Dirac Operators

NAME : Maria Castillo Pérez

Universität Bonn

Winter School: From Field theories to elliptic Objects

Schloss Mickeln, Düsseldorf

March 1st 2006

1. Connection form and covariant derivative
2. Connection 1-form
3. The spinorial Levi-Civita Connection
4. Dirac Operator
5. Index of Dirac operator

1 The connection form and the covariant derivative

We begin by briefly recalling some facts from the theory of connections.
Definition 1.1. Let (E, π, M) be a vector bundle, let M be a manifold. A covariant derivative is a linear map

$$
\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)
$$

which satisfies the Leibniz rule:

$$
\nabla(f \Psi)=d f \otimes \Psi+f \nabla \Psi
$$

$\forall \in C^{\infty}(M)$ and for all $\Psi \in \Gamma(E)$.
Remark 1.2. If we take a vector field $X \in \Gamma(T M)$ and evaluate $\nabla_{X} \Psi$ at $x \in M$ then $\left(\nabla_{X} \Psi\right)(x)$ only depends on the vector X_{x} and the values of Ψ in an arbitrary small neigbourhood of x.

Definition 1.3. Let (P, π, M) be a G-principal bundle (G Lie group). For any point $p \in P$ there exists a canonical injection:

$$
z \longmapsto \bar{z}=\left.\frac{d}{d t}\right|_{t=0}(p \exp (t z))
$$

where \mathcal{G} is the Lie algebra of G. Its image is called the vertical space V_{p} and is the tangent space to the fiber $\pi^{-1}(p)\left(i . e V_{p}=\operatorname{Ker}\left(\pi_{*}\right)\right)$.

Definition 1.4. Let (P, π, M) be a G-principal bundle. A connection on P is a G-invarian field of tangent n-planes (i.e $H_{p g}=\left(R_{g}\right)_{*}\left(H_{p}\right)$, where $R_{g}: P \rightarrow P, p \longmapsto p g$), such that:

$$
T_{p} P=H_{p} \oplus V_{p} \text { (} H_{p} \text { horizontal subspace }=\text { complement of } V_{p} \text { on } T_{p} P
$$

The projection π induces an isomorphism

$$
\left.\pi_{*}\right|_{H_{p}}: H_{p} \rightarrow T_{\pi(p)} M .
$$

Remark 1.5. G-invariant states that H_{p} and $H_{p g}$ on the same fiber are related by $R_{g *}$.

2 The connection one-form

In practical computations, we need to separate $T_{p} P$ into V_{p} and H_{p} in a systematic way. This can be achieved by introducing a Lie-algebra valued one form $\omega \in \mathcal{G} \otimes T^{*} P$ called the connection form.

Definition 2.1. A connection one-form $\omega \in \mathcal{G} \otimes T^{*} P$ is a projection of $T_{p} P$ onto the vertical component V_{p}. The projection property is summarised by the following requirements:

1. $\omega_{p}(\bar{z})=z, \quad \bar{z}$ as before
2. $R_{g}^{*} \omega=\operatorname{Ad}\left(g^{-1} \omega\right.$, i.e

$$
\text { for all } X \in \Gamma(T P) \omega\left(R_{g}\right)_{*} X=A d\left(g^{-1}\right) \omega(X)
$$

$A d: G \rightarrow \operatorname{End}(\mathcal{G}), \quad g \longmapsto d \alpha_{g}$, and $\alpha_{g}: G \rightarrow G, a \longmapsto g a g^{-1}$.
Define the horizontal subspace $H_{p}:=\operatorname{Ker} \omega_{p}$, then it defines a connection.
For a connection one-form ω on a G-principal fibre bundle (P, π, M), we define a covariant derivative on every associated vector bundle $E=P \times_{\rho} \Sigma$ as follows:
Take a section $\Psi \in \Gamma(E)$, which is locally given by $\Psi=[s, \sigma]$, where $s \in \Gamma_{U}(P)$ is a local section on $U \subset M$ and $\sigma: U \rightarrow \Sigma$ is a function. Since

$$
T U \xrightarrow{s_{*}} T P \xrightarrow{\omega} \mathcal{G} \xrightarrow{\rho_{*}} \operatorname{End}(\Sigma)
$$

we can define a covarian derivative on E by:

$$
\nabla_{X} \Psi:=\left[s, X_{\sigma}+\rho_{*}\left(\left(\omega \circ s_{*}\right)(X)\right) \sigma\right]
$$

for any $X \in T U$, where X_{σ} denotes the Lie derivative of σ in the direction of X.

3 The spinorial Levi-Civita connection

Notation

1. M denotes an n-dimensional Riemannian manifold with metric g.
2. $S O M=S O_{n}$-principal fibre bundle=natural fibre bundle of an oriented Riemannian manifold.
3. $(\operatorname{Spin} M, \eta)=$ spin structure on M.
4. $\Sigma M=\operatorname{Spin} M \times{ }_{\rho} \Sigma_{n}=$ Complex spinor bundle associated to a spin structure SpinM of M.

Take a simply connected open subset $U \subset M$. Then any local section $s \in \Gamma_{U}(S O M)$ lifts to a section $\bar{s} \in \Gamma_{U}(\operatorname{Spin} M)$, i.e,

and we can define a connection one-form $\bar{\omega}$ on SpinM as the unique connection one-form for which the following diagram commutes:

where $\mathfrak{s p i n}_{n}$ denotes the Lie algebra of Spin_{n} and $\mathfrak{s o}_{m}$ denotes the Lie algebra of $S O_{n}$, which is the space of real skew-symmetric matrices. Hence a one-form can be considered as an $n \times n$ matrix of one-forms $\omega=\left(\left(\omega_{i j}\right)\right), \omega_{i j}=-\omega_{j i}$.
To get a local description of the associated covarian derivative ∇ on ΣM, take an orthonormal frame $s=\left(e_{1}, \ldots, e_{n}\right) \in \Gamma_{U}(S O M) U \subset M$, and denote by:

$$
\omega:=s^{*} \omega=-\sum_{i<j} \omega_{i j} e_{i} \wedge e_{j}
$$

where $e_{i} \wedge e_{j}:=g\left(e_{i},.\right) e_{j}-g\left(e_{j},.\right) e_{i}$ is a basis of $\mathfrak{s o}_{n}$. We then get

$$
\omega_{i j}(X)=-g\left(\omega(X) e_{i}, e_{j}\right)=-g\left(\nabla_{X} e_{i}, e_{j}\right)
$$

for all $X \in \Gamma(T M)$.

4 Dirac Operator

In the following we wil often use a local orthonormal frame denoted by $s=\left(e_{1}, \ldots, e_{n}\right) \in$ $\Gamma_{u}(S O M), U \subset M$, which yields the relation

$$
e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=-2 \delta_{i j} 1 \leq i, j \leq n
$$

In talk number 4, we have seen that associated to a spin structure of a Riemannian manifold (M^{n}, g), there are three essential structures:

1. The spinor bundle $\Sigma M=\operatorname{Spin} M \otimes_{\rho} \Sigma_{n}$, with the Clifford multiplication

$$
m: \quad T M \otimes \Sigma M \longrightarrow \Sigma M
$$

$$
X \otimes \Psi \longmapsto X . \Psi:=\rho(X) \Psi,
$$

where ρ is the spinor representation. This multiplication extends to $m: \quad \bigwedge^{p}(T M) \otimes \Sigma M \longrightarrow \Sigma M$

$$
\alpha \quad \otimes \quad \Psi \quad \longmapsto \quad \sum_{1 \leq i_{1}<\cdots<i_{p} \leq n} \alpha_{i_{1} \ldots i_{p}} e_{i_{1}} \ldots e_{i_{p}} \cdot \Psi
$$

where locally

$$
\alpha=\sum_{1 \leq i_{1}<\cdots<i_{p} \leq n} e_{i_{1}}^{*} \wedge \cdots \wedge e_{i_{p}}^{*}
$$

and $e_{i}^{*}=g\left(e_{i},.\right)$ is the dual basis of e_{i}.
2. The natural Hermitian product (.,.) on sections of ΣM.
3. The Levi-Civita connection on ΣM.

Moreover, these structures satisfy the following compatibility conditions:

1. $(X . \Psi, \phi)+(\Psi, X . \phi)=0$
2. $X(\Psi, \phi)-\left(\nabla_{X} \Psi, \phi\right)-\left(\Psi, \nabla_{X \phi}\right)=0$
3. $\nabla_{X}(Y . \Psi)-\nabla_{X} Y . \Psi-Y . \nabla_{X} \Psi=0$
for all $X, Y \in \Gamma(T M), \Psi, \phi \in \Gamma(\Sigma M)$.
Definition 4.1. The Dirac operator is the composition of tha covariant derivative acting on sections of ΣM with the Clifford multiplication

$$
D:=m \circ \nabla .
$$

Locally, we get:

$$
\begin{array}{r}
D: \quad \Gamma(\Sigma M) \longrightarrow{ }^{\nabla} \Gamma\left(T^{*}(M \otimes \Sigma M) \xrightarrow{m} \Gamma(\Sigma M)\right. \\
\Psi \longmapsto \sum_{i=1}^{n} e_{i}^{*} \otimes \nabla_{e_{i}} \Psi \longmapsto \sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}} \Psi
\end{array}
$$

Lemma 4.2. The commutator of the Dirac operator with the action, by pointwise multiplication on the spinor bundle, of a function $f: M \rightarrow \mathbb{C}$, is given by:

$$
[D, f] \Psi:=d f . \Psi, \quad \Psi \in \Gamma(\Sigma M)
$$

Proof A locally calculation shows that:

$$
\begin{aligned}
{[D, f] \Psi } & =(D f-f D) \Psi=\sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}}(f \Psi)-f D \Psi \\
& =\sum_{i=1}^{n} d f\left(e_{i}\right) e_{i} \cdot \Psi+f D \Psi-f D \Psi \\
& =d f . \Psi
\end{aligned}
$$

Lemma 4.3. The Dirac operator is a first order partial differential operator which is

1. elliptic (i.e for all $\xi \in T^{*} M-\{0\}, \quad \sigma_{\xi}(D): \Sigma_{x} M \rightarrow \Sigma_{x} M, \quad \sigma_{\xi}(D)(\Psi(x)):=\xi . \Psi(x)$ (Clifford multiplication by ξ.) is an isomorphism. $(\sigma(D)$ is called principal symbol.
2. and formally self-adjoint with respect to

$$
(., .)_{L^{2}}:=\int_{M}(., .) \nu_{g}
$$

if M is compact, and where ν_{g} denotes the volumen element.

sketch of the proof:

1. $\sigma_{\xi}(D): \Sigma_{x} M \rightarrow \Sigma_{x} M$ is an isomorphism $\xi \cdot \Psi=0 \longrightarrow \xi \cdot \xi \cdot \Psi=0 \longleftrightarrow-\|\xi\|^{2} \Psi=$ $0 \longleftrightarrow \Psi=0$
2. To show D is self-adjoint choose normal coordinates at $x \in M$ i.e $\left(\nabla_{e_{i}} e_{j}\right)(x)=0$ $1 \leq i, j, \leq n$, and compute ($D \Psi, \varphi$).Now, use the following :

$$
X(\Psi, \varphi)-\left(\nabla_{X} \Psi, \varphi\right)-\left(\Psi, \nabla_{X} \varphi\right)=0
$$

to show that:

$$
(D \Psi, \varphi)=\left.\right|_{x}-\sum_{i=1}^{n} e_{i}\left(\Psi, e_{i} \cdot \varphi\right)+(\Psi, D \varphi)
$$

Finally prove that: $(D \psi, \varphi)=-\operatorname{div} X_{1}-\operatorname{idiv} X_{2}+(\Psi, D \varphi)$, this last equation does not depend on the choice of coordinates, so

$$
\int_{m}(D \Psi, \varphi) \nu_{g}=\int_{M}(\varphi, D \Psi) \nu_{g}
$$

since $\partial M=\emptyset$.
Lemma 4.4. For $n=2 m$
1.

$$
D: \Gamma\left(\Sigma^{ \pm} M\right) \rightarrow \Gamma\left(\Sigma^{\mp} M\right),
$$

i.e the Dirac operator sends positive spinors into negative spinors.
2. The eigenvalues of D are symmetric with respect to the origin.

Examples: Dirac Operator

1. Let $M=\mathbb{R}^{n}, \Sigma \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{C}^{N}$, with $N=2^{\left[\frac{n}{2}\right]}$. This implies that every spinor $\Psi \in \Gamma\left(\Sigma \mathbb{R}^{n}\right)$ is a function $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{C}^{N}$. The, the Dirac operator is given by:

$$
D=\sum_{i=1}^{n} e_{i} \cdot \partial_{i}
$$

which acts on differential maps from \mathbb{R}^{n} to \mathbb{C}^{n}, where $\partial_{i}=\nabla_{e_{i}}$.
2. Let $n=2$, and $M=\mathbb{R}^{2}$. Let $\mathbb{C l}_{2}$ be the complexification of the Clifford real algebra $C l_{n}$, which is isomorphic to the group of 2×2 matrices. Then $\Sigma_{2}=\Sigma_{2}^{+} \otimes \Sigma_{2}^{-}=\mathbb{C} \oplus \mathbb{C}$, where $\Sigma_{2}^{+}=\operatorname{span}_{\mathbb{C}}\left(e_{1}+i e_{2}\right)$ and $\Sigma_{2}^{-}=\operatorname{span}_{\mathbb{C}}\left(1-e_{1} \cdot e_{2}\right)$. Then $\Psi \in \Gamma(\Sigma M)$ is given by complex functions

$$
\Psi=f\left(e_{1}+i e_{2}\right)+g\left(1-i e_{1} \cdot e_{2}\right)
$$

The Dirac operator is given by:

$$
\begin{aligned}
D \Psi & =\left(e_{1} \cdot \partial_{1}+e_{2} \cdot \partial_{2}\right)\left[\left(e_{1}+i e_{2}\right) f+\left(1-i e_{1} \cdot e_{2}\right) g\right] \\
& =-\left(\partial_{1}+i \partial_{2}\right) f\left(1-i e_{1} \cdot e_{2}\right)+\left(\partial_{1}-i \partial_{2}\right) g\left(e_{1}+i e_{2}\right) \\
& =2\left(-\partial_{\bar{z}} f\left(1-e_{1} \cdot e_{2}\right)+\partial_{z} g\left(e_{1}+i e_{2}\right)\right),
\end{aligned}
$$

where $\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{1}+i \partial_{2}\right)$ and $\partial_{z}=\frac{1}{2}\left(\partial_{1}-i \partial_{2}\right)$. That is

$$
\left(\begin{array}{cc}
0 & 2 \partial_{z} \\
& \\
-2 \partial_{\bar{z}} & 0
\end{array}\right)
$$

in the basis $\left\{\left(e_{1}+i e_{2}\right),\left(1-i e_{1} . e_{2}\right)\right\}$ of Σ_{2}. Hence the Dirac operator D can be considered as a generalization of the Cauchy Riemann operator.

5 Spin structures on conformal manifolds

Let Σ be a d-dimensional manifold, let $k \in \mathbb{R}$. Let $L^{k} \rightarrow \Sigma$ be an oriented real line bundle which fiber over $x \in \Sigma$ consists of all maps $\rho: \bigwedge^{d}\left(T_{x} \Sigma\right) \rightarrow \mathbb{R}$, such that, $\rho(\lambda \omega)=\left(|\lambda|^{\frac{k}{d}} \rho(\omega)\right)$ for all $\lambda \in \mathbb{R}$. Sections of L^{d} are refered to as densities (weights). They can be integrated over Σ resulting in a real number.
From now, Σ is assumed to be equipped with a conformal strcuture (i.e an equivalence class of Riemannian metrics, where we identify a metric obtained by multiplication by a function with the original metric).

Remark 5.1. For any $k \neq 0$ the choice of a metric in the conformal class corresponds to the choice of a positive section L^{k}. Moreover, the conformal structure on Σ induces a canonical Riemannian metric on the weightless cotangent bundle $T_{0}^{*} \Sigma:=L^{-1} \otimes T^{*} \Sigma$.

The metric on $T_{0}^{*} \Sigma$ is defined as follows: Let $\sigma \in \Gamma\left(\Sigma, T^{*} \Sigma\right)$ and let $\rho \in \Gamma\left(\Sigma, L^{-1}\right)$. Then $\sigma \otimes \rho \in \Gamma\left(T_{0}^{*} \Sigma\right)$, hence we define a metric on $T_{0}^{*} \Sigma$ as:

$$
\|\sigma \otimes \rho\|_{[g]}:=\rho\left(\text { Vol }_{g}\right) \cdot\|\sigma\|_{g} .
$$

It is well defined for a conformal class, because:

$$
\begin{aligned}
& \text { If } g^{\prime}=f g \text { then } \\
& \begin{aligned}
\rho\left(\text { Vol }_{g^{\prime}}\right) \cdot\|\sigma\|_{g^{\prime}} & =\frac{1}{(\|f\|)^{\frac{1}{2}}} \rho\left(\text { Vol }_{g}\right) \cdot(\|f\|)^{\frac{1}{2}}\|\sigma\|_{g} \\
& =\rho\left(\text { Vol }_{g}\right) \cdot\|\sigma\|_{g}
\end{aligned}
\end{aligned}
$$

Definition 5.2. A spin structure on a conformal d-manifold Σ is by definition a spin structure on the Riemannian vector bundle $T_{0}^{*} \Sigma$.

Let Σ^{d} be a conformal spin manifold. Picking a Riemannian metric in the conformal class determines the Levi-Civita connection on the tangent bundle of Σ, which in turn determines connections on the spinor bundle $S=S\left(T_{0}^{*} \Sigma\right)$, the line bundles L^{k} and hence $L^{k} \otimes S$ for all $k \in \mathbb{R}$.

Definition 5.3. The Dirac operator on weighted spinor bundle $D=D_{\Sigma}$ is the composition:

$$
D: C^{\infty}\left(\Sigma ; L^{k} \otimes S\right) \longrightarrow \quad \nabla C^{\infty}\left(\Sigma ; T^{*} \Sigma \otimes L^{k} \otimes S\right)=C^{\infty}\left(\Sigma ; L^{k+1} \otimes T_{0}^{*} \Sigma \otimes S\right)
$$

$$
\xrightarrow{c} \quad C^{\infty}\left(\Sigma ; L^{k+1} \otimes S\right)
$$

where c is the Clifford multiplication (given by the left action of $T_{0}^{*} \Sigma \subset c\left(T_{0}^{*} \Sigma\right)$ on S.) ∇ is the connection on $L^{k} \otimes S$.

Remark 5.4. For $k=\frac{d-1}{2}$, the Dirac operator is independent of the choice of the Riemannian metric. See [1]

Let Σ^{d} be a conformal spin manifold with boundary Y. Assume that the bundle ξ extends to a vector bundle with metric an connection on Σ. We denote it again by ξ and let $\partial \xi$ its restriction to Y. Let S be the spinor bundle of Σ an recall that the restiction of S^{+}to Y is the spinor bundle of Y.

Definition 5.5. The twisted Dirac operator is the composition:

$$
\begin{aligned}
D_{\xi}: C^{\infty}\left(\Sigma ; L^{\frac{d-1}{2}} \otimes S \otimes \xi\right) \longrightarrow & C^{\infty}\left(\Sigma ; T^{*} \Sigma \otimes L^{\frac{d-1}{2}} \otimes S \otimes \xi\right) \\
& =C^{\infty}\left(\Sigma ; L^{L^{2}+1} \otimes T_{0}^{*} \Sigma \otimes S \otimes \xi\right) \\
\longrightarrow \quad{ }^{c} & C^{\infty}\left(\Sigma ; L^{\frac{d+1}{2}} \otimes S \otimes \xi\right)
\end{aligned}
$$

where ∇ is the connection on $L^{\frac{d-1}{2}} \otimes S \otimes \xi$ determined by the connection on ξ and the Levi-Civita connection on $L^{\frac{d-1}{2}} \otimes S$ for the choice of a metric given in the conformal class.

6 Index of Dirac operator

Fact: Over a compact manifold, the kernel and cokernel of an elliptic operator P are of finite dimension.

Definition 6.1. The index of P is definided as:

$$
\operatorname{indP}:=\operatorname{dim}(\operatorname{ker} P)-\operatorname{dim}(\operatorname{coker} P)
$$

Example: Let X be a compact Riemannian manifold of dimension $4 m$. Consider the complex spinor bundle $\mathbb{S}_{\mathbb{C}}$, with Dirac operator \mathbb{D}. We split $\mathbb{S}_{\mathbb{C}} \cong \mathbb{S}_{\mathbb{C}}^{+} \oplus \mathbb{S}_{\mathbb{C}}^{-}$, where $\mathbb{S}_{\mathbb{C}}^{ \pm}=\left(1 \pm \omega_{\mathbb{C}}\right) \mathbb{S}_{\mathbb{C}}$, with $\omega_{\mathbb{C}}$ the complex volume elelement, given in terms of a positive oriented tangent frame $\left(e_{1}, \ldots, e_{2 m}\right)$.

$$
\omega_{\mathbb{C}}=i^{m} e_{1} \ldots e_{2 m}
$$

This is a globally defined section of

$$
\mathbb{C l}(C)=C l(X) \otimes \mathbb{C},
$$

with properties:

1. $\nabla_{\omega_{\mathbb{C}}}=0$
2. $\omega_{\mathbb{C}}^{2}=1$
3. $\omega_{\mathbb{C}} e=-e \omega_{\mathbb{C}}$, for any $e \in T X$.

Theorem 6.2. Let X be a compact spin manifold of dimension $2 m$. Consider

$$
\not \mathbb{D}^{+}: \Gamma\left(\mathbb{S}_{\mathbb{C}}^{+}(X)\right) \rightarrow \Gamma\left(\mathbb{S}_{\mathbb{C}}^{-}(\mathbb{C})\right)
$$

Then

$$
\text { ind } \mathbb{D D}^{+}=\hat{A}(X) \text {. }
$$

More general: If E is any complex vector bundle over X, then index of

$$
\not D_{E}^{+}: \Gamma\left(\mathbb{S}_{\mathbb{C}}^{+}(X) \otimes E\right) \rightarrow \Gamma\left(\mathbb{S}_{\mathbb{C}}^{-}(X) \otimes E\right)
$$

is

$$
\operatorname{ind}\left(\mathbb{D}_{E}^{-}\right)=(\operatorname{chE} E \hat{\mathbf{A}})[X]
$$

Theorem 6.3. Let X be a compact oriented manifold of dimension $2 m$. Consider

$$
D^{+}: \Gamma\left(\mathbb{C} l^{+}(X)\right) \rightarrow \Gamma\left(\mathbb{C} l^{-}(X)\right)
$$

Then

$$
i n d D^{+}=L(X)=\operatorname{sig}(X)
$$

In general, if E is any complex vector bundle over X, then

$$
D_{E}^{+}: \Gamma\left(\mathbb{C} l^{+}(X) \otimes E\right) \rightarrow \Gamma\left(\mathbb{C} l^{-}(X) \otimes E\right)
$$

is given by:

$$
\operatorname{ind}\left(D_{E}^{+}\right)=\left(c h_{2} E \cdot L(X)\right)[X]
$$

where $c h_{2} E=\sum_{k} 2^{k} c h^{k} E$, and $c h^{k} E=\frac{1}{k!} \sum_{i=1}^{n} x_{i}^{n}$.

References

[1] D. Calderbank, Clifford analysis dor Dirac operators on manifolds with boundary. Max Planck Institute Preprint No. 13, 1996.
[2] . H.B. Lawson and M.-L Michelson: Spin Geometry. Princeton University Press (1989).
[3] S. Stolz and P. Teichner: What is an elliptic object? In Topology and Quantum Field Theory. Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of G. Seagal (U. Tillmann, editor), p.257-344, London Math. Society Lecture Note Series 308 (2004).

