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Braid groups

Let B, be the n'® braid group. Consider the discrete category B with objects the natural numbers 0,1, 2, . . .
and Endg(n,n) := B,. There is a connection between braided monoidal categories and 2-fold loop spaces.
For instance it has been shown (see for instance [Ber, remark 1.9])

NB ~ Q?8?

i.e. that after group completion the nerve of this category is weakly equivalent to the double loop space of
the 2-sphere. In fact this holds more generally, the group completion of the nerve of any braided monoidal
category is weakly equivalent to a double loop space [F, theorem 2].

I-spaces

Let Z be the category of finite sets [n] = {1,...,n}, including the empty set [0], and injective maps. The
category of Z-spaces, that is functors from Z to topological spaces, has been well studied for example by
Steffen Sagave and Christian Schlichtkrull.

An example of an Z-space is BY where BY(n) is the classifying space of the permutation group %,. This
is in fact also a commutative Z-space monoid see [S, example 8.2] .

If we restrict to the subcategory M of injective order preserving maps in Z then we get an M-space
monoid BB. The space BB[n] is the classifying space of the n'" braid group. Example 8.9 in [S] shows

BBhM >~ QQSQ

i.e. that the homotopy colimit of this M-space is homotopy equivalent to the double loop space of the
3-sphere.

There is a theorem by Sagave and Schlichtkrull stating that the category of commutative Z-space monoids
is Quillen equivalent to the category of E., spaces. A grouplike F,, space has the weak homotopy type of
an infinite loop space, see [M74].

My project

There is a connection between braided monoidal categories and double loop spaces, and commutative
Z-space monoids are related to infinite loop spaces. The purpose of my project is to see what happens
with a braided version of Z-spaces. We are hoping to relate commutative monoids to double loop spaces.

The category of B-spaces inherits a braided monoidal structure from 8. For two B-spaces X and Y the
product is defined by X XY (i) = cokim‘ X(7) x Y(k). And the result follows from the functoriality of the
JRk—1

Kan extension.
A non example

The endomorphisms of [n] in Z are the permutation groups 3,,. These groups give rise to an Z-space BY
with BY.[n] the classifying space of 3, in the following way: For an injective map « : [m]| — [n], write
[n] — a for the complement of a[m| in [n]. We can then define a group homomorphism ¥, — ¥, by ¢ in
> maps to
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[n] = [m] @ ([n] = a) (m] @ ([n] —a) = [n]
The isomorphism [m] ® ([n] — «) = [n] is really just extending « to @ : [n] — [n] by the order preserving

map {m+ 1,m+2,...,n} — [n] — a. The homomorphism can then be written ¢ — @ (¢ ® id)a'.

The natural question now is if we can construct a B-space in an analogous way. The endomorphisms of
[n] in B are the braid groups B,,. We try to make a functor from B to groups in the same way as above.
But when we want to extend an injective braid o we also have to choose a braiding on the extended map.
We can for instance choose to let all the new strings go under the ones that where there before. Since we
have chosen a order preserving function {m +1,m +2,...,n} — [n] — o none of the new strings need to
cross over or under each other.

Looking at an example shows that this will not preserve composition, so we do not get a functor in this
way. The illustration shows two injective braids a : [2] — [3] and (3 : [3] — [3] and the composition

foa:[2) — [3]
J
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We chose an element in By and map it with the homomorphism induced by a and then map the result by

the homomorphism induced by f3:
&
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We see that this is not the same as we get by using homomorphism induced by the composition 3 o «a:

<

If we choose another braiding on @ we wil have the same problem.

Injective braids

Intuitively we can think of an injective braid as a braiding of an injective map. The following illustration
shows two different braidings of the injective map 1+ 3, 2+ 1, 3 +— 4:
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For a formal definition we can generalize the description of the braid groups as fundamental groups given
in [Bir]. Let [n] denote the set {1,...,n}. We define an injective braid « from [m] to [n] as the homotopy
class of an m-tuple of paths in R2. The i*" path should start in (i,0) and end in one of the points
(1,0),...,(n,0). At any time neither the different paths nor the different homotopies intersect.

Let B be the category of finite sets [n], including the empty set [0], and injective braids.
Braided monoidal structure

The category B has a strict monoidal structure where the tensor product of [m] and [n] is [m 4+ n] and on
morphisms it is given by concatenation of injective braids. But we may have to slant the latter map as

seen in the illustration:
%

The braiding [m] ® [n] — [n] ® [m] is given by moving the first m strings over the n strings preserving the
order in m and n respectively. To the left there is an illustration of the braiding [2] ® [4] — [4] ® [2], and
to the right an illustration of the naturality of the braiding.
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The first thing we want to do is to see if the homotopy colimit of a commutative B-space monoid has
an action of a Cy operad. If that works out we want to find a model structure on the subcategory of
commutative monoids in the category of injective braid spaces. Hopefully we will be able to show that the
associated homotopy category is equivalent to the homotopy category of Cy-spaces. A connected Cs-space
is weakly equivalent to a double loop space [M72, theorem 1.3].

References

[Ber] C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space,

Higher homotopy structures in topology and mathematical physics, (1999), S. 49-67.

[Bir] J. S. Birman, Braids, links, and mapping class groups,
Annals of Mathematics Studies, Princeton university press, 82, (1975).
[F] Z. Fiedorowicz, The symmetric bar construction,
Preprint.
(M72] J. P. May, The geometry of iterated loop spaces,
Lecture Notes in Mathematics, 271, Springer Verlag, (1972).
M74] J. P. May, E., spaces, group completions, and permutative categories.,
New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), pp. 61-93.
London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, (1974).
[S] C. Schlichtkrull, Thom spectra that are symmetric spectra,

Documenta Mathematica, 14, (2009), S. 699-748.

Advisor: C. Schlichtkrull




