Remark 1. Recall that the following conditions to a topological space X are equivalent:

- There is a topology base \mathfrak{B} closed under finite intersections in X and such that all elements of \mathfrak{B} are quasicompact.
- The set $\mathfrak{Qc}(X)$ of quasicompact open subsets of X is such a topology base.

The following two problems provide the proof of the Sura-Bura theorem omitted from the lecture:

Problem 1 (4 points). Let X be a quasicompact topological space with the following property:

If Q is a quasi-component of X and $Q = A \cup B$ where A and B are disjoint closed subsets of X then there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Show that every quasi-component of X is connected.

The existence of U and V is obvious when X is T_4 . By a well-known result of general topology, a quasicompact space is T_4 if and only if it is T_2 . Thus, for compact spaces the spaces of connected components and quasicomponents are canonically homeomorphic and compact (in particular, Hausdorff). That the same holds for spectral spaces follows from

Problem 2 (4 points). Let X be a topological space satisfying the equivalent conditions of Remark 1. Show that Problem 1 can be applied to X.

Problem 3 (7 points). From the lecture, recall the bijection between closed subsets $Z \subseteq \operatorname{Spec} R$ and ideals I such that $I = \sqrt{I}$, sending I to V(I) and Z to $\bigcap_{\mathfrak{p}\in Z}\mathfrak{p}$. Show that an ideal \mathfrak{p} of R is a prime ideal if and only if $Z = V(\mathfrak{p})$ is irreducible. In this case, show that $X = \overline{\{\mathfrak{p}\}}$!

Definition 1. Let K be a field. A valuation ring of K is a subring $R \subseteq A$ such that for all $k \in K^{\times}$, $R \cap \{k; k^{-1}\}$ is not empty.

Problem 4 (8 points). For a valuation ring R of a field K, show the following:

- For two ideals I and J of R, $I \subseteq J$ or $J \subseteq I$.
- R is a local ring with maximal ideal

$$\mathfrak{m} = \{ x \in K \mid x = 0 \text{ or } x^{-1} \notin R \}.$$

• An ideal $I \subseteq R$ is a prime ideal if and only if it is proper and $I = \sqrt{I}$.

- R is integrally closed in K.
- R is Noetherian if and only if R = K or R is a principal ideal domain with precisely one prime element.¹

Three of the 23 points from this sheet are bonus points with are disregarded in the determination of the \geq 50%-threshold for passing the exercise module.

Solutions should be submitted before Thursday December 11. Good luck!

¹In other words, a discrete valuation ring