Third exercise sheet Advanced Algebra II.

Problem 1 (4 points). Give an example showing that the category of sheaves of abelian groups on a topological space X can fail to be $AB4^*!$

Problem 2 (3 points). Let $U \xrightarrow{\mathcal{I}} X$ be the inclusion of an open subset $U \subseteq X$ to a topological space X, and let \mathcal{F} be a sheaf of abelian groups on U. For open $V \subseteq X$, let $j_!\mathcal{F}(V)$ be the set of all $f \in \mathcal{F}(U \cap V)$ for which there is an open neighbourhood W of $V \setminus U$ in V such that $f|_{W \cap U} = 0$. Show that $j_!\mathcal{F}$ is a sheaf of abelian groups on X, and calculate its stalks!

Problem 3 (6 points). If j is as in the previous exercise, construct a pair of adjoint functors between the categories of sheaves of abelian groups on U and on X in which j_1 is the left and the functor j^* of restriction to U the right adjoint functor!

Problem 4 (1 points). In the situation of the previous two problems, show that j^* preserves injectivity of sheaves!

Problem 5 (1 point). For an arbitrary topological space X, show that the category of sheaves of abelian groups on X has a generator!

Problem 6 (5 points). Let X be a spectral space. Show that X is Hausdorff if and only if for every spectral space T, every continuous map $T \xrightarrow{t} X$ is spectral!

Solutions should be submitted in the lecture Friday, May 3.