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0. Introduction

Complex K-theory is a multiplicative cohomology theory and Atiyah [4]
established an exact and natural Kiinneth sequence

(K) 0—K*X)QK* (Y —K*(X A Y)—K*(X)*K * (Y)—0.

BuhStaber and Miscenko [8], Mislin [15], Puppe [19], and Anderson [1] proved
that (K) splits if both respectively one of the spaces is a finite CW complex. Im-
plicitly, the three latter papers also contain the result that (K) is always pure.

We continue the study of the Kiinneth sequence by applying — in addition to
the multiplicative structure of the K-theory with coefficients — the Ulm theory
developed for the investigation of abelian groups with elements of infinite height.
Along these lines we arrive at our main result, which states that (K) is not just pure
but even “transfinitely pure”, i.e. Theorem 5.6. The Kiinneth sequence is balanced
exact for all compact X, Y.

Since countable groups can be completely classified by means of the Ulm
theory and since K-groups of compact metric spaces are countable, we obtain
Theorem 5.8. The Kiinneth sequence splits for all compact metric X, Y.

This answers a question of Brown [6, p. 13, Footnote]. (N.B.: The Ext-
homology theory of Brown et al. [7] is defined for compact metric spaces only.)

The paper is organised in five sections. In the Sects. 1, 3, and 4 we summarise
the K-theory with coefficients and the group theory we use. In Sect. 2 we prove
that the universal coefficient sequences split naturally in the group variable (in a
certain sense). Section 5 contains the results about the Kiinneth sequence.

1. K-Theory with Coefficients

(1.1) To put coefficients Z, into a cohomology theory we start with the
construction of a co-Moore space LZ,. For n>1 let
Pn On

(12) S5t on—252 > 52 S g0p
*  Dedicated to Prof. A. Dold on his fiftieth birthday
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be the Puppe sequence induced by the multiplication n : S' —S* (see Puppe [18, 1]).
For LZ,=Cn we have K°(LZ )=Z, and K~ *(LZ,)=0.

If we define Ki(X ;n)=K'*2(X A Cn) for all spaces X [by a space we always
mean a compact (Hausdorff) space], this together with the induced homomor-
phisms and the suspension isomorphism defined in the obvious manner gives us a
reduced cohomology theory, K-theory with coefficients in Z, (Araki and Toda
[2,2.2], Maunder [14, 2.2], and Hilton [11, 3]).

(1.3) For any space X the sequence (1.2) gives a new Puppe sequence

1A~Qn 1A Sn

(14) X ASI—205x A ST2PX A Ch

X A S2 X AS?o

One defines then the Bockstein homomorphism f, K‘(X n)—»K'“(X ) by
B,=c '(1APn)* and reduction homomorphism  ¢,: KiX)-»K'X;n) by
0,=(1 AQn)*o?, where ¢ stands for the suspension isomorphism (Araki and Toda
[2,2.2] and Maunder [14,2.2]). From (1.4) we get at once

(1.5) Proposition. The sequence
R (X R (X R )2 R (X )R (X ...

is exact and natural. [
(1.6) Corollary.

i) imB,=K'*'(x)[n],
ii) kerQn-—nK’(X) O

[Here Ki*1(X)[n] are all xe K'*1(X) such that nx=0.]

(1.7) While B, and g, are natural transformations between the cohomology
theories K( ) and K( ;n) there are also natural transformations between the
theories with different coefficient groups.

Let n,m=1 and (n,m) denote the greatest common divisor of n and m. The first
square in the diagram

P s
R N o
|
, | |
I
_n |} _m ! L _m_
(18) (n,m) (n,m) C"’"‘: s(n,m) S(n.m)

v
§'—s8!—Cm—— 82— 8%
m Pm Oom Sm

commutes. Therefore there is a unique map C, ,,: Cn—Cm such that all squares
commute. We define the coefficient homomorphism x,,,,,,:ki(x ;m)—Ki(X ;n) by
Knm=(AC,,)* (compare Araki and Toda [2,24 and 2.5] and Maunder
{14,2.3]).

The following proposition is an immediate consequence of the definition, the
commutativity of (1.8) and the functoriality of the mapping cylinder (Puppe
[18,2.5A]).
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(1.9) Proposition.

i) K, , is natural,

.. m
11) BnKn,m= mﬁm’

iii) K, ,0,= Q"_(n ot

. (k,m) . .

w) x, K =H—— , and in particula
) k,n™n,m (k, n) (n, m) Kk,m p C r

v) K, =1,
Vl) K:knm, annm, m= Kknm, m?

V]l) Km, annm,knm = Km,knm’

Vlll) Knm, kanknm,km = K’nm,me, km* D

2. Universal Coefficient Sequences

(21) From diagram (1.8) and Propositions (1.5) and (1.9ii) and iii)) we get a
commutative diagram of universal coefficient sequences

0K (X)/n— KX ;m)—22s K11 (0)[1] -0
(22)

Kn, m Kn, m Kn,m

0 R (X)m—2s RiX s my—Pm s R+ 1 (X) [m] -0

h

wm in K'(X)

where g, ﬁ and «’, k" are induced by ¢,  and the multiplications by

m
n,m)

resp. by ( in K'*1(X). Therefore we have

(2.3) Proposition. For every n=1 there is a universal coefficient sequence
0 R (X)/n—2 R ny—P2 s R 1 (X) [n] ~0.

These sequences are exact, natural in X and compatible with the coefficient
homomorphisms :

1 A

1) nKn,m_Kn,m m>

.. p

1) Ky @ =0,Kp e [

(24) In the proof of Theorem (2.8) about the splitting of the universal coefficient
sequences we shall need several times the following result of Araki and Toda
[2, Proposition 2.2, Theorem 2.3].

(2.5) Propesition. For all n>1, K'(X ;n) is a Z,-module. [

In [2] the proof is carried out for finite CW complexes, but it holds for
compact spaces also; the point is that n* =0 for the Hopf map 7:53—S$2, i.e. that
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K is a “good” cohomology theory in the sense of Hilton and Deleanu [12, 1.7,
Proposition 1.9].

(2.6) Remarks

a) A group G [bya group we always mean an abelian group]is a Z,-module if
and only if nG=0 (i.e. G is bounded by n or G has exponent n).

b) Therefore for any group G both G/n and G[n] are Z,-modules.

¢) A group G is a Z,-module if and only if G is a direct sum of cyclic groups
whose orders divide n (Fuchs [9, Theorem 17.2]).

d) If a group G is a direct sum of cyclic groups, we call a set {g,}, iel, of
generators of G a basis of G if G is the direct sum of the cyclic groups {g,», iel
(Fuchs [9, p. 78]).

(2.7) 1t is well known that all the universal coefficient sequences in (2.2) split
unnaturally in X (Araki and Toda [2, Theorem 2.7, Corollary 2.87], Maunder [14,
Theorem 2.2.1], Hilton and Deleanu [12, Corollary 3.5], and Mislin [15, Lemma
5.1]). Following the proof of Araki and Toda we now want to show that they split
even naturally in n; more precisely we mean: for a fixed prime p one gets by
Proposition (2.3) an inverse sequence of universal coefficient sequences

KiX))p —— Ki(X;p) —— K*Y(X)[p] -0

1 1 1
1 1 _ i

0— Kix)/p" Rix;pn) —22— R (X)[p] -0
vc;,,._”.‘ Kpn, pn+1 K;n,p,...

Ki(X)/pn+1 @pn* K(X pn+l)____)Kz+1( [n+1]__)0

that is, an exact sequence of inverse systems. We shall now construct a section for
this sequence.

(2.8) Theorem. For every n 21 there is a homomorphism
s K Y(X) [p"]— K'(X : p) such that

1) B’p"sp"= 15

ll) Kpn pn+1Spn+1= anpn pn+i

Proof. We construct the s,, recursively. Since for n=1 both Ki*1(X)[p] and
K'(X ; p) are Z -modules, i.e. vector spaces over the field Z , there is a right inverse
Sp forﬂ thus 1)[3s =1.

Assume that we have already constructed s, s,s,... such that

p"’

l) ﬂpmsp"':lv lémén’
i) Kpm, pm+1Spm+1=SpmKpm pm+1, 1SmSn—1.




Kiinneth Sequence in K-Theory 163

K ix)[p"*1]isa Z,..,-module, which has a basis as explained in (2.6d). We
now consider a basis element x of order p*, 1<k<n+1. Hence x is already in
K" '(X)[p*] and there is an x e K{(X ; p*) [for instance s,.(x) if k <n] such that
(1a) Bpk(xpk)=x,

(1b)  p*x =0,
because Ki(X ; p*)
is a Z-module. For x,. 1=K, (x,x) we get by Proposition (2.31)
(22)  Bpner(Xpner)=x,
(2b)  p*x.:=0.

Therefore x/,.., is a good preimage of x, but in order to get ii) too we have to
improve it.
Consider

d:Kpn,pn+1(xpn+1)_Sanpn’Pn+1(x)
= Kpn’pn»f 1 (x;,n + 1) - Spn(Px) s

the deviation from commutativity. Since ﬁp,,(d)=0, there is an x”e K'(X) such that
B) Gpx" +p"KX)) =0,n(x")=d.

If We Set X st =Xpns1—Qpn+1(X"), We get
(4&) ﬁp..+1(xpn+;)=x,
(4€)  Kpn pn+1(Xpne1) = SpnKipn pns 1(X).

It remains to show that the order did not change. First we have
(5) P sy pnea (X) =P 5 (px) =0.

On the other hand

Kpn pn+1 (x;,rw )= Kpn pn+1Kpn+ 1’pk(xpk)

=Kpn, pk-1Kpi- l‘pk(xpk)

by Proposition (1.9viii); hence we also have
(6) pk—lkpn‘pn+l(x;n+l)=0,
because K -1 (x4 lies in a Z
(1) p*~1d=0.

Now g,. is mono, whence (3) and (7) gives p*~'(x"+ p"Ki(X))=0, but that

means p*”!x"ep"K{(X), and therefore p‘x"ep"t!Ki(X), or equivalently

P*(x" +p"* 1Ki(X))=0. From this last statement we have
8)  Pr@pnss (X" +p" M KI(X)) = p 0 pns s (x") =0,

and therefore it is still true that

(4b) p*x ... =0.

-module. From (5) and (6)

pk—l

pnt
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By this procedure we get for every basis element x of K*'(X)[p"* '] an
element xp,.+,eK (X p"“) satisfying (4a)~(4c); putting s,..1(x)=x,... defines a
homomorphism s...: K'* 1 (X)[p"* ']-K'(X ; p"*") such that

pnt

i) BpneiSpner=1,

1) Kpn pns1Spne 1t =SpnKpn pn+1

hold, because this is true for every basis element according to (4a) and (4c)
respectively. [

3. Multiplicative Structures

(3.1) The tensor product of wvector bundles induces a cup product
K(X)®K/(Y)>K*i(X A Y) in the reduced K- theory (Atiyah [5, 2.6]). Thus one
gets in the ZZ graded cohomology theory K*=K°@®K™! a multiplication
w:K*(X)QK* (Y)»K*(X A Y).

(3.2) In [4], Atiyah has shown how to construct the Kiinneth sequence (K) for
two finite CW complexes X, Y, with Lemmas 1 and 2 as the essential steps. But
Lemma 1 is valid also for compact X, Y: one approximates X by an inverse system
of finite CW complexes and the assertion will follow using Atiyah [5, Theorem
2.7.15] (a generalisation of Lemma 1) and the continuity of the K-theory (i.e.
K*(ljm {Xl});lllp{ﬁ“(xi)} for an inverse system {X,} of compact spaces).

Lemma 2 holds for compact X in the following version: as in Atiyah [5,
Corollary 2.7. 15] or in [4]) one constructs a map «:SX—A such that
a*:K*(A)—K*(SX) is epic, where A is a — now possibly infinite — product of
Grassmannians and suspensions of Grassmannians. Now A is the inverse limit of
the finite products, thus K *(4) is a direct limit of free groups, and hence torsion
free. [Indeed, K* (A) is even free, because bases can be arranged to be preserved by
the bonding maps.]

For the construction of the Kiinneth sequence (K) for X, Y it is then enough to
consider the torsion free geometric resolution

Pz Sa

SX— s A Cu— 2§ X 5S>, of X.
We have sketched the proof of

(3.3) Theorem. There is a Kiinneth sequence
(K) 0-K*(X)®K*(Y)K*(X A Y)—>Tor(K *(X).K*(Y))—

which is exact and natural, for all X, Y. O

(3.4) Given a reduced multiplicative cohomology theory h, Arakiand Toda [2,3]
and Maunder [14] studied the question, under which conditions the associated
cohomology theory h( ;n) with coefficients in Z, is again multiplicative, i.e.
whether there is an admissible multiplication

w, HX ;@AY ;n)—h (X A Y;n)

(see Araki and Toda [2,3.3] for the definition).
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In the case of K-theory the situation is favorable, again because Kisa “good”
cohomology theory. We note

(3.5) Proposition. For all n=1 there are admissible multiplications in K( ;n. O

For the proof of this result in Araki and Toda [2, Theorem 5.9] the restriction
to finite CW complexes is again unnecessary. With u we already have a map
KiX ;n@KA(Y; n)—>K "I "4X ACnAY A Cn)and the problem is to come back to
Kt*2X AYACn)=K'"IX A Y:n) (compare Maunder [14, Theorem 4.1.1]).
This is done by first constructing a map g,:SCn—S? and then a natural left inverse
G,=Gy"Y for

(1A Qg.)* : KT I*4X A YAS2Cn)—»K I 4X A YA Cgl);
there is thirdly a stable homotopy class represented by some
g :Sk¥Cyg,,—SX(Cn A Cn). Then y, is (up to suspension isomorphisms and twisting
the factors in the smash product) the composition of G,, (1 Ag,)* and p; all the
properties of u, depend only on the properties of u, G, and g,,, but do not depend
on the spaces X, Y (Araki and Toda [2, 5.3]).

(3.6) Remark. By Araki and Toda [3, Theorem 6.1] there are exactly n admissible
multiplications in K( .n), which are all associative by [3, Coroliary 10.8]. We
choose an arbitrary one among them and denote it from now on by p,.

Because of Lemma 3a) in Puppe [19] all we construct with this p, will be
independent of the choice.

(3.7) An admissible multiplication in K( ;n) is comparable with the reduction
homomorphism (Araki and Toda [2, 3.3(A,)]). Comparability with the coefficient
homomorphisms is not part of the axioms and it does not follow from the axioms
in [2, 3.3] (unless one makes some additional assumptions, compare Araki and
Toda [3, Proposition 11.8]).

But we have the following Lemma of Puppe, stating that the Bockstein
homomorphism corrects this error in special cases.

(38) Lemma' Bmun(Kn.kn®Kn.kn):ﬁnKn,kmukn . D

The proof of Puppe [19, Lemma 3b)] holds also for compact spaces with an
analogous remark as in (3.5) (only the co-Moore spaces have to be considered).
Again one uses the important fact that n* =0 for the Hopf map#.

(3.9) Ifx, eIZ”(X;n) and ynek’*(Y;n), then nf,(x,)=0 and nf,(y,)=0, that is
[B.(x,),n, B,(y,)] is an element of Tor(K *(X), K *(Y)). (We use here the definition of
Tor given by MacLane [13, Chap. V, 6.], see also Fuchs [9, 62].) This defines a
mapping K *(X ;n) x K *(Y:;n)- Tor(K *(X), Rf(Y)) which is obviously bilinear,
hence it induces a unique mapy,:K *(X ;n)®K *(Y;n)-Tor (K *(X), K *(Y)).

(3.10) Lemma. y,=tf,u,. O

For the proof we refer again to Puppe [19, Lemma 2] with the remark that only
the properties of an admissible multiplication and the existence of torsion free
geometric resolutions are used there. Hence the proof is also valid in our more
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general case of compact spaces. (Actually, there must be a minus sign in Lemma 1
and hence in Lemma 2 of [19]; but this does not matter to our purposes, because
the sign can be incorporated in the definition of 7.)

4. Balanced Exact Sequences

(4.1) Let G be an (abelian) group and p a prime. For every ordinal ¢ we define the
Ulm-Kaplansky subgroups p’G of G by

r’é=gG, for o¢=0,
p°G=p(p°G), for o=0'+1,

p°G= () p°G, for o=Ilimo’ .

o' <a o' <o
We get a decreasing series of subgroups

G=p°G2pG2...2p°G2...2p*G,

where 4 is the least ordinal such that p*G =p**'G, and hence p’G = () p°G=d,G,
o<
the maximal p-divisible subgroup of G (Fuchs [9, 37]).
(4.2) Now we can define the (generalised) p-heights :
hS(x)=0, if xep’G\p°*'G,
hS(x)=4, if xep*G.

[We write h(x) instead of hg(x) when there is no danger of confusion.]
For these heights the following equalities and inequalities hold {Fuchs [9, 37]):

i) hy(px) Zh(0)+1,

ii) hy(x+y)zmin(h,(x), h,(y),

i) Ay -+ ) =min(h,(x) (), if k()% (),

iv) h(p(x)) 2hS(x), for ¢:G-H.
(4.3) Let G be a group and p,n=1 relatively prime. If nx =0 holds for xe G, then
x is divisible by p, i.e. xe pG. Repeating the argument for G’'=pG it follows that
xed,G, hence xep’G for any 6. And therefore p’G=G for all ¢ if G is a g-group
and g #p. Since Tor(4, B) is the direct sum of the groups Tor(t,4,t,B) where t,4
and ¢,B are the g-primary components (of the torsion subgroups) of 4 and B
respectively, the following results of Nunke [16, Theorem 1.5, Lemma 1.17 (see
also Fuchs [9, Lemma 64.2, Lemma 64.3]) hold for arbitrary groups 4, B and p
prime, n=1.
(44) Lemma. i) p°Tor(A, By=Tor{(p’A, p°B).

ii) Tor{A4, B)[n]=Tor(A[n],B[n]}). O

(4.5) For A’,A"C A and B, B"C B we have Tor(A4’, B)nTor(4”,B")=Tor(A'nA",
B'nB”) by Nunke [17, Lemma 7] (see also Fuchs [9, 64, Exercise 4]). Therefore
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also the functor p°G[n]=p°GNG[n] commutes with Tor and we note
pTor(A, B) [n] = Tor(p’ A[n], p° B[n])

(4.6) Let p be again prime. We are now interested in the exactness properties of
the functors p°. Let

4.7) 0-A—B-— C—-0

be an exact sequence of groups. The sequence
(48) 0—p”A—p’B—b p7C—0

is in general no longer exact. It is always exact at p’A for any o, and it is always
exact at p°C for finite 6. Even for finite ¢ (4.8) need not be exact at p’B in all
cases ; (4.8) is for all finite o exact at p°B (and hence everywhere) if and only if (4.7)
is p-pure exact (Fuchs [9, Theorem 29.1a)]). The following notion is therefore a
transfinite form of purity (Fuchs [10, 79, 80]).

a) The exact sequence (4.7) is called p-balanced exact, if (4.8) is exact for all o.

b) The exact sequence (4.7) is called balanced exact, if (4.8) is exact for all ¢ and
all prime p.

Later we shall use the following criterion for balancedness which is a
modification of Lemma 80.2 in Fuchs [10].

(4.9) Lemma. Let A, B be groups, C a torsion group, p prime and the sequence

0>A—>B-—" C—0

pure exact. Then the sequence is p-balanced exact if and only if

n(p’Blp])=p°CLp]
holds for all o.

Proof. We begin with two remarks.

a) If C is a p-group, we can drop the purity of the sequence and imitate the
proof in Fuchs [10, Lemma 80.2].

b) We use the purity for the g-primary components C, of C for g+ p; more
precisely we need only the g-purity for all g+ p. But the p-purity follows any way
from both characterisations and therefore it yields no loss of generality in applying
the lemma.

The proof of Lemma 80.2 in Fuchs [10] applies also in our case, except to show
the surjectivity of n| :p’B—p°C=p°(@®C,) on the components C, for g=+p.

But if ce p°C and g*¢=0 for some k, there is a be B with n(b)=c and ¢*b=0,
because of the purity. And in fact, be p”B, according to the remarks in (4.3). Hence
7| is also epic on the g-primary components for g+p. O

Now we come to the next lemma, which can be found as Lemma 80.3 in Fuchs
[10]. It is the crucial step in order to construct a splitting for a balanced exact
sequence.
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(4.10) Lemma. In the diagram
NC{N,g><cG

7/
‘
wl S lw
4
'4

0-—-’A—*B—‘n—> C-0

let the lower row be p-balanced exact and suppose

i) tpy=0|N,

ii) hp(w(x))Zhy(x), forall xeN,
iil) geG and pgeN,

iv) h$(g)=hS(g+x), forall xeN.

Then there is an extension v’ of yp such that

1) ny'=@[(N,g>,
i) KBy (x)2hS(x), forall x'e(N,gy. O

(4.11) The class of p-groups exhaustable by subgroups N, such that
NO = O D)
N,.,={(N,g,>, with N_g,_ asin (4.10 iii) and iv)),

N,= () N,, for ¢ a limit ordinal

4 a
o' <o

is exactly the class of p-groups with “nice composition series” (see Fuchs [10,81]
for the definition). It is important for us that all countable p-groups belong to this
class.

(4.12) Lemma. Let G be a countable p-group. Then G has a generating system {e,},
ke N, with the properties

i) pe,=0,
ii) pe,, €<ep,-- ),
i) hyle,, )2h(e+x), forall xeleg,....e».
Proof. (Compare Fuchs [10, Lemma 81.1].)
We take a countable set of generators {e,} and fill it up with all the multiples
pe,, 0" ‘e, ..., e, ¢ different from 0. A new enumeration implies obviously i) and
ii). To obtain iii) we note that there is an x, , , €<e,, .., ¢, ) such that h (e, . , +x, ., )

is maximal in the coset e, ; +<{eg,...,,), since <e,,...,¢, > is finite. Substituting
e, +x, for e, we have a system of the desired type. [

(4.13) Given such a generating system {e, }, we put Ny =0, N, , , =<e,,...,€,»> and
g, =e,; then a successive application of Lemma (4.10) gives

(4.14) Theorem. A countable p-group is p-balanced projective, i.e. it has the
projective property with respect to all p-balanced exact sequences. [

(Compare Fuchs [10, 80, Exercise 11, 12].)
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(4.15) Corollary. A countable torsion group is balanced projective, i.e. it has the
projective property with respect to all balanced exact sequences. [

5. Splitting the Kiinneth Sequence

(5.1) After these preparations we are now in position to apply the theory of
balanced exact sequences to the Kiinneth sequence.

LetX, Ybecompact spaces, p a prime and s, n2 1, the sections constructed in
Theorem (2.8) for X respectively Y.

(5.2) Lemma. If xe K" '(X)[p"* '], ye Ki* }(Y)[p"* 1], then
Bonbtor S prDX)@ S (DY) = DBy sttpm v (S pn s 1(X) @5 s 1Y)

Proof. The assertion is proved by the following computation using (2.1), Theorem
(2.8i1)), Lemma (3.8), and Proposition (1.9ii)) one after the other

B ot (S pn(DX) @S (DY) = B pubbipnl(S b o, 4 1(X) @S K +1(1)
=B oK, g+ 18+ t(X)R K pn 18 i+ 1(V))
=Bk pn, pn+ 1 thpn s 1(S pr s s (X) @S o+ 1 ()
=pBons 1bpn+ 1(Spns 1 (X) @5 ,1(y). O
(5.3) Lemma. If xep°K'*'(X)[p"], ye p"KI* {(Y)[p"], then
Bty s X)®5 (W) p’KI (X A Y)[p"].

Proof. We prove the lemma by transfinite induction on ¢. The case 6 =0 is obvious
and the case ¢ a limit ordinal is merely routine. R

Assume o=0d'+1, and x=px/, y=py for some xep”K'*'(X)[p"*!'],
y'ep”KI*Y(Y)[p"*1]. By induction hypothesis we have

[3,,,”,upn*,(sle(x’)@spm.(y’))ep"’k”“l(X AY)[p" 1],
hence applying Lemma (5.2) yields
ﬂp,,up,.(spn(x)®spn(y)) = pﬂpm 1,Upn+ 1(Spn+ l(xl)®sp"* l(yl)) .

This completes the proof. [
The next lemma will enable us to apply Lemma (4.9), the criterion for
balancedness, to the Kiinneth sequence.

(5.4) Lemma. For the Kiinneth sequence it holds that
t(p"K* (X A Y)[p"D)=p Tor(K* (X),K* (V) [p"].

Proof. Since a homomorphism neither decreases heights (4.2iv)) nor increases
orders the inclusion C is clear. By (4.5) we have R
T=p"Tor(K*(X), K* (Y))[p"]=Tor(p’K* (X)[p"], pP’K* (Y)[P"]),

hence T is generated by elements of the form [x,p™ y] with xep’K*(X)[p"].
yep’K*(Y)[p"], x and y homogeneous in K*(X) and K*(Y) respectively and
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m<n. To prove the opposite inclusion 2 it is therefore enough to find preimages in
p°K* (X A Y)[p"] for such generators of T. But by Lemma (5.3)

B by (8 pm(X)@3,m(M)E P K * (X A V)[P"1 S p"K* (X A V) [p"]
and by Lemma (3.10) we get also

Byl (S ym (X)®S (1)) =7 (8 o (X) @S (1)
= [BymS pm (X), P, BymS ym (V)]
=By (X), D™, By ()]
=[x,p"y]. O

Now we deduce our main results.
If we put =0 in Lemma (5.4) we get by Fuchs [9, Theorem 29.1]

(5.5) Theorem. The Kiinneth sequence is pure exact for all compact X,Y. [

This theorem can already be found implicitly in the papers mentioned in the
introduction: Mislin [15, Theorem 5.4, Lemma 1.4], Puppe [19, Satz 1], and
Anderson [ 1, Corollary 3.1]. As an immediate consequence one gets the splitting if
one of the spaces is a finite CW complex ; compare (5.9).

Using this last theorem and Lemma (5.4) for n=1 we derive from Lemma (4.9)
a theorem which contains it as a special case.

(5.6) Theorem. The Kiinneth sequence is balanced exact for all compact X, Y. [

(5.7) If Z is a compact metric space, it is the inverse limit of an inverse sequence
of finite CW complexes. Because of the continuity of the K-theory K *(Z) is the
direct limit of a direct sequence of ﬁmtely generated groups, hence countable.

IfX, Y are compact metric spaces, K*(X), K*(Y) are both countable groups
and therefore Tor(K (X), K*(Y)) is countable. Applying Corollary (4.15) com-
pletes the proof of

(5.8) Theorem. The Kiinneth sequence splits (unnaturally) for all compact metric
X, Y O

(5.9) Concluding Remark. We come back to our remark in (5.5). To derive from
Theorem (5.5) that the Kiinneth sequence splits if one of the spaces is a finite CW
complex the assumgtlon is — stnctly speaking — not X (or Y) to be a finite CW
complex, but Tor(K*(X), K* (Y)) to be a direct sum of cyclic groups (=pure
projective, Fuchs [9, Theorem 30.2]). This, for instance, holds if the torsion
subgroup of K *(X) is a direct sum of cyclic groups and therefore it is enough that
X is a finite CW complex.

Correspondmgly, to derive Theorem (5.8) from Theorem (5.7) the assumption
is Tor(K*(X), K*(Y)) to be totally projective (=balanced projective, Fuchs [10,
Theorem 82.3]). (See Fuchs [10, 81-83] for the definition of totally projective
groups and equivalent notions.) Since countable torsion groups are totally
projective [Corollary (4.15)], we assume X, Y to be compact metric.

This paper is a condensed version of a Diplomarbeit at Heidelberg University. The author is grateful to
express his thanks to Prof. A. Dold for suggesting the problem and for his kind encouragement.
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