives (vy,x) or 7y respectively.

Proof. The relation of wy and & given in Def. 6.2 implies that
(9.1) kT ) we(n?) =tk o Npjg(n) =1 for alln e O™,

For (3), this implies that for any (v,z) € Ty(p™) x O™, the factor k*(c3 + d)wy(x) only
depends on the image of (v, ) in FE(p"); indeed, for any n € OF* the translate (y (g 2) , )
has the same associated factor

K ens + dn)wi (zn*) = &7 (N wr (n*)67 (e + d)wi(z) = 67 (c3 + dJwg ().
For (4), we similarly note that for any n € (1 + NOp)™™, setting v = (” 0) results in the

0n
factor K~ !(n)wk(n?) = 1. By continuity, the same is true for v in the topological closure Z,

of (14+NOp)**in O . As PTy(p") = Hm PTu(p",p™) = T&lmfo(p”,pm)/Zm =I(p")/Z ,
this shows that for any v € T}, (p"), the factor k~*(c3 + d)wy (dety) only depends on the image
of v in PT(p™). This shows that the condition in (4) is well-defined. O

Lemma 9.3. Let « : U — W* be a smooth weight. The natural morphism of torsors
Xy r+(p) (€)a = Xy rpoe)(€)a 0veEr Xy rx(pny(€)q induces a natural isomorphism

WE (v e m) = WG (G mony-
In particular, the definition of forms for G* is independent of the choice of I' or I'*.
Proof. By Lem. 8.28, for any v € I} (p™), the function x~'(c3 + d) on Xy rpeo)(€), pulls back to
k(e + d) on Xy e (poo)(€)q. Since the map Xy r(poo)(€)a — Xor(poe)(€)q is equivariant under
Iy (p™) — To(p™), it follows that the associated map O}u’r(poo)(e)a — O;M’F*(poo)(e)a restricts to
(9.2) wg)j:(G*,F,n) - Wg’:(c*,r*,n)'

To construct an inverse, let f € wg:r (G ny- Note that f is invariant under the action of Z,
since for any € € Z, we have 7. = (§9) acting via 7' f = (1) f = f. Consider now

A (p) (€)a — X repe) (€)a X Off — Xy rpe)(€)a,
where the right hand morphism is the Z;-torsor from Lem. 8.25 and the left hand morphism
is simply the projection. Since f is Z)-invariant, the pullback f’ of f under the left map is
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invariant under the antidiagonal Z-action. Since the morphism on the right is a Zx-torsor of
affinoid perfectoid spaces, this implies that f’ descends uniquely down the right to a function
" on Ay rpeey(€)a. We claim that f” € W (G T+ ,ny» that is, it transforms as required under

Io(p™). This group is generated by (005 (1’) and I}j(p"), so it suffices to check that
(9.3) V=K 054 1) f" = f"foralle € O,

(9.4) v " =k cz +d)f" for all vy € T (p").

As f" came from pullback from the left, the function f’ is invariant for the O-action, and thus
the same is true for f”, where e € O acts via 7. = (§ {). This gives (9.3). Also, since f was a
modular form and the above maps are all equivariant for the natural I'j(p™)-action, we also have
(9.4). Thus f” € W& @+ r+ ), and we see directly that f — f” gives an inverse to (9.2). O

n)?

We now use étale descent along m : Ay (e) = Xgu(e) to relate the sheaves for G* and G.
Explicitly, this can be done by endowing m.we: (G*.r.ny With a A(N)-action given by a twist of
the Oy " -action on X r(po)(€)a = Xeu,r(pe)(€)a, as follows:

Definition 9.4. Let « : U — W be a smooth bounded weight. We define a wg-twisted

polarisation left-action of 03" on mq*Oj{u Fo) (© by letting € € O act as
,I(p @

€ e | = wile) - (€7)°F

where wy is as in 6.2 and the action on the right side is the polarisation action on Xy r(ye)(€)q-

Lemma 9.5. The wy-twisted action of O3 restricts to W*wg’j(G* e where it factors through
an action of A(N). Furthermore, this action coincides with the action defined by [AIP16a].

Proof. Tt is clear from the moduli description that the polarisation action of O;’+ and the level
structure action of I'g(p™) commute on Ay p(pe)(€),. By Lemma 8.28, the action moreover leaves
mgr and thus 3 invariant. We therefore have for any e € O™ and any f € W*wg’:f (G* T'n)

V(e ) = wi(e)e™y f = wi(e)e™ (k7 (3 + d) f) = K71 (5 + d)e uye J-
This shows that the action restricts. Next, if n € O5'F, then n? acts on f € ”*Wg’:(a*,r,n) via

_9\x p Lem. 8.12 * _ (9.1)
1w f=we(m?) - (072 f E= T we() - (§,) f = we@)s ) f = S
and in particular the subgroup (1+ NOp)*? acts trivially; thus the action factors through A(N)
as desired. The last statement follows from Lem. 9.3 and Thm. 7.14 since Defn. 9.4 and the
definition in [ATP16b, Section 4.1] match up: here we use that the polarisation action commutes
with s since it leaves the wild level o and the Hodge—Tate morphism unchanged. O

+
AU, r(p>)

A(N).

Lemma 9.6. We have an equality of subsheaves of O (e 0N Xeu ) (€)a

K+ _ s
Wa,(a*,rn) = (W*WG*,(G*,F,n))

Proof. Let f € wg’f(rg*,nn). By Lem. 9.2, the action of E(p") that defines the modular forms
property for f is induced by an action of Iy(p™) x (’);’Jr; from this, it is clear that

Vf=01)"f =Kz +d)f forall y = (2}) e L(p"),

and thus f € mwg. (@ To see that it is also A(NN)-equivariant, it suffices to note that

ANON
o' f = (1,2)"f = wg(z)f for all x € OF,

which implies that for the wy-twisted action of  we have x -, f = wg(z)(z™")*f = f. Thus
fe (mwg’f (G*T n))A(N ) as desired. The converse follows by reversing the above calculations. [

To compare wng*I’n) to wg’f{ar,n), pulling back functions along Xy rpey = X u,rpee) is not
enough: We also need an additional twist that changes the factor of k™!(cj + d)wy () in the
definition of the former into the factor of k™ *(c3 + d)wy (dety) used in the latter. To describe
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this, let k : Y — W — W* be a smooth weight and recall from the discussion before Lem. 8.26
the Weil pairing morphism eg : Xy r) — O,°. We use this to define a composite morphism
wm(eﬂ) : XM,F(p"O) 9_,5‘) OX or G

Restricting to the subspace &y r(ye0)(€)q, the universal property of G, associates to wg(ep) a
function in O (X p(pe)(€)q)* that we might reasonably also denote by wy(es). By Lem. 8.26,

(9.5) (7,2) w(e5) = Wz~ wp(det y)ws(es)  for any (v,2) € E(p").
Lemma 9.7. Let w,, be the natural morphism of torsors
Xy rpeey(€)a —— Xourepe)(€)a
E(p")l lPFo(p")
X urom) (€)a ) (€)a-

Then sending f — wy'(eg) - i f defines an isomorphism of Ot -modules on Xey 1) (€)a

Kot ~ R
W (G,rn) T WG )

Proof. Let f € w7, (G.rn- For any (v,z) € E(p"), we have

(7, 2)" (Wi (es) ™o f) = (v,2) wi' (es) - (v,2)'m

= wr(z)wy;' (det Y)wy' (e ) T

= wr(2)wy' (det Y)wy' (e)m (k7 (c3 + d)wr(det ) f)

=K (c3 + d)wr(z)wi (es)T5 f.
In the second step we have used equation (9.5) and the fact that m., is equivariant with respect
to the projection E(p") — PTo(p"), (v,2) + 7, in the third step we use f € w7, (G.rny» and in
the last step we use that by Lem. 8.28, 7% (k™ (¢ + d)) = k' (¢ + d). This identity shows that
indeed w,;'(es)m% f € WE (G« 1.y, SO the map in the statement of the proposition is well-defined.

To see that the map is an isomorphism, take now f € Wg’,?c*,r,n) and consider the function

g = wk(eg)f on Xy rpeo)(€)q. We claim that g descends uniquely to a function on Xg y, ripee)(€)a-
To see this, since 7o, @ Xy rpee)(€)a = X, rpee)(€)q is a perfectoid A(p>N)-torsor, it suffices
to show that g is A(p>N)-invariant. It suffices by continuity to show that it is invariant for the
dense subgroup 05" < A(p®N). For this we calculate that for any z € O we have

a'g = (1,2)"g = (L) (wk(ep))(1,2)" f = we(z) 'we(es)s™ (Lwe(z)f = weles)f =g,
where we have again used equation (9.5). This shows that ¢ indeed arises as pullback of a unique
function h = h(f) on Xy rpe)(€)e With 75 h = g. We claim that h € wg’f{G}nn). For this we
have to check by definition that v*h equals k™ *(¢3 + d)wy (det y)h. The morphism of sheaves
T }M’F(poo)(e)a — Oj{u,n,(poq(@a is the pullback of a pro-étale map, hence injective; thus, as
it is also I'y(p™)-equivariant, it suffices to check this property on 7 h = g with respect to the
action of I'y(p") — E(p™). But by definition of ¢ as wg(es)f, we have for any v € I;)(p") that

79 = (7, 1) (wr(ep)) (7, 1)"f = wr(det(7))we(es)r ™ (c3 + d) f = K" (e + d)wp (det(y))g.
This shows that g transforms under the action of I'y(p") as desired, and thus so does h. This
shows h € wg’f{a’nn) as desired. Moreover, by construction we have f = w,'(es)7’ h.

This shows that the map in the proposition is injective and surjective, thus an isomorphism. [

Deﬁnition 9.8. Let K : Z/{ — W be a bounded smooth weight and n € Zso U {oo}. For n # 0,
let wG . be the sheaf w7, (G.r.n from Defn. 9.1 (4), noting that we have reintroduced our fixed ¢
to the notat1on As before, we define the rational version w¢, ., by replacing O7% with Oy, or
equivalently by inverting p. We use the Atkin—Lehner isomorphism to define ‘n = 0’ versions

™ L K Kyt R
Wa,e = WG o0 = AL*WG,c,u Wc c WG €0 - AL*WG 1

which are sheaves on Xg y(€). For any n € Z>q U {oo}, the space of overconvergent arith-
metic Hilbert modular forms of tame level uy, p-level Ty(p™), polarisation ideal ¢, radius of
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overconvergence € and weight k, and its integral subspace, are then
MEZ(To(p"), s €, €) := H (X, euu(€), W )
MEF(To(p"), s €)= H (X car(), w0,
Remark 9.9. One can define cusp forms for G in much the same way as for G* (Rem. 6.9).
As in [AIP16b, Lem. 4.5], the polarisation action by p-adic units z € F* " defines isomorphisms
Py MZ(Lo(p"), v €, ¢) = M (To(p"™), i, €, c)

We will see below that the action of the Hecke operators permutes the spaces M& (uy, €, ¢) by
scaling the polarisation ideal. To obtain a Hecke stable space, one therefore also defines:

Definition 9.10. Let 9%(;’) be the group of fractional ideals of F' coprime to p and ?JF”(}) ) be the
positive elements which are p-adic units, then 9{%’) / ‘I;’(p ) is the narrow class group. We let

M (To(p"), vy €) = < @ M,?(Fo(p”),uN,e,c)>/<Px(f) — fforallze g?(p)>_

ceiﬂgf)

This is the space of arithmetic overconvergent Hilbert modular forms of weight x, tame level uy
and radius of overconvergence €. One can define integral versions of these spaces by using wgfn

Putting everything together, we obtain the desired comparison to the sheaf of Hilbert modular
forms for G as defined by Andreatta—lovita—Pilloni. For this we first recall the definition:

Definition 9.11. Let wgl yp, = (mwgs' o arp.,) 2@, This is the integral analytic incarnation

of the sheaf of Hilbert modular forms for G' on X 4 (€) denoted by w*c' in [AIP16a, §8.2].

Theorem 9.12. Let k : U — W be a smooth bounded weight, n € ZsoU{oo} and 0 < e < ¢,.

There is a natural isomorphism
K2+~ , Kt
wG,c,n - G, ,AIPn

of OF-modules on Xg u(€). In particular, wgfn is an invertible O -module. By inverting p, it

y Y y y y y K — K
induces a Hecke-equivariant isomorphism of line bundles wg; . ,, = W& ¢ Arp.n-

Proof. To ease notation, we suppress the dependence on ¢. By Thm. 7.14, we have wg:™ = wng AIP

By combining the lemmas of §9, we conclude that

w+ (9-8) ko4 9.7 k+ (9.6) Ko+ A(N)
Win = Wa(arm = Yo arrm) = (TeGs (G rm)
(9.3) rot A(N) (7:14)&(9.5) rot AN) 01D st
= (W*Wc*,(c*,r*,n)) = (W*WG*,AIP,n) = Wa Arpn

as desired. We postpone the proof of Hecke-equivariance to §10. O

10. HECKE OPERATORS

Throughout this section, we fix a smooth bounded weight k : U/ - W — W* and 0 < € < ¢,.
To ease notation, in this section we suppress the subscript ¢ from our Hilbert modular varieties.

10.1. The tame Hecke operators. Let a C O be any ideal coprime to n and p. Let us
denote by X r,(a)(€) the Hilbert modular variety of tame level uy NIj(a), representing tuples
(A, t, A\, un, D) where D C Ala] is a closed Op-submodule scheme that is étale locally isomorphic
to Op/a, and A : A® ¢ = AY. Let us denote by 7 : X 1, (a)(€) = Xc(€) the forgetful morphism.
By Lem. 8.22, there is a second map defined by sending A — A/D:

ot Xy (€)a = Xeale), (A e, N\, un, D) — (A" :=A/D,J N, iwy).

Now let n € Z>; U {oo}. Then it is clear that the morphisms m; and 7, extend uniquely when
we add level structures at p: more precisely, we obtain a natural commutative diagram

Xca,F(poo)<€)a & Xc,F(poo)ﬁl"o(u)(G)a % Xc,l"(poo)(6>a

(10.1) | | |

Xeary () (€)a LA Xe 1 (pm)ny(a) (€)a T Xe (o) (€)a,
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Vy—1
where 7o sends a : 02 — T,AY to o : O2 = T,AY L, T,A", where the isomorphism
oV : T,A" — T,A" is the one induced from the prime-to-p isogeny " : A" = (A/D)¥ — A".
Lemma 10.1. There is a canonical isomorphism mjwe™ = 5w of sheaves on X 1, (pn)nry(a) (€)a-

Proof. By diagram (10. 1) we have
wyt={fe0 |7 f =7 ok (c3 +d) f for all v € To(p")}-

The same applies to mjw;i™, so we are left to see that 7} k™' (c3 +d) = 73 7' (c3 +d). To
see this, observe that ¢ : A — A/D induces an isomorphism of Hodge-Tate sequences

X r(poomrom)(

02 —* T,(A/D)" -5 wa/p

(10.2) H lwv l“”*
05

/ HT
@ 4 TPAV WA

by definition of a.. This shows that Tyt o Ty oo = T 0 T2 o0, giving the desired equality. O

Definition 10.2. The T,-operator is defined as the composition
M H(Lo(p"), b €, ca) = F(Xca,ro<pn>(6)a,WZ’+) = T(Xer, (pm)nm(a) (€)as Towy ™)

= D(Xen, () ry () (€) 0 T W3 +) F(XC,Fu(p”)(6>av wpt) = MS*’+(FO(p”), [N €, C).
where Tr,, is the trace of the finite locally free map 7, and where ¢, := |OF/a|.

10.2. The U,-operators. Let n € Z>; and p be a prime ideal of Op above p of ramification
index e. Set [ := ne + 1. For the definition of the U,-operator, we then use the moduli space
X, (o)) (€)a — Xe(€) which relatively represents the data of an anticanonical Op-submodule
scheme C' C A[p"] étale locally isomorphic to Or/p"OF together with an Op-submodule scheme
D C Alp'] étale locally isomorphic to Op/p' such that C[pe"] = D[pe"]. In particular, D is then
anticanonical. There is a forgetful map 7 : X, 1 (,n)r,pt) (€)a = Xem(pn)(€)a Which is finite flat
of degree g, := |Or/p|. There is also a second map

Ty Xy mynn(pt) (€)a = Xep,rypm) (€)a
(A, 0, \, un,C, D) (A" := A/D[p|,//, N, y,C" := (C + D)/Dlp])

where (A’, ', N, uy) is like in Lem. 8.22 and where C' + D C A[p"*!] is the submodule scheme
generated by C' and D. Then C" is étale locally isomorphic to Op/p"OFr. We note that this map
is not surjective, and the image is already contained in an open subspace that can be described
using the partial Hasse invariant at p (for example, if F' = Q, then it lands in X, r,m)(p7'€)a)-

Let us now fix any uniformiser w € O, such that wO, = pO, and let u, := (F9) € G(Q,).
Then letting u, act in terms of the G(Q,)-action, we obtain a commutative diagram

ch7p(poo)(€)a <—p Xc7p(poo)(€)a _ Xcvp(poo)(ﬁ)a

(10.3) ls | ls

Xep. 0, (p) (€)a 2 XC7F0(Pn)mFo(pl)(€)a — Xe 1y (o) (€) -

Lemma 10.3. The action of u, defines a map miwit — wiwit of invertible sheaves on
X

e LTy (pl) (€)a- It is independent of the choice of the uniformiser w.

Proof. By diagram (10.3), we have
mwy " ={f € 0% . |V F=r" ez +d)f forall y € Ly(p") NTu(p")}.

We claim that upwr’j’+ admits the same description. To see this, we first recall that the action of
uy is equivariant with respect to the morphism Iy(p™) N Ty(p') — Lh(p™) given by conjugation by
Uy, namely j : (25) — (w‘_‘lc Zb ) Second, we see from G(Q,)-equivariance of Tyt that uy3 = w@s;.
Consequently, k(v,3) := k(¢ + d) is sent by u, to (7,3) — k(j(7),w3) = k(w 'wez + d) =
k(c3 + d). This together with the fact that shows that X. ey (€)a — X pm)nn ) (€)a i a
pro-étale T(p™) NIy (p')-torsor shows that wjw:* has the desired form. O
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Definition 10.4. The U,-operator is defined as the composition
MKG (Fo(pn)v KN, €, Cp) = F(XCP,FO(P")(E)M Wz) - F(Xc,Fo(p")ﬁFo(pl)(e)a’ TFSWZ)

&= Tr
* K q 1 K * i
— D(X g mynn ot (€)as Twn) ——— T( X,y (€)as wi) = M7 (To(p"), piv, €, €).-
10.3. The Hecke action on arithmetic Hilbert modular forms. For ¢ a polarisation ideal,

we let [c] denote its class in the narrow class group. One can then define Hecke operators on the
spaces of overconvergent Hilbert modular forms for G of the form

Ta : MS(FU(pn),MN,G, [ca]) - ME(FO(pn),MN,E, [C])

UP : MS(FO(pn)a KN,y €, [Cp]) — M/»;G(Fo(pn)? HUN, €, [CD

by taking A-invariants of the operators defined in the last section. Alternatively, one can define
these operators more directly and without any reference to G* based on Defns. 9.1 and Defn. 9.8;
copying the definitions for G* and replacing X by Xg throughout. The proofs go through without
change. The natural morphisms of Hecke correspondences over the map X — Xg shows that
the operators thus defined coincide with the ones obtained via G*.

It is clear from either definition that the Hecke operators commute with the polarisation
action from Defn. 9.10. Consequently, they induce a Hecke action on M& (T, (p"), iy, €)-

Remark 10.5. Via the Koecher principle the Hecke operators also extend to the boundary.
Moreover, the subspaces of cusp forms will be preserved by the action of Hecke operators.

Remark 10.6. As defined, the Hecke operators for G* are canonical. If one fixes a set of
representatives (¢;) of the narrow class group and considers the Hecke operators as mapping
between the spaces for these fixed c;, then the Hecke operators for G* become non-canonical,
depending on the choice of representatives (cf. [AIP16b, Section 4.3]). For G, the operators
remain canonical as picking different representatives does not affect our polarisation class. In
particular, we get commuting Hecke operators on M (Ty(p™), pin, €).

Lastly, one can check directly that for G* or G the Hecke operator U, = lep Uy" is a compact
operator. Alternatively, this follows from Prop. 10.8 together with [AIP16b, Lem. 3.27].

Remark 10.7. It is clear from the definition that the tame Hecke operators preserve the integral
spaces of overconvergent forms, while for U, this is in general only true after renormalisation.

10.4. Hecke-equivariance of the comparison. We can now finish the proof of Thms. 7.14
and 9.12 by proving that the comparison isomorphisms are Hecke equivariant.

Proposition 10.8. The isomorphisms wgs,, =5 wed o, and wih, =5 wiap,, are Hecke

equivariant on global sections.

Proof. We consider the case of G*, the case of G follows from this. As in the proof of Thm. 9.12,
we can assume that s has image in W} for some k£ > 0. It is clear from comparing Def-
initions 10.2 and 10.4 to the definition in [AIP16a, §8.5] that it suffices to prove that the
isomorphism m5wes , = Wi, from Lem. 10.1 and 10.3 is identified with the isomorphisms
oW AP = T W arp from [AIP16a, Lem. 8.5] under the comparison isomorphism. For this it
suffices to see that the comparison map s from §7.2 induces a morphism of Hecke correspondences

ch}r(poo)(G)a & Xcﬁp(poo)((?)a i) Xc,r(poo)(G)a

(10.4) B I -

Fom(e) = Fin L) (€) L SN Fom(€)

where F,, () (€) is the pullback along 7y : X r(a)(€) = Xc(€) of the Andreatta—Iovita—Pilloni
torsor, and where 7, is induced by the map w4,p — w4. Commutativity of the right square is
clear. In terms of moduli, commutativity of the left square is now precisely that of diagram (10.2).

For the Uy-operator, the top left map in diagram is replaced by the action of u, = (5 9). Let A
be the universal abelian variety over X, 1, (,n)n, (ot (€)a With its anticanonical subgroup D C A[p'],
then the map m5wes , ap = MW, arp 18 induced via the adjoint W , arp — T2 «TTWE , ATP
obtained by restriction from the map ¢* : wa,/pp] — wa associated to the isogeny A — A/DIp].
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On the other hand, the morphism wg. ,, — T2 TiWex ,, in Lem. 10.3 is given by restriction of
the action of u,. To prove that the comparison is equivariant for the U,-operator, it thus suffices
to prove that these two morphisms commute with the comparison morphism s.

Using Lem. 8.23 and the identity u, (1,0) = (1,0), we see that the following diagram commutes

(1,0) 02— T,AY LEL
| - o I
(1,0) 02 —— T,(A/D[p])" === wa/pyy).

This shows that also sou, = ¢*os, and thus U, commutes with the comparison isomorphism. [J
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