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Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes, ut
possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia

corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea.
(John of Salisbury)

If I have seen further it is by standing on ye sholders of Giants.
(Isaac Newton)

Dedicated to these Giants and my love.
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Abstract

We study the categories of KO− and TMF -modules. Inspired by work of Bous-
�eld, we consider TMF -modules M at the prime 3 such that M ∧TMF TMF (2)
is a free TMF (2)-module. We show that a large class of these can be iteratively
built from TMF by coning o� torsion elements and killing generators. This is
based on a detailed study of vector bundles on the moduli stack of elliptic curves.
Furthermore, we consider examples of TMF -modules and also the relationship
between the category of TMF -modules and the category of quasi-coherent sheaves
on the derived moduli stack of elliptic curves.
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Chapter 1

Introduction

Homology theories belong to the core techniques of algebraic topology. In the usual de�nition,
a homology theory takes values in graded abelian groups. Yet it is well known that one often
has extra structure. For example, ordinary homology with real coe�cients takes values
in graded R-vector spaces and Fp-homology in (graded) comodules over the dual Steenrod
algebra. In addition, a homology theory factors through various homotopy categories. We
present the example of real and complex K-theory in the form of the following commutative
diagram:

Spaces

KO-local SHC KU -local SHC

Ho(KO -mod) Ho(KU -mod)

Ho(K̃U [C2]) -mod

KO∗ -mod K̃U∗[C2] -mod KU∗ -mod

grAb grAb

=

∧KO ∧KU

π∗ π∗

∧KOKU forget

π∗

forget

∧KOKUKO∗ KU∗

Here, SHC is an abbreviation for the stable homotopy category. Furthermore, K̃U [C2]
stands for category of KU -modules with a C2-action which is semilinear with respect to com-

plex conjugation; similarly, K̃U∗[C2] stands for the category of KU∗-modules with semilinear
C2-action.

The diagram suggests that while the KO- or KU -local stable homotopy category may
capture nearly all of the information real or complex K-theory tells us about a space, the ho-
motopy category of KO- or KU -modules might be a useful approximation. Indeed, Bous�eld
used the theory of KO-modules in an essential way in his study of the KO-local category in
[Bou90]. We want to review Bous�eld's results on KO-modules from our perspective.
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The dotted arrows in the diagram above indicate spectral sequences one can use for
computation, which we want to describe in greater detail: Let R be a ring spectrum and M
and N be module spectra. Then there is the universal coe�cient spectral sequence (UCSS)

E2 = ExtsR∗(π∗M,π∗N [t])⇒ [M,N ]s+tR

converging to the graded morphisms in the homotopy category of R-modules (for π∗N [t] =
π∗−tN). The edge homomorphism sends an element in [M,N ]k to the induced map in
HomR∗(π∗M [k], π∗N). For example, we might consider the case of R = KU . We know
that every graded module over KU∗ ∼= Z[u±1] has projective dimension at most 1. Therefore,
the spectral sequence is concentrated in the �rst two rows and all di�erentials must vanish.

• • • • • • •

•
s+t
//

s OO

•

FF�������� • •

FF�������� • •

FF�������� •

If we have two KU -modules M and N with an isomorphism f : π∗M → π∗N , then this
isomorphism is realized as a map f : M → N , which is then an isomorphism (in the homotopy
category) of KU -modules. Therefore, the functor π∗ classi�es KU -modules in the sense that
it detects isomorphisms. We can apply the same arguments to KO localized at an odd prime
p. Both for R = KU and R = KO(p) it follows by results of Franke and Patchkoria ([Pat11],
5.2.1) that the homotopy category of R-modules is equivalent to the derived category of
graded R∗-modules. Thus, we get a good understanding of the homotopy category of KU -
modules and KO(p)-modules for an odd prime p.

Now it is known that KO∗ has in�nite homological dimension.1 This means that the
UCSS is potentially spread over the whole half-plane for these two ring spectra and we
cannot use the approach above directly.

While the usual UCSS is based on resolutions by free modules, it is also possible to
construct a modi�ed UCSS based on relatively free KO-modules, i.e., (�nite) KO-modules
M such that M ∧KOKU is a free KU -module. More precisely, based on ideas of [Bou90],
Wolbert constructs in [Wol98] for F the collection of relatively free KO-modules a modi�ed
Ext-functor ExtF and a modi�ed homotopy groups functor πF∗ , which serve as input for a
spectral sequence of the form

ExtsF (πF∗ (M), πF∗ (N)[t])⇒ [M,N ]s+tKO

for KO-modules M and N . From the fact that KU∗ has homological dimension 1 one can
deduce by rather formal reasons that this spectral sequence is concentrated in the �rst two
lines. Thus, πF∗ detects whether two KO-modules are isomorphic as above. The collection
of relatively free KO-modules with all KO-module maps between them is called the united
K-theory and the functor πF∗ is called the united K-theory functor.

1We will sketch a proof for KO∗ which is also valid for TMF∗ and a much wider class of graded rings:
Assume KO∗ has �nite global dimension. Let R denote the ungraded version of this ring. By [BH93, p.33],
ExtiR(F2,M) 6= 0 can only be true with bounded i for an R-module M . This is then also true after localizing
R at the prime ideal (2, η, ξ) unhomogeneously. But this localization is not a regular local ring. This is
contradiction by [Eis95], Section 19, especially 19.12.
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Bous�eld has a more explicit description of the functor πF∗ using the KO-modules KO,
KU and KT , where the latter stands for K-theory with self-conjugation. It is easy to see
that we can recover Bous�eld's result (for �nite modules) if we show that KO, KU and KT
are (up to suspension) the only indecomposable relatively free KO-modules with respect to
KU . Our approach is to introduce the following notion:

De�nition 1.0.1. Let R be a ring spectrum. We de�ne inductively the notion of a (topolog-
ically) standard module. First of all, all suspensions of R are standard modules. Then, if M
is a standard module and x ∈ π∗M is a torsion element, the cone of the map Σ|x|R

x−→M is
a standard module. The collection of all standard modules is the collection of all R-modules
which can obtained by this procedure in �nitely many steps.

In Chapter 7 we will show then the following two propositions:

Proposition 1.0.2 (K-theory extension theorem). Every relatively free KO-module is a
standard module.

Proposition 1.0.3. Every standard KO-module is a direct sum of suspensions of KO, KU
and KT .

This recovers then Bous�eld's result (in the case of �nite modules). Two of the three proofs
we give for the K-theory extension theorem use a homotopy �xed point spectral sequence
computing the homotopy groups of a KO-module M from H i(C2;π∗M ∧KOKU). This

can be also interpreted as an UCSS in the category K̃U [C2] -mod using that the functor

KO -mod
∧KOKU−−−−−→ K̃U [C2] -mod is an equivalence.

If one sees some story on KO, one often asks oneself: How about the spectrum of topolog-
ical modular forms TMF? It will be the main aim of this thesis to investigate to what extent
the above results translate to similar results in the more di�cult world of TMF -modules.

For TMF localized at a prime p greater than 3, we have (TMF(p))∗ ∼= Z(p)[c4, c6,∆
−1],

the ring of modular forms. This has homological dimension two.2 Thus, we get in a similar
way as above Ho(TMF(p) -mod) ' D((TMF(p))∗) by [Pat11], 1.1.3. Therefore, we want to
concentrate on lower primes; more speci�cally, we will implicitly localize at 3 in the following
since at the prime 2 computations are much more di�cult and most of our proofs do not
work there.

The spectrum of topological modular forms TMF is constructed as the global sections
of a certain sheaf of commutative ring spectra Otop on the moduli stack of elliptic curves
M. By evaluating Otop at the moduli stack of elliptic curves with level-2-structure M(2),
we get a TMF -algebra called TMF (2) with TMF (2)∗ ∼= Z(3)[x2, y2,∆

−1]. Thus, TMF (2)∗
has homological dimension 2 and can serve as an analogue of KU in the TMF -setting. As
before, we have a diagram:

2The idea of proof is the following: Let M be a Z(p)[c4, c6,∆
−1]-module. Take an exact sequence

0→ N → P1 → P0 →M → 0

in the category of Z(p)[c4, c6]-modules such that P0 and P1 are projective. Since Z(p)[c4, c6, c
−1
4 ] and

Z(p)[c4, c6, c
−1
6 ] have homological dimension≤ 2, N [c−1

4 ] andN [c−1
6 ] are projective. If a module over Z(p)[c4, c6]

is projective if we invert c4 and if we invert c6, then it is also projective if we invert ∆ because projectivity
corresponds to being locally free on the spectrum and ∆ can only be non-vanishing when c4 or c6 is (since
1728 is invertible). Thus,

0→ N [∆−1]→ P1[∆−1]→ P0[∆−1]→M → 0

is a projective resolution of M of length 2 in the category of Z(p)[c4, c6,∆
−1]-modules.
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Spaces

TMF -local SHC TMF (2)-local SHC

Ho(TMF -mod) Ho(TMF (2) -mod)

Ho(QCoh(M,Otop))

TMF∗ -mod QCoh(M) TMF (2)∗ -mod

grAb grAb

=

∧TMF ∧TMF (2)

π∗ π∗

∧TMF TMF (2) evaluation atM(2)

π0

evaluation

atM(2)

∧TMF TMF (2)
TMF∗ TMF (2)∗

While we hope to apply our results at some point to the TMF -local stable homotopy
category (or rather the E(2)-local one), this thesis will not contain any further discussion
of the TMF -local stable homotopy category; we will concentrate on the category of TMF -
modules.

As in the case of KO∗, one can show that TMF∗ has in�nite homological dimension. So,
we want again to study relatively free/projective TMF -modules M in the sense that M is
�nite and M ∧TMF TMF (2) is a free/projective TMF (2)-module. It is easy to see that the
(derived) quasi-coherent sheaf on (M,Otop) associated to M is locally free if M is relatively
free and thus the associated (classical) quasi-coherent sheaf onM is a vector bundle. Since
we have an important spectral sequence, which has as input the cohomology of this vector
bundle and converges to π∗M , the study of vector bundles onM becomes crucial.

De�nition 1.0.4. We de�ne inductively the notion of a standard vector bundle onM. First
of all, all line bundles are standard vector bundles. In addition, a vector bundle E is called
standard if there is an injection L ↪→ E from a line bundle such that the cokernel is a standard
vector bundle.

That every standard vector bundle is an iterated extension of line bundles will allow us
to classify standard vector bundles; there are only �nitely many indecomposable ones. We
de�ne a relatively free TMF -module M to be algebraically standard if π0FM and π1FM are
standard vector bundles. It is unclear to the author whether every algebraically standard
TMF -module is also standard, but we can de�ne a slightly weaker notion:

De�nition 1.0.5. We de�ne the notion of a �nite TMF -module being hook-standard in-
ductively: First, ΣkTMF is hook-standard for all k. Furthermore, a TMF -module M is
hook-standard if there are co�ber sequences

Σ|a|TMF
a−→M → X

Σ|x1|TMF
x1−→ X → X ′

Σ|x2|TMF
x2−→ X ′ → X ′′
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with X ′′ hook standard, where a corresponds to a torsion element and c∗(x1) ∈ E(X) and
c∗(x2) ∈ E(X ′).

It is called 'hook-standard' since going up one rank and going down two ranks looks like
a hook. Our main theorem is:

Theorem 1.0.6 (The hook theorem). Every algebraically standard TMF -module is a hook-
standard module.

For ranks ≤ 3, all algebraically standard modules are even standard. This allows, in
principle, to classify all algebraically standard TMF -modules up to a certain rank, although
computations quickly become complicated with growing rank.

If one looks for an analogy to the K-theory story, one might expect that there are only
�nitely many indecomposable standard modules. But the torsion of TMF is much more
complicated (even at 3) and we can show the following:

Proposition 1.0.7. There is an in�nite sequence of standard modules (of arbitrary high
rank) which do not decompose into standard modules of lesser rank.

The in�nitude of indecomposable relatively free TMF -modules makes it harder to use
a modi�ed UCSS in the case of TMF . Nevertheless, as indicated at the end of Section
4.3, for every �nite TMF -module M , there is a kind of resolution of M into relatively
projective modules. With other words, we have for every TMF -module a short resolution
via relatively projective modules, which reduces the study of TMF -modules largely to the
study of relatively free modules. The collection of all relatively free TMF -modules with all
TMF -module maps between them deserves the name united elliptic homology.

As KO -mod ' K̃U [C2] -mod, the ∞-categories of quasi-coherent sheaves on the derived
moduli stack of elliptic curves and the one of TMF -modules are equivalent as shown in
Chapter 6. Unfortunately, the equivalence is only an abstract equivalence and we do not
know if the global sections functor is an equivalence.

As a last point, we look at relatively free TMF -modules of the form TMF ∧X for a space
X, both at the prime 2 and 3. For example, we show that TMF ∧CP∞ splits into summands
of rank 2 and 3. It remains an open question whether we can �nd an in�nite sequence
of indecomposable relatively free TMF -modules of the form TMF ∧Xi for spaces Xi. In
contrast, we show that tmf ∧BU(2) (for tmf being connective TMF ) has an indecomposable
summand (as tmf -module) of in�nite rank.

All in all, many questions remain open and so the reader might view this thesis as a
collection of preliminary studies on TMF -modules with an eye towards the study of the
E(2)-local stable homotopy category.

After summarizing the results, we should hint at the structure of this thesis. The proofs
of the K-theory extension theorem and the hook theorem rely crucially on algebraic results
classifying integral representations of C2 (for K-theory) and vector bundles on the moduli
stack of elliptic curves (for TMF ). Part I is purely algebraic and its main task is to prove
the classi�cation result for standard vector bundles (in Chapter 3) and also to provide in
Chapter 2 foundations for the study of algebraic stacks in general and the moduli stack of
elliptic curves in particular.

Part II is about the topological fruits of these algebraic enterprises. The Chapter 4 is
mainly about some foundational material of abstract homotopy theory, module categories and
derived algebraic geometry. The Section 4.3 gives more details on the treatment of relatively
free modules in this introduction and the modi�ed universal coe�cient spectral sequence.
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The Chapter 5 introduces the main object of our study, the spectrum of topological modular
forms TMF , and collects a few of its basic properties. As already mentioned, in Chapter
6 we will compare TMF -modules with quasi-coherent sheaf on the derived moduli stack of
elliptic curves and will also study Galois extensions of TMF . The task of Chapter 7 will
be to reprove Bous�eld's results about the classi�cation of relatively free KO-modules (in
three ways). Chapter 8 is in some sense the core of this thesis and proves several properties
of relatively free TMF -modules, especially the hook theorem, and it is probably the most
technically complicated part of this thesis. In the last chapter, we will study some examples
and construct, in particular, the in�nite sequence of (indecomposable) TMF -modules. The
appendix contains the details of some computer calculations and a list of notation.

Warning 1.0.8. Some time ago, I thought that I had a proof that every �nite TMF -module
is standard. I have stated this in several talks and o�er my apologies since the proof was
marred by two mistakes, which were discovered in March and June 2012.

Remark 1.0.9. Two words about referencing: One of our common sources is Jacob Lurie's
DAG (Derived Algebraic Geometry). This can be (only) found on his homepage and we
number the parts of DAG by Roman numbers (just as on his homepage). Another common
source for us is the Stacks Project ([Aut]), an open source textbook on algebraic geometry.
Since it is always changing, there is a system of tags that does not change. You can search
for tags in the Stacks Project on the following web site: http://www.math.columbia.edu/

algebraic_geometry/stacks-git/query.php.
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Chapter 2

Moduli Stacks

The language of stacks is essential for this whole thesis. A friendly (and not too long)
introduction may be found in [Góm01] and an in-depth treatments in [LMB00] and [Aut]. A
treatment of Grothendieck topologies (and the more categorical aspects of stacks) is included
in [Vis05]. The classical source on the moduli stack of elliptic curves is [DR73], where, for
example, level structures and representability statements are discussed. An introduction to
algebraic stacks in general and the stack of formal group in particular can be found in [Nau07].
We will review parts of the theory for the convenience of the reader and have to stress that,
except for some minor points, this chapter contains no original research.

2.1 Stacks and Descent

Many moduli problems cannot be represented by schemes. One reason is that a functor
representable by a scheme is a sheaf of sets, but many geometric objects (vector bundles,
elliptic curves, . . . ) can be locally trivial without being globally trivial since we can use
non-trivial automorphisms to glue them. The language of stacks is a way to study moduli
problems with non-trivial automorphisms.

Let S be a base scheme and Sch /S be the categories of schemes over S (i.e., the over-
category of S). For our purposes, we have most of the time S = SpecZ or S = SpecZ(p) for
p a prime. Several Grothendieck topologies1 can be chosen on the category of schemes and
each of these restricts to a Grothendieck topology on Sch /S. Three of the most important
topologies are the Zariski, the étale and the fpqc topology, where the open covers consist of
surjective morphisms which are

• disjoint unions of open immersions in the Zariski topology,

• étale in the étale topology, respectively,

• fpqc in the fpqc topology.

Here, a morphism X → Y is called fpqc if it is faithfully �at and has the property that every
quasi-compact open subset (or, at least, every element of an a�ne open cover, see [Vis05,
2.33]) of Y is the image of a quasi-compact open subset of X. Recall that a morphism is
called faithfully �at if it is �at and surjective. A morphism is called étale if it is �at and
unrami�ed. For the notion of a �at map, see [Har77], III.9, and for more information on étale
and unrami�ed morphisms, see [BLR90], 2.2.

1For this notion, see [Vis05, Section 2.3]. Recall also that a site is just a category equipped with a
Grothendieck topology.
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An important property of the Zariski, étale and fpqc topology is that they are subcanonical
in the following sense: For every scheme T over S, the presheaf HomS(−, T ) on Sch /S is
actually a sheaf with respect to these three topologies. Furthermore, every Zariski open cover
is an étale open cover and every étale open cover is also an fpqc cover. Another important
property of these three topologies is that if Ui → X for i ∈ I are open covers, then also∐
i∈I U → X is an open cover. Thus it makes sense to de�ne that {Ui → X}i∈I is an open

cover if
∐
Ui → X is an open cover.

A stack can be thought of as a sheaf of groupoids with respect to a choice of Grothendieck
topology. Since taking pullback is usually only associative up to canonical isomorphism, one
has to use 2-categorical language to make this precise. Therefore, one usually takes another
route: The datum of a stack is a category X together with a functor F : X → C for a site
C. If F makes X into a category �bered in groupoids over C and X satis�es descent with
respect to the Grothendieck topology on C, X is called a stack over C. If C = Sch /S with
some topology, then we speak of a stack over S. For the precise de�nitions of these terms,
see [Góm01], Section 2. The (2-)category of stacks is the full (2-)subcategory of stacks of the
category of categories over Sch /S. One sometimes denotes the �ber of F over a scheme T
by X (T ).

De�nition 2.1.1. Let
C
F
��

D G // E
be a diagram of categories �bered over a common category G. The �ber product C ×E D is
de�ned as follows: An object in C×ED consists of a triple (c, d, f), where c ∈ Ob C, d ∈ ObD
and f : F (c) → G(d) is an isomorphism. A morphism from (c, d, f) to (c′, d′, f ′) consists of
two morphisms gC : c → c′ and gD : d → d′ such that f ′ ◦ F (gC) = G(gD) ◦ f . The �ber
functor to G is de�ned as the composition C ×E D → C → G and gives C ×E D the structure
of a �bered category again.

Example 2.1.2. For an arbitrary site C, the groupoid of sheaves on it forms a stack. More
precisely, de�ne a category X , where an object is a sheaf on C/U for some U ∈ C. A morphism
between (F , U) and (G, V ) consists of a morphism f : U → V in C and an isomorphism
F → f∗G. The �ber functor is given by (F , U) 7→ U . It can be easily checked that this is a
stack. Note that this is a general procedure producing out of a groupoid valued (2-)functor
a category �bered in groupoids, the Grothendieck construction (see also [Góm01, bottom of
p.8]).

Example 2.1.3. Let Sch /S be equipped with the fpqc topology. Consider the groupoid
valued (pre)sheaf on Sch /S given by U 7→ QCoh(U), the groupoid of quasi-coherent sheaves.
Then, its Grothendieck construction forms a fpqc stack (see, for example, [Vis05, Section
4.2]). Spelled out, this means, in particular, the following: Let f : Y → X be fpqc. Then a
quasi-coherent sheaf F on X is uniquely speci�ed by the sheaf f∗F on Y together with an
isomorphism pr∗1 f

∗F → pr∗2 f
∗F on Y ×X Y (satisfying a cocycle condition). One can use

these results to show that the category of quasi-coherent sheaves on some U is equivalent to
the category of those sheaves of O-modules on Sch /U in the fpqc-topology that have locally
a presentation

⊕
I O →

⊕
J O → F → 0 (see [Aut, 03DX]).

Let C be a site with an action of a group G, i.e., we have an action of G on the category
C preserving the notion of a cover. We de�ne G−C to be the category consisting of the same
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objects as C and, as morphisms, pairs (g, φ) : x → y, consisting of a g ∈ G and a morphism
φ : g ·x→ y in C. The composition is given by (h,Ψ)◦(g,Φ) = (hg,Ψ◦(h·Φ)). A morphism in
G−C is de�ned to be an open cover if the image under the map Mor(G−C)→ Mor(C), given
by (g, φ) 7→ φ, is an open cover. We have an (inclusion) functor i : C → G − C. The datum
of a sheaf F on G − C is equivalent to giving a sheaf F ′ on C together with isomorphisms
fg : F ′ → g∗F ′ such that i∗F = F ′ and fgh = fh ◦ fg (here g∗F ′ denotes the pullback of the
presheaf F ′ along the functor g : C → C). Sheaves on G−C are called G-equivariant sheaves
on C.

De�nition 2.1.4. For G a �nite group, an (étale) G-torsor over a scheme Y consists of an
étale cover X → Y with a G-action of X over Y such that the morphism

X ×G → X ×Y X
(x, g) 7→ (x, gx)

is an isomorphism. More generally, for G a group scheme, one considers fpqc covers X → Y
instead of étale covers and gets the notion of a G-torsor. Note that every G-torsor for G a
�nite group is also an étale G-torsor since being étale is fpqc local on the target by [Aut,
02VN].2

For X an étale G-torsor over Y and G �nite, we have a G-action on the site of open
sets Op(X) of X and OX gets the structure of a G-equivariant sheaf by the isomorphisms
O(U) →∼= OX(gU) = (g∗OX)(U) induced by the map g−1 : gU → U . An equivariant O-
module (i.e. a module on (G − Op(X),OX)) is called quasi-coherent if its underlying sheaf
is quasi-coherent and the category of equivariant quasi-coherent sheaves on X is denoted by
G − QCoh(X). One can check that the category of descent data for quasi-coherent sheaves
associated to the map X → Y is equivalent to G − QCoh(X) (see [BLR90, 6.2B] for a very
similar situation).

Corollary 2.1.5. For X an étale G-torsor over Y , we have an equivalence

G−QCoh(X) ' QCoh(Y ).

De�nition 2.1.6. Given a scheme (or more generally, a stack) X with a G-action (G an
algebraic group), de�ne a stack X//G as the �bered category, which associates to an U ∈
Sch /S the groupoid of G-torsors over U with a G-equivariant map into X. If X is a G-torsor
over a scheme Y , then X//G is isomorphic to Y (since X → Y is the �nal G-torsor with a
map to X).

2.2 Algebraic Stacks

In this section, we will again �x a scheme S and view Sch /S (equipped with some topology)
as base site.

To a scheme T over S, we can associate a stack over S by taking X := Sch /T and
de�ning the �ber functor X → Sch /S by F (Y → T ) = F (Y → T → S).3 This embedding
from Sch/S to stacks over S is fully faithful and a stack equivalent to an object in the image
is called representable. For every stack (X , F : X → Sch /S) over S, there is an equivalence

2Here, a property P of morphisms is called fpqc-local on the target if the following holds: Suppose f : X →
Y is a morphism and U → Y an fpqc cover such that fU : U ×Y X → U has P , then f has P as well.

3In the sheaf of groupoid picture, this corresponds to viewing the sheaf of sets represented by T as a sheaf
of groupoids (via the usual embedding of the category of sets into the category of groupoids).
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of categories between morphisms between T and X over S and the �ber of F over T by
the 2-categorical Yoneda lemma. Thus, we will often identify an object X of X with a map
F (X)→ X .

For X and Y stacks, a morphism Y → X is called representable if for every morphism
U → X over S (with U ∈ Sch /S), the �ber product U ×X Y is representable. If the diagonal
X → X ×SX of a stack is representable, every morphism from a scheme to X is representable
(see [Góm01], 2.19).

Let P be a property of morphisms betweeen schemes which is local on the target and
stable under arbitrary base changes (such as separated, a�ne, proper, quasi-compact, locally
of �nite type, �at, smooth, étale, surjective, ...). Then we say that a morphism f : Y → X
has P if it is representable and for every morphism U → X the pullback U ×X Y → U has
P .

Just as a scheme is not just a sheaf of sets on Aff /S (where Aff denotes the category of
a�ne schemes, or, equivalently, the opposite category of commutative rings), but carries a
kind of atlas by a�ne schemes, we have to impose similar conditions on stacks to really use
the full power of algebraic geometry. In addition, one usually wants some compactness and
separatedness since it is technically more convenient. There are di�erent notions of algebraic
stacks in the literature, which are good for di�erent purposes. We present two of the most
common ones:

De�nition 2.2.1 (Deligne-Mumford stack). Let (Sch/S) be equipped with the étale topology
and let X be a stack over S. Then we call X a Deligne-Mumford stack if the following
conditions hold:

1. The diagonal ∆: X → X ×S X is representable, quasi-compact and separated.

2. There exists a scheme U (called atlas) with an étale surjective morphism u : U → X .
De�nition 2.2.2 (Algebraic Stack). Let (Sch/S) be equipped with the fpqc topology and
let X be a stack over S. Then we call X an algebraic stack if the following conditions hold:

1. The diagonal ∆: X → X ×S X is representable and a�ne.

2. There is an a�ne scheme U (called atlas) with an fpqc morphism u : U → X .
This notion corresponds to an algebraic stack in the sense of Goerss, Naumann, . . . and

adapted to the needs of homotopy theorists. Algebraic geometers usually use the word
�algebraic stack� for an Artin stack. We will not recall the general notion of an Artin stack
(but see [LMB00, 4.1, 10.1] or [Góm01, 2.22]) since all our examples of Artin stacks �t in the
following two special cases:

• Every Deligne�Mumford stack is an Artin stack.

• Every algebraic stack in our sense where u is locally of �nite type is also an Artin stack
(see [LMB00], 10.1).

Remark 2.2.3. If S = SpecR is a�ne, then the atlas of an algebraic stack U → X is an a�ne
map. Indeed, for V → X a map over S from an a�ne scheme V , the square

U ×X V //

��

X
∆
��

U ×S V // X ×S X

is cartesian (see [Góm01, 2.19]). Since the diagonal ∆ is a�ne, so is U ×X V → U ×S V .
Since U ×S V is a�ne, U ×X V is as well. This implies that U → X is a�ne.
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Example 2.2.4. Separated schemes are examples of both Deligne�Mumford and algebraic
stacks. Indeed, the diagonal in a separated scheme is a closed immersion, so in particular
quasi-compact, separated and a�ne. An arbitrary cover by a�ne opens provides an atlas.

Let (A,Γ) be a Hopf algebroid, i.e., a cogroupoid object in rings such that Γ is a �at
A-module. By taking Spec, we get a groupoid object (SpecA,Spec Γ) in (a�ne) schemes,
representing a groupoid valued functor on schemes (a �preasheaf of groupoids�). There is a
procedure associating to a presheaf of groupoids a stack, called stacki�cation (analogous to
shea��cation) ([LMB00, Lemme 3.2]). Stacki�cation turns the presheaf of groupoids above
into a stack X together with a faithfully �at map u : SpecA → X , which makes X into
an algebraic stack. On the other hand, given an algebraic stack X and an faithfully �at
map SpecA → X , we can form the stack Y := SpecA ×X SpecA. Since SpecA → X is
representable and a�ne, Y is an a�ne scheme of the form Spec Γ and one can write down
the structure maps of a Hopf algebroid. As described in detail in [Nau07], Section 3, this
de�nes an equivalence (of 2-categories) between Hopf algebroids and algebraic stacks with
chosen atlas.

2.3 Quasi-Coherent Sheaves

In this section, we want to discuss the category of quasi-coherent sheaves associated to a
stack and the cohomology of quasi-coherent sheaves. We start in the setting of an arbitrary
ringed site (C,O), i.e., a site equipped with a sheaf of rings. Note that we can view O as a
monoid in the category of abelian sheaves on C (i.e. sheaves of abelian groups).

De�nition 2.3.1. An O-module is an O-module in the category of abelian sheaves on C.
We will denote the category of O-modules by Mod(O) or O -mod.

De�nition 2.3.2. An O-module F is called quasi-coherent (or cartesian) if for any morphism
f : U → V in C, the map F(V ) ⊗O(V ) O(U) → F(U) is an isomorphism.4 We call an O-
module F coherent if there is for every U ∈ C a cover V → U with a surjective map
On|V → F|V for some n ∈ N.5

De�nition 2.3.3. An O-module F is a vector bundle if for any U ∈ Ob C there exists a cover
{V → U} of U such that F|C/V is a free O-module of �nite rank. It is called a line bundle if
it is a vector bundle of rank 1.

Example 2.3.4. A quasi-coherent sheaf on Sch /S is locally free in the Zariski topology i� it
is locally free in the étale topology i� it is locally free in the fpqc topology. Indeed, faithfully
�at maps of rings detect projective modules and the category of projective modules over a
ring A is equivalent to the category of Zariski locally free quasi-coherent sheaves on SpecA.
See [Aut, 05B2].

To de�ne quasi-coherent sheaves on a stack, we have to associate a site to a stack. So,
let (X , F : X → Sch /S) be a stack (or, more generally, a �bered category) for a topology τ
on Sch /S. Then we put the following topology on X : A morphism f : X → Y is a cover i�
it is strongly cartesian6 and F (f) : F (X)→ F (Y ) is a cover in τ . We denote this site by Xτ
or just by X if the topology is clear from the context.

4This is probably non-standard terminology. Often an O-module is rather called quasi-coherent if it has
locally a presentation. But for our purposes, the given de�nition seems to be the most suitable one. In the
case of algebraic stacks they agree anyhow, as shown later.

5This will give the right notion of coherent in noetherian situations, but it is not a good notion in a
non-noetherian context. We will use it only in a noetherian context.

6This means roughly that X is a kind of pullback of Y along F (X)→ F (Y ) - see [Vis05, Section 3.1] for
a precise de�nition
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Remark 2.3.5. We could (for any choice of τ �ner than the Zariski topology) also restrict just
to (disjoint unions of) a�ne schemes over S and get an equivalent category of sheaves since
every scheme is covered by a�ne schemes.

De�nition 2.3.6. De�ne a presheaf OX on X by OX (U) = Γ(OF (U)). This is a sheaf of
rings in the fpqc-topology by Example 2.1.3 and is called the structure sheaf of X . Thus
(X ,OX ) gets the structure of a ringed site.

De�nition 2.3.7. For a stack X , a quasi-coherent sheaf on X is a quasi-coherent sheaf on
the associated ringed site (X ,OX ). We denote the category of quasi-coherent sheaves on X
by QCoh(X ).

We have the following equivalent characterization of quasi-coherent sheaves:

Proposition 2.3.8. An OX -module F (in the fpqc topology) is quasi-coherent i� it has a
local presentation: Given X ∈ X , there is a fpqc-cover p : U → X such that the associated
sheaf F|U on X/U admits an exact sequence⊕

I

OX/U →
⊕
J

OX/U → F|U → 0.

If X is a Deligne�Mumford stack, we get an equivalent category of quasi-coherent sheaves
if we substitute the fpqc topology by the étale topology.

Proof. The �rst statement follows by [Aut, 57.11.3, 06WI] and [Aut, 57.11.5, 06WK]. Note
that they use the fppf-topology instead of the fpqc-topology, but this is caused by their
very strict set-theoretical policy � their results rely at the end only on fpqc-descent. Their
Lemma 57.11.5 implies also that their de�nition of a quasi-coherent sheaf is equivalent to the
de�nition of [LMB00]. The last statement of our proposition is [LMB00], 13.2.3.

Example 2.3.9. The structure sheafOX is quasi-coherent. Furthermore, every vector bundle
is quasi-coherent. Both are even coherent.

Remark 2.3.10. An extension of two vector bundles on an algebraic or Deligne�Mumford stack
in the category of quasi-coherent sheaves is a vector bundle again. Indeed, the extension splits
locally since locally the stack is an a�ne scheme of the form SpecA, the category of quasi-
coherent sheaves on (the over-site) X/ SpecA is equivalent to the category of A-modules
(using Example 2.1.3) and vector bundles correspond to projective modules.

Remark 2.3.11. Sometimes, it is convenient to evaluate a quasi-coherent OX -module F not
only on a scheme over X , but also on a stack Y over X . We de�ne F(Y) as HomPre(X )(hY ,F),
where Pre(X ) denotes the category of presheaves on X and hY is the presheaf de�ned by
hY(U) = HomX (Y, F (U)), where F is the �ber functor X → Sch /S. In particular, the global
sections functor Γ(F) = F(X ) is given as HomPre(X )(∗,F) for ∗ being the �nal presheaf.

If f : X → Y is a (representable) morphism of stacks, there are adjoint functors

Mod(OY)
f∗ //Mod(OX ).
f∗
oo

For F ∈ OX -mod, the OY -module f∗F is de�ned by f∗F(U) := F(U ×Y X ) for a map
U → Y. We will not de�ne f∗ in general, but for f fpqc and G ∈ OY -mod, it is de�ned by

f∗G(U → X ) := G(U → X → Y).

For the behavior of these adjoint functors on quasi-coherent sheaf, we cite the following
proposition:
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Proposition 2.3.12. Let f : X → Y be a morphism of stacks. Then:

1. The functor f∗ : Mod(OY)→ Mod(OX ) restricts to a functor f∗ : QCoh(Y)→ QCoh(X ).

2. If f is quasi-compact and quasi-separated, then the functor f∗ : QCoh(Y)→ QCoh(X )
has a right adjoint f ′∗ : QCoh(Y) → QCoh(X ). For quasi-coherent sheaves where f∗
of the underlying module sheaf is already quasi-coherent, f ′∗ coincides with f∗ of the
underlying module sheaf.

3. For X ,Y Artin stacks and f quasi-compact, f∗ preserves quasi-coherence.

Proof. 1. This is [Aut, 03DO(5)].

2. This is [Aut, 077A].

3. This is [LMB00, 13.2.6(iii)].

Lemma 2.3.13. Let f : X → Y be an a�ne fpqc morphism and F and G be quasi-coherent
OY-modules. Then

f∗f
∗(F)⊗OY G ∼= f∗f

∗(F ⊗OY G).

Proof. The tensor product is de�ned as the shea��cation of the (naive) tensor product ⊗naive
of presheaves of OY -modules. We will �rst show an isomorphism on the level of (naive) tensor
products of presheaves. Let U → Y be a morphism. Then the natural morphism

OY(U ×Y X )⊗OY (U) G(U)→ G(U ×Y X ).

is an isomorphism (by the de�nition of quasi-coherent sheaves).
This induces natural isomorphisms

(f∗f
∗(F)⊗naiveOY G)(U) = F(U ×Y X )⊗OY (U) G(U)

∼= F(U ×Y X )⊗OY (U×YX ) OY(U ×Y X )⊗OY (U) G(U)
∼= F(U ×Y X )⊗OY (U×YX ) G(U ×Y X )

= f∗f
∗(F ⊗naiveOY G)(U).

Thus, we get an isomorphism f∗f
∗(F)⊗naiveOY G → f∗f

∗(F⊗naiveOY G) (and also an isomorphism
after shea��cation). Hence, we have a diagram

f∗f
∗ ⊗naiveOY G //

∼=
��

f∗f
∗(F)⊗OY G

∼=
��

f∗f
∗(F ⊗naiveOY G) //

��

(f∗f
∗(F ⊗naiveOY G))†

uuk k k k k k k

f∗f
∗(F ⊗OY G)

where ()† denotes shea��cation. Since on a�ne schemes the naive and the sheafy tensor
product agree, the arrow pointing downwards-left is an isomorphism and the lemma follows.
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A quasi-coherent sheaf F on a stack X is, in particular, a sheaf of abelian groups. As
on any site, the category of abelian sheaves has enough injectives (see [Aut, 01DP]) and we
de�ne H i(X ;F) to be the i-th right derived functor of the global sections functor

F 7→ Γ(F) = F(X )

(see Remark 2.3.11 for the de�nition) from abelian sheaves to abelian groups. By [Aut,
01DU], the category of OX -modules has also enough injectives and the derived functor of the
global sections in OX -mod agrees with the cohomology of the underlying abelian sheaves by
[Aut, 03FD].

For two OX -modules F and G, we de�ne a sheaf HomOX (F ,G) by

U 7→ HomOX/U (F|X/U ,G|X/U )

and with structure morphisms given by restriction. For F and G quasi-coherent, we get
an isomorphism to the (pre-)sheaf U 7→ HomOX (U)(F(U),G(U)) on all a�ne schemes by
evaluating on U . We also �x the notation F̌ for the dual HomOX (F ,OX ) of an OX -module
F .

For F an OX -module, we denote the value of the i-th right derived functor of

HomOX (F ,−−)

on an OX -module G by ExtiOX (F ,G). This agrees with the shea��cation of the presheaf
U 7→ ExtiOX |U (F|U ,GU ).

For an algebraic stack X and an atlas u : U → X , the category of quasi-coherent
sheaves on X is equivalent to the category of comodules over the associated Hopf alge-
broid (A,Γ) ([Nau07], 3.4). The global sections functor Γ: QCoh(X ) → Ab corresponds to
Hom(A,Γ) -comod(A,−) and thus

(RiQCohΓ)(F) ∼= Ext(A,Γ) -comod(A,Γ(u∗F)).

So, the question becomes interesting if (RiQCohΓ)(F) ∼= H i(X ;F).
This isomorphism seems not to be true for an arbitrary scheme, only for noetherian or

quasi-compact and semi-separated ones (see [TT90, Appendix B] for a discussion). For our
notion of algebraic stack, one can adapt the argument of [TT90, Appendix B] to see that we
have indeed RiQCohΓ(F) ∼= H i(X ;F). Note that for E a vector bundle and F a quasi-coherent
sheaf, this implies ExtnQCoh(E ,F) ∼= Extn(E ,F) by the Grothendieck spectral sequence and
the fact that all Ext-sheaves vanish. In particular, every extension between two vector bundles
in the category of O-modules is isomorphic to a vector bundle (and hence a vector bundle)
by Remark 2.3.10 (since the Ext1-groups agree).

The correspondence between quasi-coherent sheaves on algebraic stacks and comodules
yields another instance of Galois descent: Let SpecR→ X be a Gm-torsor7. Then SpecR×X
SpecR ' SpecR[u±1]. As the datum of an (R,R[u±1])-comodule is equivalent to a graded
R-module, QCoh(X ) is equivalent to the category of graded R-modules. The same argumen-
tation works for other a�ne group schemes to give other instances Galois descent for stacks.
For example, consider a �nite group G. We can view G as the a�ne group scheme SpecAG
where AG is the Hopf algebra de�ned as follows: As a ring, AG = Map(G,Z). Note that

7This is essentially de�ned as in the scheme case, but we will be more precise about this de�nition in
Section 2.6.
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AG ⊗ AG ∼= Map(G × G,Z). Thus, we can structure maps as follows: (∆f)(g, h) = f(gh),
(εf)(g) = f(e) and (af)(g) = f(g−1), where f ∈ AG, g, h ∈ G and ∆, ε and a denote diag-
onal, counit and antipode. It is easy to see that SpecAG represents the functor T 7→ Gπ0T ,
where π0T denotes the set of connected components of T .

If SpecR→ X is aG-torsor, then the category of quasi-coherent sheaves on X is equivalent
to (R,R⊗AG)-comodules. As a ring, this Hopf algebroid is isomorphic to Map(G,R). The
left unit ηl : R → Map(G,R) sends r to (ηl(r))(e) = r, (ηl(r))(g) = 0, for g 6= e. The right
unit ηr : R→ Map(G,R) sends r to (ηr(r))(g) = g(r). The counit is the evaluation at e and
the diagonal ∆: Map(G,R)→ Map(G×G,R) is again given by (∆f)(g, h) = f(g, h). Given
a R-module M with twisted G-action, we associate to it the right comodule with structure
map M → M ⊗R Map(G,R) ∼= map(G,M), m 7→ (g 7→ g(m)). It is easy to see that
the category of comodules over this Hopf algebroid is equivalent to R-modules with twisted
G-action.

If the Hopf algebroid (A,Γ) is graded, we can de�ne graded cohomology groups of (A,Γ)
by Hq

k((A,Γ)) := ExtqΓ(A,A[k]). Graded comodules over (A,Γ) correspond to ungraded co-
modules over (A,Γ[u±1]). The comodule A[1] corresponds to a line bundle ω on the algebraic
stack X associated to (A,Γ[u±1]); more concretely, one has a descent datum consisting of the
isomorphism Γ[u±1] ∼= ω(Spec Γ[u±1])→ ω(Spec Γ[u±1]) ∼= Γ[u±1] given by multiplication by
u. The graded cohomology of the Hopf algebroid is isomorphic to H∗(X ;ω⊗∗), which is also
called the graded cohomology of X . Tensor products F ⊗ ωk are sometimes called twists of
F . We will often use the notation Γk(F) := Γ(F ⊗ ωk) and H i

k(X ;F) := H i(X ;F ⊗ ωk).

2.4 The Moduli Stack of Elliptic Curves

Elliptic curves over the complex numbers have a long history with its roots lying in the
study of elliptic integrals. For our purposes, we have to consider elliptic curves not only over
�elds, but over general rings (or even general base schemes). The modern algebraic geometry
de�nition is the following.

De�nition 2.4.1. An elliptic curve over a scheme S is a proper smooth morphism p : E → S
together with a section e : S → E such that for every morphism x : Spec k → S with k an
algebraically closed �eld, the pullback x∗E is a connected curve of genus 1.

Note that this data induces on E the structure of an abelian group scheme over S (see
[KM85], 2.1.2). Furthermore, we get a line bundle ω := p∗Ω

1
E/S
∼= e∗Ω1

E/S on S. If S =

SpecR and ω is trivial (what is both true locally in the Zariski topology), we can choose
elements a1, a2, a3, a4, a6 ∈ R such that E is the closure in P2

R of the a�ne subscheme of A2
R

given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (see [KM85], 2.2).

If 2 is invertible, we can simplify to the form

y2 = 4x3 + b2x
2 + 2b4x+ b6

for b2, b4, b6 ∈ R. If 2 and 3 are invertible, we can even simplify to

y2 = x2 − 27c4x− 54c6

for c4, c6 ∈ R. These are the forms of the equations that can be found in [Sil09], III.1, and
the bi are polynomials in the ai and the ci are polynomials in the bi, both with integral
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coe�cients. There is a polynomial ∆ in the ai such that 1728∆ = c3
4 − c2

6 and the equation
de�nes an elliptic curve i� ∆ ∈ R∗.

The moduli stack of elliptic curves M classi�es the functor from schemes to groupoids
which sends a scheme S to the groupoid of elliptic curves over S with isomorphisms between
them. As usual, we obtain it by a Grothendieck construction: An object ofM is an elliptic
curve E over some scheme S. A morphism from (p : E → S, e) to (q : E′ → S′, e′) consists of
a morphism f : S → S′ and an isomorphism F : E → f∗E′ over and under S. This de�nes
a stack in the fpqc topology (see [DR73, III.2.1]).

We get a map SpecA = SpecZ[a1, a2, a3, a4, a6,∆
−1] →M since a morphism SpecR →

SpecA corresponds to elements a1, a2, a3, a4, a6 ∈ R with ∆ invertible and we can asso-
ciate to this an elliptic curve as above. By the de�nition of the �ber product of stacks,
SpecA ×M SpecA is the stack classifying automorphisms of elliptic curves with given co-
ordinate presentation; this is equivalent to the scheme SpecA[r, s, t, u±1] (this is essentially
contained in [Sil09, III.1]). This shows that SpecA →M is a �at a�ne map (since locally,
every morphism to M factors over SpecA);8 thus M is algebraic and we get an associated
Hopf algebroid (A,Γ). The associated graded Hopf algebroid agrees with the Weierstrass
Hopf algebroid (Z[a1, a2, a3, a4, a6],Z[a1, a2, a3, a4, a6][r, s, t]) in [Bau08] after inverting ∆.
Here, by the usual correspondence, an element a ∈ A is homogeneous of degree k if the image
of the coaction map in A ⊗ Γ is homogeneous in u of degree −k. As might be expected,
|ai| = i. Similarly, the bi and ci get natural degrees with |bi| = i and |ci| = i.

Denote by MR the �ber product M×SpecZ SpecR or, equivalently, the moduli stack
of elliptic curves over SpecR. This becomes particularly simple if 1

2 ,
1
3 ∈ R. Then MR '

SpecR[c4, c6,∆
−1]//Gm since in this case the automorphisms of the Weierstrass form are

given just by the transformation x 7→ u2x, y 7→ u3y. Here Gm denotes again the group
scheme SpecZ[t±1]. In particular, over a �eld K of characteristic not 2 or 3, the stackMK

embeds into the weighted projective stack P(4, 6) = (SpecK[c4, c6]− {0}) //Gm.

For many purposes, it is nice to have a compacti�ed moduli stack. IfM itself was proper
over SpecZ, the following would be true (by the valuative criterion for properness ([Góm01,
2.39]): Given a (discrete) valuation ring A with quotient �eld K and an elliptic curve E
over K, there is a �nite extension K ′ of K such that there is an elliptic curve E′ over the
integral closure A′ of A in K ′ such that E′K′

∼= EK′ . This is only true if E has potentially
good reduction. In general, it is only possible to de�ne E′ to be a group scheme with a nodal
singularity. Roughly, generalized elliptic curves are elliptic curves with nodal singularities.
Since this does not lie in our main line of study, we won't de�ne here precisely what generalized
elliptic curves and the compacti�ed moduli stack of elliptic curvesM are. We only remark
that we use the model M1 of [DR73, IV.2.4] (see also [Sto11, Section 4]).

Theorem 2.4.2 ([DR73], III.2.6; [Con07], 3.1.7). M and M are Deligne�Mumford stacks
andM is proper over SpecZ.

2.5 Level Structures

There are several variations of moduli stacks of elliptic curve, based on the notion of a level
structure. We will give the de�nition and a few simple properties and investigate then the

8More precisely, the argument is as follows: If a morphism is �at, can be checked on some fpqc open cover.
Choose such an fpqc cover SpecB →M, factoring over SpecA→M. Thus,

SpecB ×M SpecA ' SpecB ×SpecA SpecA×M SpecA ' SpecB[r, s, t, u±1.

The map SpecB[r, s, t, u±1 → SpecB is �at.
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moduli stacks of elliptic curves with level structure of niveau 2 and 4 in detail.

An elliptic curve E over S is, in particular, an abelian group scheme over S and we can
consider (for given n) the �nite sub group scheme E[n] of n-torsion points.

De�nition 2.5.1. Let E/S be an elliptic curve. A level structure of niveau n (or simply
level-n-structure) is an isomorphism S× (Z/n)2 → E[n].9 The moduli stack of elliptic curves
with level-n-structure is denoted byM(n).

One can also just choose a point of exact order n (i.e. �x an injection S × Z/n ↪→ E[n]),
without trivializing the whole n-torsion, which givesM1(n). For n = 2, this is the same as
choosing a sub group scheme of the torsion of order 2; therefore, M1(2) is also often called
M0(2).

We have mapsM(n) →M andM1(n) →M, which are étale and surjective (therefore
étale covers) if we invert n. The surjectivity can be seen by the well-known fact that over an
algebraically closed �eld of characteristic not dividing n, the n-torsion of an elliptic curve is
isomorphic to (Z/n)2.

Let now R be a ring which contains 1
2 . Then every elliptic curve can be represented by an

equation of the form y2 = 4x3 +b2x
2 +2b4x+b6 (in P2

R). A point of exact order 2 corresponds
to a point with y = 0 (see also [Beh06], 1.3.2). Therefore, a level-structure of niveau 2 gives a
splitting 4x3 +b2x

2 +2b4x+b6 = 4(x−e1)(x−e2)(x−e3). By a coordinate change x 7→ x+e3,
we get an equivalent form 4(x− (e1−e3))(x− (e2−e3))x. Set x2 := e1−e3 and y2 := e2−e3.
One can see that (up to scaling) these two values are determined by the elliptic curve with
level-2-structure uniquely � therefore, we get that M(2)[1

2 ] = SpecZ[1
2 ][x2, y2,∆

−1]//Gm,
where ∆ is the image of ∆ ∈ H0

∗ (M;O) under the map H0
∗ (M;O) → H0

∗ (M(2);O) (see
[Sto11, Section 7] for more details). As usual, a Gm-action corresponds to gradings and
|x2| = |y2| = |b2| = 2.

By [Beh06, Section 1.3.2], one gets a similarlyM0(2) ' SpecZ[1
2 ][b2, b4,∆

−1]//Gm.

As before, we can associate to every elliptic curve p : E → S, we can associate the line
bundle p∗Ω1

E/S
∼= s∗Ω1

E/S , the direct image of the di�erentials. This yields a line bundle ω

onM. This line bundle generates the group of all line bundles and satis�es ω12 ∼= OM. The
isomorphism is given by the unit ∆ ∈ H0

12(M;O), where here and in the following H i
j(M;F)

denotesH i(M;F⊗ωj). We want to remark that, indeed, our line ω corresponds to A[1] in the
Weierstraÿ Hopf algebroid: There is a basis of ω over SpecA given by the invariant di�eren-
tial ω0 = dx

2y+a1x+a3
. It is an easy computation that f(r, s, t, u)∗ω0 = uω0, where f(r, s, t, u)

denotes the automorphism of the elliptic curve corresponding to r, s, t, u ∈ A (see also [Rez02,
Proposition 9.4]). Thus ω0 equals u−1f(r, s, t, u)∗ω0 and thus ω corresponds to A[1]. Simi-
larly, ω corresponds onM(2) ' SpecZ[1

2 ][x2, y2,∆
−1] to the shift Z[1

2 ][x2, y2,∆
−1][1] and we

have also the analogous statement forM0(2). In particular, H0
∗ (M(2);O) ∼= Z[1

2 ][x2, y2,∆
−1]

and H0
∗ (M0(2);O) = Z[1

2 ][b2, b4,∆
−1].

We localize now (implicitly) at 3. We get a map H0
∗ (M;O) → H0

∗ (M(2);O) as above.
The source is called the ring of modular forms and is multiplicatively generated by c4,c6 and
∆±1 with the relation 1728∆ = c3

4 − c2
6. The target is, as indicated above, isomorphic to

Z(3)[x2, y2,∆
−1]. What is the image of c4 and c6?

9This does not exist for every elliptic curve; for example, never if S = SpecFp and p|n.
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There are formulas (which can be found in [Sil09], III.1):

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

These can be seen as equations of functions, which assign to an elliptic curve with chosen
coordinates b2, b4 and b6 the quantities c4 and c6. In our elliptic curve with level-2-structure,
we have:

b2 = −4(x2 + y2)

b4 = 2x2y2

b6 = 0

Therefore, we get

c4 = 16(x2 + y2)2 − 48x2y2 = 16(x2
2 + y2

2 − x2y2)

c6 = 64(x2 + y2)3 − 288x2y2(x2 + y2) = 64(x3
2 + y3

2)− 96(x2
2y2 + x2y

2
2)

Here, we denote the images of c4 and c6 in H0
∗ (M(2);O) by the same name. If we reduce

modulo 3, the formulas become much simpler and we have:

c4 = 16(x2 + y2)2

c6 = 64(x2 + y2)3

In general, we have the following formula:

∆ = −27b26 + (9b2b4 −
1

4
b32)b6 − 8b34 +

1

4
b22b

2
4 [Sil09, III.1]

This gives in terms of x2 and y2:

∆ =
1

4
b24(b22 − 32b4) = x2

2y
2
2(16(x2 + y2)2 − 64x2y2) = 16x2

2y
2
2(x2 − y2)2

There is a group action S3 onM(2) as a special case of the general action of GLn(Z/n)
onM(n), acting on the trivialization of the n-torsion. The GL2(Z/2) ∼= S3-action onM(2)
permutes the e1, e2 and e3. Therefore, we get formulas for the group action as follows:10

(1 2 3) : x2 7→ x2, y2 7→ y2

(2 1 3) : x2 7→ y2, y2 7→ x2

(3 2 1) : x2 7→ −x2, y2 7→ y2 − x2

(1 3 2) : x2 7→ x2 − y2, y2 7→ −y2

(2 3 1) : x2 7→ y2 − x2, y2 7→ −x2

(3 1 2) : x2 7→ −y2, y2 7→ x2 − y2

These formulas will be used in some way in Sections 8.2 and 8.4.

As a last point, we want to studyM(4), based on [Shi73]. In [Shi73], the de�nition of a
level structure of niveau n is slightly di�erent: In general, we have for every elliptic curve E
over a base scheme S, a pairing

en : E[n]× E[n]→ µn

10For the notation for elements of S3, see the list of notation B
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where the latter is the sub group scheme µn ⊂ S × Gm of n-th roots of unity over S.
The pairing en is called the Weil pairing and is alternating and bilinear in the sense that
en(P, P ) = 0 and en(kP,Q) = en(P, kQ) = (en(P,Q))k for k ∈ Z (see [KM85, Section 2.8]).
A level structure of niveau n yields two points P and Q of order n as the images of (1, 0)
and (0, 1) under the map (Z/n)2 → E[n]. Thus, we can associate to a level structure a n-th
root of unity en(P,Q), giving a morphismM(n)→ µn, where µn ∼= Z[t]/(tn− 1). The image
en(P,Q) has to be primitive since en is a perfect pairing in the sense that en(R,S) = 1 for
all S ∈ E[n] implies R = 0 (see [KM85, 2.8.5.1]). A Shioda level structure of niveau n11 is a
usual level structure of niveau n such that en(P,Q) = ζ for ζ a chosen primitive n-th root
of unity. The moduli problem of elliptic curves with Shioda level structure of niveau 4 (for
ζ = i) is classi�ed by SpecA for A = Z[1

2 , i][σ, σ
−1(σ4 − 1)−1] (see [Shi73], Theorem 1 and

the Remark after it). Since µ4 over Z[1
2 , i] consists as a scheme just of 4 copies of SpecZ[1

2 , i]
(since Z[1

2 , i][t]/(t− 1)(t+ 1)(t− i)(t+ i) decomposes into

Z[
1

2
, i][t]/(t− 1)× Z[

1

2
, i][t]/(t+ 1)× Z[

1

2
, i][t]/(t− i)× Z[

1

2
, i][t]/(t+ i)

by the Chinese remainder theorem, see [Lan02, II.2.2]), the stackM(4) is a disjoint union of
the �bers over i and −i of the mapM(4)→ µ4 × SpecZ[1

2 , i] above.

Consider the subgroup G ⊂ GL2(Z/4) given by matrices of the form

(
1 + 2a 2b

2c 1 + 2d

)
.

This is a normal subgroup isomorphic to (C2)4 and equal to the kernel of the mod 2 reduction
map GL2(Z/4)→ GL2(Z/2). The group G operates on the set of all level-4-structures (P,Q)
inducing the same level-2-structure (2P, 2Q). This gives a G-action on M(4) over M(2).
Concretely, the operation is given by

(P,Q) 7→ (P + 2aP + 2bQ,Q+ 2cP + 2dQ).

Thus, we have involutions ã, b̃, c̃ and d̃ acting onM(4) corresponding to(
−1 0
0 1

)
,

(
1 2
0 1

)
,

(
1 0
2 1

)
respectively

(
1 0
0 −1

)
.

The involution ã sends (P,Q) to (−P,Q). Since en(−P,Q) = en(P,Q)−1, the involution ã
permutes the two components ofM(4). Thus,M(4) ' SpecA

∐
SpecA. The involution ãd̃

(sending (P,Q) to (−P,−Q)) corresponds to the identity on SpecA
∐

SpecA since the level
structures are isomorphic (via [−1] : E → E). The involutions b̃ and c̃ induce the involutions
σ 7→ 1

σ and σ 7→ − 1
σ respectively on A by [Shi73], Proposition 2.

We have for zb = σ− 1
σ that b̃(zb) = −zb and c̃(zb) = zb. The element zb = 1

σ (σ2− 1) is a
unit in A. Hence, zb· : A→ A is an isomorphism and has the e�ect on the G-action that the
b̃-part is twisted by sign. Similarly, for zc = σ+ 1

σ , we get that zc· : A→ A twists (only) the
c̃-action by sign. In summary, A is G-equivariantly isomorphic to A with either the b̃-action
or the c̃-action or both twisted by sign.

2.6 Galois Coverings of Stacks

In this section, we will investigate the notion of a Galois covering of a stack in some detail.
Let F : Y → X be a morphism of categories �bered over the site of schemes over a base

scheme S. For H a group (scheme), the easiest notion of an H-action of Y over X is an

11This is not standard terminology.
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H-action on Y in the over-category over X . This notion is too strict for some purposes (e.g.,
in the context of formal groups to be covered in Section 2.8). A possible de�nition is the
following:

De�nition 2.6.1. LetH be a group scheme over S; we denote the associated �bered category
with the same letter. Denote by EH the category (�bered over Sch /S) which associates to
each T over S the groupoid with the same objects as H(T ), but with exactly one morphism
between each two objects.

AnH-action on Y over X is given by the following data: First, a 1-morphism a : H×Y →
Y satisfying the usual axioms of an action. This induces a 1-morphism H → Fun(Y,X ) by
the action on F , where Fun(Y,X )(T ) = Fun(Y(T ),X (T )). The second datum is an extension
of this morphism to a morphism EH → Fun(Y,X ).

More concretely, for Y ∈ Y(T ), h ∈ H(T ), the second datum gives an isomorphism

F (Y )
αY,h−−−→ F (hY ) satisfying various compatibility conditions. We say that the action is

strictly over X if all αY,h are identity morphisms.

Example 2.6.2. The scheme SpecC can be considered as the �bered category over Sch /R
sending an R-scheme X to the set of points in x ∈ X(C). Let P be the �bered category
over Sch /R sending an R-scheme X to the groupoid of C-schemes isomorphic to XC over
R together with a chosen point in Y (C). We have an morphism F : SpecC → P, with
F (X,x) = (XC, x).

The scheme SpecC has a C2-action by complex conjugation. For t, the generator of C2, we
have furthermore an isomorphism F (X,x) → F (t(X,x)) given by the complex conjugation
XC → XC. This de�nes a C2-action of SpecC over P.

De�nition 2.6.3. For a group scheme H over S, a morphism F : Y → X of stacks is an
H-Galois covering (or, equivalently, gives Y the structure of an H-torsor over X ) if F is
an fpqc morphism and Y is equipped with an H-action such that the following morphism
ΨY : H ×Y → Y ×X Y is an equivalence of stacks: Let T be a scheme over S and Y ∈ Y(T )
and h ∈ H(T ). Then we associate to (h, Y ) the triple (Y, hY, αY,h), where the latter is the
isomorphism from F (Y ) to F (hY ) described above.12 Note that if H is a �nite group, then
F is automatically étale since being étale is fpqc-local on the target by [Aut, 02VN].

Example 2.6.4. Let X be a scheme with a G-action. Recall that X//G is the stack clas-
sifying G-torsors with equivariant maps to X. Given a morphism Y → X, then the mor-
phism X → X//G sends it to the trivial G-torsor Y × G together with the map Y × G →
X × G → X (the last map being the action of G). For every g ∈ G, we have a morphism
αg : = idY ×(·g) : Y × G → Y × G of G-torsors, de�ning an action of G on X over X//G
in the sense above. To see that X → X//G is a G-torsor note that X is G-equivariantly
equivalent over X//G to X̃, the stack of trivialized G-torsors with an equivariant map to X.
Since two trivializations of a G-torsor over Y di�er by an element of G(Y ), the claim follows.

Construction 2.6.5. Let F : Y → X be an H-Galois covering. We have a natural trans-
formation γY : F pr1 → F pr2 of functors Y ×X Y → X given by the isomorphism in the
de�nition in the �ber product. For F a quasi-coherent sheaf on X , this de�nes an isomor-
phism γY∗ : pr∗1 F

∗F → pr∗2 F
∗F . We have the identities pr1 ◦ΨY = p1 and pr2 ◦ΨY = a as

morphisms Y×H → Y, where p1is the projection on the �rst factor and a denotes the action
map. Thus, we get an induced map γY∗ : p∗1F

∗F → a∗F ∗F . In particular, if h ∈ H(Y), we get

12Recall for that purpose that the �ber product Y ×X Y is de�ned to be the category of triples (Y1, Y2, f),
where Y1 and Y2 are objects in Y and f : F (Y1) → F (Y2) is an isomorphism. A morphism of such triples
(Y1, Y2, f) and (Y ′1 , Y

′
2 , f
′) consists of φ1 : Y1 → Y ′1 and φ2 : Y2 → Y ′2 such that f ′ ◦ F (φ1) = F (φ2) ◦ f .



29

an isomorphism F ∗F(Y) → h∗F ∗F(Y), de�ning a twisted group object in QCoh(Y). This
agrees with the G-action used in the Hopf algebroid approach to Galois descent in Section
2.3 in the case of algebraic stacks and �nite groups. If the action of H is trivial on Y, then
this de�nes actually a group object.

Proposition 2.6.6. Let T be a scheme over S with a morphism f : T → Y over S. Then
Ff : T → X de�nes an object A ∈ X (T ).

1. Suppose that a �nite group G acts on A in X (T ). Then there is an associated map f
and a natural transformation α : fF T → Ff making the diagram

T
f //

FT

��

Y
F

��
T//G

f //___ X

2-commutative. Here, the action on T by G is trivial.

2. Let F be a quasi-coherent sheaf on X . Assume that T = SpecR and Y = SpecA and
denote F(Y) by M . A map ϕ : G→ H(T ) de�nes a map Φ: T ×G ∼=

∐
G T → Y ×H

by (t, g) 7→ (f(t), (ϕ(g))(t).

Assume that Φ makes the diagram

T ×G
ΨT
��

Φ // Y ×H
ΨY
��

T ×T//G T f×f // Y ×X Y

2-commutative via a natural transformation β : (f × f)◦ΨT → ΨY ◦Φ.13 Then T → Y
is G-equivariant in the sense that

T

f
''PPPPPPPPPPPPPPP

(f,ϕ(g)) // Y ×H
pT1
��

aY

��
Y

is commutative for every g ∈ G. Furthermore, the following two G-actions on M ⊗AR
agree:

(a) The transformation α induces an isomorphism α∗ :
(

(F T )∗f
∗F
)

(T )→M ⊗AR.
On (F T )∗f

∗F(T ), we have a G-action from the construction of Galois descent.

(b) For g ∈ G, we get a morphism (f, ϕ(g)) : T → Y × H. The transformation γY

induces an isomorphism

f∗F ∗F = (f, ϕ(g))∗(pY1 )∗F ∗F (f,ϕ(g))∗(γY )∗−−−−−−−−−→ (f, ϕ(g))∗(aY)∗F ∗F = f∗F ∗F .

Evaluating on T , we get a morphism M ⊗A R → M ⊗A R. Informally, it is the
induced G-action on M ⊗A R from the H-action on M .

13The de�nition of (f × f) will be recalled in the proof of this proposition.
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Proof. 1. De�ne a �bered category T/G as T×BG, where we view T as a �bered category
and BG as the category with one object with automorphisms equal to G. Then T//G
(for G acting trivially on T ) is a stacki�cation of T/G (see [BCE+12, Section 4.4]). The
object A with the group of automorphisms G de�nes a morphism T/G → X ; by the
universal property of stacki�cation, this gives a morphism f : T//G → X as desired
(see [Aut, 0435] for this universal property).

2. The diagram

T

f
''PPPPPPPPPPPPPPP

(f,ϕ(g)) // Y ×H
pT1
��

aY

��
Y

is 2-commutative via β, hence actually commutative since all occurring stacks are ac-
tually schemes. The other statement follows from the commutativity of the diagram

(F T )∗f
∗F

α

��

= // (idT , g)∗(pT1 )∗(F T )∗f
∗F

(idT ,g)
∗γT// (idT , g)∗(aT )∗(F T )∗f

∗F = // (F T )∗f
∗F

α

��
f∗F ∗F = // (f, ϕ(g))∗(pY1 )F ∗F (f,ϕ(g))∗(γY )// (f, ϕ(g))∗(aY)∗F ∗F = // f∗F ∗F

which we want to show now.

The following square of natural transformations of morphisms between T ×T//GT → X
is commutative:

F prY1 (f × f) //

��

F pr2(f × f)

��
fF T prT1

// fF T pr2

The transformations are as follows: Let t = (t1, t2, δ : F T (t1) → F T (t2)) be a point in
(T ×T//G T )(X) for some X. If we apply the square above to it, we get

F (f(t1)) � //
_

��

F (f(t2))
_

��
fF T (t1)

� // fF T (t2)

The morphisms down are given by α, the horizontal morphisms are induced from the
isomorphisms in the de�nition of the �ber product, i.e., the lower one by δ. To that pur-
pose recall that the isomorphism in (f × f)(t) is actually de�ned by the commutativity
of this diagram.
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Precomposing with ΨT , we get the lower square of the following commutative diagram:

FpY1 Φ //

=

��

FaYΦ

=

��
F prY1 ΨYΦ // F prY2 ΨYΦ

F prY1 (f × f)ΨT

β

OO

//

α

��

F prY2 (f × f)ΨT

β

OO

α

��
fF T pr1 ΨT

// fF T pr2 ΨT

Precomposing the outer square with (idT , g) : T → T ×G gives

Ff

=
��

// Ff

=

��
FpY1 (f, ϕ(g)) //

��

FaY(f, ϕ(g))

��
fF T // fF T

This is exactly what is needed for the commutativity of the diagram above.

Example 2.6.7. We want to show thatM(n)→M is a GL2(Z/n)-Galois covering. There
is an action of GL2(Z/n) onM(n) via acting on the left of the isomorphism

(Z/n)2 × T → E[n]

for an elliptic curve E over T ; this action is (strictly) over M. We have a map [n] : M →
SpecZ//GL2(Z/n) by associating to each elliptic curve E over S the GL2(Z/n)-torsor asso-
ciated to the �nite abelian group scheme E[n], the n-torsion. This is part of a 2-commutative
diagram:

M(n) //

��

SpecZ

��
M // SpecZ//GL2(Z/n)

Since SpecZ is equivalent to the moduli stack of trivialized GL2(Z/n)-torsors, this is a
(homotopy) pullback square of stacks. Since a pullback of a torsor is a torsor again, M(n)
is a GL2(Z/n)-torsor overM.

Let now T be a scheme over S, E an elliptic curve over T with a level structure

α : (Z/n)2 × T → E[n]

and G a �nite group acting on E. Then G acts also on E[n] and we can send a g ∈ G to
ϕ(g) = α−1gα ∈ GL2(Z/n)(T ). We want to check that this satis�es the condition on ϕ in
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the last proposition: The square in the proposition specializes to

T ×G //

��

M(n)×GL2(Z/n)

��
T ×T//G T //M(n)×MM(n)

and on a point (t, g) ∈ (T ×G)(X) it looks as follows:

(t, g) � //
_

��

((E,α), α−1gα)
_

��
(t, t, g) � // ((E,α), (E,α), g) � β // ((E,α), (E, gα), idE)

The isomorphism β is given by (idE , g) and de�nes the natural transformation making the
square 2-commutative.

2.7 The Cohomology of the Moduli Stack of Elliptic Curves

The aim of this section is to recall the cohomology of the the moduli stacks of elliptic curves
when 2 is inverted from [Bau08]. We also want to sketch an alternative way to obtain it,
based on the following lemma:

Lemma 2.7.1. Let
π : X → Y

be a G-Galois covering of algebraic stacks, where G is a �nite group and Y is �at over Z.
Then for every quasi-coherent sheaf F on Y, the adjunction unit de�nes an isomorphism
F → (π∗π

∗F)G. Furthermore, there is a spectral sequence

Hp(G;Hq(X ;π∗F))⇒ Hp+q(Y;F).

Proof. The categories G−QCoh(X ) and QCoh(Y) are equivalent via π∗ by Galois descent.
Locally, π looks like Spec

∏
GA→ SpecA and an inverse of π∗ is given by taking G-invariants

as follows from the general formula for faithfully �at descent given on p. 134 of [BLR90].
Now suppose that F is a quasi-coherent sheaf on Y. We can de�ne another sheaf G on Y by
(π∗π

∗F)G, i.e., G(U) = (F(U ×Y X ))G (this is a sheaf since taking invariants is left-exact).
The usual adjunction morphism F → π∗π

∗F factors over G. Since π∗ and taking G-invariants
are locally inverses, locally, the morphism F → G of sheaves is an isomorphism; therefore, it
is also globally an isomorphism. In particular, we have H0(X ;π∗F)G ∼= H0(Y;F). Thus, we
have now a (2-)commutative diagram

G−X -mod
ΓG // Z[G] -mod

()G

��
QCoh(Y)

π∗

OO

Γ // Z -mod

The functor ΓG is de�ned as global sections, remembering the G-action. The composition
ΓG ◦π∗ corresponds to h∗ for h : Y → SpecZ//G. Thus, ΓG preserves injectives since h∗ has
an exact left adjoint h∗ because h is �at. Then one can �rst apply the Grothendieck spectral
sequence

Epq2
∼= Hp(G;RqΓG(π∗F))⇒ Hp+q(Y;F).

Here we use that π∗ is an equivalence. Since the forgetful functor u : Z[G] -mod→ Z -mod is
exact, we obtain uRqΓG = Rq(uΓG) = RqΓ = Hq. Thus, the claim follows.
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Recall that the 0th cohomology ofM is classical (and originally due to Deligne and Tate):
H0
∗ (M;O) ∼= Z[c4, c6,∆

±1].
There are at least two routes to the computation of the higher cohomology of M. The

�rst is to use the results of [Bau08], where he computes the cohomology of the Weierstrass
Hopf algebroid. Since the associated Hopf algebroid toM is the Weierstrass Hopf algebroid
with ∆ inverted, we have just to invert ∆ in the cohomology to obtain the cohomology of
M.

The second way uses the lemma above. SinceM(2) has a Gm-torsor of the form Spec Λ,
quasi-coherent sheaves onM(2) are equivalent to graded Λ-modules. Thus

H i(M(2);F) ∼= ExtiΛ -grmod(Λ,F(Λ)) = 0

for every F ∈ QCoh(M(2)) and i > 0. This implies that H i
∗(M[1

2 ]) ∼= H i(S3;H0
∗ (M(2))) by

the lemma above. The latter cohomology groups are computed in [Sto11].
Both ways yield as graded cohomology of the (uncompacti�ed) moduli stack:

0 2 4 6 8 10 12
0

2

4

6

� � � � � ∆1

Here, our conventions are as follows: The position (p, q) corresponds to Hq(M;ωp).
Bullets represent an F3 and boxes a Z[1

2 ][j] where j = c3
4/∆. We choose a non-trivial class in

H1(M;ω2) and call it α; the lines denote α-multiplication. We choose a non-trivial class in
H2(M;ω6) and call it β; here we can even pin down the sign by choosing β such that it is in
the Massey product 〈α, α, α〉. All elements in higher cohomology are of the form ±αiβj∆k

(for i ∈ {0, 1}, j ∈ Z≥0 and k ∈ Z) and all this elements are non-zero. Note that ∆ acts
invertible, so the whole cohomology is 12-periodic.

In particular, H i
∗(M(p);O) = 0 for p > 3 and i > 0.

2.8 The Moduli Stack of Formal Groups

Completing an elliptic curve E at its identity section yields the formal group Ê, a re�nement
of the Lie algebra of E. In this section, we will de�ne precisely what a formal group is and
show how to get a morphism from the moduli stack of elliptic curves to the moduli stack of
formal groups. This will be essential for the de�nition of the spectrum of topological modular
forms TMF .

De�nition 2.8.1. Let S be a scheme. A formal scheme over S is a functor (Sch /S)op → Set,
which is a (small) �ltered colimit of functors representable by schemes over S. The cartesian
product in the functor category restricts to a product on the category of formal schemes over
S, denoted by ×S . A commutative group object in formal schemes over S is called an abstract
formal group over S.

Example 2.8.2. Let A be a ring with a chosen ideal I. Then Spf A := colimn Spec(A(In))
is a formal scheme. If we have a morphism f : A→ B such that f(I) ⊂ J for a chosen ideal
J ⊂ B, then we get an induced map Spf B → Spf A.
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A formal group law over a ring R consists of a power series F ∈ R[[X,Y ]] satisfying
the axioms of a commutative group in a formal way (see [Rav86], Appendix B, for a precise
de�nition). The formal spectrum Spf R[[X]] := colim SpecR[x]/xi is a formal scheme and F
induces a morphism Spf R[[X]] ×SpecR Spf R[[Y ]] ∼= Spf R[[X,Y ]] → Spf R[[X]] (by sending
X to F ), which de�nes an abstract formal group over R; here, the chosen ideal of R[[X,Y ]] is
the augmentation ideal (X,Y ). A (1-dimensional, commutative) formal group over a scheme
S is an abstract formal group F which comes Zariski locally on S from a formal group law
(i.e., we can cover S as

⋃
Ui with Ui ∼= SpecRi such that F |Ui is isomorphic to an abstract

formal group coming from a formal group law over Ri).

De�nition 2.8.3. The moduli stack of formal groups MFG is given by associating to each
ring R the groupoid of formal groups over R.

The moduli stack of formal group laws FGL (without morphisms between them) is much
simpler: It is isomorphic to SpecL for L (uncanonically) isomorphic to Z[x1, x2, . . . ] and
L carries an universal formal group law F univ.14 In concrete terms, this means the map
HomRings(L,R) → FGL(R) given by φ 7→ φ∗(F

univ) is a bijection. The �ber product
SpecL ×MFG

SpecL is equivalent to SpecW for W = L[u±1, b1, b2, . . . ]. As explained in
[Nau07], this shows that MFG is algebraic and (by a theorem of Quillen) QCoh(MFG) '
(MU∗,MU∗MU) -comod (where the comodules are graded).

For future purposes, we want to be a bit more explicit: We set H = SpecZ[u±1, b1, b2, . . . ]
and identify H(SpecR) with power series of the form ux+b1x

2+b2x
3+· · · with b1, b2, · · · ∈ R

and u ∈ R× a unit. Composition of power series de�nes a natural group structure on
H(SpecR) and thus the structure of a group scheme on H. The scheme SpecL ∼= FGL
gets the structure of an H-torsor over MFG with H acting as follows: For h ∈ H(SpecR)
and F ∈ FGL(SpecR), de�ne a formal group law h · F over R by hF (h−1(x), h−1(y)). This
de�nes an action of H on FGL. This can be extended to an action of H on FGL ∼= SpecL
overMFG in the sense of Section 2.6: For h ∈ H(SpecR), F ∈ FGL(SpecR) the element h
de�nes an isomorphism between the underlying formal groups of F and h ·F , which we take
as our αF,h. That SpecL × H → SpecL ×MFG

SpecL is an equivalence boils down to the
fact that an isomorphism between formal groups associated to formal group laws is given by
a power series.

Let F be a formal group law over R and g be an automorphism of the associated formal
group. Then we can write g as power series ϕ(g) ∈ R[[x]] with

ϕ(g)−1F ((ϕ(g))(x), (ϕ(g))(y)) = F.

This de�nes a morphism from the automorphism group of the underlying formal group of
F into H(SpecR). The check that this morphism ful�lls the conditions on ϕ in Proposition
2.6.6 is analogous to the example of the moduli stack of elliptic curves with level structures.

To every elliptic curve E/S, we can associate a formal group as follows: Denote by
e : S → E the unit section and by I the ideal sheaf on E corresponding to the reduced
subscheme structure on im(e), i.e., im(e) equals the vanishing locus V (I) of I. A map
f : X → E factors over V (I) i� the ideal sheaf f∗I is zero. It factors over Ê := colimV (In)
i� f∗I is locally nilpotent, hence, i� the morphism Xred factors over V (I). Suppose now, we
have points a, b ∈ Ê(X). Via the canonical map Ê → E, these induce maps a′, b′ : X → E.

14The ring L is called the Lazard ring.
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We get a diagram

Xred //

��

im(e)×S im(e) //

��

im(e)

��
X

a′×b′ // E ×S E // E

The map Xred → E corresponds to a point a · b ∈ Ê(X), inducing a group structure on Ê.
This de�nes indeed a formal group (as can be seen, e.g., in the Weierstrass form). For further
information, see also [Rez02, 11.4].

Locally, the corresponding formal group law can be concretely calculated up to arbitrary
precision using a Weierstraÿ form; either by hand, as in [Sil09], Chapter IV.1, or by Magma
or similar programs.

Theorem 2.8.4. The assignment E 7→ Ê induces a morphismM→MFG, which is �at.

The author is not aware of a published proof of the �atness statement, but, at least,
this theorem is stated in Lecture 15 of [Lur10]. Furthermore, it can probably be deduced
from [BL10, 8.1.6] and the Serre�Tate theorem (stating that elliptic curves have the same
deformation theory as p-divisible groups, see [BL10, 7.2.1]).





Chapter 3

Vector Bundles

Our aim in this chapter is the study of vector bundles over the moduli stack of elliptic curves.
Recall the following de�nition:

De�nition 3.0.1. A vector bundle on a Deligne�Mumford X stack is an OX -module that is
locally free of �nite rank in the étale topology.

As noted before, every vector bundle is a quasi-coherent (even coherent) sheaf since it
has locally a presentation.

Recall the notation MR for the moduli stack of elliptic curves over R. As a shorthand,
denote byM(p) the moduli stack of elliptic curves over Z(p). Furthermore, we denote structure
sheaves in general by O (with subscript if it is not clear from the context).

The Picard group Pic of a stack is the group of isomorphism classes of line bundles (with
group structure given by the tensor product and the inverses by duals). The classi�cation of
line bundles onMR is already known:

Theorem 3.0.2 ([FO10]). Every line bundle over MR, for R a reduced ring, is a tensor
power of ω and we have ω12 ∼= O. Therefore, the Picard group Pic(MR) is isomorphic to
Z/12.

We will prove that every vector bundle splits into line bundle onMQ using an argument
by Angelo Vistoli. In general, the situation is more complicated and we will mainly restrict
to the caseM(3). A particularly accessible class of vector bundles is the following:

De�nition 3.0.3. We de�ne the notion of a standard vector bundle for a prime p inductively:
Every line bundle on M(p) is called standard. Furthermore, a vector bundle E on M(p) is
called standard if there is an injection L ↪→ E from a line bundle on M(p) such that the
cokernel is a standard vector bundle.

Thus, standard vector bundles are those vector bundles which can be built as iterated
extension of line bundles.

Lemma 3.0.4. 1. Let E be a vector bundle with a surjective morphism E → L to a line
bundle such that the kernel F is a standard vector bundle. Then E is a standard vector
bundle.

2. Let E be a standard vector bundle. Then also Ě is a standard vector bundle.

Proof. 1. Let E be of rank n. By induction, we assume that we have shown the �rst part
of the lemma for all smaller ranks. By de�nition, we have an injection L′ ↪→ F from a

37
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line bundle such that the cokernel F ′ is a standard vector bundle again. Consider the
(snake lemma) diagramm

0

��

0

��
0 // L′ = //

��

L′

��

// 0

��
0 // F //

��

E //

��

L //

=

��

0

0 // F ′ //

��

E ′ //

��

L //

��

0

0 0 0

Here, E ′ is de�ned as the cokernel of L′ → F → E . It is a vector bundle since it is an
extension of two vector bundles (see Remark 2.3.10). Furthermore, it is of rank n − 1
and has a surjective morphism to L whose kernel F ′ is a standard vector bundle. By
induction, E ′ is thus a standard vector bundle. This implies that also E is standard.

2. By induction, we assume that we know the statement for all standard vector bundles
of smaller rank than E . Consider a sequence

0→ L → E → F → 0

where L is a line bundle and F is standard. Dualizing gives

0→ F̌ → Ě → Ľ → 0.

Note that the sequence is short exact because the Ext-sheaf Exti(F ,O) vanishes for
i > 0 since F is a vector bundle. The morphism Ě → Ľ is surjective and its kernel is
standard by induction. Thus, we can use the �rst part of the lemma.

The main aim of this chapter is to show the following theorem:

Theorem 3.0.5. Every standard vector bundle over M(3) is isomorphic to a sum of copies
of the vector bundles O, Eα or Eα,α̃ (and tensor products of line bundles with them). Here,
the latter two are vector bundles of rank 2 and 3, respectively, to be introduced in Section 3.4.

Conjecture 3.0.6. Every vector bundle onM(3) is standard.

In addition, we prove that there are in�nitely many indecomposable vector bundles on
M(2).

As a warm up, we will recall the classi�cation of integral representations of the cyclic
group C2 or, what is equivalent, vector bundles over SpecZ//C2 � this is easier but in some
ways analogous to classi�cation results on vector bundles on the moduli stack of elliptic
curves. We must stress that the classi�cation of integral C2-representations is already known
for a long time � if not since the beginning of time or the era of Archimedes, then at least
since [Die40].

After that, we will classify vector bundles onMQ and show a few basic properties of the
category of vector bundles onM(3). Then we go on and study the vector bundles O, Eα and
Eα,α̃ in detail. In the last section, we will prove the main theorem of this chapter.
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3.1 Vector bundles over SpecZ//C2

In this section, we will classify integral representations of the cyclic group with two elements,
C2. We remark that this category is both equivalent to the category of vector bundles over
SpecZ//C2 (by Galois descent) and to the category of modules over Z[C2] that are free of
�nite rank as abelian groups.

Lemma 3.1.1. Every Q[C2]-module is a direct sum of one-dimensional representations.

Proof. Denote by t the generator of C2. Then e1 = 1+t
2 and e2 = 1−t

2 are orthogonal
idempotents in Q[C2]. Therefore, Q[C2] ∼= Qe1 × Qe2 and Q[C2] -mod ' Q -mod×Q -mod.

Lemma 3.1.2. Every one-dimension C2-representation over Z or Q is either the trivial or
the sign representation. In particular, every C2-representation over Q is of the form M ⊗Q
for an integral C2-representation M .

Proof. The multiplicative groups Q× and Z× have only one non-trivial element of order 2,
the element −1.

Lemma 3.1.3. Every integral C2-representation M of dimension m sits in an extension

0→ L→M → N → 0,

where L is a one-dimensional representation and N is an (m− 1)-dimensional one.

Proof. By Lemma 3.1.1, we have an injection L′ → L′ ⊗ Q → M ⊗ Q of Z[C2]-modules for
some 1-dimensional integral C2-representation L′. Multiply this map by a natural number to
get an injection L′ →M with cokernel C. Divide out the torsion of C to get a Z[C2]-module
N , which is free as an abelian group. Denote the kernel of M → N by L, which is obviously
also free as an abelian group. Since L⊗Q ∼= L′ ⊗Q, we have that L is of rank 1.

Example 3.1.4 (Examples of C2-representations). We have the two 1-dimensional represen-
tations Z and Z′ (the sign representation) and the representation Z[C2] of rank 2. We know
that Ext1

Z[C2](Z,Z) ∼= Ext1
Z[C2](Z[C2],Z) = 0 and Ext1

Z[C2](Z
′,Z) ∼= F2, where the non-trivial

element corresponds to the extension

0→ Z→ Z[C2]→ Z′ → 0.

Proposition 3.1.5. Every integral representation of C2 is a direct sum of (several copies of)
the trivial representation, the sign representation and the free representation.

Proof. For rank n = 1 this is true by Lemma 3.1.2. Assume by induction that the assertion
of the proposition is true for representations of rank smaller than n, for some n ∈ N. Now
let M be a C2-representation of rank n+ 1 and choose an extension

0→ L→M → N → 0

as above. We can assume that L is the trivial representation � else we could tensor the
exact sequence with the sign representation. The extension above corresponds to a class x in
Ext1

Z[C2](N,Z). By assumption N ∼= Za⊕ (Z′)b⊕ (Z[C2])c. We see that Ext1
Z[C2](N,Z) ∼= Fb2.

By a change of basis, we can assume that x = (1, 0, . . . , 0) or x = 0. So either M ∼=
Za ⊕ Z′b−1 ⊕ Z[C2]c+1 or M ∼= Za+1 ⊕ Z′b ⊕ Z[C2]c.
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3.2 Vector bundles over MQ

We will classify in this section vector bundles on MQ. Everything in this section (except
possibly mistakes) I have learned from Angelo Vistoli.

For a1, . . . , an ∈ N and a commutative ringR, the weighted projective stack PR(a1, . . . , an)
is the (stack) quotient of AnR − {0} by the multiplicative group Gm under the action which
is the restriction of the map

φ : A1
R × AnR → AnR

R[t]⊗R[t1, . . . , tn] ← R[t1, . . . , tn]

tai⊗i ← ti

to (Gm × SpecR) × (AnR − {0}). Here, AnR − {0} denotes the complement of the zero point
(corresponding to the ideal (t1, . . . , tn)). On geometric points, the action corresponds to the
map (t1, . . . , tn) 7→ (ta1t1, . . . , t

antn). The restriction to {0} × AnR = Spec(R ⊗ R[t1, . . . , tn])
(induced by t 7→ 0) equals the projection to the 0-point (which is induced by t1, . . . , tn 7→ 0).
In this section, the base ring R will always (implicitly) be Q. As explained in 2.4, we have
an open embedding i : MQ ↪→ P(4, 6) given by the Weierstraÿ form.

Now let ξ be a vector bundle on MQ. The sheaf ξ is re�exive in the sense that the
canonical map ξ → (ξ̌)̌ to the double-dual is an isomorphism. We want to extend ξ by a
re�exive coherent sheaf on P(4, 6). Note �rst that i∗ξ is quasi-coherent by [LMB00], 13.2.6,
since i is quasi-compact. By [LMB00], 15.5, there is then a coherent sheaf G on P(4, 6) with
i∗G = ξ. Let F denote its double-dual. This is both re�exive ([Har80], 1.2 - which we can use
also for stacks since both re�exivity and coherence are local conditions) and coherent and, in
addition, we have i∗F = ξ since ξ is already re�exive.

Proposition 3.2.1. Every re�exive sheaf F on P(m,n) is a direct sum of line bundles.

Proof. By Galois descent, the sheaf F corresponds to a Gm-equivariant sheaf on A2 − {0},
with respect to the action given by t(x, y) = (tmx, tny); we will denote this Gm-equivariant
sheaf by abuse of notation still by F . This new sheaf F is re�exive since pullback by �at maps
preserves re�exive sheaves (this is essentially [Ser00], p. 70, prop 12). Using the inclusion
(A2 − {0})//Gm ↪→ A2//Gm, we can, as above, extend F to a re�exive (hence locally free)
Gm-equivariant sheaf on A2, which we'll denote by abuse of notation again by F . Since every
re�exive sheaf on a regular 2-dimensional scheme is locally free ([Har80], 1.4), F is locally
free.

Let F0 be the �ber of F at the origin, i.e. the Q-vector space corresponding to i∗0F , where
i0 : SpecQ→ A2 is the inclusion of the origin. This �ber gets the structure of an (algebraic)
representation of Gm, which splits into a direct sum of 1-dimensional representations (as
every Gm-representation). Denote by E the Gm-equivariant locally free sheaf F0 ⊗Q OA2 .
The sheaf E is a direct sum of Gm-equivariant invertible sheaves, so it is enough to show that
F is isomorphic to E . Let H = Hom(E ,F) be the sheaf of homomorphisms E → F on A2 and
H0 its �ber at the origin. The restriction homomorphism H0(A2;H)→ H0 is surjective (say,
since E and F are non-equivariantly trivial by Seshadri's Theorem, [Lam06, II.6.1]); since
Gm is linearly reductive, it will stay surjective after taking Gm invariants (this can be seen
in concrete terms using that Gm-representations split in one-dimensional representations).
This means that every Gm-equivariant homomorphism E0 → F0 will lift to a Gm-equivariant
homomorphism E → F .

Now, consider a Gm-equivariant homomorphism f : E → F that restricts to the identity
E0 = F0 at the origin. Thus, it is also an isomorphism at the stalk at the origin. Indeed, let
A = Q[X,Y ](X,Y ) be the local ring at the origin and E and F be the A-modules corresponding
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to E and F . Then f ⊗A Q : E ⊗A Q → F ⊗A Q is the identity by assumption. Thus,
coker(f) ⊗A Q = 0 and also ker(f) ⊗A Q = 0 since TorA1 (F,Q) = 0. Thus coker(f : E →
F ) = ker(f : E → F ) = 0 by Nakayama's lemma.

Both coker(f) and ker(f) are generated by �nitely many global sections. Thus, the set of
points where their stalks are zero is open, containing the origin. Let C be the set of points at
whose stalks f : E → F is not an isomorphism. It follows that this is a Gm-invariant closed
subset C of A2 not containing the origin. Considering the map

φ : A1 × A2 → A2

as above, we see that A1×C must have image in C since C is closed. But this image contains
the origin if C is not empty; thus C must be empty and f an isomorphism between E and
F . This completes the proof.

Corollary 3.2.2. Every vector bundle onMQ is the direct sum of line bundles.

Remark 3.2.3. Of course, the proof goes through also for any other �eld of characteristic
6= 2, 3 instead of Q.

3.3 Kernels of Morphisms of Vector Bundles on M(3)

The aim of this section is to show two propositions, one about kernels of maps between
vector bundles and one about global sections of vector bundles. We set, by abuse of notation,
M =M(3).

We have an étale covering q : M(4) → M from the moduli stack of elliptic curves with
level structure of niveau 4. The stack M(4) is representable by a scheme. Indeed, we can
write it as SpecA

∐
SpecA ' SpecA × A, where A = Z(3)[i][X,X

−1(X4 − 1)−1] (see the
discussion at the end of Section 2.5).

Proposition 3.3.1. Let f : E → E ′ be a morphism of vector bundles onM. Then L := ker(f)
is a vector bundle again.

Proof. A quasi-coherent sheaf F onM is a vector bundle i� F(M(4)) is projective of �nite
rank. Since Z(3)[i] is a principal ideal domain, A is of homological dimension 2. Thus a
kernel of a map between projective modules is projective. Since A is noetherian, the kernel
of E(M(4))→ E ′(M(4)) is also �nitely generated.

Proposition 3.3.2. Let E be a vector bundle onM(3). Then Γ∗(E) 6= 0.

Proof. Set E = E(M(4)). We know that EQ = E ⊗Z Q splits by the last section into a sum
of GL(2,Z/4Z)-equivariant projective modules of rank one1 over (A×A)Q = (A×A)⊗Z Q
(using Galois descent). By the classi�cation of line bundles on the moduli stack of elliptic
curves, these are already de�ned over (A×A). Take now such an invertible module N so that
we have an injection (A×A)Q ↪→ (E ⊗N−1)Q, which corresponds to an (invariant) element
s′ ∈ (E ⊗ N−1)Q. Now take a d such that 3d · s′ ∈ E ⊗ N−1 and de�ne s := 3d · s′. This
is again invariant and therefore corresponds to an injection O ↪→ E ⊗ L−1 for L associated
to N and, hence, an injection L ↪→ E . For L ∼= ωn, this de�nes a non-trivial element in
Γ−n(E).

1Recall that is equivalent to being an invertible module.
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3.4 Examples of Vector Bundles on M(3)

In this section, we will give a detailed exposition of the vector bundles of low rank on the
moduli stack of elliptic curves at p = 3. For this section, we set by abuse of notation
M =M(3).

As already mentioned, line bundles onM are classi�ed by the following result of Mumford
and Fulton-Olsson:

Theorem 3.4.1 ([FO10]). The Picard group ofM is isomorphic to Z/12Z and generated by
the line bundle ω.

By Section 2.7, we know that Ext1(ωj , ωk) ∼= Z/3Z (generated by an element α) for
k− j = 2 and 0 else. Here and in the following k− j = 2 is understood as an equality in the
Picard group,i.e., k − j ≡ 2( mod 12). This implies that the only standard vector bundle
overM of rank 2 that does not split into line bundles sits in an extension

0→ O → Eα → ω−2 → 0 (3.1)

or a twist of it (so that the vector bundle is isomorphic to Eα ⊗ ωj for some j). Here it
should be noted that we do not need to distinguish between an extension and its negative in
the Ext-group since its middle terms are isomorphic.

We now want to compute some Ext-groups. We have an exact sequence

Hom(ωj , ω−2)

Ext1(ωj ,O) Ext1(ωj , Eα) Ext1(ωj , ω−2)

Ext2(ωj ,O) Ext2(ωj , Eα) Ext2(ωj , ω−2)

Ext3(ωj ,O) · · ·

δ0

δ1

δ2

To handle this, we need the following lemma:

Lemma 3.4.2 ([ML63], II.9.1). Let

0→ A→ B → C → 0

be an extension in an abelian category A (with enough injectives or projectives), corresponding
to the Ext-class x ∈ Ext1(C,A). The boundary map Extk(T,C) → Extk+1(T,A) of the
long exact sequence for Ext-groups out of T equals right multiplication by x. Similarly, the
boundary map Extk(A, T ) → Extk+1(C, T ) of the sequence for Ext-groups into T equals left
multiplication by x.

The map δ0 is therefore surjective, δ1 is zero (since α2 = 0) and δ2 is an isomorphism.
Hence, we get isomorphisms Ext1(ωj , Eα) ∼= Ext1(ωj , ω−2) and Ext2(ωj , Eα) ∼= Ext2(ωj ,O).
This results in the following Ext-groups

Ext1(ωj , Eα) =

{
Z/3Z if j = −4

0 else
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Ext2(ωj , Eα) =

{
Z/3Z if j = −6

0 else

With the same arguments, we can show that multiplication with β de�nes isomorphisms
Exti(ωj , Eα) ∼= Exti+2(ωj , Eα). We denote the generator of the Ext1-group that maps to
α ∈ Ext1(ω−2,O) by α̃.

By dualizing the extension (3.1) and tensoring with ω−2, we get an extension

0→ O → Ěα ⊗ ω−2 → ω−2 → 0.

This is non-split (else the dual sequence would split as well), therefore Ěα ∼= Eα ⊗ ω2. Now
consider the following lemma:

Lemma 3.4.3. Let (X ,O) be a ringed site and E and F be vector bundles and G be a quasi-
coherent sheaf. Then we have Exti(E ,F ⊗ G) ∼= Exti(E ⊗ F̌ ,G).

Proof. Since vector bundles are strongly dualizable, we have a natural isomorphism

HomO(E ,F ⊗ G) ∼= HomO(E ⊗ F̌ ,G).

The same holds for all higher Ext-sheaves (they are all zero). Therefore,

Exti(E ,F ⊗ G) ∼= H iHomO(E ,F ⊗ G) ∼= H iHomO(E ⊗ F̌ ,G) ∼= Exti(E ⊗ F̌ ,G)

by the Grothendieck spectral sequence converging from the cohomology of the Ext-sheaves
to the Ext-groups.

In particular, we have

Exti(Eα ⊗ ωj ,O) ∼= Exti(ωj , Ěα) ∼= Exti(ωj−2, Eα).

This implies that the only non-vanishing Ext1-class is in j = −2.
We can also conclude that

Exti(Eα ⊗ ωj , Eα) ∼= Exti(Eα ⊗ ωj ⊗ Eα, ω−2) ∼= Exti(ωj−2, Eα ⊗ Eα),

which we will calculate later in this section.

A further, particularly important example of a vector bundle is the following: Let

f : M0(2)→M
be the usual projection map. Then f∗f∗ωj = f∗f

∗O⊗ωj (see Lemma 2.3.13) de�nes a family
of rank 3 vector bundles onM.

Lemma 3.4.4. The cohomology groups H i(M; f∗f
∗F) vanish for i > 0 for every quasi-

coherent sheaf F .
Proof. The map f is �nite and, in particular, a�ne. Therefore, all higher direct images Rif∗
vanish and, using a degenerate form of the Leray spectral sequence, we get

H i(M; f∗f
∗F) ∼= H i(M0(2); f∗F)

There is an a�ne Gm-torsor over M0(2) of the form SpecA for A ∼= Z(3)[b2, b4,∆
−1] (see

[Beh06, Section 1.3.2]). Quasi-coherent sheaves onM0(2) correspond to graded A-modules.
Since HomA -grmod(A,−) is clearly exact, we get that

H i(M; f∗F) ∼= ExtiA -grmod(A,F(SpecA)) = 0

for i > 0.
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In the next section, we will show that the existence of exact sequences

0→ O → f∗f
∗O → Eα ⊗ ω−2 → 0 (3.2)

and

0→ Eα ⊗ ω4 → f∗f
∗O → O → 0 (3.3)

such that the map O → f∗f
∗O is the adjunction map and the map f∗f

∗O → O is its
dual (under a chosen isomorphism (f∗f

∗O)̌ ∼= f∗f
∗O). Since f∗f∗O is self-dual, we get

Exti(f∗f
∗O, ωj) = 0 for all i > 0 by Lemma 3.4.3 (with E = O and F = f∗f

∗O). Using this,
we get inductively that Exti(f∗f

∗O, E) ∼= Exti(E , f∗f∗O) = 0 for all standard vector bundles
E for i > 0.

The two extensions (3.2) and (3.3) are non-split (as can be seen by computing coho-
mology). Thus, the second extension corresponds to ± the Ext1-class α̃ mentioned above.
Therefore, we will often call f∗f∗O also by the name Eα,α̃. Call the class in Ext1(Eα⊗ω−2,O)
corresponding to the �rst extension tα̃. Since Ext1(ω−4,O) = 0, this projects non-trivially
to Ext1(ω−2,O) and thus this projection equals ±α.

Note also that f∗f∗O ∼= f∗f
∗O⊗ω4. Indeed, b4 ∈ Γ4(f∗f

∗O) de�nes a map b4 : f∗f
∗O →

f∗f
∗O⊗ω4 (since f∗f∗O is a sheaf of algebras) and since b4 is divisor of ∆ and hence a unit

(by the formulas in Section 2.5), this map is an isomorphism.

If we tensor the extension (3.2) with Eα, we get:

0→ Eα → f∗f
∗O ⊗ Eα → Eα ⊗ Eα ⊗ ω−2 → 0

The middle term splits into f∗f∗O⊕ f∗f∗O⊗ω−2 (as can be seen by tensoring the extension
(3.1) with f∗f

∗O) and therefore has vanishing higher graded cohomology (i.e., vanishing
higher cohomology even after tensoring with an ωj). Therefore,

Ext2(ωj−4, Eα) ∼= Ext1(ωj−2, Eα ⊗ Eα) ∼= Ext1(Eα ⊗ ωj , Eα),

which is zero unless j = −2, when it is isomorphic to Z/3. The extensions

0→ Eα → Eα ⊗ Eα → Eα ⊗ ω−2 → 0

is non-split since the (graded) cohomology of Eα⊗Eα di�ers from that of Eα⊕Eα⊗ω−2 by
the calculation above. It follows that it presents a generator of Ext1(Eα ⊗ ω−2, Eα).

Consider now the extensionX corresponding to the element in Ext1(Eα⊗ω−2, Eα) coming
from the generator in Ext1(Eα ⊗ ω−2,O) via the map induced by O → Eα. This extension
sits in a diagram

0

��

0

��
0 // O //

��

Eα,α̃ //

��

Eα ⊗ ω−2 //

��

0

0 // Eα //

��

X

��

// Eα ⊗ ω−2 // 0

ω−2

��

∼= // ω−2

��
0 0
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This implies X ∼= Eα,α̃ ⊕ ω−2 (because every extension of a standard vector bundle with
Eα,α̃ splits). By computing cohomology, this implies that the middle horizontal extension is
non-split and, hence, Eα ⊗ Eα ∼= X.

3.5 Representation Theory and Vector Bundles OverM(3) and

M(2)

We �rst present a new viewpoint on vector bundles on M(3) and then apply similar ideas
to vector bundles onM(2). This new viewpoint allows also to prove statement about vector
bundles coming from level structure, which were used in the last section.

As before, we denote by M(2) the moduli stack of elliptic curves with level-2-structure
at the prime 3. Recall that we have an S3-Galois cover M(2) → M(3) and that M(2) ∼=
Spec Λ//Gm, where Λ = Z(3)[x2, y2,∆

−1]. De�ne a morphism Λ → F3 by x2 7→ 1, y2 7→ −1
(with ∆ = 1). This corresponds to an elliptic curve E : y2 = x3 − x over F3 with level
structure given by ordering the points of exact order 2 as (0, 0), (0,−1) and (0, 1). This
elliptic curve has a subgroup C3 of automorphisms generated by

y 7→ y

x 7→ x+ 1.

This induces a map e : SpecF3//C3 → M(3) by Proposition 2.6.6. In total, we get the
following diagram of stacks:

SpecF3

id

��

// Spec Λ

��

// SpecZ(3)

��
SpecF3

��

ε //M(2) ' Spec Λ//Gm

p

��

// SpecZ(3)//Gm

��
SpecF3//C3

e //M(3)
i // X = SpecZ(3)//Gm//S3

The left hand side of the diagram was just explained. The upper right horizontal morphism
is induced by the canonical morphism Z(3) → Λ. We get the other two right horizontal
morphisms by the facts that Spec Λ → M(2) is a Gm-torsor and M(2) → M(3) is an S3-
torsor (and SpecZ(3)//G is the moduli stack of G-torsors by de�nition).

We want to understand the composition RI : QCoh(X)→ QCoh(SpecF3//C3) for R =
e∗ and I = i∗. We have that QCoh(SpecF3//C3) ' F3[C3] -mod by Galois descent and
QCoh(X) is equivalent to graded Z(3)-modules with S3-action. Note also that QCoh(M(3)) '
Λ̃[S3] -grmod. The functor I can be seen as associating to a graded abelian groupM with S3-

action a module M ⊗Z(3)
Λ ∈ Λ̃[S3] -grmod with S3-action on both factors. By Proposition

2.6.6 and the example thereafter, an N ∈ Λ̃[S3] -grmod is sent by R to resS3
C3
N ⊗Λ R ∈

F3[C3] -mod (forgetting the grading)2 since the group C3 of automorphisms of E acts on
E[2] by cyclically permuting the 2-torsion points. In summary, RI(M) = resS3

C3
M ⊗Z(3)

F3

(forgetting the grading).
The group C3 has (exactly) three indecomposable representations J1, J2 and J3 over

F3 of dimensions 1, 2 and 3 respectively, given by mapping the generator of C3 to the

2Or rather taking the direct sum of all degrees, depending on the de�nition of graded objects.
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Jordan matrices
(
1
)
,

(
1 1
0 1

)
respectively

1 1 0
0 1 1
0 0 1

. We want to show that they are

realizable by integral representations of S3 and, hence, as vector bundles on M(3). For
the trivial representation Z(3) of S3, we have RIZ(3)

∼= J1. The group S3 acts on Z(3)[ζ3] by
permutation of the roots of unity (here, ζ3 is a primitive third root of unity). By choosing the
basis (ζ2

3 − ζ3, ζ3), we see that RIZ(3)[ζ3] ∼= J2. Let P be the rank 3 canonical permutation
representation of S3; this is as C3-representation isomorphic to Z(3)[C3] (with generator
t ∈ C3). Thus, RIP ∼= F3[C3]. By choosing the basis (1 + t+ t2,−t+ t2, t) of F3[C3], we see
that F3[C3] ∼= J3.

We have that S3-equivariantly IZ(3)[S3](M(2)) ∼=
⊕

S3
Λ; here we let S3 act on S3 from

the left by h · g = gh−1; and on the right hand side S3 acts simultaneously by permuting the
factors (by the action just described) and on Λ. This convention is chosen for the following
reason: Consider the map

S3 ×M(2)→M(2)×MM(2)

indicated by the formula (g,m) 7→ (m, gm). If S3 acts just on the left factor in the right
hand side, the map becomes equivariant if we act on S3 ×M(2) via h · (g,m) = (gh−1, hm).
Thus, IZ(3)[S3] ∼= p∗p

∗O for p : M(2) → M(3) the projection as above. Similarly, we have
that IP ∼= f∗f

∗O (since M(2) ×M(3)
M0(2) ' ∐{1,2,3}M(2)). As M(2) ×M(3)

M0(2) →
M(2) ×M(3)

M(3) corresponds to the fold map
∐
{1,2,3}M(2) →M(2), the functor I sends

the diagonal map Z(3) → P to the adjunction unit O → f∗f
∗O.

We have two exact sequences

0→ Z(3) → P → Z(3)[ζ3]→ 0

and
0→ (1− ζ3)Z(3)[ζ3]→ P → Z(3) → 0

of Z(3)[S3]-modules (sending t to ζ3 respectively ζ3 to t). Here, the map Z(3) → P is the
diagonal and the map P → Z(3) is the summing map. Since i is �at, I = i∗ is exact and we
get exact sequences

0→ O → f∗f
∗O → IZ(3)[ζ3]→ 0

and
0→ I

(
(1− ζ3)Z(3)[ζ3]

)
→ f∗f

∗O → O → 0.

Lemma 3.5.1. We have I
(
(1− ζ3)Z(3)[ζ3]

) ∼= ω4 ⊗Eα, with notation as in the last section.

Proof. Since the higher cohomology of f∗f∗O vanishes, we have that

H2
k(M(3); I

(
(1− ζ3)Z(3)[ζ3]

)
) =

{
F3 for k = 2 mod 12

0 else.

Thus, I
(
(1− ζ3)Z(3)[ζ3]

)
is an indecomposable vector bundle of rank 2 (since every line

bundle has non-trivial cohomology in every 12-th degree).
The sub S3-representation Z(3)〈x2, y2〉 ⊂ Λ (where Z(3)〈x2, y2〉 denotes the free Z(3)-

module of rank 2) is isomorphic to (1 − ζ3)Z(3)[ζ3] (see Section 2.5). This induces an S3-
equivariant map Λ ⊗ (1 − ζ3)Z(3)[ζ3] → Λ, which is surjective (since x2 is a unit) and, with
respect to the grading of Λ, of degree 2. By Galois descent, this induces in turn a surjective
map I

(
(1− ζ3)Z(3)[ζ3]

)
→ ω2. By Proposition 3.3.1, its kernel is a vector bundle again;

since I
(
(1− ζ3)Z(3)[ζ3]

)
does not decompose, this has to be ω4. Thus, (1 − ζ3)Z(3)[ζ3] ∼=

ω4 ⊗ Eα.
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Lemma 3.5.2. We have IZ(3)[ζ3] ∼= ω−2 ⊗ Eα and (f∗f
∗O)̌ ∼= f∗f

∗O.

Proof. Equip P̌ = Hom(P,Z(3)) with the action (g · f)(p) = f(g−1(p)). Then sending each
basis vector of P to its dual vector de�nes an S3-equivariant isomorphism P ∼= P̌ . With this
identi�cation, the dual of the diagonal is the summing map. Thus, (Z(3)[ζ3 ]̌) ∼= (1−ζ3)Z(3)[ζ3]
by dualizing the short exact sequences above. Since i is an fpqc map, I = i∗ sends duals to
duals (since pulling back is just restricting). Hence, IZ(3)[ζ3] ∼= ω−2 ⊗ Eα and (f∗f

∗O)̌ ∼=
f∗f
∗O.

This implies the exact sequences stated in the last section. As a last point at the prime
3, we want to prove the following three lemmas:

Lemma 3.5.3. Let Z′(3) the one-dimensional S3 representation with g · x = sgn(g)x. Then

IZ′(3)
∼= ω6.

Proof. Consider the element
√

∆ = 4x2y2(x2 − y2) ∈ Λ. Then
√

∆ · Z(3) de�nes an S3-
subrepresentation of Λ isomorphic to Z′(3) (as can be seen by the formulas in Section 2.5).

Since
√

∆ is a unit, this de�nes an S3-equivariant graded isomorphism Λ ⊗ Z′(3)
∼= Λ[6] to

the 6-fold shift (for |x2| = |y2| = 2). But Λ[n] corresponds (under Galois descent) to ωn (see
Section 2.5). Thus, the result.

Lemma 3.5.4. For p : M(2)→M(3) the projection, p∗p
∗O ∼= f∗f

∗O ⊕ f∗f∗O ⊗ ω2.

Proof. We know that p∗p∗O ∼= IZ(3)[S3]. Thus it su�ces to show that Z(3)[S3] ∼= P ⊕(
P ⊗ Z′(3)

)
since f∗f∗O ∼= f∗f

∗O⊗ω4 (as shown in the last section) and IZ′(3)
∼= ω6. Sending

(ag)g∈S3 to the triple (
∑

g : g(1)=i ag)
3
i=1 de�nes an S3-map Z(3)[S3]→ P . This is split by the

map P → Z(3)[S3] sending (ai)
3
i=1 to (ag)g∈S3 with ag = ai

2 for g(1) = i. The kernel of the
�rst map consists of all (ag)g∈S3 such that for s = (1 3 2) ∈ S3 we have ag = −ags. Since
P ⊂ Z(3)[S3] is de�ned by the conditions ag = ags, we have that this kernel is isomorphic to
P ⊗ Z′(3), as was to be shown.

Lemma 3.5.5. For q : M(4) → M(3) the projection, q∗q
∗O is a direct sum of 8 copies of

p∗p
∗O.

Proof. Recall from the end of Section 2.5 thatM(4)→M(2) is a G = (C2)4-torsor generated
by involutions ã, b̃, c̃ and d̃ and thatM(4) ' SpecA

∐
SpecA. As in Lemma 2.7.1, the G-

�xed points of q∗q∗O are p∗p∗O. We can compute these �xed points by taking iteratively the
�xed points of the 4 involutions given above (since they all commute). Since 2 is invertible,
every quasi-coherent sheaf F on M[1

2 ] with a C2-action splits into FC2 and (F ′)C2 , where
on F ′ the C2-action is twisted by sign. Since ã just permutes the two components ofM(4),
we get that (q∗q

∗O)C2
ã
∼= q∗(q

∗O|SpecA) (and the same for the action twisted by sign). The
involution ãd̃ is trivial, so taking �xed points with respect to ãd̃ changes nothing. Taking
�xed points with respect to b̃ and c̃ gives now p∗p

∗O; if we twist by signs, we get the same
result since A is C2 × C2-equivariantly isomorphic to itself with b̃ and c̃ possibly twisted by
signs (see the end of Section 2.5).

We will come now to the situation of M(2), which is in some respects quite di�erent;
we will see that we have here in�nitely many indecomposable vector bundles (of arbitrary
high rank). Recall that we have a GL2(F3)-Galois covering M(3) → M(2) for M(3) the
moduli stack of elliptic curves with level-3 structure at the prime 2. Set G = GL2(F3). We
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haveM(3)(2)
∼= SpecB, where B ∼= Z(2)[ζ3][X, (X3 − 1)−1] (as stated in the introduction of

[DR73]).
Consider the elliptic curve E : y2 + y = x3 over F2 (which has, according to [Sil09],

III.10.1, automorphism group S of order 24). By [KM85, 2.7.2], the morphism S → G (given
by the operation of S on E[3]) is injective. Using elementary group theory, we get that G has
a unique subgroup of order 24, namely SL2(F3); thus S embeds onto SL2(F3). The group
SL2(F3) has as a 2-Sylow group the quaternion group Q, the multiplicative subgroup of the
quaternions generated by i and j. This de�nes an action of Q on E. Since the �nite group
scheme E[3] over F2 is isomorphic to (Z/3)2, we can choose a level-3 structure on E. This
gives (as for the prime 3 before) the following diagram

SpecF2

��

//M(3)(2) ' SpecB

��

// SpecZ

��
SpecF2//Q //M(2) // SpecZ//G

Thus, we get functors I : Z[G] -mod→ QCoh(M(2)) and R : QCoh(M(2))→ F2[Q] -mod

as above. Again, the functor RI is given by tensoring with F2 and restricting to Q ⊂ GL2F3

(using Proposition 2.6.6).
There is a family of C2 × C2-representations over Z given as Mn = Zx1 ⊕ · · · ⊕ Zxn ⊕

Zy0 ⊕ · · · ⊕ Zyn and

(g1 + (−1)i)xi = yi−1, (g2 + (−1)i)xi = yi

(g1 − (−1)i)yi = (g2 + (−1)i)yi = 0

where g1 and g2 generate C2 × C2 (see [HR62], 6.2). The modules Mn = Mn ⊗Z F2 (and,
hence, also the Mn) are indecomposable (see [HR61], Proposition 5(ii) and its corollary).
The same holds if we pull them back to representations of Q via the surjective morphism
π : Q→ C2 × C2 (given by dividing out i2 ∈ Q); we denote these pullbacks the same way.

Let Y1, Y2, . . . be the collection of indecomposable vector bundles on M(3). Decompose
I indGQMn as

⊕∞
i=1 aiYi (with almost all ai = 0). Thus, RI indGQMn

∼=
⊕∞

i=1 aiR(Yi). Since

RI indGQMn
∼= resGQ indGQMn

∼=
⊕
G/Q

Mn,

we see that Mn is a direct summand of this module. Therefore, by the theorem of Krull�
Remak�Schmidt3, Mn has to be a summand of one of the RYi. Since rkMn = 2n + 1, the
rank of RYi (and hence of Yi) must be at least 2n+ 1. Therefore,M(2) has indecomposable
vector bundles of arbitrary high rank.

3.6 Classi�cation of Standard Vector Bundles on M(3)

In this section, we want to classify all standard vector bundles on M(3). We set again by
abuse of notationM =M(3).

Theorem 3.6.1. Every standard vector bundle onM is a direct sum of the form
⊕

I ω
ni ⊕⊕

J Eα ⊗ ωnj ⊕
⊕

K Eα,α̃ ⊗ ωnk .
3This states that every noetherian and artinian module has a (up to permutation and isomorphisms)

unique decomposition in indecomposable modules.
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Proof. We will prove this theorem by induction on the rank of the vector bundle. The rank
1 case is the classi�cation of line bundles.

So assume that we have proven the theorem for all standard vector bundles of rank smaller
than n and that X is a standard vector bundle of rank n. By the induction hypothesis, we
have a short exact sequence

0→ ωk → X → Y → 0, (3.4)

where Y is of the form
⊕

IY
ωni ⊕⊕JY

Eα⊗ωnj ⊕
⊕

KY
Eα,α̃⊗ωnk and of rank (n− 1).

We call the depicted summands of Y the standard summands of Y . We can assume that Y
is chosen with IY of minimal cardinality among all choices of morphisms X → Y with Y a
direct sum of twists of O, Eα and Eα,α̃ and with a line bundle as kernel. Furthermore, we
assume (for notational simplicity) that k = 0.

We assume that X is not of the form which is demanded by the theorem we want to
prove. Then the extension (3.4) is non-trivial. Since the Ext functor commutes with (�nite)
direct sums, there is at least one standard summand S of Y such that the map Ext1(Y,O)→
Ext1(S,O) (induced by the inclusion) sends the class x ∈ Ext1(Y,O) corresponding to (3.4)
to a non-trivial class. We will prove the theorem case by case:

1) S = Eα,α̃ ⊗ ωj : this cannot happen since Ext1(Eα,α̃ ⊗ ωj ,O) = 0.

2) S = Eα ⊗ ωj : Since the only non-split extension of O and an Eα ⊗ ωj is Eα,α̃ with
j = −2, we get a diagram (with rows and columns exact) of the form:

0

��

0

��
0 // O //

��

Eα,α̃ //

��

Eα ⊗ ω−2 //

��

0

0 // O // X

��

// Y //

��

0

Y − (Eα ⊗ ω−2)

��

= // Y − (Eα ⊗ ω−2)

��
0 0

The left vertical extension is trivial since Ext1(Y − (Eα ⊗ ω−2), Eα,α̃) = 0 (note to that
purpose that Y −(Eα⊗ω−2) is standard since it is a sum of standard summands). Therefore,

X ∼= Eα,α̃ ⊕ (Y − (Eα ⊗ ω−2)).

3) S = ωj : Since the only non-split extension of O and an ωj is Eα with j = −2, we get
a diagram (with rows and columns exact) of the form:
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0

��

0

��
0 // O //

��

Eα //

��

ω−2 //

��

0

0 // O // X

��

// Y //

��

0

Y − ω−2

��

= // Y − ω−2

��
0 0

If the left vertical extension in the diagram is non-split, there is a standard summand S′

of Y − ω−2 such that the map Ext1(Y − ω−2, Eα) → Ext1(S′, Eα) induced by the inclusion
sends the element y ∈ Ext1(Y − ω−2, Eα) corresponding to the left vertical extension to a
non-trivial class. If S′ ∼= ωl, then the argument is similar to the case before and we get
X ∼= (Y − ω−2 − ω−4) ⊕ Eα,α̃ . The case S′ ∼= Eα,α̃ ⊗ ωl can again not occur because of
the vanishing of Ext. Therefore, we can assume that S′ is isomorphic to a twist of Eα. The
only non-trivial extensions of two vector bundles of type Eα are Eα,α̃ ⊕ ω−2 and its twists
(as proven at the end of Section 3.4). So we can assume that we get a commutative diagram
(with rows and columns exact) of the form:

0

��

0

��
0 // Eα //

��

Eα,α̃ ⊕ ω−2 //

��

Eα ⊗ ω−2 //

��

0

0 // Eα // X

��

// Y − ω−2 //

��

0

Y − ω−2 − (Eα ⊗ ω−2)

��

= // Y − ω−2 − (Eα ⊗ ω−2)

��
0 0

Pushing the left vertical extension forward along the projection map Eα,α̃ ⊕ ω−2 → Eα,α̃
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produces the following diagram (with rows and columns exact):

0

��

0

��
ω−2 = //

��

ω−2

��
0 // Eα,α̃ ⊕ ω−2 //

��

X //

��

Y − ω−2 − (Eα ⊗ ω−2) //

=

��

0

0 // Eα,α̃ //

��

Y ′ //

��

Y − ω−2 − (Eα ⊗ ω−2) // 0

0 0

The lower horizontal extension splits so that Y ′ ∼= Eα,α̃⊕ (Y −ω−2− (Eα⊗ω−2)). Thus,
Y ′ would have been possible as a choice for Y , but |IY ′ | = |IY | − 1, which is a contradiction
to the minimality of |IY |.

Scholium 3.6.2. In every non-trivial extension

0→ ωk → E → E′ → 0

and in every non-trivial extension

0→ E′ → E → ωk → 0

of standard vector bundles the total dimension of the non-line bundle indecomposable sum-
mands of E is, at least, one bigger than that of E′.

Proof. The �rst statement follows from the proof of the theorem (note that the total dimen-
sion of non-line bundle components is bigger in Y ′ than in Y in the last step of the proof).
The second follows by dualizing.
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Chapter 4

Module Categories

4.1 Foundations of Homotopy Theory

Nowadays, there is a plethora of settings for abstract homotopy theory. The most traditional
theory is Quillen's language of model categories. These are categories with the extra structure
of chosen classes of weak equivalences, �brations and co�brations satisfying certain axioms.
The choice of (co)�brations gives a very tight structure, which is particularly well-adapted
to handle derived functors.

Sometimes, it is more convenient to have a way of doing abstract homotopy theory in a
less structured or tight way, leading to the philosophy of (∞, 1)-categories. This philosophy
has several incarnations and the most important for us is the theory of quasi-categories (which
we will often just call∞-categories). Other popular choices are simplicial categories, relative
categories and complete Segal spaces. We want to sketch also these theories and indicate their
relationship, which we want to exploit to prove a certain statement about homotopy limits of
quasi-categories. We will not care about set-theoretical issues since there are standard ways
to deal with them (say, via choices of Grothendieck universes).

4.1.1 Simplicial Categories and Quasi-Categories

In homotopy theory it is crucial to have a good theory of mapping spaces between objects.
The theory of simplicial categories is the most straightforward answer to this desideratum as a
simplicial category is just de�ned to be a category C enriched in simplicial sets. Its homotopy
category Ho(C) has the same objects as C and Ho(C)(x, y) = π0C(x, y) as morphism sets for
x, y ∈ Ob(C). A functor between simplicial categories is called a Dwyer�Kan equivalence if it
induces an equivalence of homotopy categories and weak equivalences on the mapping spaces.
One can equip the category sCat of simplicial categories with the Bergner model structure,
where the weak equivalences are the Dwyer�Kan equivalences and a object is �brant i� each
mapping space is a Kan complex (see [Ber07] or [Lur09b, A.3.2.4 and A.3.2.24]).

Example 4.1.1. If M is a simplicial model category, the sub simplicial category M◦ of
bi�brant objects is �brant in the Bergner model structure. The homotopy category Ho(M◦)
is equivalent to the homotopy category of the model categoryM.

While there is a strictly de�ned composition of morphisms in simplicial categories, this
will be no longer the case in the theories of quasi-categories and (complete) Segal spaces.
The theory of quasi-categories begins with the observation that the nerve NC of a category
C has the property that every morphism Λnk → NC from an inner horn (i.e. 0 < k < n) can
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be �lled uniquely to a map ∆n → NC. For example, the existence of the composition

X

f
��

g◦f

  @
@

@
@

Y
g //// Z

is just a �lling of the two-horn Λ2
1 and the associativity of composition is forced by a �lling

of a three-horn ([Lur09b, 1.1.2.2]).

De�nition 4.1.2. A quasi-category (or ∞-category) is a simplicial set C such that every
morphism Λnk → C from an inner horn (i.e. 0 < k < n) can be (possibly non-uniquely) �lled
to a map ∆n → C.

Thus, the composition is not unique, but only unique up to contractible choice.1 Interest-
ingly, there is a model structure on sSet (the Joyal model structure) such that every object is
co�brant and the �brant objects are exactly the∞-categories. There is a Quillen equivalence

sSet
C //

sCat
N
oo

between simplicial sets with the Joyal model structure and simplicial categories with the
Bergner model structure (see, for example, [Lur09b, Section 2.2]). Here, N stands for the
coherent nerve in the sense of Cordier and Porter (see [Lur09b, Section 1.1.5] for a de�nition).
Since N is a right Quillen functor, the image of a �brant simplicial category is an∞-category.
In particular, this holds for N(M◦) for a simplicial model category M. Note that we have
Ho(M) ' Ho(N(M◦)).

A functor between ∞-categories C and D is de�ned to be a map C → D of simplicial
sets. We say that a functor f : C → D is a (categorical) equivalence if C(f) : C(C) → C(D)
is a Dwyer�Kan equivalence. The homotopy category Ho(C) of an ∞-category C is de�ned
as Ho(C(C)). In particular, we see that Ho(N(M◦)) ' Ho(M). For a deeper, yet accessible
introduction to ∞-categories see [Lur09b, Chapter 1].

4.1.2 Comparison to Other Approaches

The aim of this section is to compare the quasi-categorical approach to the theory of complete
Segal spaces. In this thesis, this will only be used to transfer results by Julie Bergner about
homotopy limits of complete Segal spaces to homotopy limits of quasi-categories, so it might
be skipped in �rst reading.

Before explaining the theory of complete Segal spaces, we introduce the theory of relative
categories. A relative category is a category C equipped with a chosen subcategoryW (called
the sub category of weak equivalences) which contains all objects of C. Important examples
are model categories with their weak equivalences.

Given a relative category C, we can construct a simplicial category LHC, the hammock
localization (for a de�nition, see [DK80b, Section 3.1]). We get a diagram

ModCat // relCat

LH

��
sModCat

()◦ //

OO

sCat

This commutes up to a natural zig zag of Dwyer�Kan equivalences of simplicial categories
by [DK80b, Proposition 4.8].

1More precisely, X ∈ sSet is an ∞-category i� Map(∆2, X)→ Map(Λ2
1, X) is an acyclic Kan �bration.
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De�nition 4.1.3. A relative functor between relative categories (C,W) and (C′,W ′) is a
functor F : C → C′ such that F (W) ⊂ W ′. It is a homotopy equivalence if there is a relative
functor G : C′ → C such that FG and GF are naturally equivalent to the identity functors
(i.e., there is a zig zag of natural transformations consisting of weak equivalences).

Lemma 4.1.4. A homotopy equivalence F : (C,W)→ (C′,W ′) induces a Dwyer-Kan equiv-
alence LHF : LH(C,W)→ LH(C′,W ′).

Proof. By [DK80b, Proposition 3.2], the homotopy category Ho(LHC) is a localization of
C at the class of weak equivalences. Thus, Ho(LHF ) : Ho(LHC) → Ho(LHC) is essentially
surjective.

Therefore, it is enough to show the following: Suppose that I and J are relative endo-
functors of (C,W) with a natural transformation s : I → J consisting of weak equivalences
between them. Then LHC(X,Y ) → LHC(IX, IY ) is a weak equivalence i� LHC(X,Y ) →
LHC(JX, JY ) is a weak equivalence.

By [DK80a, Proposition 3.5], we have a commutative diagram

LHC(IX, IY )

s∗

((QQQQQQQQQQQQQ

LHC(X,Y )

66nnnnnnnnnnnn

((PPPPPPPPPPPP
LHC(IX, JY )

LHC(JX, JY )

s∗
66mmmmmmmmmmmmm

By [DK80a, Proposition 3.3], s∗ and s∗ are weak equivalences. Thus, the result.

We equip the category of relative categories (with relative functors between them) with the
model structure from [BK12b], which we call the Barwick�Kan model structure, and denote
it by RelCat. With the weak equivalences of the Bergner respectively Barwick�Kan model
structures, both the category of simplicial categories and the category of relative categories
get the structures of relative categories.

Proposition 4.1.5 ([BK12a], Theorem 1.7). The Hammock localization is a homotopy equiv-
alence between the relative categories of relative categories and simplicial categories.

The theory of Segal spaces begins with the observation that for the nerve NC of a category
C, we have an isomorphism

(NC)n → (NC)1 ×(NC)0 · · · ×(NC)0 (NC)1

whose inverse is given by composition.

De�nition 4.1.6. A simplicial space2 W is called a Segal space if it is Reedy �brant and
the Segal map Wn → W1 ×W0 · · · ×W0 W1 is a weak equivalence of simplicial sets. A Segal
space is said to be complete if the Rezk completion map is an equivalence (see [Rez01, �4-6]
for details).

For two 0-simplices x, y ∈W0 in a (Reedy �brant) simplicial spaceW , de�ne the mapping
space mapW (x, y) to be the �ber of the map (d1, d0) : W1 → W0 × W0 over (x, y). The
homotopy category Ho(W ) has W0,0 as objects and π0 mapW (x, y) as Hom-sets. We say

2Here, `space` stands for a `simplicial set`.
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that a map of (Reedy �brant) simplicial spaces is a Dwyer�Kan equivalence if it induces an
equivalence of homotopy categories and weak equivalences of mapping spaces.

The category of simplicial spaces can be equipped with a (simplicial) model structure
([Rez01, Theorem 7.2]) such that the �brant objects are exactly the complete Segal spaces,
the weak equivalences between Segal spaces are given by Dwyer�Kan equivalences and every
object is co�brant. This model structure is Quillen equivalent both to the Joyal and the
Bergner model structure. For example, we have a Quillen equivalence:

sSet
p∗1 //

ssSet
i∗1

oo

Here, the two Quillen functors a induced by the projection p1 : ∆ × ∆ → ∆ to the �rst
coordinate and the map i1 : ∆→ ∆×∆ sending [n] to ([n], [0]).

We can associate to every relative category a simplicial space as follows: Let C[n] be
category of chains of n composable morphisms in C. A morphism between two chains is
called a weak equivalence if it is a weak equivalence on every object. Then, we de�ne a
simplicial space N(C,W) by

N(C,W)n = N(we(C[n])),

which is called the classifying diagram.

Theorem 4.1.7 ([BK12b], Theorem 6.1 and Key Lemma 5.4). There is a Quillen equivalence

ssSet
Kξ //

RelCat
Nξ
oo

such that there is a natural transformation N → Nξ which consists of Reedy equivalences
(which are, in particular, equivalences in the Rezk model structure). In addition, Nξ(f) is a
weak equivalence (�bration) i� f is a weak equivalence (�bration), for f a morphism in ssSet.
In particular, the right derived functor RNξ is weakly equivalent to N .

Next, we want to discuss an amazing result by Toën.

Theorem 4.1.8 ([Toë05],Theorem 6.3). For C a simplicial category, denote by RAut(C) the
simplicial monoid consisting of those components of the derived mapping space MapsCat(C, C)
consisting of Dwyer�Kan equivalences. Then there is a weak equivalence of simplicial monoids
RAut(LH ssSet) ' C2. An endomorphism F of LH ssSet lies in the component of the identity
i� there is weak equivalence between the diagrams

F (∆0
δ)

// // F (∆1
δ) and ∆0

δ
//// ∆1

δ .

Here, ∆0
δ and ∆1

δ are ∆0 and ∆1 viewed as discrete simplicial spaces and the maps are
(induced by) the inclusion of the end points.

Note that if

C
F // D
G
oo

is a Quillen equivalence, the derived functors LF and RG de�ne a homotopy equivalence of
relative categories and hence Dwyer�Kan equivalences of the Hammock localizations LHC
and LHD by Lemma 4.1.4.
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An object X ∈ ssSet can be viewed as an object in LH ssSet. By [DK80b, 4.8], we have
a zig zag of Dwyer�Kan equivalences

LH ssSet // diagLH ssSet ssSet◦oo

which are all identity on objects. We choose a �brant replacement functor ()f in simplicial
categories, which preserves objects. One possibility is to apply to apply S•|| to every mor-
phism space (where S• denotes the singular complex). This is functorial an we get a zig
zag

(LH ssSet)f // (diagLH ssSet)f ssSet◦oo

Applying nerves, we get a zig zag of equivalences

N((LH ssSet)f ) // N((diagLH ssSet)f )
G′ //___

N(ssSet◦)
G
oo

using the Ken Brown lemma ([Hov99, 1.1.12]). The dashed arrow is an inverse weak equiva-
lence to G, which exists since both nerves are bi�brant. The map Q from the objects of ssSet
to the 0-simplices of N((diagLH ssSet)f ) is the identity. We denote the composition FQ by
κ. Given X ∈ ssSet◦, we have QX = GX. Since FG is equivalent to the identity functor,
κX is naturally equivalent to X. Note also that κ preserves equivalences between objects
(here, an equivalence is a morphism inducing an isomorphism in the homotopy category).

Corollary 4.1.9. With this notation, there is a natural equivalence between κ(p∗1N(M◦))
and κ(N(M,W)) in N(ssSet◦).

Proof. By Proposition 4.1.5 and the fact that p∗1 and N are Quillen equivalences, F =
Lp∗1RNL

H de�nes a homotopy equivalence between the relative categories RelCat and ssSet
(with the Rezk model structure). By Theorem 4.1.7, N(−,−) is also a homotopy equiva-
lence from RelCat to ssSet. Thus, N(−,−)Kξ and FKξ are auto homotopy equivalences
of ssSet (note that every object of ssSet is co�brant). By Lemma 4.1.4, they de�ne auto
Dwyer�Kan equivalences of LH ssSet. By [BK12b, Proposition 7.3], Kξ([n]) ' K([n]), where
K([n]) is the relative category [n] where weak equivalences are just identities. The Ham-
mock localization of K([n]) is just the discrete category [n] and p∗1N([n]) = p∗1∆n = ∆n

δ

in ssSet. Similarly, we get that N([n], id[n]) = ∆n
δ . Both identi�cations are compatible

with the structure maps in the category ∆. Thus, FKξ and N(−,−)Kξ lie in the same
path components in the derived mapping space MapsCat(L

H ssSet, LH ssSet). Since Kξ is a
Dwyer�Kan equivalence, also F and N(−,−) lie in the same path component of the derived
mapping space MapsCat(L

H RelCat, LH ssSet). If we postcompose with the �brant replace-
ment LH ssSet→ (LH ssSet)f , both F and N(−,−) factor over the �brant replacement:

LH RelCat

��

F //

N(−,−)
// (LH ssSet)f

(LH RelCat)f

F ′

<<z
z

z
z

z
z

z
z

z

N ′(−,−)

<<z
z

z
z

z
z

z
z

z

We denote these maps (LH RelCat)f → (LH ssSet)f by F ′ and N ′(−,−). The induced
maps NF ′ and NN ′(−,−) from N((LH RelCat)f ) to N((LH ssSet)f ) lie in the same path
component of

MapsSet(N((LH RelCat)f ), N((LH ssSet)f ))
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(which is, at the same time, the derived mapping space since all objects in sSet are co�brant
andN((LH ssSet)f ) is �brant). Thus, alsoNF andNN(−,−) lie in the same path component
of MapsSet(N(LH RelCat), N((LH ssSet)f ))) and κNF and κNN(−,−) lie in the same path
component of

MapsSet(N(LH RelCat), N(ssSet◦)),

i.e., there is a natural equivalence between F (M,W) and N(M,W) in N ssSet◦.
The simplicial categoryM◦ is a �brant replacement of LHM and all objects of sSet are

co�brant. Thus F (M,W) = Lp∗1RNL
H(M) = p∗1N(M◦) and the result follows.

Let sModCat be the category of simplicial model categories where morphisms are given by
simplicial functors preserving �brations, co�brations and weak equivalences. Furthermore,
we denote by holim the derived functor of the limit in a model category. The following
corollary owes much to Chris Schommer-Pries.

Corollary 4.1.10. Let I → sModCat, i 7→ Mi be a diagram of simplicial model categories.
Then p∗1 holimI N(M◦i ) is weakly equivalent to holimI N(Mi,Wi); here, the homotopy limits
are built in the Joyal model structure on sSet and the Rezk model structure on ssSet respec-
tively. In particular, for a simplicial model categoryM, the nerve NM◦ is weakly equivalent
to holimI N(M◦i ) i� N(M,W) is weakly equivalent to holimI N(Mi,Wi).

Proof. We have two diagrams κ(p∗1NM◦i ) and κ(N(Mi,Wi)) of the form NI → N(ssSet◦),
which are homotopic by the last corollary. These are naturally equivalent to (p∗1NM◦i )f and
(N(Mi,Wi))

f , where ()f denotes �brant replacement in the Rezk model structure. Thus,
holimNI(p

∗
1NM◦i )f ' holimNI(N(Mi,Wi))

f , where the homotopy limit is taken in the ∞-
categorical sense. By [Lur09b, Theorem 4.2.4.1], holimI(p

∗
1NM◦i ) ' holimI(p

∗
1NM◦i )f (in the

model categorical sense), where the diagram is in ssSet, is equivalent to holimNI(p
∗
1NM◦i )f

and holimI N(Mi,Wi) to holimNI(N(Mi,Wi))
f as well. Since p∗1 is (the derived functor of)

a Quillen equivalence, p∗1 holimI NM◦i is weakly equivalent to holimI p
∗
1NM◦i and the �rst

statement follows.
For the second, note that NM◦ ' holimI N(M◦i ) i�

N(M,W) ' p∗1NM◦ ' p∗1 holimI N(M◦i ) ' holimI N(Mi,Wi).

4.2 Category of Modules over a Ring Spectrum

There are many di�erent choices about the basic framework for ring spectra and their module
categories. First, one has to decide whether to use model categories or∞-categories (usually
in the setting of Joyal's quasi-categories); second, there are many choices of model categories
modelling spectra and one has to make a choice there. Since most of our main results are in
the homotopy category of R-modules for a �xed ring spectrum R the choices barely matter
� if they do at all, then in this and the next chapter.

For concreteness, we choose to work in the setting of symmetric spectra in simplicial sets,
equipped with the stable (projective) model structure from [HSS00]. A (commutative) ring
spectrum is for us always a strictly (commutative and) associative monoid in this category.

Given a ring spectrum R, one has an associated category of (left-)modules over it. As de-
scribed in [SS00], it has an induced model structure with weak equivalences and �brations the
underlying ones. We denote its homotopy category by Ho(R -mod). If we claim an isomor-
phism between two R-modules, it is always meant as an isomorphism in Ho(R -mod). For two
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R-modules M and N , we denote their (derived) mapping spectrum by HomR(M,N) and set
[M,N ]nR := π−n HomR(M,N). We have an isomorphism [M,N ]nR

∼= Ho(R -mod)(M,ΣnN).
We will sometimes denote the mapping spectrum HomS with respect to the sphere spectrum
by the letter F to stress that it is not Hom over a background ring spectrum R.

Note also that the notions of a ring spectrum and a module spectrum have more explicit
descriptions (as described in the beginning of the book project [Sch07]), which is equivalent
to the more abstract one (see [Sch07, Theorem 3.8]).

As we will see, a priori, the commutative ring spectrum TMF is not constructed3 as a sym-
metric spectrum in simplicial sets, but only in topological spaces. The results of [MMSS01,
�19] give Quillen equivalences between these two categories of spectra and also of their cat-
egories of (commutative) monoids and corresponding module categories. Precise statements
about equivalences to the ∞-category approach can be found in [Lur11], in particular in
4.1.4.6, 4.3.3.17, 4.4.4.9 and 6.3.2.18.

One of the most important tools in the study of module categories over ring spectra is
the (generalized) universal coe�cient spectral sequence.

Theorem 4.2.1 (Universal Coe�cient Spectral Sequence, [EKMM97], IV.4.14). Let R be a
ring spectrum and M,N ∈ R -mod. Then there is a spectral sequence

Es,t2 = ExtsR∗(π∗M,π∗N [t])⇒ [M,N ]s+tR .

Here π∗N [t] = π∗−tN . The edge homomorphism [M,N ]nR → HomR∗(π∗M,π∗N [n]) is given
by the induced map on homotopy groups.

Example 4.2.2. By [Laz01, 11.8], there is an associative ring spectrum structure on Morava
K-theory K(n) for p > 2. Recall that K(n)∗ ∼= Fp[v±1

n ] is a graded �eld. Therefore, all higher
Ext-groups vanish over this ring and Ho(K(n) -mod) ' K(n)∗ -grmod.

Example 4.2.3. As a slightly more interesting example, we might consider the case of
R = KU ; we already discussed this in the introduction, but will recapitulate it. We know
that KU∗ ∼= Z[u±1] has homological dimension 1 in the sense that every graded module over
KU∗ has projective dimension at most 1. Therefore, the spectral sequence is concentrated in
the �rst two rows and all di�erentials must vanish.

• • • • • • •

•
s+t
//

s OO

•

FF�������� • •

FF�������� • •

FF�������� •

If we have two KU -modules M and N with an isomorphism f : π∗M → π∗N , then this
isomorphism is realized by a map f : M → N , which is an isomorphism (in the homotopy
category) of KU -modules. Therefore, the functor π∗ classi�es KU -modules in the sense that

3'Constructed' is here used in a loose sense. Important steps in the �construction� are only existence
proofs.

4While EKMM is set in S-modules, the proof of the universal coe�cient spectral sequence is just happening
in the homotopy category of R-modules and can be adapted also to symmetric spectra.
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it detects isomorphisms. We can apply the same arguments to KO localized at an odd
prime p. For R = KU or R = KO(p) it is even true by results of Franke and Patchko-
ria ([Pat11], 5.2.1) that the homotopy category of R-modules is equivalent to the derived
category of R∗-modules. The same holds for TMF localized at a prime p greater than 3
since then (TMF(p))∗ ∼= Z(p)[c4, c6,∆

−1] has homological dimension two (as proved in the
introduction):5 so Ho(TMF(p) -mod) ' D((TMF(p))∗) ([Pat11], 1.1.3). Yet another exam-
ple is TMF (2), which we get by evaluating the sheaf of commutative ring spectra Otop on
the moduli stack of elliptic curves with level 2-structure M(2) at the prime 3. We have
TMF (2)∗ ∼= Z(3)[x2, y2,∆

−1] and thus we have also homological dimension 2 (by the same
proof as for TMF(p)) and get also the equivalence to the derived category.

At the end of this section, we want to collect a few de�nitions and simple lemmas. In
these, R will always be a commutative ring spectrum.

Lemma 4.2.4. If M is an R-module, then the map [R,M ]kR → π0(ΣkM) ∼= π−kM (sending
[f ] to f∗(1) for 1 ∈ π0R the unit element) is an isomorphism. Furthermore, if f : R → S
is a ring map and x ∈ πkM an element, then the element (idM ∧R f)∗(x) ∈ πk(M ∧R S)
corresponds to the map

x∧R S : S ∼= R∧R S → ΣkM ∧R S.

Proof. The �rst part follows from the usual adjunction properties. The second part follows
from the commutative diagram

S
ηS //

ηR

$$JJJJJJJJJJJ S = R∧R S
x∧R S // ΣkM ∧R S

R = R∧RR

f

OO

// ΣkM ∧RR.

x∧R f

OO

Lemma 4.2.5. If π∗R is noetherian, then π∗M is a �nitely generated π∗R-module for every
�nite R-module M .

Proof. We use induction over the number of cells. The statement is obviously true for M =
ΣkR. Assume that π∗M0 is a �nitely generated π∗R-module and that we have a co�ber
sequence

ΣkR
x−→M0 →M.

We can split the corresponding long exact sequence of homotopy groups into short exact
sequences like follows:

0→ π∗M0/ im(x∗)→ π∗M → ker(x∗)→ 0

Both outer terms are �nitely generated π∗R-modules since π∗R is noetherian. Thus, also the
middle term is �nitely generated.

If M is an R-module, we write DM = DRM = HomR(M,R) for the R-linear Spanier�
Whitehead dual. If z ∈ πkM , we write tz for the dual map DM → Σ−kR.

5For the de�nition of TMF , see the next chapter.



63

Lemma 4.2.6. Let Z and M be R-modules and a ∈ πkZ and z ∈ π0(M ∧RDZ). Then the
diagram

R
a //

z

��

Σ−kZ
idZ ∧R z // Σ−kZ ∧RM ∧RDZ

∼=
��

M ∧RDZ
idM ∧R ta // Σ−kM Σ−kM ∧R Z ∧RDZ

idM ∧ evoo

commutes. We will denote the composition (idM ∧ ev) ◦ (idZ ∧ z) : Σ−kZ → Σ−kM by tz.

Proof. The only thing to observe is that ta is given as the composition

DZ ∼= DZ ∧RR id∧R a−−−−→ DZ ∧R Z ev−→ R.

The following proposition will be important, especially for the next section:

Proposition 4.2.7 ([Rog08], Lemma 3.3.2). For R-modules X,Y and Z such that X or Z
is �nite, the canonical map

HomR(X,Y )∧R Z → HomR(X,Y ∧R Z)

is an equivalence. Furthermore, the map X → DR(DRX) is an equivalence if X is �nite.

De�nition 4.2.8. An R-module M is called free if M ∼= ⊕IR in Ho(R -mod) for some set
I. It is called projective if there is an R-module N such that M ⊕N is free.

Lemma 4.2.9. An R-moduleM is free (projective) i� π∗M is a free (projective) π∗R-module.

Proof. Let π∗M be free as an π∗R-module with generators (xi)i∈I . The xi ∈ πkiM correspond
to maps fi : ΣkiR → M such that (fi)∗(1) = xi. Thus, the map Σfi :

⊕
I ΣkiR → M is an

isomorphism on homotopy groups and thus an isomorphism in Ho(R -mod).
Let now π∗M be projective as an π∗R-module. Thus, there exists a free module N0 over

π∗R and another module P0 over π∗R such that P0⊕π∗M ∼= N0. We can �nd a free R-module
N with π∗N ∼= N0 and realize the projection N0 → π∗M by an R-module map N → M .
Denote its �ber by P . Clearly π∗P ∼= P0. Since π∗(P ⊕M) is a free π∗R-module, P ⊕M is
free and M is projective.

The other implication is clear.

4.3 Relatively Free Modules

As already explained in the introduction, one has often situations where R is a commutative
ring spectrum and S an R-algebra such that π∗R has in�nite global dimension while π∗S has
�nite global dimension. Then it makes sense to work in a relative setting:

De�nition 4.3.1. Let R be a commutative ring spectrum and S be an R-algebra. A �nite
R-module M is called relatively free (with respect to S) if M ∧R S is a free S-module. It is
called relatively projective (with respect to S) if M ∧R S is a projective S-module. We will
leave out the �with respect to S� if it is clear from the context.
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This idea can be used as input in a modi�ed universal coe�cient spectral sequence.
Choose a collection F of �nite R-modules and let CF denote the full (graded) subcategory of
the homotopy category of R-modules spanned by F . We denote by CF -mod the category of
graded additive functors from CF to graded abelian groups. We can de�ne now a functor

πF∗ : R -mod→ CF -mod

by sending an M ∈ R -mod and an F ∈ F to π∗(M ∧R F ). We assume that πF∗ detects
isomorphisms of R-modules. There is then a modi�ed universal coe�cient spectral sequence
by Wolbert ([Wol98, Section 11]) of the following form:6

ExtsCF -mod(πF∗ (M), πF∗ (N)[t])⇒ [M,N ]s+tR

The edge homomorphism is again de�ned to be the induced map on homotopy groups.
Let R be a commutative ring spectrum and S be an R-algebra with π∗S of global dimen-

sion ≤ n, π∗R noetherian and DRS ∼= S. Let F be the collection of all �nite R-modules M
such that HomR(S,M) ' S ∧RM is a projective S-module. Note that DRM ∈ F if M ∈ F .

Lemma 4.3.2. For N ∈ F , the module πF∗ N is projective in CF -mod.

Proof. De�ne, for N ∈ F , the functor HN ∈ CF -mod by HN (M) = [N,M ]∗R for M ∈ F .
We have HDRN

∼= πF∗ N since HomR(DRN,M) ' HomR(DRN,R)∧RM ' N ∧RM by
Proposition 4.2.7.

Let F → G be an epimorphism in CF -mod and f : HDRN → G be a morphism (of degree
0). By the (enriched) Yoneda lemma, morphisms of degree 0 from HDRN to G ∈ CF -mod
are in bijection with G(DRN)0; thus f corresponds to an element f0 ∈ G(DRN)0. Since
epimorphisms are surjective objectwise, we can lift f0 to an element in F (DRN)0, giving the
desired morphism HDRN → F .

We assume now that F has up to suspensions only �nitely many indecomposable objects
and that S ∈ F . Then we have the following proposition:

Proposition 4.3.3. For every �nite R-module X, πF∗ X has projective dimension ≤ n.

Proof. For N ∈ F , maps of degree k from HN into πF∗ X are in bijection with (πFk X)(N) =
πkN ∧RX by the enriched Yoneda lemma. Since R∗ is noetherian, π∗N ∧RX is a �nitely
generated R∗-module by Lemma 4.2.5. Since CF -mod is an R∗-linear category, we can thus
choose �nitely many maps fN,i : HΣkiN → (π∗FX) (of degree 0) such that⊕

i

HΣkiN (N)
ΣfN,i−−−→ (π∗FX)(N)

is surjective.
Now, we select �nitely many Nj ∈ F such that every object in F is a suspension of one

of the Nj and choose maps fNj ,i as above. The sum
⊕

i,j HΣkiNj
→ π∗FX is an epimor-

phisms since epimorphisms can be detected objectwise. Set M := DR

(⊕
i,j ΣkiNj

)
. Thus,

we get a degree 0 morphism f : HDRM → πF∗ X, corresponding by Yoneda to an element
f(1) ∈ π0DRM ∧RX ∼= [M,X]R (using Proposition 4.2.7). De�ne K to be the �ber of the
corresponding map M → X. Smashing with an N ∈ F gives a co�ber sequence

K ∧RN →M ∧RN → X ∧RN.
6Wolbert only considers �nite R-modules of the form R∧X, but this is an unnecessary restriction.
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We want to show that the second map is surjective on homotopy groups. By de�nition, it
agrees (up to sign) with the composition

M ∧RN
∼=
��

X ∧RN

(M ∧RN)∧RR
id∧ f(1) // (M ∧RN)∧R(X ∧RDRM)

∼= // (M ∧RDRM)∧R(X ∧RN)

ev∧ id

OO

This in turn agrees (up to sign) with the composition

HomR(DRM,N) ∼= HomR(DRM,N)∧RR
id∧ f(1) // HomR(DRM,N)∧RDRM ∧RX

ev∧ idX
��

M ∧RN ∼= DR(DRM)∧RN

OO

X ∧RN

The �rst map in this composition is an equivalence (of R-modules). The composition of the
latter two induces the morphism f(S) : HDRM (N) → (πF∗ X)(N), which is surjective. Thus
the morphismM ∧RN → X ∧RN is surjective on homotopy groups and we get a short exact
sequence

0→ πF∗ K → πF∗ M → πF∗ X → 0.

For N = S, this gives

0→ π∗K ∧R S → π∗M ∧R S → π∗X ∧R S → 0.

Since the middle term is projective as an π∗S-module, the homological dimension of
π∗K ∧R S as a π∗S-module is one less than that of π∗HomR(S,X) unless the latter is already
0. Since K is as the �ber of a morphism between �nite modules also �nite, we can repeat the
same procedure (at most) n times and at the end get a �nite K such that π∗HomR(S,K) is
π∗S-projective, hence K ∈ F and πF∗ K is projective by the last lemma. Since also πF∗ M is
projective in CF -mod, this proves the proposition.

Remark 4.3.4. We can restrict in the statement of the proposition to the indecomposable
objects in F since the values on them determine every additive functor from CF .

The following theorem was in originally shown (in a di�erent form) by Bous�eld in [Bou90]
and we will show it again in Chapter 7.

Theorem 4.3.5. Every relatively free KO-module is a sum of shifts of KO, KU and KT =
KO∧Cone(η2).

Corollary 4.3.6. For F = {KO,KU,KT}, the functor πF∗ X classi�es �nite KO-modules.

Proof. By the last theorem and the proposition above, for every �nite KO-module X, the
module πF∗ (X) ∈ CF -mod has projective dimension at most 1 (since projective implies free
over π∗KU). Then we can use the modi�ed universal coe�cient spectral sequence to argue
as in the case of KU .

Even without assuming that there are only �nitely many indecomposable relatively pro-
jective modules, one can often produce short resolutions by relatively projective modules.
Let S again be a R-algebra such that π∗S has global dimension ≤ n. In addition, we assume
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that for every �nite M ∈ R -mod, there is a map N → M from a relatively projective R-
module such that π∗S ∧RN → π∗S ∧RM is surjective. Then we can produce for every �nite
M ∈ R -mod co�ber sequences of the form

M1 → N0 →M

M2 → N1 →M1

· · ·
Mk → Nk−1 →Mk−1

such that k ≤ n and all Ni (i ∈ {0, . . . , k − 1}) and Mk are relatively projective. These
assumption are (for n = 1 respectively n = 2) true for R = KO, S = KU and R = TMF(3),
S = TMF (2) (see Lemma 6.3.7 for the TMF -case).

4.4 Sheaves

De�nition 4.4.1. Let C be a site and D be an∞-category. Then a sheaf on C with values in
D is a functor F : (C)op → D such that we have descent for coverings in the following sense:
For U → V a covering in C, the map F(V )→ holim∆F(U×V •) is an equivalence. We denote
the ∞-category of sheaves by Shv(C;D). We say that a sheaf is hypercomplete if it satis�es
descent with respect to all hypercovers; we will not de�ne this since it is barely relevant for
our purposes, but see [DHI04, De�nition 4.3] and [Lur09b, Section 6.5].

For a sheaf F on a site C (with values in an ∞-category D) and G another sheaf on C,
we de�ne F(G) as Fun(Cop,D)(G,F). Suppose now that D = Sp, the ∞-category of spectra.
Via the functor Σ∞+ , the enrichment of C in sets induces an enrichment in symmetric spectra
SpΣ. The sheaf F comes from a functor F ′ : Cop → SpΣ by Proposition 4.2.4.4 of [Lur09b]
and Example 4.1.4.6 of [Lur11]; more precisely, we get F as the composition

NCtop NF ′◦−−−→ N(SpΣ)◦ ' Sp .

Now let U be in C and hU be the presheaf Cop → SpΣ represented by U . Then enriched
Yoneda implies F ′(hU ) ∼= F ′(U) in SpΣ and therefore F(hU ) ' F(U) is Sp. Thus, we
recover the usual evaluation of a sheaf.

We can associate to every sheaf of spectra F a presheaf of graded abelian groups πpre∗ (F)
by (πpre∗ (F))(U) = π∗(F(U)). We will denote the shea��cation of this presheaf by π∗F .

For a (commutative) monoid O in Shv(C; Sp) (Sp the ∞-category of spectra), we get in
the usual way the notion of an O-module. It turns out that the datum of a commutative
monoid in Shv(C; Sp) is equivalent to a sheaf of commutative ring spectra (DAG VII.2.1.1).

Lemma 4.4.2. Let (X ,Otop) be a site equipped with a sheaf of ring spectra and let F and
G be Otop-modules. Then the presheaf de�ned by Hom(F ,G)(U) := HomOtop|U (F|U ,G|U ) is
already a sheaf.

Proof. Probably, a more elementary proof (following, e.g., the lines of [KS06, p.430]) is
possible, but we will base our proof on DAG VIII, Remark 2.1.11. This states that the
construction (U ∈ X ) 7→ Otop|U -mod is a sheaf on X with values in the ∞-category of ∞-
categories. Analogously to [Lur09b, 1.2.13.8], the forgetful functor from ∞-categories under
∆0
∐

∆0 to ∞-categories preservers limits. Let I be the ∞-category ∆1 together with the
inclusion ∆0

∐
∆0 ↪→ ∆1 of end points. Then, for an arbitrary∞-category C together with a

morphism ∆0
∐

∆0 (X,Y )−−−−→ C, the space of morphisms I → C under ∆0
∐

∆0 is equivalent to
the space of morphisms from X to Y in C. Thus, HomOtop|U (F|U ,G|U ) de�nes a sheaf.



67

Let X be a Grothendieck site with terminal object ∗. If F is a sheaf of spectra on X ,
then there is a spectral sequence

Hq(X ;πp(F))⇒ πp−qΓ(F)

where Γ(F) := F(∗) and π∗ denotes shea��ed homotopy groups. This is called the descent
spectral sequence and is denoted by DSS(F). Details on construction and convergence can
be found in [Dou07]. The DSS is natural with respect to maps of sheaves and its edge
homomorphism

πnΓ(F) = Γ(πpren (F))→ Γ(πnF)

is induced by the shea��cation map. Thus, the DSS can be seen as a measure of the di�erence
between πpre∗ F and π∗F .

4.5 Quasi-Coherent Sheaves in Derived Algebraic Geometry

We will introduce here a bit of derived algebraic geometry, which will be used in the next
chapters. Our main source is Jacob Lurie's Derived Algebraic Geometry (DAG), but we will
use only a fraction of its generality. In particular, the following de�nitions are often just
special cases of his de�nitions. In this section, a commutative ring spectrum will always
denote a commutative monoid in the ∞-category of spectra.

De�nition 4.5.1 (DAG VII, Remark 2.9). Let A be a commutative ring spectrum. For
f ∈ π0A, a localization φ : A→ A[ 1

f ] of A at f is a map inducing isomorphisms

(πnA)⊗π0A (π0A)[
1

f
]→ πn(A[

1

f
]).

This localization always exists.

Construction 4.5.2. Let A be a commutative ring spectrum. Since π0A is an ordinary com-
mutative ring, we can associate to it the topological space Specπ0A. For every f ∈ π0A, we
de�ne O(D(f)) := A[ 1

f ] (for D(f) the non-vanishing locus of f in SpecA). This determines
a sheaf of ring spectra OA on SpecA (since the D(f) are a basis of topology). The pair
(Specπ0A,OA) is called SpecA.

De�nition 4.5.3. A derived a�ne scheme is a spectrally ringed space (X,OX) such that
there is a commutative ring spectrum A such that X ∼= Specπ0A and there is an equivalence
OA → OX in the ∞-category of sheaves of commutative ring spectra on X.

De�nition 4.5.4. A derived Deligne�Mumford stack consists of a Grothendieck site X
equipped with a sheaf of commutative ring spectra O such that

• the pair (X , π0O) is (the ringed site associated to) a Deligne�Mumford stack,

• the π0O-modules πnO are quasi-coherent (in the classical sense), and

• the sheaf Ω∞O is hypercomplete.

Remark 4.5.5. This is a special case of the de�nition of a derived Deligne�Mumford stack in
DAG VII by Theorem DAG VII.8.42.
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Remark 4.5.6. Let (X ,O) be a derived Deligne�Mumford stack and X ∈ X be an object
projecting to Spec Λ (for Λ a commutative ring) in Sch. Then (Spec Λ,O|Spec Λ) is a derived
a�ne scheme. Indeed, we have π0O|Spec Λ

∼= OSpec Λ and isomorphisms

πnO(Spec Λ)⊗Λ Λ[
1

f
]→ πnO(D(f))

for f ∈ Λ since the sheaves πnO are quasi-coherent. Hence, O(D(f)) ' O(Spec Λ)[ 1
f ].

Similarly to classical case, O corresponds to a commutative algebra object in (étale)
sheaves of spectra on X and an O-module is just a module over this algebra.

Remark 4.5.7. If P : X → Sch is the �ber functor associated to (X , π0X ), then we de�ne XAff

as the full subcategory on the preimages of all a�ne schemes under P . Since every scheme
can be covered by a�ne schemes, the categories of sheaves on X and on XAff are equivalent
and so are the categories of O-modules. Therefore, we can restrict our attention to the sub
site XAff if it is convenient.

Now we are ready to de�ne quasi-coherent sheaves on derived Deligne�Mumford stacks
(X ,O):

De�nition 4.5.8. An O-module F is called quasi-coherent if for any (2-)commutative dia-
gram (with U and V a�ne schemes)

U

f

��

x

  @@@@@@@

X

V

y
>>~~~~~~~

the associated morphism F(V )∧O(V )O(U)→ F(U) is an equivalence.

Proposition 4.5.9. An O-module F is quasi-coherent if and only if πnF is quasi-coherent
for every n ∈ Z and Ω∞F is hypercomplete.

Proof. This is proven in DAG VIII 2.3.12 and 2.3.21.

Remark 4.5.10. We can evaluate a (quasi-coherent) sheaf on a derived Deligne�Mumford
stack X not only on U ∈ X (corresponding to a morphism from the underlying scheme of U
to (X , π0OX )), but also on a Deligne�Mumford stack (Y,OY) with a map to (X , π0OX ): It
de�nes a sheaf hY on X by U 7→ Hom(X ,π0OX )(U, (Y,OY)) and we de�ne F(Y) as F(hY) =
HomFun(X op,Sp))(hY ,F).

As one might expect, on derived a�ne schemes, quasi-coherent sheaves are equivalent to
modules:

Proposition 4.5.11 (DAG VIII, 2.3.11). Let (X,O) be a derived a�ne scheme of the form
SpecA. Then there are inverse equivalences

O -mod
Γ //

A -mod .
(̃)

oo

Here Γ is given by taking global sections. For M ∈ A -mod and SpecA[ 1
f ] ∼= D(f) ⊂ SpecA,

the sheaf M̃ is given by M̃(D(f)) 'M ∧AA[ 1
f ].7

7This is the unwinded form of the Spec functor used in DAG.
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For a map between derived Deligne�Mumford stacks f : X → Y, there are adjoint functors

Mod(OY)
f∗ //Mod(OX ).
f∗
oo

For F ∈ OX -mod, the OY -module f∗F is de�ned for a map U → Y by f∗F(U) := F(U×YX ).
We will not de�ne f∗ in general, but for f an étale morphism of the underlying classical
Deligne�Mumford stacks and G ∈ OY -mod, we have f∗G(U → X ) ' G(U → X → Y). The
functor f∗ is symmetric monoidal (see Section 2.5 of DAG VIII).

The adjunction between ringed topoi and commutative ring spectra gives as a spe-
cial case for every derived Deligne�Mumford stack (X ,Otop) a morphism f : (X ,Otop) →
Spec(Otop(X )) (see DAG VII.8.4). This gives a functor

(Otop(X )) -mod ' QCoh(Spec(Otop(X )))
f∗−→ QCoh(X ,Otop)

by Proposition 2.5.1 of DAG VIII. Denote the value of this functor on M ∈ Otop(X ) -mod
by FM . The functor F is left adjoint to taking global sections and the unit Otop → FOtop(X )

is (equivalent to) the identity. In particular, the map Otop(U)→ FOtop(U) is an equivalence
for every U . Recall that every left adjoint between stable ∞-categories preserves co�ber
sequences, so in particular F does. This implies that the map Otop(U)∧Otop(X )M → FM (U)
is an equivalence for every �nite Otop(X )-module M .

Lemma 4.5.12. Let (X ,Otop) be again a derived Deligne�Mumford stack and M and N be
�nite X = Otop(X )-modules such that FM is locally free. Furthermore, set O = π∗Otop.
Then

π∗FM ∧X N
∼= (π∗FM )⊗O (π∗FN ).

Proof. For every U ∈ X , we have a canonical map

π∗(FM (U))⊗O(U) (π∗FN (U)) → π∗(FM (U)∧Otop(U)FN (U))

∼= π∗(M ∧X Otop(U)∧Otop(U)N ∧X Otop(U))

∼= π∗(M ∧X N ∧X Otop(U))

= π∗(FM ∧X N ).

Locally, this map is an isomorphism by the Künneth spectral sequence since FM is locally
free over Otop.

4.6 Toda Brackets

Since we have at a few places in this thesis the opportunity to use Toda brackets, we will
dedicate this section to them. Let T be a triangulated category and f : X → Y , g : Y → Z
and h : Z → W maps in T with gf = 0 and hg = 0. We �rst recall a standard de�nition of
the triple Toda bracket: Consider the diagram

X
f // Y

ι //

g

  BBBBBBBB Cf //

��

ΣX

��
Z

h //W

Since gf = 0, there is an extension G : Cf → Z of g. Since hGι = hg = 0, there is an
extension H : ΣX → W . Again, choices are involved. The set of all maps H : ΣX → W
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coming to existence in this way we denote by 〈h, g, f〉 ⊂ [ΣX,W ]. It is called the Toda bracket
of f, g and h. It is easy to see that this is a coset with respect to h∗[ΣX,Z] + (Σg)∗[ΣY,W ]
(this is called the indeterminacy of 〈h, g, f〉).

There are also other ways of describing Toda brackets. For example, look at the following
diagram:

Y

=

��

// Cf

��

// ΣX

��

−Σf // ΣY

=

��
Y

g // Z

=

��

i // Cg

��

p // ΣY

��

−Σg // ΣZ

=

��
Z

h //W
j // Ch

q // ΣZ
−Σh // ΣW

We have a map γ : ΣY → Ch extending −Σg (since hg = 0). Furthermore, there exists
a map φ : ΣX → W such that −γΣf = jφ (since gf = 0). We denote the set of all
maps ΣX → W coming to existence in this way by 〈h, g, f〉′. Since this set has the same
indeterminacy as 〈h, g, f〉, we just have to give one common element to prove the two sets to
be equal. Recall that we have a map G : Cf → Z extending g. The two maps G and γ give
us by the axioms of a triangulated category maps α : ΣX → Cg and β : Cg →W completing
the maps of triangles. The composition βα is now both in 〈h, g, f〉 and in 〈h, g, f〉′.

Most of the time, we will be interested in the case T = Ho(R -mod) for a (strictly)
commutative ring spectrum R. Let x, y, z ∈ π∗(R) with xy = yz = 0. We can interpret
x, y, z as self (R-module) maps of R, e.g., x : Σ|x|R ∼= S|x| ∧R → R∧R → R as in Lemma
4.2.4.8 So, this de�nes the Toda bracket 〈x, y, z〉 ⊂ π|x|+|y|+|z|−1(R). One important feature
of Toda brackets is that they control the homotopy groups of �nite R-cell complexes. To be
more precise: Let x ∈ πnR be an element in the coe�cients and denote by Cx the cone of
ΣnR

x−→ R. Then we have a long exact sequence

· · · → π∗Σ
nR→ π∗R→ π∗Cx→ π∗−1ΣnR→ π∗−1R→ · · ·

which splits into short exact sequences of the form

0→ π∗R/xπ∗R
α−→ π∗Cx

β−→ {π∗−nR}x → 0

where {π∗−nR}x denotes all elements which are annihilated by x.

Lemma 4.6.1. With notation as above, let y ∈ πmR and z ∈ πkR be elements in the
coe�cients of R with xy = 0 and yz = 0. Let ỹ ∈ π∗Cx be an element with β(ỹ) = y.
Let w ∈ π∗R be an element such that the projection of w is mapped to ỹz under β. Then
w ∈ 〈x, y, z〉.
Proof. This is clear by the following diagram:

Σk+l+nR
z //

��

Σk+lR

=

��
Σk+lR

y //

ỹ

��

ΣkR

=

��
Σ−1R // Cx // ΣkR

x // R

8Working with suspensions can bring delicate sign issues with it; since we do not add Toda brackets, the
signs will not matter for our purposes and all statements should be interpreted in a ±-way in doubt.
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Lemma 4.6.2. Let a, b, c ∈ π∗R with ab = bc = 0. Furthermore, let M be a left R-module
and x ∈ π∗M . Then

〈a, b, c〉 · x ⊂ ±〈a, xb, c〉.
More precisely, the relevant maps for the second Toda bracket are

c : Σ|c|+|b|+|a|+|x|R→ Σ|b|+|a|+|x|R,

xb : Σ|b|+|a|+|x|R
b−→ Σ|a|+|x|R

x−→ Σ|a|M and

a : Σ|a|M ∼= S|a| ∧M → R∧M →M.9

Proof. We have the following diagram, which is (up to sign) commutative:

Σ|c|+|b|+|a|+|x|R Σ|b|+|a|+|x|R

Σ|b|+|a|+|x|R Σ|a|+|x|R

Σ|b|+|a|+|x|R Σ|a|M

Σ|x|−1R Σ|x|−1 Cone(a) Σ|a|+|x|R Σ|x|R

Σ−1M Σ−1M ∧R Cone(a) Σ|a|M M

c

=

=
b

= x

a

=

x x∧R idCone(a)
x x

a

=

xb

For example, in the square in the lower right corner both compositions are

Σ|a|+|x|R ∼= S|a| ∧S|x| ∧R a∧x∧ idR−−−−−−→ R∧M ∧R ∼= R∧R∧M → R∧M →M,

where the last two arrows are the multiplication map of R and the left multiplication on M .
One �lls �rst the two dotted arrows Σ|b|+|a|+|x|R→ Σ|x|−1 Cone(a) and Σ|c|+|b|+|a|+|x|R→

Σ−1R in the background. These determine the two dotted arrows in the foreground, making
the diagram commute.

The diagram in the background de�nes an element in the Toda bracket 〈a, b, c〉 and the
diagram in the foreground an element in the Toda bracket 〈a, b · x, c〉. Thus the lemma.

9Since we permute an R with suspension variables in the de�nitions of these maps, it might be more
sensible to introduce signs. But since we give only a ±-statement, we do not care.





Chapter 5

Topological Modular Forms

The aim of this chapter is to explain what TMF is and to describe its homotopy groups.
Furthermore, we will study some important TMF -modules.

5.1 TMF and its Properties

As described in Section 2.8, we have a �at map q : M → MFG from the moduli stack of
elliptic curves to that of formal groups, associating to an elliptic curve its formal group.
Let C : SpecR → M be a �at map associated to an elliptic curve C over R. Then the
composite qC is �at and we can associate a Landweber exact homology theory E(C) to it.
This can be done as follows (see also [Goe09], section 3): De�ne a periodic version of MU
as the homology theory MUP∗(X) := Z[x±1] ⊗ MU∗(X), where |x| = 2. We have that
MUP0

∼= L, the Lazard ring, and MUP0MUP ∼= W , the ring of isomorphisms of formal
group laws. Thus MUP∗(X) carries a (L,W )-comodule structure for every space X. As
explained in Section 2.8, there is an equivalence of categories between (L,W )-comodules and
quasi-coherent sheaves onMFG, associating to a comodule M a sheaf GM . For X = S0, we
have GMUP2n(S0) = ωn for ω as at the end of Section 2.3. We de�ne now the homology theory

E(C) by E(C)∗(X) = GMUP∗(X)(SpecR,C). If the formal group Ĉ has a chosen coordinate
corresponding to a map f : L→ R, we get the more familiar formula E(C) ∼= MU∗(X)⊗LR.
All in all, we get a presheaf of homology theories on the category Affflat /M of a�ne schemes
with �at maps to the moduli stack of elliptic curves1

We would like to evaluate this presheaf of homology theories on the whole moduli stack
M. For this purpose, the following deep theorem is necessary:

Theorem 5.1.1 (Goerss�Hopkins�Miller). There is a lift

Commutative Ring Spectra

��
(Affetale /M)op //

Otop
44iiiiiiiiiiiiiiii

Homology Theories

The presheaf Otop is actually a (hypercomplete) sheaf.2

1By [HS99], Cor. 2.15, there are no phantom maps between Landweber exact homology theories; so even
the spectrum is well-de�ned up to unique isomorphism in the homotopy category.

2A complete proof can be found in [Beh11], which is based on [GH04] and [GH05]. These use commutative
monoids in symmetric spectra in topological spaces as their model for commutative ring spectra, but say that
they could also have used S-modules or orthogonal spectra from the very beginning. A sketched proof can
also be found in [Lur09a], which probably uses the concepts of [Lur11]. Since we will only really be interested
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Here, Affetale /M denotes the site of a�ne schemes with étale maps toM and the étale
topology. For the notion of a sheaf of commutative ring spectra, see Section 4.4. There
is also explained how to extend Otop to the site of all stacks with an étale morphism to
M. Therefore, it makes sense to de�ne TMF := Otop(M), the spectrum of Topological
Modular Forms. Note that π2nOtop = ωn since ω onMFG pulls back to ω onM.

There is a similar procedure using the compacti�ed moduli stack of elliptic curves, ex-
tending Otop to the étale site overM. The global sections of this sheaf are denoted by Tmf
and its connective cover by tmf .

Remark 5.1.2. Both (M,Otop) and (M,Otop) are derived Deligne�Mumford stacks in the
sense of De�nition 4.5.4 since M and M are (classical) Deligne�Mumford stacks and ωn is
quasi-coherent.

A computation of the homotopy groups of tmf can be found in [Bau08] or in the preprint
[HM98]. Since our main concern is for TMF , we will give its homotopy groups for primes
p > 2 here. Recall that we have for a sheaf of spectra F on a stack X the descent spectral
sequence

Hq(X ;πpF)⇒ πp−qF(X )

as in Sections 4.4 and 6.4. Here, π∗ denotes the shea��ed homotopy groups.
For p > 3, we have Hq(M(p), ω

k) = 0 for q > 0 (see Section 2.7). Therefore, the DSS
collapses and we have π∗TMF(p)

∼= H0(M;ω2∗) ∼= Z(p)[c4, c6,∆
−1].

For p = 3, the DSS is 72-periodic and looks as follows (as reference, see [Bau08], where
have just to invert ∆):

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

4

8

� � � � � � � �∆1
α

β

β2

β3∆−1 β3

β4∆−1

β5∆−1β5∆−2

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
0

4

8

� � � � � � � �∆2 ∆3
α∆2

β∆2

β2∆ β2∆2

β3∆

β4 β4∆

β5

in the homotopy categories of the module categories of these ring spectra, the choice of model does not really
a�ect our results.
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Here, we use the Adams convention for the grading of the spectral sequence, i.e., the
(p, q)-spot corresponds to Hq(M(3);ω

p+q
2 ). The boxes stand for Z(3)[j]-summands (as in

Section 2.7) and the dots for F3. The lines with positive slope indicate multiplication by α
and the arrow of negative slopes are di�erentials.

All in all, this implies that the torsion elements in TMF are (up to ∆3-periodicity) exactly
the following:

α ∈ π3TMF

β ∈ π10TMF

αβ ∈ π13TMF

β2 ∈ π20TMF

{α∆} ∈ π27TMF

β3 ∈ π30TMF

β{α∆} ∈ π37TMF

β4 ∈ π40TMF

Here we use the same letters for the homotopy elements as for the cohomology elements.
Multiplication is as in the spectral sequence except for α · {α∆} = β3 and α · β{α∆} = β4.
Here, the name {α∆} is chosen since this element reduces to α∆ in the spectral sequence,
but is not divisible by α since ∆ does not survive the spectral sequence.

The spectral sequence chart above is a ∆-periodic version of the one that can be found
in [Bau08]. A spectral sequence chart computing the homotopy groups of π∗tmf(3) can be
found in [Sto11], p. 22.

5.2 Extensions of TMF

We will work in this section only at the prime 3 and everything is implicitly localized at 3.
The aim is to study certain (comparatively simple) TMF -modules, both as illustration and
for the sake of the general theory in Chapters 6 and 8. In particular, we will investigate some
TMF -modules coming from level structure, namely TMF0(2), TMF (2) and TMF (4), and
show how they arise as �nite TMF -modules.

A �rst example of an extension of TMF is the co�ber of Σ3TMF
α−→ TMF (in the

category of TMF -modules), which we denote by TMFα. In other words, we have a co�ber
sequence

Σ3TMF → TMF → TMFα → Σ4TMF.

A table of the (torsion part of the) homotopy groups of TMFα can found in Section 9.4.
One particularly important element is α̃ ∈ π7TMFα, which is obtained as the (unique) lift
of α ∈ π3TMF along the map TMFα → Σ4TMF . Since β = 〈α, α, α〉 (see [Bau08]), we
have by Lemma 4.6.1 the identity αα̃ = β, where we denote β ∈ π10TMF and its image in
π10TMFα by the same letter.

Recall that we de�ned for a �nite TMF -module M an Otop-module sheaf FM with
FM (U) ' Otop(U)∧TMF M (see the end of Section 4.5). Note that FTMF ' Otop and

πkFM ∼= π0FM ∧TMF Σ−kTMF
∼= π0FM ⊗O πkOtop

by Lemma 4.5.12.
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We now want to determine π0FTMFα : There is a short exact sequence

0→ O = π0FTMF → π0FTMFα → π0FΣ4TMF = ω−2 → 0

since the (connecting) morphism has target π−1Otop = 0. Assume (for contradiction) that
this extension splits. Then α ∈ H1

2 (M;O) maps non-trivially to α′ ∈ H1
2 (M;π0FTMFα).

The element α′ detects the image of α in π3TMFα and cannot be hit by a di�erential in the
DSS for TMFα since it is in the �rst line. Therefore the image of α in π3TMFα is non-zero;
this is a contradiction since α is in the image of α·. Hence, the extension

0→ π∗FTMF → π∗FTMFα → π∗FΣ4TMF → 0

is non-split and we have π0FTMFα
∼= Eα.

The TMF -module TMFα has as its dual DTMFTMFα ∼= Σ−4TMFα, which can be seen
by dualizing the de�ning co�ber sequence. Dualizing α̃, we get a map tα̃ : Σ−4TMFα ∼=
DTMFTMFα → Σ−7TMF . Precomposing with Σ−4TMF → Σ−4TMFα ∼= DTMFTMFα
(which is dual to TMFα → Σ4TMF ), this agrees with Σ−7α as it the dual of Σ4α.

Lemma 5.2.1. The compositions

Σ10TMF
α̃−→ Σ3TMFα

tα̃−→ TMF

and

Σ10TMFα
tα̃−→ Σ7TMF

α̃−→ TMFα

both equal (multiplication by) β.

Proof. We want to show that α̃ ◦ α̃t = ·β: Since αα̃ = β in π∗TMFα, we have the following
commutative diagram:

TMF

��

β

++WWWWWWWWWWWWWWWWWWWWWW

TMFα
tα̃ // Σ−3TMF

α̃ // Σ−10TMFα

By mapping (over TMF ) into TMFα, the triangle

Σ3TMF → TMF → TMFα → Σ4TMF

induces a triangle

Σ−4TMFα → HomTMF (TMFα, TMFα)→ TMFα.

The diagram above shows that α̃ ◦ tα̃ ∈ π10 HomTMF (TMFα, TMFα) maps to β and so
does multiplication by β. Therefore the di�erence α̃ ◦ α̃t − (·β) comes from π14TMFα. But
π14TMFα = 0 since π14TMF = 0 and β ∈ π10TMF has non-trivial multiplication by α.
Therefore α̃ ◦ tα̃ equals multiplication by β.

Thus, we see that the composition

Σ10TMF
α̃−→ Σ3TMFα

tα̃−→ TMF
α̃−→ Σ−7TMFα

represents βα̃ ∈ π17TMFα. Since only β ∈ π10TMF is sent by α̃ : Σ7TMF → TMFα to
βα̃ ∈ π17TMFα, we see that tα̃ ◦ α̃ = β.
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We de�ne TMF0(2) := Otop(M0(2)) and TMF (2) := Otop(M(2)). Denote, as before,
by f : M0(2) → M the projection map. By de�nition, we have TMF0(2) = Γ(f∗f

∗Otop).
The sheaf π∗(f∗f∗Otop) ∼= f∗f

∗π∗Otop has no higher cohomology by Lemma 3.4.4; therefore,
the descent spectral sequence implies that π∗TMF0(2) is isomorphic to

Γ(f∗f
∗π∗Otop) ∼= Γ∗(f∗f

∗O) ∼= Z(3)[b2, b4,∆
−1].

The sheaf f∗f∗Otop is especially important because of the following lemma:

Lemma 5.2.2. Let F be a locally free Otop-module of �nite rank. Then every morphism
galg : f∗f

∗O → π0F can be realized (uniquely in the homotopy category) by a map

g : f∗f
∗Otop → F

with π0g = galg. The same holds if we replace f∗f
∗O by a sum of twists of f∗f

∗O by line
bundles.

Proof. Since f∗f∗O is self-dual, we have that

HomO(f∗f
∗O, πkF) ∼= f∗f

∗O ⊗O πkF .

By Lemma 2.3.13, this is isomorphic to f∗f∗πkF and by Lemma 3.4.4 the higher cohomology
groups of f∗f∗πkF vanish. Since f∗f∗Otop is locally free, we have

πkHomOtop(f∗f∗Otop,F) ∼= Homπ0Otop(f∗f
∗O, πkF)

(see Lemma 4.4.2 for the de�nition of the Hom-sheaf). Hence, the descent spectral sequence
for

HomOtop(f∗f∗Otop,F)

is concentrated in the 0-line. Therefore, there is a (up to homotopy) a unique map

g : f∗f
∗Otop → F

realizing the algebraic map galg. The arguments for sums of twists is the same.

De�ne another TMF -module TMFα,α̃ as the co�ber of the map α̃ : Σ7TMF → TMFα
(in the category of TMF -modules). Taking homotopy groups of the associated co�ber se-
quence gives a short exact sequence

0→ Eα ∼= π0FTMFα → π0FTMFα,α̃ → π0FΣ8TMF
∼= ω−4 → 0

since π1FTMFα = 0. Suppose (for contradiction) that this extension splits. Then α̃ ∈
H1

4 (M;Eα) maps non-trivially to α̃′ ∈ H1
4 (M;π0FTMFα,α̃). The element α̃′ detects the

image of α̃ in π7TMFα,α̃ and cannot be hit by a di�erential in the DSS for TMFα,α̃ since it
is in the �rst line. Therefore the image of α̃ in π7TMFα,α̃ is non-zero; a contradiction since α̃
is in the image of α̃·. Therefore, the extension is non-split and π0FTMFα,α̃

∼= Eα,α̃ ∼= f∗f
∗O.

Lemma 5.2.3 ([Beh06], 2.4, Lemma 2). We have TMF0(2) ' TMFα,α̃.

Proof. The sheaf FTMFα,α̃ is a locally freeOtop-module since the maps α : Σ3Otop → Otop and
α̃ : Σ7Otop → FTMFα induce locally zero (in the homotopy category). Indeed, for U →M a
morphism from an a�ne scheme, Otop(U) and FTMFα(U) are torsion-free because U has no
higher cohomology. Thus, α : Σ3Otop(U) → Otop(U) and α̃ : Σ7Otop(U) → FTMFα(U) are
zero in the homotopy category of Otop(U)-modules since both maps are torsion.

By the last lemma, the isomorphism f∗f
∗O ∼= π0FTMFα,α̃ is realized by a map f∗f∗Otop →

FTMFα,α̃ , which is therefore an equivalence, thus also an equivalence on global sections.
Hence, the result follows.
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By the lemma, we have a co�ber sequence

Σ7TMF
α̃−→ TMFα → TMF0(2)→ Σ8TMF,

which dualizes to

Σ−5TMFα
tα̃−→ Σ−8TMF → DTMFTMF0(2)→ Σ−4TMFα.

As above, one can show that the vector bundle associated to DTMFTMF0(2) is a non-split
extension of ω4 and ω2 ⊗ Eα and hence isomorphic to f∗f∗O ⊗ ω4 ∼= f∗f

∗O (by the results
from Section 3.4). Using Lemma 5.2.2 again, we can show that DTMFTMF0(2) is equivalent
to Σ−8TMF0(2) ' TMF0(2). If we suspend 8 times, we get thus a co�ber sequence

TMF → TMF0(2)→ Σ4TMFα → ΣTMF.

The map f∗f∗O → ω−4 induced by TMFα,α̃ → Σ8TMF above is (up to isomorphism) the
dual to the adjunction unit O → f∗f

∗O tensored with ω−4 since there is up to isomorphism
only two non-trivial extension of Eα and ω−4 (which are connected by a sign reversing
isomorphism). Thus, the map TMF → TMF0(2) in the co�ber sequence induces also the
adjunction π0FTMF

∼= O → f∗f
∗O ∼= π0FTMF0(2). Since the set of (homotopy classes of)

TMF -module maps TMF → TMF0(2) agrees with the set of (homotopy classes of) O-
module maps O → f∗f

∗O, this shows that we have indeed the canonical map TMF →
TMF0(2) induced by f : M0(2)→M in the co�ber sequence if TMFα,α̃ and TMF0(2) are
suitably identi�ed.

Lemma 5.2.4. We have equivalences of TMF -module spectra

TMF (2) ' TMF0(2)⊕ Σ4TMF0(2)

and

TMF (4) '
8⊕
i=1

TMF (2).

Proof. The spectrum TMF (2) has the structure of a TMF0(2)-module (via the mapM(2)→
M0(2)) and 1 and x2 ∈ π∗TMF (2) form a basis to give π∗TMF (2) the structure of a free
π∗TMF0(2) ∼= Z(3)[b2, b4,∆

−1]-module (see the formulas of Section 2.5). Alternatively, we
can use Lemma 5.2.2 again: For p : M(2) → M the usual projection, we have p∗p∗O ∼=
f∗f
∗O⊕ω2⊗f∗f∗O (by Lemma 3.5.4). By Lemma 5.2.2, we can realize this isomorphism by

a map f∗f∗Otop⊕Σ−4f∗f
∗Otop → p∗p

∗Otop. Thus, we get an equivalence on global sections.
The last argument can also be applied to TMF (4): Let q : M(4) → M be the usual

projection. Then, by Lemma 3.5.5, we have that q∗q∗O is a sum of 8 copies of p∗p∗O, hence
also a sum of twists of f∗f∗O. Thus, we can apply Lemma 5.2.2 as above and get that
TMF (4) is a sum of 8 copies of TMF (2).

De�nition 5.2.5. For R a ring spectrum, an R-module M is called faithful if for every
R-module N the condition M ∧RN ∼= 0 implies that already N ∼= 0.

Lemma 5.2.6. The TMF -modules TMF0(2), TMF (2) and TMF (4) are faithful over TMF .

Proof. In the light of the last lemma, it su�ces to show the statement for TMF0(2). The
element α ∈ π3TMF is the Hurewicz image of α1 ∈ π3S(3). Thus, TMFα ∼= TMF ∧C(α1).
Since α2

1 = 0, there is a lift of α1 to α̃1 ∈ π7C(α1) and the Hurewicz image of this equals
α̃ ∈ π7TMFα. Thus, TMF0(2) ' TMF ∧C(α1, α̃1). Clearly, the Z(p)-homology of C(α1, α̃1)
is non-trivial and torsionfree. Thus, M ∧TMF TMF0(2) ∼= M ∧C(α1, α̃1) ∼= 0 implies M = 0
by [DHS88, Proposition 4.1] for every TMF -module M .



Chapter 6

Galois Extensions and Descent

There are three main goals of this section. The �rst is to de�ne Galois extensions of ring
spectra and prove a version of Galois descent for them. The second is to give examples of
Galois extensions of TMF(p) for a prime p. The third is to show an equivalence between the
∞-category of quasi-coherent sheaves on the derived moduli stack of elliptic curves (M,Otop)
and the ∞-category of TMF -modules, at least for primes bigger than 2.

Besides this, we will give an introduction to homotopy �xed points and give an alternative
account of the descent spectral sequence, using Galois descent.

6.1 Homotopy Fixed Points

In the theory of Galois descent, the notion of homotopy �xed points is extremely important.
We will give the de�nition and a few properties in this section.

De�nition 6.1.1. Let C be an ∞-category and X : BG → C be a morphism for G a �nite
group. Then the homotopy �xed points XhG are de�ned as the homotopy limit limBGX.
Similarly, if M is a model category and X ∈ M an object with a group action by a group
G, then XhG := holimGX.

There is also an alternative description of the homotopy �xed points: As described after
Remark 4.13 in DAG XI, in the ∞-categorical context, XhG is equivalent to the limit over
the functor X• : N(∆)→ C given as XBG (more precisely, Xn is given as

∏
BGn

X with the
structure maps induced by the structure maps of BG). A similar formula holds for �brant
objects in a simplicial model category via the Bous�eld�Kan construction of a homotopy
limit.

It will be particularly important to study homotopy �xed points in the ∞-category of
∞-categories. We begin with some preliminary de�nitions and constructions.

De�nition 6.1.2. Let C be a category with an action of a group G. Then a twisted group
object is a G-equivariant functor from the category EG to C. Here, EG stands for the
category with objects indexed by G and unique morphisms between them. More concretely,
we are given an object X ∈ C together with morphisms g ·X → X for g ∈ G, satisfying some
compatibility. We denote the category of twisted group objects by G-C.

Let R be a symmetric ring spectrum with an action by a group G. Then the category
R -mod gets a G-action as follows: Let M = (M,a : R∧M → M) be an R-module. Then

we de�ne g ·M to equal M as a spectrum to have R∧M g ∧ idM−−−−→ R∧M → M as structure
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map. Clearly, g· preserves �brations and weak equivalences. As it is an equivalence inverse
to g−1, it also preserves co�brations and is, in particular, a left Quillen functor.

It will turn out that the category of twisted group objects in R -mod is itself the category
of modules over the twisted group ring, which we now want to de�ne:

Construction 6.1.3. Let M be a monoid with unit e and multiplication µ and R be a sym-
metric ring spectrum with multiplication also denoted by mu. We denote by Rn the n-th

space in R. Suppose, we have an action a of M on R via ring maps. The we de�ne R̃[M ] as

a spectrum by R̃[M ]n := Rn ∧M+ with Sn-action on the left factor. Thus R̃[M ] = R∧M+.
The di�erent notation is chosen to emphasize the ring structure, which is given as follows:1

The unit map is given by the composition of the unit map of R with the morphism

R → R̃[M ] given by Rn ∼= Rn ∧{e}+ → Rn ∧M+. The multiplication is given as the
composition

(Rn ∧M+)∧(Rm ∧M+)

(Rn ∧∆M )∧(RM ∧M+)

��

Rn+m ∧M+

(Rn ∧M+ ∧M+)∧(Rm ∧M+)

∼=
��

(Rn ∧Rm)∧(M ×M)+

m∧µ

OO

Rn ∧M+ ∧(M+ ∧Rm)∧M+
Rn ∧M+ ∧ a∧M+ // Rn ∧M+ ∧Rm ∧M+

∼=

OO

as indicated by the formula (r1,m1), (r2,m2) 7→ (r1 ·m1(r2),m1m2).

Lemma 6.1.4. For G a group and R a symmetric ring spectrum with a G-action, the module

category R̃[G] -mod is equivalent (as a category) to the category of R-modules with twisted
G-action.

Proof. We will only sketch the proof:

Let N be a R̃[G]-module. Thus, we have maps

Rk ∧G+ ∧Nn → Nn+k

satisfying the usual axioms. Using the unit map S0 → R0, we get a map∨
G

Nn
∼= S0 ∧G+ ∧Nn → R0 ∧G+ ∧Nn → Nn.

This induces, for every g ∈ G, a map g : N → N ∼= N , which becomes an R-module map if
we identify the target with N ∧RRg. This de�nes a twisted G-action on N .

On the other hand, let P be a twisted group object in R -mod and let e ∈ G be the unit.
We de�ne a map

R̃[G]k ∧P (e)n ∼=
∨
G

Rk ∧P (e)n → P (e)n+k

on the wedge summand correspond to g ∈ G as the composition

Rk ∧P (e)n → P (e)n+k
g−→ (P (e)∧RRg)n+k

∼= P (e)n+k.

One can check that this de�nes a module structure over R̃[G].

In particular, this equips G-(R -mod) with a projective (simplicial) model structure.

1Here, we use the explicit description of a ring spectrum given at the beginning of [Sch07].
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Proposition 6.1.5. Let R be a symmetric ring spectrum with an action by a group G. Then

N(R̃[G] -mod◦) ' (N(R -mod◦))hG.

Proof. This result is essentially due to Julie Bergner and we will recall a special case of what
she has proven in [Ber10, Theorem 4.1]: Let M be a model category with an action by G
by left Quillen functors, then N(G-M,W) ' (N(M,W))hG, where N(−,−) denotes the
classifying diagram functor as in Section 4.1.2.

In our case, M = R -mod and G-M ' R̃[G] -mod by the lemma above. By Proposition
4.1.10, the result follows.

We want to end this section with a spectral sequence:2

Theorem 6.1.6. Given a spectrum X with an action by a discrete group G, we have a
spectral sequence

Epq2
∼= Hq(G;πp+qX)⇒ πp(X

hG).

This is called the homotopy �xed point spectral sequence (HFPSS). The edge morphism
π∗X

hG → H0(G;π∗X) is induced by the canonical morphism XhG → X.
If R is a ring spectrum with a multiplicative G-action, the HFPSS associated to R is

multiplicative and agrees up to sign on the E2-term with the multiplication induced by the

product on π∗R. If M is an R̃[G]-module, then the HFPSS gets the structure of a module
spectral sequence over the HFPSS associated to R and the action on the E2-term agrees up
to sign with the action induced by π∗M ⊗ π∗R→ π∗M .

Proof. The �rst part is standard. For the multiplicativity, see [Dug03, Theorem 6.1]. The
statement about module structures is similar.

6.2 Galois Descent

The aim of this section is to give some basics about Galois extensions of ring spectra and,
in particular, to prove a version of Galois descent for them. We work again with symmetric
spectra and all smash products (of spectra) and Hom-spectra are understood to be derived.

De�nition 6.2.1 ([Rog08]). Let A be a commutative (symmetric) ring spectrum and B be
a commutative A-algebra. Let G be a �nite group acting on B via A-algebra maps from the
left. Then B is a G-Galois extension of A if the maps A → BhG and B ∧AB → F (G+, B)
are equivalences. Here, the latter map is indicated by the formula (b1 ∧ b2, g) 7→ g(b1) · b2.
Example 6.2.2 ([Rog08], 5.3.1). Complex K-theory KU is a C2-Galois extension of KO.
On the other hand, connective ku is not a Galois extension of connective ko.

Conventions 6.2.3. Let B be a commutative A-algebra with G-action as above. Then we
equip B ∧AB with the B-module structure, which acts only on the right factor, and with
the G-action, which acts only on the left factor. Furthermore, equip F (G+, B) with the
B-module structure map adjoint to

F (G+, B)∧B ∧G+
∼= (G+ ∧F (G+, B))∧B ev∧ id−−−−→ B ∧B µ−→ B

and with the G-action indicated by g ·f = (h 7→ f(hg)). Then the map B ∧AB → F (G+, B)
is both a G- and a B-module map. It is also an equivalence of A-algebras for the algebra
structure on B ∧AB indicated by (b1 ∧ b2) · (b′1 ∧ b′2) = (b1b

′
1 ∧ b2b′2).

2Perhaps, every good section should end with a spectral sequence.
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Proposition 6.2.4. Let A→ B be a faithful G-Galois extension. Then

G+ ∧B → HomA(B,B)

(g, b) 7→ (b′ 7→ (g(b′) · b))

is an equivalence.

Proof. We �rst consider the case that B is equivalent to F (G+, A) as an A-algebra with
G-action; so B might be thought of as a trivial G-Galois extension of A. While it is easy
to show that both sides in the statement of the lemma are weakly equivalent, we have to
consider the following diagram in order to show that the map is a weak equivalence:

G+ ∧F (G+, A) // HomA(F (G+, A), F (G+, A))

��
G+ ∧G+ ∧A

OO

��

HomA(G+ ∧A,F (G+, A))

��
HomA(G+ ∧G+ ∧A,A)

��
G+ ∧G+ ∧A // F (G+ ∧G+, A)

The upper horizontal map is the one of the statement of the proposition. The upper two
vertical maps are here given by the equivalence G+ ∧A → F (G+, A) corresponding to the
inclusion of the wedge into the product; the bottom map correspondingly for G×G instead
of G. The other right vertical maps are given by the usual adjunctions, the other left vertical
map corresponds to the isomorphism (g1, g2, a) 7→ (g2g1, g2, a). It is straightforward to see
that the diagram commutes. By 2 out of 3 we get our result and we go back to the general
case.

We consider the following equivalences

HomA(B,B) ' HomB(B ∧AB,B) ' HomB(F (G+, B), B)

' HomB(G+ ∧B,B) ' F (G+, B)

of B-modules, where B acts only on the target. So we see that HomA(B,B) is a free B-module
of rank |G|.

Next consider the composition

G+ ∧B ∧AB → HomA(B,B)∧AB → HomA(B,B ∧AB) ' HomB(B ∧AB,B ∧AB)

Here, the �rst map is the map of the statement of the proposition, smashed from the right
with B. The other two are the obvious ones. The composition sends (g, b1, b2) to (b′1, b

′
2) 7→

(g(b′1)b1, b
′
2b2), informally. By assumption, we know that B ∧AB is G-equivalent as an A-

algebra to F (G+, B), so we know that the composition is an equivalence by the case of a
trivial Galois extension. Thus, the �rst map is a split injection on homotopy groups from a
free π∗B-module of rank |G|2 into a free π∗B-module of the same rank.

To see that this implies that the �rst map is an equivalence, one must prove: If M is
a free R-module (for R a commutative ring) of rank n and i : M → M an inclusion of a
direct summand, then i is an isomorphism. Otherwise, we get a projective cokernel P , which
is non-zero. We can choose a maximal ideal m ⊂ R such that Pm is free of positive rank.
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Thus, Mm would be isomorphic to a free module of rank bigger than n over Rm, which is a
contradiction as can be seen by taking exterior powers.

Since B is faithful over A, it follows that

G+ ∧B → HomA(B,B)

is an equivalence.

Lemma 6.2.5. The map B̃[G] = G+ ∧B → HomA(B,B) in Proposition 6.2.4 is a map (and
thus an equivalence) of ring spectra, where the ring structure on the right hand side is given
as composition.

Proof. We give an informal proof, which might easily be translated into a diagrammatic proof:

Given an �element� (b1, g1)∧(b2, g2) ∈ B̃[G]∧ B̃[G], its product is given by (b1 ·g1(b2), g1g2) ∈
B̃[G]; this is mapped to

(b′ 7→ (g1g2)(b′) · b1 · g1(b2)) ∈ HomA(B,B).

On the other hand, the composition of the images of (b1, g1) and (b2, g2) in HomA(B,B) is
given as

b′ 7→ g2(b′) · b2 7→ g1(g2(b′)) · g1(b2) · b1,
which agrees with the value above by commutativity.

Proposition 6.2.6. Let B be a faithful G-Galois extension of A (with G �nite) which is
compact as an A-module (e.g. �nite). Then the model category of A-modules is Quillen

equivalent to the model category of B̃[G]-modules via ∧AB.

Proof. By [SS03], 3.1.1, it is enough to show that HomA(B,B) is equivalent to B̃[G] as
an A-algebra since B is a compact generator of the category of A-modules. This is shown
above.

6.3 Galois Extensions of TMF

The aim of this section is to provide examples of Galois extensions of TMF(p) for a prime
p. Recall that we de�ned for a �nite TMF(p)-module X a sheaf FX of spectra onM(p) with
FX(U) ' X ∧TMF(p)

Otop(U).3 The next proposition is our �rst goal:

Proposition 6.3.1. Let h : X →M(p) be a G-Galois covering such that H i(X ;OX ) = 0 for
i > 0. Assume in addition that X := Otop(X ) is �nite, π0FX is a vector bundle with

H i
∗(M(p);π0FX) = 0

for i > 0 and π0E for E := h∗h
∗Otop = Otop(X ×M−) is a standard vector bundle.4 Then X

is a G-Galois extension of TMF(p).

By abuse of notation, we setM :=M(p) and TMF := TMF(p).

Lemma 6.3.2. In the situation of the last proposition, the map TMF → XhG induced by
h∗ : TMF = Otop(M)→ Otop(X ) = X is an equivalence.

3This is equivalent to the construction at the end of Section 4.5.
4In practice, the third condition implies often the �rst two.
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Proof. We have X ×M X ' X × G and more generally X×Mn ' X × Gn−1 ' ∐Gn−1 X .
Thus, Otop(X×Mn) ' F (Gn−1

+ , X). By projections and diagonal maps, Otop(X×M•) gets the
structure of a cosimplicial object, which is equivalent to the cotensor XBG• . As mentioned
in Section 6.1, holimN∆X

BG• ' XhG. Thus also

TMF = Otop(M) ' holimN∆Otop(X×M•) ' XhG.

Lemma 6.3.3. Let Y be a site and F be sheaf of spectra on Y; let Y0 be the full subsite of
all U ∈ Y with H i(Y/U ;π∗F) = 0 for all i > 0 (here π∗F denotes, as always, the shea��ed
homotopy groups). Then we have (π∗(F))(U) ∼= π∗(F(U)) for every U ∈ Y0. In particular,
the presheaf of homotopy groups of F is already a sheaf on Y0 and coincides there with π∗F .

Proof. We can assume U is terminal. The descent spectral sequence

H i(Y;π∗F)⇒ π∗(F(U))

collapses and the edge homomorphism π∗(F(U))→ (π∗(F))(U) is an isomorphism.

Lemma 6.3.4. In the situation of the proposition, the map f : FX → E of sheaves of ring
spectra induced by restriction is an equivalence.

Proof. We want to prove that f∗ : π∗FX → π∗E is an isomorphism. It is enough to show
this on π0 since we get all other homotopy groups by tensoring with powers of ω. Since
π0FX and π0E are vector bundles, the kernel L := ker(f) is by Proposition 3.3.1 a vector
bundle again. Since π∗FX and π∗E have vanishing higher cohomology groups, they agree
with the presheaves of homotopy groups of FX and E on a subsite containing X by the last
lemma. Thus, we have that Γ∗(π0FX)→ Γ∗(π0E) is an isomorphism induced by the identity
X → Otop(X ). Hence, Γ∗(L) = 0 since Γ∗ is left exact. This implies L = 0 by Proposition
3.3.2.

Thus we get a short exact sequence

0→ π0FX f∗−→ π0E → G → 0

where G = coker(f∗). This induces a short exact sequence

0→ Γ∗(FX)→ Γ∗(E)→ Γ∗(G)→ 0

since π0FX has vanishing graded cohomology. Therefore, Hom(ω−∗,G) = Γ∗(G) = 0. But
this implies inductively that every morphism from a standard vector bundle to G vanishes.
This shows that G itself is zero since π0E is standard. Therefore, the map f∗ is an isomorphism
and hence f is an equivalence of O-modules.

Proof of Proposition: We only need to show that the map X ∧TMF X → F (G+, X) given
(informally) by (x∧x′, g) 7→ g(x) · x′ is an equivalence. The map γ : G × X → X ×M X
given by (g, x) 7→ (gx, x) is an equivalence, hence also the induced map Otop(X ×M X ) →
Otop(G×X ) ' F(G+,Otop(X )). If we precompose this map with

f(X ) : X ∧TMF XOtop(X )∧TMF Otop(X )→ Otop(X ×M X )

of the last lemma, it coincides with γ.
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Example 6.3.5. We set X = M(2) at p = 3. Since M(2) has an a�ne Gm-torsor, its
cohomology vanishes. By the results in Section 5.2, TMF (2) is a �nite TMF(3)-module of
the form TMFα,α̃ ∨ Σ4TMFα,α̃.

Thus, π∗FTMF (2)
∼= p∗p

∗π∗Otop (here, p denotes the projectionM(2)(3) →M and should
not be confused with the prime we are working at). Furthermore, p∗p∗O ∼= f∗f

∗O⊕f∗f∗O⊗ω2

is standard as proven in Section 3.5, in particular Lemma 3.5.4), and therefore the conditions
of the proposition are ful�lled. We can conclude that TMF (2) is an S3-Galois extension of
TMF at the prime 3. The same argument works for every p > 2.

We could also replace p : M(2)→M by q : M(4)→M since by the remarks at the end
of Section 5.2, TMF (4) is a sum of 8 copies of TMF (2) (and, hence, TMF (4) is �nite and
π∗FTMF (4) has vanishing higher cohomology) and, by Lemma 3.5.5, we have also that q∗q∗O
is a sum of 8 copies of p∗p∗O, hence it is standard.

Remark 6.3.6. We suspect that at p = 2 and for q : X = M(3) → M, we also get that X
is a �nite TMF(2)-module and FX ' q∗q

∗Otop. Indeed, we suspect that X = TMF ∧Y ,
where Y is closely related to the complex Cγ of the proof of 5.4.5 in [Rog08] (which has
the property that eo2 ∧Cγ ' BP 〈2〉), perhaps Y consists just of six copies of Cγ . Ev-
idence is provided by the paper [MR09] by Mahowald and Rezk, where they show that
M1(3) = SpecZ(2)[a1, a3,∆

−1]//Gm ([MR09, 3.2]) and that TMF0(3) and TMF1(3) are
�nite TMF(2)-modules ([MR09, 7.2] and [MR09, 4.2]).

We want to give a little application of Galois descent, already used in the section about
relatively free modules.

Lemma 6.3.7. Let M be a �nite TMF -module. Then there exists a map

X : = ⊕j∈JΣnjTMF (2)→M

which induces a surjection π∗(X ∧TMF TMF (2))→ π∗(M ∧TMF TMF (2)).

Proof. TMF -modules are equivalent to ˜TMF (2)[S3]-modules via the functor ∧TMF TMF (2)

by Proposition 6.2.6 and Example 6.3.5. Then TMF (2) corresponds to ˜TMF (2)[S3] and we
can simply realize the algebraic map.

6.4 Intermezzo on the Descent Spectral Sequence

In this section, we will use the results of the last section to give an alternative account of the
descent spectral sequence for sheaves FM associated to �nite TMF(3)-modules M , which we
will be our main case of interest. We use the notation DSS(FM ) or just DSS(M) for the
descent spectral sequence.

The following theorem seems to be known to experts:

Theorem 6.4.1. The descent spectral sequence associated to a �nite TMF -module agrees
with its Adams�Novikov spectral sequence (based on MU).

Since there is no published proof for this theorem (and I also haven't seen a unpublished
one), I will present an approach circumventing this theorem.

By abuse of notation, we set again TMF = TMF(3). We will use the Adams spectral
sequence in TMF -modules with respect to the TMF -algebra TMF (2) as a model for the
descent spectral sequence. To study this, let's begin with a few generalities on the Adams
spectral sequence in R-modules (we follow here [BL01]).
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Let R be a commutative ring spectrum and E be a homotopy commutative R-algebra.
Assume that ER∗ E = π∗(E ∧RE) is �at as an E∗-module. Then by [BL01], 1.1 and 2.1,
ER∗ E is a Hopf algebroid and we have for M an R-module an Adams spectral sequence with
E2-term

Exts,t
ER∗ E

(E∗, E
R
∗ M).

It converges (if the pages stabilize in every bidegree) to the completion π∗L̂RE(M). To de�ne
the latter, we consider the canonical R-module Adams resolution: Set D0 = M and let Ds+1

be the (homotopy) �ber of Ds
∼= R∧RDs → E ∧RDs. Furthermore let Ks be the co�ber

of the map Ds → D0 = M . The maps Ds+1 → Ds induce maps Ks+1 → Ks and we set
L̂RE(M) := holimsKs. By [Rog08, Lemmas 8.2.3 and 8.2.4], L̂RE(R) ' R if E is faithful and
dualizable as an R-module. Since both the canonical Adams resolution and homotopy limits
commute with smashing with a �nite module, this implies L̂RE(M) 'M .

For example, TMF (2) is faithful and dualizable over TMF . Furthermore, by Example

6.3.5, TMF (2)∧TMF TMF (2) ' ˜TMF (2)[S3], the twisted group ring. Therefore, in this
case, ER∗ E-comodules correspond to graded TMF (2)∗-modules with twisted S3-action, which
is by Galois descent the same as quasi-coherent sheaves over the moduli stack of elliptic curves.
Therefore,

Exts,t
ER∗ E

(E∗, E
R
∗ M) ∼= Exts,tQCoh(M)(O, π∗FM )

and our TMF (2)-based Adams spectral sequence has the same E2-term and the same con-
vergence properties as the descent spectral sequence and we can use it as a substitute. Note
also that (due to the maps S0 → TMF and MU → TMF (2)) we have a map of spectral
sequence from the Adams�Novikov spectral sequence to our version of the descent spectral
sequence as required in Tilman Bauer's paper [Bau08].

Theorem 6.4.2. Let M be a �nite TMF -module. Then DSS(FM ) possesses the structure
of a module spectral sequence over DSS(Otop) which induces the canonical module action of
the E2-terms.

Proof. This is analogous to a special case of [Rav86], 2.3.3, in our case just replacing argu-
ments in spectra by arguments in TMF -modules.

Theorem 6.4.3. Let
W

f−→ X
g−→ Y

h−→ ΣW

be a co�ber sequence of �nite TMF -modules. Assume that the induced map h : π∗FY →
π∗−1FW is zero (π∗ denotes here again the shea��ed homotopy groups). Then we have a
map of spectral sequences DSS(FY ) → DSS(FW ) (raising �ltration by 1) which induces
multiplication by the class in Ext1

π∗Otop(π∗FY , π∗FW ) corresponding to the extension

0→ π∗FW → π∗FX → π∗FY → 0

on E2.

Proof. This is analogous to [Rav86], 2.3.4, in our case just replacing arguments in spectra by
arguments in TMF -modules.

Corollary 6.4.4. Let x ∈ πkM be of DSS-�ltration 1. Then the cone N of the map
ΣkTMF

x−→M satis�es that the extension

0→ π∗FM → π∗FN → π∗Σ
kOtop → 0

is classi�ed by the reduction x ∈ Ext1
π∗Otop(π∗Σ

kOtop, π∗FM ) ∼= H1(M;πkFM ).
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Proof. The map ΣkTMF → M sends 1 ∈ πkΣ
kTMF to x ∈ πkM . It sends also 1 ∈

H0(M;π∗Σ
kOtop) to y ∈ Ext1

π∗Otop(π∗Σ
kOtop, π∗FM ) ∼= H1(M;πkFM ) classifying the ex-

tension above. Thus, by Theorem 6.4.3, x = y.

6.5 Galois Descent, the Second

In this section, we want to prove a version of Galois descent in derived algebraic geometry
and will use it to investigate the relationship between quasi-coherent modules on the derived
moduli stack of elliptic curves and TMF -modules. We will work again in the ∞-categorical
setting.

De�nition 6.5.1. Let F : Cop → D be a contravariant functor from (the underlying category
of) a site to an∞-category with all limits. For a �nite group G, we call a morphism f : X →
Y in C a G-torsor if f is a cover and X is equipped with a G-action over Y such that∐
GX

∼= G ×X → X ×Y X (given, informally, by (g, x) 7→ (gx, x)) is an isomorphism. We
say that F satis�es Galois descent with respect to G if for any G-torsor X → Y , we have
that F(Y )→ F(X)hG is an equivalence.

Proposition 6.5.2. If F is a sheaf on C (with values in an ∞-category D), then it satis�es
Galois descent with respect to every �nite group G.

Proof. We have for X → Y a G-torsor an equivalence

F(Y ) // holim
(
F(X) //// F(X ×Y X)

////// · · ·
)

since X → Y is in particular a cover. Since X×Y n ∼=
∐
Gn−1 X, we get an equivalence of

the cosimplicial object above with a cosimplicial object Z• in D satisfying Zn '∏Gn−1 F(X).
Just as in Lemma 6.3.2, we see that Z• ' XBG• and that we get therefore an equivalence

F(Y )→ F(X)hG.

Proposition 6.5.3. Let (X ,Otop) be a derived Deligne�Mumford stack with �ber functor
P : X → Sch. Let X ′ be the site of all Deligne�Mumford stacks over (X , π0Otop) and let

P ′ : X ′ → Deligne�Mumford stacks

denote the obvious extension of this �ber functor. Then the assignment

X 7→ QCoh(P ′(X),Otop|X)

is a sheaf on X ′ and satis�es thus Galois descent (with respect to every group).

Proof. For everyX ∈ X ′ we write hX for sheaf represented byX in ShvsSet(X ). The following
is shown in the proof of Proposition 2.3.13 of DAG VIII: If hX ' colimi hXi in ShvsSet(X )
for Xi ∈ X ′, then QCoh(P ′(X),Otop|X) ' limi QCoh(P ′(Xi),Otop|Xi).

Since a covering {Xi} → X implies an equivalence hX ' colimi hXi , the assignment
X → QCoh(P ′(X),Otop|X) de�nes a sheaf on X ′.

Theorem 6.5.4. For l > 2 a prime, we have an equivalence

QCoh(M(l),Otop) ' TMF(l) -mod

of ∞-categories.
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Proof. Let q : M(4)(l) → M(l) be the G = GL2(Z/4)-Galois covering considered before.
Recall thatM(4)(l) is a�ne (see Section 2.5). Thus,

QCoh(M(l),Otop)
6.5.3' (QCoh(M(4)(l),Otop))hG
4.5.11' (TMF (4)(l) -mod)hG

6.1.5' ˜TMF (4)(l)[G] -mod

6.3.5,6.2.6' TMF(l) -mod

Comment 6.5.5. The reader might have noticed that we proved the last theorem by going up
and down via two di�erent kinds of Galois descent. The latter was of an algebraic �avor as
it was induced by a Galois covering in classical algebraic geometry. The former though was
based on a deeper, topological notion as the map TMF → TMF (2) is no Galois extension
on homotopy groups. In a similar vein, one might compare the discussion of étale morphism
between ring spectra in Chapter 9 of [Rog08] with the de�nition of Lurie in [Lur11], De�nitions
8.5.0.4 and 8.2.2.10. It goes without saying that this is not meant to be derogatory in any
way with respect to Lurie's treatment.



Chapter 7

The Case of K-Theory

In this chapter, we want to classify (�nite) KO-modules which are relatively free with respect
to KU . After collecting some basic facts on K-theory in the �rst section, we prove (in three
di�erent ways) that all relatively free KO-modules are standard. In the third section, we
classify all standard modules. We want to stress again that the results here are essentially
due to [Bou90], but are proven here in a di�erent way.

7.1 Basics on K-theory

We want to collect some basics on real and complex K-theory in this section. Most of these
results can be found in [Bou90, Section 1].

Denote by BC ∈ π2KU the Bott periodicity element. Then π∗KU ∼= Z[B±1
C ].

The homotopy groups of KO are 8-periodic via the Bott periodicity element BR ∈ π8KO.
We have

πiKO ∼=


Z/2 for i ≡ 1, 2 mod 8

Z for i ≡ 0, 4 mod 8

0 else.

Degree 0 is generated by the unit 1 and we choose a generator ξ of π4KO. The Hurewicz
image of η ∈ πst1 S0 in π1KO is non-zero and, by abuse of notation, we denote it also by η.
We have η2 6= 0, so η2 generates π2KO.

We have (geometrically de�ned) maps c : KO → KU and r : KU → KO, complexi�cation
and reali�cation. The �rst is a morphism of ring spectra and gives KU the structure of a
KO-module. Complex conjugation induces an involution τ on KU , which acts as a KO-
algebra map. We have cr = id +τ and rc = 2. Complex conjugation satis�es furthermore
τ(BC) = −BC in π∗KU . If we view BC as an equivalence Σ2KU → KU , the map BCτB

−1
C

sends 1 ∈ π0KU to −1 and BC ∈ π2KU to BC . By Example 6.2.2 and Proposition 6.2.4, we
have a basis consisting of 1 and τ of [KU,KU ]KO. Thus BCτB

−1
C = −τ .

Since η acts trivially on KU , we can extend c to a map KO∧Cη → KU , which can be
chosen to be an equivalence.1 More precisely, we get a triangle

ΣKO
η−→ KO

c−→ KU
±rB−1

C−−−−→ Σ2KO.

of KO-modules. Indeed, DKOKU ' DKOKO∧Cη ' Σ−2KU . Thus,

[KU,Σ2KO]KO ∼= π−2DKOKU ∼= π0KU ∼= Z.
1It is hard to �nd a complete proof for this statement in the literature. A short discussion can be found

in [Rog08, p.23]. In [Ati66, Proposition 3.2], there is a proof showing that KU and KO∧Cη represent the
same cohomology theories (on spaces).
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The element rB−1
C ∈ [KU,Σ2KO]KO is indivisible (by any natural number > 1) as r(B2

C) = ξ
since cr(B2

C) = 2B2
C and c(ξ) = 2B2

C . Since the boundary map KU → Σ2KO is also
indivisible (it has also ξ in its image since ηξ = 0), it has to be equal to ±rB−1

C .
For an M ∈ KO -mod, we set MKU := M ∧KOKU . By abuse of notation, we denote

the maps M →MKU and MKU →M induced by c and r also by c and r. By smashing the
above triangle with M , we get a triangle

ΣM
η−→M

c−→MKU
±rB−1

C−−−−→ Σ2M,

which induces a long exact sequence

· · · → π∗−1M
η−→ π∗M

c∗−→ π∗MKU
ρ−→ π∗−2M → · · · (7.1)

for ρ = (rB−1
C )∗. Observe that BCc∗ρ = id−τ .

An important variant of K-theory is K-theory with self-conjugation KT . While it has also
a geometric interpretation, for our purposes, we can de�ne it as the KO-module KO∧C(η2).
We have

πiKT ∼=


Z/2 for i ≡ 1 mod 4

Z for i ≡ 0, 3 mod 4

0 else.

7.2 The KO-Extension Theorem

The aim of this section is to prove the following proposition:

Proposition 7.2.1. Let M be a nonzero �nite KO-module such that MKU is KU -free. Then
there is a map f : ΣjKO →M such that the map

(f ∧KOKU)∗ : π∗Σ
jKU → π∗MKU

is split injective (equivalently as map of abelian groups in every degree or as map of π∗KU -
modules).

Remark 7.2.2. Since maps between free modules are determined by their e�ect on homotopy
groups, in f ∧KOKU : ΣjKU → MKU splits for MKU free i� (f ∧KOKU)∗ : π∗Σ

jKU →
π∗MKU splits.

Corollary 7.2.3. Every relatively free (�nite) KO-module M is a standard module.2

Proof. For a relatively free M , the dual DKOM is also relatively free since

HomKO(M,KO)∧KOKU ' HomKU (MKU ,KU)

by Proposition 4.2.7. Thus, using the proposition, we can choose an f : ΣjKO → DKOM
splitting o� a direct summand after smashing with KU and call the Spanier�Whitehead dual
of the co�ber N . Note that this is relatively free of one rank less than M (since the map
fKU : ΣjKU → DKOM ∧KOKU splits).

After dualizing f , we get a co�ber sequence Σ−j−1KO
g−→ N → M → Σ−jKO. As the

dual of a split map MKU → Σ−jKU has a section. Thus, gKU : Σ−j−1KU → NKU is zero.

2Recall from the induction that a standard module is a KO-module which arises by iteratively coning o�
torsion elements from a suspension of KO.
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Therefore, the corresponding element x = g(1) ∈ π−j−1N satis�es c∗(x) = 0. Hence, x is in
the image of η and therefore torsion.

All in all, we get that we can obtain M from a relatively free module of smaller rank
by coning o� a torsion element. Now, we can assume inductively that every relatively free
module of smaller rank than M (e.g., N) is standard and get that M is standard. Note that
we use as an induction start that MKU = 0 implies M = 0. Indeed, MKU = 0 implies that
η : ΣM →M is an isomorphism of KO-modules, but η3 = 0.

Remark 7.2.4. We will give three proofs of this proposition. The �rst two proofs use the
homotopy �xed point spectral sequence as their main tool, the third a Toda bracket argument.
Toda bracket arguments will come up again in Section 8.6 and descent spectral sequence
arguments are central to the whole proof of Theorem 8.1.5. It might be helpful for the reader
to keep the easier analogues from this section in mind. The third argument was actually
the �rst proof of this proposition I came up with and has motivated the earlier parts of my
attempts to prove Theorem 8.1.5, especially the search for divisibility by large powers of β.

Proof. We start with a few observations which are important for all three proofs.

• It is enough to �nd an indivisible element e ∈ π∗MKU which is in the image of c∗ (since
every indivisible element in a free abelian group generates a direct summand). Here e
is called indivisible if k · x = e for k ∈ Z implies k = ±1.

• Every torsion element in π∗M is in the image of η and thus 2-torsion. Thus, for k odd,
k ·x is in im(c∗) i� x ∈ im(c∗). Therefore, it su�ces to �nd an element in im(c∗) which
is not divisible by 2 in π∗MKU .

• Suppose im ρ is torsionfree in every degree. Then ρ(kx) = kρ(x) = 0 implies that
ρ(x) = 0. Therefore, kx ∈ im c∗ implies x ∈ c∗. Therefore, either c∗ = 0 or im c∗
contains an indivisible element. But if c∗ = 0, the whole module π∗M is contained in
the image of η and is therefore completely torsion. This implies ρ = 0 and every element
in π∗MKU is in im(c∗), hence MKU = 0 (implying M = 0), which is a contradiction.
Hence, im(ρ) has 2-torsion.

First proof: Since KUhC2 ' KO (see [Rog08, 5.3]), we have also (MKU )hC2 ' M (since
homotopy limits commute with smashing with �nite modules). By Theorem 6.1.6, there is a
homotopy �xed point spectral sequence

E∗∗2 (M) = H∗(C2, π∗MKU )⇒ π∗M,

which is a module spectral sequence over the homotopy �xed points spectral sequence for
KU .

Claim 7.2.5. The (non-trivial) permanent cycle η ∈ H1(C2, π2KU) in the E2-term of the
homotopy �xed point spectral sequence of KU acts injectively on the Er-term for MKU be-
ginning with the (r − 1)st row.

Proof. The groups H i(C2,Z[C2] ⊗KU∗) vanish for i > 0 and H i(C2,KU∗) looks in Adams
convention as follows:

0 2 4 6 8
0

2

� � �
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The diagonal strokes stand here for multiplication by η ∈ H1(C2, π2KU). Furthermore, the
pattern continues to the left, right and top. Thus, η operates injectively on H i(C2,KU∗) for
i > 0. Now, by Section 3.1, every integral C2-representation is isomorphic to a sum of copies
of Z[C2], Z and the sign representation Z′. As KU∗ is in degrees divisible by 4 isomorphic
to Z and in the other even degrees isomorphic to Z, every �nite-dimensional free graded
KU∗-module with twisted C2-action is isomorphic to a sum of shifts of copies of Z[C2]⊗KU∗
and KU∗. Thus, the result follows for r = 2. Inductively, one sees that η operates injectively
on Er beginning with the (r − 1)st row (similar to Lemma 8.3.5).

The edge homomorphism π∗M → H0(C2, π∗MKU ) ⊂ π∗MKU equals c∗. Assume that
there is no indivisible element in im(c∗).3 Thus, all indivisible elements in row 0 of the ho-
motopy �xed point spectral sequence must support di�erentials. Hence, every element in the
higher rows must support a (non-trivial) di�erential since they are all multiples by a power
of η of row 0 elements and η operates injectively on the Er-term beginning with the (r− 1)st
row. Hence π∗M has no torsion, which is a contradiction to the third observation.

Second proof: Let x ∈ π∗M be a torsion element. Every torsion element is divisible by
η since its image in π∗MKU is torsion, hence zero. Therefore, we can write x = ηky, for y
non-torsion and k ∈ {1, 2} maximal (since η3 = 0). Thus, y is detected in the 0-line of the
homotopy �xed point spectral sequence4 and we assume (for contradiction) it reduces to an
element in y ∈ 2H0(C2;π∗MKU ).

Viewing MKU as a KO-module, we get a homotopy �xed point spectral sequence com-
puting π∗MKU (out of H∗(C2;π∗(MKU ∧KOKU))), which is concentrated in the 0-line since

MKU ∧KOKU ' K̃U [C2]
n
for n = rkKU MKU (by Example 6.2.2). The map r : MKU →M

induces a map of spectral sequences, which equals in the 0-line the map

π∗MKU → H0(C2;π∗MKU ) ⊂ π∗MKU

given by x 7→ x + τx (since cr = 1 + τ). Clearly, 2H0(C2;π∗MKU ) is in the image. Thus,
there is a y′ ∈ im(r∗) ⊂ π∗M such that y − y′ is of �rst �ltration and ηy′ = 0. Hence,
ηk(y − y′) = x and y − y′ is torsion, which is a contradiction to the maximality of k.

Therefore, y projects non-trivially to H0(C2, π∗MKU )/2. The edge morphism

π∗M → H0(C2, π∗MKU ) ⊂ π∗MKU

converges to c∗. Thus, c(y) is not divisible by 2 and we can assume it generates a direct
summand of π∗MKU .

Third proof: We assume that every element in im(c∗) is divisible by 2.
By the third observation above, there is an x ∈ πnMKU such that 2ρ(x) = 0, but ρ(x) 6= 0.

Our �rst goal is to show that ρ(x) is of the form η2e. By the exactness of (7.1), we have
ρ(x) = η ·y, for a y ∈ πn−3M . Since clearly 2ηy = 0, there is a z ∈ πn−1MKU with ρ(z) = 2y.

Assume π∗MKU had a (C2-equivariant) summand of the form Z[C2] ⊗ KU∗. Then
c∗r∗(1, 0) = (1, 1) in this summand (with respect to the basis (1, t) of Z[C2]) and there-
fore, there would be an indivisible element in the image of c∗. Therefore, we can assume
that π∗MKU has no such summand and, by the classi�cation of integral C2-representations

3Equivalently, indivisible in H0(C2;π∗MKU ) and in π∗MKU .
4Indeed, else y was detected by an element in a higher row, i.e., a torsion element. This shows that 2iy

has arbitrary high �ltration. This shows that there is a surjection π∗M → Z2. But π∗M is �nitely generated,
contradicting the uncountability of Z2.
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(see Section 3.1), π∗MKU is a sum of trivial and sign representations. Hence, we can write
z = u+ v with τu = u and τv = −v. We have

2Bcc∗y = Bcc∗ρz = BCc∗r∗B
−1
C (z) = z − τz = 2v

and therefore c∗(y) = B−1
C v since π∗MKU is torsionfree. By our contradiction assumption,

this must be divisible by 2 and we can write c∗y = 2B−1
C w. Thus, we have v = 2w.

We have now that

ρ(u) = ρ(z − v) = ρ(z)− ρ(v) = 2y − 2ρ(w).

Therefore, ρ(u) is divisible by 2. But ρ(u) is also torsion since c∗ρ(u) = (1 + τ)B−1
C (u) =

B−1
C (u− τ(u)) = 0. This implies ρ(u) = 0 (since all torsion is 2-torsion). Hence, 2ρ(w) = 2y

and thus ρ(w) = y+d, where d is 2-torsion. Now we have ηy+ηd = ηρ(w) = 0 and therefore
ρ(x) = ηy = ηd. But since d is torsion, it is in the image of η: d = ηe. Therefore, ρ(x) is of
the form η2e, which was our �rst goal.

Recall that the Toda bracket 〈η, η2, 2〉 equals ξ + 2Z · ξ ⊂ π4KO.5 By Lemma 4.6.2, we
have ±ξe ∈ 〈η, ρ(x), 2〉. Thus, c∗(ξe) = ±2x′ for an x′ with ρ(x′) = ρ(x) by Lemma 4.6.1.
Since c∗ is a KO∗-module map and c∗(ξ) = 2B2

C , we have 2B2
Cc∗(e) = ±2x′ or with other

words: c∗(e) = ±B−2
C x′. Since x′ is not divisible by 2 (else ρ(x) = ρ(x′) would be divisible

by 2), c∗(e) is not divisible by 2, which proves the proposition.6

7.3 Classi�cation of KO-Standard Modules

Our goal in this section is the classi�cation of relatively free KO-modules, recovering a result
by Bous�eld.

Theorem 7.3.1. Every (�nite) relatively free KO-module is a direct sum of shifts of KO,
KU and KT .

Proof. We know by the last section that every relatively free KO-module is a standard
module. Call a module that can be written as a direct sum of shifts of KO, KU and KT
very standard. We will assume for induction that all standard modules of rank < n are very
standard.7

By Corollary 7.2.3, every relatively free module F of rank n > 0 sits in an exact triangle of
the form KO → E → F with rkE = n− 1 and KO → E corresponding to a torsion-element
x ∈ π∗E. In general, one has to consider a suspension of KO, but one can just shift. We
can assume x to be non-zero. Every torsion element in π∗E is divisible by η and we choose

5This can be shown by a straightforward computation with Massey products in the E2-term of the Adams
spectral sequence for KO.

6Note that one does not really need the computation of 〈η, η2, 2〉 � if it contained zero, the argument would
have been even simpler.

7Here, the rank of a relatively free module M is de�ned to be the rank of π∗MKU as a π∗KU -module.
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a y ∈ π∗E with ηy = x. Then we have by the octahedral axiom a diagram of the form

KO
η //

=

��

Σ−1KO //

y

��

Σ−1KU

��
KO

x // E //

��

F

��
G

δ
��

= // G

δ′

��

// GKU

δKUyysssssssss

KO // KU

where the two columns and the upper two rows are triangles. Assume �rst that x is not
divisible by η2. As in the (second) proof of Proposition 7.2.1, we can choose y in a way such

that c(y) is a primitive vector in π∗EKU ∼= Z?. Therefore, the map Σ−1KU
c∗(y)−−−→ EKU has

a section and GKU a direct summand of EKU of rank n − 2 (and therefore very standard
by induction). In particular, δKU : GKU → KU must be zero (since it is zero on homotopy
groups and the source is a free module). Since δ′ : G→ KU factors over δKU , it has also to
be zero. Therefore, F ∼= G⊕ Σ−1KU .

If x is divisible by η2, we can assume E ∼=
⊕

Σ−2KO since only in these summands there
is a π0-element divisible by η. Thus, π0E ∼= Fk2 and we can lift x ∈ Fk2 to a primitive vector
x′ in Zk. We can choose a matrix A ∈ GLk(Z) with x′ as �rst column. Its inverse de�nes
an automorphism of E sending x to (η2, 0, . . . , 0). After this change of basis, it is immediate
that F ∼= Σ−2KT ⊕⊕Σ−2KO.



Chapter 8

Relatively Free TMF -Modules

In this chapter, we will investigate the relationship between various sub classes of rela-
tively free TMF -modules, namely standard, hook-standard and algebraically standard TMF -
modules. Everything will be implicitly 3-local; this means, for example, that we write TMF
for TMF(3) andM forM(3).

8.1 De�nitions, Observations and Statement of Results

Let M be a �nite TMF -module such that M(2) := M ∧TMF TMF (2) is free of rank n as a
TMF (2)-module (i.e. a relatively free TMF -module). By abuse of terminology, we will often
call n also the rank of M . As before, we can associate to M a quasi-coherent π∗Otop-module
π∗FM on M with FM (U) ' Otop(U)∧TMF M for U a stack with an étale map to M (see
the end of Section 4.5). If M is relatively free, this is a vector bundle, as can be seen by
evaluating onM(2).

De�nition 8.1.1. A �nite TMF -module M is algebraically standard if the vector bundles
π0FM and π1FM are standard in the sense of De�nition 3.0.3, i.e., these vector bundles can
be built up iteratively by extensions with line bundles.

If we can realize these extensions topologically, we call a TMF -module (topologically)
standard. More precisely, we propose the following de�nition:

De�nition 8.1.2. We de�ne the notion of a �nite TMF -module being (topologically) stan-
dard inductively: First, ΣkTMF is standard for all k. Furthermore, for M standard and
x ∈ πkM torsion, the co�ber of ΣkTMF

x−→ M is standard. A TMF -module is standard if
it can built in �nitely many steps in this way.

It is easy to see that every standard module is also algebraically standard.

The module M(2) carries an S3-action induced by the S3-action on TMF (2). We denote
by E(M) the set of generators x ∈ π∗(M(2)) of direct TMF (2)∗-summands which are invari-
ant under the S3-action. Let (by abuse of notation) denote c : M →M(2) the map induced
by the algebra map c : TMF → TMF (2). We say that M has an invariant generator if
E(M) ∩ im(c∗) 6= ∅. We will prove the following in Section 8.4:

Proposition 8.1.3. If every �nite TMF -module has an invariant generator, every �nite
TMF -module is standard. If every algebraically standard TMF -module has an invariant
generator, every algebraically standard TMF -module is standard.

95
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The author was not able to show that every �nite (algebraically standard) TMF -module
has an invariant generator and therefore also not to show that every �nite (algebraically
standard) TMF -module is standard. Instead, we propose a weaker version of being standard:

De�nition 8.1.4. We de�ne the notion of a �nite TMF -module being hook-standard in-
ductively: First, ΣkTMF is hook-standard for all k. Furthermore, a TMF -module M is
hook-standard if there are co�ber sequences

Σ|a|TMF
a−→M → X

Σ|x1|TMF
x1−→ X → X ′

Σ|x2|TMF
x2−→ X ′ → X ′′

with X ′′ hook-standard, where a correspondsto a torsion element and c∗(x1) ∈ E(X) and
c∗(x2) ∈ E(X ′).

Every standard module is hook-standard: If a = 0, X = Σ|a|+1TMF ⊕M and we can
choose x1 : Σ|a|+1 → X to be the inclusion of the direct summand.

Our main theorem in this chapter will be:

Theorem 8.1.5 (The hook theorem). Every algebraically standard TMF -module is hook-
standard.

Note that in principle it is possible to classify all hook-standard TMF -modules up to a
certain �nite rank: For rank 1, we have just suspensions of TMF . Now suppose, we have
classi�ed all hook-standard modules up to rank (n − 1). Given a hook standard module
Z of this rank, we can choose a torsion element in π∗DTMFZ, cone it o� to get a module
Z ′ of rank n. Here, we choose again a torsion element, cone it o� and get a module Z ′′.
Here, we choose a z ∈ π∗Z ′′ with c(z) ∈ E(Z ′′) and get a module DTMFM after coning it
o� whose dualM is hook-standard. All hook-standard modules of rank n are built in this way.

We complement the hook theorem by the following proposition to be proven at the end
of this chapter:

Proposition 8.1.6. Every algebraically standard TMF -module of rank ≤ 3 is standard.

We now come to the strategy of the proof of Theorem 8.1.5. An important observation (in
Section 8.3) is that if we have a summand of the form f∗f

∗O in π∗FM (where f : M0(2)→M
denotes the usual projection map), M decomposes as TMF0(2)⊕M ′. So our strategy is to
enlarge M by coning o� torsion elements to get such summands to kill, which we will do
in Section 8.7. To succeed, it is necessary to study the torsion of M before, especially the
multiplication by α and β on it, which we will do in Sections 8.5 and 8.6. At the end, we will
either get an invariant generator or a �hook�. This all relies on the classi�cation of standard
vector bundles and on certain algebraic preliminaries, which are presented in the next section.

In the whole proof, the following triangle is very important:

M
c−→M(2)

σ(2)−−→ Σ4Mα ∨ Σ4M0(2)
tα̃−→ ΣM (8.1)

Here Mα := M ∧TMF TMFα and M0(2) := M ∧TMF TMF0(2). It is induced by the triangle

TMF
c−→ TMF (2)

σ(2)−−→ Σ4TMFα ∨ Σ4TMF0(2)
tα̃−→ ΣTMF.

This in turn you get from the more well known triangle

TMF → TMF0(2)
σ−→ Σ4TMFα → ΣTMF

since TMF (2) ∼= TMF0(2) ∨ Σ4TMF0(2) (see also Section 5.2).
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8.2 Algebraic Preliminaries

Recall that M(2) = SpecTMF (2)∗//Gm. Furthermore, we have that M = M(2)//S3.
Therefore, by Galois descent, the category of graded TMF (2)∗-modules with twisted S3-
action is equivalent to the category of quasi-coherent sheaves over M. More precisely,
Γ(p∗π∗FM ) corresponds to π0FM , where p : M(2) → M is the projection. Note that we
have π∗M(2) = π∗Γ(p∗FM ) ∼= Γ(p∗π∗FM ) by the descent spectral sequence since the higher
cohomology of p∗π∗FM is trivial (by the same argument as in Lemma 3.4.4). Furthermore,
(π∗M(2))S3 ∼= H0(M;π∗FM ) (by Lemma 2.7.1).

We will work for the next paragraphs more generally with an arbitrary étale map p : X →
Y since we do not gain by specializing at this point. Let F be quasi-coherent sheaf on Y.
The adjunction unit F → p∗p

∗F induces a map

calg : Γ(F)→ Γ(p∗p
∗F) = Γ(p∗F),

corresponding to the inclusion of the S3-invariants (see the proof of Lemma 2.7.1). Another
interpretation of this map is as the morphism F ⊗ ω⊗∗(Y)→ F ⊗ ω⊗∗(X ) induced by p.

The following lemma is well-known, but I was unable to �nd a complete and elementary
proof in the literature.

Lemma 8.2.1. For any étale map p : X → Y of Deligne�Mumford stacks, the functor

p∗ : OX -mod→ OY -mod

has a left adjoint p!.

Proof. We will begin by describe a left adjoint of p∗ on the level of presheaves. For F a
presheaf of OX -modules, a presheaf p?F of OY -modules is de�ned as follows: For f : U → Y
an étale map, p?F(U, f) := ⊕sF(U, s), where the direct sum ranges over all maps s : U → X
such that ps = f . We want to prove that p? is left adjoint to p∗ at the level of presheaves. For
G a presheaf of OY -modules, de�ne the counit p?p

∗G → G on an f : U → Y by the summing
map ⊕

s lifting of f

G(U, ps)→ G(U, f)

(note that ps = f by de�nition). For F a presheaf of OX , de�ne the unit F → p∗p?F on a
t : U → X by the inclusion of the t-summand F(U, t)→⊕

s lifting of p◦tF(U, s). It is easy to
check that the transformations p? → p?p

∗p? → p? and p∗ → p∗p?p
∗ → p∗ are identity.

Denote the �forgetful� functor OX -mod→ PreX from OX -modules to presheaves of OX -
modules by u and the shea��cation by S and likewise for Y. De�ne p!F as S(p?(uF)).
Moreover, we have that u(p∗G) = p∗(uG) by de�nition. Since shea��cation is left adjoint to
u, we get that p! is left adjoint to p∗:

OY -mod(p!F ,G) = OY -mod(S(p?(uF)),G) ∼= PreY(p?(uF), uG) ∼= PreX (uF , p∗uG)

= PreX (uF , up∗G) = OX -mod(F , p∗G)

Note that a lifting U → X is equivalent to a section of U ×Y X → U . Let p now be
a G-Galois covering (with G �nite again). Then for U connected, p?F(U) ∼= ⊕GF(U) for
p trivial over U and p?F(U) = 0 for every U where p is non-trivial since non-trivial Galois
coverings have no sections. Since p∗F(U) ∼= ⊕GF(U) as well for p over U trivial, we have
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a map p?F → p∗F , de�ned as identity for p trivial on U and 0 else, which is locally an
isomorphism. Therefore the induced map p!F → p∗F is also an isomorphism. Hence, for p a
G-Galois covering, we have a map

ralg : Γ(p∗F) ∼= Γ(p∗p
∗F) ∼= Γ(p!p

∗F)→ Γ(F).

Clearly, ralg is natural with respect to maps of sheaves since the counit map is a natural
transformation. For the rest of this section, we abbreviate ralg and calg to r and c for ease of
notation.

Lemma 8.2.2. We have the identities rc = |G| and cr = Σg∈Gg. Furthermore, r is surjective
as a sheaf map.

Proof. It is enough to show these statements locally since both r and c are induced by
morphisms of sheaves. So we may assume that p is trivial, i.e., X =

∐
G Y. Hence, we have

Γ(p∗F) ∼=
∏
G Γ(F). For every g ∈ G, the map psg : Y → X → Y is the identity, where sg is

the section corresponding to the element g. Therefore, the map c : Γ(F) → ∏
G Γ(F) is the

diagonal. Since ps = id for all sections s : Y → X , we have that

r :
∏
G

Γ(F) ∼=
⊕
G

Γ(F)→ Γ(F)

is the summing map (by the de�nition of the counit) and hence surjective. Therefore an
element

x = (0, . . . , 0, a, 0, . . . , 0) ∈
∏
G

Γ(F)

is sent to (a, . . . , a) = Σg∈Ggx by cr. On the other hand, an element a ∈ Γ(F) is sent to
Σg∈Ga = |G|a.

Now, we come back to the speci�c situation of p : M(2)→M and G = S3. Note that we
can view r for a quasi-coherent sheaf F onM also as a map Γ∗(p

∗F)→ Γ∗(F) by considering
one degree at a time. We want to prove the following proposition:

Proposition 8.2.3. Let E be a standard vector bundle on M. Let furthermore x ∈ Γ∗(E)
be an element not in the image of r : Γ∗(p

∗E) → Γ∗(E). Then there is a z ∈ Γ∗(p
∗E) such

that c(r(z) + x) is a generator of a direct summand of Γ∗(p
∗E) over TMF (2)∗.

Proof. First, suppose we have shown the proposition for two vector bundles E1 and E2. Let
now E = E1 ⊕ E2 and x ∈ Γ∗(E) outside im(r). We can write x = (x1, x2) and get that
c(r(z1) + x1) = y1 or c(r(z2) + x2) = y2 is a generator of a direct summand of Γ(p∗E1)
and Γ(p∗E2) respectively for some zi ∈ Γ(p∗Ei). Hence, (y1, y2) = c(r(z1, z2) + (x1, x2))
is a generator of a direct summand of Γ(p∗E) as well. Therefore, we can assume E in our
proposition to be indecomposable.

According to Theorem 3.0.5, every standard vector bundle on M is a direct sum of
(indecomposable) vector bundles of the form O, Eα and f∗f∗O and twists of these by ωj .
Here Eα denotes the extension

0→ O → Eα → ω−2 → 0

classi�ed by α ∈ H1(M;ω2) and f : M0(2)→M is the usual projection map. It su�ces to
prove the proposition for each of the listed standard indecomposables.
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• Consider the case E = O: The image of r contains the ideal I in Γ∗(O) ∼= Z(3)[c4, c6,∆
±1]

generated by 3, c4 and c6. Indeed, cr(1
2) = 3, cr(4x2

2) = c4 and cr(−32x2
2y2) = c6 by

the formulas for the action of S3 on Γ(p∗O) ∼= Z(3)[x2, y2,∆
−1] in Section 2.5. It follows

that the ±∆i form a set of representatives for the non-zero elements in Γ∗(O)/I. Since
±∆i is a unit in TMF (2)∗ and hence generates a direct summand, the result follows.

• Consider the case E = f∗f
∗O: The stack M(2) ×MM0(2) classi�es elliptic curves

with level-2-structure and choice of one point of exact order 2 and is hence equivalent
to
∐3M(2). This implies that the vector bundle p∗E has rank 3 and S3 operates

by interchanging the 3 factors simultaneously with the action on each factor. Since
c : Γ∗(E)→ Γ∗(p

∗E) is an embedding with image Γ∗(p
∗E)S3 , every element in im(c) is

of the form (a, ta, t2a) (with respect to the above decomposition) with t = (2 3 1) ∈ S3

and a ∈ Γ∗(p
∗O)C2 (with respect to the C2-action given by the involution (1 3 2)).

Since the morphismM(2) →M0(2) (corresponding to the choice of the �rst point of
exact order 2) is C2-Galois, Γ∗(f∗f

∗O) ∼= Γ∗(p
∗O)C2 and we can view a as an element in

Γ∗(E). Because cr(1
2a, 0, 0) = (a, ta, t2a) for a ∈ Γ∗(f

∗O), the image of c is contained
in the image of cr and r is surjective. Thus, an x /∈ im(r) as in the statement of the
proposition does not exist.

• Consider the case E = Eα: The short exact sequence

0→ O → f∗f
∗O σ−→ Eα ⊗ ω−2 → 0 (8.2)

induces a diagram of the form

H0
∗ (M; f∗f

∗O)
σ // H0

∗ (M;Eα ⊗ ω−2)
∂ // H1

∗ (M;O)

H0
∗ (M(2); p∗f∗f

∗O) //

r(1)

OO

H0
∗ (M(2); p∗Eα ⊗ ω−2)

r(2)

OO

// H1
∗ (M(2); p∗O) = 0

First observe that im r(2) = imσ since both r(1) and the lower horizontal map are
surjective. By Lemma 3.4.2, ∂ equals multiplication with the element tα̃ ∈ Ext1(Eα ⊗
ω−2,O) classifying (8.2). The pullback of tα̃ along O ⊗ ω−2 → Eα ⊗ ω−2 equals
±α ∈ H1(M;ω−2) by Section 3.4. Thus, ∂(u∆i) = ±uα∆i for u ∈ {0, 1, 2}, where we
use the convention that we denote an element in H∗∗ (M,O) and its image under the
map in H∗∗ (M, Eα) induced by the de�ning map O → Eα by the same letter. Hence,
the u∆i are a representing set for coker(σ) ∼= H0(M;Eα ⊗ ω−2)/ im(r(2)). Thus, for
every x ∈ Γ∗(E) not in im(r(2)), we can �nd an r(2)(z) such that x + r(2)(z) = u∆i

with u a unit. We have an exact sequence

0→ Γ∗(p
∗O)→ Γ∗(p

∗Eα)→ Γ∗(p
∗ω−2)→ 0

since H1
∗ (M; p∗O) = 0 and it splits since Γ∗(p

∗ω−2) is free over TMF (2)∗. Thus, u∆i

is a generator of a direct summand of Γ∗(p
∗Eα). This implies the proposition.

Scholium 8.2.4. For E = O or Eα, the cokernel of r : Γ∗(p
∗E) → Γ∗(E) is an F3-vector

space and the elements ∆i, i ∈ Z, form a basis. For E = Eα,α̃, this cokernel is 0.
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Proof. Since rc = 6, 3Γ∗(E) ⊂ im(r) and coker(r) is an F3-vector space. That the elements
∆i generate coker(r) follows from the proof above. To show that the ∆i are non-zero observe
that ∆i ∈ Γ∗(O) cannot be in im(r) since β ∈ H2

∗ (M;O) operates non-trivially on it and for
the same reason ∆i ∈ Γ∗(Eα) cannot be in im(r). The surjectivity of r in the case E = f∗f

∗O
is also contained in the proof above.

We can also consider the map σα : Γ∗(f∗f
∗O⊗Eα)→ Γ∗(ω

−2⊗Eα⊗Eα). We know that
Eα ⊗ Eα ∼= f∗f

∗O ⊕ ω−2 by Section 3.4. Therefore, the (0,∆i) ∈ Γ∗(f∗f
∗O ⊕ ω−2) span a

representing set for Γ∗(Eα ⊗ Eα)/ ker(α). Since α operates injectively1 on H1
∗ (M, Eα) and

multiplication by α commutes with δ, we have ker(α) ⊂ ker(∂) = im(σα) for the boundary
map

∂ : H0
∗ (M;ω−2 ⊗ Eα ⊗ Eα)→ H1

∗ (M;Eα).

Since the restriction of α· : H0
∗ (M;O) → H1

∗ (M;O) to the span of the ∆i is surjective, the
(0,∆i) generate therefore the cokernel of σα (as an F3-vector space). Since the next term
H1(M; f∗f

∗O ⊗ Eα) in the sequence is zero, ∂ is surjective. Therefore, coker(σα) has the
same dimension as an F3-vector space as the span of the ∆i. Therefore, the ∆i form a basis
for coker(σaα).

8.3 Low-Rank Examples and the Reali�cation

We want to topologify the reali�cation map ralg of the last section to a map r : p∗p
∗Otop →

Otop. Since
p∗p
∗Otop ∼= f∗f

∗Otop ⊕ Σ4f∗f
∗Otop,

Lemma 5.2.2 gives us a unique map

r : p∗p
∗Otop → Otop

realizing the algebraic map ralg.

Remark 8.3.1. Probably, the reali�cation map TMF (2) → TMF ' TMF (2)hS3 coincides
with the transfer map, which can be de�ned using a form of Shapiro's lemma. Since this
identi�cation is not needed for our purposes, we abstain from a discussion.

Lemma 8.3.2. We have rc = 6 and cr = Σg∈S3g.

Proof. These identities hold at the level of vector bundles by 8.2.2. We know that realizations
of sheaf map π∗p∗p∗Otop → π∗p∗p

∗Otop are unique, hence the second equation. The descent
spectral sequence for HomOtop(Otop,Otop) equals the DSS computing TMF . There are no
permanent cycles in this spectral sequence in the 0-column above the 0-line; hence the �rst
equation.

We will need again and again the following observation:

Lemma 8.3.3. Let M be relatively free TMF -module and x ∈ im(r∗ : π∗M(2) → π∗M).
Then αx = βx = 0.

1This can be seen as follows: The extension

0→ Eα → f∗f
∗O → ω−4 → 0

is classi�ed by α̃ ∈ H1(M;Eα ⊗ ω4). Since H1
∗(M; f∗f

∗OO) = 0, multiplication by α̃ acts injectively on α
and, thus, α injectively on α̃.
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Proof. Let y ∈ π∗M(2) such that r∗(y) = x. Since M(2) is a free TMF (2)-module, π∗M(2)
is torsion-free and hence αy = βy = 0. Since r is a TMF -module map, the result follows.

Recall that we have a map σ : M0(2) → Σ4Mα given as the co�ber of c : M → M0(2).2

Note that E(M) is completely in the M0(2)-summand of M(2) since the map M(2) → M
factors overM0(2). We can apply the reali�cation to study σ:

Lemma 8.3.4. Every S3-invariant element x ∈ π∗M0(2) ⊂ π∗M(2) is mapped by σ to a
3-torsion element in Σ4Mα.

Proof. We have cr(x) = Σg∈S3gx = 6x. Since 2 is invertible, this implies that 3x is in the
image of c and, hence, 3σ(x) = σ(3x) = 0.

To identify the �ber of r, it will be convenient to discuss �rst some low-rank cases.
Additionally, this will serve as an illustration of the general theory.

Lemma 8.3.5. Let M be a algebraically standard TMF -module. We have an action of
β ∈ H2(M;ω6) on the DSS of M by Theorem 6.4.2, which commutes with the di�erentials
since β is a permanent cycle in the DSS for TMF . Then β acts injectively on the E2-term
of the DSS for M beginning with the �rst line. In addition:

• If π∗FM is concentrated in even degrees, β acts injectively on odd degrees (i.e. columns)
on the Er-term of the DSS beginning with the (r − 1)-st line.3

• If the �rst line consists of permanent cycles, β acts injectively on the whole Er-term of
the DSS beginning with the (r − 1)-st line.

Proof. We know that π∗FM decomposes into a direct sum of shifts of vector bundles of the
form π∗Otop, Eα ⊗O π∗Otop and Eα,α̃ ⊗O π∗Otop. The cohomology of these looks as follows
(where the pattern continues to the left, right and top):

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

� � � � � ∆1
α

β

β2

β3∆−1

β4∆−1

2We abuse here the letter c since the usual map c : M →M(2) factors over M →M0(2).
3To act proactively against possible confusion: That π∗FM is concentrated in even degrees means that

πkFM = 0 for k odd, where πk denotes the shea��ed homotopy group. An element in the E2-term
Hq(M;πpFM ) of the DSS is in odd degree if p− q is odd.
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0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

� � � � � ∆1
α̃

β

β2

β3∆−1

β4∆−1

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

2

1 � � � � � ∆

This follows from the discussion in Sections 2.7 and 3.4. The injectivity of β· on E2

beginning with the �rst line is now immediate. Now suppose, we have shown that β operates
injectively on Er−1 beginning with the (r − 2)-th line (on elements of odd degree). Now
suppose βa = βb for some a 6= b ∈ Er (in odd degrees) in line s and s ≥ r−1. Then there are
a, b ∈ Er−1 reducing to a, b. Hence, there is an x ∈ Er−1 with dr−1x = β(a− b) 6= 0 and x is
in line k with k ≥ 1 (and of even degree). We want to show that there is a y ∈ Er−1 such that
βy = x: Let x′ ∈ E2 represent x. Then x′ is divisible by β. Indeed, if π∗FM is concentrated
in even degrees, x′ must be in every standard summand of π∗FM of the form ±∆βk/2 or 0.
The same holds if the �rst line of the DSS consists of permanent cycles since then all αβl∆i

and α̃βl∆i are permanent cycles as well and x′ can be no permanent cycle. So, let y′ ∈ E2

such that βy′ = x′. Suppose dl(y′) 6= 0 for some l < r− 1. Then dl(x′) = βdl(y
′) 6= 0 since β

acts injectively beginning with (l − 1)-st line on El. So, dl(y) = 0 for l < r − 1 and x = βy
for y denotes the reduction of y′ to Er−1. We have that βdr−1(y) = β(a − b) ∈ Er−1 for
dr−1(y) and (a− b) in the s-th line. Hence dr−1(y) = a− b and a = b.

Proposition 8.3.6. If M is relatively free of TMF (2)-rank n = 1, we have M ∼= Σ?TMF .
If M is of TMF (2)-rank 2 and π0FM = Eα, then M ∼= Σ24iTMFα for some i ∈ Z.

Proof. If M is of TMF (2)-rank n = 1, we know that π∗FM is trivial, i.e., we can assume by
a shift that π0FM ∼= O. Therefore, the (24-periodic) E2-term of the DSS associated to M
looks as the one for TMF .

We identify M(2) with TMF (2) and assume that no element of E(M) is in im(c∗). By
this contradiction assumption and Lemma 8.3.4, the ∆i ∈ E(M) have to be mapped to
non-trivial torsion elements yi in even degree by σ in the exact sequence

π∗M
c−→ π∗M(2)

σ−→ π∗−4Mα ⊕ π∗−4M0(2).

We can consider the yi as lying in π∗−4Mα since π∗M0(2) is torsionfree because

M0(2) ∨ Σ4M0(2) 'M(2).

We know that ∆i in the DSS for FM supports a non-zero dpi-di�erential: If it was a permanent
cycle, the corresponding element in π∗M would map to ∆i ∈ π∗M(2). Hence, dpi(β

k∆i) =
βkdpi(∆

i) 6= 0 by Lemma 8.3.5.



103

Now look at the exact sequence

π24i−4M → π24i−4Mα → π24i−8M

induced by the triangle TMF → TMFα → Σ4TMF . Since no torsion element in even degree
survives in M by the above argument, yi is mapped to 0. For the same reason, it can come
only from a non-torsion element in π24i−4M . But π0FMα

∼= Eα by Lemma 4.5.12 and the
injection O → Eα induces an injection on graded global sections. Thus every non-torsion
element in π∗M maps to a non-torsion element in π∗Mα (since it is in the 0-line of the DSS).
This is a contradiction and one of the ∆i must be a permanent cycle. Thus, we get a map
Σ24iTMF → M inducing an equivalence TMF (2) → M(2). Thus, M ∼= TMF by the
faithfulness of TMF (2) (proven in Lemma 5.2.6).

The same argument works for π0FM = Eα and we get a map x : Σ24iTMF → M such
that c(x) : Σ24iTMF (2)→M(2) splits o� a direct summand. Let Y be the �ber of x. Then
Y (2) has rank 1, therefore Y is equivalent to some ΣkTMF . We know that π0FY ∼= ω−2.
Thus, we have a co�ber sequence

ΣkTMF
y−→ Σ24iTMF

x−→M.

We know that y is of �ltration (at least) 1 in the DSS for TMF since Σ24iTMF →M induces
an injective map π∗FΣ24iTMF → π∗FM . Thus, it equals ±α∆3j by Corollary 6.4.4 since else
π∗FM would split into two line bundles. Therefore, M ∼= Σ24iTMFα.

The next case is that π0FM = f∗f
∗O. We will treat a more general case:

Proposition 8.3.7. Let M be a relatively free TMF -module and π0FM ∼= f∗f
∗O ⊕ Z0 for

some vector bundle Z0. Then there is a co�ber sequence

TMF0(2)
y−→M → Z → ΣTMF0(2)

such that π0FZ = Z0. This co�ber sequence splits.

Proof. By Lemma 5.2.2, the �rst statement is clear. Furthermore, the morphism

Z(2)→ ΣTMF (2)∧TMF TMF0(2)(2)

is zero on homotopy groups (since the map π∗FZ → f∗f
∗π∗ΣOtop is zero and π∗Z(2) =

(π∗FZ)(M(2))) and hence zero since Z(2) is a projective TMF (2)-module. Thus, the com-
position

Z → ΣTMF0(2)→ ΣTMF (2)∧TMF TMF0(2)

is zero and the map Z → ΣTMF0(2) factors over the �rst map in the triangle

(Σ4TMFα ⊕ Σ4TMF0(2))∧TMF TMF0(2)

tα̃∧TMF TMF0(2)
��

ΣTMF (2)∧TMF TMF0(2)

ΣTMF0(2).

22ffffffffffffffffffffffffff

(See (8.1) with M = TMF0(2) for this triangle.) This map is zero since tα̃ is torsion and
both source and target are projective TMF0(2)-modules. Hence, the map Z → ΣTMF0(2)
is zero as was to be shown.
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This implies, in particular, that we can always assume for the proof of Theorem 8.1.5
that π0(FM ) contains no summand of the form f∗f

∗O since we could compose the map
TMF0(2)→M with the unit map TMF → TMF0(2) and get an invariant generator.

Now, we want to identify the �ber of r and begin by identifying the �ber of ralg : p∗p
∗O →

O. We have that p∗p∗O(M(2)) ∼=
⊕

S3
O(M(2)) with diagonal S3-action. By (the proof of)

Lemma 8.2.2, ralg maps on M(2) an element (ag)g∈S3 to
∑

g∈S3
ag ∈ O(M(2)). Recall

also that f∗f∗O(M(2)) is
⊕3

i=1O(M(2)) with the permutation action. Sending (ag)g∈S3

to (
∑

g : g(1)=i ag)
3
i=1 de�nes a projection to a direct summand p∗p

∗O → f∗f
∗O such that

the complement is isomorphic to f∗f
∗O ⊗ ω2. (by Lemma 3.5.4). Since QCoh(M) '

˜TMF (2)∗[S3] -grmod by Galois descent, ralg factors thus as p∗p∗O → f∗f
∗O → O, where

the second map is the summing map onM(2). In Section 3.5, it was shown that the latter
map has kernel Eα ⊗ ω4. Thus ker(ralg) ∼= f∗∗ f

∗O ⊗ ω2 ⊕ Eα ⊗ ω4.
Let X be the �ber of Γ(r) : TMF (2)→ TMF .4 Then π∗FX ∼= ω2+∗⊗f∗f∗O⊕ω4+∗⊗Eα.

We get by the last proposition a triangle Σ4TMF0(2) → X → Y . One sees that π∗FY ∼=
ω4+∗ ⊗Eα. Hence, by the arguments above, Y ∼= Σ−8+24iTMFα. Since there is no non-zero
map Σ−8+24iTMFα → Σ5TMF0(2) (the groups π∗TMF0(2) vanish in odd degrees), we have
X ∼= Σ−8+24iTMFα ∨Σ4TMF0(2). The �ber Σ−1TMF → X of X → TMF (2) can only be
of the form α̃ = (α̃, 0) since this is the only one which �ts into the long exact sequence of
cohomology of the occurring vector bundles. Thus, i = 0 and we have a triangle

Σ−1TMF
α̃−→ Σ−8TMFα ∨ Σ2?TMF0(2)

d−→ TMF (2)
r−→ TMF,

which, in turn, induces a triangle

Σ−1M
α̃−→ Σ−8Mα ∨ Σ2?M0(2)

d−→M(2)
r−→M. (8.3)

8.4 Building Up and Tearing Down

The aim of this section is to show Proposition 8.1.3. The basic idea is to have as induction
hypothesis that every (algebraically standard) TMF -module of rank smaller than n is stan-
dard and then use a invariant generators to reduce from rank n to rank n − 1. This works
in an easy way without the hypothesis of being algebraically standard. The main di�culty if
we include this hypothesis is that the cokernel of a map of standard vector bundles may be
not a standard vector bundle in general, which we have to deal with �rst.

To that purpose, recall that TMF (2)∗ ∼= Z(3)[x2, y2,∆
−1].

Lemma 8.4.1. The element 1 ∈ TMF (2)∗ is not in the ideal (3, x2 + y2).

Proof. Assume that 1 ∈ (3, x2 +y2). This implies that 1 is divisible by x2 +y2 in TMF (2)∗/3;
hence x2 + y2 is a unit in this ring. This, in turn, implies that (x2 + y2) · z = ∆k for some
z ∈ F3[x2, y2]. We know that F3[x2, y2] is factorial and, hence, x2 + y2 is a prime element
(since it is irreducible). Since ∆k = 16kx2k

2 y
2k
2 (x2 − y2)2k, the element x2 + y2 has to divide

x2, y2 or x2 − y2 in F3[x2, y2], which is clearly impossible.

Proposition 8.4.2. Let M be a relatively free TMF -module such that there is a y ∈ πkM
with c(y) ∈ E(M). Assume that π∗FM has a decompositions into shifts of π∗Otop and

π∗Otop ⊗ Eα. Then there exists a y′ ∈ πkM such that the co�ber of ΣkTMF
y′−→ M is

algebraically standard.

4This map and the induced map M(2)→M for a TMF -module M will often also be denoted by r.
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Proof. For ease of notation, we assume k = 0. The element y corresponds to a y ∈ Γ(π0FM ).
First assume that y ∈ im(ralg). The module π∗FM (M(2)) = π∗M(2) is a free TMF (2)∗-

module. We want to show that we can choose a basis such that c(y) corresponds to an
element (a1, . . . , an) with ai ∈ (3, x2 + y2) ⊂ TMF (2)∗. This is enough since 1 /∈ (3, x2 + y2)
by the last lemma and this is a contradiction to the assumption that c(y) ∈ E(M).

The vector bundle π0FM decomposes into a sum
⊕

i ω
ni ⊕⊕j Eα ⊗ ωmj . Thus, we can

show the claim just for one of the standard summands. First assume π0FM ∼= ωj . Since
y ∈ im(ralg), we know that y lies in the ideal (3, c4, c6) (see Scholium 8.2.4). As shown
in Section 2.5, calg(c4) and calg(c6) are divisible by (x2 + y2) after reducing mod 3. For
π0FM ∼= ωj ⊗Eα, we proceed as follows: In the proof of Proposition 8.2.3, it was shown that
im(ralg) coincides with the image of the map Γ(f∗f

∗O⊗ω2+j)→ Γ(Eα⊗ωj). We know that
Γ∗(f∗f

∗O) ∼= Z(3)[b2, b4,∆
−1], where b2 maps to −4(x2+y2) and b4 to 2x2y2 in Γ∗(p∗p

∗O) (see
also Section 2.5); thus, Γ∗(f∗f

∗O) is exactly the ring of invariant elements in Γ∗(p∗p
∗O) for

a subgroup C2 ⊂ S3. The image of Γ∗(f∗f
∗O) in Γ∗(p∗p

∗f∗f
∗O) ∼=

⊕3
i=1 TMF (2)∗ consists

of (a, ta, t2a) for a ∈ Γ∗(f∗f
∗O) and t ∈ S3 an element of order 3. In Section 3.5, it was

shown that Eα ⊗ ω−2 ∼= IZ(3)[ζ3] (notation as in 3.5) and that the map f∗f∗O → Eα ⊗ ω−2

is induced by the quotient map Z(3)[C3] → Z(3)[ζ3] (given by quotienting out the diagonal).
Thus, giving Z(3)[ζ3] the basis (1, ζ3), the element (a, ta, t2a) ∈ Γ∗(p∗p

∗f∗f
∗O) is sent to

(a− t2a, a− ta) ∈ Γ∗(p∗p
∗Eα). We can assume that a is a monomial of the form bk2b

l
4 (since

∆ is invariant). This is sent to(
(x2 + y2)kxl2y

l
2 − (y2 − 2x2)k(y2 − x2)l(−x2)l, (x2 + y2)kxl2y

l
2 − (x2 − 2y2)k(−y2)l(x2 − y2)l

)
by the formulas in Section 2.5. Modulo three, y2 − 2x2 equals x2 + y2, so both entries are in
the ideal (3, x2 + y2), which was to be proven.

Thus, y /∈ im(ralg). This implies that its projection to one of the standard summands
E (isomorphic to ωj or Eα ⊗ ωj) is not in im(ralg). Since every element in im(ralg) is a
permanent cycle, we can by Scholium 8.2.4 �nd an element z ∈ im(r) such that for y′ = y+z
the projection of the reduction y′ ∈ Γ(π0FM ) to E equals ±∆j/12. We have still c(y′) = E(M)
since an element in a free module generates a direct summand if it projects to a unit in one
of the summands. Thus, we get a diagram

0

��

0

��
0 //

��

π0FM − E //

��

π0FM − E

��

// 0

0 // O y′ //

=

��

π0FM //

��

G //

��

0

0 // O

��

// E

��

// L //

��

0

0 0 0

Here, the map π0FM → E is the projection. By the exactness of the lower two rows and
the columns, the identi�cation of the upper row follows by the Snake lemma. We have that
L = 0 if E ∼= O and L ∼= ω−2 for E ∼= Eα. In both cases, G is standard since π0FM − E is.

If M ′ is the co�ber of ΣkTMF
y′−→ M , then G = π0FM ′ . Thus, M ′ is algebraically

standard since π1FM ′ ∼= π1FM .
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If π∗FM has a summand of the form f∗f
∗π∗Otop with complement a standard vector bun-

dle, then we can writeM = TMF0(2)⊕M ′ withM ′ algebraically standard as in Proposition
8.3.7. In particular, we can use 1 ∈ π0TMF0(2) to get a map TMF → M whose co�ber is
Σ4TMFα⊕M ′. Thus (using the last proposition for all cases without f∗f∗π∗Otop-summand),
we get for M algebraically standard of rank n with an invariant generator a triangle

ΣkTMF
y−→M −→M ′

such that M ′ is algebraically standard of rank n − 1. Since TMF (2) is faithful over TMF ,
this implies �rstly that for n = 1, we have M ∼= ΣkTMF , and secondly that in general M is
an extension of a rank 1 and a rank (n− 1)-module.

De�nition 8.4.3. A relatively free module X can be built up if there is a sequence X0 =
0, X1, . . . , Xn

∼= X (for n the rank of X) with co�ber sequences Σ?TMF → Xi → Xi+1.
Dually, X can be torn down if there is a sequence of modules X0 = 0, X1, . . . , Xn = X with
co�ber sequences Σ?TMF → Xi+1 → Xi.

Corollary 8.4.4. If every (algebraically standard) module M has an invariant generator,
every (algebraically standard) TMF -module can be torn down.

Proposition 8.4.5. Every module that can be torn down can be built up and vice versa. Such
modules are standard modules.

Proof. LetX0, . . . , Xn = X be a tearing down sequence. Then de�neXi as the �ber ofXn →
Xn−i. By the octahedral axiom the left column of the following diagram is distinguished:

Xi−1

��

// Xn //

=

��

Xn−i+1

��
Xi

��

// Xn //

��

Xn−i

=

��
Σ?TMF // Xn−i+1 // Xn−i

Clearly, Xn = X and X0 = 0, so X can be built up. The dual follows by the dual proof or
Spanier-Whitehead-duality. The last thing to show is that for a building up sequence, the
morphisms Σ?TMF → Xi correspond to torsion elements xi in π∗Xi. By the triangle 8.1 this
is equivalent to c(xi) = 0. So suppose we had c(x) : π∗Σ

?TMF (2)→ π∗Xi(2) non-zero. This
is also non-zero if we tensor with Q, the quotient �eld of TMF (2)∗. Therefore, (π∗Xi(2) ⊗
Q)/c(x) has rank i− 1. Hence, dimQ(π∗Xi+1(2)⊗Q) ≤ i, which is a contradiction.

Thus, we proved Proposition 8.1.3.

8.5 The divisibility by β

Let M be algebraically standard of rank n and E(M) be the set of invariant generators of
π∗M(2).

Assumption 8.5.1. We assume in this whole section that M has no invariant generator,
i.e. no x ∈ E(M) is in the image of c : π∗M → π∗M(2).

Under this assumption, we have the following proposition:

Proposition 8.5.2. The restricted projection map Torsπ∗M → π∗M/ im(r∗) is a surjection.
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Proof. Look at the following diagram

π∗M(2)π∗Γ(p∗FM )
r∗ //

l
��

π∗Γ(FM ) = π∗M(2)
c∗ //

κ

��

π∗Γ(p∗FM )

l
��

Γ(p∗π∗FM )
ralg // Γ(π∗FM )

calg // Γ(p∗π∗FM )

Here κ and l denote the edge morphisms in the descent spectral sequence for FM and p∗FM
respectively. Note that l is an isomorphism. Let y ∈ π∗Γ(FM ) = π∗M . Then κ(y) ∈ im(ralg),
because else there is an element a ∈ Γ(p∗π∗FM ) such that calg(κ(y) + ralg(a)) is in l(E(M))
by Proposition 8.2.3. This implies that c∗(y+ r∗(l

−1a)) ∈ E(M), which is a contradiction to
our assumption. Therefore, we can write κ(y) = r∗l(a) = κr∗(a) for some a ∈ π∗Γ(p∗FM ). So
we see that κ(y− r∗(a)) = 0. Therefore, c∗(y− r∗(a)) = 0 and by the exact sequence induced
by the triangle 8.1 in the introduction, we have that y − r∗(a) is torsion, which implies the
statement.

Corollary 8.5.3. Let x ∈ E(M) ⊂ π∗M0(2). Then σ(x) = βkg, k ≥ 1, where g ∈ F0π∗Mα.
Here, F• denotes the �ltration associated to the DSS.

Proof. Let x ∈ E(M). By Lemma 8.3.4 and the contradiction assumption, σ(x) is a non-zero
3-torsion element in π∗Σ

4Mα. Thus, d(σ(x)) = 0 and σx = α̃ux for some ux ∈ π∗M (for
d see the end of Section 8.3). The element ux is only well-de�ned up to the image of r �
therefore we can assume by the last proposition that ux is torsion. Hence ux = tα̃yx since
c(ux) = 0 for some yx ∈ π∗Σ4Mα by (8.1). By Lemma 5.2.1, we get that σ(x) = βyx for
some yx ∈ π∗Mα. By the same argument, every torsion element in Mα is divisible by β and
so we can repeat the process if yx is not already in F0.

Recall now that on the level of vector bundles, σ : M0(2)→ Σ4M induces the map

σalg : Γ(f∗f
∗O ⊗ π∗FM )→ Γ(Eα ⊗ ω−2 ⊗ π∗FM )

called σ in Section 8.2.

Corollary 8.5.4. The 0-line of the DSS for Mα consists of permanent cycles.

Proof. We will use a rank argument: Let X ⊂ Γ(π∗FMα) be the subgroup of permanent cy-
cles. Then im(σalg) ⊂ X since the descent spectral sequence forM0(2) collapses on E2. De�ne
a �ltration on X by setting Bk = {x ∈ X : βk+1x = 0 for some x ∈ F0π∗Mα reducing to x}.
Since β operates trivially on M0(2), we have im(σalg) ⊂ B0. Hence X/B0 is a subquotient of
coker(σalg). The latter is an F3[∆±3]-vector space of rank 3n for n the number of irreducible
direct summands of π∗FM � this is proven in the proof of Proposition 8.2.3 and at the end
of Section 8.2. So, if X 6= Γ∗(π∗FMα), then X/B0 is an F3[∆±3-vector space of rank smaller
than 3n. We have 3n invariant generators of the form ∆j for j ∈ {0, 1, 2} in the direct
summands of π∗M0(2) and we choose a basis gi of the Z(3) span of these elements indexed by
some index set I with |I| = 3n. We know that σ(gi) = βnivi for some vi ∈ F0π∗Mα with ni
maximal under all choices of vi; so there are 3n elements vi. We assume that we have chosen
inductively the gi in the following way: We order I in some way. The �rst of the gi is chosen
to be a primitive vector in the span of the ∆j with maximal ni. The (k + 1)-st gi is chosen
to be one that is part of a basis of the span of the ∆j together with the �rst k elements gi
and is among these one with the maximal ni. This insures that σ(Σj∈Jajgj) = βlv with aj
units and v 6= 0 always implies that l ≤ nj for all j with aj 6= 0.
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We have vi ∈ Bni since βσ(gi) = σ(βgi) = 0. Suppose, there exists an v′iπ∗Mα with the
same reduction v′i = vi in the zero-line, but βniv′i = 0. Then exists an x ∈ π∗Mα of higher
�ltration such that v′i = vi − x. Since x is torsion, it is by the (proof of the) last corollary of
the form βlv for v ∈ F0π∗Mα. Thus, βl+niv = βnix = βnivi = σ(gi) in contradiction to the
maximality of ni. Thus, vi /∈ Bni−1.

Since ⊕i≥1Bi/Bi−1
∼= X/B0, there is a k ∈ N and J ⊂ I such that vj ∈ Bk − Bk−1

and the (vj)j∈J are linear dependent over F3 in Bk/Bk−1. That is, there exist aj ∈ {1,−1}
such that Σjajvj ∈ Bk−1. As above, this implies βl+kv = βkΣjajvj = σ(Σjajgj) = 0 for
some v ∈ π∗Mα and l > 0 and thus v = 0. Hence Σjajgj ∈ im(c). But since 1 and −1 are
units in Z(3), we have Σjajgj ∈ E(M), which is a contradiction to our main contradiction
assumption.

Notation 8.5.5. We recollect the notation from the last proof for the rest of the chapter: We
have an index set I of cardinality 3n, indexing elements gi ∈ π∗M0(2) ⊂ π∗M(2) spanning
E(M) in the sense that every element in E(M) is of the form

∑
aigi for ai ∈ Z(3). We have

numbers ni and elements vi ∈ F0π∗Mα such that σ(gi) = βnivi. The vi reduce by the last
proof to a basis {vi} of cokerσalg. Note that the vi are (thus, since im(r) = im(σ) by the
proof of Proposition 8.2.3) not in im(r∗) and can be modi�ed by elements in im(r∗) so that
the vi are in the span of the elements of the form ∆j in H0(M;π∗Mα) by Proposition 8.2.3
and the fact that β · im(r) = 0.

Corollary 8.5.6. The 1-line of the DSS of M consists of permanent cycles.

Proof. The map tα̃ in the triangle (8.1) in the introduction induces as in Theorem 6.4.3 a
morphism of descent spectral sequences, which is exactly tα̃ on E2. This implies that the
whole �rst line of the descent spectral sequence in M consists of permanent cycles (which, of
course, cannot be boundaries) since tα̃ : Γ(π∗FMα) ∼= Γ(π∗FM ⊗ Eα) → H1(M;π∗+4FM ) is
surjective (as H1(M;π∗FM ⊗ f∗f∗Oω−2) = 0).

In the rest of this section, we want �rst to investigate how many times an element might
be divided by β and then investigate in detail how the torsion exactly looks like. Before we
begin with this, we have to compute a Toda bracket:

Lemma 8.5.7. The Toda bracket 〈α̃, β4, 3〉 (where we view α̃ again as a map Σ7TMF →
TMFα) contains ±{3∆2}.

Proof. We �rst want to check that the Toda bracket is actually de�ned. Since β2α = 0 in
π∗TMF , we see that β2α̃ ∈ π27TMFα is mapped to zero in the exact sequence

π∗TMF → π∗TMFα → π∗−4TMF

and is thus the image of an element a ∈ π27TMF . The only non-zero elements in this degree
are ±{α∆}.5 These are annihilated by β2 and thus β4α̃ = 0 and the Toda bracket is de�ned.

The element β4α̃ in the E2-term of the DSS of TMFα is a permanent cycle (since α̃ is
in DSS(TMFα) and β4 is one in DSS(TMF )) and can only be hit by a d9-di�erential from
±∆2: Column 48 in lines below 9 consists only of line zero elements and by Scholium 8.2.4
and the fact that im(r) consists of permanent cycles, the existence of a non-trivial di�erential
implies a non-trivial di�erential from ∆2. Using Theorem 6.4.1, we could use that Massey
products converge to Toda brackets and get the result.

5One can check that βα̃ is non-zero and therefore a is non-zero as well. But this is not needed for our
argument.
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Alternatively, one can use the de�nition of the Toda bracket and sees that it su�ces to
prove that the lift of β4 ∈ π40TMF in the exact sequence

π48TMFα → π48TMF0(2)→ π40TMF

is ±∆2 ∈ π48TMF0(2). Indeed, these span the non-trivial elements in π48TMF0(2) which
are mapped trivially into the zero line of the DSS of TMF modulo the image of π48TMFα
(as can be seen, for example, by an im(r)-argument).

Lemma 8.5.8. All ni are smaller than 4.

Proof. Assume we have an x ∈ E(M) such that σ(x) = β4z, which is automatically 6= 0 since
else x would be in the image of c. Look at the following diagram:

TMF
3 //

��

��

TMF

=

��

=

%%KKKKKKKKKK

TMF
β4

//

=
yyssssssssss

��

Σ−40TMF

z
||zzzzzzzz

=

��

TMF
σ(x) //

��

Mα

=

��

Σ−48TMFα //

tz
{{wwwwwwwww

Σ−48TMF0(2)

zz

// Σ−40TMF
α̃ //

z
}}{{{{{{{{

Σ−47TMFα

tz
{{wwwwwwwww

Σ−4M //M0(2) //Mα

tα̃ // Σ−3M

Here we use the isomorphism DTMFα = HomTMF (TMFα, TMF ) ∼= Σ−4TMFα, under
which tz corresponds to z as in Lemma 4.2.6 (with k = 7 and Z = TMFα). The Toda bracket
〈α̃, β4, 3〉 contains {3∆2}. Therefore, we get that 〈tα̃, σ(x), 3〉 contains b = tz({3∆2}). We
have c(b) = 3x′ by the de�nition of the Toda bracket with σ(x) = σ(x′). The element
x′ is invariant (since 3x′ is), but is not in the image of c (since σ(x′) 6= 0). Hence, the
corresponding element x′ in H0(M;π∗FM ) ∼= π∗(M(2))S3 cannot be a permanent cycle in
DSS(M) and hence is not in the image of r. By Proposition 8.2.3, we can �nd an y ∈ π∗M(2)
with calg(ralg(y) + x′) a generator of a direct summand. Set x′′ = x′ + cr(y) ∈ π∗M(2).
This is clearly an invariant generator. We have that c(b + 3r(y)) = 3x′′. Furthermore, for
w := tz(1) + r(∆−2y) ∈ π∗M , the following holds:

3∆2c(w) = c({3∆2}w) = 3x′ + cr({3∆2}∆−2y)

= 3x′ + cr(3y)

= 3x′′.

Hence, c(w) = ∆−2x′′, which is an invariant generator. This is a contradiction to our global
contradiction hypothesis.

We assume now that π∗FM has only summands of the form O and its shifts. Our aim
for the rest of the section is to understand the torsion in π∗M and π∗Mα. The arguments
will resemble these of our argumentations in the low rank cases. We have that tα̃(vi) = αwi
for some elements wi in the 0-line of the E2-term of the descent spectral sequence of M .
The wi can be chosen to span the Z(3)-span of elements of the form ∆i since these generate
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H0
∗ (M;π∗FM )/ ker(α) and tα̃ is surjective onto H1(M;π∗FM ). All elements βkαwi are

permanent cycles since the βk are permanent cycles in DSS(TMF ). The elements βkαwi
for k ≥ ni must be boundaries since tα̃(βkvi) is zero. We know that the wi support non-
trivial di�erentials dpiwi. Hence, also dpi(β

kwi) 6= 0 in Epi by Lemma 8.3.5 since the 1-line
consists of permanent cycles. All in all, this implies that all torsion in π∗M is detected
by the αβkwi for k < ni. Note that this also implies that all elements of the form α̃βkvi
cannot be permanent cycles in DSS(Mα) since βk+1wi = tα̃(α̃βkvi) is not a permanent cycle.
Therefore, the βkvi span all the torsion in π∗Mα.

Suppose that some linear combination Σi∈I′aiβ
kvi is a boundary for k < ni with I ′ ⊂ I

non-empty and ai ∈ {±1}. Since Σiaiβ
kvi 6= 0 (by the linear independence statements in

the proof of Corollary 8.5.4), βkΣiaivi must be detected by a permanent cycle of the form
Σjbjβ

mvj . Assume βkΣiaivi = βmΣjbjvj and set n to be the maximum of the ni for i ∈ I ′.
Then σ(Σi with ni=naigI) = βnΣiaivi = βn+m−kΣjbjvj . As in the proof of Corollary 8.5.4,
this implies m = k, which is not true. Thus, βkΣiaivi 6= βmΣjbjvj and their di�erence x is
detected a permanent cycle of the form Σνcnuvnu. As before, x 6= Σνcnuvnu and is detected
by a permanent cycle of even higher �ltration and so on. Since the �ltration is bounded by
the last lemma, at some point we get an equality, which implies a contradiction as before.
Thus, Σi∈I′aiβ

kvi is no boundary for k < ni with I ′ ⊂ I non-empty and ai ∈ {±1}.
Suppose now that some linear combination Σi∈I′aiβ

kivi is in the image of σ for ki < ni
with I ′ ⊂ I non-empty and ai ∈ {±1}. Then Σiaiβ

kvi has to be a boundary for k the
minimum of the ki with ai 6= 0 ∈ F3. Thus, Σiaiβ

kvi = 0 in E2, which implies Σiaiβ
kvi = 0.

Thus, arguing as in Corollary 8.5.4, Σiaivi ∈ Bk−1, which is a contradiction to that the vi
are linear independent in H0(M;π∗FMα)/Bk−1. Thus Σiaiβ

kivi cannot be in im(σ).
Since we know thus that the F3-span of the βkvi for k < ni gets mapped injectively into

the torsion of π∗M by tα̃, we know by rank comparison that no αβkwi is a boundary. We set
{αβkwi} := tα̃(βkvi), which is detected by αβkwi and is therefore in strict �ltration 2k + 1.

All in all, we have thus proven the following proposition:

Proposition 8.5.9. Let π∗FM have only summands of the form O and its shifts. Then the
torsion of π∗M is an F3-vector space with basis given by {αβkwi} with k < ni and i ∈ I. The
torsion of π∗Mα is an F3-vector space with basis given by βkvi with k ≤ ni and i ∈ I.

Warning 8.5.10. Similar to {α∆} ∈ π27TMF , the notation {αβkwi} does not entail that this
element is divisible by α. But it is true that βk{αwi} = {αβkwi}.

8.6 Multiplication by α

Assumption 8.6.1. Assume that π∗FM has only summands of the form O and its shifts.
Furthermore, assume again that M has no invariant generator.

We use the notation of the last section concerning the vi, {αβkwi} and ni. Furthermore,
we denote by Fn = Fnπ∗M the �ltration coming from the descent spectral sequence and by
Snπ∗M the stratum Fnπ∗M−Fn+1π∗M . The main result of this section is now the following:

Proposition 8.6.2. There exists always an element x in S1π∗M such that αx = 0.

Proof. The proof will be by contradiction, so we assume that αx 6= 0 for all x ∈ S1π∗M .
We know already from the last section that ni ≤ 4 for all i. The proof has now two parts.
First we exclude the case that some ni ≤ 2. Finally, we lead the case that all ni equal 3 to a
contradiction.
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We get a short exact sequence associated to

Σ3M
α−→M

i−→Mα
p−→ Σ4M

of the form
0→ π∗M/(imα)→ π∗Mα → ker(α)→ 0.

We will show that this restricts to a short exact sequence

0→ {{αβkwi}}k=0,...ni−1
F3

/(imα)→ {βkvi}k=0,...ni
F3

→ ({{αβkwi}}k=0,...ni−1
F3

)α=0 → 0.

Here ()α=0 denotes the elements where multiplication by α is zero. In addition note that the
F3-spans run over all i ∈ I.

The �rst map restricts since all torsion in π∗Mα is spanned by the βkvi as shown in the
last section; it is automatically injective. The elements vi map to torsion because the vi get
mapped to 0 in the spectral sequence since they are in the span of the elements of the form
∆j and therefore come from M . Hence, the second map restricts.

Suppose an element z ∈ {βkvi} is in the image of i. Since

{{αβkwi}}k=0,...ni−1
F3

⊂ π∗M → π∗M/ im(r∗)

is a surjection by Proposition 8.5.2, we can write z = i(x + y), where x ∈ {αβkwi}} and
y ∈ im(r∗). Since by Corollary 8.5.4 the whole 0-line of the DSS of the �ber of r : M(2)→M
consists of permanent cycles, im(r∗) is completely detected by im(ralg) in the 0-line. Since
βkvi /∈ i∗(im(ralg)), it follows y = 0 and we have exactness in the middle term.

If p∗(x) is torsion, then either x is torsion or the reduction x ∈ Γ∗(π∗FMα) maps to zero
in Γ∗(π∗FΣ4M ). We know that the vi and i∗(im(r∗)) = i∗(im(ralg)) span ker(Γ∗(π∗FMα) →
Γ∗(π∗FΣ4M )) ∼= im(i∗) by Scholium 8.2.4. Since p∗i∗(im(r∗)) = 0 in π∗M and all torsion in
π∗Mα is spanned by the βkvi, we have p∗(x) = p∗(x

′) for some x′ in the span of the βkvi.
This proves exactness of the above short exact sequence.

De�ne l := dimF3[∆±3](im(α)). Since im(α) = im(α|-torsπ∗M ) (since -torsπ∗M surjects to
π∗M/ im(r∗)), we see that

Σi(ni + 1) = 2Σini − 2l.

This is equivalent to
2l + 3n = Σini

since |I| = 3n for n the rank of M . We know that all ni ≤ 3. Assume that ni < 3 for one i.
Then we see that l < |I|. Since there are |I| elements {αwi}, we have α

∑
j∈J aj{αwj} = 0

for suitable aj ∈ {1, 2} and non-empty J ⊂ I, which would imply the proposition.

Now, we are in the situation that all ni = 3 and l = |I|. Furthermore, we still assume that
α acts non-trivially on all non-zero elements of strict �ltration 1. Thus, im(α) = α · S1π∗M
for rank reasons. Suppose that αx 6= 0 for x of �ltration greater than 1. Then αx = αy
for a y ∈ S1π∗M . Thus, α(y − x) = 0, which is not possible since y − x ∈ S1π∗M . Thus,
α acts trivially on all elements of higher �ltration. Hence, we know that βαx = αβx = 0
for x ∈ π∗M . Thus, multiplication by α has image in strict �ltration 5. More precisely,
for rank reasons, it determines an isomorphism F1π∗M/F2π∗M → F5π∗M/F6π∗M . Since
α{αβwi} = αβ{αwi} = 0, we must have {αβwi} = p∗(β

kui) with ui of strict �ltration 0
in π∗Mα. Because p∗ preserves �ltration, k ≤ 1. If k = 1, then βp∗(ui) = {αβwi}, hence
p∗(ui) = {αwi} and thus α{αwi} = 0, which is a contradiction to our assumption. Therefore,
{αβwi} = p∗(ui). We see that p∗(β2ui) = 0. For similar reasons as above, β2v = i∗({αw′i})
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for some {αw′i} in strict �ltration 1; indeed, if β2v is the image of an element of higher
�ltration, βv is in im(i∗), but β{αβwi} 6= 0. Thus we get the following picture of a part of
the exact sequence induced by M →Mα → Σ4M :

β3ui

αβ2w′i αβ2wi

β2ui

αβw′i

L

FF�������������������
αβwi

βui
L

FF�������������������

αw′i

L

EE������������������
αwi

ui
K

EE�������������������

Note furthermore that we can write {αβ2wi} = α(αw′′i ).
By Lemma 4.6.2, we see that 〈α, {αβ2wi}, β2〉 contains {α∆}{αw′′i } (since 〈α, α, β2〉

contains {α∆}) and we know from the picture above that β{αw′i} ∈ 〈α, {αβ2wi}, β2〉. The
indeterminacy is β2π∗−20M +απ∗−3M ⊂ F5π∗M . Hence β{αw′i} = {α∆}{αw′′i } in F3/F4

∼=
F3/F5.

Suppose that the Σai{αw′i} = 0. Taking i∗, it follows β2Σaiui = Σaiβ
2ui = 0. The

kernel of multiplication by β2 on strict �ltration 0 in π∗Mα is contained in im(r∗). Thus
Σaiui ∈ im(r∗) and Σai{aiwi} = p∗(Σaiui) ∈ im(r∗), which cannot be since im(r∗) contains
no torsion (as noted above). Thus ai = 0 for all i and the {αw′i} are linearly independent.
Thus, also the β{αw′i}.

Hence, multiplication by {α∆} is a surjective map from F1/F2 = F1/F3 to F3/F4 = F3/F5

and thus, by a dimension count, an isomorphism. But this isomorphism commutes with
multiplication by β. Therefore, since multiplication is an isomorphism between F1/F2 and
the F3/F4 and the F3/F4 and the F5/F6, multiplication by {α∆} is also an isomorphism
between F3/F4 and F5/F6. This is obviously a contradiction since the square of {α∆} is zero
as π54TMF = 0.

8.7 Enlargement and Shrinking

We know that π∗FM has no f∗f∗O-summand. Our strategy in this section is to enlarge our
module M by coning o� elements of �rst �ltration to produce f∗f∗O-summands, which can
then be killed. This works in an easy way if we have an Eα-summand in π∗FM . If we have
no Eα-summand, we get in general only a hook and no invariant generator.

So, suppose �rst that π0FM has an Eα-summand.6 Furthermore assume that M has no
invariant generator. Then we know that every element in the �rst line of the descent spectral
sequence survives by Corollary 8.5.6, especially α̃(0) in the direct summand H1

∗ (M;Eα) of
H1
∗ (M;π∗FM ). Take the map Σ7TMF → M representing this α̃(0). We get a co�ber

6If some other πnFM has a summand of the form Eα, we can deal with this the same way by shifting.
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sequence

Σ7TMF
α̃(0)−−→M → X → Σ8TMF.

This corresponds to a short exact sequence

0→ π∗FM → π∗FX → π∗Σ
8Otop → 0,

which corresponds again to the Ext-class α̃(0) ∈ Ext1(ω−4, π0FM ) by Corollary 6.4.4. That
this is short exact can be seen as follows: The DSS of Σ−7M is equivalent to the DSS for
Hom(Σ7Otop,FM ) and thus the map α̃(0) has �ltration 1. Thus, it is send by the edge
homomorphism

[Σ7TMF,M ] ∼= π0Γ(Hom(Σ7Otop,FM ))

��
Hom(π∗Σ

7Otop, π∗FM ) ∼= Γ0(Hom(π∗Σ
7Otop, π∗FM ))

to 0.
Thus π∗FX contains a summand of the form f∗f

∗O. As in Proposition 8.3.7, we get a split
map y : TMF0(2) → X, which kills the f∗f∗O-summand in π∗FX . Denote its co�ber by Y
and the composition M → X ∼= TMF0(2)⊕Y pr2−−→ Y by g. Then g induces a surjective map
π∗FM → π∗FY with kernel Eα⊗ π∗Otop. Thus π∗Ffib(g)

∼= Eα⊗ π∗Otop and Y ∼= Σ24lTMFα
by Proposition 8.3.6. The element 1 ∈ π24lTMFα maps to a z ∈ π24lM with c(z) ∈ E(M).
Thus, an M with an Eα-summand has always an invariant generator.

We can therefore assume that π∗FM is a direct sum of shifts of π∗Otop and we assume
again that M has no invariant generator. We want to play the same game as above. Choose
a non-zero element α(0) ∈ π∗M in �ltration 1 such that αα(0) = 0. The reduction α(0) ∈
H1(M;π∗FM ) is of the form α ·1(0) for some 1(0) ∈ Γ(π∗FM) and by a shift, we assume that
v ∈ Γ(π0FM). Since α · im(ralg) = 0, we can by Proposition 8.2.3 furthermore assume that
the corresponding map π∗Otop → π∗FM is the inclusion of a direct summand and we call it
the 0-summand. We get a co�ber sequence

Σ3TMF
α(0)−−→M → X → Σ4TMF.

The (induced) 0-summand of X is of the form Eα and in �rst line of DSS(X) we have
elements ∆iα̃. Suppose one of these survives the descent spectral sequence. Then we have a
map ΣkTMF → X whose co�ber is a TMF -module Z of the form TMF0(2)⊕ Y as above.
The �ber of the map

M → X → Z ∼= TMF0(2)⊕ Y pr2−−→ Y

has rank 1 and is therefore isomorphic to ΣlTMF for some l ∈ Z by Proposition 8.3.6. The
image z of 1 ∈ πlΣlTMF in πlM satis�es c∗(z) ∈ E(M). Thus, we can assume that none of
the ∆iα̃ is a permanent cycle. Suppose that y is another element in the �rst line of the DSS
of X projecting to the 0- summand as ∆iα̃. Then y can also be no permanent cycle since
every element projecting to 0 in the 0-summand is in the image of DSS(M)→ DSS(X) and
therefore a permanent cycle.

Since αα(0) = 0, there is an element x ∈ π7X which is sent to α ∈ π7Σ4TMF . Since
α̃ ∈ E2(DSS(X)) does not survive, x must live in �ltration 0. The 0-summand has no
elements in this degree and �ltration. Therefore the projection of x to the 0-summand is
zero. By Proposition 8.2.3, x can even be chosen such that c(x) ∈ E(X) since outside the
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0-summand im(r∗) maps to 0 in π∗Σ4TMF . Since X is algebraically standard, we can argue
as in Proposition 8.4.2 that we can modify x by im(r∗) even in a way such that the cokernel
of π∗Σ7Otop → π∗FX is standard.

Consider the co�ber sequence Σ7TMF
x−→ X → X ′. Then π∗FX′ contains still a summand

of the form Eα and is algebraically standard of TMF (2)-rank n. Therefore, we can apply
the results of the beginning of the section and see that X ′ has an invariant generator, more
precisely an x ∈ π|x|X ′ such that Cofiber(Σ|x|TMF → X ′) has rank one less than M . This
provides a �hook� for M and the main theorem follows inductively:

Theorem 8.7.1. Every algebraically standard module is hook-standard.

We still have to show that every algebraically standard TMF -module M of rank ≤ 3
is standard. By Section 8.4, it is enough to show that every such module has an invariant
generator. So, suppose that M has no invariant generator. Thus, we get a co�ber sequence

Σ3TMF
α(0)−−→M → X → Σ4TMF.

and an x ∈ π7X as above (reinstancing these shifting conventions). Furthermore, π∗FM is
a sum of shifts of π∗Otop. We �x an element 1(0) ∈ Γ∗(FM ) such that α1(0) detects α(0).
Suppose that dM5 (1(0)) = αβ2∆−11(0). Then

dM5 (∆21(0)) = dTMF
5 (∆2)1(0) + ∆2 · dM5 (1(0))

= −αβ2∆1(0) + αβ2∆1(0)

= 0

If dM5 (1(0)) = −αβ2∆−11(0), we can do the same argumentation with ∆ instead of ∆2. Thus,
we cannot have for all i ∈ {0, 1, 2} that dM5 (∆i1(0)) = ±αβ2∆i−11(0). A non-zero di�erential
in DSS(M) can only be of length 3, 5, 7 or 9 (as can be seen in the argumentation at the end
of Section 8.5) and the ∆i1(0) must support non-zero di�erentials since otherwise M would
have an invariant generator. Thus, H2k+1(M;ωk⊗π∗FM ) consists not only of αβ21(0)F3 for
1 ≤ k ≤ 4. Checking dimension, this yields that π∗FM has an (additional) summand of the
form π∗Σ

kOtop for k = 0, 4, 10 or 14 (for k = 0 this means that we have two summands of
the form π∗Otop).

The element x reduces to an x ∈ Γ(π7FX) not in im(ralg). Since Γ(π∗FM )→ Γ(π∗FX) is
an isomorphism in odd degrees, x is the image of an element x′ in Γ(π∗FM ) not in im(ralg).
Thus, π∗FM has a summand of the form π∗Σ

7Otop. Arguing for x′ as for 1(0) above, we get
that π∗FM has an (additional) summand of the form π∗Σ

kOtop for k = 7, 11, 17 or 21. Thus,
π∗FM has rank at least 4 and it follows that every algebraically standard module of rank ≤ 3
has an invariant generator and is thus standard.



Chapter 9

Examples and Application

In this chapter, we will present �rst an in�nite family of indecomposable standard TMF(3)-
modules. Next, we will consider CP∞ ∧TMF and BU(2)∧TMF and the analogous modules
also for connective tmf . At last, we will depict the rank 1 and 2 (algebraically) standard
TMF(3)-modules.

9.1 An In�nite Family of Modules

In this section, we will again localize at 3 and write TMF for TMF(3).
Roughly the example of an in�nite family is the following: Consider

C(β3, β4, β3, . . . , β4, β3) and C(β3, β4, β3, . . . , β4).

These exist since 〈β3, β4, β3, . . . , β4, β3〉 and 〈β3, β4, β3, . . . , β3, β4〉 lie in πkTMF with k = 70
or k = 29 mod 72 and these groups are zero. If one of these modules split into two standard
modules, it would have two invariant generators (in the sense of the last chapter). The second
generator would have to lift from a torsion element somewhere � which is not possible for
degree reasons.

More precisely de�ne X1 = TMF and x1 ∈ π30TMF to be β3. Now assume that Xk has
been de�ned and also xk ∈ π30Xk if k is odd or xk ∈ π71Xk if k is even. Furthermore, we
assume inductively that π70Xk = 0 and π29Xk = 0. De�ne Xk+1 = Cone(Σ|xk|TMF → Xk).
First consider the case that k is odd. Then we have an exact sequence

π71Xk → π71Xk+1 → π71Σ31TMF → π70Xk.

This implies that there is a lift of β4 ∈ π71Σ31TMF to π71Xk+1, which we de�ne to be
xk+1 (any choice is possible). Furthermore, we see that π70Xk+1 = 0 since π70Xk = 0 and
π39TMF = 0. The same way, we see that π29Xk+1 = 0 since π29Xk = 0 and π70TMF = 0.

Now consider the case that k is even. Then we have an exact sequence

π30Xk → π30Xk+1 → π30Σ72TMF → π29Xk.

This implies that there is a lift of β3 ∈ π30Σ72TMF to π30Xk+1, which we de�ne to be xk+1

(again, any choice is possible). Furthermore, we see that π70Xk+1 = 0 since π70Xk = 0 and
π70TMF = 0. The same way, we see that π29Xk+1 = 0 since π29Xk = 0 and π29TMF = 0.

Before we go on, we want to de�ne an invariant of TMF -modules. For a TMF -module
M , consider π∗M/ im(r∗). This is an F3[∆±3]-vector space since rc = 6. Set now

d(M) := dimF3[∆±3] (F0π∗M/(im(r∗) + F1π∗M)),

where F• denotes the �ltration of the descent spectral sequence.
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Lemma 9.1.1. If π∗FM consists of a direct sum of shifts of the structure sheaf, then d(M) >
0. Furthermore, d sends direct sums to sums.

Proof. Let x ∈ π∗M be an element such that c(x) ∈ π∗M(2) generates a direct TMF (2)∗-
summand of π∗M(2) (this exists by the TMF -extension theorem).1 The element c(x) cor-
responds to a tuple (a1, a2, . . . , an) if we choose a basis for M(2)∗. If d(M) = 0, x is in
the submodule

⊕
(3, c4, c6) ⊂ H0(M;π∗FM ) since im(ralg) = (3, c4, c6) by Scholium 8.2.4.

If we reduce modulo 3, we see that all ai are divisible by (x2 + y2) by the formulas in
Section 2.5. But if c(x) generates a direct summand, there must be a linear combination
λ1a1 + · · ·+λnan = 1. By Lemma 8.4.1, the element 1 ∈ π∗TMF (2) is not in (3, x2 + y2), so
we have a contradiction. Hence, d(M) > 0 for all relatively free modules with π∗FM being a
direct sum of shifts of the structure sheaf.

Proposition 9.1.2. The TMF -modules Xk are not decomposable in the homotopy category
of TMF -modules into TMF -standard modules. If an Xk decomposes, it decomposes into two
algebraically standard modules of which exactly one is standard.

Proof. For contradiction, let Xk
∼= A ⊕ B for some k with A and B non-zero. We want to

show that π∗FA and π∗FB are sums of shifts of π∗Otop: We know that π∗FXk decomposes
into an even part

⊕
π∗Otop and an odd part

⊕
π∗Σ

31Otop (using Corollary 6.4.4), which can
be treated separately. It is enough to show that every direct summand E of⊕O =

⊕
π0Otop

is again a direct sum of the form
⊕O. We know that Γ(E) is a projective Γ(O)-module.

Thus, Γ(E) is a free Z(3)[j]-module by Seshadri's Theorem, a special case of Serre's conjecture
(see [Lam06], II.6.1). Choose a basis (a1, . . . , an) of Γ(E) as a Z(3)[j]-module and consider
the associated morphism f :

⊕n
i=1O → E . For a complement G of E in π0FXk ∼=

⊕O, we
can do the same and get a morphism g :

⊕O → G. The morphism

f ⊕ g :
⊕
O → E ⊕ G ∼=−→

⊕
O

is an isomorphism on Γ, hence of the vector bundles. Therefore, also f is an isomorphism
and E is free (since 0 = coker(f ⊕ g) = coker(f)⊕ coker(g)).

Thus, d(A) and d(B) are greater than 0 and the quantity d(Xk) had to be at least 2. We
want to prove by induction that d(Xk) = 1. This is obviously true for k = 1. The E2-term
of the DSS shows that Xk can have �generators� (that is, elements in F0π∗Xk/F1π∗Xk which
are not in im(r∗)) only in dimensions 0, 24, 48, 31, 55 and 7. It is easy to check that neither
TMF nor Σ31TMF have any torsion there. So, given a generator x in π∗Xk+1, it has to map
to some element y of (strict) �ltration 0 in π∗TMF or π∗Σ31TMF . Now note that Xk+1(2)
splits into Xk(2) and (a suspension of) TMF (2) and therefore every element in im(r∗) in
TMF has a lift to an element in Xk+1 (which lies also in im(r∗)). The Z(3)[∆

±3]-module
F0π∗TMF/F1π∗TMF is generated by im(r∗) and 1 by Scholium 8.2.4. Therefore, we can
subtract from x an element z in im(r∗) and it maps (up to a unit) to 1 or 0 in TMF∗.
But 1 cannot lift. Therefore, x = i∗(x

′) + z, where x′ ∈ π∗Xk is of strict �ltration 0 and
i∗ : π∗Xk → π∗Xk+1 is the map given by the construction of Xk+1. Since x is not in im(r∗),
x′ cannot be in im(r∗). Hence, x′ is a generator and generators are by induction unique in
π∗Xk up to the image of r. Therefore, generators in π∗Xk+1 are unique up to multiplication
by units and addition of (im(r∗) + F1π∗Xk+1) and d(Xk+1) = 1 follows.

This implies that there is no splitting of one of the Xk into standard modules.

Note that the proof also excludes stable splittings, i.e., isomorphisms Xk⊕D ∼= A⊕B⊕D
with A,B 6= 0 standard modules, since d respects sums.

1Here, we use the same notation as before and denote by M(2) the TMF (2)-module M ∧TMF TMF (2)
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9.2 Computing the Vector Bundle Associated to a Space

Let X be a �nite spectrum such that MU ∧X is a free MU -module. Since TMF (2) is
Landweber exact, we have that TMF (2)∧TMF(3)

(TMF(3) ∧X) is TMF (2)-free. Indeed
π∗TMF (2)∧X = MU∗(X) ⊗MU∗ TMF (2)∗. Therefore, MX := TMF(3) ∧X is a relatively
free TMF(3)-module. Thus, π∗FMX

is a vector bundle (in some sense, it is the totality of all
elliptic homology theories evaluated at X). A similar argument can be made at other primes.

The question we want to pose is: How can one determine the vector bundle on the moduli
stack of elliptic curves associated to X for well-known spaces like X ∼= CPn? The strategy
is like follows: MU∗X has the structure of a MU∗MU -comodule (with explicit formulas),
corresponding to a quasi-coherent sheaf onMFG. For an elliptic curve E over a ring R with
automorphism group G, the formal group Ê gives rise to a morphism SpecR//G →MFG,
factoring overM, and we can pull the quasi-coherent sheaf back along this map to do concrete
calculations.

Proposition 9.2.1. Let K be a (MU∗,MU∗MU)-comodule with coaction map ψ and let E
be an elliptic curve over a ring R with chosen formal coordinate z. Furthermore, let s be
an automorphism of E, sending z to z + a1z

2 + a2z
3 + · · · with ai ∈ R. Let FK be the

quasi-coherent sheaf associated to K on MFG and F : SpecR → SpecR//〈s〉 → MFG the
morphism classifying Ê and let f : MU∗ → R be classifying (Ê, z).

Then Γ(F ∗FK) ∼= K⊗MU∗R and s·(x⊗1) =
∑
xi⊗f(Pi)(a1, a2, . . . ) for ψ(x) =

∑
xi⊗Pi,

Pi ∈MU∗[b1, b2, . . . ].

Proof. By Proposition 2.6.6 and the discussion in Section 2.8, the action of s on FK(SpecR) ∼=
K⊗MU∗R is given by the action of the power series z+a1z

2+· · · ∈ H(SpecR) on FK(SpecR)
(for H as in Section 2.8). The correspondence between H-action and MU∗MU -comodule
structure implies that (z + a1z

2 + · · · ) · (x⊗ 1) =
∑
xi ⊗ f(Pi)(a1, a2, . . . ).

At the prime 3, we consider the elliptic curve E with the equation y2 = x3 − x over F3.
We choose the automorphism s, mapping y 7→ y and x 7→ x + 1, generating the group C3.
The coordinate transformation z = −x

y , w = − 1
y sends the neutral element (0,∞) to (0, 0).

In this coordinates, s has the form z 7→ z + w,w 7→ w. Note that x = z
w and y = − 1

w . The
equation y2 = x3 − x becomes transformed to

1

w2
=

z3

w3
− z

w
⇔ w = z3 − zw2

We get

w = z3 − zw2 = z3 − z(z3 − zw2)2 = z3 − z7 − z5w2 − z3w4

= · · · = z3 − z7 + z11 − z15 + z19 · · ·

This gives a formal expression for w in terms of z. Probably the pattern continues, but it
won't be important for our purposes. This implies that s is given in formal coordinates by

z 7→ z + w = z + z3 − z7 + z11 − z15 + z19 · · · .

To apply Proposition 9.2.1 to X = CPn, we have to recall its (MU∗,MU∗MU)-comodule
structure. The Atiyah�Hirzebruch spectral sequence for CPn collapses and so we have
M̃U∗(CPn) ∼= MU∗{βi}i=1,...,n.
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Theorem 9.2.2 ([Ada74], Proof of II.11.3). The coaction map

ψ : M̃U∗(CPn)→MU∗MU ⊗MU∗ M̃U∗(CPn)

is given by

ψ(βi) =
∑

0≤j≤i
(
∑
0≤k

bk)
j
i−j ⊗ βj .

Here, the lower index i− j denotes the degree of the term (where |bk| = k) and b0 = 1.

We can easily deduce from this also the comodule structure for HPn. The map

p : CP2n+1 ∼= S2n+3/U(1)→ S2n+3/Sp(1) ∼= HPn

is surjective on (MU∗-)homology. Set γi = p∗β2i. We get the comodule structure for HPn by
replacing β2i by γi and ignoring odd degree classes.

As noted above, we have for s the coe�cients a2 = 1, a6 = −1, . . . . Thus, we have by
Proposition 9.2.1, up to terms of degree lower then 6k − 4, the equations (in F3{βi}i=1,...n):

s · β6k = β6k +

(
6k − 2

1

)
β6k−2 +

(
6k − 4

2

)
β6k−4 = β6k + β6k−2 + β6k−4

s · β6k−2 = β6k−2 +

(
6k − 4

1

)
β6k−4 = β6k−2 − β6k−4

s · β6k−4 = β6k−4

This subquotient representation corresponds therefore to the matrix

1 −1 1
0 1 1
0 0 1

. Changing
the basis to (β6k−4,−β6k−2, β6k−2 + β6k), we get the matrix

1 1 0
0 1 1
0 0 1

 = J3. As shown

in Section 3.5, the only standard vector bundle on M(3) inducing J3 is f∗f∗O. The vector
bundles π0FMCPn and π0FMHPn are both standard as can be deduced from their cell structure.
This implies that both π0FMCPn and π0FMHPn have f∗f∗O as a subquotient and, hence, as a
summand. Thus, by induction, π0FMHPn is a sum of summands of the form f∗f

∗O and we
have HPn ∧TMF(3) is a sum of summands of the form TMF0(2) by Proposition 8.3.7 if 3|n
and has else a rest of at most rank 2.2 To get a similar conclusion for CPn, we have also to
consider the odd degree parts. Here, we have (modulo parts of degree lower than 6k − 7)

s · β6k−3 = β6k−3 +

(
6k − 5

1

)
β6k−5 +

(
6k − 7

2

)
β6k−7 = β6k−3 + β6k−5 + β6k−7

s · β6k−5 = β6k−5 +

(
6k − 7

1

)
β6k−7 = β6k−5 − β6k−7

s · β6k−7 = β6k−7

2To get around the question whether the complement of f∗f
∗O is a standard vector bundle again, one

can argue as follows: Since f∗f
∗O splits o� from π0FMHPn , the representation J3 splits o� from the C3-

representation. Arguing as above, we get an additional J3-summand. This implies, since π0FMHPn is standard,
that π0FMHPn has at least two f∗f

∗O-summands. These split o� again, so we can argue as before and get
bn
3
c summands of the form J3 in the C3-representation and, hence, bn

3
c summands of the form f∗f

∗O split
o� from π0FMHPn .
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Hence, all odd degree parts beginning with β5 split also in f∗f∗O-summands. Furthermore,
we have

s · β3 = β3 +

(
1

1

)
β1 = β3 + β1

s · β1 = β1,

hence one J2-summand, corresponding to an Eα-summand on vector bundles. The module
TMF(3) ∧CP∞ without all its TMF0(2)-parts is of rank 2 and has Eα as its vector bundle
and has therefore to be a shift of TMFα.

All in all, we conclude that TMF(3) ∧CP∞ decomposes into a sum of shifts of TMFα
and in�nitely many copies of TMF0(2).

Corollary 9.2.3. A homotopy commutative and homotopy associative TMF(3)-algebra R is
complex orientable i� α · 1 = 0 in π∗R.

Proof. Recall that a complex orientation is a class in R2(CP∞) restricting to the stan-
dard generator 1 ∈ R2(CP1) ∼= R2(S2) ∼= π0R. The above discussion shows that the map
TMF(3) ∧CP1 → TMF(3) ∧CP∞ factors as

TMF(3) ∧CP1 → Z → TMF(3) ∧CP3 → TMF(3) ∧CP∞

for a TMF(3)-module Z ∼= Σ?TMFα such that Z → TMF(3) ∧CP∞ is the inclusion of a
direct summand; thus, we have also a factorization

R2(CP∞)→ R2(CP3)→ [Z,Σ2R]TMF(3)
→ R2(CP1).

Hence, it is enough to show that 1 ∈ R2(CP1) has a lift to R2(CP3). Since η = 0 at the prime
3, we have CP2 ∼= CP1 ∨ S4 at 3. Thus, we have a co�ber sequence

S5 → S2 ∨ S4 → CP3.

The map S5 → CP1 ∨ S4 is non-zero stably at 3, since the Steenrod power operation P1 is
non-zero on CP3, thus the map is stably equivalent to (±α1, 0) (where we identify CP1 with
S2 again). Thus, 1 lifts to CP3 exactly i� α · 1 = 0 in π∗R.

The following question remains open:

Question 9.2.4. Are there �nite CW-complexes X such that TMF(3) ∧X is a relatively free
indecomposable TMF(3)-module of arbitrary high-rank?

Computing the associated (standard) vector bundles on the moduli stack of elliptic curves
is here of little help since the indecomposable ones have rank bounded by 3 (as shown in
Theorem 3.0.5).

The situation is much more interesting for p = 2, but our results are less complete. Again,
we try to detect big indecomposable summands in CPn ∧TMF(2) (or BU(k)∧TMF(2)) by
studying an associated representation.

More precisely, we consider the elliptic curve E given by the equation y2 + y = x3 over
F4. As noted in Section 3.5, there is a subgroup of the automorphism group of E isomorphic
to the quaternion group Q with 8 elements. As before, for an X with free MU -homology, we
can set MX = X ∧TMF(2) and get an associated vector bundle π0FMX

. Via E, we get then
an associated Q-representation RX over F4 as in Section 3.5. If RX has an indecomposable
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summand of dimension k, then π0FMX
has an indecomposable summand of dimension ≥ k

and likewise X has an indecomposable TMF(2)-module summand of TMF (2)-rank ≥ k.
We are using here the theorem of Krull�Remak�Schmidt, which says that an artinian and
noetherian module has an (essentially) unique decomposition into indecomposable summands.

We will summarize now a few computations we did with Magma (more precisely described
in Appendix A). Using Proposition 9.2.1, we calculated decompositions of RX for X = CPn.
At the beginning, the dimension of the biggest indecomposable summand is increasing quickly,
with a summand of dimension 7 for n = 8. The �rst summand of dimension 8 appears at
n = 16. Contrary to what might be expected, there is no summand of dimension 9 at n = 32
and it is unclear if the dimensions of the indecomposable summands stay bounded or not.

The second series of computations concerns X = BU(2). Recall that MU∗(BU(2)) =
MU∗[c1, c2]. We de�ne Rn to be the subquotient of RX corresponding to polynomials in
the ci of degree ≤ n. Note that this provides lower bounds on the size of indecomposable
summands in the same way as above. Here, we get that R5 is an indecomposable F4[Q]-
module of rank 15, but for higher n, the rank of the biggest indecomposable summand of Rn
is smaller in the range we computed.

9.3 The Connective Case

We have focused our attention so far mainly on modules over TMF . But also modules
over connective tmf are worth considering; even if one is, at the end, only interested in
TMF -modules as the following proposition shows:

Proposition 9.3.1. Every standard TMF -module M is of the form TMF ∧tmf M0 for a
tmf -module M0.

Proof. We prove this by induction. For rank 0, this is clear. Now assume, we have proven
the statement for rank n and M is a standard TMF -module of rank n + 1. There is then
a standard TMF -module N of rank n together with a map ΣkTMF → N (representing
a torsion element x ∈ π∗N) whose co�ber is isomorphic to M . Choose a tmf -module N0

such that TMF ∧tmf N0
∼= N . Since TMF ∼= tmf [∆−1], we have π∗N ∼= π∗N0[∆−1] and

there is an element x0 in π∗N0 such that x0 7→ ∆3lx under the morphism N0 → N induced
by tmf → TMF . Since TMF is ∆3-periodic, we can assume l = 0. Thus, we have that
TMF ∧tmf Cofiber(Σktmf

x0−→ N0) ∼= M .

The study of tmf -modules is in certain aspects more accessible by the fact that ordinary
homology comes here to our help. The following is partially based on ideas from [Hil07],
although we will prefer to do our computations in cohomology.

We will work at the prime 3 in this section and set tmf = tmf(3) and H = HF3. By
taking coconnective cocover and then reducing, we get a morphism tmf → H, which is a
ring map and induces, hence, a tmf -module structure on H. Set C = C(α, α̃) ' Σ−4HP3

and let V (1) be the Toda�Smith complex where 3 and v1 are zero. As in [Hil07], we have a
co�ber sequence

Σ8tmf ∧C ∧V (1)→ tmf ∧C ∧V (1)→ H → Σ9tmf ∧C ∧V (1)

Mapping into H in tmf -mod, we get a diagram

H∗(Σ9C ∧V (1)) //

��

H∗tmfH //

u

��

H∗(C ∧V (1))

��
H∗(tmf)⊗H∗(Σ9C ∧V (1)) // H∗H // H∗(tmf)⊗H∗(C ∧V (1))
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Here, we use the notation H∗tmfM = [M,H]∗tmf for a tmf -module M . The right square
consists of isomorphisms in degrees smaller than 8. In particular, the element P1 ∈ H∗H
lifts to H∗tmfH.

The Hopf algebra H∗tmfH acts on H∗tmfM for every tmf -module M via

H∗tmfH⊗H∗tmfM ∼= π∗ (Homtmf (H,H)∧H Homtmf (M,H))→ π∗Homtmf (M,H) = H∗tmfM

as composition. For M = tmf ∧X, we have H∗tmfM
∼= H∗X and H∗tmfH acts via u and the

usual action of the Steenrod algebra. This gives us the following:

Proposition 9.3.2. Let X be a CW-complex of �nite type such that H∗X has an indecom-
posable graded F3[P1]-summand of rank n. If we write tmf ∧X ∼= M1 ⊕ · · · ⊕Mk as a sum
of tmf -modules, then there is an i such that H∗tmfMi has rank at least n.

Proof. Since the indecomposable summand can only be in �nitely many degrees, we can
assume X to be �nite. Then H∗X is a noetherian and artinian F3[P1]-module. Thus, the
decomposition into indecomposables is (essentially) unique by the theorem of Krull�Remak�
Schmidt. Hence, one of the modules Mi must contain the indecomposable summand of rank
n.

Example 9.3.3. As a warm-up, we begin with X = CP∞. We have H∗(CP∞) ∼= F3[c1]. By
the axioms for Steenrod operations, we have

P1c1 = c3
1

P1(c2
1) = 2c4

1

P1(cn1 ) = n!cn+2
1 = 0 for n ≥ 3

Example 9.3.4. Now consider X = BU(2). We have H∗(BU(2)) ∼= F3[c1, c2]. Via the
map CP∞ × CP∞ → BU(2), we get an embedding F3[c1, c2] ↪→ F3[x, y] ∼= H∗(CP∞ × CP∞)
sending c1 and c2 to the elementary symmetric polynomials x + y and xy, respectively. We
have

P1(xy) = x3y + xy3 = (x+ y)2xy + x2y2,

hence P1(c2) = c2
1c2 + c2

2.

Claim 9.3.5. The graded sub-F3〈P1〉-module of H∗(BU(2)) generated by c1c2 is indecom-
posable of in�nite rank.

Proof. Since it is at most 1-dimensional in every degree, the only thing we need to show is
(P1)k(c1c2) 6= 0 for every k. We begin with preliminary calculations, everywhere assuming
n ≥ 3:

P1(cn1c2) = cn+2
1 c2 + cn1c

2
2

P1(c2
2) = −c2

1c
2
2 − c3

2

P1(c3
1c

3
2) = 0

P1(cn+2
1 c2 + cn1c

2
2) = cn+4

1 c2 + cn+2
1 c2

2 − cn+2
1 c2

2 − cn1c3
2 = cn+4

1 c2 − cn1c3
2

(P1)2(cn+2
1 c2 + cn1c

2
2) = cn+6

1 c2 + cn+4
1 c2

2

Now we come to the calculation of the iterated Steenrod operation on c1c2:

P1(c1c2) = c3
1c2 + c1(c2

1c2 + c2
2) = c1c

2
2 − c3

1c2

(P1)2(c1c2) = (c3
1c

2
2 − c3

1c
2
2 − c1c

3
2)− c5

1c2 − c3
1c

2
2 = −c1c

3
2 − (c5

1c2 + c3
1c

2
2)

(P1)3(c1c2) = −c3
1c

3
2 − (c7

1c2 − c3
1c

3
2)

(P1)4(c1c2) = −(c9
1c2 − c7

1c
2
2)

(P1)4+2k(c1c2) = −(c9+4k
1 c2 + c7+4k

1 c2
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The last step is by induction, using the computations before. This term is obviously non-
zero.

It follows that BU(2) does not decompose into tmf -modulesMi such that dimH∗tmfMi <
∞ for all i. Using �nite skeleta of BU(2) one obtains �nite spectra X such that X ∧ tmf has
indecomposable summands of arbitrary high cohomology-rank. Note that for tmf -standard
modules (which are de�ned analogously to TMF -standard modules), the cohomology rank
seems to be closely related to the rank de�ned by the number of times one cones o� a torsion
element. Indeed, α ∈ π3tmf is the only torsion element in π∗tmf that induces a non-trivial
morphism in Htmf

∗ by Figure 1 of [Hil07]. Note also that for all �nite skeleta X of BU(2),
the TMF -module TMF ∧X is relatively free.

9.4 Low-Rank Examples

We want to present some examples of TMF(3)-modules. Since we are mostly interested in
torsion, we depict just π∗M/ im(r∗) in the pictures, where every • stands for one F3. The
(bend) vertical lines allude to non-zero multiplication by α, β or {α∆}, depending on their
length.

The computations of these low rank examples are straightforward (using triple Toda
brackets). Note that TMFx denotes the cone of the map Σ|x|TMF(3) → TMF(3) corre-
sponding to an element x ∈ π∗TMF(3).



TMF TMFα TMFβ TMFαβ

71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54 •
53
52
51 • •
50
49
48 •
47
46
45
44 • •
43
42
41
40 •
39
38
37 • • •
36
35
34 • •
33
32
31
30 • •
29
28
27 • • • ••
26
25
24 • • •
23
22
21
20 • • •
19
18
17 • •
16
15
14
13 •
12
11
10 • • •
9
8
7 •
6
5
4
3 • • •
2
1
0 • • • •



TMFβ2 TMF{α∆} TMFβ3 TMFβ4

71 • •
70
69
68 • • •
67
66
65 •
64
63
62
61 • • •
60
59
58 • • •
57
56
55 •
54 •
53
52
51 • • •
50
49
48 • •
47
46
45
44 • •
43
42
41
40
39
38
37 • • •
36
35
34 • •
33
32
31
30 •
29
28
27 • • •
26
25
24 •
23
22
21
20 • • •
19
18
17
16
15
14
13 • • • •
12
11
10 • • • •
9 •
8
7
6 •
5
4
3 • • • •
2
1
0 • • • •



Appendix A

MAGMA Computations

The author used the following Magma program for computations of vector bundles associated
to BU(n) at the prime 2:

K := GF(4); // The �eld with 4 elements
e := One(K);
E := EllipticCurve([0,0,e,0,0]); // y2 + y = x3

AutomorphismGroup(E); // The quaternion group of automorphisms of E
Automorphisms(E);

l := 36;

R<z> := PowerSeriesRing(K,l+2);
i := Automorphisms(E)[5];
j := Automorphisms(E)[7]; // Choosing two generators of the quaternion group.
Fi<z> := FormalGroupHomomorphism(i,l+2);
Fj<z> := FormalGroupHomomorphism(j,l+2);
Li := [Coe�cient(Fi ,n+1): n in [1..l]];
Lj := [Coe�cient(Fj ,n+1): n in [1..l]];

P := PolynomialRing(K, [1..l]);
g1:=1;
for x in [1..l] do
g1 := g1+P.x;
end for;

g2:=1;
for x in [1..Floor(l/2)] do
g2 := g2+P.x;
end for;
g3:=1;
for x in [1..Floor(l/3)] do
g3 := g3+P.x;
end for;
g4:=1;
for x in [1..Floor(l/4)] do
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g4 := g4+P.x;
end for;

function g(a,b) //Computing parts of the coaction of MU∗MU on MU∗(BU(n))
if b ge 0 then
if b le l/4 then
return HomogeneousComponent(g4^a,b);
else
if b le l/3 then
return HomogeneousComponent(g3^a,b);
else
if b le l/2 then
return HomogeneousComponent(g2^a,b);
else
if a eq 2 then
return HomogeneousComponent(g2^2,b);
else
if a eq 4 then
return HomogeneousComponent(g4^4,b);
else
return HomogeneousComponent(g1^a,b);
end if;
end if;
end if;
end if;
end if;
else
return Zero(P);
end if;
end function;

procedure mat(n)
MLi := [Evaluate(g(a,b-a), Li): a, b in [1..n]];
Mi := GL(n,K) ! MLi;
MLj := [Evaluate(g(a,b-a), Lj): a, b in [1..n]];
Mj := GL(n,K) ! MLj;
Mi;
Mj;
end procedure;

C<imag> := ComplexField();
G := MatrixGroup<2, C| [[imag, 0, 0, -imag], [0, 1, -1, 0]]>; // The quaternion
group again

procedure indec(n,k) //Computes the decomposition of (the part of) the quater-
nion group representation associated to BU(k) (corresponding to polynomials of
degree ≤ n in the homology of BU(k)) into indecomposables
MLi := [Evaluate(g(a,b-a), Li): a, b in [1..n]];
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Mi := GL(n,K) ! MLi;
MLj := [Evaluate(g(a,b-a), Lj): a, b in [1..n]];
Mj := GL(n,K) ! MLj;
M := GModule(G, [Mi, Mj]);
Decomposition(SymmetricPower(M,k));
end procedure;

procedure listindec(m,k)
for n in [1..m] do
indec(n,k);
end for;
end procedure;

procedure listindecb(m,k)
for n in [1..m] do
indec(m,n);
end for;
end procedure;

One can compute the dimensions of the indecomposable summands of the representation
associated to CPn up to n = 33 by listindec(33,1). The output is the following:

GModule of dimension 1 over GF(2^2) // These are the dimensions of the inde-
composable summands

GModule of dimension 2 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 2 over GF(2^2)

GModule of dimension 4 over GF(2^2)

GModule of dimension 5 over GF(2^2)

GModule of dimension 6 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 6 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 2 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 3 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 4 over GF(2^2),
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GModule of dimension 7 over GF(2^2)

GModule of dimension 5 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 2 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 3 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 4 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 5 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
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GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 2 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 3 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 4 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 5 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)
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GModule of dimension 2 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2) ]

One can compute the dimensions of the indecomposable summands of the representation
associated to the �n-part� of BU(2) up to n = 12 by listindec(12,2). The output is the
following:

GModule of dimension 1 over GF(2^2)

GModule of dimension 3 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 2 over GF(2^2),
GModule of dimension 3 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 9 over GF(2^2)

GModule of dimension 15 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 1 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 3 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)



131

GModule of dimension 5 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 4 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 10 over GF(2^2)

GModule of dimension 3 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 2 over GF(2^2),
GModule of dimension 4 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 9 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 4 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
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GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)

GModule of dimension 1 over GF(2^2),
GModule of dimension 1 over GF(2^2),
GModule of dimension 4 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 6 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 7 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2),
GModule of dimension 8 over GF(2^2)



Appendix B

List of Notation

We want to collect here some notation, appearing again and again in this thesis.

Algebraic Geometry and Ring Theory:

• M: The moduli stack of elliptic curves, often localized at the prime 3 (see Section 2.4).

• M(n): The moduli stack of elliptic curves with level-n-structure; for n = 2 often
localized at the prime 3. We have maps f : M0(2) → M[1

2 ], p : M(2) → M[1
2 ] and

q :M(4)→M[1
2 ] (see Section 2.5).

• O: The structure sheaf of a stack, often onM (see Section 2.3 and Section 2.5).

• ω: A line bundle given by a grading, usually onM.

• Eα: The unique non-split rank 2 standard vector bundle onM(3) (see Section 3.4).

• Eα,α̃: The unique non-split rank 3 standard vector bundle on M(3). It is isomorphic
to f∗f∗O (see Section 3.4).

• α: A non-trivial element in H1(M(3);ω
2) (see Section 2.7).

• β: A non-trivial element in β ∈ H2(M(3);ω
6) (see Section 2.7).

• R̃[G]: Given a commutative ring R and a group G acting on R via ring maps, we de�ne

the twisted group ring R̃[G] additively as
⊕

g∈GRg (where g is just a symbol) with
multiplication given by

(r1g1) · (r2g2) = (r1g1(r2))(g1g2).

The category of modules over R̃[G] is equivalent to R-modules with twisted R-linear
action by G.

Group Theory:

• Cn: The cyclic group of order n.

• Sn: The symmetric group of order n. We view elements of Sn as maps {1, . . . , n} →
{1, . . . , n}. Our notation of elements in Sn is slightly non-standard. For example, by
(2 3 1) we denote the element in S3 sending 1 to 2, 2 to 3 and 3 to 1.
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Homotopy Theory:

• KO and KU : The (commutative ring) spectra of real and complex K-theory.

• TMF : The (commutative ring) spectrum of topological modular forms (see Section
5.1).

• TMF0(2) and TMF (n): Variants of TMF with level structures (see Section 5.2).

• FM : A sheaf onM associated to a TMF -module M (see the end of Section 4.5).

• DSS: The descent spectral sequence (see Section 4.4 and Section 6.4). For a TMF -
module M , we often denote the descent spectral sequence for FM by DSS(M).

• Fnπ∗M : The �ltration associated to DSS(M).

• α: The element in π3TMF(3) detected by α ∈ H1(M(3);ω
2) in the DSS of TMF(3)

(see Section 5.1).

• β: The element in π10TMF(3) detected by β ∈ H2(M(3);ω
6) in the DSS of TMF(3)

(see Section 5.1).

• TMFα: The cone of the map Σ3TMF(3) → TMF(3), given by multiplication by α (see
Section 5.2).

• TMFα,α̃: The cone of a map Σ7TMF(3) → TMFα; equivalent as an TMF(3)-module
to TMF0(2).

• R̃[G]: Given a commutative ring spectrum R and a group G acting on R via ring maps,

R̃[G] is the twisted group ring de�ned in Section 6.1. The category of modules over

R̃[G] is equivalent to R-modules with twisted R-linear action by G.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit Modulspektren über reeller K-Theorie KO und topol-
ogischen Modulformen TMF .

Bous�eld hat in [Bou90] einen Funktor πCRT∗ von KO-Moduln in eine gewisse abelsche
Kategorie CRT -mod de�niert, der im folgenden Sinne Isomorphismusklassen detektiert: Sind
für zwei KO-Moduln M und N die Objekte πCRT∗ (M) und πCRT∗ (N) isomorph, so sind auch
M und N isomorph in der Homotopiekategorie von KO-Moduln. Wir geben in dieser Arbeit
einen neuen Zugang zu diesem Satz, basierend auf einer Klassi�kation der relativ freien KO-
Moduln. Dazu nennen wir einen KO-Modul M relativ frei, wenn M ∧KOKU ein freier
Modul über komplexer K-Theorie KU ist. Der Vergleich zur deutlich einfacheren Theorie
der KU -Moduln erlaubt dann alternative Beweise des Satzes von Bous�eld. Bous�eld hat die
Theorie von KO-Moduln dann in einem weiteren Schritt auf Fragen über K-lokale Spektren
angewendet. Diese Richtung haben wir in der vorliegenden Arbeit aber noch nicht weiter
verfolgt.

Während für das Studium von KO-Moduln die Theorie der integralen Darstellungen der
zyklischen Gruppe C2 ein wichtiges Werkzeug ist, ist für das Studium von TMF -Moduln
die Theorie der quasi-kohärenten Garben und Vektorbündel auf dem Modulstack von ellip-
tischen KurvenM entscheidend. Dazu erinnere ich daran, dass TMF selbst als die globalen
Schnitte einer gewissen Garbe Otop von kommutativen Ringspektren auf M de�niert ist.
Man sieht leicht, dass man so jedem TMF -Modul erst einen quasi-kohärenten Otop-Modul
und durch Anwenden des Homotopiegrupppenfunktors dann eine quasi-kohärente Garbe auf
M zuordnen kann. Eines der Ergebnisse dieser Arbeit ist eine Äquivalenz zwischen den
∞-Kategorien quasi-kohärenten Otop-Moduln und TMF -Moduln zu zeigen, zumindets an
Primzahlen gröÿer als 2.

Beschränken wir uns immer noch auf Primzahlen gröÿer 2, so ergibt die Betrachtung
von Levelstrukturen von Niveau 2 eine TMF -Algebra TMF (2), deren Homotopiegruppen
sehr einfache Gestalt haben. Analog zur K-Theorie nennen wir einen TMF -ModulM relativ
frei/projektiv, wennM ∧TMF TMF (2) ein freier/projektiver TMF (2)-Modul ist. Wir können
jeden TMF -Modul in zwei Schritten durch einen relativ projektiven au�ösen. Wichtig ist,
dass die quasi-kohärente Garbe aufM, die einem relativ freien Modul zugeordnet wird, ein
Vektorbündel ist.

Während die Klassi�kation von Geradenbündeln auf M wohlbekannt ist, erscheint die
Klassi�kation von Vektorbündel schwieriger, selbst wenn 2 invertiert ist. Wenn wir uns
auf Vektorbündel, die als iterierte Extensionen von Geradenbündeln beschränken, gelingt in
dieser Arbeit eine Klassi�kation: Die einzigen solchen unzerlegbaren Vektorbündel sind von
Rang 1, 2 und 3. Wenn das einem TMF -Modul M zugeordnete Vektorbündel solchermaÿen
aus Extensionen entsteht, nennen wirM algebraisch von Standard-Typ. Ein wesentliches Ziel
dieser Arbeit ist das Verständnis dieser Moduln.

Die einfachste Klasse von algebraischen Standard-Moduln sind TMF -Moduln, die durch
iteriertes Abkegeln von Torsionselementen aus TMF entstehen, sogenannte Standard-Moduln.
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Jeder algebraische Standard-Modul vom Rang ≤ 3 ist (an der Primzahl 3) von dieser Form.
Wir zeigen für allgemeinen Rang eine leicht schwächere Form dieses Satzes. Diese erlaubt es,
prinzipiell gesehen, algebraische Standard-Moduln bis zu jedem beliebigen endlichen Rang
zu klassi�zieren.

Eine vollständige Klassi�kation selbst von Standard-Moduln über TMF scheint jedoch
ein sehr schwieriges Unterfangen zu sein. Wir konstruieren eine unendliche Folge von solchen,
die nicht in Standard-Moduln von kleinerem Rang zerfallen. Dies zerschlägt einerseits die
Ho�nung für eine ähnlich einfache Theorie wie für KO, zeigt aber andererseits auch auf, dass
TMF -Moduln weitaus reichhaltiger sind als KO-Moduln.
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