An introduction to Elliptic Cohomology and Conformal Field Theories Winter school GK1150, Schloss Mickeln From Field Theories to Elliptic Objects

Gerd Laures

Ruhr Universität Bochum

March 8, 2006

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

Genera

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

A measure for spaces

 μ exists, essentially unique, takes values in the integers μ is the Euler-Poincaré characteristic

Further properties:

$$(\mathbf{X} \times \mathbf{Y}) = \mu(\mathbf{X})\mu(\mathbf{Y})$$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Methods of calculation

- covering
- $\mu(X) = \sum_{i} (-1)^{i} \dim H^{i}(X; \mathbb{R})$
- *F* oriented closed surface in \mathbb{R}^3

Gauss curvature: $\kappa = \kappa_{\min} \kappa_{\max}$

$$\mu(F) = \int_{F} \frac{\kappa}{2\pi} d\sigma = \int_{F} e(TF)$$

with $e(TF) \in H^2(F; \mathbb{R})$ the Euler class

• X oriented, closed Riemannian , $\dim(X) = 2n$

$$\mu(X) = \int_X e(TX)$$

with $e(TX) \in H^{2n}(X)$ (if $TX = l_1 \oplus l_2 \oplus \cdots \oplus l_n$ then

$$\mathbf{e}(TX) = \mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_n; \ \mathbf{x}_i = \mathbf{e}(I_i)$$

• $\mu(X) = \operatorname{ind}(d + d^* : \operatorname{even} \longrightarrow \operatorname{odd} \operatorname{alternating forms})$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

Genera

•
$$\mu(X) = \mu(Y)$$
 if there is an (orientable) *W* with
 $\partial W = X + (-Y);$ X is bordant to Y
Definition

A map with 1,3,4,5,6 is called a genus

$$\mu: \underbrace{\{\text{closed oriented mfds}\}/\text{bordism}}_{\Omega_{SO}} \overset{\text{ring map}}{\longrightarrow} R$$

Example

• The Euler characteristic is not a genus but the map

$$\Omega^*_{SO} \longrightarrow \Omega^0_{SO} \longrightarrow \mathbb{Z}$$

which counts points is.

An introduction to

Elliptic Cohomology and Conformal Field Theories Gerd Laures

Genera

The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example

• $sig(X^{4n}) = signature of the quadratic form$

$$(x,y)\mapsto \int_X x\wedge y = \langle x\cup y, [X] \rangle$$

Theorem (Hirzebruch)

$$sig(X) = \int_X \prod_{i=1}^{2n} \frac{x_i}{tanh(x_i)}$$

Moreover,

 $sig(X) = ind(D^+ = d + d^* : positive \longrightarrow negative forms)$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera

The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

▲□▶▲□▶▲□▶▲□▶ ■ のへで

The spin refinement Suppose X is spin (obstructions: $\omega_1 = \omega_2 = 0$), that is, the loop space

 $LX = \{s : S^1 \longrightarrow X | s \text{ smooth } \}$

is oriented. Then we have a bundle of spinors Δ^{\pm} and a Dirac operator $\partial^+ : \Delta^+ \longrightarrow \Delta^-$ with the property

 $\operatorname{ind}(D^+) = \operatorname{ind}(\partial^+ \otimes (\Delta^+ \oplus \Delta^-))$

Theorem (Atiyah-Singer) The index of ∂^+ is a genus

$$\hat{A}: \Omega^*_{\mathbf{Spin}} \longrightarrow \mathbb{Z}$$

Moreover, we have the formula

$$\mathit{ind}(\partial^+) = \int_X \prod_{i=1}^{2n} \frac{x_i}{2\mathit{sinh}(x_i/2)}$$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space

Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

The loop space

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Witten's analysis

What is the index of ∂^+ on the loop space *LX*? Suppose *LX* is Spin, that is, suppose *X* is String (obstructions: $\omega_1 = \omega_2 = p_1/2 = 0$). Then we have

$$T_{\gamma}LX \cong \{ \text{vector fields along } \gamma \} \\ \cong \Gamma(\gamma^* TX) \\ \cong L(T_pX) \text{ if } \gamma \text{ is constant } p.$$

This gives for the fix point set $X = (LX)^{S^1}$

$$T(LX)_{|X} \cong L(TX)_{|X} \cong TX \oplus \bigoplus_{k=1}^{\infty} (TX \otimes \mathbb{C})q^k$$

by Fourier expansion. The equivariant fix point formula of Atiyah and Segal applied to this infinite dimensional situation hence gives

$$\operatorname{ind}_{S^{1}}(\partial^{+}) = \int_{X} \prod_{i=1}^{2n} \frac{x_{i}}{2\operatorname{sinh}(x_{i}/2)} \prod_{k=1}^{\infty} \frac{(1-q^{k})^{2}}{(1-q^{k}e^{x_{i}})(1-q^{k}e^{-x_{i}})}$$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space

Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The Witten genus

Definition This integral power series

$$W(X) \in \mathbb{Z}\llbracket q
rbracket$$

with $q = e^{2\pi i \tau}$ is called the Witten genus of *X*. It is an integral modular form, that is, an invariant of the pair $(\mathbb{C}/\mathbb{Z} + \tau\mathbb{Z}, dz)$:

$$W: \Omega^*_{String} \longrightarrow \mathbb{Z}[c_4, c_6, \Delta]/(c_4^3 - c_6^2 - 1728\Delta)$$

with the Eisenstein series

$$c_4 = 1 + 240 \sum_{n \ge 1} (\sum_{d|n} d^3) q^n$$

$$c_6 = 1 - 504 \sum_{n \ge 1} (\sum_{d|n} d^5) q^n$$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

Family versions of genera

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Pontryagin numbers

Natural multiplicative transformations of cohomology theories such as

$$\begin{array}{lll} \Omega^*_{\mathsf{SO}}(X) & \longrightarrow & H^*(X;\mathbb{Z}) \\ \left[M \stackrel{f}{\longrightarrow} X\right] & \mapsto & f_!(1) \\ \left[X \stackrel{\sigma}{\longrightarrow} TX\right] & \mapsto & \sigma_!(1)_{|X} = e(TX) = x_1 \cdots x_n \end{array}$$

give a system of $(H\mathbb{Z}-)$ Pontryagin classes which can be integrated to Pontryagin numbers.

Theorem (Thom, Milnor, Novikov, Wall) M, N are oriented bordant iff all $H\mathbb{Z}$ -, $H\mathbb{Z}/2$ -Pontryagin numbers coincide. An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers

KO-theory Topological modular forms Construction of *tmf*

Field Theories

KO-theory

Theorem (Anderson, Brown, Peterson) M, N Spin are bordant iff all $H\mathbb{Z}/2$ and KO-Pontryagin numbers coincide.

The KO-numbers come from the natural transformation

$$\hat{A}: \Omega_{Spin} \longrightarrow KC$$

where KO is real K-theory

 $KO(X) = \{$ vector bundles over X +formal inverses $\}$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers

KO-theory Topological modular forms Construction of *tmf*

Field Theories

Topological modular forms

The string bordism ring is not known.

Theorem (Hopkins et al.)

The Witten genus generalizes to a map of spectra

 $W: \Omega_{String} \longrightarrow tmf$

The coefficient ring

 $tmf^*(*) = \{topological modular forms\}$

maps into the ring of integral modular forms.

Conjecture:

M, *N* are String bordant iff all $H\mathbb{Z}/2$ -, *TMF*-Pontryagin numbers coincide (with $TMF = tmf [\Delta^{-1}]$). Note: This would lead to an understanding of the bordism ring Ω^*_{string} and of a great chunk of $\Omega^*_{fr} = \pi^*_{st}$. An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory

Topological modular forms Construction of tmf

Field Theories

Construction of tmf

Weierstrass equation:

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_1, a_2, \ldots, a_6 \in R, \ \Delta \in R^{\times}$. If $1/6 \in R$ then *E* can be written in the form

$$y^2 = x^3 - 27c_4x - 54c_6$$

The equation gives the universal curve over

$$(\mathbb{Z}[c_4, c_6, \Delta]/c_4^3 - c_6^2 - 1728\Delta) [1/6] \left[\Delta^{-1}\right] = mf \left[(6\Delta)^{-1}\right]$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms

Its formal group law is classified by a ring map from the Lazard ring *L*.

Theorem (Quillen)

Let Ω^*_U be the unitary bordism ring. Then there is an isomorphism of rings

$$L \cong \Omega^*_U.$$

Set

$$TMF \left[1/6\right]^* X = \Omega^*_U(X) \otimes_{\Omega^*_U} mf\left[(6\Delta)^{-1}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms

Construction of tmf

Field Theories

To include p = 2,3 take the best possible approximation to the universal object in the derived sense:

TMF = holimE; with *E* an E_{∞} elliptic spectrum

Problems:

- construction of the functor "E"
- relation to analysis on loop spaces
- a geometric interpretation

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms

Construction of tmf

Field Theories

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

Field Theories

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

The (0, 1)-dimensional case

Let $\mathcal{B}X^1$ be the category with objects the points in X and morphisms

$$\mathcal{B}(x_0, x_1) = \{ \text{paths in } X \text{ from } x_0 \text{ to } x_1 \}.$$

Suppose V is a vector bundle with connection. Then V defines a continuous functor

$$\begin{array}{rcl} F: \mathcal{B}X^{1} & \longrightarrow & \text{vector spaces} \\ & x & \mapsto & V_{x} \\ & \gamma & \mapsto & (\text{parallel transport} \ : V_{x_{0}} \rightarrow V_{x_{1}}) \end{array}$$

F is a (0, 1)-dimensional field theory. <u>Idea:</u> Use 1-dimensional field theories to describe *K*-theory. An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis

```
Family versions of genera
```

```
Pontryagin numbers
KO-theory
Topological modular forms
Construction of tmf
```

Field Theories

The (0, 1)-dimensional case

The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional case

The KO-Hurewicz class

Example

Let V be the spinor bundle over a spin manifold M. Set

$$H=L^2(M;V).$$

Then the field theory associated to the *KO*-Hurewicz class is

$$\begin{array}{rcl} \mathcal{B}(*)^1 & \longrightarrow & \text{vector spaces} \\ & * & \mapsto & \mathcal{H} \\ I_t & \mapsto & e^{-t\partial^2} + & \underbrace{\theta \partial e^{-t\partial^2}}_{\text{super coordinate}} \end{array}$$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

he loop space

The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case

The KO-Hurewicz class

The (-1, 0)-dimensional case The (1, 2)-dimensional case

・ロト・西ト・山田・山田・山下

The (-1, 0)-dimensional case

Let $\mathcal{B}X^0$ be the category with the object \emptyset and the super point $* = \mathbb{R}^{0|1}$ as morphism. Then we have

Field Theories	de Rham cohomology
* $\rightarrow M$ functor $F : \mathcal{B}X^0 \rightarrow v.s.$ euclidian, invariant up to concordance with Clifford grading	exterior form differential form closed, even forms even cohomology class all cohomology classes
with Clifford grading	all cohomology classes

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional

The (1, 2)-dimensional case

case

The (1,2)-dimensional case

Let $\mathcal{B}X^2$ be the category whose objects are 1-dimensional (super,...-) manifolds in X and with morphisms

 $\mathcal{B}X^2(S_0, S_1) = \{ \text{surfaces in } X \text{ with boundray } S_0 + (-S_1) \}$

(and eventually some extra structure). Consider continuous (or holomorphic?) functors

 $F: \mathcal{B}X^2 \longrightarrow$ Hilbert spaces + trace class maps

G. Segal formulates a contraction property: If A_q is an annulus for some $q = e^{2\pi i \tau}$ then the trace of the operator

$$F(A_q): F(S^1) \longrightarrow F(S^1)$$

should only depend on the glued closed object Σ_{τ} and its metric. This implies that $F(\Sigma_{\tau})$ is a modular form.

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

```
The (0, 1)-dimensional case
The KO-Hurewicz class
The (-1, 0)-dimensional case
The (1, 2)-dimensional case
```

Stolz and Teichner noticed that the Mayer-Vietoris property can only be satisfied if one allows manifolds with boundaries, that is, intervals as objects. The field theories then should satisfy

 $F(\gamma_0 \cup \gamma_1) = F(\gamma_0) * F(\gamma_1)$

where the right multiplication is Connes' fusion product. The main result is a construction of the Euler class in this context, which in a relative version, can lead to a Thom class and thus to the desired map of spectra

 $W: M String \longrightarrow tmf.$

An introduction to Elliptic Cohomology and Conformal Field Theories

Gerd Laures

Genera

A measure for spaces Methods of calculation Genera The spin refinement

The loop space Witten's analysis The Witten genus

Family versions of genera

Pontryagin numbers KO-theory Topological modular forms Construction of *tmf*

Field Theories

The (0, 1)-dimensional case The KO-Hurewicz class The (-1, 0)-dimensional case The (1, 2)-dimensional

case

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙