Fock Spaces

Part 1

Julia Singer Universität Bonn singer@math.uni-bonn.de

"From Field Theories to Elliptic Objects" Winterschule Schloss Mickeln März 2006

FOCK SPACES (1)

Overview

- ▷ Motivation from physics: Several identical particles
- ▷ Describing a system of fermions
- Creation and annihilation operators
- ▷ The Clifford algebra action
- \triangleright Lagrangians and algebraic Fock spaces
- ▷ The Segal-Shale equivalence criterion
- ▷ Orientations
- ▷ Functoriality

Motivation from physics: Several identical particles

Assumption: the state of one particle is given by an element in a Hilbert space \mathcal{H} .

Aim: Description of systems consisting of several identical, non-interacting particles.

Fermions are a class of particles (e.g. including electrons ©, protons **e**) with the following properties:

 \triangleright Particles of the same sort are indistinguishable.

 \triangleright No two particles can be in the same state.

Winterschule Schloss Mickeln

Seite 3

FOCK SPACES (1)

Describing a system of fermions

- \triangleright Description of a system of k particles: specify an element of $\mathcal H$ for each particle.
- $\triangleright \ \ \text{States can be entangled} \Rightarrow \text{more accurate description is given by}$ $\mathcal{H} \otimes \mathcal{H} \otimes \cdots \otimes \mathcal{H}.$
- \triangleright By the properties above, $v \otimes v = 0$ for all $v \in \mathcal{H}$, hence we get $\Lambda^k \mathcal{H}$.
- ▷ Interpretation of $v_1 \land v_2 \land \cdots \land v_k \in \mathcal{H}$ as k particles occupying the states v_1, \ldots, v_k .
- $\triangleright\,$ For an unknown number of identical fermions: elements of the exterior algebra $\Lambda {\cal H}.$

This vector space will become the (algebraic) **Fock space**.

Creation and annihilation

On $\Lambda \mathcal{H}$, we have the operations of creation and annihilation of particles:

 \triangleright For each $v \in \mathcal{H}$: Creation operator (also denoted by v), given by

$$v(\xi) = v \wedge \xi$$

for $\xi \in \Lambda H$.

"Create a particle in the state v"

 \triangleright Annihilation operator D_v for each $v \in \mathcal{H}$ (here: norm 1), given by

$$D_v(v \wedge w_1 \wedge w_2 \wedge \dots \wedge w_n) = w_1 \wedge w_2 \wedge \dots \wedge w_n$$

if all $w_i \perp v$.

The unit $1\in\Lambda\mathcal{H}$ is called the vacuum state.

1. März 2006

Winterschule Schloss Mickeln

- - - - - -

Seite 5

FOCK SPACES (1)

Creation and annihilation algebras

Algebra generated by **creation** operators: Exterior algebra $\Lambda \mathcal{H}$, acting on the Fock space by left multiplication.

Definition of the **annihilation** operator D_w for $w \in \mathcal{H}$ on the exterior algebra:

 $\triangleright v \in \mathcal{H} = \Lambda^1 \mathcal{H} \Rightarrow D_w(v) = \langle w, v \rangle \cdot 1 \in \Lambda^0 \mathcal{H}.$

 $\triangleright \xi, \eta \in \Lambda \mathcal{H} \Rightarrow D_w(\xi \wedge \eta) = D_w(\xi) \wedge \eta + (-1)^{|\xi|} \xi \wedge D_w(\eta).$ (graded derivation)

In the complex case: conjugate \mathbb{C} -action

Relations between annihilation operators: $D_v D_v = 0$ and $D_w D_v + D_v D_w = 0$

The annihilation operators also generate an exterior algebra $(\Lambda \overline{\mathcal{H}})^{op}$.

(" $D_v D_w$ annihilates $w \wedge v$ ")

The Clifford algebra action on $\Lambda \mathcal{H}$

Combining the creation and annihilation operators into one algebra acting on $\Lambda \mathcal H$

Denote by

- $\triangleright \overline{\mathcal{H}}$ the vector space of annihilation operators D_w (from now on also written as \overline{w})
- $\triangleright \ \alpha : \mathcal{H} \oplus \overline{\mathcal{H}} \to \mathcal{H} \oplus \overline{\mathcal{H}}$ the isometric involution given on \mathcal{H} by $v \mapsto \overline{v}$.

Let *b* be the symmetric bilinear form on $V = \mathcal{H} \oplus \overline{\mathcal{H}}$ given by

$$b(x, y) = \langle \alpha(x), y \rangle.$$

Proposition The creation and annihilation operators define an action of the Clifford algebra $\mathcal{C}(V)$ (with respect to the bilinear form *b*) on the Fock space $\Lambda \mathcal{H}$.

März	2006
	März

Winterschule Schloss Mickeln

Seite 7

FOCK SPACES (1)

Proof of the Proposition

 \mathcal{H} and $\overline{\mathcal{H}}$ are isotropic with respect to $b \Rightarrow$ they generate the exterior algebras $\Lambda \mathcal{H}$ and $\Lambda \overline{\mathcal{H}}^{op}$.

Relations between creation and annihilation operators

Let $v, w \in \mathcal{H}$. Write any element of $\Lambda \mathcal{H}$ as a sum of elements of the form $x \wedge w_1 \wedge \cdots \wedge w_k$ with $w_i \perp v$.

 \Rightarrow enough to check relations on these. Let $\xi = w_1 \wedge \cdots \wedge w_k$.

Then we get

$$(D_v w + w D_v)(x \wedge \xi)$$

$$= D_v (w \wedge x \wedge \xi) + w \wedge \langle v, x \rangle \xi$$

$$= D_v (-x \wedge w \wedge \xi) + \langle v, x \rangle w \wedge \xi$$

$$= -\langle v, x \rangle w \wedge \xi + x D_v (w) \wedge \xi + \langle v, x \rangle w \wedge \xi$$

$$= \langle v, w \rangle x \wedge \xi.$$

This implies the relation

$$\overline{v}w + w\overline{v} = D_v w + wD_v$$
$$= \langle v, w \rangle = \langle \alpha(\overline{v}), w \rangle = b(\overline{v}, w).$$

1. März 2006

Winterschule Schloss Mickeln

Seite 9

FOCK SPACES (1)

Lagrangians and algebraic Fock spaces

Definition Let V be a Hilbert space with isometric involution α ($\alpha(v) = \overline{v}$, \mathbb{C} -antilinear in the complex case), $b(v, w) = \langle \alpha(v), w \rangle$. A **Lagrangian** of V is a closed subspace L which is isotropic with respect to b and for which $L \oplus \overline{L} = V$.

Example For $V = \mathcal{H} \oplus \overline{\mathcal{H}}$, the subspace \mathcal{H} is Lagrangian.

Constructing algebraic Fock spaces from these data:

Definition For a Hilbert space V with involution α and a choice of Lagrangian L, the associated algebraic Fock space is the $\mathcal{C}\ell(V)$ -module $F_{alg}(L) = \Lambda L$.

Graded modules

 $\triangleright \mathcal{C}(V)$ is \mathbb{F}_2 -graded

 \triangleright Decompose $\Lambda(L)$ as

$$\Lambda L = \bigoplus_{n \text{ even}} \Lambda^n L \oplus \bigoplus_{n \text{ odd}} \Lambda^n L$$

 $Descript{\mathbb{F}}_2$ -grading on the Fock space

Compatibility $\Rightarrow F_{alg}(L)$ becomes a graded module over $\mathcal{C}\ell(V)$.

1. März 2006

Winterschule Schloss Mickeln

Seite 11

FOCK SPACES (1)

Properties of Clifford algebras

- ▷ For a Hilbert space V with isometric involution α , denote by -V the same space equipped with the involution $-\alpha$.
- \triangleright Convention: if no involution is specified, always assume $\alpha = id$.

Natural isomorphisms:

$$\triangleright \ \mathcal{C}\ell(V \oplus W) = \mathcal{C}\ell(V) \otimes \mathcal{C}\ell(W)$$
 (graded tensor product)

$$\rhd \ \mathcal{C}\ell(-V) = \mathcal{C}\ell(V)^{op}$$

A $\mathcal{C}\ell(V\oplus(-W))$ -module structure can also be viewed as a $\mathcal{C}\ell(V) - \mathcal{C}\ell(W)$ -bimodule structure.

Inner product and completion

For a Hilbert space V, define an inner product on $\Lambda^k V$ by

$$\langle v_1 \wedge v_2 \wedge \cdots \wedge v_k, w_1 \wedge w_2 \wedge \cdots \wedge w_k \rangle = \det(\langle v_i, w_j \rangle).$$

Remark Creation and annihilation are adjoint:

$$w \in \mathcal{H}, \ \eta, \xi \in F_{alg}(L) \Rightarrow \langle D_w(\xi), \eta \rangle = \langle \xi, w \land \eta \rangle.$$

The fermionic Fock space is the completion of the algebraic Fock space with respect to this inner product.

1. März 2006

Winterschule Schloss Mickeln

Seite 13

FOCK SPACES (1)

The Segal-Shale equivalence criterion

Changing the Lagrangian

Let V be a Hilbert space with orthonormal basis $\{e_i\}$, and $\phi: V \to W$ an operator into a second Hilbert space W.

Recall: ϕ is called **Hilbert-Schmidt** if

$$\sum_{i} \|\phi(e_i)\|^2 < \infty.$$

Theorem (Segal-Shale) Let L and L' be two Lagrangians of V. The corresponding Fock spaces F(L) and F(L') are isomorphic if and only if the composition $L' \to V \to \overline{L}$ is a Hilbert-Schmidt operator. The grading is preserved if and only if $\dim(\overline{L} \cap L')$ is even.

FOCK SPACES (1)

The finite-dimensional case

Proposition Let *V* be an *n*-dimensional real inner product space. Then there is a bijection between the set of linear isometries $f : \mathbb{R}^n \to V$ and the set \mathcal{L} of Lagrangian subspaces of $V \oplus (-\mathbb{R}^n)$, given by $f \mapsto \Gamma_f$ (the graph of f).

Proof (isotropic) Let $v, w \in \mathbb{R}^n$; then

$$b(v + f(v), w + f(w)) = \langle -v + f(v), w + f(w) \rangle$$
$$= \langle -v, w \rangle + \langle f(v), f(w) \rangle = 0$$

With the usual topology on both sets, the bijection becomes a homeomorphism.

1. März 2006	Winterschule Schloss Mickeln	Seite 15

Orientations

- ▷ Linear isometries $f : \mathbb{R}^n \to V$ correspond to elements of O(n); connected components of O(n) to orientations of V.
- \triangleright Application of π_0 to the homeomorphism above \Rightarrow

Orientations of $V \cong \pi_0(\mathcal{L})$.

- ▷ **Fact**: In the finite-dimensional case, any irreducible module over $C\ell(V \oplus (-\mathbb{R}^n))$ is isomorphic to some Fock space.
- Segal-Shale for finite-dimensional spaces: Any operator is Hilbert-Schmidt, hence all irreducible modules are isomorphic.
- ▷ Isomorphism classes of *graded* irreducible modules over $\mathcal{C}\ell(V \oplus (-\mathbb{R}^n))$ correspond to orientations of *V*.

Functoriality

In which sense are the constructions $V \mapsto \mathcal{C}\ell(V)$ and $L \mapsto F_{alg}(L)$ functorial?

Let $\ensuremath{\mathcal{C}}$ be the category with

 \triangleright objects (V, α) (Hilbert spaces with isometric involution)

 \triangleright morphisms $\mathcal{C}(V, V')$ given by the set of Lagrangians of $V' \oplus (-V)$.

Composition of morphisms $L_1 \subset V_2 \oplus (-V_1)$ and $L_2 \subset V_3 \oplus (-V_2)$: Let

$$L_{3} = (L_{2} \oplus L_{1}) \cap U^{\perp} / (L_{2} \oplus L_{1}) \cap U \subset (V_{3} \oplus -V_{2} \oplus V_{2} \oplus -V_{1}) \cap U^{\perp} / U,$$

where $U = \{0, v_2, v_2, 0\}$ and U^{\perp} is the annihilator with respect to *b*.

For trivial involutions:

$$L_3 = \{ v_3 + v_1 \in V_3 \oplus (-V_1) \mid \exists v_2 \in V_2 : v_3 + v_2 \in L_2 \\ \land v_2 + v_1 \in L_1 \}.$$

1	März	2006
	IVICI Z	2000

Winterschule Schloss Mickeln

Seite 17

FOCK SPACES (1)

Let \mathcal{D} be the category of graded algebras with morphism sets $\mathcal{D}(A, B)$ given by pointed graded B - A-bimodules.

Composition of morphisms $(M, m_0) \in \mathcal{D}(A, B), (N, n_0) \in \mathcal{D}(B, C)$: given by the pointed C - A-bimodule $(M \otimes_B N, m_0 \otimes n_0)$.

Associate

 \triangleright $(V, \alpha) \mapsto \mathcal{C}\ell(V)$ on objects,

 $\triangleright (L \subset V' \oplus (-V)) \mapsto F_{alg}(L)$ on morphisms.

In special cases, this gives a functor $\mathcal{C} \to \mathcal{D}$:

Proposition If $L_1 \in C(V_1, V_2)$ and $L_2 \in C(V_2, V_3)$ and if the von Neumann-algebra generated by $\mathcal{C}(V_2)$ in B(F(L)) is of type I, i.e. the algebra of bounded operators on some Hilbert space, then we have

$$F_{alg}(L_1) \otimes_{\mathcal{C}\ell(V_2)} F_{alg}(L_2) \cong F_{alg}(L_3),$$

under the assumption that $L_i \cap V_j = 0$

Generalised Lagrangians

Let V be a Hilbert space with involution.

Definition A generalised Lagrangian of V is a homomorphism $L: W \to V$ with

- $\triangleright \dim \ker(L) < \infty$
- \triangleright such that the closure \overline{L}_W of im(L) is a Lagrangian of V.

Associated algebraic Fock space:

$$F_{alg}(L) = \Lambda^{top}(\ker L)^* \otimes \Lambda(\overline{L}_W).$$

 $\triangleright (\ker L)^*$ dual space; $top = \dim(\ker L)$

 $\triangleright \mathcal{C}\ell(V)$ -action on the second factor.

1. März 2006

Winterschule Schloss Mickeln

Seite 19

FOCK SPACES (1)

Some points to remember

- \triangleright Lagrangian subspace of (V, α) : $L \oplus \alpha(L) = V$ and $b|_{V \times V} = 0$
- ▷ Algebraic Fock space associated to a Lagrangian *L*: ΛL with action of the Clifford algebra $\mathcal{C}\ell(V)$, induced by creation and annihilation operations
- Dash Fock space: given by completing ΛL
- ▷ Isomorphism classes of graded $\mathcal{C}\ell(V) \mathcal{C}\ell_n$ -bimodules correspond to orientations of *V*.
- ▷ In special cases: functoriality

1. März 2006

Problem session

Exercise 1 (One possible state). Suppose that $\mathcal{H} = \mathbb{R}$ is the Hilbert space describing a system of one particle and only one possible state s. Then the corresponding Fock space $\mathcal{H} = \Lambda^0 \mathcal{H} \oplus \Lambda^1 \mathcal{H}$ is two-dimensional with basis $\{1, s\}$. By writing the creation and annihilation operators as matrices with respect to this basis, it is easy to see that they generate the whole endomorphism algebra $\operatorname{End}_{\mathbb{R}}(\Lambda \mathcal{H})$.

Exercise 2. This holds more generally: Let \mathcal{H} be an *n*-dimensional Hilbert space. Then $\mathcal{C}(\mathcal{H} \oplus \overline{\mathcal{H}}) \cong \operatorname{End}(\Lambda \mathcal{H})$.

Solution. Let $\{e_1, e_2, \ldots, e_n\}$ be an orthonormal basis for \mathcal{H} . Denote the annihilation operators corresponding to e_i by D_{e_i} and choose the set of all elements $e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_r}$ with $0 < r \leq n$ and $i_1 < i_2 < \cdots < i_r$ as a basis for the Fock space.

Comparison of the dimensions yields 2^{2n} for both algebras, hence it is enough to show that for each two basis elements $x = e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_r}$ and $y = e_{j_1} \wedge \cdots \wedge e_{j_s}$, we can find an operator mapping x to y and all other basis elements to 0. An operator satisfying these conditions (up to a sign) is given by the composition

$$e_{j_1} \circ \cdots \circ e_{j_s} \circ D_{e_1} \circ \cdots \circ D_{e_n} \circ e_{k_1} \circ \cdots \circ e_{k_{n-r}}$$

where $e_{k_1}, \ldots, e_{k_{n-r}}$ denote the elements not occurring in x.