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This document explains the format of the certificate produced by
our implementation of a primality test along the lines proposed by
Mihailescu [Mih06a] and [Mih06b]. It is intended to convince the reader
that such certificates indeed prove the primality of the numbers for
which they have been issued.
The certificate is a (possibly compressed) archive file containing a

directory containing various data. Let n.cert be the name of the
directory. The directory will always contain a file n.ecpp, the first
non-empty line of which contains the decimal representation of the
number whose primality is to be certified. The format of n.ecpp is an
extension of the classical Atkin-Morain ECPP format which allows for
the possibility to terminate the certificate by a Mihailescu twin rather
than by a number which is small enough for trial division. This format,
along with the format of the other files forming the primality proof, is
described below.
The format of the certificate as an archived directory has been chosen

because of the complex nature of the test, which makes it desirable to
have easy ways to enable the use of improvements to the method. For
instance, it seems likely that the use of methods for finding divisors in
residue classes such as [CHGN08] (improving [Len84]) as described in
remark 7 provides a considerable speed-up as well as shorter certificates.
The format of n.ecpp also provides the possibility of specifying a

version number. This document describes version 0.1 of the certificate.
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1. Goldwasser-Kilian-chains and Mihailescu twins

1.1. Goldwasser-Kilian-chains. All schemes are assumed to be Noe-
therian. The notion of an elliptic curve over a scheme will be under-
stood as in [KM85]. An elliptic curve over a ring R is an elliptic curve
over SpecR.
A Goldwasser-Kilian (GK) chain link is a triple (E , P, q), where E

is an elliptic curve over Z/NZ, P a Z/NZ-valued point on it, and
q an integer, such that P is disjoint1 from the neutral element O of
E(Z/NZ), and such that

(1) q · P = O

and

(2) q >
√
N + 2

4
√
N + 1.

In this situation, the primality of N may be derived from the primality
of q, using Hasse’s theorem about the group order of elliptic curves
over finite fields.
While it should normally be possible to directly apply the Mihailescu

primality test to an input number, it may sometimes be better to re-
duce the primality of the input number to the primality of a different
number for which it is easier to find the Mihailescu twin required for
the test. This is the reason for the presence of the file n.ecpp in the
certificate, whose format will be described after introducing the notion
of a Mihailescu twin.

1.2. Mihailescu twins. Let K be an imaginary quadratic field. The
complex conjugate of an element x of a CM-field like K will normally
be denoted x. An elliptic curve with complex multiplication by OK

(where OL denotes the ring of integers in a number field L) is an elliptic
curve E over S together with a morphism [·]E from OK to the ring of

1in the sense that its intersection with the zero point O is empty. In the usual
settings of a Weierstraß cubic y2 = x3 + ax + b with the neutral element [1, 0, 0],
this is the case if and only if the point P may be given by affine (x, y)-coordinates.
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endomorphisms of E . By the action of the complex multiplication on
the tangent space at the neutral element, this turns S into a SpecOK-
scheme. If the dual f t of an isogeny f is defined as in [KM85] and if S
is connected, then for x ∈ OK we have [x]tE = [xt]E for some xt ∈ OK

with x + xt ∈ Z, since by [KM85, Corollary 2.6.2.2] [xE ]
t + [x]E is

multiplication by some integer. But the only suitable involution of OK

is xt = x. Applying this to the connected components of S shows that
[x]tE = [x]E for general S, and by [KM85, Theorem 2.6.1] it follows that
the degree of [x]E equals N(x) = x · x. The image of a point P under
[x]E will often be denoted x · P .

Definition 1. A Mihailescu twin is a tuple (K,E1, E2, ν1, ν2), where
K is an imaginary quadratic number field, Ek an elliptic curve Ek over
Z/NkZ with a point Pk ∈ Ek(Z/NkZ) on it and with complex mul-
tiplication by OK , and νk an element of OK such that the following
conditions hold:

• NK/Q(νk) = Nk.
• Z ∩ νkOk = NkZ, and the composition OK → OK/νk with
the inverse of the isomorphism Z/NkZ → OK/νkOK coincides
with the homomorphism OK → Z/NkZ defined by the complex
multiplication on Ek.

• The pair
(

(Ek, Pk), N3−k

)

is a valid Goldwasser-Kilian chain link
reducing the primality of Nk to the primality of N3−k.

• We have

(3) ν3−k · Pk = 0

in Ek(Z/NZ).
• ν1 + ν2 = 1.
• N1N2 is odd.

Remark 1. Because of the third of the above conditions, the numbers
N1 and N2 are either both primes or both composites. Note that we
have |Nk −N3−k + 1| ≤ 2

√
Nk by the first and fifth conditions such

that (2) in the third condition is trivial if min(N1, N2) > 16.

Remark 2. Note that our conditions imply D ≡ 5 (mod 8) for the
discriminant D of K since otherwise one of N1 or N2 must be even.

Throughout the rest of this subsection, let (K,E1, E2, ν1, ν2) be a
Mihailescu twin, and let Ek, Pk, Nk, and D be the same as before.
In the following considerations, k will always be assumed to be

∈ {1; 2}. If r is a prime divisor or Nk, Ek |r denotes the fiber prod-
uct Ek×Spec(Z/NZ)

Spec(Fr), together with the similar base change

of the complex multiplication, and Pk |r will denote the morphism
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Spec(Fr)
(Pkj, IdSpec(Fr))−−−−−−−−−−−−→ Ek×Spec(Z/NZ)

Spec(Fr), where j is the

unique morphism Spec(Fr)
j−−→ Spec(Z/NZ). Moreover, let Ek |r be

the pair (Ek |r , Pk |r ).
If r is prime and X a Fr-scheme, let the absolute Frobenius FX

be the endomorphism of X which acts as the identity on points and
with F∗

Xf = f r for any section of the structure sheaf. If follows that

FY ξ = ξFX for any morphism X ξ−−→ Y of Fr-schemes.
If E is an elliptic curve with complex multiplication by OK over any

field and φ an endomorphism of E which commutes with the complex
multiplication, then φ = [f ]E for a uniquely determined element f
of OK . This follows from the fact that, by [Hus04, Theorem 12.4.6,
Proposition 13.6.2, Theorem 13.6.3] and since OK is integrally closed
in K, [OK ]E is the maximal commutative subring of End(E) containing
[OK ]E . If E is an elliptic curve with complex multiplication by OK

over Z/NZ and r a prime divisor of N , then this may be applied to

φ = FE×SpecFr
and shows that there is a unique element π

(E)
r ∈ OK

such that FE×SpecFr
= [π

(E)
r ]E×SpecFr

. This is a prime element dividing r
since its norm is equal to the degree of FE×SpecFr

which is r. Obviously,

π
(E)
r = π

(E)
r . The prime ideal p

(E)
r generated by π

(E)
r is the preimage of

rZ/NZ under the homomorphism OK → Z/NZ defined by the way in
which the complex multiplication on E acts on the tangent space of E
at 0. This is so because that preimage must contain FE×SpecFr

, which
acts as 0 on the tangent space. The relative (with respect to SpecFr)

Frobenius on E × SpecFr is also given by π
(E)
r since

FE×SpecFr
= FE×SpecFr

× FSpecFr
=

= [π(E)
r ]E×SpecFr

× FSpecFr
= [π(E)

r ]E×SpecFr
◦
(

IdE ×FSpecFr

)

,

and it follows from the proof of [KM85, Corollary 2.6.4] or of [Hus04,
Theorem 13.1.2] that the number of Fr-valued points on E equals

#
(

E(Fr)
)

= N(1− π(E)
r ).

If no ambiguity exists, we will use the shortcuts πr and pr. In par-

ticular, πr = π
(Ek)
r if r divides Nk.

Let b be the smallest prime divisor of N1N2.

Lemma 1. If r is a prime divisor of Nk and the group order r′ =
NK/Q(1− πr) of Ek |r is < 2b, then r′ is a prime divisor of N3−k.

Proof. Indeed, the point Pk |r is not zero, since Pk was assumed to be
disjoint from zero. The order o of Pk |r in Ek |r (Fr) is a divisor of
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N3−k, as N3−kPk = 0. If o was less than the full group order r′, it
would be < b, contradicting the minimality of b. If r′ was composite,
it would have to have prime divisors ≤ r′/2 < b also contraticting the
minimality of b. �

Theorem 1. Let D < −3, and let p be the smallest prime number
which splits into more than one prime factor in OK. Assume that b is
so large that

(4) (
√
b+ p− 1)2 < 2b.

Then there exist prime divisors r1 of N1 and r2 of N2 such that the
tuple

(5) (K,E1 |r1 , E2 |r2 , πr1 , πr2)

is a Mihailescu twin. Moreover, the numbers r1 and r2 can be chosen
such that they are both ≤ (

√
b+ p− 2)2.

Proof. We assume that this is not the case and derive a contradiction.
Since the situation is symmetric, we may without losing generality
assume that b divides N1. Let β = πb. To derive a contradiction, we
prove

(+)
If k < p, then rk = N(β−k) is a prime divisor of N1 for
even and of N2 for odd k. Moreover, if k < p − 1 then
πrk equals β − k.

By our assumption on p, the residue field of a prime ideal p ⊂ OK

above p is Fp. Therefore, one of the elements β, β − 1, . . . , β + 1 − p
must be ∈ p. Thus, one of the numbers rk with 0 ≤ k < p must be be
divisible by p. But it is a prime divisor of N1N2 and therefore equal to
p and ≥ b, contradicting (4).
To show (+), we use induction on k. If k = 0, (+) follows from the

definition of b and β and the choice of an order of the two components
of the twin. Let us assume k > 0 and that (+) holds with k replaced
by k − 1. Let j = 1 for even and j = 2 for odd k, then rk−1 is a prime
divisor of N3−j and πrk−1

equals β + 1 − k, such that the group order

of E3−j(Frk−1
) equals NK/Q

(

1 − (β + 1 − k)
)

= NK/Q(β − k). Since

k < p and
√
rk ≤

√
b+ k, we have rk < 2b. We are thus able to apply

lemma 1 and conclude that rk is a prime divisor of Nj.
It follows that 1− (β+1− k) = k−β is a prime element. Moreover,

this prime element divides µj. This is so because P3−j

∣

∣

rk−1
is invariant

under the relative Frobenius Frk−1
, which equals πrk−1

= β + 1 − k.
Therefore,

(β + 1− k)P3−j

∣

∣

rk−1
= P3−j

∣

∣

rk−1
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or (β − k)P3−j

∣

∣

rk−1
= 0 in E3−j(Frk−1

). But µjP3−j

∣

∣

rk−1
= 0 since one

of our assumptions on Mihailescu twins is µjP3−j = 0. Since β− k is a
prime element and since P3−j

∣

∣

rk−1
6= 0, β−k must divide µj as stated.

As the structure of an OK-algebra on Z/NjZ defined by the com-
plex multiplication on Ej is given by OK → OK/µjOK followed by
the unique isomorphism OK/µjOK → Z/NjZ, the ideal prk must be
the ideal generated by β − k. Since O×

K = {±1}, the only gen-
erators of this ideal are β − k and k − β. If πrk = k − β, then
(K, Ej |rk , E3−j

∣

∣

rk−1
, πrk , πrk−1

) is a Mihailescu twin with the desired
properties, contradicting our assumption that the theorem is wrong.
This leaves us with the choice β − k for πrk , as in (+). �

While the specification of the number fieldK, the elements νk of OK ,
of the elliptic curves Ek and the points Pk ∈ Ek(Z/NkZ) is straightfor-
ward, the specification of complex multiplication requires some consid-
eration. The complex multiplication may be specified by specifying the

action of a+
√
−D

2
on Ek, for some odd integer a. Since D tends to be so

large (e. g., D = 12238212163 for the first 30000 digit number certified
by the method) that direct specification or calculation with isogenies

of degree > D
4
is not practical, one choses a in such a way that a2+D

4

decomposes into sufficiently small prime factors. The action of a+
√
−D

4
on the curve is then not specified directly but by a chain of isogenies
of smaller degree which are specified as will be explained below. The
fact that these data indeed define complex multiplication on the curve
may then be derived by using the following proposition.

Proposition 1. Let N and D be natural numbers such that −D is an
odd fundamental discriminant, K = Q(

√
−D), E an elliptic curve over

Z/NZ, E ǫ−→ E an endomorphism of E and a an odd integer. Let n
be an ideal of OK containing N and such that Z/NZ → Ok/n is an
isomorphism, and let λ ∈ Z/NZ be the preimage under this isomor-

phism of the image of a+
√
−D

2
in Ok/n. We assume that the degree d

of ǫ equals a2+D
4

and is coprime to n, that the endomorphism of the
tangent space of E at its neutral element O defined by ǫ equals λ, and
that N has no prime divisors < 4

√
d.

Then there is a unique structure of complex multiplication by OK

on E such that [α]E = ǫ, where α = a+
√
−D

2
. Moreover, the action

of x ∈ OK on the tangent space of E at O defined by this structure
of complex multiplication equals multiplication by the image of x in
OK/n ∼= Z/NZ.
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Proof. Over any connected component of SpecZ/NZ, we have ǫ+ ǫt =
[Tr(ǫ)]E . We consider the action of these isogenies on the tangent space
of E at O over this component. Let r be the prime divisor of N corre-
sponding to the connected component, and let r be the unique common
prime divisor of n and r in OK .
By our assumption on ǫ, the action of ǫ on the tangent space is given

by α mod r. Since ǫǫt = [d]E ([KM85, Theorem 2.6.1]) the action of
ǫt is given by d/α = α modulo r, and it follows that Tr(ǫ) ≡ Tr(α)

(mod r). We have r > 4
√
d because of our assumption and since 4

√
d

cannot be a prime divisor of N . Since |Tr(α)| ≤ 2 |α| = 2
√
d and since

Tr(ǫ) ≤ 2
√
d ([KM85, Theorem 2.6.3]), it follows that Tr(ǫ) = Tr(α) on

the connected component under consideration, and again by [KM85,
Theorem 2.6.3] that ǫ satisfies the equation ǫ2−Tr(α)·ǫ+d = 0 satisfied
by α. Since this holds over every connected component of SpecZ/NZ,
ǫ defines complex multiplication by OK .
The assertion about the action of [x]E on the tangent space follows

since it holds for x = α and when x ∈ Z, and since α and 1 generate
OK as an abelian group. �

1.3. Format of n.ecpp. As was said before, the file format is an ex-
tension of the classical Atkin-Morain format to allow for the possibility
of finishing the certificate by specifying a Mihailescu twin and some
additional data.
The file is a sequence of blocks B1 . . . Bn separated by blank lines.

Each block Bi starts with a line containing a integer N = Ni, followed
either by a line containing the string twin followed by white space
followed by a file name tn containing the name of a file specifying (part
of) a Mihailescu twin, or a line containing a positive integer D. In
the first case, the line containing the twin file name terminates the file
n.ecpp safe for an optional line containing the string version followed
by spaces followed by a version number. In the second case, the line
containing D must be followed by lines containing a positive integer h,
followed by a positive integer o, followed by positive integers p1, . . . , pk
followed by a line containing the integer 0, followed by lines containing
positive integers a, b, x, y and q, followed by a line containing the
integer 0. All numbers are given by their decimal representation.
To verify the validity of a block containing classical Atkin-Morain

data (i. e., not terminated by a line starting with twin), one checks
that Y 2 = X3+aX + b defines an elliptic curve E over Z/NZ, that the

point Po = (x, y) is on the curve, that o = fq with f =
∏k

j=1 pj, that

P = f · Po is disjoint from O, and that (E , P, q) is a valid Goldwasser-
Kilian chain link as defined near (1). For the numbers D and h, only
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their positivity should be checked. Programs which create certificates
and employ a version of the classical Atkin-Morain procedure (which
currently seems to be the only competitive practical method for con-
structing Golwasser-Kilian chains starting from a generic input prime)
should however set D such that E has complex multiplication by an
order in K = Q(

√
−D) and set h equal to the class number of K.

Once the validity of the block Bi is checked, the primality of Ni follows
from the primality of q = qi.
The file n.ecpp is valid if all the blocks B1, . . . , Bn−1 are valid classi-

cal blocks reducing the primality ofNi to the primality of qi, ifNi+1 = qi
for 1 ≤ i < n, and if either Bn is a valid classical block reducing the
primality of Nn to the primality of qn, or if Bn contains a line starting
with twin specifying a Mihailescu twin for Nn. In the first case, the
primality of N1 must be proved by proving the primality of qn by other
means (eg, trial division). In the second case, the primality of the in-
teger components of the twin must be checked as explained below in
subsections 1.4, 2.4, 2.5, and 3.2.

1.4. Format of the files specifying the Mihailescu twin. The
twin components N1 and N2 (integers), K (an imaginary quadratic
number field) and ν1,2 (elements of OK) are specified in a file named
tn. It is this file which, if a twin is present in the certificate, must be
named on a line starting with twin in n.ecpp.
The file tn must contain a line containing the letter ’N’ followed by a

positive integer N1, followed by a line containing the letter ’D’ followed
by a positive integer D, followed by a line containing ’X’ followed by
an integer x, followed by a line starting with ’Y’ followed by an integer
y, followed by a line containing the letter ’T’ followed by a positive
integer N2. All integers are given in decimal representation.

Let K = Q(
√
−D), ν1 = x+y

√
−D

2
, ν2 = 1 − ν1. To check the va-

lidity of the file tn, verify that N1 and N2 are odd, that −D is a
fundamental discriminant, and that x and y are both odd. Moreover,
check that at least one of the numbers N1 or N2 is equal to the num-
ber terminating the Goldwasser-Kilian chain in n.ecpp. Then, check
that Ni = NK/Q(νi) and that y is coprime to N1 and N2. This also
implies that x is coprime to N1 and 2 − x to N2, and ensures that
OK/νiOK

∼= Z/NiZ.
In the following, when we state that a piece of input text contains a

residue class modulo a positive integer N , it is always assumed that it
contains the decimal representation of the smallest non-negative rep-
resentative of that residue class. Integers are also assumed to be given
in their decimal representation.
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The elliptic curves Ek with their points Pk are specified in files
tn.c.curve0. Their complex multiplication is specified in tn.c.CMdat.
The letter c is ’A’ for k = 1 and ’B’ for k = 2. If one of the numbers Nk

is < 17, its primality will be decided by table lookup or trial division.
Otherwise, an elliptic curve modulo Nk must be specified as follows.
The file tn.c.curve0 contains four lines, each starting (in alphabetic

order) with ’A’, ’B’, ’X’ and ’Y’, with the initial characters followed by
residue classes ak, bk, ξk and υk modulo Nk. To confirm its validity,
verify that Y 2 = X3+akX+bk defines an elliptic curve Ek over Z/NkZ,
that Pk = (ξk, υk) is a point of Ek, and that N3−k · Pk = O. Since we
assume Nk > 16, it is then established by remark 1 that (Ek, Pk, N3−k)
is a valid Goldwasser-Kilian chain link reducing the primality of Nk to
that of N3−k.
If at least one of the integer twin components is < 17, we have a valid

Goldwasser-Kilian chain deducing the primality of the first number
listed in n.ecpp from the primality of a number < 17. Otherwise, the
primality of the integer twin components N1 and N2 will be confirmed
by a method explained in the following subsections. This assumes that
the curves Ek have complex multiplication by Ok, and that theorem 1
is applicable.
To motivate the format of the files specifying complex multiplication,

recall that for an elliptic curve Y 2 = X3 + AX + B over a field of
characteristic > 3, Y

X
and X2

Y
are formal parameters at O which define

the same generator gA,B of the tangent space at O. Recall from, e.
g., [ABS08, Proposition 4.1] that under the previous assumptions, an
isogeny of odd prime degree ℓ from an elliptic curve E given by Y 2 =
X3+AX+B to an elliptic curve Ẽ given by Y 2 = X3+ ÃX+ B̃ which
maps gA,B to gÃ,B̃ may be described as

(x, y) −→
(N (x)

D(x)
, y
(N
D
)′
(x)

)

with D = g2, for a normed polynomial g of degree ℓ−1
2
, where

(6)
N
D (x) = ℓx− σ −

(

3x2 + A
)D′

D (x)− 2
(

x3 + Ax+ B
)

(D′

D
)′
(x)

with σ equal to the sum of zeros of the polynomial D(T ), i. e., to

−2g ℓ−3
2

if g =
∑

ℓ−1
2

k=0 gkT
k. If the isogeny instead maps gA,B to cgÃ,B̃,

with c 6= 0, it is instead given by

(x, y) −→
(

c2
N (x)

D(x)
, c3y

(N
D
)′
(x)

)
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To test that this defines an isogeny, verify

(7) c6N 3D + c2ÃN 3D + B̃D4 = c6
(

T 3 + AT + B)
(

D′N −N ′D
)2

in the polynomial ring. These formulas may be used to specify isogenies
over an arbitrary base ring R provided that it may be verified that N
and D (or, equivalently, N and g) generate R[T ] as an ideal in R[T ],
because in the language of schemes the isogeny may then be given by
the triple

[

c2N (x)g(x), c3y
(

N ′(x)g(x)− 2N (x)g′(x)
)

, g(x)3
]

of elements of OE(−3ℓO) ⊆ OE
(

E \O
)

. When considered as sections of
OE(−3ℓO) they have no common zeros, defining a morphism E → P3

R

which factors over Ẽ ⊆ P3
R.

The format of the file tn.c.CMdat specifying the complex multipli-
cation for Ek (with c equal to ’A’ for k = 1 and ’B’ for k = 2) is as
follows. The first line starts with the letter ’A’ followed by a positive
integer a. The second line starts with the letter ’l’ followed by a residue
class λ modulo Nk. The third line starts with the letter ’N’ followed
by a positive integer n. These lines are followed by n blocks specifying
n isogenies between elliptic curves. The j-th block starts with a line
constisting of the letter ’D’ followed by a positive integer ℓj. This is
followed by a line starting with the two letters ’A’ and ’B’, followed
by two residue classes αj and βj modulo Nk, which are separated by a
space. This is followed by the coefficients gj,i of a normed polynomial

gj(T ) =
∑

ℓ−1
2

i=0 gj,iT
i. These are on separate lines given in order of in-

creasing i with the line containing the i-th coefficient starting with the
letter ’g’, followed by the decimal representation of i, followed after a
separating whitespace by the residue class gj,i. We let j run from 0 to
n− 1.
To test the validity of tn.c.CMdat, verify that α0 = ak and β0 =

bk. In other words, the (A,B)-pair of the curve starting the isogeny
chain must coincide with the (A,B)-pair of the elliptic curve given in
tn.c.curve0. Moreover, put αn = α0 and βn = β0, and let Fj be the
elliptic curve over Z/NkZ given by Y 2 = X3 + αjX + βj. Verify that

a is an odd integer, that a2+D
4

=
∏n−1

j=0 ℓj, and that λ equals the image

of a+
√
−D

2
in OK/νkOk

∼= Z/NkZ. For 0 ≤ j < n, verify that that gj is
a normed polynomial which by (6) defines an isogeny from Fj to Fj+1

which maps gαj ,βj
to cgαj+1,βj+1

with c = 1 when j 6= n − 1 and c = λ
if j = n− 1. Recall that to verify that a normed polynomial g defines
such an isogeny, one puts D = g2 and obtains N by (6), checks that g
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and N generate the polynomial ring Z/NkZ[T ] as an ideal, and verifies
(7). Moreover, verify that Nk has no prime divisors < 2

√
a2 +D and

is coprime to all the ℓj (or, equivalently, that it is coprime to a2+D
4

).
Once this is done, it follows from proposition 1 that the composition
of the isogeny chain

(8) Ek = F0 → F1 → . . .Fn = Ek
specified in the file defines, by giving the action of a+

√
−D

2
, complex

multiplication on Ek with an element of OK acting trivially on the
tangent space if it is divisible by νk.
It is now possible to verify (3). To do so, let αk ∈ Z be a represen-

tative of the image of a+
√
−D

2
under the projections

OK → OK/ν3−kOK
∼= Z/N3−kZ.

In view of N3−k ·Pk = 0, (3) can be checked by verifying that the result
of applying the isogeny chain (8) to Pk equals αk · Pk.
If all these validation steps terminate successfully and without an

early confirmation of primality by the occurence of a prime < 16 in the
Goldwasser-Kilian chain, it is confirmed that

(9)
(

K, (E1, P1), (E2, P2), ν1, ν2
)

is a Mihailescu twin, where Ek now is an elliptic curve over Z/NkZ with
complex multiplication by OK , with coefficients ak and bk as above, and
with the complex multiplication given in the files tn.c.CMdat as above.
For the proof of primality, it will be necessary to confirm that theorem 1
may be applied. To do so, check that D 6= −3, and let p be the smallest
prime number modulo which −D is a square, and let

(10) B = (1 +
√
2)(p− 1).

Check that all prime divisors of N1N2 are > B2. It is now clear that
theorem 1 may be applied to (9).

2. Cyclotomic data

2.1. FCE extensions.

Definition 2. Let R be a commutative ring. By a free cyclic étale
(FCE) extension of degree d of R we understand a pair (S, F ), where
S is an R-algebra which as an R-module is isorphic to Rd and F is an
automorphism of S as an R-algebra such that F d = IdS and for each
prime ideal p of R and each algebraic closure k of its residue field, F
acts transitively on the set

(

SpecS
)

(Spec k) of k-valued points of the
SpecR-scheme SpecS.
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A morphism (S, F ) → (S̃, F̃ ) of FCE-algebras is a morphism

(S, F ) α−−→ (S̃, F̃ )

of R-algebras satisfying αF = F̃α. It is an isomorphism if it is bijective.

By [GD67, Corollaire 17.6.2], an algebra R over a (Noetherian) ring
S which is finitely generated and free of rank d as an R-module is
étale if and only if for each maximal ideal m of R, the R-algebra S/mS
decomposes as the set-theoretic product of separable field extensions
of R/m. Since we have an epimorphism S/mS → ∏n

i=1 ki where the
ki are the residue fields of the prime ideals above m, this is the case
if and only if the ki/k are separable and the sum of their degrees is d.
Since the number of k-homomorphisms from ki to an algebraic closure
k is ≤ [ki : k] with equality if and only if the extension is separable,
we see that S/R is étale if and only if

(

SpecS
)

(Spec k) has precisely d
elements, while it has less than d elements otherwise.

Lemma 2. If S is an R-algebra which as an R-module is free of rank
d and if F is an endomorphism of S such that F d = IdS, then the
following conditions are equivalent:

• (S, F ) is an FCE-extension of R.
• For every prime ideal p of R, any algebraic closure k of its
residue field and any divisor e < d of d, SpecF e acts without
fixed point on the set of k-valued points of SpecS.

• By F , S is a principal homogeneous space for the cyclic group
Z/dZ in the sense that

S ⊗R S → Sd(11)

s1 ⊗ s2 →
(

s1 · F i(s2)
)d

i=1

is an isomorphism.

Proof. If the first condition holds, then in the situation of the second
condition there are precisely d elements of

(

SpecS
)

(Spec k) since S/R
is étale, and F transitively acts on this set. It thus acts as a cyclic
permutation of order d, and no smaller power of it has a fixed point.
The second condition follows.
If the second condition holds and if p and k are as in that condi-

tion, then
(

SpecS
)

(Spec k) is not empty since S is a free R-module of

finite rank d > 0. Because of the second condition,
(

SpecS
)

(Spec k)
cannot have less than d elements. In view of the above remark, S/R
is étale. Moreover, every orbit of SpecF on

(

SpecS
)

(Spec k) has d
elements since no smaller power of SpecF has a fixed point. Thus, it
acts transitively as required by the definition of FCE.
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Geometrically, the third condition may be reformulated as saying
that

[Z/dZ]× SpecS → SpecS ×
SpecR

SpecS(+)

(n, s) → (s, F nS)

is an isomorphism, where the product on the left hand side is to be
understood as the disjoint union of d copies of SpecS. This implies the
first condition as follows: Étaleness may be verified after the faithfully
flat base change by SpecS → SpecR [GD67, Proposition 17.7.1], when
it follows from the fact that the projection from the left hand side of
(+) to SpecS is clearly étale. Transitivity of the “Frobenius”-action
on geometric fibres may also be verified after faithfully flat base change
and is trivial for the cyclic permutation of the left hand side of (+).
If the first two conditions hold, then the morphism

SpecS

IdSpecS ×
IdSpecR

SpecF n

−−−−−−−−−−−−−−−−−→ SpecS ×
SpecR

SpecS

is, by [GD67, Proposition 17.4.9], an isomorphism to a connected com-
ponent. Therefore, (+) is a local isomorphism and to see that it is an
isomorphism it is sufficient to verify that it is a bijection on geometric
points, which follows from the first two conditions. �

Lemma 3. Let S be an R-algebra generated by a single element T ∈ S
as an R-algebra and which is free of rank d as an R-module, and let
F be an automorphism of S which identically acts on R and satisfies
F d = IdS. Then the pair (S, F ) is a FCE extension of degree d of R if
and only if for each prime divisor p of d, the element T −F d/p(T ) is a
unit in S.

Proof. Since the coequalizer of IdS and F d/p in the category of rings
is S/〈T − F d/p(T )〉, the Spec of this quotient is the equalizer of iden-
tity and SpecF d/p in the category of schemes and the condition is a
reformulation of the second condition of lemma 2. �

Lemma 4. Let (S1, F1) and (S2, F2) be FCE-extensions of degrees d1|d2
of an Artinian ring R, and let S1

σ−−→ S2 be a morphism of R-algebras
satisfying F2σ = σF1. Then σ is injective, and σ(S1) as an R-module
is a direct summand of σ(S2).

Proof. Let k be the algebraic closure of the residue field of a maxi-
mal ideal m of R. Since S2 is a free R-module finite of rank d2 > 0,
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(

SpecS2

)

(Spec k) is not empty. Since F1 acts on
(

SpecS1

)

(Spec k) tran-
sitively and the morphism σ is “Frobenius”-equivariant, this implies the
surjectivity of

(

SpecS2

)

(Spec k) σ−−→
(

SpecS1

)

(Spec k). Thus, σ maps
the preimage of {m} in SpecS2 surjectively to its preimage in SpecS1.
Since this holds for all m ∈ SpecR, Specσ is surjective, thus dominant,
and σ injective. The cokernel of σ has finite projective dimension as an
R-module and is thus projective, by the Auslander-Buchsbaum equa-
tion [Mat86, Theorem 19.1]. It follows that σ(S1) is a direct summand
of the R-module S2. �

Lemma 5. Let (nk)
K
k=1 be pairwise coprime natural numbers, n =

∏K
k=1 nk, (Sk, Fk) FCE-extensions of degree nk of an Artinian ring R,

S an R-algebra which is free of rank n as an R-module and F an en-

domorphism of S as an R-algebra. Let Sk
φk−−−→ S, 1 ≤ k ≤ K, be

morphisms of R-algebras such that φk

(

Fk(s)
)

= F
(

φk(s)
)

holds for
1 ≤ k ≤ K and s ∈ Sk. Then (S, F ) is a degree n FCE extension of
R, and the morphism

K
⊗

k=1

Sk → S(12)

K
⊗

k=1

sk →
K
∏

k=1

φk(sk)

is an isomorphism of FCE-extensions of R.

Proof. Let p ∈ SpecR and k an algebraic closure of its residue field.
Since the action of F on the nk-element set

(

SpecSk

)

(Spec k) is tran-
sitive and the nk are coprime it follows that F transitively acts on the
k-valued points on the left hand side of (12). Since

(

SpecS
)

(Spec k) is
not empty and (12) is “Frobenius”-equivariant, it induces a surjection
on k-valued points. In view of the remark made before lemma 2, S/R is
étale, and (12) induces a bijection on k-valued points as it is surjective
and both sets have the same cardinality. It follows that F transitively
acts on

(

SpecS
)

(Spec k), and (S, F ) is an FCE-extension of R. By
lemma 4, (12) is injective and since it is a morphism of free modules of
the same rank over an Artinian ring is is an isomorphism. �

2.2. Cyclotomic extensions. By a primitive s-th root of unity in a
ring R, we understand a root ζ of the polynomial

∏

d|s
(T d − 1)µ(s/d),
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where µ is the Möbius function. Provided that s is a unit in R, it can
be shown that ζ is a root of that polynomial if and only if ζs = 1 holds
in R and ζd− 1 is a unit in R, for every natural number d < s dividing
s. Let µ∗

s(R) be the set of primitive s-th roots of 1 in R.

Theorem 2. Let N and s be coprime positive integers, L = Q(µs) the
s-th cyclotomic field. For gcd(k, s) = 1, let σk be the unique automor-
phism sending each ζ ∈ µs to ζk, and L〈N〉 the subfield of all elements
invariant under the automorphism σN of L/Q sending ζ to ζN for all
ζ ∈ µs. The following assertions are equivalent:

a: If r is a divisor of N , there exists k ∈ N such that r ≡ Nk mod
s.

b: If r is a prime divisor of N and r a prime ideal of OQ(µs) con-

taining r, then there is i ∈ N such that Frobr/r ∈ Gal
(

Q(µs)
/

Q
)

equals σi
N .

c: If r is a prime divisor of N and r a prime ideal of OL〈N〉 con-
taining r, then the residue field of r is isomorphic to Fr.

d: There are an FCE extension (S, F ) of Z
/

NZ and a primitive
s-th root of unity ζ ∈ S such that

(13) F (ζ) = ζN .

e: The same condition as before, and in addition the degree of
S/R equals the multiplicative order of N modulo s and S is
generated by ζ as an R-algebra.

Proof. a⇒b: Let r ≡ N i (mod s). We have Frobr/r = σr = σN i = σi
N .

b⇒c: Let r̃ be a prime ideal of Q(µs) extending r. Let x ∈ L〈N〉,
then x mod r̃ ∈ Fr since x is invariant under Frobr̃/r, by b. Since
k(r) is isomorphic to the subfield of k(r̃) consisting of all x mod r̃ with
x ∈ L〈N〉, c follows.
c⇒e: Let N =

∏j
i=1 r

ki
i be the decomposition of N into prime fac-

tors, ri ∈ Spec(OL〈N〉) a prime ideal above ri, and N =
∏j

i=1 r
ki
i . Then

OL〈N〉/N ∼= Z/NZ. Therefore, S = OQ(µs)/NOQ(µs), with the auto-

morphism F defined by the automorphism σN of Q(µs)/L
〈N〉 and the

root of unity ζ given by the image of a generator ζ of µs satisfy all
conditions.
e⇒d: Trivial.
d⇒a: It is sufficient to prove this for prime divisors r of N . Let

r ∈ SpecS be a prime ideal above rZ/NZ. Let d be the degree of S
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over Z/NZ. The polynomial

P (T ) =
d
∏

k=1

(T − F kζ) =
d
∏

k=1

(T − ζN
k

)

has in fact coefficients in Z/NZ. Let x̂ = x mod r. Then all zeros η

of P̂ have the form ζ̂N
l

, for some integer l. Since P̂ has coefficients in
Fr, this may be applied to η = ζ̂r. It follows that there exists l with
ζ̂r = ζ̂N

l

, or r ≡ N l (mod s). �

Definition 3. If these equivalent conditions hold, then we say that
an s-th cyclotomic extension of Z/NZ exists, and any extension with
the properties explained in the last point is called an s-th cyclotomic
extension.
If S is any FCE-extension of Z/NZ and ζ ∈ µ∗

s(S) satisfies (13), then
ζ is called a good s-th root of unity in S.

Remark 3. This notion of ‘cyclotomic extension’ is easily seen to be
equivalent to Mihailescu’s.

Remark 4. Note that if S is any FCE-extension of Z/NZ and ζi ∈
µ∗
si
(S) are good si-th roots of unity and if gcd(s1, s2) = 1, then ζ1ζ2

is a good s1s2-th root of unity. In particular, an s1s2-th cyclotomic
extension exists.

2.3. Relation to Jacobi sums. Let s be odd and ζ ∈ Q(µs) be a
primitive s-th root of unity. If χ is a Dirichlet character modulo s,
with values in µt, we always put χ(n) = 0 when gcd(s, n) 6= 1. For a
Dirichlet character χ modulo s, let

τ(χ, ζ) =
∑

n∈Z/sZ
χ(n)ζn

be the Gauß sum. The argument ζ of τ will not be written if it is clear
from the context. For another Dirichlet character χ̃ modulo s such that
χχ̃ is a primitive Dirichlet character modulo s, we have

(14) τ(χχ̃, ζ)j(χ, χ̃) = τ(χ, ζ)τ(χ̃, ζ)

where

(15) j(χ, χ̃) =
∑

n∈(Z/sZ)
χ(n)χ̃(1− n).

More generally, we have

(16) τ(χ1, ζ) · . . . · τ(χk, ζ) = j(χ1, . . . , χk)τ(χ1 · . . . · χk, ζ)
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when the τi are Dirichlet characters modulo s and χ1·. . .·χk is primitive,
where

(17) j(χ1, . . . , χk) =
∑

a1+···+ak=1

χ1(a1) · . . . · χk(ak) ∈ Q(µt)

the ai being ∈ Z/sZ.

To convince oneself of (16), let χ =
∏k

i=1 χi and let

sd =
∑

a1+···+ak=d

χ1(a1) · . . . · χk(ak)

for d in Z/sZ. We have

sde = χ(e)sd

for e ∈ (Z/sZ)∗ because of the bijection sending (ai)
k
i=1 to (eai)

k
i=1. If

d 6∈ Z/sZ∗, there exists e ∈ (Z/sZ)∗ with χ(e) 6= 1 and ed = d, and
it follows that sd = 0. For d ∈ (Z/sZ)∗, we obtain sd = χ(d)s1 =
χ(d)j(χ1, . . . , χk). But the left hand side of (16) equals

∑

d∈Z/sZ
sdζ

d = j(χ1, . . . , χk)
∑

d∈(Z/sZ)∗
χ(d)ζd = j(χ1, . . . , χk)τ(χ, ζ).

If s is the product of pairwise coprime factors s1, . . . , sk and

(18) χ(n) =
k
∏

i=1

χi(n),

where χi is a Dirichlet character modulo si, and if ζ =
∏k

i=1 ζi, where
ζi is a primitive si-th root of unity, then

(19) τ(χ, ζ) =
k
∏

i=1

τ(χi, ζi).

Note that

(20) τ(χo,s, ζ) = µ(s),

where

χo,s(n) =

{

1 gcd(n, s) = 1

0 otherwise

and µ is the Möbius function.

Remark 5. Note that (15) is not used when χχ̃ = 1. Instead we have,
when s is square free and χ primitive,

(21) τ(χ, ζ)τ(χ−1, ζ) = sχ(−1).
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From this, it follows that j(χ, χ̃) · j(χ−1, χ̃−1) = s in cases where all
occuring Dirichlet characters are primtive and that

j(χ1, . . . , χk)j(χ
−1
1 , . . . , χ−1

k ) = sk−1

when the χk and their product are primtive modulo s. This implies
that τ is a unit in every algebra A over the ring of integers in the
smallest cyclotomic field containig µs and the values of χ such that s
is a unit in A. Likewise, if A is an algebra over the ring of integers in
the smallest cyclotomic field containing the values of all the χi, and if
s is a unit in A, and if (16) holds and all the χi as well as their product
are primitive modulo s, then (17) is a unit in A. This observation will
often be used to justify division by Jacobi sums in what follows.
If χ is not primitive but induced from a primitive character modulo

the divisor s̃ of s, then (21) becomes

τ(χ, ζ)τ(χ−1, ζ) = s̃χ(−1).

By similar considerations as before, (17) is a unit in A if it is defined
(i. e., the product of the χi is primitive) and if s is a unit in A.

If x is an element of a field of characteristic r > 0, we will use
x ∈ Fr(µt) as a shortcut for the condition that x belongs to the subfield
generated by the t-th roots of 1.

Lemma 6. Let s be square free and N prime to s and χ a Dirich-
let character modulo s of order dividing the natural number t. For a
Dirichlet character χ modulo s and a prime divisor r of N , the follow-
ing conditions are equivalent:

• For some prime ideal r above r of the ring of integers in the field
Q(µs, µt), there exists a ζ ∈ µ∗

s such that the image of τ(χ, ζ)
in k(r) is ∈ Fr(µt).

• For every prime ideal r above r of the ring of integers in the
field Q(µs, µt), every ζ ∈ µ∗

s and every k ∈ (Z/tZ)∗, the image
of τ(χk, ζ) in k(r) is ∈ Fr(µt).

It will turn out to be useful to have a slightly more general, but a
bit more involved lemma:

Lemma 7. Let s be square free and N prime to s and χ a Dirich-
let character modulo s of order dividing the natural number t. For
a residue class e ∈ Z/tZ and a prime divisor r of N , the following
conditions are equivalent:

• For some prime ideal r above r of the ring of integers in the
field Q(µs, µt), there exists a ζ ∈ µ∗

s such that the image of
χ(N)eτ(χ, ζ)t in k(r) is ∈ Fr(µt)

t.
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• For every prime ideal r above r of the ring of integers in the
field Q(µs, µt), every ζ ∈ µ∗

s and every k ∈ (Z/tZ)∗, the image
of χ(N)keτ(χk, ζ)t in k(r) is ∈ Fr(µt)

t.

Remark 6. It is easy to derive lemma 6 from the special case e = 0
of lemma 7. In the special case e = 0, the condition on Gauß sums
considered in lemma 7 is

τ(χ, ζ)t mod r ∈ Fr(µt)
t,

which is clearly implied by the condition τ(χ, ζ) mod r ∈ Fr(µt) stud-
ied in lemma 6. To see that the other implication also holds, let
τ(χ, ζ)t mod r = xt with x ∈ Fr(µt). Then τ(χ, ζ) mod r = ξx with
some ξ ∈ µt, and we have τ(χ, ζ) ∈ Fr(µt).

Proof of lemma 7. It is clear that the second condition implies the first.
Also, it follows from (19) and (20) that it is sufficient to consider prim-
itive χ.
Since

(22) τ(χ, ζ l) = χ(l)−1τ(χ, ζ)

for l ∈ (Z/sZ)∗ and χ(l)t = 1, the validity of the condition

A(χ, r): τ(χ, ζ)t mod r ∈ Fr(µt)
t

is really independent of ζ ∈ µ∗
s. Since χ is assumed to be primitive

and k is coprime to t, it follows that χk is also primitive. Thus, A(χ, r)
implies A(χk, r) because of (16) and the arguments in remark 5, which
justify division by the occuring Jacobi sums.
Finally, if r̃ is another prime ideal dividing r, there exists σ ∈

Gal
(

Q(µs, µt)
/

Q
)

such that r̃ = σr. If the isomorphism of residue

fields induced by σ is denoted σ and σ
(

χ(n)
)

= χ(n)k, then

σ
(

τ(χ, ζ) mod r
)

= τ
(

χk, σ(ζ)
)

mod r̃,

such that A(χ, r) implies A(χk, r̃). Thus, condition A is also indepen-
dent of the choice of the prime ideal dividing r. �

Theorem 3. Let s be square free, and let t be divisible by q − 1 for
each prime divisor q of s and such that N is coprime to st and a t-th
cyclotomic extension of Z/NZ exists. Then the following conditions
are equivalent:

a: An s-th cyclotomic extension of Z/NZ exists.
b: For all Dirichlet characters χ modulo s with χ(N) = 1 and

all prime divisors r of N , the equivalent conditions of lemma 6
hold.
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c: The same condition, but with the additional assumption that
the order of χ is a prime power pk > 1.

Proof. a⇒b: We have

τ(χ, ζ) =
∑

ξ∈µt

ξ
∑

n∈Z/sZ
χ(N)=ξ

ζn,

Since the inner sum is an element of the subfield L〈N〉 ⊆ Q(µs) consid-
ered in theorem 2 and the coefficient ξ before the inner sum is ∈ µt,
the assertion follows.
b⇒a: Since s is square free, OQ(µs) is generated by µ∗

s as an abelian
group. Indeed, by [Was97, Theorem 2.6], OQ(µs) is generated by µs

as an abelian group. But for each d|s, µ∗
d is contained in the abelian

group generated by µ∗
s. This is trivial for d = s and in general follows

by downward induction since ζ = −∑

η∈µ∗
p
ζη when ζ ∈ µ∗

d and p is a

prime divisor of s/d, and the summands belong to µ∗
dp. It follows that

φ(s)OL〈N〉 is contained in the subgroup of the additive group of Q(µs)
generated by the Gauß periods

PN(ζ) =
m
∑

i=1

ζN
i

,

where m is the multiplicative order of N modulo s and ζ ∈ µ∗
s. By

theorem 2 and since φ(s) is invertible modulo N , it suffices to show
that PN(ζ) mod r ∈ Fr, for all prime divisors r of N and all prime
ideals r of L〈N〉 above r. Let r1 be a prime ideal of Q(µs, µt) above r,
and let r2 be its intersection with the ring of integers in Q(µt). Then
Fr, k(r) and k(r2) are subfields of k(r1). By our assumption b, we have

PN(ζ) =
1

φ(s)

∑

χ(N)=1

τ(χ, ζ) ∈ k(r2).

But PN(ζ) is also invariant under the automorphism σN of Q(µs, µt)
given by σN(ξ) = ξN for every lcm(s, t)-th root of unity ξ. It follows
that PN(ζ) mod r2 is invariant under all automorphisms of k(r2) which
are induced by σN i , where i is such that σN i(r2) = r2. Since a t-
th cyclotomic extension of Z/NZ exists and because of the second
equivalent property in theorem 2, every element of k(r2) invariant under
such automorphisms is ∈ Fr, completing the proof of PN(ζ) ∈ Fr for
all ζ ∈ µ∗

s.
b⇒c: Trivial.
c⇒b: Let c hold, and let χ be any Dirichlet character modulo s.

Because of (19) and (20), our assumption that τ(χ, ζ) mod r ∈ Fr(µt)
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for all χ of prime power order with χ(N) = 1 still holds if s is replaced
by a divisor of s. Using this and (19) and (20), we may assume χ to be
primitive. By remark 5 it is possible to apply (16) to the decomposition

χ =
∏k

i=1 χi, where χi is a Dirichlet character modulo s of order plii
and p1 < · · · < pk are primes. If χ comes from a primitive character χ̃
modulo a divisor s̃ of s, then the χi come from (necessarily primitive)
characters χ̃i modulo divisors si of s, and it follows from (20), (19) and
(16) that

(+) τ(χ)j(χ̃1, . . . , χ̃k)φ
(s

s̃

)k−1
=

k
∏

j=1

τ(χj).

By c, the factors τ(χi) are ∈ Fr(µt), and by (17) the same holds for
j(χ̃1, . . . , χ̃k). The assertion b follows. The necessary divison by the
second and third factor on the left hand side of (+) is legalized by
remark 5 and our assumptions. �

The third condition of the theorem allows us to only work with
Dirichlet characters of prime power orders. We would also like to only
work with Dirichlet characters modulo the prime factors of s. Then it
is necessary to drop the condition χ(N) = 1. The following lemma will
be useful:
Let p be a prime not dividing N . We define the saturation exponent

ksat = ksat(p,N) as follows: If p > 2, pksat is the largest power of p
dividing Nd − 1, where d is the multiplicative order of N modulo p. If
p = 2 and N ≡ 1 mod 4, 2ksat is the largest power of 2 dividing N−1. If
p = 2 and N ≡ 3 mod 4, 2ksat is the largest power of 2 dividing N2− 1.
Let k ≥ ksat, and let uk be the multiplicative order of N modulo

pk. We have uk = uksatp
k−ksat since the multiplicative group of residue

classes modulo pv which are ≡ 1 mod pu is cyclic of order pv−u if p > 2
and v > u > 0 or p = 2 and v > u > 1. By our definition of uk, the
exponent of p in the prime factor decomposition of the rational number

ukp
k

Nuk−1
is ≥ 0, such that it is possible to form powers ξ

ukpk

N
uk−1 , where ξ

is a pl-th root of unity.

Lemma 8. For a field k, k ≥ ksat, a pk-th root of unity ξ ∈ k, an
extension l of k and x ∈ l, we denote by A(x, k, ξ, k) the condition

xpkξ
ukpk

N
uk−1 ∈ kp

k

.

Then A(x, k, ξ, k) implies A(x, l, ξ, k) for l ≥ k.
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Proof. It suffices to prove this for l = k + 1. It is possible to simplify
A(x, k, ξ, k) to Ak since the other arguments to A don’t change through-
out the proof. We have Nuk = 1+ akp

k, where ak is not divisible by p.
The condition Ak is equivalent to the existence of y ∈ k such that

(+) xpk = yp
k

ξ
−uk

ak .

Moreover, we have uk+1 = puk.
If p > 2, then Nuk+1 ≡ 1 + akp

k+1 (mod p2k+1), such that ak+1 ≡ ak
(mod pk). If p = 2, we only have Nuk+1 = 1 + akp

k+1 + a2kp
2k and

(*) ak+1 ≡ ak (mod pk−1),

but since p divides uk+1 and ξ ∈ µpk the congruence (*) is still sufficient
to imply

ξ
−uk+1

ak = ξ
−uk+1

ak+1 .

Therefore, the equality

xpk+1

= yp
k+1

ξ
− puk

ak = yp
k+1

ξ
−uk+1

ak

obtained by raising (+) to the power p yields the analogue of (+) with
k replaced by k + 1 and implies Ak+1. �

If χ is a Dirichlet character modulo a prime q whose order is a prime
power pl > 1 and for k ≥ l, we put Jpk(χ) = τ(χ, ζ)p

k

. Because of
(22), this is independent of ζ. It can be calculated as follows: Since
the Dirichlet-characters χj, 0 < j < pl, are primitive, we have

(23) τ(χ, ζ)j = τ(χj, ζ)

j−1
∏

i=1

j(χ, χi)

for such j, by induction of j using (14). Together with

τ(χ, ζ)τ(χ−1, ζ) = χ(−1)q,

we obtain

(24) Jpl(χ) = χ(−1)q

pl−2
∏

j=1

j(χ, χj).

For k > l, we simply use

(25) Jpk(χ) = Jpl(χ)
pk−l

.

In particular, Jpk(χ) ∈ OQ(µ
pk

).

The Mihailescu certificates for the existence of cyclotomic extensions
of Z/NZ use these products of Jacobi sums.
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Theorem 4. Let s be square free and t a natural number for which a
t-th cyclotomic extension of Z/NZ exists, and such that gcd(N, st) = 1.
In addition, assume that for each prime divisor q of s and for each

prime p dividing q − 1, there exist a Dirichlet character χ modulo q
of precise order pl, where l is the largest exponent such that pl divides
q − 1, an integer k ≥ max

(

l, ksat(p,N)
)

such that pk divides t, a ring
extension S of Z/NZ together with a surjective ring homomorphism

OQ(µ
pk

)
Ξ−−→ S, and an element σ ∈ S such that

(26) σpk = Ξ
(

χ(N)
upk

Nu−1Jpk(χ)
)

,

where u is the multiplicative order of N modulo pk.
Then an s-th cyclotomic extension of Z/NZ exists.

Proof. For a prime p dividing φ(s), let κp be the exponent of p in
the prime factor decomposition of t, and let up be the multiplicative
order of N modulo pκp . Because of lemma 7 applied with t = pκp ,
the following two conditions for a Dirichlet character χ of prime power
order modulo a divisor s̃ of s are equivalent:

• For all prime divisors r of N , there exist a prime ideal r of
K = Q(µs, µpκp ) dividing r and ζ ∈ µ∗

s(K) such that

(+) τ(χ, ζ)p
κp

χ(N)
up

κp

N
up−1 mod r

is a pκp-th power in Fr(µpκp ).
• For all prime divisors r of N , all prime ideals r of K dividing r
and all ζ ∈ µ∗

s(K), (+) is a pκp-th power in Fr(µpκp ).

Since they are equivalent, they define the same predicate J(χ).
If s̃ = s and χ(N) = 1, then in view of remark 6, J(χ) implies

that for every prime ideal r̃ of K above a prime divisor r of N and
all ζ ∈ µ∗

s(K), the image of τ(χ, ζ) in k(r) is ∈ Fr(µpκp ). Applying
this with r̃ = r ∩ K, where r is any prime ideal of Q(µs, µt) dividing
n, and noting that Fr(µpκp ) ⊆ Fr(µt), we derive that condition c in
theorem 3 holds for χ. Therefore, it suffices to show that J(χ) holds
for all Dirichlet characters χ modulo s of prime power order > 1.
If χ is as in (26), then J(χ) holds. In fact, (26) and the surjectivity

of Ξ give us that τ(χ, ζ)p
k

χ(N)
upk

Nu−1 mod r is a pk-th power in Fr(µpk),
where r is the preimage under Ξ of any prime ideal of S whose preimage
in Z/NZ is rZ/NZ. Since ksat(p,N) ≤ k ≤ κp, lemma 8 implies the
first of the two equivalent characterizations of J(χ).
Let χ be the same as before. Then any Dirichlet character modulo

q whose order is a prime power pm > 1 has the form χj for 0 < j < q.
Because of (23), J(χj) can be derived from J(χ), where remark 5 may
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once again be applied to justify the necessary divisions. Because of
(20), we also have J(χo,q).
We have seen that J(χ) holds whenever χ is a Dirichlet character of

prime power order modulo a prime divisor of s. If χ is an arbitrary
Dirichlet character modulo s whose order is a prime power pj, then it
can be represented as in (18), where the si are the prime factors of
s and the χi are uniquely determined Dirichlet characters modulo si
whose order is a power of p. Because of (19) and since J(χi) holds for
all i for which the order of χi is > 1, we arrive at J(χ), proving the
theorem. �

In most cases, the saturated cyclotomic extension containing the
roots of 1 of order pksat modulo N has the same order as the extension
containing the p-th root. The only exception is the case p = 2 where
N ≡ 3 (mod 4). In this case, there is an easy way to check (26) without
having to work in an extension of degree 2.

Proposition 2. Let N and q be both ≡ 3 (mod 4), and let pl = 2.
Then, for any S chosen as in the previous theorem, the condition (26)
is implied by the following condition (which obviously holds when N is
a prime satisfying the above assumptions):

• One of the two numbers ±q is a square modulo N .

Proof. We have

(+) χ(N)
upk

Nu−1 τ(χ)p
k

= q2
k−1

because of our assumptions. If q is the square of x in Z/NZ, then (+)
is the 2k-th power of x in S. �

2.4. Specifying FCE extensions. In the certficate, FCE extensions
(A,F ) of Z/NZ are given as follows. Data describing the ring extension
A are stored in files named tn.c.extd, where tn is the twin file name, c is
’A’ or ’B’ depending on whether N is the first or the second component
of the twin, and d is the decimal representation of the extension degree.
The file starts with a string of letters, followed by whitespace, naming
the type of ring extension. This is always followed by the decimal
representation of the extension degree on the same line.
If the file starts with the string Kummer, then the third field on the

line is the zero-th coefficient of the Kummer polynomial. For instance,
Kummer 11 3 describes the extension

(Z/NZ)[T ]
/

(T 11 + 3).

If the file starts with the string Trionomial, then the third field is
the decimal representation of a positive integer e, the fourth field is the
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polynomial coefficient at T e, and the fifth field the coefficient at T 0.
Thus, Trinomial 11 3 -2 1 describes the extension

(Z/NZ)[T ]
/

(T 11 − 2 ∗ T 3 + 1).

If the file starts with the string Generic, then the initial line contains
only that string and the polynomial degree d. This is followed by d+1
lines each starting with an initial ’T’, followed without whitespace by
the exponent k, followed after a separating space by the coefficient at
T k. These lines are arranged in order of increasing k and include the
leading term T d whose coefficient is 1.
The endomorphism F of the Z/NZ-algebra A is described in a sep-

arate file tn.c.Frobd, where d is the degree of the extension. This
contains, on separate lines in order of increasing k, the residue classes
fk modulo N such that F sends T to the image of

∑d−1
k=0 fkT

k in A.
It is necessary to check that, for each of the two choices A or B of c,

there is a single FCE extension of Z/NZ containing the given extensions
as subextensions. To do this, the following tests have to be carried out
for each of the FCE extensions given in the certificate.
If an extension (A,F ) whose degree d = pk is a power of a prime p is

given, the following tests have to be carried out: Confirm that there is
an endomorphism F of A sending T to the polynomial f =

∑d−1
k=0 fkT

k

specified in the Frob file. This is done by verifying that P (f) = 0
holds in A. Moreover, confirm that F d = IdA by calculating F d(T ) and
confirming that it equals T in A. Finally, confirm (using the Euclidean
algorithm) that F d/p(T ) − T is invertible in A. This confirms that
(A,F ) is an FCE-extension of degree d of Z/NZ, by lemma 3.
To confirm that the extensions whose degrees are powers of p are

compatible, determine whether there exist positive l < k such that the
extension of degree e = pl is also specified in the certificate. If this is
the case, select the largest number l with this property, and confirm
that a file tn.c.sext.e.d is also given, and confirm that it specifies a
homomorphism from the degree e to the degree d extension. Let Ae and
Ad denote the degree e and d extensions, then the .sext.-file should
contain the coefficients sk of an element s =

∑d−1
k=0 skT

k of Ad. Confirm
that there is a ring homomorphism σ from Ae to Ad sending T to s.
This is done by verifying the equation Pe(s) = 0 in Ad, where Pe is
the polynomial such that Ae = Z/NZ[T ]/Pe. Moreover, confirm that
σ is compatible with the “Frobenius” automorphisms of Ad and Ae. If
the image of T under the automorphism Fe of Ae is fe =

∑e−1
k=0 fe,kT

k

and if fd plays the same role for Fd and Ad, then compatibility with
the Frobenius automorphisms is verified by checking that the equation
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fe(s) = s(fd) holds in Ad. By lemma 4, σ is injective. This confirms
that (Ae, Fe) is isomorphic to a subextension of (Ad, Fd).

If d is not a prime power, decompose it as a product d =
∏j

i=1 p
ki
i of

primes p1 < · · · < pj, confirm for each of the prime powers q = pkii that
FCE extensions (Aq, Fq) have been given, and that files tn.c.sext.q.d
specifying a morphism from (Aq, Fq) to (Ad, Fd) have also been given.
As in the prime power case, the .sext.-file contains the coefficients
sk of a polynomial s =

∑e−1
k=0 skT

k in order of increasing k. It must
be checked that there is a ring homomorphism from Aq to Ad sending
T ∈ Aq to s ∈ Ad and that this ring homomorphism is compatible with
the “Frobenius” actions. This is done in the same way as in the prime
power case. After these tests, lemma 5 shows that Ad is indeed an
FCE-extension and is, as an FCE-extension, isomorphic to the tensor
product of the F

p
ki
i

.

Let p1 < · · · < pj be the list of primes p for which FCE extensions

of degree pd occur in the certificate. Let pdii be the largest power of pi
for which an extension (A

p
di
i

, F
p
di
i

) has been specified. After the tests

described in this subsection have been carried out, it is known that

(27)
(

j
⊗

i=1

A
p
di
i

,

j
⊗

i=1

F
p
di
i

)

is an FCE-extension of degree
∏j

i=1 p
di
i , and that all the FCE extensions

provided in the certificate are subextensions of (27).

2.5. Specifying the cyclotomic certificates. The number s for which
the cyclotomic certificates (i. e., the proofs of validity of condition (26)
for the prime factors q of s) modulo the two twin components are given
is described in a file tn.s-list containing one line for each prime fac-
tor q of s. The first field is the prime number q, the second field is
a primitive root g modulo q, and the remaining fields are the prime
factors p of q − 1, in increasing order.
To test the validity of this file, test the validity of each line as follows:

Confirm (by trial division or table lookup) that the provided factors of
q − 1 are indeed primes dividing q − 1, and that q − 1 is a product of
powers of these primes. Then, using the prime factorization of q − 1
and the given g, confirm that q is indeed prime and g a primitive root
modulo q. For reasons which will become apparent later on, we want s
to be odd. Therefore, it must also be confirmed that q 6= 2. Moreover,
it must be confirmed that no prime number q is repeated.
For each prime power r = pl dividing q − 1, and each twin compo-

nent, check the presence of the certificate mcert/tn.c.mcert.q.g.pl and
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confirm its validity as follows. If pl = 2 and N ≡ 3 (mod 4), confirm
that the file contains a residue class modulo N whose square is ±q,
confirming the condition of proposition 2. Otherwise, determine the
multiplicative order u of N modulo pl, set k equal to the maximum of l
and the saturation exponent, read a polynomial Pu(T ) specifying a ring
extension S = Z/NZ[T ]

/

Pu(T ) of degree u from the file tn.c.extu,

and read a pk-th root ζ of 1 from tn.c.zpk. It is given as the sequence
(zi)

u−1
i=0 of the coefficients zi of ζ =

∑u−1
i=0 ziT

i mod Pu, each stored (in
order of increasing i) on an indiviual line. Confirm that ζ is indeed
a primitive pk-th root of 1 in S. To verify the surjectivity of Ξ in
theorem 4, it must also be confirmed that the powers of ζ generate S
as an abelian group. Naturally, these conditions on ζ only have to be
confirmed once for each twin component and exponent pk. Obtain (by
direct calculation or by lookup in a collection of pl-th powers of Gauß
sums) the pl-th power J = Jpl(χ) of the Gauß sum for the Dirich-

let character χ modulo q sending g to e
2πi

pl . Determine the image of
J under the ring homomorphism from the ring of integers in Q(µpl)

to S sending e
2πi

pl to ζp
k−l

, calculate the right hand side of (26), and
confirm that mcert/tn.c.mcert.q.g.pl contains the u coefficients of T k,
0 ≤ k < u, of an element of S which is a pk-th root of that right hand
side.
In addition, for each prime divisor p of φ(s), determine that largest

power pk for which (26) has been confirmed directly or via proposi-
tion 2. Determine the appropriate u, read a pk-th root ζ of 1 from
tn.c.zpk, and confirm that F (ζ) = ζN holds for the “Frobenius”-
endomorphism F specified in tn.c.Frobu, where N is the twin com-
ponent under consideration. Unless this has already been done, it is
also necessary to confirm that ζ is a primitive pk-th root of 1.
After these tests and the tests of the previous subsection, it has been

confirmed that for each of the two twin components, the FCE-extension
(27) contains, for each of the powers pk occuring in (26) a good pk-th
root of 1 in the sense of definition 3. Therefore, it also contains a good
t-th root of 1, where t is the lcm of those pk. By theorem 4, an s-th
cyclotomic extension exists modulo each twin component.

2.6. Certification of Jpl(χ). Since they are the same for each certifi-
cate, it is best to provide collection of those elements of the ring of
integers of the pl-th cyclotomic field as a separate file. For the first
primality certificates calculated by the authors, they are given in files
Gspk.q.g.pl, where q is a prime, g is the smallest natural number which
is a primitive root modulo q, p a prime divisor of q−1 and pl its largest
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power dividing q−1. The file contains, on separate lines and in order of
increasing k, the rational integers which are the coefficients of a repre-
sentation of Jpl as a linear combination of exp 2πik

pl
, 0 ≤ k < pl−pl−1 in

order of increasing k. This is done for the Dirichlet character χ modulo
q sending g to exp 2πi

pl
. The correctness of the value can be confirmed

by the following theorem, which is inspired by [Mih06a, Lemma 3 in
Section 5.1].

Theorem 5. Let q be a prime number and χ a primitive Dirichlet
character modulo q whose order is a power of a prime p. Let pl be the
largest power of p dividing q− 1. Then J = Jpl(χ) is an element of the
ring of integers R in the pl-th cyclotomic field satisfying the following
conditions, which characterize it uniquely:

• J · J = qp
l

.
• Let p be a prime ideal of R containing q, and let k be the smallest
natural number such that

χ(x) ≡ x−k (mod p)

holds for each integer x prime to q. Then the exponent of p in

the prime ideal decomposition of J is given by kpl

q−1
.

• We have

J ≡ (−1)p (mod p(ζ − 1)),

where ζ ∈ R is a primitive pl-th root of 1.

Note that the last condition does not depend on ζ.

Proof. The first condition of J follows from the well-known and easy
equation τ(χ, ζ) · τ(χ−1, ζ−1) = q. The second condition is Stickel-
berger’s theorem ([Was97, Proposition 6.13] or [Lan90, Theorem 2.1]).
For the third condition, we calculate

τ(χ, ξ)p
l

=
(

q−1
∑

k=1

χ(k)ξk
)pl

=
(

−1 +

q−1
∑

k=1

(

χ(k)− 1
)

ξk
)pl

= (−1)p +

pl
∑

j=1

(

pl

j

)

(−1)p−j
(

q−1
∑

k=1

(

χ(k)− 1
)

ξk
)j

.

If j < pl, the j-th summand is divisible by p(ζ − 1)j which in turn is

divisible by p(ζ − 1). If j = pl, it is divisible by (ζ − 1)p
l

which is also
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divisible by p(ζ − 1), because of the well-known relation

(+) 〈ζ − 1〉pl−1(p−1) = 〈p〉.
for the ideal generated by ζ − 1.
For uniqueness, note that the first condition implies that all prime

divisors of J must contain q. Together with the second condition, this
determines the prime ideal decomposition of J , and thus determines J
up to a unit. By the first condition, it is also determined up a root
of 1. It is known that the group of roots of 1 in R is {±1}µpl . For
instance, this follows from the determination of the degree of Q(µn)
[Was97, Theorem 2.5] since φ(apl) > φ(pl) when a > 1 unless a = 2
and p is odd.
The conditions thus characterize J up to multiplication by an ele-

ment of ±µpl . If p is odd, then the third condition excludes the minus
sign. Therefore, the conditions characterize J up to multiplication by
some ξ ∈ µpl . If ξ is not 1, it is a primitive pj-th root of 1, for some

j which is positive but ≤ l. Then (ξ − 1)R = (pR)
1

(p−1)pj−1 by (+),
where the fractional power may be taken in the ideal group of R and

the exponent is always ≤ 1. But p(ζ − 1)R = (pR)
1+ 1

(p−1)pl−1 and the
exponent is always > 1. Thus, the third condition fails if J is replaced
by ξJ , finishing the proof of uniqueness. �

Note that if the first property of the theorem holds, then the validity
of the second property for a prime ideal p is equivalent to its validity
for p. This means that the second property only has to be verified for
half of the prime ideals. Another possibility is to only verify the same
one-sided inequality for the prime ideal exponent of both p and p.

3. Mihailescu exponent congruences

Let (K,E1, E2, µ1, µ2) be a Mihailescu twin, where Ek is defined
modulo Nk. Let rk be as in theorem 1. If both rings Z/NkZ, k ∈ {1; 2},
have s-th cyclotomic extensions, then there exist exponents λk ∈ N,
k ∈ {1; 2}, such that

(28) rk ≡ Nλk

k (mod s).

Let ok be the multiplicative order of Nk modulo s. The last crucial
ingredient of the test is a method of narrowing down the choices for
λk and ensuring that at least one rk must be larger than the bound
from theorem 1, bypassing the trial division step or the Lenstra step
of the classical Jacobi sum primality test. It is based upon an elliptic
version of definition 3. Since we will not use analogues of theorem 3 or
theorem 4, we only introduce the analog of (13).
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3.1. Good division points. Let E be an elliptic curve with complex
multiplication by OK over Z/NZ, let I ⊆ OK be an ideal, and let S be
an Z/NZ-algebra. An I-divsion point is a point P ∈ E(S) such that
ι · P = 0 for all ι ∈ I. The set of I-division points will be denoted
E(S)I . We call P primitive if in addition the morphism

(29) (OK/I)× Spec(S) → E ×
Spec(Z/NZ)

SpecS

whose restriction to (ι mod I)× Spec(S) equals ιP is a closed immer-
sion. In (29), the left hand side is viewed as a disjoint union, taken
over the set OK/I, of copies of Spec(S).
Recall the notion of a free, cyclic étale extension of Z/NZ from

definition 2.
Let (K,E1, E2, µ1, µ2) be a Mihailescu twin. Let Nk = NK/Q(µk) be

the number modulo which the elliptic curve Ek with complex multipli-
cation is defined.

Definition 4. Let I be prime to µ1µ2. A primitive I-division point P
of Ek with values in the FCE-extension (S, F ) of Z/NkZ is called good
if it is primitive and its image F (P ) under the automorphism F of S
equals µkP . In the case where I = ℓOK , where ℓ is a natural number,
we speak of a good ℓ-division point.

The application of this notion to narrow down the choices for the
exponents in (28) is based upon the following proposition, which should
be compared with theorem 2.

Proposition 3. Let (K,E1, E2, µ1, µ2) be a Mihailescu twin and k ∈
{1; 2} such that Ek has good a I-division point P with values in an
FCE-extension (Sk, Fk) of Z/NkZ. If r is a prime divisor of Nk and
πr ∈ OK the corresponding Frobenius element as in the formulation of
theorem 1, then there exists a natural number l with πr ≡ µl

k (mod I).

Proof. We use the language of effective relative Cartier divisors as in
[KM85]. Let Ek,A = Ek×SpecZ/NkZ

SpecA denote the base-change of

Ek to Z/NZ-algebras A. Let D ⊂ Ek,Sk
be an effective relative Cartier

divisor which is invariant under the automorphism of Ek,Sk
defined by

Fk. Let the degree of Sk be d. Since there is an isomorphism between
SpecSk × SpecSk and the disjoint union of d copies of SpecSk which
equals

(

Id, Spec(F j
k )
)

on the j-th copy, the “Frobenius”-invariance ofD
implies that there is a unique structure of a descent datum for Ek,Sk

/Ek
on the sheaf of ideals ID defining D such that ID → OEk,Sk

is a mor-
phism of descent data. By faithfully flat descent, D descends to Ek in
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the sense that there is a unique effective relative Cartier divisor D̃ ⊂ Ek
whose preimage in Ek,Sk

equals D.
Let D be as before and let r be the divisor of Nk which is under

consideration, then there exists a maximal ideal of Sk whose residue
field k has characteristic r. The closed embedding Spec k → SpecSk

defines a closed embedding Ek,k → Ek,Sk
which allows us to restrict

divisors on Ek,Sk
to Ek,k. The fact that D is the preimage of a D̃ which

is defined over Z/NkZ implies that [πr]Ek,k maps the preimage Dk of
D in Ek,k to itself. In tedious detail this can be seen as follows. The
absolute Frobenius FEk,k as an endomorphism of Ek,k ∼= Ek,SpecFr

×Spec k
is given by FEk,Spec Fr

× FSpec k, and because of its definition maps any
closed subscheme to itself. Since FEk = [πr] it follows that

[πr]Ek,Spec Fr
× FSpec k = [πr]Ek,Spec k

◦
(

IdEk ×FSpec k

)

maps Dk to itself. But the fact that D may be defined over Z/NkZ

implies that IdEk ×FSpec k, which is an automorphism of Ek,k, maps Dk

isomorphically to itself. Thus, [πr]Ek,Spec k
maps Dk to itself.

Let o be the multiplicative order of µk modulo I. We apply the pre-
vious considerations to the divisor D =

∑o
l=1[µ

l]Ek,Sk
P on Ek,Sk

, which
is Fk-invariant. Since P |Spec k factors over Dk =

∑o
l=1[µ

l]Ek,kP |Spec k ,
[πr]Ek,kP |Spec k also factors over Dk. Since Spec k is integral, it follows

that there exists l ∈ [1, o] ∩ Z with [πr]Ek,kP |Spec k = [µl]Ek,kP |Spec k .
Since (29) is a closed immersion, this implies πr ≡ µl (mod I) as
stated. �

Corollary 1. Let (K,E1, E2, µ1, µ2) be a Mihailescu twin. Let s be
odd and square free, and assume that both rings Z/NkZ have an s-th
cyclotomic extension. Let ok be the multiplicative order of Nk modulo
s. Let (Sk, Fk) be an FCE-extension of Z/NkZ, and let s̃ be a divisor
of s such that both curves Ek have a good s̃-division point with values
in Sk, and let õk be the multiplicative order of Nk modulo s̃.
Under these assumptions, if r1 and r2 are as in theorem 1 and λ1,2

as in (28), there is a solution to the congruence

(30) µl1
1 + µl2

2 ≡ 1 (mod s̃Ok)

such that λk ≡ lk (mod õk).

Proof. Let ρk = πrk . We have

(31) ρ1 + ρ2 = 1

as part of the conditions which the Mihailescu twin (5) must satisfy.
Because of proposition 3, there exists lk ∈ N such that

(32) ρk ≡ µlk
k (mod s̃OK).
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This implies

rk ≡ N lk
k (mod s̃)

by taking norms. Since (28) implies rk ≡ Nλk

k (mod s̃), we have λk ≡ lk
(mod õk). By (31) and (32), the pair (l1, l2) is a solution to (30). �

Corollary 2. We retain the notations and assumptions of the pre-
vious corollary and assume that theorem 1 is applicable. Let B =
⌊

2( 4
√

min(N1, N2) + p − 2)
⌋

, where p is as in the aforementioned the-
orem. We also assume that for every pair (λ1, λ2) of residue classes
λk mod ok for which there exists a solution (l1, l2) to (30) such that
λk ≡ lk (mod õk), the smallest non-negative representative r of the
residue class of Nλ1

1 −Nλ2
2 modulo s is ≥ B if it is even and ≤ s− B

if it is odd.
Then N1 and N2 are prime.

Proof. Indeed, if r1 and r2 are as in theorem 1 and λ1,2 as in (28), then
by the previous corollary our assumption must be applicable to the
smallest non-negative representative r of the residue class of Nλ1

1 −Nλ2
2

modulo s. If r is odd, it is positive and since s is odd we may exchange
N1 and N2 and replace r by s− r. Therefore, let r be even.
We have

(33) TrK/Q(ρ1) = r1 + 1− r2 ≡ Nλ1
1 + 1−Nλ2

2 ≡ r + 1 (mod s)

Since the left hand side of (33) is an odd number and r + 1 has the
smallest absolute value of any odd representative of its residue class
modulo s, we have

|ℜρ1| =
1

2

∣

∣TrK/Q(ρ1)
∣

∣ ≥ B + 1

2
> 4

√

min(N1, N2) + p− 2,

contradicting the bound
√
b+ p− 2 ≤ 4

√

min(N1, N2)+ p− 2 for |ρ1| =√
r1 from theorem 1. �

Remark 7. The use of Hasse’s inequality for points on elliptic curves
over finite fields is similar to the proposal in [Mih06b, (19)]. It seems
likely that a quicker way is to use the fact that the Mihailescu congru-
ence (30) tends to have but a few solutions, together with a method
for finding all divisors in a given residue class such as [CHGN08] (im-
proving [Len84]). For this, cyclotomic certificates should be produced

for s1 modulo N1 and s2 modulo N2 where s1 > N
1/4+ǫ
1 and s2 = s̃

is the product of the prime numbers q for which good elliptic torsion
points are specified. It is then necessary to rule out the existence of
non-trivial divisors of N1 in the residue classes of Nλ1

1 modulo s1 for
which (30) has a solution (l1, l2) with l1 ≡ λ1 (mod õ1). Of course, the
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roles of N1 and N2 may be exchanged, such that most of the Jacobi
sum certificates only have to be calculated for the twin component for
which this is easiest to do, and for which they take fewer disk space.

We will finish the subsection with a few remarks about how to ef-
fectively specify data which prove the existence of good elliptic torsion
points. Firstly, it is sufficient to treat the prime factors of s̃ separately:

Remark 8. If Iι, for ι ∈ {1; 2}, are coprime ideals of OK and Pι ∈ E(Sk)
good Iι-division points, then P1 + P2 ∈ E(Sk) is a good I1I2-division
point.

In practice, Sk is given as the tensor product of many factors with
small prime power orders, but for each individual prime factor of s̃ only
some of these factors are needed.
The necessary work may be further reduced by an application of the

Weil pairing. Before we describe it, note that prime numbers which
split in Ok are far more desirable as factors of s̃ than those which stay
prime. This is so because the congruences (30) are far more likely
to have many solutions if OK/s̃OK has a large cyclic factor. Let,
therefore, q be a prime number which splits as qOK = qq with q 6= q.
The following is an easy application of the Weil pairing ([KM85, 2.8.5]):

Lemma 9. • If P ∈ Ek(Sk)q is a primitive q-division point, then
the Weil pairing W induces an isomorphism

E(Sk)q → µq(Sk)

Q → W (P,Q).

• If Ek has a good q-division point defined over Sk and if Sk con-
tains a good q-th root of unity, then Ek also has a good q-division
point defined over Sk and therefore (Remark 8) a good q-division
point defined over Sk.

3.2. Specifying good division points. The number s̃ is specified
in a file tn.ell-q listing its prime factors, one factor on each line.
To confirm its validity, confirm that each of the listed numbers q is a
prime divisor of tn.s-list. For the way of specifying good division
points described below, it is also necessary to verify that q splits into
two distinct prime ideals q0 and q1 of the ring of integers in Q(

√
−D),

where D is the number obtained from the twin file tn. We label the
two prime ideals in such a way that qi contains

√
−D− r where r ≥ 0

and r < q and r ≡ i mod 2.
Moreover, confirm that no prime number occurs twice in tn.ell-q,

and let s̃ be the product of the primes in tn.ell-q and s the product
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of the primes q which are the first fields of the lines of tn.s-list.
Let ok and õk be as in corollary 1. For each pair (λ1, λ2) of residue
classes λk modulo ok for which there exists a solution (l1, l2) to (30)
such that λk ≡ lk (mod õk), confirm that the smallest non-negative
representative r of the residue class of Nλ1

1 − Nλ2
2 modulo s satisfies

the condition of corollary 2.
Let c be ’A’ or ’B’ and let N be the correspoding twin component.

Let x and y be the integers specified in tn with lines starting with ’X’

and ’Y’, and let ν be x+y
√
−D

2
if c is ’A’ and 2−x−y

√
−D

2
if c is ’B’. Thus,

ν is an element of Q(
√
−D) with norm N . Moreover, let

E : y2 = x3 + ax+ b

be the elliptic curve with coefficients a and b in Z/NZ specified in
tn.c.curve0, with the complex multiplication specified in tn.c.CMdat.
To confirm that it has a good s̃-division point with values in (27), it
is by remark 8 sufficient to show that for each prime divisor q of s̃
there is a good q-division point. Also by remark 8, this may be done
by specifying good qi-division points for i = 0 and i = 1. By the Weil
pairing argument of lemma 9, it is also sufficient to specify a good
division point for one of the qi in addition to a good q-th root of 1.
A good q-th root of 1 is specified in a file tn.c.cextq together with

files tn.c.csextq.pk for each maximal prime power divisor pk of the
multiplicative order o of N modulo q. To check the validity, read a
polynomial P [T ] (whose order must be o) from tn.cextq. Confirm that
the image of T in S = Z/NZ[T ]/P (T ) is a primitive q-th root of 1 and
that TN also is a zero of the polynomial P . It is then clear that there
is an endomorphism F of S sending T to TN . For each maximal prime
divisor pk of o, confirm the presence of files tn.extpk and tn.Frobpk.
As was confirmed by the tests in subsection 2.4, these specify an FCE
extension (Spk = Z/NZ[T ]/Ppk(T ), Fpk) which is a subextension of
(27). Moreover, confirm that a file tn.c.csextq.pk exists and that it
contains, in order of increasing j, the coefficients sj of a polynomial

s(T ) =
∑o−1

j=0 sjT
j with coefficients in Z/NZ. This must be subjected

to the same tests described for a tn.c.sext-file in subsection 2.4. More
precisely: Confirm that the image of s in S is a zero of the polynomial
Ppk . This implies the existence of a ring homomorphism Spk

σ−−→ S

sending T to s. Moreover, confirm the equality f (pk)(s) = s(TN) in S,

where f (pk) ∈ Z/NZ[T ] is the polynomial of degree < pk whose image in
Spk equals the image of T under Fpk . This implies that σ is compatible
with the “Frobenius”-maps. After this has been verified for all maximal
prime power divisors pk of o, it is clear that (S, F ) ∼=

⊗

p(Spk , Fpk) as
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FCE-extensions of Z/NZ, and that (27) contains a good q-th root of
1.
A good qi-torsion point is always specified in a file tn.c.etdati.q

which starts with the letter ’O’ followed by some whitespace followed
by the decimal representation of a positive integer o followed by the
newline character. While o will normally be equal to the multiplicative
order of ν modulo qi, it is not necessary to check this. Let d be o if o
is odd and o/2 if o is even. The initial line of tn.c.etdati.q is always
followed by d+1 lines. In order of increasing k and beginning with k =
0, these lines start with the letter ’g’ followed without whitespace by
the decimal representation of k. After some whitespace, this is followed
by a residue class gk modulo N with which the line terminates. Let
g =

∑d
k=0 gkX

k. The coefficient gd must always be 1. If o is even, the
file tn.c.etdati.q terminates after these lines. Otherwise, it contains
d lines starting with the letter ’Y’ directly followed by the decimal
representation of k directly followed by a residue class yk modulo N
with which the line terminates, where k runs from 0 to d− 1. The file
terminates at this point. Let y =

∑d−1
k=0 ykX

k.

Let S̃ = Z/NZ[X]
/

g(X). If o is odd, let S = S̃, and let P = (X, y).
If o is even, let

S = S̃[Y ]
/ (

Y 2 −X3 − aX − b
)

,

and let P = (X, Y ). In the former case, confirm that P is on the curve
E . In the case where o is even, this is always the case in view of our
definitions. In both cases, we thus have an S-valued point P ∈ E(S).
Confirm that it is a q-torsion point. It is also necessary to confirm that
it is qi-torsion. To do this, let a be the integer specified in tn.c.CMdat.

The CMdat-file thus specifies the action of α = a+
√
−D

2
on the curve E as

an isogeny chain (8). To confirm that P is qi-torsion, apply the chain
links in the chain (8) to P and check that the final result equals ρ · P ,
where ρ ∈ Z is some representative of the residue class of α modulo
qi, preferrably the one of smallest absolute value. It has then been
confirmed that P is a qi-torsion point.
It is also necessary to calculate r · P , where r ∈ Z is some represen-

tative of the residue class of ν modulo qi. If o is odd, then the result
has the form (φ(X), χ(X)), where φ and χ are polynomials of degree
< d in X with coefficients in Z/NZ. If o is even, then the result has
the form

(

φ(X), χ(X)Y
)

where φ and χ are as in the former case. In
both cases, it is necessary to confirm that there is an endomorphism
F of the ring S̃ sending X to φ(X). This is done by confirming that
φ mod g is a zero of the polynomial g. In the case where o is even, it
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is also necessary to confirm that F extends to an endomorphism of S
which for the sake of simplicity will also be called F . This is done by
confirming that χ2 = φ3+aφ+b holds in S̃. In the case where o is odd,
it is instead necessary to confirm that F (y) = χ holds in S = S̃. This is
done by calculating y

(

φ mod g) and confirming that it equals χ mod g.
In both cases, we have confirmed that we have an endomorphism F of
S and that F (P ) = ν · P .
Note that in both cases S is a free Z/NZ-module of rank o. It is

finally necessary to give, for each prime divisor p of o and its max-
imal power pk dividing o, a morphism (Spk , Fpk) s−→ (S, F ), where
(Spk , Fpk) is the pair specified in tn.c.extpk and tn.c.Frobpk, Spk be-

ing Z/NZ[T ]
/

Ppk(T ) and Fpk sending T to φpk(T ) mod Ppk . The

morphism s is specified in a file tn.c.esexti.q.pk which always con-
tains, with j running from 0 to d − 1, d lines starting with the letter
’X’, directly followed by the decimal representation of j, followed after
some whitespace by a residue class σj modulo N terminating the line.
If p > 2, the file stops at this point. Otherwise, it also contains d − 1
lines which, with j running from 0 to d− 1, start with the string "YX",
directly followed by the decimal representation of j, followed after some
whitespace by a residue class τj modulo N terminating the line. The

file terminates at this point. We always put σ =
∑d−1

j=0 σjX
j . If p = 2,

we also put τ =
∑d−1

j=0 τjX
j . The morphism s is uniquely determined

by the property that it sends T to σ(X) if p > 2 and to σ(X)+ τ(X)Y
if p = 2. It must be confirmed that such a morphism exists and is
“Frobenius”-compatible. For existence, confirm that σ mod g is a zero
of the polynomial Ppk if p > 2. If p = 2, it is instead necessary to
calculate the value of Ppk at σ(X) + τ(X)Y modulo Y 2 −X3 − aX − b
and modulo g(X) and to confirm that it is 0. In both cases, it has then
been confirmed that there is a unique ring homomorphism s from Spk

to S with the aforementioned image of T ∈ Spk .
To confirm “Frobenius”-compatibility when p > 2, confirm that the

identity σ(φ) = φpk(σ) holds in S̃. If p = 2, confirm the identity

σ(φ) + τ(φ) · χ = φpk
(

σ(X) + τ(X)Y
)

in S. After the files tn.c.esexti.q.pk have passed these tests, we know
in view of lemma 5 that (S, F ) is isomorphic to

⊗

p

(

Spk , Fpk
)

, and thus

to a subalgebra of (27) as an FCE-algebra.
For each q listed in tn.ell-q, and for both possible values ’A’ and ’B’

of c, it is necessary that for at least one i ∈ {0; 1}, the file tn.c.etdati.q
and all necessary tn.c.esexti.q.pk are present and pass the above tests.
Moreover it is necessary that either these files are present and correct
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for the other value of i as well, or that tn.c.cext.q with the neces-
sary files tn.c.csext.q.pk is also present and passes the tests described
before we started the description of the elliptic torsion data.
After all the tests from subsection 1.3, subsection 1.4, subsection 2.4,

subsection 2.5 (with values of Jpk(χ) whose correctness has been estab-
lished by calculating them or by applying theorem 5 to a collection of
pk-th powers of Gauß sums provided with the certificate) have been
finished together with the tests of this subsection, the primality of the
input number follows by a combination of corollary 2, theorem 4 and
the fact that the Goldwasser-Kilian chain supplied in tn.ecpp reduces
the primality of its intial term to the primality of the term for which a
Mihailescu twin has been specified. In a solemn language worthy of all
the hard mathematics and all the CPU-months used for establishing
the primality of the number, declare the primality of the input number.
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