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A measure for spaces

1 µ(∗) = 1
2 µ(X ) = µ(X1) + µ(X2)− µ(X1 ∩ X2) if X = X1 ∪ X2

3 µ(X ) = µ(Y ) if X is diffeomorphic to Y

µ exists, essentially unique, takes values in the
integers

µ is the Euler-Poincaré characteristic

Further properties:
4 µ(X × Y ) = µ(X )µ(Y )

5 µ(X t Y ) = µ(X ) + µ(Y )
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Methods of calculation
covering
µ(X ) =

∑
i(−1)i dim H i(X ; R)

F oriented closed surface in R3

Gauss curvature: κ = κminκmax

µ(F ) =

∫
F

κ

2π
dσ =

∫
F

e(TF )

with e(TF ) ∈ H2(F ; R) the Euler class
X oriented, closed Riemannian , dim(X ) = 2n

µ(X ) =

∫
X

e(TX )

with e(TX ) ∈ H2n(X )

(if TX = l1 ⊕ l2 ⊕ · · · ⊕ ln then

e(TX ) = x1x2 · · · xn; xi = e(li))

µ(X ) = ind(d + d∗ : even −→ odd alternating forms)
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Genera
6 µ(X ) = µ(Y ) if there is an (orientable) W with

∂W = X + (−Y ); X is bordant toY

Definition
A map with 1,3,4,5,6 is called a genus

µ : {closed oriented mfds}/bordism︸ ︷︷ ︸
ΩSO

ring map
−→ R

Example

The Euler characteristic is not a genus but the map

Ω∗SO −→ Ω0
SO −→ Z

which counts points is.
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Example

sig(X 4n) = signature of the quadratic form

(x , y) 7→
∫

X
x ∧ y = 〈x ∪ y , [X ]〉

Theorem (Hirzebruch)

sig(X ) =

∫
X

2n∏
i=1

xi

tanh(xi)

Moreover,

sig(X ) = ind(D+ = d + d∗ : positive −→ negative forms)
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The spin refinement
Suppose X is spin (obstructions: ω1 = ω2 = 0) , that is,
the loop space

LX = {s : S1 −→ X | s smooth }
is oriented. Then we have a bundle of spinors ∆± and a
Dirac operator ∂+ : ∆+ −→ ∆− with the property

ind(D+) = ind(∂+ ⊗ (∆+ ⊕∆−))

Theorem (Atiyah-Singer)
The index of ∂+ is a genus

Â : Ω∗Spin −→ Z

Moreover, we have the formula

ind(∂+) =

∫
X

2n∏
i=1

xi

2sinh(xi/2)
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Witten’s analysis
What is the index of ∂+ on the loop space LX?
Suppose LX is Spin, that is, suppose X is String
(obstructions: ω1 = ω2 = p1/2 = 0). Then we have

TγLX ∼= {vector fields along γ}
∼= Γ(γ∗TX )
∼= L(TpX ) if γ is constant p.

This gives for the fix point set X = (LX )S1

T (LX )|X ∼= L(TX )|X ∼= TX ⊕
∞̂⊕

k=1

(TX ⊗ C)qk

by Fourier expansion. The equivariant fix point formula of
Atiyah and Segal applied to this infinite dimensional
situation hence gives

indS1(∂+) =

∫
X

2n∏
i=1

xi

2sinh(xi/2)

∞∏
k=1

(1− qk )2

(1− qkexi )(1− qke−xi )
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The Witten genus

Definition
This integral power series

W (X ) ∈ Z[[q]]

with q = e2πiτ is called the Witten genus of X .
It is an integral modular form, that is, an invariant of the
pair (C/Z + τZ, dz):

W : Ω∗String −→ Z[c4, c6,∆]/(c3
4 − c2

6 − 1728∆)

with the Eisenstein series

c4 = 1 + 240
∑
n≥1

(
∑
d |n

d3)qn

c6 = 1− 504
∑
n≥1

(
∑
d |n

d5)qn
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Pontryagin numbers

Natural multiplicative transformations of cohomology
theories such as

Ω∗SO(X ) −→ H∗(X ; Z)[
M f−→ X

]
7→ f!(1)[

X σ−→ TX
]

7→ σ!(1)|X = e(TX ) = x1 · · · xn

give a system of (HZ−) Pontryagin classes which can be
integrated to Pontryagin numbers.

Theorem (Thom, Milnor, Novikov, Wall)
M, N are oriented bordant iff all HZ-, HZ/2-Pontryagin
numbers coincide.
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KO-theory

Theorem (Anderson, Brown, Peterson)
M, N Spin are bordant iff all HZ/2 and KO-Pontryagin
numbers coincide.

The KO-numbers come from the natural transformation

Â : ΩSpin −→ KO

where KO is real K -theory

KO(X ) = {vector bundles over X + formal inverses}.
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Topological modular forms

The string bordism ring is not known.

Theorem (Hopkins et al.)
The Witten genus generalizes to a map of spectra

W : ΩString −→ tmf

The coefficient ring

tmf ∗(∗) = {topological modular forms}

maps into the ring of integral modular forms.

Conjecture:
M, N are String bordant iff all HZ/2-, TMF -Pontryagin
numbers coincide (with TMF = tmf

[
∆−1

]
).

Note: This would lead to an understanding of the bordism
ring Ω∗string and of a great chunk of Ω∗fr = π∗st .
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Construction of tmf

Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with a1, a2, . . . , a6 ∈ R, ∆ ∈ R×.
If 1/6 ∈ R then E can be written in the form

y2 = x3 − 27c4x − 54c6.

The equation gives the universal curve over

(Z[c4, c6,∆]/c3
4 −c2

6 −1728∆) [1/6]
[
∆−1

]
= mf

[
(6∆)−1

]
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Its formal group law is classified by a ring map from the
Lazard ring L.

Theorem (Quillen)
Let Ω∗U be the unitary bordism ring. Then there is an
isomorphism of rings

L ∼= Ω∗U .

Set
TMF [1/6]∗ X = Ω∗U(X )⊗Ω∗

U
mf

[
(6∆)−1

]
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To include p = 2, 3 take the best possible approximation
to the universal object in the derived sense:

TMF = holimE ; withE an E∞elliptic spectrum

Problems:

construction of the functor ”E”

relation to analysis on loop spaces

a geometric interpretation
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The (0, 1)-dimensional case

Let BX 1 be the category with objects the points in X and
morphisms

B(x0, x1) = {paths in X from x0 to x1}.

Suppose V is a vector bundle with connection. Then V
defines a continuous functor

F : BX 1 −→ vector spaces

x 7→ Vx

γ 7→ (parallel transport : Vx0 → Vx1)

F is a (0, 1)-dimensional field theory.
Idea: Use 1-dimensional field theories to describe
K -theory.
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The KO-Hurewicz class

Example
Let V be the spinor bundle over a spin manifold M. Set

H = L2(M; V ).

Then the field theory associated to the KO-Hurewicz
class is

B(∗)1 −→ vector spaces

∗ 7→ H

It 7→ e−t∂2
+ θ∂e−t∂2︸ ︷︷ ︸

super coordinate
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The (−1, 0)-dimensional case

Let BX 0 be the category with the object ∅ and the super
point ∗ = R0|1 as morphism. Then we have

Field Theories de Rham cohomology

∗ → M exterior form
functor F : BX 0 → v .s. differential form

euclidian, invariant closed, even forms
up to concordance even cohomology class

with Clifford grading all cohomology classes
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The (1, 2)-dimensional case

Let BX 2 be the category whose objects are 1-dimensional
(super,. . .-) manifolds in X and with morphisms

BX 2(S0, S1) = {surfaces in X with boundray S0 + (−S1)}

(and eventually some extra structure). Consider
continuous (or holomorphic?) functors

F : BX 2 −→ Hilbert spaces + trace class maps

G. Segal formulates a contraction property: If Aq is an
annulus for some q = e2πiτ then the trace of the operator

F (Aq) : F (S1) −→ F (S1)

should only depend on the glued closed object Στ and its
metric. This implies that F (Στ ) is a modular form.
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Stolz and Teichner noticed that the Mayer-Vietoris
property can only be satisfied if one allows manifolds with
boundaries, that is, intervals as objects. The field theories
then should satisfy

F (γ0 ∪ γ1) = F (γ0) ∗ F (γ1)

where the right multiplication is Connes’ fusion product.
The main result is a construction of the Euler class in this
context, which in a relative version, can lead to a Thom
class and thus to the desired map of spectra

W : M String −→ tmf .
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