Spin structures

Marc Siegmund

1. Clifford Algebras

Let V be a real (or complex) Hilbert space with an isometric involution

$$\alpha: V \to V$$

(C-anti linear in the complex case). Write $\bar{v} := \alpha(v)$. Then we get by

$$b(v,w) := \langle \bar{v}, w \rangle$$

a symmetric bilinear form on V.

Write -V for the Hilbert space furnished with the involution $-\alpha$.

Definition 1. The tensor algebra of V is

$$T(V) := \sum_{i=0}^{\infty} \bigotimes^{i} V.$$

Let $I_b(V)$ be the ideal in T(V) generated by all elements of the form

 $v \otimes v + b(v,v) \cdot 1$

for $v \in V$. We define then

$$Cl(V, b) := T(V)/I_b(V)$$

to be the Clifford algebra associative to V and b.

Remark 2.

- (1) There is a natural embedding $V \hookrightarrow Cl(V, b)$
- (2) We have

$$vw + wv = -2b(v, w) \cdot 1$$

for all $v, w \in V$.

Universal property of Cl(V, b):

Let $\tilde{f}: V \to A$ be linear with A an associative algebra with unit such that $\tilde{f}(v)\tilde{f}(v) = -b(v,v)\cdot 1$ for all $v \in V$. Then \tilde{f} extends uniquely to a homomorphism of algebras

$$f: Cl(V, b) \to A.$$

Examples 1.

- (1) $C_n := Cl(\mathbb{R}^n)$ generated by vectors $v \in \mathbb{R}^n$ subject to the relation $v \cdot v = -|v|^2 \cdot 1$
- (2) $C_{-n} := Cl(-\mathbb{R}^n)$ generated by vectors $v \in \mathbb{R}^n$ subject to the relation $v \cdot v = |v|^2 \cdot 1$
- (3) $C_{n,m} := Cl(\mathbb{R}^n \oplus -\mathbb{R}^m)$ generated by vectors $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$ subject to the relation $v \cdot v = -|v|^2 \cdot 1, w \cdot w = |w|^2 \cdot 1$ and vw + wv = 0.

Define now $\tilde{\varepsilon}: V \to Cl(V, b)$ by $\tilde{\varepsilon}(v) := -v$ and extend this map to the involution $\varepsilon: Cl(V, b) \to Cl(V, b)$. Then there is a decomposition

$$Cl(V,b) = Cl^0(V,b) \oplus Cl^1(V,b)$$

into the eigenspaces of ε , which makes Cl(V, b) to a \mathbb{Z}_2 -graded algebra. $Cl^0(V, b)$ is called the even part and is a subalgebra of Cl(V, b).

Remark 3.

a) $Cl(V \oplus W) \cong Cl(V) \hat{\otimes} Cl(W)$, where $\hat{\otimes}$ is the \mathbb{Z}_2 -graded tensor product:

$$(v \otimes w) \bullet (v' \otimes w') := (-1)^{|w||v'|} vv' \otimes ww'$$

for $v, v' \in Cl(V)$ and $w, w' \in Cl(W)$ with pure degree. b) $Cl(-V) \cong Cl(V)^{op}$, where $Cl(V)^{op}$ is the Clifford al-

gebra with the following new multiplication:

$$v_1 * v_2 := (-1)^{|v_1||v_2|} v_2 \cdot v_1$$

for $v_1, v_2 \in Cl(V)$ with pure degree.

Definition 4. A \mathbb{Z}_2 -graded module over Cl(V) is a module W with a decomposition $W = W^0 \oplus W^1$ such that

$$Cl^i(V) \cdot W^j \subseteq W^{i+j}$$

for $i, j \in \{0, 1\}$.

Any graded left $Cl(V) \hat{\otimes} Cl(W)$ -module M can be interpreted as a $Cl(V) - Cl(W)^{op}$ -bimodule via

$$v \cdot m \cdot w := (-1)^{|m||w|} (v \otimes w)m$$

for pure degree elements $v \in V, w \in W$ and $m \in M$ and viceversa. Together with Remark 3 we can identify left $Cl(V \oplus -W)$ -modules with Cl(V) - Cl(W)-bimodules.

Definition 5. Let M be a graded Cl(V) - Cl(W)-bimodule. We get the opposite \overline{M} of M by changing the grading and keeping the same $Cl(V \oplus -W)$ -module structure. **Theorem 6.** Let V be a inner product space of dimension n. Then we can identify orientations on V with isomorphism classes of irreducible graded $Cl(V) - C_n$ -bimodules. The opposite bimodule corresponds to the opposite orientation.

Definition 7.

$$P(V,b) := \{v_1 \cdot \ldots \cdot v_r \in Cl(V,b) \mid b(v_i, v_i) \neq 0, r \in \mathbb{N}\}$$

$$Pin(V,b) := \{v_1 \cdot \ldots \cdot v_r \in Cl(V,b) \mid b(v_i, v_i) = \pm 1, r \in \mathbb{N}\}$$

$$Spin(V,b) := Pin(V,b) \cap Cl^0(V,b)$$

Theorem 8. Let $V = \mathbb{R}^n \oplus -\mathbb{R}^m$ and $\operatorname{Spin}_{n,m}$ the corresponding spin group.

$$SO_{n,m} := SO(V, b)$$

$$:= \{\lambda \in Gl(V) ~|~ b(\lambda(v),\lambda(v)) = b(v,v), \det(\lambda) = 1\}$$

Then there is a short exact sequence

$$0 \to \mathbb{Z}_2 \to \operatorname{Spin}_{n,m} \xrightarrow{\zeta_0} \operatorname{SO}_{n,m} \to 1$$

for all (n,m). Furthermore if $(n,m) \neq (1,1)$ this two-sheeted covering is non-trivial over each component. In particular in the special case

$$0 \to \mathbb{Z}_2 \to \operatorname{Spin}_n \xrightarrow{\zeta_0} \operatorname{SO}_n \to 1$$

(where $\operatorname{Spin}_n := \operatorname{Spin}_{n,0}$ and $\operatorname{SO}_n := \operatorname{SO}_{n,0}$) this is the universal covering of SO_n for all $n \ge 3$.

2. Spin structures and spinor bundle

Let E be an oriented *n*-dimensional riemannian vector bundle over a manifold X. Let $P_{O}(E)$ be its bundle of orthonormal frames. This is an principal O_n -bundle.

Choosing an orientation on E is equivalent with choosing a principal SO_n-bundle $P_{SO}(E) \subset P_O(E)$.

Definition 9. Suppose $n \geq 3$. A spin structure on E is a principal Spin_n -bundle $P_{\text{Spin}}(E)$ together with a two-sheeted covering

$$\zeta: P_{\mathrm{Spin}}(E) \to P_{\mathrm{SO}}(E)$$

such that $\zeta(pg) = \zeta(p)\zeta_0(g)$ for all $p \in P_{\text{Spin}}$ and $g \in \text{Spin}_n$.

When n = 2 a spin structure on E is the same with replacing Spin_2 by SO_2 and $\zeta_0 : \text{SO}_2 \to \text{SO}_2$ by the connected 2-fold covering.

When n = 1 a spin structure is just a 2-fold covering of X.

Theorem 10. Let E be an oriented vector bundle over a manifold X. Then there exists a spin structure on E if and only if the second Stiefel-Whitney class of E is zero. Furthermore, if $w_2(E) = 0$, then the distinct spin structures on E are in 1-to-1 correspondence with the elements of $H^1(X, \mathbb{Z}_2)$.

Definition 11. A spin manifold X is an oriented riemannian manifold with a spin structure on its tangent bundle.

Examples 2. Let $X = S^1$. Then there are two distinct spin structures on X (hence $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$):

 $P_{\mathrm{SO}_1}(S^1) \cong S^1$ and there are two 2-fold coverings of S^1

$$\zeta_1: S^1 \times \mathbb{Z}_2 \to S^1 \text{ and } \zeta_2: S^1 \to S^1.$$

These are the two spin structures.

Let $X = T^2$. Then there are four distinct spin structures on X (hence $H^1(T^2, \mathbb{Z}_2) = \mathbb{Z}_2 \times \mathbb{Z}_2$): $P_{SO_2}(T^2) \cong T^2 \times S^1$ and there are four 2-fold coverings ζ_i : $T^2 \times S^1 \to T^2 \times S^1$:

$$\begin{split} \zeta_1(x,y,z) &:= (x,y,z^2), \\ \zeta_2(x,y,z) &:= (x,y,xz^2), \\ \zeta_3(x,y,z) &:= (x,y,yz^2), \\ \zeta_4(x,y,z) &:= (x,y,xyz^2) \end{split}$$

These are the four spin structures.

Construction: Let $E \to X$ be a principal *G*-bundle and let *F* be another space on which the group *G* acts. Then *G* acts on $E \times F$ by

$$g \cdot (e, f) := (eg^{-1}, gf)$$

for $g \in G, e \in E$ and $f \in F$. Define $E \times_G F := E \times F/G$. This is a fibre bundle over X, called the bundle associated to E with fibre F.

Definition 12. The Clifford bundle of the oriented riemannian vector bundle E is the bundle

$$Cl(E) := P_{SO}(E) \times_{SO} C_n.$$

Definition 13. Let *E* be oriented riemannian vector bundle with a spin structure $\zeta : P_{\text{Spin}}(E) \to P_{\text{SO}}(E)$. A real spinor bundle of *E* is a bundle of the form

$$S(E) = P_{\text{Spin}}(E) \times_{\text{Spin}} M$$

where M is a left module over C_n .

Example 1.

 $Cl_{\mathrm{Spin}}(E) := P_{\mathrm{Spin}}(E) \times_{\mathrm{Spin}} C_n$

This bundle admits a free action of C_n on the right.

Theorem 14. Let S(E) be a real spinor bundle of E. Then S(E) is a bundle of modules over the bundle of algebras Cl(E).

3. Spin structures a la Stolz/Teichner

Definition 15 (New definition). Let V be a inner product space of dimension n. A spin stucture on V is an irreducible graded $C(V) - C_n$ -bimodule equipped with a compatible inner product.

Definition 16 (New definition). Let $E \to X$ be a real riemannian vector bundle of dimension n and let $Cl(E) \to X$ be the Clifford algebra bundle. A spin structure of E is a bundle $S(E) \to X$ of graded irreducible $Cl(E) - C_n$ -bimodels.

Remark 17. Let $\text{Spin}(E) \to X$ be a principal Spin_n -bundle like in section 2. The spinor bundle

 $Cl_{\text{Spin}}(E) = \text{Spin}(E) \times_{\text{Spin}_n} C_n,$

is then a $C(E) - C_n$ -bimodule, i.e. a spin structure.

Definition 18. The opposite spin structure of a spin structure S(E) is $\overline{S(E)}$.

By Theorem 6 a spin sturucture S(E) determines an orientation of E. The opposite orientation is induced by $\overline{S(E)}$.

Definition 19. A spin manifold X is a manifold X together with a spin structure on its cotangent bundle T^*X .

Examples 3. Let X be \mathbb{R}^n . By identyfying T^*X with $\mathbb{R}^n \times \mathbb{R}^n$ the bundle

$$S := \mathbb{R}^n \times C_n \to \mathbb{R}^n$$

becomes an irreduzible graded $Cl(T^*X) - C_n$ -bimodule bundle.

Restricting S on submanifolds of codimension 0 we obtain further spin structures, for example the spin structures on

$$D^n \subset \mathbb{R}^n$$
 or $I_t := [0, t] \subset \mathbb{R}$.

This spin structure S makes sense for n = 0: \mathbb{R}^0 is just one point pt. Since $C_0 = \mathbb{R}$, $S = \mathbb{R}$ is a graded $\mathbb{R} - \mathbb{R}$ -bimodule (even line). The opposite spin structure of pt is \overline{pt} is then an odd line.