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Introduction
Derived categories were introduced in the early sixties by A. Grothendieck. His goal was to
extend Serre’s duality theorem to obtain a global theory of duality in cohomology for algebraic
varieties admitting arbitrary singularities ([6]). Grothendieck’s student J.L. Verdier developed
the basic theory first during his Ph.D. thesis. His works appeared in SGA 41/2 in 1977 ([15]),
and later published in Astérisque in 1996 ([16]). Verdier introduced the new concepts of tri-
angulated categories and derived categories of abelian categories, and their uses in the proof of
Grothendieck’s duality theorem are exposed in Hartshorne’s Residues and duality ([7]), lecture
notes on a seminar that took place in Havard in 1963-64.

Since then, theory of derived categories have become wide-spread in algebraic geometry,
and recently have found success in areas nearer to physics ([10]). Considered as the right
framework for any kind of derived functors, the study of derived categories of coherent sheaves
on (projective) varieties, as done in this text, originally goes back to Mukai in the eighties. He
constructed geometrically motivated equivalences between derived categories of non-isomorphic
varieties ([12], [13]). In 1997, Bondal and Orlov showed that the derived category of coherent
sheaves turns out to be a complete invariant for projective varieties whenever the canonical
bundle is either ample or anti-ample ([1]). The goal of this text is to study this last result.

This text will be splitted in three chapters. Both chapters I and III are mainly based on Huy-
brechts’s Fourier-Mukai Transforms in Algebraic Geometry ([9], chapters 1-4), and chapter II is
based on Hartshorne’s Algebraic Geometry ([8]) and Görtz and Wedhorn’s Algebraic Geometry
I: Schemes ([4]). We refer to Bourbaki ([2]) and Matsumura ([11]) for general commutative al-
gebra results, and to Gelfand and Manin ([3]) for homological algebra results. Finally, we refer
to Hartshorne’s Residues and duality ([7]) for more details on derived categories and localization
theory.

Chapter I is devoted to general theory of triangulated and derived categories. Given an
abelian category A, we construct the associated derived category D(A), which objects are
complexes of objects in A and arrows are homotopy classes of morphisms of complexes to
which we added “inverses” of quasi-isomorphisms. This new category admits a structure of
triangulated category, and has many properties that we briefly study. Finally, given a left
exact functor F : A → B between abelian categories, we show how to lift it to a “derived”
functor RF : D(A) → D(B) between the associated derived category, and we present the
Grothendieck’s spectral sequence which is a fundamental tool in this theory.

In Chapter II, we study the fundation of algebraic geometry. We briefly recall the notion
of varieties seen as locally ringed spaces and we introduce the language of schemes. Given a
(noetherian) scheme (X,OX), we define the notion of (quasi)-coherent OX-modules, and point
out properties of them. In the last part, we consider closed immersions X ↪→ Pn and give
conditions, when k is algebraically closed, to obtain such embeddings. Finally, we state the
well-know Serre duality theorem: when X is a smooth projective variety of dimension n, for
any interger k and any locally free sheaf F we obtain an isomorphism

Hk(X,F) ∼ // Hn−k(X,F∨ ⊗ ωX).

In Chapter III, we focus our attention to the bounded derived category Db(X) = Db(Coh(X))
of the abelian category of coherent sheaves on a smooth projective variety X. We first expose
properties of this category, and show how to define Grothendieck’s spectral sequences and Serre
duality in this context. The category Coh(X) has not enough injectives neither projectives
in general, but we still can construct derived functors (RHom( , ), RHom( , ),⊗L) that are
needed in the sequel. We finish this text by presenting results due to Bondal and Orlov ([1]).
We introduce the (intrinsic) notion of point like and inversible objects in Db(X) and prove the
main theorem: if X and Y are smooth projective variety, if ωX or ω∗X is ample, then any exact
equivalence Db(X) ' Db(Y ) yields an isomorphism of varieties X ' Y .
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Part I

Derived categories
In this part, we will introduce the notion of derived category of an arbitrary abelian category,
and study its structure of triangulated category. We will also define derived functors and
introduce spectral sequences, a relevant tool that we will use in the rest of the text. A deeper
study of this theories can be found in [3] and [7].

1 Triangulated and derived categories

1.1 Additive and abelian categories

All the categories we will consider are supposed locally small, i.e. for any two objects A,B the
collection Hom(A,B) is a set.

Definition 1.1. A category C is an additive category if for every two objects A,B ∈ C the set
Hom(A,B) is endowed with a structure of abelian group and the following three conditions are
satisfied:

1. The composition Hom(A,B) × Hom(B,C) → Hom(A,C) is bilinear, i.e. we have (f +
g) ◦ h = f ◦ h+ g ◦ h and f ◦ (h+ l) = f ◦ h+ f ◦ l.

2. There exist an object 0 ∈ C which is both inital and terminal, i.e. for all objects A ∈ C,
we have 0 = Hom(A, 0) ' Hom(0, A).

3. For any two objects A1, A2 ∈ C, there exist an object B, called the biproduct of A1 and
A2, and arrows ji : Ai → B and pi : B → Ai, i = 1, 2, verifying the following properties:

• For every object D ∈ C and arrows li : Ai → D, there exist a unique arrow l : B → D
such that li = l ◦ ji.

• For every objectD ∈ C and arrows qi : D → Ai, there exist a unique arrow q : D → B
such that qi = pi ◦ q.

Such an object is unique and is denoted A1 ⊕ A2.

Remark 1.2. Given a field k, one can define similarly a k-linear category asking the Hom sets
to be k-vector spaces and the composition to be k-bilinear.

Definition 1.3. A functor F : C → D between additive categories (resp. k-linear categor-
ies) is said to be additive if the induced maps Hom(A,B) → Hom(F (A), F (B)) are group
homomorphisms (resp. k-linear maps).

Definition 1.4. Let C be a k-linear category. A Serre functor is a k-linear equivalence S :
C → C such that for any two objects A,B ∈ C there exists an isomorphism of k-vector spaces

ηA,B : Hom(A,B) ' // Hom(B, S(A))∗

which is functorial in A and B, where the ∗ denotes the dual vector space.

To avoid any troubles with the dual, we will usually assume that all Hom’s are finite di-
mensional.
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Proposition 1.5. Let C and D be two k-linear categories over a field k with finite-dimensional
Hom’s. If C and D are endowed with Serre functors SC and SD respectively, then any k-linear
equivalence

F : C → D

commutes with the Serre functors, i.e. there exists an isomorphism

F ◦ SC ' SD ◦ F.

Proof. Since F is fully faithful, for two objects A,B ∈ C we have

Hom(A, S(B)) ' Hom(F (A), F (S(B))) and Hom(B,A) ' Hom(F (B), F (A)).

On the other hand we have

Hom(A, S(B)) ' Hom(B,A)∗ and Hom(F (B), F (A)) ' Hom(F (A), S(F (B)))∗.

Thus we have a functorial (in A and B) isomorphism

Hom(F (A), F (S(B))) ' Hom(F (A), S(F (B))).

Since F is essentially surjective, any object in D is isomorphic to an object of the form F (A)
for some A ∈ C. Thus, applying the Yoneda lemma to the last isomorphism, we obtain that
F ◦ S ' S ◦ F .

Definition 1.6. An additive category A is called abelian if every arrow f : A→ B in A admits
a kernel and a cokernel and the natural arrow Coim(f)→ Im(f) is an isomorphism.

Thus, for any arrow f : A→ B we have the following diagram:

ker(f) i // A
f //

##

B
π // coker(f).

coker(i) ' // ker(π)

<<

A strong motivation in the study of abelian categories lies in the following definition:

Definition 1.7. Let A be an abelian category. A sequence

A
f // B

g // C

in A is called exact in B if ker g = Im f .

A sequence
· · · → An−1 → An → An+1 → · · ·

is called exact if it is exact in Ai for all i ∈ Z. Relevant particular cases are short exact sequences
which are exact sequences of the shape:

0 // A
f // B

h // C // 0.

In this case, f is injective (i.e. ker(f) = 0) and h is surjective (i.e. cokerh = 0).
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Definition 1.8. An additive functor F : A → B between abelian categories is called left exact
(resp. right exact) if any short exact sequence

0 // A
f // B

h // C // 0

is sent to an exact sequence

0 // F (A)
F (f) // F (B)

F (h) // F (C)

(resp. to an exact sequence

F (A)
F (f) // F (B)

F (h) // F (C) // 0).

Example 1.9. Let A be an object in a abelian category A. Then the functors Hom(A, ) and
Hom( , A), which take values in the category of abelian groups Ab, are left exact, but not
right exact in general.

1.2 Triangulated categories

Now we will talk about the structure of triangulated category: it is in some sense a generalization
of the notion of exact sequences extended to general additive categories.

Definition 1.10. Let D be an additive category. The structure of triangulated category on D
is given by an additive equivalence T : D → D, called the shift functor, and a set of diagrams
of the form

A // B // C // T (A),

called distinguished triangles, where A,B,C are objects of D. A morphism between two tri-
angles is given by a commutative diagram

A //

f

��

B //

g

��

C //

h
��

T (A)

T (f)

��
A′ // B′ // C ′ // T (A′),

and it is an isomorphism if the vertical arrows are isomorphisms. We ask the distinguished
triangles to satisfy the axioms TR-1 to TR-4 below :

TR-1 : • Any triangle for the form

A Id // A // 0 // T (A)

is distinguished.
• Any triangle isomorphic to a distinguished triangle is distinguished.
• Any arrow f : A→ B can be completed to a distinguished triangle

A
f // B // C // T (A).

TR-2 : The triangle

A
f // B

g // C
h // T (A)

is distinguished if and only if the triangle

B
g // C

h // T (A)
−T (f)// T (B)

is distinguished.
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TR-3 : Suppose there exists a commutative diagram of distinguished triangles with vertical arrow
f and g:

A //

f

��

B //

g

��

C //

h
��

T (A)

T (f)
��

A′ // B′ // C ′ // T (A′).

Then there exists an (non-unique) arrow h : C → C ′ such that the diagram commutes
(in particular, we obtain a morphism of distinguished triangles).

TR-4 : We will omit this axiom because it is the most complicated to state and we will not use
it in this text. It is called the octahedron axiom. The idea is the following: assume
that we are in an abelian category, and replace the notion of distinguished triangles by
the notion of exact sequences. Given inclusions A ⊆ B ⊆ C, TR-4 ask that if the
sequences A → B → B/A, B → C → C/B and A → C → C/A are exact, so is
B/A→ C/A→ C/B.

For now on, let’s write A[1] for T (A) and f [1] for T (f). More generally, for any integer k
we will denote A[k] for T k(A) and f [k] for T k(f), where T k is T ◦k when k is nonnegative and
(T−1)◦−k when k is negative.

Remark 1.11. • First, note that since T is an equivalence, any object A in T is isomorphic
to the object (A[−1])[1] (i.e. an object in the image of T ) and is also isomorphic to the
object (A[1])[−1], thus, using the axiom that any triangle isomorphic to a distinguished
triangle is distinguished, we can extend the axiom TR-2 to the following: a triangle

A
f // B

g // C h // T (A)

is distinguished if and only if any triangle extracted from the sequence

. . . // B[−1]
−g[−1]// C[−1]

−h[−1]// A
f // B

g // C
h // A[1]

−f [1] // B[1] // · · ·

is distinguished.

• In the same vein, one can prove from the axiom TR-1 that the triangles

A
− Id // A // 0 // T (A)

and
0 // A

± Id // A // 0

are also distinguished.

• The axiom TR-3 can be generalized in the following sense: given a commutative diagram
of distinguished triangles

A //

f

��

B //

g

��

C //

h
��

T (A)

T (f)

��
A′ // B′ // C ′ // T (A′),

if two of the vertical arrows f, g, h exist so does the third.

Proposition 1.12. Let A → B → C → A[1] be a distinguished triangle in a triangulated
category D. Then for any object A0 ∈ D the following induced sequences are exact sequences of
abelian groups:

Hom(A0, A) // Hom(A0, B) // Hom(A0, C)

Hom(C,A0) // Hom(B,A0) // Hom(A,A0).
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Proof. First notice a general fact: for any distinguished triangle as the one in the proposition,
the composition A→ B → C is 0. It suffices to apply TR-1 to the diagram

A
Id //

Id

��

A //

f

��

0

��

// A[1]

��
A

f
// B // C // A[1].

Now, assume f : A0 → B composed with B → C is 0 : A0 → C. Then apply TR-1 and TR-3
to the diagram:

A0
Id //

��

A0
//

f
��

0

��
A // B // C,

we obtain a lift of f to an arrow A0 → A. The second assertion can be proved in a similar
way.

Remark 1.13. Once again, applying TR-2 one can show that the sequence Hom(A0, B) →
Hom(A0, C)→ Hom(A0, A[1]) is also exact in Ab. In particular, we actually obtain long exact
sequences of abelian groups.

There is a lot of properties about distinguished triangles we could deduce from the last
proposition, but the following ones are the most important:

Lemma 1.14. Let A→ B → C → A[1] be a distinguished triangle.

1. A→ B is an isomorphism if and only if C ' 0.

2. If C → A[1] is trivial, then the triangle splits, i.e. is given by a decomposition B ' A⊕C.

3. Consider a morphism of distinguished triangles

A //

f

��

B //

g

��

C //

h
��

A[1]

f [1]

��
A′ // B′ // C ′ // A′[1].

If two of the vertical arrows f, g, h are isomorphisms then so is the third.

Proof. 1. Consider the following sequence:

Hom(A0, A) // Hom(A0, B) // Hom(A0, C) // Hom(A0, A[1]) // Hom(A0, B[1]).

Since the morphisms are functorial, the result follows from the Yoneda lemma.

2. Applying Proposition 1.12, we get the exact sequence

0 // Hom(A0, A) // Hom(A0, B) // Hom(A0, C) // 0.

Since this sequence splits, we have a functorial isomorphism

Hom(A0, B) ' Hom(A0, A)⊕ Hom(A0, C) = Hom(A0, A⊕ C),

so the result follows from the Yoneda lemma again.

3. This can be proved applying Hom(A0, ) on the diagram and using the five lemma.
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Definition 1.15. An additive functor F : D → D′ between triangulated categories is called
exact if the following conditions are satisfied:

• There exist a natural isomorphism F ◦ TD ' TD′ ◦ F .

• Any distinguished triangle A → B → C → A[1] in D is mapped to a distinguished
triangle F (A)→ F (B)→ F (C)→ F (A)[1] ' F (A[1]) in D′.

Proposition 1.16. Let F : D → D′ be an exact functor between triangulated categories. If
F a H, then H : D′ → D is exact.

Proof. First let’s prove the commutativity between H and the shift functors T and T ′ of D and
D′ respectively. We have the functorial isomorphisms

Hom(A,H(T ′(B))) ' Hom(F (A), T ′(B)),

' Hom(T ′−1(F (A)), B),

' Hom(F (T−1(A)), B),

' Hom(T−1(A), H(B)),

' Hom(A, T (H(B))).

By the Yoneda lemma, we get the isomorphism

H ◦ T ′ ' // T ◦H.

Now, let A→ B → C → A[1] be a distinguished triangle in D. The arrow H(A)→ H(B) can
be completed in D′ in a distinguished triangle

H(A) −→ H(B) −→ C0 −→ H(A)[1].

Using the adjunction morphisms F (H(A0)) → A0 for any A0 ∈ D we get the commutative
diagram

F (H(A)) //

��

F (H(B)) //

��

F (H(C)) //

ξ

��

F (H(A))[1]

��
A // B // C // A[1],

which can be completed since both triangles are distinguished. Applying H and using the
adjunction h : Id→ H ◦ F we get the diagram:

H(A) //

��

H(B) //

��

C0
//

hC0

��

H(A)[1]

��
HFHA //

��

HFHB //

��

HFC0
//

H(ξ)
��

HFHA[1]

��
H(A) // H(B) // H(C) // H(A)[1].

(1)

Since the last row is not distinguished, we can not conclude using Lemma 1.14. But we know
that for any A0 ∈ D the sequence

Hom(F (A0), B)→ Hom(F (A0), C)→ Hom(F (A0), A[1])

is exact, so using the adjunctions we obtain that the sequence

Hom(A0, B)→ Hom(A0, B)→ Hom(A0, B[1])
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is exact, and thus we can apply the five lemma on the diagram obtain by applying Hom(A0, )
to the diagram (1). We get Hom(A0, C0) ' Hom(A0, H(C)) for all A0 and thus

H(ξ) ◦ hC0 : C0
' // H(C) .

This achieves the proof because H(A)→ H(B)→ H(C)→ H(A)[1] is distinguished since it is
isomorphic to a distinguished triangle.

Definition 1.17. A subcategory D′ ⊆ D of a triangulated category is a triangulated subcat-
egory if D′ admits a structure of triangulated category such that the inclusion is exact.

Proposition 1.18. If D′ ⊆ D is a full subcategory of a triangulated category D, then it is a
triangulated subcategory if and only if it is invariant by the shift functor and for any distin-
guished triangle A → B → C → A[1] in D with A,B ∈ D′, the object C is isomorphic to an
object in D′.

Proof. If D′ is a triangulated subcategory, then it is invariant by the shift functor, and consid-
ering a distinguished triangle A→ B → C → A[1] in D with A,B ∈ D′, the arrow A→ B can
be completed to a distinguished triangle A→ B → C0 → A[1] in D′ which is also distinguished
in D since the inclusion is exact. Thus we get the commutative diagram:

A //

��

B //

��

C //

��

A[1]

��
A // B // C0

// A[1].

Using the axiom TR-3 one can complete the diagram to a morphism of distinguished triangle,
and since all vertical arrows are isomorphism, so is C → C0. Conversely, the second hypothesis
tells exactly that the third TR-1 axiom hold, and all other axioms follow from the fact that D′
is full and invariant under the shift functor.

Definition 1.19. A collection Ω of objects in a triangulated category D is a spanning class of
D (or spans D) if for all B ∈ D the following two conditions holds:

1. If Hom(A,B[i]) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

2. If Hom(B[i], A) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

Note that these two conditions are equivalent if D is equipped with a Serre functor.

1.3 Derived categories

We consider an abelian category A.

Definition 1.20. • A (differential) complex A• in A is the data of a family (An)n∈Z of
objects in A and a family (dn : An → An+1)n∈Z of arrows verifiying dn ◦ dn−1 = 0 for all
n ∈ Z.

• A morphism f : A• → B• between two complexes A• = ((An), dnA)n∈Z and B• =
(Bn, dnB)n∈Z is given by a family (fn : An → Bn)n∈Z such that for any n ∈ Z the diagram

An
dnA //

fn

��

An+1

fn+1

��
Bn

dnB // Bn+1

commutes.
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• We denoted by Kom(A) the category of complexes of A whose objects are complexes and
whose arrows are morphisms of complexes.

For any n ∈ Z, the object object An is called object in degree n. The arrows dn are sometimes
called the differentials of the complex. We will often define a complex A• as a diagram

· · · → An−1 → An → An+1 → · · ·

and we will omit the index of the arrows d when the context is clear.

Proposition 1.21. The category of complexes Kom(A) of an abelian category A is abelian.

Proof. The proof is straightforward: all the structure of an abelian category on Kom(A) is
given on A degree by degree. For instance, ker f = (ker fn)n∈Z.

Remark 1.22. The category A embeds into Kom(A) as a full subcategory by identifying an
object A ∈ A with the complex

· · · → 0→ 0→ A→ 0→ 0→ · · ·

concentrated in degree 0 with trivial differentials.

Definition 1.23. Let A• ∈ Kom(A) be a complex. Then we define the complex A•[k] for any
k ∈ Z by A•[k]n := Ak+n and dA[k] = (−1)kdi+kA .

Proposition 1.24. The shift functor A• 7→ A•[1] is an equivalence of abelian categories.

Proof. The inverse functor is given by A• 7→ A•[−1], details are left to the reader.

Definition 1.25. Let A• be a complex in Kom(A). We define the nth cohomology object
Hn(A•) as the quotient

Hn(A•) :=
ker(dn)

Im(dn−1)
∈ A.

To be precise, a more category-theoretic definition would be

Hn := coker(Im(dn−1) ↪→ ker(dn))

Proposition 1.26. For all n ∈ Z, a morphism of complexes f : A• → B• induces a morphism
in cohomology

Hn(f) : Hn(A•)→ Hn(B•).

Proof. This is straightforward using the fact that any morphism of complexes commutes with
the differentials.

Proposition 1.27. Any short exact sequence

0→ A• → B• → C• → 0

induces a long exact sequence

· · · → Hn(A•)→ Hn(B•)→ Hn(C•)→ Hn+1(A•)→ · · · .

This is a classical result of homological algebra using diagram chasing. It is a consequence
of the famous snake lemma. See ([3], §5, ex.7).

Definition 1.28. A morphism of complexes f : A• → B• is a quasi-isomorphism (or qis for
short) if for all n ∈ Z the induced arrow Hn(f) : Hn(A•)→ Hn(B•) is an isomorphism.
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In order to study cohomology, we would like quasi-isomorphisms to be actual isomorphisms.
To do so, we will construct a new category, called the derived category of the abelian category
A, in which all quasi-isomorphisms are invertible. This will be done in several steps.

Definition 1.29. • Two morphisms of complexes

f, g : A• → B•

are called homotopically equivalent, denoted f ∼ g, if there exists a collection of homo-
morphisms hn : An → Bn−1 for all n ∈ Z such that

fn − gn = hn+1 ◦ dnA + dn−1B ◦ hn.

Such a family (hn)n∈Z is called a homotopy between f and g.

• The homotopy category of complexes K(A) is the category whose objects are the objects
of Kom(A) and for all A•, B• ∈ K(A) we have

HomK(A)(A
•, B•) := HomKom(A)(A

•, B•)/ ∼ .

It can be verified that K(A) is indeed a category, in particular that homotopy equivalence
is indeed an equivalence relation. A big part of the interest in homotopy of complexes lies in
the following:

Proposition 1.30. Let f, g : A• → B• in Kom(A). If f ∼ g then Hn(f) = Hn(g) for all
n ∈ Z.

Proof. By definition of homotopy, fn − gn = hn+1 ◦ dnA + dn−1B ◦ hn for some homotopy (hn)n
then fn − gn sends ker(dnA) into Im(dn−1B ), thus Hn(f − g) = 0.

Corollary 1.31. If f : A• → B• and g : B• → A• verify f ◦ g ∼ IdB and g ◦ f ∼ IdA then f
and g are quasi-isomorphisms and Hn(f)−1 = Hn(g).

Remark 1.32. If A is a general additive category, we still can consider the category of com-
plexes Kom(A) and the definition of K(A) also makes sense.

Definition 1.33. Let A be an abelian category. Then we define the derived category of A,
denoted D(A) to be the category whose objects are the ones of Kom(A), i.e. :

Ob(D(A)) = Ob(K(A)) = Ob(Kom(A)),

and arrows are defined as follows. Let A•, B• be two objects in D(A). The set of morphism
HomD(A)(A

•, B•) is defined as the set of equivalent classes of diagrams (called roofs) of the
form

C•

s

}}

f

!!
A• B•,

where C• is another object in Kom(A), s is a quasi-isomorphism and f is a morphism. Two
such diagrams are equivalent if they are dominated in K(A) by a third one of the same sort,
i.e. if there exists a commutative diagram in K(A) of the form

D

!!
u

~~
C•

s
�� ((

C ′•

vv ��
A• B•

12



such that s ◦ u is a quasi-isomorphisms.
The composition of two morphisms

C•1
qis

~~ !!

and C•2

!!

qis

}}
A• B• B• C•

is given by a commutative diagram in K(A) of the form

C•0

~~   

qis

��

C•1
qis

~~ !!

C•2

!!

qis

}}
A• B• C•.

Our goal now is to check that these definitions really define a category, in particular that
the composition exists and is unique up to equivalence. To do so, we need to introduce the
mapping cone which plays a central role in the definition of triangulated structures on K(A)
and D(A).

Definition 1.34. Let f : A• → B• be a morphism of complexes. Its mapping cone is the
complex C(f) defined by

C(f)n = An+1 ⊕Bn and dnC(f) :=

(
−dn+1

A 0
fn+1 dnB

)
.

Remark 1.35. • The mapping cone C(f) is indeed a complex: dn+1
B ◦ fn+1 = fn+2 ◦ dn+1

A

since f is a morphism of complexes.

• We have natural morphisms of complexes

τ : B• → C(f) and π : C(f)→ A•[1]

given by the natural injection Bn → An+1⊕Bn and the natural projection An+1⊕Bn →
An+1.

• The composition A• → B• → C(f) is nullhomotopic (i.e. homotopic to the trivial map),
such an homotopy is given by (ιn : An → An ⊕Bn−1)n∈Z. Indeed, we have :

· · · // An−1 // An
d //

ιn

ww

An+1 //

ιn+1

vv

· · ·

· · · // An ⊕Bn−1
d′
// An+1 ⊕Bn // An+2 ⊕Bn+1 // · · ·

and we have ιn+1 ◦ d = (dn+1
A , 0) and d′ ◦ ιn = (−dn+1

A , fn).

• The sequence 0 → B• → C(f) → A•[1] → 0 is exact: it comes from the fact that the
composition M → M ⊕ N → N is 0 in any additive category. In particular, we have a
long exact sequence

· · · → Hn(A•)→ Hn(B•)→ Hn(C(f))→ Hn+1(A•)→ · · · .

• Using the previous long exact sequence, we obtain that f is a quasi-isomorphism if and
only if Hn(C(f)) = 0 for all n ∈ Z.
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• By construction, any commutative diagram

A•1
f1 //

��

B•1 //

��

C(f1) //

��

A•1[1]

��
A•2

f2 // B•2 // C(f2) // A•2[1]

can be completed with an arrow C(f1)→ C(f2).

Proposition 1.36. Let f : A• → B• be a morphism of complexes and let C(f) be its mapping
cone with its natural arrows τ : B• → C(f) and π : C(f) → A•[1]. Then there exists a
morphism of complexes

g : A•[1]→ C(τ)

such that the following diagram commutes in K(A):

B• τ //

=

��

C(f) π //

=

��

A•[1]
−f //

g

��

B•[1]

=

��
B•

τ // C(f)
ττ // C(τ)

πτ // B•[1]

Proof. We construct g on degree n as the arrow

A•[1]n = An+1 −→ C(τ)n = Bn+1 ⊕ An+1 ⊕Bn

defined by (−fn+1, Id, 0). It clearly define a morphism of complexes. The inverse g−1 in K(A)
can be given by the projection onto the middle factor (note that g◦g−1 is homotopic to identity,
but not equal to identity in general). Now we let the reader check that the desired diagram is
indeed commutative up to homotopy.

Proposition 1.37. Let f : A• → B• be a quasi-isomorphism and g : C• → B• be an arbitrary
morphism. Then there exists a commutative diagram in K(A):

C•0
qis //

��

C•

g

��
A•

f

qis
// B•.

Proof. Consider the commutative diagram

C(τ ◦ g)[−1] //

��

C•

g

��

// C(f)

=

��

// C(τ ◦ g)

��
A•

f // B• τ // C(f) // A•[1].

By the previous proposition, we know that B•
τ // C(f) // A•[1] is isomorphic (in K(A))

to B• τ // C(f) // C(τ) , and thus it suffices to use the natural morphism C(τ ◦ g)→ C(τ)

given by the identity on the second factor of Cn+1 ⊕ C(f)n → Bn+1 ⊕ C(f)n.
Now define C•0 := C(τ ◦ g)[−1]. Notice that C•0 → C• is a quasi-isomorphism. Indeed, since

A• → B•, we have that Hn(C(f)) = 0 for all n ∈ Z (cf. Remark 1.35), and then applying the
long exact sequence in cohomology to τ ◦ g we get:

· · · // Hn(C•) // Hn(C(f)) // Hn(C(τ ◦ g)) // Hn+1(C•) // · · · .

But since Hn(C(f)) = 0 we have that Hn(C(τ ◦ g)) ' Hn+1(C•) for all n ∈ Z.

14



Remark 1.38. • By construction, one can check that if g is also a quasi-isomorphism, so
is C•0 → A•.

• Acually, a dual statement holds: assume that we have a quasi-isomorphism f : B• → A•

and any morphism B• → C•. Then we can construc a commutative diagram:

B•
f

qis
//

��

A•

��
C•

qis
// C•0 .

The proof is almost the same and is based on a dual statement of Proposition 1.36.
Corollary 1.39. The composition of arrows in Definition 1.33 exists and is well-defined.

Proof. It suffices to apply the previous proposition to the diagram :

C•1

!!

C•2
qis

}}
B• .

The unicity (up to equivalence) is left to the reader.
Remark 1.40. There is a natural functor QA : K(A)→ D(A) which is the identity on objects
and which sends a (homotopy class of a) morphism f : A• → B• to the roof

A
f

  

Id

��
A B.

Moreover, if f is a quasi-isomorphism, then QA(f) is an isomorphism, which inverse is given
by the roof

A
f

��

Id

  
B A.

Remark 1.41. In D(A), an object A• is isomorphic to 0 if and only if Hn(A•) ' 0 for all
n ∈ Z.
Definition 1.42. We say that a triangle

A•1 −→ A•2 −→ A•3 −→ A•1[1]

in K(A) (resp. D(A)) is distinguished if it is isomorphic in K(A) (resp. D(A)) to a triangle of
the form

A•
f // B•

τ // C(f) π // A•[1],

where f : A• → B• is a morphism of complexes.
Proposition 1.43. The natural shift functor A• → A•[1] and distinguished triangles given as
in Definition 1.42 make the homotopy category of complexes K(A) and the derived category
D(A) of an abelian category A into triangulated categories.

Moreover, the natural functor QA : K(A) → D(A) is an exact functor of triangulated
categories.

Proof. As the proof is long and technical, we refer to the literature ([7], I, 2 or [3], IV, 2).
Remark 1.44. The idea behind the construction of the derived category is a procedure called
localization: one constructs the localization of a category with respect to a localizing class of
morphisms (which are quasi-isomorphisms in our case). The localized category can be made
triangulated in a natural way if the localizing class of morphisms satisfies some conditions of
compatibility with triangulation.
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1.4 Properties of the derived category

The derived category D(A) is not abelian, but there still are some useful properties related to
cohomology that we can prove.

Proposition 1.45. Let A,B,C ∈ A. We identify an object in A with its image under the full
embedding A → K(A), i.e. with the associated complex concentrated in degree 0. If the sequence

0 // A
f // B

g // C // 0

is exact in A then the triangle

A
f // B

g // C // A[1]

is distinguished in D(A).

Proof. First, we need to define an arrow C → A[1]. Notice that C(f) can be identified in this

case with the complex · · · // 0 // A
f // B // 0 // · · · , with A in degree −1 and B

in degree 0. Thus we can define the morphism of complexes C(f)→ C as :

· · · //

��

0 //

��

A
f //

��

B //

g
��

0 //

��

· · ·

· · · // 0 // 0 // C // 0 // · · · .
In particular, this morphism is a quasi-isomorphism by exactness of the initial short exact
sequence, and thus there is a inverse C → C(f) in D(A). Thus one can define the arrow
δ : C → A[1] by composing the arrows C → C(f) and the natural morphism C(f)→ A[1]. We
obtain the isomorphism of triangles (in D(A)):

A
f //

Id

��

B
g //

Id

��

C
δ //

��

A[1]

Id
��

A
f // B // C(f) // A[1].

Note that these arrows are in D(A) so they should be thought of as roofs.

Proposition 1.46. Suppose A• → B• → C• → A•[1] is a distinguished triangle in D(A). Then
there is a natural exact sequence

· · · → Hn(A•)→ Hn(B•)→ Hn(C•)→ Hn+1(A•)→ · · · .

Proof. By definition of distinguished triangles, we have an isomorphism

A• //

'
��

B• //

'
��

C• //

'
��

A•[1]

��
A•0

f // B•0
τ // C(f) π // A•0[1],

where f is a morphism of complexes, and the vertical arrows are isomorphisms in D(A), i.e.
quasi-isomorphisms. The sequence with the mapping cone induces a long exact sequence in
cohomology (see Remark 1.35), and by the isomorphisms in cohomology we get:

· · · // Hn(A•0) //

'
��

Hn(B•0) //

'
��

Hn(C(f)) //

'
��

Hn(A•0[1]) //

'
��

· · ·

Hn(A•) Hn(B•) Hn(C•) Hn+1(A•)

Since the first row is exact, up to composing with the isomorphisms, we get the desired natural
exact sequence.
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In the following, we will consider the full subcategory Kom∗(A), with ∗ = +,− or b,
consisting of complexes A• with An = 0 for n � 0, n � 0 or |n| � 0 respectively. The same
construction we performed before can be applied again to obtain the categories K∗(A) and
D∗(A).

Proposition 1.47. The natural functors D∗(A) → D(A), where ∗ = +,− or b, define equi-
valences of D∗(A) with the full triangulated subcategories of all complexes A• ∈ D(A) with
Hn(A•) = 0 for n� 0, n� 0 and |n| � 0 respectively.

Proof. Suppose Hn(A•) = 0 for n > n0. Then we have a quasi-isomorphism

· · · // An0−2 //

=
��

An0−1 //

=
��

ker(dn0
1 ) //
� _

��

0

��

// · · ·

· · · // An0−2 // An0−1 // An0 // An0+1 // · · · .

Thus A• is isomorphic in D(A) to a complex bounded above, i.e. a complex in D−(A). Similarly,
if Hn(A•) = 0 for n < n0 one considers :

· · · // An0−1 //

��

An0 //

��

An0+1 //

=
��

An0+2

=
��

// · · ·

· · · // 0 // coker(dn0−1) // An0+1 // An0+2 // · · · .

In the case ∗ = b, one can use both sequences combined. These prove that the functors are
essentially surjective, and they are clearly fully faithful, so the proof is finished.

Before going to the next section, we need to define the notion of injective and projective
resolutions, which will be useful when we will need to extend functors F : A → B into functors
RF : D(A)→ D(B).

Definition 1.48. Let A be an abelian category.

• An object I ∈ A (resp. P ∈ A) is said injective (resp. projective) if the functor Hom( , I)
is exact (resp. Hom(P, ) is exact).

• We say that the category A contains enough injective (resp. enough projectives) objects
if for any object A ∈ A there exists an injective morphism A→ I with I injective (resp.
a surjective morphism P → A with P projective).

• An injective resolution of an object A ∈ A is an exact sequence

0→ A→ I0 → I1 → · · ·

with all In injective. Similarly, a projective resolution of A consists in an exact sequence

· · · → P−1 → P 0 → A→ 0

with all P n projective.

Remark 1.49. • Since the functorsHom( , I) andHom(P, ) are left-exact for any objects
I and P , injectivity or projectivity can easily be described as follows.

An object I ∈ A is injective if for any injective arrow A ↪→ B and any arrow A → I,
there exists an arrow B → I such that the following diagram commutes:

A �
� //

  

B

��
I

17



Similarly, an object P ∈ A is projective if for any surjective arrow B � C and any arrow
P → C, there exist an arrow P → B such that the following diagram commutes:

B // // C

P

??__

• One notices that the datum of an injective resolution I• of A is equivalent to the datum
of a quasi-isomorphism A → I• with In = 0 for n < 0 and all In injective. Similarly, a
projective resolution P • of A is the datum of a quasi-isomorphism P • → A with P n = 0
for all n > 0 and all P n projective.

Proposition 1.50. Suppose that A is a category with enough injectives. For any A• ∈ K+(A),
there exist a complex I• ∈ K+(A) with In ∈ A injective ∀n ∈ Z and a quasi-isomorphism
A• → I•.

Proof. We prove it by induction. Since A• is bounded below, we may assume that it is of the
shape

0→ A0 → A1 → · · · .

By assumption, there exists an injective object I0 and an injective arrow A0 → I0. The induced
arrow A• → (I0 → 0→ · · · ) has the property that Hn(f0) is an isomorphism for n < 0 and is
injective for n = 0.

Suppose we have constructed a morphism

fi : A• −→ (· · · → I i−1 → I i → 0→ · · · )

such that Hn(fi) is an isomorphism for all n < i and injective for i = n, and such that all In
are injective. Then choose an injective object I i+1 containing Bi+1 := ((I i/I i−1) ⊕ Ai+1)/Ai,.
We have the arrows I i → I i+1 given by composing the arrows I i → I i/I i−1, I i/I i−1 → Bi+1

and Bi+1 ↪→ I i+2 ; and Ai → I i+1 in a similar way. We obtain the commutative diagram

· · · // Ai−1 //

f i−1
i+1
��

Ai //

f ii+1
��

Ai+1 //

f i+1
i+1
��

Ai+2 //

f i+2
i+1
��

· · ·

· · · // I i−1 // I i // I i+1 // 0 // · · · .

Now we just have to check that all induction properties are satisfied:

• First, the second row is still a complex by construction of I i+1.

• The middle square is commutative. Indeed, both composition Ai → Ai+1 → I i+1 and
Ai → I i → I i+1 are trivial by construction of Bi+1.

• The new map H i(fi+1) is now bijective: it was injective when we took I i/d(I i−1) as target
space, but now we restrict the latter to ker(I i → I i+1). But this kernel is composed by
the image of I i+1 (which vanishes in cohomology) and the image of Ai, thus it implies
surjectivity of H i(fi+1).

• The last thing to check is that H i+1(fi+1) is injective. But it is quite clear since up to
take the quotient with respect to Ai, the map Ai+1 → I i+1/I i is injective.

Corollary 1.51. Let A be an abelian category with enough injectives. Any object A• ∈ D(A)
with Hn(A•) = 0 for n � 0 is isomorphic in D(A) to a complex I• of injective objects with
In = 0 for n� 0.
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A dual statement of Proposition 1.50 is true in a category with enough projectives, consid-
ering K−(A) instead of K+(A): for any A• ∈ K−(A) there exists a complex P • ∈ K−(A) with
P n ∈ A projective objects and a quasi-isomorphism P • → A•.

A proof of the next two technical lemmas can be found in ([9], 2.38 and 2.39).

Lemma 1.52. Suppose A• → B• is a quasi-isomorphism between two complexes A•, B• ∈
K+(A). Then for any complex I• of injectives objects with In = 0 for n� 0 the induced map

HomK(A)(B
•, I•) ' // HomK(A)(A

•, I•)

is bijective.

Lemma 1.53. Let A•, I• ∈ K+(A) such that all In are injective. Then

HomK(A)(A
•, I•) = HomD(A)(A

•, I•).

For the next proposition, consider the full additive subcategory I ⊂ A of all injectives of an
abelian category A: we can construct as before the homotopy category K∗(I) and the functor
QA induces a natural exact functor ι : K∗(I)→ D∗(A).

Proposition 1.54. Suppose that A contains enough injectives. Then the natural functor

ι : K+(I)→ D+(A)

is an equivalence.

Proof. The functor is fully faithful. Indeed, let I•, J• be two complexes in K+(I). Since I is a
full subcategory and by the previous lemma, we have

HomK+(I)(I
•, J•) ' HomK+(A)(I

•, J•) ' HomD+(A)(I
•, J•).

To see that the functor is also essentially surjective, one applies Proposition 1.50.

2 Derived functors

2.1 Derived functors

In this section, the main goal will be to lift functors between abelian categories (or homotopy
categories) to functors between the associated derived categories.

Lemma 2.1. Let A,B be abelian categories, let F : K∗(A) → K∗(B) be an exact functor of
triangulated categories. Then F naturally induces a commutative diagram :

K∗(A) //

��

K∗(B)

��
D∗(A) // D∗(B)

if one of the following equivalent conditions holds true:

1. A quasi-isomorphism is mapped by F to a quasi-isomorphism.

2. The image of an acyclic complex is acyclic.
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Proof. First let’s show that these two conditions are equivalent. The step 1⇒ 2 is obvious. To
see 2⇒ 1, consider a morphism of complexes f : A• → B•, then the triangle

A• → B• → C(f)→ A•[1]

is distinguished, and C(f) is acyclic if and only if f is a quasi-isomorphism (cf. Remark 1.35).
But since F is exact and additive, F (f) is a quasi-isomorphism if and only if C(F (f)) = F (C(f))
is acyclic.

Assume that 1 is satisfied. The functor F can easily be lift up to the derived categories: an
object A• is mapped to F (A•), viewed as objects in the derived categories, and a roof

C•

qis

}} !!
A• B•

is mapped to the roof
F (C•)

qis

zz $$
F (A•) F (B•)

Let F : A → B be a left exact functor of abelian categories, and assume that A contains
enough injectives. The functor F induces a functor K(F ) : K+(A)→ K+(B) sending a complex
(An)n∈Z to (F (An))n∈Z, and a morphism of complexes (fn)n∈Z to (F (fn))n∈Z. The latter makes
sense in the homotopy categories: if h is a homotopy between to morphisms of complexes f
and g, then F (h) is a homotopy between F (f) and F (g) since F is additive.

We have the equivalence ι : K+(IA)→ D+(A), so we can consider a quasi-inverse ι−1 of ι by
choosing a complex of injective objects quasi-isomorphic to any given complex that is bounded
below. We obtain the diagram:

K+(IA) �
� //

ι

%%

K+(A)

QA
��

K(F ) // K+(B)

QB
��

D+(A)ι−1

YY

D+(B).

Definition 2.2. The right derived functor of F is the functor:

RF := QB ◦K(F ) ◦ ι−1 : D+(A) −→ D+(B).

In other words, the right derived functor consists in replacing a complex by a complex of
injectives, applying K(F ) and embedding it into the target derived category.

Proposition 2.3. 1. There exists a natural morphism of functors

QB ◦K(F ) −→ RF ◦ QA.

2. The right derived functor RF : D+(A) → D+(B) is an exact functor of triangulated
categories.

Proof. 1. Let A• ∈ D+(A) and I• := ι−1(A•). The natural transformation Id → ι ◦ ι−1
yields a functorial morphism A• → I• in D+(A). This morphism is given by a roof
A• ← C• → I•, but since I• is injective it yields to a unique morphism A• → I• in K(A)
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by Lemma 1.52. Notice that this morphism is independent on the choice of C•: assume
we have two equivalent roofs

C•

  }}

and D•

}} !!
A•

tC
// I• A• // I•,

then it means that we have the commutative diagram

E•

}} !!
f

��

g

��

C•

�� ((

D•

��vv
A• //

tC , tD
// I•.

We obtain the equalities g = tC ◦ f and g = tD ◦ f . But f is a quasi-isomorphism, so by
Lemma 1.52 there is a unique map j : A• → I• such that g = j ◦ f . Thus we get tC = tD.
Finally, we obtain a functorial morphism

K(F (A•))→ K(F (I•)) = RF (A•).

2. The category K+(IA) is triangulated: if f : I• → J• is a morphism of complexes between
complexes of injective objects, then C(f) is also a complex of injective objects. The
functor ι : K+(IA)→ D+(A) is clearly an exact functor (between triangulated categories),
and thus ι−1 is also exact (cf. Proposition 1.16). Moreover, K(F ) is exact: F is additive,
so F preserves mapping cones. Finally, since QB is exact, we obtain that RF is the
composition of three exact functors and, therefore, is itself exact.

Definition 2.4. Let RF : D+(A)→ D+(B) be the right derived functor of a left exact functor
F : A → B. Then for any complex A• ∈ D+(A) we define:

RiF (A•) := H i(RF (A•)) ∈ B.

Remark 2.5. • If A is a complex concentrated in degree 0, then we can give a more
precise description of RiF (A). Indeed, consider an injective resolution I• of A, i.e. an
exact sequence

0→ A→ I0 → I1 → · · · .
We obtain that RiF (A) = H i(F (I•)), and in particular we have R0F (A) = F (A).

• Any short exact sequence
0→ A→ B → C → 0

in A gives rise to a long exact sequence

0→ F (A)→ F (B)→ F (C)→ · · · → RnF (B)→ RnF (C)→ Rn+1F (A)→ · · · .

Indeed, the exact sequence in A gives rise to a distinguished triangle RF (A)→ RF (B)→
RF (C) → RF (A)[1] by Proposition 1.45, then it suffices to apply Proposition 1.46 to
conclude.

• All the constructions we made could have been performed in the dual way: if you consider
a functor F which is right exact, K(F ) : K−(A)→ K−(B) and then define the left derived
functor LF by applying K(F ) to a complex P • of projective objects quasi-isomorphic to
A•.
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Now we will give a generalization of the construction of the right derived functor.

Proposition 2.6. Let A,B be abelian categories, and F : K+(A) → K(B) an exact functor.
Suppose there exists a triangulated subcategory KF ⊂ K+(A) which is adapted to F , i.e. which
satisfies the following two conditions:

1. If A• ∈ KF is acyclic, then F (A•) is acyclic.

2. Given any A• ∈ K+(A) there is an object TA• ∈ KF and a quasi-isomorphism A• → TA•.

Then there exists a right derived functor RF : D+(A) → D(B) satisfying the properties of
Proposition 2.3.

Proof. The functor RF is defined as follows:

• Let A• ∈ D+(A). There is a quasi-isomorphism A• → TA• for some TA• ∈ KF . Then
define RF (A•) := F (TA•).

• Let A•, B• ∈ D+(A). Consider an arrow A• → B• in D+(A) given by a roof A• ← C• →
B•. In K+(A) we have the diagram

C•
qis //

qis

��

TC• ,

TA•

and it can be completed in K+(A) into the diagram

C•
qis //

qis

��

TC•

qis

��
TA• qis

// D•A.

Composing with the quasi-isomorphism D•A → TD•A , and doing the same with B•, we
obtain a roof

TC•

""

qis

||
TD•A TD•B .

Since TD•A and TA• are quasi-isomorphic within KF , so are their images by the functor
F (cf. proof of Lemma 2.1), and the same holds with B•. Thus they define isomorphic
objects in D(B). We defined the image of our initial arrow A• → B• in D+(A) by RF as
the arrow given by the roof

F (TC•)

%%

qis

yy
F (TA•) F (TB•).

Corollary 2.7. Let F : A → B be a left exact functor (here A might not contain enough
injectives), and assume that there exists a subclass of objects IF ⊂ A which are F -adapted, i.e.
which is stable by finite sum and such that:

1. If A• ∈ K+(A) is acyclic with all A• ∈ IF , then F (A•) is acyclic.

22



2. Any object in A can be embedded into an object of IF .

Then there exists a right derived functor RF : D+(A) → D(B) satisfying the properties of
Proposition 2.3.

Proof. It suffices to check that the subcategory KF ⊂ K+(A) defined as the full subcategory of
complexes of objects in IF satisfies the hypothesis of Proposition 2.6.

First, since IF is stable by finite sum, KF contains all mapping cones of morphism between
any complexes in it. Then, by the Proposition 1.18, KF is indeed a triangulated subcategory
of K+(A). Now, we just need to check the two conditions of the theorem. The first condition
is obvious, and the second conditions can be proved by the same proof given for Proposition
1.50 (the latter does not use injectivity of objects involved!).

A similar construction could have been done, once again, with right exact functors. As
before, we would have asked any object A in A to fit in an exact sequence P → A → 0 for
some P ∈ IF .

Definition 2.8. Let A ∈ A be an object in an abelian category containing enough injectives.
Then we defined

Extn(A, ) := Hn ◦RHom(A, ).

Proposition 2.9. Suppose A,B ∈ A are objects of an abelian category containing enough
injectives. Then for all n ∈ Z there is a natural isomorphism

Extn(A,B) ' HomD(A)(A,B[n]).

Proof. Notice that here we identify once again objects in A with complexes concentrated
in degree 0. Consider an injective resolution B → I0 → I1 → · · · , then RHom(A,B) '
(Hom(A, In))n∈N. Now f ∈ Hom(A, In) is the kernel of Hom(A, In) → Hom(A, In+1) if and
only if it defines a morphism of complexes f : A→ I•[n]. Such a morphism is (homotopically)
trivial if and only if f is in the image of Hom(A, In−1)→ Hom(A, In). These last claims reads
on the diagram

· · · // 0 // A //

f
��||

0 // · · ·

· · · // In−1 // In // In+1 // · · · .
Then Extn(A,B) ' HomK(A)(A, I

•[n]) ' HomD(A)(A, I
•[n]) since I• is a complex of injectives.

Remark 2.10. The name “Ext” comes from “Extensions” because Ext1(A,B) is in bijection
with the set of extension 0 → B → L → A → 0 in A. Indeed, consider an element in
Ext1(A,B) ' HomD(A)(A,B[1]) given by a roof A ← L• → B[1]. Assume that Li = 0 ∀i > 0
by replacing L0 by ker(d0L) if necessary. Then we have the extension

0→ B → L0 ⊕B
L−1

→ A→ 0.

Conversely, if 0 → B → L → A → 0 is an extension in A, then define L• by L−1 = B,
L0 = L and all other Li’s trivial. Then we get a roof A← L• → B[1].

Definition 2.11. LetA• ∈ Kom(A) andB• ∈ K+(A). We defined the inner hom Hom•(A•, B•)
as the complex

Homn(A•, B•) :=
⊕
k∈Z

Hom(Ak, Bk+n)

with differentials d((fk)k∈Z) := dB ◦ fk − (−1)nfk+1 ◦ dA.
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Proposition 2.12. Let A• ∈ Kom(A) be a complex of objects in a abelian category containing
enough injectives. The the right derived functor

RHom•(A•, ) : D+(A)→ D(Ab)

exists, and if we set Extn(A•, B•) := Hn(RHom•(A•, B•)) we have

Extn(A•, B•) ' HomD(A)(A
•, B•[n]).

Proof. To prove the existence of RHom•(A•, B•), one checks that the full triangulated sub-
category of K+(A) of complexes of injectives objects is adapted to this functor. The second
statement follows from arguments of the proof of Proposition 2.9 adapted to this more general
situation.

Remark 2.13. If the abelian categoryA has also enough projectives, then we obtain a bifunctor

RHom( , ) : D−(A)op ×D+(A)→ D(Ab).

IfA has only enough injectives, we still can defined a derived functor RHom( , B•) : D−(A)op →
D(Ab) if B• is bounded below.

Before going on a next section, we give a last result on derived functor which will be really
useful when considering composition of functors.

Proposition 2.14. Let F1 : A → B and F2 : B → C be two left exact functors between abelian
categories. Assume that there exist adapted classes IF1 ⊂ A and IF2 ⊂ B for F1 and F2

respectively such that F (IF1) ⊂ IF2.
Then the derived functor R(F2 ◦ F2) : D+(A) → D+(C) exists and there is a natural iso-

morphism
R(F2 ◦ F1) ' RF2 ◦RF1.

Proof. The existence of RF1 and RF2 are provided by the assumptions, and since IF1 is adapted
to F2 ◦F1, R(F2 ◦F1) exists aswell. The natural isomorphism is given by the following remark.
Let A• ∈ D+(A) be isomorphic to I• ∈ K+(IF1), then

R(F2 ◦ F1)(A
•) ' K(F2 ◦ F1)(I

•),

' (K(F2) ◦K(F1))(I
•),

' K(F2)(K(F1)(I
•)),

' RF2(K(F1)(I
•)),

' RF2(RF1(A
•)).

2.2 Spectral sequences

We consider an abelian category A.

Definition 2.15. A spectral sequence is the data of a collection of objects

(Ep,q
r , En), n, p, q, r ∈ Z, r ≥ 1,

and arrow
dp,qr : Ep,q

r → Ep+r,q−r+1
r

satisfying the next four conditions:

1. dp+r,q−r+1
r ◦ dp,qr = 0 for all p, q, r.
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2. There are isomorphisms
Ep,q
r+1 ' H0(Ep+•r,q−•r+•

r ).

3. For any (p, q) there exists an r0(p, q) such that dp,qr = dp−r,q+r−1r = 0 for al r ≥ r0.

4. There is a decreasing filtration

· · · ⊂ F p+1En ⊂ F pEn ⊂ · · · ⊂ En

such that ⋂
F pEn = 0 and

⋃
F pEn = En,

and isomorphisms
Ep,q
r0(p,q)

' F pEp+q/F p+1Ep+q.

Remark 2.16. • For all r ≥ r0(p, q), we have Ep,q
r ' Ep,q

r0(p,q)
. Usually we will denoted

Ep,q
∞ := Ep,q

r0(p,q)
.

• When the objects of a spectral sequence is given on a layer (i.e. for a given r ≥ 1), then
the next ones can be deduced (up to isomorphism) from the property 2. Thus we will
often introduce a spectral sequence writing

Ep,q
r ⇒ Ep+q

for a given r. In most cases, it will be given for r = 2.

• Let’s give an example of spectral sequence. For instance, assume that all objects con-
sidered are (finite dimensional) vector spaces, and that all differentials on layer 2 vanish
for some reason. Then, for all p, q, Ep,q

2 = Ep,q
∞ . Then Ep,q

2 ' F pEp+q/F p+1Ep+q yields

F pEn = Ep,n−p
2 ⊕ F p+1En = Ep,n−p

2 ⊕ Ep+1,n−p−1 ⊕ F p+2En = · · · .

Thus F pEn =
⊕
k≥0

Ep+k,n−p−k, and we obtain

En =
⋃

F pEn =
⊕
k∈Z

Ek,n−k
2 .

• If we just know that dp,qr = dp−r,q+r−1r = 0 for some fixed p and q, i.e. Ep,q = Ep,q
∞ , then

Ep,q
r 6= 0 =⇒ Ep+q 6= 0

since 0 6= Ep,q
r = F pEp+q/F p+1Ep+q.

• If Ep,q
r = 0 for all p, q for a given r, then 0 = F pEp+q/F p+1Ep+q thus F pEp+q = F p+1Ep+q

for all p, q. But then
Ep+q =

⋃
F pEp+q = F 0Eq,

0 =
⋂

F pEp+q = F 0Eq,

and thus we can conclude that En = 0 for all n ∈ Z.

Definition 2.17. A double complex K•,• consists of objects Ki,j for i, j ∈ Z and morphisms

di,jI : Ki,j → Ki+1,j and di,jII : Ki,j → Ki,j+1

satisfying
d2I = d2II = dIdII + dIIdI = 0.

The total complex K• := tot(K•,•) of the double complex is the complex Kn =
⊕

i+j=n

Ki,j with

differentials d = dI + dII .
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The complex K• = tot(K•,•) is naturally endowed with a decreasing filtration

F lKn :=
⊕
j≥l

Kn−j,j,

which satisfies dI(F lKn) ⊂ F l(Kn+1).
We will write Hn

I (K•,•) for the complex given by (Hn(K•,q))q∈Z, and similarly Hn
II(K

•,•) :=
(Hn

II(K
q,•))q∈Z.

Proposition 2.18. Suppose K•,• is a double complex such that for any n one has Kn−l,l = 0
for |l| � 0. Then there is a spectral sequence:

Ep,q
2 = Hp

IIH
q
I (K•,•)⇒ Hp+q(K•).

The proof is based on the structure of filtred complex of tot(K•,•): a complex A• is a filtred
complex if it admits a decreasing filtration

· · ·F lAn ⊂ F l−1An ⊂ · · · ⊂ An

for every object An such that d(F lAn) ⊂ F lAn+1.

Proof. See ([3], III, §7, 5).

Definition 2.19. Let A• be a complex in K+(A). A Cartan-Eilenberg resolution of A• is a
double complex C•,• together with a morphism of complexes A• → C•,0 such that :

1. Ci,j = 0 for j < 0.

2. The sequences
An → Cn,0 → Cn,1 → · · ·

are injective resolutions of An, and the induced sequences

ker(dnA)→ ker(dn,0I )→ ker(dn,1I )→ · · ·

Im(dnA)→ Im(dn,0I )→ Im(dn,1I )→ · · ·
Hn(A•)→ Hn

I (C•,0)→ Hn
I (C•,1)→ · · ·

are injective resolutions of ker(dnA), Im(dnA) and Hn(A•) respectively.

3. All the short exact sequences

0→ ker(di,jI )→ Ci,j → Im(di,jI )→ 0

split.

Lemma 2.20. If A has enough injectives, then any A• ∈ K+(A) admits a Cartan-Eilenberg
resolution.

Proof. See ([3], §7, 11).

Proposition 2.21. Let F1 : K+(A) → K+(B) and F2 : K+(B) → K(C) be two exact functors.
Suppose that A and B contain enough injectives and that the image under F1 of a complex
I• ∈ K+(A) of injective objects is contained in a F2-adapted triangulated subcategory KF2 of
K+(B).

Then for any complex A• ∈ D+(A) there exists a spectral sequence

Ep,q
2 = RpF2(R

qF1(A
•))⇒ En = Rn(F2 ◦ F1)(A

•).
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Proof. First assume that the proposition is true for F1 = Id, i.e. we have the spectral sequence

Ep,q
2 = RpF2(H

q(A•))⇒ En = Rn(F2)(A
•).

By construction of derived functors we have

RpF2(R
qF1(A

•)) = Rp(Hq(F1(I
•)))

for some complex of injective objects I• quasi-isomorphic to A•, and since

Rn(F2 ◦ F1)(A
•) = Hn(F2 ◦ F1(I

•)) = RnF2(F1(I
•)),

the general case is also true.
Thus it suffices to show the proposition with F1 = Id. We will write F := F2. Consider a

Cartan-Eilenberg resolution C•,• of A• and set K•,• := F (C•,•). Since F is additive, it preserves
direct sums, and since Ci,j ' ker di,jI ⊕ Im di,jI we have Hq

I (K•,p) = FHq
I (C•,p). But fixing q and

running p, Hq
I (C•,p) defines an injective resolution of Hq(A•) and thus we obtain

Hp
IIH

q
I (K•,•) = RpF (Hq(A•)).

Applying the spectral sequence defined in Proposition 2.18, and using the fact that A• →
tot(C•,•) is a quasi-isomorphism, we find the limit

Hp+q(tot(K•,•)) = Hp+q(F (tot(C•,•))),

= Hp+q(RF (A•)),

= Rp+qF (A•).
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Part II

Algebraic geometry
In this part, we introduce basic notions in algebraic geometry. We use the language of schemes
but we try to skip scheme-theoretic properties as we focus on the notion that will be used in
the last part. More content can be found in [8] and [4].

3 Varieties and schemes

3.1 Varieties and morphisms

Let k be a field, A be the ring k[x1, . . . , xn]. We denote by An
k (or An when the context is clear)

the affine n-space kn endowed with the Zariski topology in which closed subsets are algebraic
subsets, i.e. the ones of the form

Z(T ) := {x ∈ An | f(x) = 0 for all f ∈ T}

for some subset T ⊆ A.

Definition 3.1. Irreducible closed subsets of An (with the induced topology) are called affine
varieties. Open subsets of an affine variety, endowed with the induced topology, are called
quasi-affine varieties.

Given an affine variety V ⊆ An, the set I(V ) ⊆ A is the ideal of A given by all polynomials
vanishing on V . Then we define the affine coordinate ring of V as the quotient ring A/I(V ),
and the dimension of V as the (Krull) dimension of A/I(V ).

In this text, we will be more interested in the notion of projective variety. Let Pn be the
usual projective n-space. Let S = k[x0, . . . , xn] be the usual polynomial ring considered as a
graded ring (with the natural graduation deg(xi) = 1). For a subset T of homogeneous elements
in S, set

Z(T ) := {x ∈ Pn | f(x) = 0 for all f ∈ T},

(the condition f = 0 is well defined in Pn for f homogeneous). A subset Y ⊆ Pn is called
algebraic if there exists a set T of homogeneous elements in S such that Y = Z(T ). We defined
the Zariski topology on Pn by defining algebraic sets as closed subsets.

Definition 3.2. A projective variety is an irreducible closed subset of Pn (with the induced
topology). An open subset of a projective variety, endowed with the induced topology, is a
quasi-projective variety.

The dimension of a (quasi-)projective variety is defined as its dimension as a topological
space, i.e. the supremum of all integers n such that there exist a chain Z0 ⊂ · · · ⊂ Zn of distinct
irreducible closed subsets.

Proposition 3.3. A projective (resp. quasi-projective) variety admits a finite cover by open
subsets homeomorphic to affine (resp. quasi affine) varieties.

Proof. It is enough to show that Pn admits a cover by opens Ui’s homeomorphic to An, then
any projective variety V ⊆ Pn admits a cover V ∩ Ui).

Consider the subset Hi ⊆ Pn defined as Z({xi}), and define Ui := Pn rHi. Then set

ϕi : Ui −→ An

[a0 : . . . : an] 7−→ (a0
ai
, . . . , ai−1

ai
, ai+1

ai
, . . . , an

ai
)
.
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The map ϕi is clearly bijective. Without loss of generality, assume i = 0. Let Y be a
closed subset of U0, and Y be its closure in Pn. Then Y = Z(T ) for some subset T ⊆ Sh

(where Sh denotes the subset of all homogeneous elements in S). Thus ϕ0(Y ) = Z(T ′) where
T ′ ⊆ A = k[y1, . . . , yn] is the subset

T ′ = {f(1, y1, . . . , yn) | f ∈ T}.

Conversely, let F be a subset of A, then ϕ−10 (Z(F )) = Z(F ′) ∩ U0, where

F ′ := {xe0g(
x1
x0
, . . . ,

xn
x0

) | g ∈ F of degree e} ⊆ S = k[x0, . . . , xn].

Before to define morphisms of varieties, we will briefly recall some constructions of sheaves,
and in particular introduce the notion of sheaves of modules. For more general sheaf theory,
we refer to ([3], I, 5) or ([8], II, 1).

Definition 3.4. Let f : X → Y be a continuous map between topological spaces, let F be a
sheaf of abelian groups on X and G be a sheaf of abelian groups on Y . We define:

• the direct image sheaf on Y by f∗F(V ) := F(f−1(V )) for any open V ⊆ Y ,

• the inverse image sheaf f−1G on X to be the sheaf associated to the presheaf U 7→
lim−→V⊇f(U)

G for every open U ⊆ X, the limit taken on every open V ⊆ Y containing
f(U).

In the case of the inclusion i : Z ↪→ X of a subspace Z of X (with the induced topology),
we will often write F|Z := i−1F .

To define the next notion, recall that a ringed space (X,OX) is the data of a topological
space X and a sheaf of rings OX over it.

Definition 3.5. Let (X,OX) be a ringed space.

• A sheaf of OX-modules (or simply an OX-module) is a sheaf F on X such that for
every open subset U ⊆ X, F(U) is an OX(U)-module, and for any inclusion V ⊆ U the
restriction map F(U)→ F(V ) is a morphism of OX(U)-modules.

• A morphism ϕ : F → G of OX-modules is a morphism of sheaves such that the maps
ϕ(U) are morphism of OX(U)-modules.

Note that the kernel, cokernel, subsheaf, image, quotient, direct product, direct limit and
inverse limit of OX-modules are OX-modules. If F is a sheaf of OX-modules, then F|U is a
sheaf of OX |U -modules.

Remark 3.6. A particular example of OX-module is the sheaf O⊕nX called free of rank n. A
OX-module F over X is said to be locally free if X can be covered by open subsets U such that
F|U is a free OX |U -module.

A locally free OX-module of rank 1 is called invertible. Invertible sheaves play an important
role that we will discuss later in this text.

Another important example is the following: a sheaf of ideals F is an OX-module such that
for all open U ⊆ X, F(U) is an ideal of OX(U). In particular, F is an OX-submodule of OX .

Definition 3.7. Let F and G be two OX-modules. We define:

• the sheaf Hom, denotedHom(F ,G), to be the sheaf ofOX-modules U 7→ HomOX |U (F|U ,G|U)
where the latter denotes the OX(U)-module of morphism of OX |U -modules between F|U
and G|U ;
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• the tensor product F ⊗OX G to be the sheaf associated to the presheaf U 7→ F(U)⊗OX(U)

G(U).

Now, let’s look back to our construction of direct and inverse image of sheaves.

Definition 3.8. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces, that is a couple
(f, f#) where f : X → Y is a continuous map and f# : OY → f∗OX is a morphism of sheaves.
Let G be an OY -module. Then we define the OX-module f ∗G, called inverse image of G as:

f ∗G := f−1G ⊗f−1OY OX .

Given such an f : (X,OX) → (Y,OY ), if F is an OX-module, then the morphism f# :
OY → f∗OX induces a structure of OY -module on f∗F .

Definition 3.9. A ringed space (X,OX) is a locally ringed space if for all x ∈ X the stalk OX,x
is a local ring.

A morphism of locally ringed spaces f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces
such that for all x ∈ X, the map induced on stalks f#

x : OY,f(x) → OX,x is a local morphism of
rings, i.e. the preimage by f#

x of the maximal ideal of OX,x is the maximal ideal of OY,f(x).

In this definition, the induced map on stalks is defined as follows: the map f# : OY → f∗OX
induces maps on stalks f#

f(x) : OY,f(x) → (f∗OX)f(x), but (f∗OX)f(x) = OX,x by definition of f∗.

In order to define morphisms of varieties, we will endow any variety with a structure of
locally ringed space.

Let k be an algebraically closed field.

Definition 3.10. Let V be an affine variety in An
k , let U be an open subset of V . A regular

function on U is a map f : U → k such that for every point x ∈ U , there exists an open
neighborhood W ⊆ U containing x and polynomials g, h ∈ A := k[x1, . . . , xn] such that h 6= 0
on W and f = g/h on W .

One can check that a regular function is continuous if we identify k with A1
k with the Zariski

topology.
There is a similar definition for projective varieties.

Definition 3.11. Let P be an affine variety in Pnk , let U be an open subset of P . A regular
function on U is a map f : U → k such that for every point x ∈ U , there exists an open
neighborhood W ⊆ U containing x and homogeneous polynomials g, h ∈ S := k[x0, . . . , xn] of
same degree such that h 6= 0 on W and f = g/h on W .

Such g and h do not define functions on Pnk but their quotient is well defined.
For now on, we will call variety any (quasi-)affine variety or (quasi-)projective variety.

Definition 3.12. Let X be a variety on k. For each open U ⊆ X, let O(U) be the ring of
regular functions on U . We define the sheaf of regular functions of X, denoted OX , to be the
sheaf U 7→ O(U) with obvious restriction maps.

The fact that OX is a sheaf is not hard to check: a regular functions which is locally 0 is
0, and a functions which is locally regular is regular. Now we can consider a variety X as a
ringed space (X,OX).

Remark 3.13. The homeomorphisms defined in Propositon 3.3 induce morphisms of ringed
spaces (Ui,OUi) → (An,OAn), i.e. we have the map − ◦ ϕi : OAn → ϕi∗OUi which is a sheaf
morphism.

Let’s give some properties of OX .
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Proposition 3.14. Let X be an affine variety in An, and define A(X) = k[x1, . . . , xn]/I(Y ).
Then:

1. for each x ∈ X, OX,x ' A(X)mx where mx is the (maximal) ideal of functions vanishing
at x,

2. OX(X) ' A(X).

Proof. 1. For any x ∈ X there is a natural morphism A(X)mx → OX,x which sends a quotient
f/h, seen as a function defined locally near x, to its germ in the stalk OX,x. This map is
clearly injective since the quotient does not depend on the choice of a neighborhood of x
and it is surjective by definition of OX .

2. Notice that OX(X) ⊆
⋂
mx

A(X)mx by definition of regular functions, where the A(X)mx

are seen as subrings of the quotient field of A(X). Now, notice that the maximal ideals
of A(X) are exactly the mx for x ∈ X, thus we get

A(X) ⊆ OX(X) ⊆
⋂
x

A(X)mx .

To conclude, recall that any integral domain is equal to the intersection of its localizations
at all maximal ideals.

An important consequence of this result is the fact that every stalk OX,x is a local ring.
Indeed, we proved earlier (cf. Remark 3.13) that any variety X can be covered by open subsets
Ui such that (Ui,OUi) is isomorphic (as a locally ringed space) to an affine variety (Vi,OVi).
We can now define the notion of morphism of variety.

Definition 3.15. Let X, Y be two varieties over an algebraically closed field k. A morphism
from X to Y is a continuous map ϕ : X → Y such that the precomposition by ϕ induces a
morphism of locally ringed space (X,OX)→ (Y,OY ).

In other words, a morphism between varieties is a continuous map which sends regular
functions defined on an open V ⊆ Y to regular functions defined on f−1(V ) ⊆ X. For instance,
the homeomorphism ϕi : Ui → An defined in Proposition 3.3 is an isomorphism of varieties. In
particular, any variety can be covered by affine varieties (in the sense that the inclusion maps
are homeomorphism on their images).

3.2 Schemes

Let A be a ring, let SpecA be the set of all primes ideal of A. For any ideal a of A, let
V (a) ⊆ SpecA be the set of all prime ideals which contain a.

Lemma 3.16. We can define a topology on SpecA, called the Zariski topology, by taking the
subsets of the form V (a) to be the closed subsets of SpecA. In particular, SpecA = V ({0})
and ∅ = V (A).

Proof. It’s enough to show that V (ab) = V (a) ∪ V (b), V (
∑

ai) =
⋂
V (ai). See ([4], 2).

We want to give a structure of ringed space to SpecA.

Definition 3.17. We define a sheaf of rings OSpecA, called structure sheaf of SpecA, as follows.
For any open U ⊆ SpecA, defineOSpecA(U) as the ring of functions s : U →

∐
p∈U

Ap which verify:

1. for all p ∈ U , s(p) ∈ Ap,
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2. for every p ∈ U , there is an open neighborhood V of p and elements a, f ∈ A such that
for every q ∈ V , f /∈ q and s(q) = a/f .

One can check that it is indeed a sheaf. Given a ringA, we call the ringed space (SpecA,OSpecA)
the spectrum of A. Notice that the open subsets D(f), f ∈ A, defined as the complement of
V ((f)) form an open basis for the topology of SpecA.

Proposition 3.18. Let A be a ring and (SpecA,OSpecA) be its spectrum. For any p ∈ SpecA,
we have OSpecA,p = Ap.

Proof. Denote O = OSpecA to simplify the notation. Define the homomorphism ϕ : Op → Ap

which sends any local section in a neighborhood of p to s(p) ∈ Ap.

• ϕ is surjective: if p ∈ D(f) then for any a/f ∈ Ap, a, f ∈ A and f /∈ p, the local section
given by the image of a/f in the local rings over D(f) takes the value a/f over p.

• ϕ is injective: assume s(p) = t(p). We can assume by taking a small enough neighborhood
U of p that s = a/f and t = b/g on U with a, b, f, g ∈ A and f, g /∈ p. Thus we
have a/f = b/g in Ap, so there is an h /∈ p such that h(ga − fb) = 0. Thus over
D(f) ∩ D(g) ∩ D(h), we have s = t, i.e. the local sections s and t coincide on an open
neighborhood of p, so they are equal in Op.

Remark 3.19. To be more precise, we have that for any element f ∈ A, the ringOSpec(A)(D(f))
is isomorphic to the ring Af . In particular, OSpecA(SpecA) ' A. In fact, it is possible to define
OX by setting OX(D(f)) := Af (see [4], 2).

Proposition 3.20. If ϕ : A → B is a homomorphism of rings, then ϕ induces a natural
morphism of locally ringed spaces

(f, f#) : (SpecB,OSpecB)→ (SpecA,OSpecA)

where f : SpecB → SpecA is a continuous map and f# : OSpecA → f∗OSpecB is a morphism
of sheaves.

Proof. We define f : SpecB → SpecA by f(p) = ϕ−1(p). It’s easy to see that f−1(V (a)) =
V (ϕ(a)) for any ideal a of A, thus f is continuous. Now, for any prime ideal p ⊆ B notice that
an element in A r ϕ−1(p) is sent to a unit through the composition A → B → Bp, so by the
universal property of the localization we obtain a homomorphism ϕp : Aϕ−1(p) → Bp such that
the diagram

A
ϕ //

ϕp

��

Bp

Aϕ−1(p)

;;

commutes. Moreover ϕp is local.
Now, for any open V ⊆ SpecA we want to define a morphism f# : OSpecA(U)→ OSpecB(f−1(U)).

To do so, consider a section σ ∈ OSpecA(U), i.e. a map σ : U →
∐
p∈U

Ap. Then f#(U)(σ) is

defined via the composition

f−1(U)
f // U ∩ Im(f) σ //

∐
Aϕ−1(q)

qϕq //
∐
Bq.

Finally, we identify the morphism f#
p with the map ϕp which is a local ring homomorphism, so

(f, f#) is a morphism of locally ringed spaces.
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Remark 3.21. In fact, the converse holds: any morphism of locally ringed spaces SpecB →
SpecA arises from a homomorphism of rings ϕ : A→ B ([8], II, 2.3).

Definition 3.22. An affine scheme is a locally ringed space (X,OX) which is isomorphic to
the spectrum of a ring.

A scheme is a locally ringed space (X,OX) such that every point x ∈ X has an open
neighborhood U such that (U,OX |U) is an affine scheme.

Example 3.23. • If k is a field, Spec k is an affine scheme consisting in a singleton (viewed
as a topological space) and the (constant) sheaf k.

• If k is an algebraically closed field, we define An
k := Spec k[x1, . . . , xn], called the affine

space over k. Hilbert’s Nullstellensatz tells us that the closed points (i.e. the maximal
ideals) are in one-to-one correspondance with the space kn. Moreover, this correspondance
yields an isomorphism between the set of closed point (with the induced topology) and
the variety An

k .

An affine scheme is always quasi-compact, but this is not true for general schemes. Usually,
we will work with X being a noetherian scheme, that is a quasi-compact scheme such that X
admits a covering of affine subsets SpecAi with Ai’s noetherian rings. It turns out that this
is equivalent to the property that for every open affine subsets SpecA, A is a noetherian ring.
See ([8], II, 3.2).

Let S be a graded ring. Set S+ =
⊕
d>0

Sd, called irrelevant ideal of S. Let ProjS be the set

of all homogeneous prime ideals p of S which do not contain the irrelevant ideal S+. For any
homogeneous ideal a of S, we define the subset V (a) = {p ∈ ProjS|a ⊆ p}.

Definition 3.24. We define a topology on ProjS by taking the closed subsets to be the subsets
of the form V (a).

Recall that given a homogeneous ideal p ∈ ProjS, the ring S(p) is defined as the set of
elements of degree 0 in the localized ring T−1S, where T is the multiplicative system of all
homogeneous elements of S which are not in p. We define a sheaf of rings OProjS as follows.
For any open U ⊆ ProjS, define OProjS(U) as the ring of functions s : U →

∐
p∈U

A(p) which

verify:

1. for all p ∈ U , s(p) ∈ S(p),

2. for every p ∈ U , there is an open neighborhood V of p and homogeneous elements a, f ∈ S
of same degree such that for every q ∈ V , f /∈ q and s(q) = a/f in S(q).

Proposition 3.25. 1. For any p ∈ ProjS, the stalk OProjS,p is isomorphic to the local ring
S(p).

2. For any homogeneous f ∈ S+, let D+(f) := {p ∈ ProjS|f /∈ p}. Then D+(f) is open in
ProjS, and these opens cover ProjS.

3. For any homogeneous f ∈ S+, we have

(D+(f),OProjS|D+(f)) ' SpecS(f),

where S(f) is the subring of elements of degree 0 in the localized ring Sf .

Proof. The proof of the first statement is similar to the proof of Proposition 3.18. The second
statement is obvious since D+(f) = ProjS r V ((f)), and that elements of ProjS are homo-
geneous prime ideals which do not contain the whole S+.
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To prove the last statement, we construct an isomorphism of locally ringed spaces (ϕ, ϕ#)
fromD+(f) to SpecS(f). First, for any homogeneous ideal a of S define ϕ(a) := (aSf )∩S(f). It’s
easy to verify that ϕ(p) ∈ SpecS(f) whenever p ∈ D+(f) and that ϕ is bijective when restricted
to D+(f). Moreover, a ⊆ p if and only if ϕ(a) ⊆ ϕ(p). Hence ϕ is an homeomorphism.

To define ϕ#, consider an element σ ∈ OSpecS(f)
(U). Then we define ϕ#(U)(σ) via the

composition
ϕ−1(U)

ϕ

'
// U

σ //
∐

(S(f))ϕ(p) '
//
∐
Sp

where the last map is given by the natural isomorphism S(p) ' (S(f))ϕ(p) for any homogeneous
prime ideal p which does not contain f . It is clear, since ϕ is an homeomorphism, that ϕ# is
an isomorphism of locally ringed spaces.

Example 3.26. • Let A be a ring and A[x0, . . . , xn] be the ring of polynomials in n + 1
variables over A endowed with its natural graduation. We define PnA := ProjA[x0, . . . , xn]
called the projective n-space over A.

• If A = k is an algebraically closed field, then Pnk is a scheme whose subset of closed point
is isomorphic to the variety Pnk . Indeed, closed points are in one-to-one correspondance
with homogeneous ideals which are maximal within Proj k[x0, . . . , xn]. Such ideals are of
the form

< aixj − ajxi | i, j = 0, . . . , n > .

Notice Pnk is covered by the distinguished open subsets D+(xp) for p = 0, . . . , n. Fix one
of them (say p = 0), then on D+(x0) you have the isomorphism

ψ : D+(x0) −→ Spec k[x0, . . . , xn]((x0))
< aixj − ajxi > 7−→ < ai

xj
x0
− aj xix0 >

.

We have the identification Spec k[x0, . . . , xn]((x0)) ' Spec k[y1, . . . , yn] by defining yj =
xj
x0
,

and then < ai
xj
x0
− aj xix0 >=< aiyj − ajyi >.

In the case n = 2, every element in D+(x0) is of the form < a0x1 − a1x0 > with a0 6= 0,
then its image by ψ is < a0y1 − a1 >=< y1 − a1

a0
>∈ Spec k[y1]. We see that the change

of coordinates on D+(x0) ∩D+(x1) is exactly [1 : a1
a0

]→ [a0
a1

: 1].

Definition 3.27. Let S be a fixed scheme. A scheme over S is a scheme X together with
a morphism of schemes X → S. A morphism X → Y between schemes over S (also called
S-morphism) is a morphism of schemes such that the diagram

X //

��

Y

��
S

commutes.

The next proposition shows how to relate the notions of scheme and variety.

Proposition 3.28. Let k be an algebraically closed field. There is a natural fully faithful functor

t : Var /k → Sch /k

between the category of varieties over k to the category of schemes over k (that is, scheme over
Spec k).

Proof. Let V be a variety. We define the topological space t(V ) as the set of all non-empty
irreducible closed subsets of X. Then, covering V by affine varieties Vi, we show that t(Vi) is
a scheme isomorphic to (SpecOVi(Vi),OVi). See ([8], II, 2.6) for a complete proof.

Remark 3.29. In fact, the image of this functor is exactly the set of quasi-projective integral
schemes over k. The image of the set of projective varieties is the set of projective integral
schemes. Hence, we can define an abstract variety to be an integral separated scheme of finite
type over an algebraically closed field k. For more details see ([8], II, 4.10).
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4 Coherent sheaves

4.1 (Quasi)-coherent sheaves

Definition 4.1. Let A be a ring and M be an A-module. We define the sheaf associated to
M on SpecA, denoted M̃ , as follows. For any open U ⊆ SpecA, define M̃(U) as the ring of
functions s : U →

∐
p∈U

Mp which verify:

1. for all p ∈ U , s(p) ∈Mp,

2. for every p ∈ U , there is an open neighborhood V of p and elements m ∈ M, f ∈ A such
that for each q ∈ V , f /∈ q and s(q) = m/f in Mq.

Remark 4.2. The construction of M̃ is very similar to the construction of OSpecA. By
the same type of argument as before, one can show that:

• M̃ is an OSpecA-module,

• for each p ∈ SpecA, the stalk (M̃)p is isomorphic to the localized module Mp,

• for any f ∈ A, the Af -module M̃(D(f)) is isomorphic to the localized module Mf , and
in particular M̃(SpecA) = M .

Proposition 4.3. Let A be a ring, X = SpecA. Then for all A-modules M and N there is an
isomorphism

HomA(M,N) ' HomOX (M̃, Ñ).

In particular, the functor M 7→ M̃ from the category of A-modules to the category of OX-
modules is fully faithful.

Proof. A morphism between sheaves induces a morphism between the modules of global sec-
tions. We want to define an inverse HomOX (M̃, Ñ) → HomA(M,N). Let ϕ : M → N be a
homomorphism of A-modules. Then it induces a homomorphism ϕf : Mf → Nf of Af -modules
for all f ∈ A. Moreover, if f, g ∈ A are such that D(f) ⊆ D(g) then we have the commutative
diagram

Mg
ϕg //

��

Ng

��
Mf ϕf

// Nf .

Thus we obtain a well defined morphism of OX-modules ϕ̃ : M̃ → Ñ .

Proposition 4.4. Let A be a ring and let X = SpecA. Then :

1. the functor M 7→ M̃ is exact,

2. if M and N are two A-modules, then ˜(M ⊗A N) = M̃ ⊗OX Ñ ,

3. If (Mi)i∈I is a family of A-modules, then (̃⊕Mi) ' ⊕M̃i.

Proof. See ([4], 7.14).

Definition 4.5. Let (X,OX) be a ringed space. An OX-module F is called quasi-coherent if
for all x ∈ X there exists an open neighborhood U of x and an exact sequence (see Definition
1.7) of OX |U -modules of the form

O(J)
X |U → O

(I)
X |U → F|U → 0,

where I and J are arbitrary index sets depending on x.
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Proposition 4.6. Let X be a scheme and let F be an OX-module. Then the following assertions
are equivalent.

1. For every open affine subset U = SpecA of X there exists an A-module M such that
F|U ' M̃ .

2. There exists an open affine covering (Ui)i of X, Ui = SpecAi, and for each i an Ai-module
Mi such that F|Ui ' M̃i for all i.

3. The OX-module F is quasi-coherent.

4. For every open affine subset U = SpecA of X and every f ∈ A the homomorphism

F(U)f → F(D(f))

is an isomorphism.

Proof. See ([4], 7.19).

Corollary 4.7. Let A be a ring and X = SpecA. Then the functor M 7→ M̃ gives an
equivalence of categories between the category A-Mod of modules over the ring A and the
category Qcoh(X) of quasi-coherent sheaves on X.

The inverse functor is given by F 7→ Γ(X,F), where we denote Γ(U,F) := F(U). The same
result is true for coherent sheaves (see below) if you consider the category of finitely generated
A-modules.

Definition 4.8. Let (X,OX) be a ringed space. An OX-module F is called coherent if it
satisfies the following properties :

1. F is of finite type, i.e. for all x ∈ X there exists an open neighborhood U of x and a
surjective morphism ψU : OnX |U → F|U .

2. For any such (U, ψU), the kernel of ψU is of finite type.

Proposition 4.9. Let X be a noetherian scheme and let F be an OX-module. Then the
following assertions are equivalent.

1. F is coherent.

2. F is of finite presentation, i.e. for all x ∈ X there exists a open neighborhood U of x and
an exact sequence

OnX |U → OmX |U → F|U → 0.

3. F is of finite type and quasi-coherent.

Proof. It’s clear that 1⇒ 2⇒ 3. To prove 3⇒ 1, since coherence is a local property, we may
assume that X = SpecA for some noetherian ring A. By assumptions, there exists a morphism
ϕ : OnX → F . Since F is quasi-coherent, there exists a A-module M such that F ' M̃ , and
moreover M is finitely generated since M 7→ M̃ is an exact equivalence of category. But since
A is noetherian, any finitely generated A-module is finitely presented. Using the equivalence
again, we obtain that ker(ϕ) is of finite type.

Remark 4.10. A quasi-coherent sheaf F on a noetherian scheme X is an OX-module which
can locally be written F|U = M̃ for some A-module M with A noetherian, and F is coherent
if we can choose these modules to be finitely generated.

Proposition 4.11. Let f : SpecB → SpecA be a morphism of affine schemes and let ϕ : A→
B be the corresponding ring homomorphism. Then:
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1. For any B-module N , we have f∗(Ñ) ' ÃN , where AN is N considered as an A-module.

2. For any A-module M , we have f ∗(M̃) ' ˜(B ⊗AM).

Proof. To prove 1, notice that for all g ∈ A we have f−1(D(g)) = D(ϕ(g)) and therefore we
obtain

f∗(Ñ)(D(g)) = Ñ(D(ϕ(g))) ' Nϕ(g) ' (AN)g ' ÃN(D(g)).

These identifications are compatible with restriction maps for D(g′) ⊆ D(g) and functorial in
N , thus it proves 1.

To see 2, first consider the general result:

Lemma 4.12. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Then for any
OX-module F and every OY -module G there exists an isomorphism of OY (Y )-modules

HomOX (f ∗G,F) ∼ // HomOY (G, f∗F)

which is functorial in F and G.

In otherwords, f∗ and f ∗ are adjoints. It follows from the isomorphisms

HomOX (f ∗G,F) ∼ // Homf−1OY (f−1G,F) ∼ // HomOY (G, f∗F) ,

we refer to ([4], Proposition 2.27) for more details.
Now assuming Lemma 4.12 and using Proposition 4.3, for any quasi-coherentOSpecA-module

F we obtain the functorial isomorphisms

HomOSpecB
(f ∗M̃,F) = HomOSpecA

(M̃, f∗F),

= HomOSpecA
(M̃, ÃF(X)),

= HomA(M, AF(X)),

= HomB(B ⊗AM,F(X)),

= HomOSpecB
( ˜B ⊗AM,F).

Since f ∗OSpecA = OSpecB and f ∗ is exact and commutes with direct sums, we know that f ∗M̃
is quasi-coherent. Thus, we can apply the Yoneda lemma to conclude that

f ∗M̃ ' ˜B ⊗AM.

Corollary 4.13. Let X be a noetherian scheme.

1. If f : F → G is a homomorphism of (quasi)-coherent OX-modules, then ker f , coker f ,
Im f are (quasi)-coherent OX-modules.

2. If F and G are (quasi)-coherent OX-modules, then F ⊕ G is (quasi)-coherent.

3. If F and G are (quasi)-coherent OX-modules, then F ⊗OX G is (quasi)-coherent.

In particular, we see that the category of quasi-coherent (resp. coherent) sheaves Qcoh(X)
(resp. Coh(X)) is abelian.

Proof. The statements 1 and 2 are local, so they follow from Corollary 4.7. To see 3, it suffices
to show that for any open affine subset U = SpecA ⊆ X, we have

(F ⊗OX G)|U ' F|U ⊗OX |U G|U .
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This isomorphism follows from the definition of the tensor product of OX-modules (via sheafi-
fication) and the fact that the isomorphisms

M̃(D(f))⊗Ã(D(f)) Ñ(D(f)) 'Mf ⊗Af Nf ' (M ⊗A N)f ' M̃ ⊗A N(D(f))

are functorial and compatible with restrictions D(g) ⊆ D(f).

Proposition 4.14. Let f : X → Y be a morphism between two noetherian schemes.

1. If G is a (quasi)-coherent sheaf on Y , then f ∗G is (quasi)-coherent on X.

2. If F is a quasi-coherent sheaf on X, then f∗F is quasi-coherent on Y .

Proof. 1. Since the statement is local, we may assume that Y is affine. Moreover, since
(f ∗G)|U ' f ∗(G|f−1(U)), we can also assume that X is affine. Then it follows from the
local case (Proposition 4.11).

2. See ([4], Proposition 10.10) or ([8], Proposition 5.8).

Remark 4.15. Be careful here: the direct image of a coherent sheaf is not coherent in general.
However, it is the case when the morphism f have some nice properties, e.g. finite or projective.

4.2 Support and closed immersions

Consider a ringed space (X,OX).

Definition 4.16. Let F be an OX-module. Then

Supp(F) := {x ∈ X | Fx 6= 0}

is called the support of F .

Note that the support of F is not closed in general. We have the following result:

Proposition 4.17. Let F be an OX-module of finite type. Let x ∈ X be a point and let
si ∈ F(U), i = 1, . . . , n, be sections over some open neighborhood U of x such that the germs
(si)x generate the stalk Fx. Then there exists an open neighborhood V ⊆ U such that the si|V
generates F|V .

Proof. Let U ′ ⊆ U be an open neighborhood of x such that F|U ′ is generated by sections tj ∈
F(U ′), j = 1, . . . ,m. Then there exist sections aij of OX over an open neighborhood U ′′ ⊆ U ′

of x such that (tj)|x =
∑

i(aij)x(si)x for all j. Therefore there exists an open neighborhood
V ⊆ X of x such that tj|V =

∑
i aij|V · si|V . In particular, (si)y generate Fy for all y ∈ V .

Corollary 4.18. Let F be an OX-module of finite type. Then SuppF is closed in X.

Proof. Note that SuppF is the complement of the subset X0 := {x ∈ X | Fx = 0}. But for
any x ∈ X0, the 0-section generates Fx. Then it generates F|V for some open neighborhood
V ⊆ X of x, and thus X0 is open.

Remark 4.19. Let F be an OX-module with closed support Z ⊆ X. Then for all U, V ⊆ X
containing Z, we have F(U) = F(V ). Indeed, F(U) identifies with the set of maps σ : U →⋃
x∈U
Fx which verifies σ(x) ∈ Fx and which image can locally be lifted to sections of F . But

since Fx = 0 for x /∈ Z, maps in F(U) and F(V ) identify. In particular, if Z = {x} is a
singleton, we can think F as an OX,x-module Fx.
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Definition 4.20. Let Y,X be two schemes. A closed immersion is a morphism f : Y → X of
schemes such that f induces a homeomorphism of Y onto a closed subset of X, and furthermore
the induced morphism f# : OX → f∗OY is surjective. We say that Y is a closed subscheme of
X.

Example 4.21. • If A is a ring and a is an ideal of A, then Y := Spec(A/a) is a closed
subscheme of X := SpecA. Indeed, the image of Y in X is V (a) and the morphism on
sheaves is surjective since it is surjective on stalks which are localization of A and A/a
respectively.

• Let X be a scheme and x be a closed point in X. Since OX,x is local, the quotient
κ(x) := OX,x/m is a field, called the residual field at x. Then (Specκ(x), κ(x)) is a
closed subscheme of X: a closed immersion is given by Specκ(x) 3 ∗ 7→ x ∈ X and the
composition OX → OX,x → κ(x). This structure on {x} is called reduced induced closed
subscheme structure.

• If X is a scheme over k and x is a closed point of X endowed with the reduced closed
subscheme structure over k (that is, over Spec k), then the composition Specκ(x) →
X → Spec k gives a homomorphism of fields k → κ(x). In fact, this extension is finite by
Hilbert’s Nullstellensatz (see [4], 3.33); thus if k is algebraically closed every closed point
has residual field k.

Definition 4.22. Let Y be a closed subscheme of a scheme X and let i : Y → X be the
inclusion morphism. We define the ideal sheaf of Y , denoted IY , as the kernel of the morphism
i# : OX → i∗OY .

Proposition 4.23. Let X be a noetherian scheme. Then there is a one-to-one correspondance
between the set of closed subschemes of X and the set of quasi-coherent sheaves of ideals of OX
given by Y 7→ IY .

Proof. If Y is a closed subscheme of X, then Y is noetherian so the sheaf i∗OY is quasi-coherent
on X. Thus IY is also quasi-coherent.

Now, given a quasi-coherent sheaf of ideals I of OX , consider the couple (Y,OY ) with
Y := Supp(OX/I) a subspace of X and OY := i−1Y (OX/I) a sheaf of rings on Y , where
iY : Y → X is the inclusion map. Since OX/I is an OX-module of finite type, its support is
closed by Corollary 4.18. Because the properties of being a scheme and of being quasi-coherent
can both be checked locally, we may assume that X = SpecA is an affine scheme. Now I is
quasi-coherent if and only if there exists an ideal a of A such that I ' ã. Indeed, by Corollay
4.7, I is of the form M̃ for some A-module M , and the injective morphism I → OX induces
an injective morphism M → A, i.e. M is an ideal of A. But then Y = V (a) and OY = Ã/a,
and hence Y = Spec(A/a) (see Example 4.21).

This proof implies immediately the following:

Corollary 4.24. If X = SpecA is an affine scheme, there is a one-to-one correspondance
between ideals of A and closed subschemes of X. In particular, every closed subscheme of an
affine scheme is affine.

Now we give a brief description of “tangent vectors” on a scheme.

Definition 4.25. Let X be a scheme over a field k, and let x ∈ X be a point. Denote by
mx the maximal ideal of the stalk OX,x and by k(x) the residual field OX,x/mx. We define the
Zariski cotangent space of X in x to be the k(x)-vector space mx/m

2
x. The k(x)-dual of mx/m

2
x

is called the (Zariski) tangent space of X in x.
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Proposition 4.26. Let X be a scheme over a field k. Then the data of a rational point x ∈ X
(i.e. such that k(x) = k) endowed with a tangent direction µ : mx/m

2
x → k(x) is equivalent to

the data of a k-subscheme Zx
� � // X concentrated in {x} of length two (i.e. Γ(Zx,OZx) is a

k-vector space of dimension 2).

Proof. Suppose we have such a subscheme Zx. We have a commutative diagram

OX,x u // OZx ,

k

==aa

where we identify the sheaf OZx with a local ring (OZx ,mZx). Now mp
Zx

is a k-vector subspace
of OZx for all integer p > 0 and since ∩pmp = 0 (Krull intersection theorem, see [2], III, §3, 2)
and dimkOZx = 2 we have m2

Zx
= 0 and mZx = k.m for some m ∈ mZx .

Hence one define a morphism µ : mx → k by composing u|mx : mx → mZx (recall that u is a
local ring morphism) with the projection mZx → k given by λ ·m 7→ m, λ ∈ k. Since m2

Zx
= 0,

the morphism µ factors through mx/m
2
x and we obtain a tangent vector

µ : mx/m
2
x → k.

Conversely, suppose we are given a point x ∈ X and a morphism µ : mx/m
2
x → k. We want

to extend such a map to a morphism of local rings OX,x → k[T ]/T 2 (so that we obtain the
subscheme Zx defined as the skysraper sheaf k[T ]/T 2 concentrated in x). We have the structural
k-algebra morphism k �

� i // OX,x and the (k-algebra) projection OX,x π // // OX,x/mx ' k .
Choosing ν ∈ k to be the representant of π ◦ i(ν), we obtain that π ◦ i = Id. For all

a ∈ OX,x there is a unique decomposition a = i ◦ π(a) + ma for some ma ∈ OX,x. Moreover,
π(a) = π ◦ i ◦ π(a) + π(ma) = π(a) + π(ma) and thus ma ∈ mx. Thus we define the morphism

u : OX,x −→ k[T ]/T 2

a 7−→ π ◦ i(a) + µ(ma)T

and combined with the canonical injection k 3 ν → ν+0.T ∈ k[T ]/T 2 we obtain a k-subscheme
Zx := k[T ]/T 2 of length two.

5 Projective schemes

5.1 Ampleness

Let S be a graded ring and X = ProjS. For any n ∈ Z, we define S(n) as the ring S with a
shifted graduation: for all k ∈ Z, s ∈ S has degree k if and only if s ∈ S(n) has degree k − n.

Definition 5.1. For any n ∈ Z, let OX(n) be the OX-module S̃(n), and for any OX-module
F , let F(n) be the OX-module F ⊗OX OX(n). We call OX(1) the twisting sheaf of Serre.

Proposition 5.2. Let S be a graded ring and let X = ProjS. Assume that S is generated by
S1 as an S0-algebra.

1. The sheaf OX(n) is an invertible sheaf of X (that is locally free of constant rank 1).

2. For any graded S-moduleM , M̃(n) ' M̃(n). In particular, OX(n)⊗OX(m) ' OX(n+m).

Proof. See ([8], II, Proposition 5.12)

Notice that for any homogeneous element f ∈ S+, as S(f) is the group of elements of degree
0 in Sf , S(n)(f) is the group of elements of degree n in Sf .

40



Definition 5.3. Let X be a scheme, and F be a sheaf of OX-modules. We say that F is
generated by global sections if there is a family of global sections {si}i∈I , si ∈ Γ(X,F) such
that for each x ∈ X, the images of si in the stalk Fx generate that stalk as an OX,x-module.
Equivalently, it means that we have a surjective map

Γ(X,F)⊗OX � F .

In particular, F is generated by global sections if and only if F can be written as the quotient
of a free sheaf.

If X = Pn = Proj k[x0, . . . , xn], then Γ(X,OX(n)) is the space of homogeneous polynomials
of degree n and then OX(n) is generated by global sections.

In the following, let X be a scheme over a ring A. To simplify the notations, we will denote
O(n) := OPnA(n).

Definition 5.4. An invertible sheaf L on X is said to be very ample relative to SpecA (or
relative to A) if there exists an immersion i : X → PnA = ProjA[x0, . . . , xn] for some n, such
that i∗(O(1)) ' L. We say that a morphism X → Z is an immersion if it gives an isomorphism
of X with an open subscheme of a closed subscheme of Z.

Theorem 5.5. 1. If ϕ : X → PnA is an A-morphism, then ϕ∗(O(1)) is an invertible sheaf
on X which is generated by the global sections si = ϕ∗(xi), i = 0, . . . , n.

2. Conversely, if L is an invertible sheaf on X, if s0, . . . , sn ∈ Γ(X,L) are global sections
which generate L, then there exists a unique A-morphism ϕ : X → PnA such that L '
ϕ∗(O(1)) and si = ϕ∗(xi) under this isomorphism.

Proof. 1. It’s clear that ϕ∗(O(1)) is invertible. Indeed, for any affine subset U ⊆ PnA such that
O(1)|U ' OPnA|U , consider an affine cover ϕ−1(U) =

⋃
Vi. Then for each i the restricted

morphism ϕi : Vi → U is a morphism of affine schemes, then ϕ∗(O(1))|Vi ' ϕ∗(OU) ' OVi .
Moreover, since ϕ∗(O(1))x = O(1)ϕ(x) ⊗OPn

A
,x
OX,ϕ(x), we see that the global sections

ϕ∗(xi), i = 0, . . . , n, generate ϕ∗(O(1)).

2. For each i = 0, . . . , n let Xi := {x ∈ X | (si)x /∈ mxLx}, where Lx is identified with OX,x.
First, notice that Xi is open: in any open affine subset U = SpecB ⊆ X, we have an
identification si|U = b ∈ B. Then Xi ∩ U = D(b), in particular Xi is open in any open
affine subset of X, thus it is open in X. Since the si’s generate L, the sets Xi must cover
X.

Now consider the standard open subsets Ui := {xi 6= 0} ' SpecA[y0, . . . , yn] of PnA, where
yj = xj/xi and yi is omitted. Define the ring morphism

µ : A[y0, . . . , yn]→ Γ(Xi,OXi)

sending yj to sj/si and making it A-linear. Notice that by construction, the morphism
OXi → LXi given by 1 7→ si = si|Xi is an isomorphism since it is invertible on stalks (the
inverse is given by 1 → 1/si). Hence we can identify sj/si as an element of Γ(Xi,OXi).
The morphism µ induces a morphism of schemes (over A) Xi → Ui (see [8], II, Exercice
2.4), and these morphisms glue together so we obtain an A-morphism

ϕ : X → PnA.

We see by contruction that we have ϕ∗(xi) = si and thus ϕ∗(O(1)) ' L. Moreover,
the uniqueness is quite clear since any A-morphism with these properties would be as
constructed on each open Xi.
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Theorem 5.6. Let k be an algebraically closed field, let X be a projective scheme over k
and let ϕ : X → Pnk be a k-morphism corresponding to the invertible sheaf L and sections
s0, . . . , sn ∈ Γ(X,L) (see Theorem 5.5). Let V ⊆ Γ(X,L) be the subspace spanned by the si’s.
Then ϕ is a closed immersion if and only if:

1. Elements of V separate points, i.e. for any two distinct closed points x, y ∈ X there is an
s ∈ V such that s ∈ mxLx but s /∈ myLy or vice-versa.

2. Elements of V separate tangent vectors (or tangent directions), i.e. for each closed point
x ∈ X the set {s ∈ V |sx ∈ mxLx} spans the k-vector space mxLx/m2

xLx.

Proof. Assume ϕ : X ↪→ Pn is a closed immersion. Then L identifies with OX(1) and the
vector space V is spanned by the images of x0, . . . , xn ∈ Γ(Pn,O(1)). Given two closed points
x, y ∈ X, there exists a homogeneous polynomial f of degree 1 such that f(x) = 0 and f(y) 6= 0
(here we use that k is algebraically closed). Hence f |X is a global sections of L that satisfies
condition 1: just identify, for any closed point t ∈ X, the stalk mtLt with the germs of regular
functions of L that vanish at t.

For condition 2, assume for simplicity that x = [1 : 0 : . . . : 0]. Then x is in the distinguished
open U0 which identifies with A1

k = Spec k[y1, . . . , yn] with yi = xi/x0. In U0, x identifies with
the point (0, . . . , 0) and the sheaf L|U0 becomes trivial (i.e. isomorphic to OAnk ) via the map

f

g
7→ f(1, y1, . . . , yn)

g(1, y1, . . . , yn)
,

where f and g are homogeneous polynomials with deg f = deg g + 1. Hence, the stalk mx is
given by germs of regular functions that are of the form f/g near 0, with f(0) = 0 and g(0) 6= 0.
In particular, such an f is of the form

f = a1y1 + · · ·+ anyn + higher degree terms

with aj ∈ k. But the higher degree terms are in m2
x, and thus mx/m

2
x is generated by the global

sections y1, . . . , yn.
For the converse, see ([8], II, 7.3). The idea is the following: we want the sections s0, . . . , sn

to be our coordinates in Pnk . Separating points ensures that ϕ is injective (the fact that ϕ is
an homeomorphism onto a closed subset of Pnk can be verified using the projectivity of X). For
the surjectivity of the morphism of sheaves OPnk → ϕ∗OX (i.e. the surjectivity of the induced
morphism on stalks OPnk ,x → OX,x), we want to apply the following result of commutative
algebra:

Lemma 5.7. Let f : A→ B be a local morphism of local noetherian rings such that

1. A/mA → B/mB is an isomorphism

2. mA → mB/m
2
B is surjective, and

3. B is a finitely generated A-module.

Then f is surjective.

(A proof of this lemma is also given in [8], II, 7.3).
The morphism OPnk → OX,x verify condition 1 since both residual fields are k, and condition

3 is ensured by the fact that ϕ∗OX is coherent (Remark 4.15). Finally, separating points gives
condition 2, hence ϕ is a closed immersion.

Remark 5.8. Notice that V separates points if and only if the restriction map

V → Γ(X, k(x)⊕ k(y))
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is surjective for any two closed points x, y ∈ X. Similarly, V separates tangent vectors if and
only if, for any subscheme Zx of lenght two concentrated in x ∈ X, the restriction

V → Γ(X,OZx)

is surjective (see Proposition 4.26).

Definition 5.9. An invertible sheaf L on a noetherian scheme X is said to be ample if for
every coherent sheaf F on X there is an integer n0 > 0 such that for any n ≥ n0, the sheaf
F ⊗ Ln is generated by its global sections.

Our use of ampleness lies in the following theorem.

Theorem 5.10. Let X be a variety over a field k and L be an invertible sheaf on X. Then L
is ample if and only if Lm is very ample over Spec k for some m > 0.

Proof. As the proof is long and technical, we refer to the litterature ([8], II, Theorem 7.6 or [4],
Theorem 13.59).

Notice that the hypothesis on X can be weakened (X must be a scheme of finite type over
a noetherian ring A), but we will try to avoid properties of scheme in this text as our goal is
to study projective varieties.

5.2 Cohomology and projective space

In this part, we work with a ringed space (X,OX). We will give brief recalls on cohomology
of sheaves, which is directly related to derived functors (see Definition 2.4). We will use the
following famous result, and we refer to the literature ([8], III, 2) for a proof.

Proposition 5.11. The categories Ab of abelian groups, the category AbX of sheaves of abelian
groups on X and the category ShOX (X) of sheaves of OX-modules have enough injectives.

Definition 5.12. For all n ∈ Z, we define the cohomology functors Hn(X, ) to be the right
derived functors RnΓ(X, ) of the left exact functor Γ : AbX → Ab sending a sheaf F on X
to its global sections Γ(X,F).

Recall that given a sheaf F and an injective resolution F → I•, we have Hn(X,F) =
Hn(Γ(X, I•)). In particular, H0(X,F) = Γ(X,F) (see Remark 2.4).

Remark 5.13. The cohomology groups Hn(X,F) can also be computed by other resolutions
F → G•: we just need the resolution to be Γ-acyclic, i.e. Hn(X,G•) = 0 for all n > 0.
For instance, flasque sheaves (that is sheaves with all restriction maps being surjective) are
Γ-acyclic.

We can define other usefull derived functors:

Definition 5.14. Let F be an OX-module. For all n ∈ Z, we define:

• the functors Extn(F , ) to be the right derived functors of the functor Hom(F , ),

• the functors Extn(F , ) to be the right derived functors of the functor Hom(F , ).

Proposition 5.15. For any OX-module G, we have:

1. Ext0(OX ,G) = G,

2. Extn(OX ,G) = 0 for n > 0,

3. Extn(OX ,G) ' Hn(X,G) for all n ≥ 0.
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Proof. First note that Hom(OX ,G) = Γ(X,G) since for all open subset U ⊆ X any morphism
OX(U)→ G(U) is totally defined by the image of 1OX(U) and thus can be lifted in a unique way
to a morphism between global sections. In particular, it means that the functors Hom(OX , )
and Γ(X, ) are equal and then their derived functors are equal. It proves 3.

Now, Hom(OX ,G)(U) = Hom(OX |U ,G|U) = G(U) for any open subset U ⊆ X. Thus we
have Hom(OX , ) = Id. It proves 1 and 2.

Proposition 5.16. Let L be a locally free OX-module of finite rank. We define the dual of L
as the sheaf L∨ := Hom(L,OX). Then for any OX-modules F ,G we have

HomOX (L ⊗ F ,G) ' HomOX (F ,L∨ ⊗ G).

Proof. First, let’s prove that L∨⊗G ' Hom(L,G). Indeed, for any open subset U ⊆ X, define

µ : L∨(U)⊗ G(U) −→ Hom(L|U ,G|U)
l ⊗ g 7−→ (L(V ) 3 σ 7→ l(σ) · g|V ∈ G(V ))

for any open subset V ⊆ U . It is clearly an isomorphism on stalks, so the map µ+ induced by
the sheafification is also an isomorphism.

Now, define the map

ϕ : HomOX (L ⊗ F ,G)→ HomOX (F ,Hom(L,G))

as follows. For any ψ : L ⊗ F → G, set ϕ(ψ)U(s)V (t) := ψV (t ⊗ s|V ), where V ⊆ U ⊆ X are
open subsets, s ∈ F(U), t ∈ L(V ) and t⊗s|V is the image of the element in the presheaf L⊗F
via the sheafification. Now ϕ(ψ) = 0 if and only if ψV is the zero map for every V . Thus ϕ
is injective. Finally, given a morphism θ : F → Hom(L,G), define for any U ⊆ X the map
ψU : L(U) ⊗ F(U) → G(U) as ψU(l ⊗ f) = θ(f)(l) for any l ∈ L(U), f ∈ F(U). Then the
associated map

ψ+ : L ⊗ F → G

verifies ϕ(ψ+) = θ, hence ϕ is an isomorphism.

If L is a locally free sheaf of rank 1, it is easy to see that L⊗ L∨ ' OX . That’s the reason
why we say that L is an invertible sheaf.

Corollary 5.17. Let L be a locally free sheaf of finite rank. Then for any OX-module F ,G we
have

Extn(F ⊗ L,G) ' Extn(F ,L∨ ⊗ G).

Proof. Notice that if I is injective, then L ⊗ I is also injective. Indeed, the functor L∨ ⊗ ( )
is exact and the functors Hom( ,L ⊗ I) and Hom(· ⊗ L∨, I) are isomorphic. In particular,
it means that if I• is an injective resolution of G, then L∨ ⊗ I• is an injective resolution of
L∨ ⊗ G. Since the functors Hom(F ⊗ L, ) and Hom(F ,L∨ ⊗ ·) are isomorphic, so are their
derived functors.

Remark 5.18. Similar results exist for the sheaves Extn(F ,G), but since the category ShOX (X)
does not contain enough projectives in general, one has to use more general theory, e.g. δ-
functors, see ([5], II, 2.2.1).

Theorem 5.19. Let X be a projective variety over a field k and let L be an ample invertible
OX-module. Then there exists an isomorphism of k-schemes

X ' Proj
⊕
d≥0

Γ(X,Ld).

44



Proof. For more details, see ([4], 13.75).
By Theorem 5.10, up to consider tensor powers we can suppose that X �

� ϕ // Pn and
OX(1) := L = ϕ∗(O(1)). Let IX be sheaf of ideals determined by X in Pn. Recall that
Pn = Proj k[x0, . . . , xn]. Then we have

X = Proj k[x0, . . . , xn]/I,

where I = Γ∗(IX) :=
⊕
k∈Z

Γ(X, IX(k)) (see [8], II, 5.16). Then define the morphism of graded

algebras
µ : k[x0, . . . , xn] −→

⊕
k∈Z

Γ(X,OX(k))

given by P (x0, . . . , xn) 7→ P (s0, . . . , sn) where the si’s are the sections defining ϕ. It is clear
that I = kerµ, so we just need to check surjectivity. To do so, consider the exact sequence

0→ IX ⊗O(k)→ O(k)→ OX(k)→ 0.

It induces a long exact sequence in cohomology

· · · → H0(X,O(k))→ H0(X,OX(k))→ H1(X,O(k)⊗ IX)→ · · · .

But O(k) ⊗ IX = IX(k) and by Serre vanishing theorem ([8], III, 5.2) we obtain, for k � 0,
that H1(X, IX(k)) = 0 and thus H0(X,O(k)) → H0(X,OX(k)) is surjective. Hence µ is
surjective.

This result is fundamental as it will be a key step in the proof of the main theorem presented
in this text (Theorem 7.9).

5.3 Serre duality

To begin with, we will give a definition of differential forms for algebraic varieties, but in order to
avoid scheme-theoretic constructions we will do it in a local-to-global way. For deeper studies,
see ([8], II, 8).

Definition 5.20. • Let k be an algebraically closed field. Let V ⊆ An
k be an affine variety

over k defined by the polynomials (f1, . . . , fm). The set of algebraic differential forms
on V , denoted ΩV , is the Γ(V,OV )-module generated by the symbols dx1, . . . , dxn with
relations df1, . . . , dfm, where dfi =

∑ ∂fi
∂xj

.

• Let X be a variety over k. Consider a covering X =
⋃
Vi by affine open subsets. We

define the sheaf of differential forms ΩX over X to be the sheaf given by glueing the
sheaves Ω̃Vi . The maps di : Γ(Vi,OVi)→ ΩVi glue together to give a map d : OX → ΩX .

• We define
Ωq
X := ΛqΩX .

Its elements are called q-forms or differential forms of degree q.

Recall that an affine variety V ⊆ An defined by polynomials f1, . . . , fm is regular (or non-
singular) at a point x ∈ V if the matrix ( ∂fi

∂xj
) has rank (n−dimV ). A variety X is non-singular

at a point x ∈ X if the local ring OX,x is regular, that is dimkmx/m
2
x = dimOX,x. In the affine

case both definitions coincide.
A non-singular variety X is a variety which is non-singular at every point. We also say that

X is smooth.

Theorem 5.21. Let X be an irreducible non-singular variety over an algebraically closed field
k. Then ΩX is a locally free sheaf of rank dimX.
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Proof. See ([8], II, 8.15).

Definition 5.22. Let X be a non-singular variety over an algebraically closed field k. We
define the canonical sheaf of X to be

ωX := ΛnΩX .

Behind this definition, there is the deep notion of dualizing sheaves. We refer to ([8], III, 7)
for more details.

The canonical sheaf has the following (dualizing) property: there exists a trace morphism

t : Hn(X,ωX)→ k

such that for any coherent sheaf F on X, the natural pairing

Hom(F , ωX)×Hn(X,F)→ Hn(X,ωX)

followed by t gives an isomorphism

Hom(F , ωX) ' Hn(X,F)∗.

Theorem 5.23. Let X be a non-singular projective variety of dimension n over an algebraically
closed field k. Let ωX be its canonical sheaf. Then, for all i ≥ 0 and for all F coherent sheaf
on X, there are natural functorial isomorphisms

θi : Exti(F , ωX) ∼ // Hn−i(X,F)∗

where the ∗ stands for the dual vector space, such that θ0 is the map given by the dualizing
property discussed above.

Proof. See ([8], III, 7.6) for a complete proof.
The idea of the proof is the following. To construct the morphisms θi, one needs to prove

that any coherent sheaf F can be written as a quotient of a sheaf of the form
n⊕
j=1

OX(−q) for

some q � 0, where OX(1) is a very ample sheaf on X. Then, one proves that for any locally
free sheaf F on X, we have

H i(X,F(−q)) = 0

for i < n and q big enough. To conclude that the θi’s are isomorphisms, one can use the theory
of δ-functors (see [5], II, 2.2.1).

Remark 5.24. If F is locally free, we have

Exti(F , ωX) ' Ext(OX ,F∨ ⊗ ωX) ' H i(X,F∨ ⊗ ωX)

and then Serre duality gives

H i(X,F) ' Hn−i(X,F∨ ⊗ ωX)∗.
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Part III

Derived category of coherent sheaves
In this last part we will use all the notions and tools introduced in Part I and II. Our principal
goal is the proof of the last result (Theorem 7.9) due to Bondal and Orlov.

6 Derived category and canonical bundle
Let X be a noetherian scheme. We study Db(X), the bounded derived category of coherent
sheaves on X. Note that if X is defined over a field k, then the derived category will be
considered as a k-linear category.

To avoid any confusion with cohomology of sheaves, we will denote the nth cohomology sheaf
(though as an object of the abelian category Coh(X)) of a complex of sheaves F• as Hn(F•).

6.1 Basic structure

The category of coherent sheaves on a noetherian scheme does not contain enough injectives in
general, but we have the following result.

Proposition 6.1. On a noetherian scheme X, any quasi-coherent sheaf F admits a resolution

0→ F → I0 → I1 → · · ·

by quasi-coherent sheaves In which are injective as OX-modules.

Proof. As the proof is long and technical, we refer to the literature ([7], II, 7.18).

In particular, we obtain that Qcoh(X) has enough injectives whenever X is at least no-
etherian. In particular, it permits us to use the spectral sequences defined in Proposition 2.21.
Thus for any F•,G• ∈ Qcoh(X) we have:

Ep,q
2 = Extp(F•,Hq(G•))⇒ Extp+q(F•,G•), (2)

Ep,q
2 = Extp(Hq(F•),G•)⇒ Extp+q(F•,G•). (3)

Proposition 6.2. Let X be a noetherian scheme. Then the natural functor

Db(X)→ Db(Qcoh(X))

defines an equivalence between the derived category Db(X) of X and the full triangulated subcat-
egory Db

coh(Qcoh(X)) of bounded complexes of quasi-coherent sheaves with coherent cohomology.

Proof. Let G• be a bounded complex of quasi-coherent sheaves

· · · → 0→ Gn → · · · → Gm → 0→ · · ·

with coherent cohomology Hi, i = n, . . . ,m. Suppose that Gi is coherent for i > j. The
construction of a new complex quasi-isomorphic to G• with Gj coherent relies on the following
lemma:

Lemma 6.3. If G → F is a surjective morphism of OX-modules from a quasi-coherent sheaf
G onto a coherent sheaf F on a noetherian scheme X, then there exists a coherent subsheaf
G ′ ⊆ G such that the composition G ′ ⊆ G → F is still surjective.
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This lemma is clear locally: for any surjectionM → N of modules with N finitely generated,
there exists a finitely generated submodule M ′ ⊂ M such that the restriction M ′ → N is still
surjective. The step to the global case is not trivial but can be found in the literature ([8], II,
5.15).

Now, apply this lemma to the surjections

dj : Gj // // Im(dj) and ker(dj) // //Hj

which yield subsheaves Gj1 ⊆ Gj and G
j
2 ⊆ ker(dj). Now define G̃j ⊆ Gj the coherent subsheaf

generated by Gj1 and G
j
2, and define G̃j−1 as the pre-image of G̃j under the morphism Gj−1 → Gj.

We get the injective morphism of complexes:

· · · // Gj−2 //

=
��

G̃j−1 d̃j−1
//

� _

ij−1

��

G̃j //
� _

ij
��

Gj+1 //

=
��

· · ·

· · · // Gj−2 // Gj−1 // Gj // Gj+1 // · · · .

Notice that ij induces an isomorphism in cohomology by construction of Gj2, and the (j + 1)th

cohomology group of the first row is stillHj+1 by construction of Gj1. Finally, G̃j−1 is constructed
so that d̃j−1 is well defined. Thus this morphism of complexes is a quasi-isomorphism and G̃j
is coherent.

Remark 6.4. If X is a projective variety over a field k, for any coherent sheaf F the groups
Hn(X,F) are finite-dimensional (Serre theorem, [14], III, §3, 66 or [8], III, 5.2).

This result can be used to show (by induction) that for any two coherent sheaves F ,G the
groups Extn(F ,G) are also finite-dimensional for all n ∈ Z. Indeed, the case n = 0 comes from
the identity Hom(F ,G) = H0(X,Hom(F ,G)). The case F =

⊕
Lj with Lj locally free sheaves

of finite rank comes from the equality

Extn(
⊕
Lj,G) '

⊕
Extn(Lj,G),

'
⊕

Extn(OX ,L∨ ⊗ G) by Corollary 5.17,

'
⊕

Hn(X,L∨ ⊗ G) by Proposition 5.15.

Finally, one conclude using that any coherent sheaf can be placed in an exact sequence

0→ K →
⊕
Lj → F → 0

with Lj locally free ([8], II, 5.18). Applying Hom( ,G) we obtain a long exact sequence

· · · → Extn(K,G)→ Extn+1(F ,G)→ Extn+1(
⊕
Lj,G) · · ·

(see Remark 2.5). Now since the first term is finite-dimensional by induction and the last term
is finite-dimensional by the previous case, the middle one is also finite-dimensional.

Eventually, using both spectral sequences (2) and (3), we obtain that Extn(F•,G•) is finite-
dimensional.

Definition 6.5. The support of a complex F• ∈ Db(X) is the union of the supports of all its
cohomology sheaves, i.e. it is the closed subset (as finite union of closed subsets):

Supp(F•) :=
⋃

Supp(Hn(F•)).

Lemma 6.6. Suppose that F• ∈ Db(X) and Supp(F•) = Z1

∐
Z2, where Z1, Z2 ⊆ X are

disjoint closed subsets. Then F• ' F•1 ⊕F•2 with Supp(F•j ) ⊆ Zj for j = 1, 2.
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Proof. We proceed by induction on the length of the complex. For a complex of length 1, the
result is quite clear. Indeed, up to a shift we can assume that F• = F ∈ Coh(X). Then
F ' F1 ⊕ F2, where Fj := ij∗i

∗
jF for the closed immersion ij : Zj → X, j = 1, 2. Then the

morphism of sheaves

µ : F −→ F1 ⊕F2

F(U) 3 s 7−→ (s|U∩(X\Z2), s|U∩(X\Z1)) ∈ F1(U)⊕F2(U)

is clearly bijective on stalks.
Now let F• be a sheaf of length at least 2. Assume m is minimal with H := Hm(F•) 6= 0.

Using the previous step, we have a decomposition H = H1 ⊕ H2 with Supp(Hj) ⊆ Zj. Now
define F̃• as the complex

· · · → Fm−1 → Fm → Im dm → 0→ · · ·

which is quasi-isomorphic to H up to a shift. Hence the roof H[−m] ← F̃• → F induces a
natural arrow (in Db(X)) H[−m]→ F• which can be completed into a distinguished triangle

H[−m]→ F• → G• → H[1−m].

The long exact sequence in cohomology (see Proposition 1.46) shows that Hq(G•) = Hq(F•)
for q > m and Hq(G•) = 0 for q ≤ m. Thus, the induction hypothesis applies to G• and we
may write G• = G•1⊕G•2 with Supp(Hq(G•j )) ⊆ Zj for all q. Now, consider the spectral sequence

Ep,q
2 = Hom(H−q(G•1),H[p])⇒ Hom(G•1 ,H2[p+ q]).

In order to prove that Hom(G•1 ,H2[1−m]) = 0, one uses the following lemma:

Lemma 6.7. If F ,G are two OX-modules on a ringed space (X,OX) with disjoint supports,
then for all n ∈ Z we have Extn(F ,G) = 0.

This lemma is quite clear: Hom(F ,G) is 0 since it is 0 on every stalks. For n ≥ 1, we
have Extn(F ,G) = HomDb(X)(F ,G[n]) (see Proposition 2.9). But the latter is 0 since any roof
F ← K• → G is trivial. Indeed, the arrow K• → F is a quasi-isomorphism, so in particular
Supp(K•) = Supp(F) and thus the morphism K• → G is 0.

Similarly, using again the lemma one finds that Hom(G•2 ,H1[1 − m]) = 0. To finish the
proof, choose Fj, j = 1, 2, to complete the arrows G•j → Hj[1−m] to distinguished triangles

F•j → G•j → Hj[1−m]→ F•j [1].

We obtain the diagram

F•1 ⊕F•2 //

h

��

G•1 ⊕ G•2 //

∼
��

H•1[1−m]⊕H•2[1−m] //

∼
��

F•1 [1]⊕F•2 [1]

h[1]

��
F• // G• //H[1−m] // F•

where h : F•1 ⊕ F•2 → F is given by the axiom TR-3, and which is moreover an isomorphism
by Lemma 1.14. Using the long exact sequence in cohomology one checks that Hm(F•j ) ' Hj

and Hq(F•j ) ' Hq(G•j ); in particular we have Supp(Fj) ⊆ Zj as required.

Theorem 6.8 (Serre duality). Let X be a smooth projective variety over a field k. Then

SX : Db(X)→ Db(X)

which sends F• to F•⊗ωX [n] is a Serre functor (see Definition 1.4), i.e. for any two complexes
E•,F• ∈ Db(X) there exists a functorial isomorphism

η : Exti(E•,F•) ∼ // Extn−i(F•, E• ⊗ ωX)∗
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Proof. The derived version of Serre duality is based on the usual one (Theorem 5.23).
Recall that we have Exti(E•,F•) = H i(RHom•(E•,F•)) (see Proposition 2.12). Up to

replace E• by a complex of locally free sheaves and F• by a complex of injective sheaves, we
have RHom(E•,F•) = Hom(E•,F•). Moreover,

Homi(E•,F•) =
⊕

Hom(Ek,Fk+i),

'
⊕

Ext0(OX , (Ek)∨ ⊗Fk+i),

' Extn(Fk+i, Ek ⊗ ωX)∗,

' Hom(Fk+i, Ek ⊗ ωX [n])∗,

' Homn−i(F•, E• ⊗ ωX)∗,

and thus the desired isomorphism is obtained by replacing E• ⊗ ωX by a complex of injective
objects and taking cohomology.

Corollary 6.9. Let F and G be coherent sheaves on a smooth projective variety X of dimension
n. Then

Extn(F ,G) = 0 for i > n.

Proof. Simply notice that Extp(F ,G) = 0 for p < 0 and for all OX-modules F and G.

Corollary 6.10. Let X be a smooth projective variety. Then for any two complexes F•,G• one
has RHom•(F•,G•) ∈ Db(Ab).

Proof. Simply apply Corollary 6.9 and the spectral sequences (2) and (3).

Proposition 6.11. Let X be a smooth projective variety. Then the objects of the form k(x)
with x ∈ X a closed point span the derived category Db(X) (see Definition 1.19).

Proof. Using Serre duality, we only need to prove that for any non-trivial F• ∈ Db(X) there
exist a closed point x ∈ X and an integer i ∈ Z such that

Hom(F•, k(x)[i]) 6= 0.

Consider the spectral sequence (2)

Ep,q
2 = Hom(H−q, k(x)[p])⇒ Hom(F•, k(x)[p+ q])

where Hq := Hq(F•). Let m be maximal such that Hm 6= 0. Then all differentials with
source E0,−m

r are trivial, and since negative Ext groups between coherent sheaves are trivial all
differentials with target E0,−m

r are also trivial. Thus E0,−m
2 = E0,−m

∞ .
Now let x ∈ Supp(Hm). Then

E0,m
∞ = Hom(Hm, k(x)) 6= 0,

hence Hom(F•, k(x)[−m]) 6= 0.

6.2 Derived functors

In this section we will briefly recall results on derived functors that will be used in the next
part. For more precise studies, see ([9], 3.3).

Let X be a smooth projective variety over a field k. Note that Coh(X) has not enough
injectives neither projectives in general. However, we still have the following result.
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Proposition 6.12. The functors

Γ : Coh(X)→ Vectf (k),

Hom(F , ) : Coh(X)→ Vectf (k),

Hom(F , ) : Coh(X)→ Coh(X),

F ⊗− : Coh(X)→ Coh(X),

admit derived functors between the bounded derived categories, where Vectf (k) is the category
of k-vector spaces of finite dimension and F is a coherent sheaf on X.

We will not give a proof, but just say few words about it.

• To construct RΓ : Db(X) → Db(Vectf (k)), we use that dimkH
i(X,F) < ∞ and

H i(X,F) = 0 for i > dim(X) (see [8], III, 2.7). Then, we construct the derived functor
using the compositions Db(X)→ Db(Qcoh(X))→ Db(Vectf (k)) with Proposition 6.2.

• Global Hom functor Hom•( , ) has already been treated in Proposition 2.12. Notice that
boundedness is ensured by Serre duality (see Corollary 6.10).

• The derived functor RHom(F , ) is defined using the fully faithful functor Db(X) →
Db(Qcoh(X)) (one check that if F ,G are coherent, so is Hom(F ,G)). We can generalize
the constructions as follows.

The exact functor Hom•(F•, ) : Kb(Coh(X))→ Kb(Coh(X)) is defined by

Homi(F•,G•) =
∏
Hom(Fp,Gp+i), d = dG − (−1)idF .

We proceed as before: we check that Hom(F•,G•) is acyclic whenever F• or G• is acyclic,
then we use that Qcoh(X) has enough injectives.

In fact, we also have a bifunctor

RHom( , ) : Db(X)op ×Db(X)→ Db(X)

To see it, it suffices to show that RHom(F•, ) = Hom(F•, ) if F• is a complex of locally
free sheaves (i.e. complexes of locally free sheaves form an adapted subcategory for this
functor, see Proposition 2.6). Since X is regular, any complex F• ∈ Db(X) is isomorphic
to a complex G• of locally free sheaves. This last claim follows from the fact that on a
smooth scheme any coherent sheaf F admits a locally free resolution of finite length (see
[8], III, ex.6.9).

• The functor F ⊗ − is a right exact functor. One checks that the class of locally free
sheaves in Coh(X) is adapted to this functor (see Corollary 2.7), and thus we obtain a
derived functor

F ⊗L − : Db(X)→ Db(X),

where boundedness is ensured by smoothness of X.

We have a more general situation. Let F• ∈ Db(X) be a bounded complex. We define
the exact functor F• ⊗− : Kb(X)→ Kb(X) as

(F• ⊗ G•)i :=
⊕
p+q=i

Fp ⊗ Gq, d = dF ⊗ 1 + (−1)i1⊗ dG.

Then it suffices to check that the subcategory of complexes of locally free sheaves is
adapted to this functor and we obtain the derived functor

F• ⊗L − : Db(X)→ Db(X).
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In fact, we also have a bifunctor

−⊗L − : Db(X)×Db(X)→ Db(X),

because F• ⊗ G• is acyclic whenever F• is acyclic and G• is a complex of locally free
sheaves (in other words, the functor − ⊗ − needs not to be derived in the first factor).
Notice that have the isomorphisms

F• ⊗L G• ' G• ⊗L F•,

E• ⊗L (F• ⊗L G•) ' (E• ⊗L F•)⊗L G•.

7 Main results
In this section we will present some results, mostly due to Bondal and Orlov ([1]). All derived
functors will be written with their non-derived notation (e.g ⊗ will stand for ⊗L) as we will
always work in the bounded derived categories of coherent sheaves on a smooth projective
variety.

Proposition 7.1. Let X and Y be smooth projective varieties over a field k. If there exists an
exact equivalence

Db(X) ∼ // Db(Y )

of their derived categories, then
dim(X) = dim(Y ).

Moreover, their canonical bundles ωX and ωY are of the same order.

Recall that the order of an invertible sheaf L, if it exists, is the smallest positive integer
m ∈ Z such that Lm is trivial. If there is no such integer, we say that L is of infinite order.

Proof. Since both varieties are smooth projective, their derived categories Db(X) and Db(Y )
come with natural Serre functors SX and SY (see 6.8). By Proposition 1.5, the equivalence F
commutes with SX and SY .

Fix a closed point x ∈ X. Then k(x) ' k(x)⊗ ωX ' SX(k(x))[− dimX] and hence

F (k(x)) ' F (SX(k(x))[− dimX]),

' F (SX(k(x)))[− dimX], since F is exact,
' SY (F (k(x)))[− dimX],

' F (k(x))⊗ ωY [dimY − dimX].

Since F is an equivalence, F (k(x)) is non-trivial. Let m be maximal (resp. minimal) with
Hm(F (k(x))) 6= 0. Notice that Hk(F• ⊗ L) ' Hk(F•)⊗ L for any complex F•, integer k and
line bundle L. This comes from the fact that line bundles become trivial on stalks. Hence we
obtain:

0 6= Hm(F (k(x))),

' Hm+dimY−dimX(F (k(x))⊗ ωY ,

and hence 0 6= Hm+dimY−dimX which contradicts the maximality (resp. minimality) of m if
dimY 6= dimX. Hence, we have n := dimX = dimY .

To finish, assume ωkX ' OX . Then SkX [−kn] ' Id and hence

F−1 ◦ SkY [−kn] ◦ F ' SkX [−kn] ' Id .

Therefore, SkY [−kn] ' Id and thus ωkY ' OY . Since we can perform the previous isomorphisms
switching the roles of X and Y , we obtain that ωkX is trivial if and only if ωkY is trivial.

52



In order to prove Theorem 7.9, we need to characterize the geometry of our variety intrins-
ically as objects in the derived category.

Definition 7.2. Let D be a k-linear triangulated category with a Serre functor S. An object
P ∈ D is called point like of codimension d if

1. S(P ) ' P [d],

2. Hom(P, P [n]) = 0 for all n < 0,

3. k(P ) := Hom(P, P ), endowed with the composition, is a field.

An object P verifying 3 is called simple. Notice that P is simple if and only if every
non-trivial endomorphism P → P is invertible.

Remark 7.3. For any closed point x ∈ X, where X is a smooth projective variety, the sky-
scraper sheaf k(x) and all its shifts k(x)[m], m ∈ Z, are point like objects of codimension
n. Indeed, conditions 1 and 3 are obvious, and condition 2 also holds since Hom(F ,F [p]) =
Extp(F ,F) = 0 for any coherent sheaf F and any p < 0.

Lemma 7.4. Let X be a smooth projective variety and let F• be a simple object in Db(X) with
zero-dimensional support. If Hom(F•,F•[n]) = 0 for n < 0, then

F• ' k(x)[m]

for some closed point x ∈ X and some integer m.

Proof. First, we prove that Supp(F•) is concentrated in one point. If not, we would have a
non-trivial decomposition F• ' F•1 ⊕F•2 (see Lemma 6.6). But the projection onto one of the
two summands is not invertible.

Thus, we may assume that all cohomology sheaves Hn of F• have support concentrated in
a closed point x ∈ X. Set

m0 := max{n | Hn 6= 0} and m1 := min{n | Hn 6= 0}.

Recall the following fact of commutative algebra: if M is a finite A-module with (A,m) a
Noetherian local ring, and Supp(M) = {m}, then there exists a surjection M � A/m and an
injection A/m ↪→M .

Indeed, since A is Noetherian and M is finite there exists a prime filtration 0 ⊂M0 ⊂ · · · ⊂
Mn ⊂M such that Mi+1/Mi ' A/pi for some prime pi ∈ Supp(M) (see [11], Chapter 3). Thus
we have pi = m for all i. In particular, we have the projection M � M/Mn ' A/m. On the
other hand, since M 6= 0, there is a p ∈ SuppM such that p = Ann({m}) for some m ∈ M .
Thus, m is the kernel of the map

f : A −→ M
a 7−→ am

,

and thus there is an injective morphism f : A/m ↪→M .
Now, consider an affine neighborhood U = SpecA of x. We have k(x) ' A/mx. The

coherent sheaves Hm0 and Hm1 are given on U by A-modules M0 and M1, and since {x} =
Supp(Hm0) = Supp(Hm1) we have

Hm0
x ' (M0)mx 6= 0 and Hm1

x ' (M1)mx 6= 0,

and Supp(M0) = Supp(M1) = {m}. Then by the fact stated above there exist (M0)mx � A/mx

and A/mx ↪→ (M1)mx . Using Corollary 4.7, the composition yields a non-trivial morphism
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Hm0
x → Hm1

x which extends to a non-trivial morphism Hm0 → Hm1 since both sheaves are
supported in x.

Now, in the same vein as in the proof of Lemma 6.6, consider the complexes

F•i : · · · → Fmi−1 → ker(dmi)→ 0→ · · ·

with i = 0, 1. Then the roofs F• ← F•0 → Hm0 [m0] and Hm1 [m1]← F•1 → F• give morphisms
in Db(X) which induce isomorphisms in mth

0 and mth
1 cohomology respectively. Thus we get a

non-trivial composition
F•[m0]→ Hm0 → Hm1 → F•[m1].

Hence, m := m0 = m1 and F• = F [m] is a shifted coherent sheaf supported in x.
To conclude, recall that we have a non-trivial morphism F = Hm → Hm given locally by

M � A/m ↪→ M . Since F is simple, this morphism is invertible, in particular p and i are
isomorphisms, and thus M ' A/m, i.e. Hm ' k(x).

Proposition 7.5 (Bondal, Orlov). Let X be a smooth projective variety. Suppose that ωX or
ω∗X is ample. Then the point like objects in Db(X) are the objects which are isomorphic to
k(x)[m] for some x ∈ X closed point and m ∈ Z.

Proof. It’s clear that any object k(x)[m] is point like (see Remark 7.3). Now assume that
P ∈ Db(X) satisfies conditions 1 − 3 of Definition 7.2. Denote by Hi the cohomology of P .
Then condition 1 ensures that Hi ⊗ ωX [n] ' Hi[d], hence d = n and Hi ' Hi ⊗ ωX .

Now, recall that the Hilbert polynomial associated to a coherent sheaf F is defined as

PF(t) = χ(F ⊗ ωtX),

where χF :=
∑
i

dimkH
i(X,F) is the Euler-Poincaré characteristic (note that once again we

use that all cohomology groups are finite dimensional). Now, we use that the degree of PF is
exactly the dimension of Supp(F) (see [14], II, 6, 81). Then, if dim(Supp(F)) > 0, we have
that there exist non-zero integers p, q such that F ⊗ ωpX 6' F ⊗ ω

q
X . Hence F 6' F ⊗ ωX .

We conculde that Supp(Hi) is zero-dimensional for all i, and the assertion follows from
Lemma 7.4 applied to P .

Definition 7.6. Let D be a triangulated category with a Serre functor S. An object L ∈ D is
called invertible if for any point like object P ∈ D there exists nP ∈ Z such that

Hom(L, P [i]) =

{
k(P ) if i = nP

0 otherwise.

Proposition 7.7 (Bondal, Orlov). Let X be a smooth projective variety. Any invertible object
in Db(X) is of the form L[m] with L a line bundle on X and m ∈ Z. Conversely, if ωX or ω∗X
is ample, then for any line bundle L and any m ∈ Z the object L[m] ∈ Db(X) is invertible.

Proof. Let L be an invertible object in Db(X) and let m be maximal with Hm := Hm(L) 6' 0.
Then there exists a morphism

L→ Hm[−m]

(see proof of Lemma 7.4). Fix a point x0 ∈ Hm. There exists a non-trivial morphism Hm →
k(x0). Notice that

Hom(Hm, k(x0)) ' Hom(L, k(x0)[−m]).

Indeed, any morphism ϕ : Hm → k(x0) can be composed with L→ Hm[−m] (up to shift ϕ by
[−m]), and conversely any morphism L → k(x0)[−m] is only determined by its restriction to
Hm. Thus we obtain

0 6' Hom(L, k(x0)[−m])
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and therefore nk(x0) = −m.
Now consider the spectral sequence

Ep,q
2 = Hom(H−q(L), k(x0)[p])⇒ Hom(L, k(x0)[p+ q]). (4)

We deduce that

E1,−m
2 = Hom(Hm, k(x0)[1]) = Hom(L, k(x0)[1 + nk(x0)]) = 0.

Thus Ext1(Hm, k(x0)) = 0 for any point x0 ∈ Supp(Hm). Now we want to apply the following
lemma of commutative algebra.

Lemma 7.8. Any finite module M over a noetherian local ring (A,m) with Ext1(M,A/m) = 0
is free.

Proof. Set k = A/m. Any k-base of M/mM lifts to a minimal set of A-generators of M by
Nakayama lemma. We obtain the exact sequence of A-modules

0 // N
ϕ // An //M // 0

and N is finitely generated since A is noetherian. Then ϕ induces the trivial morphism ϕ̃ :
N/mN → kn. The vanishing of Ext1(M,k) (seen as the derived functor of HomA( , k)) leads
to a surjective morphism

HomA(An, k)→ Hom(N, k).

Now, notice that Hom(An, k) ' Homk(k
n, k) and HomA(N, k) ' Homk(N/mN, k), and thus

the morphism
Homk(k

n, k)→ Homk(N/mN, k)

given by ϕ̃ is surjective. But since ϕ̃ = 0, this is only possible if N/mN = 0, thus N = 0 by
Nakayama lemma. Then M is free.

Now we use the spectral sequence

Ep,q
2 = Hp(X, Extq(Hm, k(x0)))⇒ Extp+q(Hm, k(x0)).

Note that this spectral sequence exists since RΓ ◦RHom(F•, ) = RHom(F•, ), but one has
to check that the image of a complex of injectives under Hom(F•, ) is Γ-acyclic. Since k(x0)
is concentrated in one point, so is Ext0(Hm, k(x0)), and hence it is flasque. Thus we obtain

E2,0
2 = H2(X, Ext0(Hm, k(x0))) = 0

(see Remark 5.13). Moreover, E−2,22 = 0 since there is no negative cohomology, and hence E0,1
2 =

E0,1
∞ . But we know that E1 = 0, thus E0,1

∞ = 0. Now, Ext1(Hm, k(x0)) is also concentrated
in {x0} since an injective resolution of k(x0) can be chosen to be concentrated in {x0}. In
particular, it means that Ext1(Hm, x0) is generated by global sections, and thus

H0(X, Ext1(Hm, k(x0))) = 0

implies that Ext1(Hm, k(x0)) = 0. Finally, since Hm is coherent we can use ([8], III, Proposition
6.8) and we get

Ext1OX,x0
(Hm

x0
, k(x0)) = Ext1(Hm, k(x0))x0 = 0.

Thus, we can apply Lemma 7.8 to conclude that Hm
x0

is free.
Note that freeness is an open property: pick x0 ∈ Supp(Hm) and consider an affine neigh-

borhood U = SpecA ⊆ Supp(Hm). On U , the coherent sheaf Hm|U correspond to a finitely
generated A-module M . Since A is noetherian, M is also finitely presented. Thus we have an
exact sequence

0→ N → A⊕p →M → 0.
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It induces an exact sequence of localized modules

0→ Nx → A⊕px →Mx → 0.

Choose a minimal set of generators a1, . . . , al of N . Since Hm
x is free, the ai’s restrict to 0 in

Nx. Hence there exist open neighborhood Ui of ai, i = 1, . . . , l, such that ai = 0. Since x ∈ Ui
for all i, ∩Ui 6= ∅ and we have that N |∩Ui = 0. Thus Hm is free on ∩Ui.

We have proved that Supp(Hm) contains an open (dense) subset of X, but since Hm is
coherent, its support is closed (Corollary 4.18). Since X is irreducible, we obtain Supp(Hm) =
X and Hm is locally free. Thereby, there exists for any x ∈ X a surjection Hm → k(x). Hence,

Hom(L, k(x)[−m]) = Hom(Hm, k(x)) 6= 0.

In particular, nk(x) does not depend on x. We have

k(x) = Hom(L, k(x)[−m]),

= Hom(Hm, k(x)),

= Hom(O⊕pX,x0 , k(x)),

' k(x)⊕p.

Hence we conclude that p = 1 and Hm is a line bundle.
Now we show that Hi = 0 for i < m. Consider again the spectral sequence (4). We have

Eq,−m = Extq(Hm, k(x)) ' Hq(X, (Hm)∨ ⊗ k(x)) = 0 (5)

for q > 0 because (Hm)∨ ⊗ k(x) is supported in {x} (skyscraper sheaf) and thus is flasque.
By induction, assume we have shown Hi = 0 for i0 < i < m. Then E2,−i0−1

2 = 0 because
either i0 < i0 + 1 < m and the inductive hypothesis apply or i0 + 1 = m and the equality
holds by (5). Moreover E−2,−i0+1

2 = 0 because there is no negative Ext between sheaves. Thus
E0,−i0

2 = E0,−i0
∞ . Since i0 6= m we have

E−i0 = Hom(L, k(x)[−i0]) = 0,

thus Hom(Hi0 , k(x)) = 0 for all x ∈ X, i.e. Hi0 = 0. As explained above, the induction starts
with i0 = m− 1.

Conversely, assume that the (anti)-canonical bundle is ample. We know by Proposition 7.5
that any point like object P in Db(X) is of the form k(x)[l] for some closed point x ∈ X and
some l ∈ Z. Hence

Hom(L[m], P [i]) = Hom(L, k(x)[l + i−m]),

' Exti+l−m(L, k(x)),

' Exti+l−m(OX , L∨ ⊗ k(x)),

' H i+l−m(X,L∨ ⊗ k(x)) = 0

except for i = m− l because L∨ ⊗ k(x) is flasque. We set nP := m− l.

Theorem 7.9 (Bondal, Orlov). Let X and Y be smooth projective varieties and assume that
ωX or ω∗X is ample. If there exists an exact equivalence Db(X) ' Db(Y ), then X and Y are
isomorphic. In particular, the (anti)-canonical bundle of Y is also ample.

Proof. We will proceed in several steps. Notice that since the notions of point like objects and
invertible objects in Db(X) are intrinsic, the equivalence F : Db(X)→ Db(Y ) induces bijections:

{point like objects in Db(X)} oo ϕ // {point like objects in Db(Y )},

{invertible objects in Db(X)} oo ψ // {invertible objects in Db(Y )}.
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Step 1 : F (OX) = OY .
By Proposition 7.7, we know that OX is an invertible object in Db(X). Then F (OX) must
be an invertible object in Db(Y ), and then Proposition 7.7 implies that F (OX) = M [m]
for some line bundle M on Y and some integer m ∈ Z. Hence, composing F with the
two equivalences M∗ ⊗ ( ) and ( )[−m] we obtain a new equivalence, which we continue
to call F , that satisfies F (OX) = OY .

Step 2 : F (ωkX) = ωkY for all k ∈ Z.
Denote by SX (resp. SY ) the Serre functor on X (resp. Y ) given by Theorem 6.8. We
know that n = dimX = dimY by Proposition 7.1, and that F commutes with the Serre
functors by Lemma 1.5. Hence for any k ∈ Z we have:

F (ωkX) = F (SkX(OX))[−kn],

' SkY (F (OX))[−kn],

' SkY (OY )[−kn],

= ωkY .

Step 3 :
⊕

H0(X,ωkX) '
⊕

H0(Y, ωkY ).

Using that F is fully faithful and the previous steps, we get

H0(X,ωkX) ' Hom(OX , ωkX),

' Hom(F(OX), F (ωkX)),

' Hom(OY , ωkY ),

' H0(Y, ωkY ).

Now, the product in
⊕

H0(X,ωkX) can be expressed as follows. Take si ∈ H0(X,ωkiX ),
i = 1, 2. Since SX is an equivalence, we have

Hom(OX , ωk2X ) ' Hom(Sk1X (OX), Sk1X (ωk2X )),

' Hom(ωk1X [k1n], ωk1+k2X [k1n]),

' Hom(ωk1X , ω
k1+k2
X ).

Thus, the product s1 · s2 is given by s̃2 ◦ s1, where s̃2 : ωk1X → ωk1+k2X is given by the
isomorphism above. It is easy to see that F (s1 ·s2) = F (s1) ·F (s2) since F commute with
shifts and Serre functors. Thus we conclude that the ring isomorphism⊕

H0(X,ωkX) '
⊕

H0(Y, ωkY )

is a graded ring isomorphism.

Step 4 : The (anti)-canonical bundle of Y is ample.

This is the longest step. In order to prove it, we shall first prove that point like objects in
Db(Y ) are of the form k(y)[m]. For any closed point y ∈ Y , denote by xy ∈ X the closed
point verifying F (k(xy)[my]) ' k(y), my ∈ Z, induced by ϕ. Suppose that P ∈ Db(Y )
is a point like object which is not of the form k(y)[m] and denote by xP ∈ X the closed
point with F (k(xP )[mP ]) ' P . Note that xP 6= xy for all y ∈ Y , hence we have for all
y ∈ Y and all m ∈ Z

Hom(P, k(y)[m]) ' Hom(F (k(xP ))[mP ], F (k(xy))[my +m]),

' Hom(k(xP ), k(xy)[my +m−mP ]) = 0.
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Indeed, Supp(k(xP )) ∩ Supp(k(xy)) = ∅ so there is no Ext between them. But objects
of the form k(y) form a spanning class in Db(Y ) (Proposition 6.11) thus P ' 0 which is
absurd (indeed, a point like object cannot be trivial since its endomorphisms form a field,
so in particular 0 6= Id). Thus point like objects in Db(Y ) are exactly the objects of the
form k(y)[m].

Note that for any closed point x ∈ X there exists a closed point y ∈ Y such that
F (k(x)) ' k(y) (no shifts). Indeed, 0 6= Hom(OX , k(x)) ' Hom(F (OX), F (k(x))) since
F is fully faithful, but Hom(OY , k(y)[m]) ' Hm(Y, k(y)) and the latter is non-zero if and
only if m = 0 because k(y) is flasque.

Finally, it remains to prove that ωkY is very ample if ωkX is so. To do so we will use
Proposition 5.6 (here we use that k is algebraically closed, but this hypothesis can be
omited, see [1]).

The line bundle ωkY separates points if for any two points y1 6= y2 of Y the restriction map

r : H0(Y, ωkY )→ H0(Y, k(y1)⊕ k(y2))

is surjective (Remark 5.8). Denote by xi, i = 1, 2, the closed point xyi , where we use
the notation of the previous paragraph. The restriction map ωkY → k(y1)⊕ k(y2) is sent
through the isomorphisms

Hom(ωkY , k(y1)⊕ k(y2)) ' Hom(F (ωkY ), F (k(y1)⊕ k(y2)))

' Hom(ωkX , k(x1)⊕ k(x2))

to the restriction map ωkX → k(x1) ⊕ k(x2) since there is only one non-trivial morphism
ωkX → k(xi) up to scaling. We obtain the commutative diagram

H0(Y, ωkY ) //

∼
��

H0(Y, k(y1)⊕ k(y2)),

∼
��

Hom(OY , ωkY ) //

∼
��

Hom(OY , k(y1)⊕ k(y2)),

∼
��

Hom(OX , ωkX) //

∼
��

Hom(OX , k(x1)⊕ k(x2)),

∼
��

H0(X,ωkX) // // H0(X, k(x1)⊕ k(x2)).

Since the map H0(X,ωkX)→ H0(X, k(x1)⊕ k(x2)) is onto (because ωkX separates points),
so is the map H0(Y, ωkY )→ H0(Y, k(y1)⊕ k(y2)).

Now, we need to show that ωkY separates tangent directions. We will use again Remark
5.8. Assume that Zy ⊆ Y is a subscheme of length two concentrated in y ∈ Y , that is y
endowed with a tangent direction (see Proposition 4.26). We have an exact sequence

0→ k(y)→ OZy → k(y)→ 0

given by k(y) 3 λ 7→ λ · m ∈ OZy for a k-generator m of mZy and OZy 3 a 7→ [a] ∈
OZy/mZy ' k. Such a (non-trivial) extension is given by an element

eZ ∈ Hom(k(y), k(y)[1]) = Hom(F (k(x)), F (k(x))[1]) = Hom(k(x), k(x)[1])

(see Remark 2.10).

The latter, when viewed as a class in Hom(k(x), k(x)[1]), defines an extension of OX,x-
modules

0→ k(x)→M → k(x)→ 0.
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It’s in particular an extension of k-vector spaces, and thus we can endow M with a
structure of k-algebra pulling back the structure of k-algebra of k[T ]/T 2 through the
k-linear isomorphism

M ∼ // k[T ]/T 2

given by choising a k-basis of M compatible with the extension. Thus OZx := M define
a subscheme Zx ⊆ X of length two concentrated in x and F (OZx) = OZy . Since ωkX
separates tangent directions, the restriction

H0(X,ωkX)→ H0(X,OZx)

is surjective. Now using H0(X,ωkX) = H0(Y, ωkY ) and

H0(Y,OZy) ' Hom(OY ,OZy),
' Hom(OY ,OZy),
' H0(X,OZx)

we deduce the surjectivity of H0(Y, ωkY ) → H0(Y,OZy), i.e. ωkY separates the tangent
direction in y given by Zy.

Step 5 : End of the proof.

We proved step 3 that
⊕

H0(X,ωkX) '
⊕

H0(Y, ωkY ). Using that both (anti)-canonical
bundle of X and Y are ample, we conclude using Theorem 5.19:

X ' Proj
⊕

H0(X,ωkX) ' Proj
⊕

H0(Y, ωkY ) ' Y.
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