REMARK ON THE REALIZATION OF COHOMOLOGY GROUPS

By C.-F. BÖDIGHEIMER

[Received 16th February 1981; in revised form 23rd November 1981]

Introduction

It is well-known how to realize any abelian group G as the singular homology $H_n(X)$ of a space X, but in the case of cohomology there are certain restrictions on G to be realizable [2], [5] and [8]. However, the situation is more favourable with a Čech-type cohomology theory. Let H be a contravariant homotopy functor from compact spaces to abelian groups which is half-exact, reduced and commutes with inverse limits; assume further that for some $m \ge 1H(S^{m+1})$ is the group $\mathbb Z$ of integers and $H(S^m)$ is torsion-free.

Theorem. For any abelian group G there exists a compact space X such that $H(X) \cong G$.

1. The Construction

1.1. We choose a free presentation

$$0 \rightarrow F_1 \rightarrow F_0 \rightarrow G \rightarrow 0$$

of G and bases A in F_1 , B in F_0 . A is considered to be well-ordered, i.e. identified with the segment Ω_{λ} of all ordinals α less than a certain ordinal λ . Write $F = (f_{ab} \mid a \in A, b \in B)$ for the $A \times B$ integer matrix determined by the inclusion of F_1 in F_0 .

As a first attempt we might realize F_0 , F_1 by strong wedges of spheres $\bigvee_A S^{m+1}$, $\bigvee_B S^{m+1}$ (i.e. the inverse limits of all finite subwedges) since by the continuity of H we have

$$H\!\!\left(\bigvee_A S^{m+1}\right) \cong \bigoplus_A H(S^{m+1}) \cong F_1 \quad \text{and} \quad H\!\!\left(\bigvee_B S^{m+1}\right) \cong \bigoplus_B H(S^{m+1}) \cong F_0.$$

We should like to map $\bigvee_B S^{m+1}$ to $\bigvee_A S^{m+1}$ so as to realize the transposed matrix F. But a map f from S^{m+1} to $\bigvee_A S^{m+1}$ has its image contained in a countable subwedge of $\bigvee_A S^{m+1}$ (only countably many of the different counterimages $f^{-1}(S_a^{m+1}\setminus *)$ for $a\in A$ can be non-empty, Quart. J. Math. Oxford (2), 34 (1983), 1-5

since they are open and disjoint). This means that F cannot be realized if for some $b \in B$ there are uncountably many $a \in A$ with $f_{ab} \neq 0$. We get around this difficulty by constructing "long" spheres S_{λ} to replace the ordinary spheres S^{m+1} in $\bigvee_{B} S^{m+1}$.

1.2. Recall that for any ordinal λ there is a "long line" L_{λ} defined as $\Omega_{\lambda} \times [0, 1[$ with the order topology induced by lexicographic order. If λ is countable L_{λ} is the real half line; if λ is the first uncountable ordinal L_{λ} is the well-known Alexandroff line [7], [6]. In any case it is a Hausdorff 1-manifold, not necessarily paracompact.

We shall regard Ω_{λ} as a subspace of L_{λ} by identifying α with $(\alpha,0)$. Using the Alexander subbase theorem it is easy to see that the interval $[0,\lambda]$ in $L_{\lambda+1}$ is a compact space, hence the open subspace $L_{\lambda}=[0,\lambda[$ is locally compact. Let S_{λ} denote the one-point-compactification of $L_{\lambda}\setminus\{0\}=[0,\lambda[$, or in other words identify the end points 0 and λ of $[0,\lambda]$ to be the basepoint of S_{λ} .

1.3. The inclusions $L_{\alpha} \subset L_{\lambda}$ for $\alpha \leq \lambda$ induce maps $\Sigma_{\alpha\lambda} \colon S_{\lambda} \to S_{\alpha}$ smashing the subspace $[\alpha, \lambda]$ to the basepoint. Note that $\Sigma_{\beta\alpha}\Sigma_{\alpha\lambda} = \Sigma_{\beta\lambda}$ for $\beta \leq \alpha \leq \lambda$.

Lemma. For λ a limit ordinal the map $S_{\lambda} \to \varprojlim_{\alpha < \lambda} S_{\alpha}$ is a homeomorphism.

Proof. For each point $x=(x_{\alpha}\mid \alpha<\lambda)$ of $\lim_{\alpha<\lambda} S_{\alpha}$ there exists a certain ordinal $\alpha_0<\lambda$ and some $t\in[0,1[$ such that (i) x_{α} is the basepoint for $\alpha<\alpha_0$, and (ii) x_{α} equals (α_0,t) for $\alpha\geqslant\alpha_0$. Then $(\alpha_0,t)\in S_{\lambda}$ is the only point mapped onto x. Since both spaces are compact the map is homeomorphic.

1.4. For the functor H there is no difference between the spaces S_{λ} and ordinary spheres.

Lemma. For $1 \le \alpha < \lambda$ the map $\Sigma_{\alpha\lambda}$ induces an isomorphism $H(S_{\lambda}) \to H(S_{\alpha})$.

Proof. We prove the lemma by transfinite induction on λ . The lemma is obvious for $\lambda = 1$. If it is true for λ , so it is for $\lambda + 1$, since $\Sigma_{\lambda,\lambda+1}$ is a homotopy equivalence. For λ a limit ordinal and a fixed $\alpha \leq \lambda$ assume the statement to be true for all λ' with $1 \leq \alpha \leq \lambda' < \lambda$. In the diagram

all maps $\Sigma_{\alpha\lambda'}$ in the inverse system induce isomorphism by hypothesis, whence the same is true for the projections $p_{\lambda'}$. It follows that $\Sigma_{\lambda'\lambda}$ and especially $\Sigma_{\alpha\lambda}$ induce isomorphism.

We note $H(S_{\lambda}) \cong H(S^1)$, and in the same way we have $H(S^m S_{\lambda}) \cong H(S^{m+1}) \cong \mathbb{Z}$ and $H(S^{m+1} S_{\lambda}) \cong H(S^m)$.

- **1.5.** Another family of maps $q_{\alpha\lambda}\colon S_\lambda\to S^1$ for $\alpha<\lambda$ identifies $[0,\alpha]\cup[\alpha+1,\lambda]$ to a point. For $\lambda=\alpha+1$ not a limit ordinal identifying $[0,\alpha]$ to a point is homotopic to identifying $[1,\alpha+1]$ to a point. Hence $q_{\alpha\lambda}=q_{\alpha,\alpha+1}\Sigma_{\alpha+1,\lambda}\simeq \Sigma_{1,\alpha+1}\Sigma_{\alpha+1,\lambda}=\Sigma_{1,\lambda}$. The pull-back $(S^mq_{\alpha\lambda})^*(e)$ of a generator $e\in H(S^{m+1})\cong \mathbb{Z}$ is therefore a generator of $H(S^mS_\lambda)$ and independent of α . It will also be denoted by e.
- **1.6.** Remember that A was identified with Ω_{λ} and let a correspond to α in our notation. Now pick some fixed $b \in B$. A map $f_{ab}q_{\alpha\lambda} \colon S_{\lambda} \to S^1 \to S^1$ sends the complement of $]\alpha$, $\alpha+1[$ to the basepoint; for a finite subset A' of A the finitely many of them with $a \in A'$ can therefore easily be combined to a map $f_{A'b}$ such that

commutes for each $a \in A'$.

All these maps $f_{A'b}$ for A' finite in A form a map into the inverse system of all finite wedges $\bigvee_{A'} S^1$; so we have a map $f_b \colon S_\lambda \to \bigvee_A S^1$ such that $\operatorname{proj}_a f_b = f_{ab} q_{\alpha \lambda}$. The advantage of S_λ over the sphere S^1 lies in these maps f_b .

1.7. For A' finite in A the set of all $b' \in B$ with $f_{a'b'} \neq 0$ for some $a' \in A'$ is a finite subset B'. The wedge sum of all $f_{b'}$ for $b' \in B'$ yields a map $f_{AB'}$ fitting into the following commutative diagram.

By passing to limits with the maps $f_{A'B'} = \text{proj}_{A'} f_{AB'}$ we finally get a map f

in a commutative diagram

$$\bigvee_{B} S_{\lambda} \xrightarrow{f} \bigvee_{A} S^{1}$$

$$\downarrow_{\text{proj}_{a}} S^{1}$$

$$\downarrow_{A} S^{1}$$

$$\downarrow_{A} S^{1}$$

where the bottom map induces multiplication by f_{ab} , i.e. sends $e \in H(S^{m+1})$ to $f_{ab} \cdot e \in H(S^mS_{\lambda})$.

2. The Proof

Let X denote the mapping cone of $S^{m-1}f$. In the cofibration sequence

$$\begin{split} H\left(\bigvee_{B} S^{m-1}S_{\lambda}\right) & \stackrel{(S^{m-1}f)^{*}}{\longleftarrow} H\left(\bigvee_{A} S^{m}\right) \leftarrow H(X) \leftarrow H\left(\bigvee_{B} S^{m}S_{\lambda}\right) \stackrel{(S^{m}f)^{*}}{\longleftarrow} H\left(\bigvee_{A} S^{m+1}\right) \\ & & || & || & || & || & || \\ F_{0} \otimes H(S^{m}) & \stackrel{F \otimes 1}{\longleftarrow} F_{1} \otimes H(S^{m}) & F_{0} \otimes H(S^{m+1}) \stackrel{F \otimes 1}{\longleftarrow} F_{1} \otimes H(S^{m+1}) \end{split}$$

 $S^m f$ and $S^{m-1} f$ induce the matrix F and we end up with a short exact sequence

$$0 \to G \otimes H(S^{m+1}) \to H(X) \to \text{Tor}(G, H(S^m)) \to 0.$$

Our assumptions on $H(S^{m+1})$ and $H(S^m)$ imply the result.

3. Some Applications

- **3.1.** The best-known continuous cohomology theories are Čech cohomology and complex K-theory. Given any abelian group C_n $(n \ge 2)$ we take m = n 1 for \check{H}^n and construct spaces X_n such that $\check{H}^n(X_n) \cong C_n$. Because we know in addition that $\check{H}^i(X_n) = 0$ if $i \ne n$, we have simultaneously $\check{H}^n(X) \cong C_n$ for $X = \bigvee X_n$. In complex K-theory we construct in the same manner for any two abelian groups A, B a compact space X such that $\check{K}^0(X) \cong A$ and $\check{K}^1(X) \cong B$.
- **3.2.** For K-homology there is the split exact universal coefficient sequence of [1] for compact metric spaces

$$0 \to \operatorname{Ext}(\tilde{K}^{n+1}(X), \mathbb{Z}) \to \tilde{K}_n(X) \to \operatorname{Hom}(\tilde{K}^n(X), \mathbb{Z}) \to 0.$$
 (3.2)

According to [2], [3] and [5], [8] this implies conditions on the structure of $\tilde{K}_n(X)$. On the other hand it implies realizability results: as our construction produces metric spaces for countable groups, any group of

the form $\operatorname{Ext}(B,\mathbb{Z}) \otimes \operatorname{Hom}(A,\mathbb{Z})$ with A,B countable occurs as $\tilde{K}_n(X)$ for some compact metric X.

3.3. For CW complexes X there is a dual split exact universal coefficient sequence in [4]

$$0 \to \operatorname{Ext}(\tilde{K}_{n-1}(X), \mathbb{Z}) \to \tilde{K}^n(X) \to \operatorname{Hom}(\tilde{K}_n(X), \mathbb{Z}) \to 0. \tag{3.3}$$

As in 3.2 it follows that in the category of CW complexes X we do have conditions on the structure of $\tilde{K}^n(X)$. Therefore our theorem cannot hold if we require the realizing space X to be a CW complex. Vice versa we see that the sequence (3.3) cannot split for arbitrary compact X, since we have learned that in the category of compact spaces there are no restrictions for $\tilde{K}^n(X)$.

3.4. There is a counterexample even to the existence of the sequence (3.3) for compact metric spaces. For the solenoid $X = \varprojlim_{k} (\cdots S^1 \overset{k}{\leftarrow} S^1 \cdots)$ we find $\tilde{K}^1(X) = \mathbb{Q}$ and $\tilde{K}^0(X) = 0$. Using (3.2) we note $\tilde{K}_0(X) = \operatorname{Ext}(\mathbb{Q}, \mathbb{Z}) = \mathbb{R}$ and $\tilde{K}_1(X) = \operatorname{Hom}(\mathbb{Q}, \mathbb{Z}) = 0$. Substitution in (3.3) would imply the contradiction $\tilde{K}^1(X) = \operatorname{Ext}(\mathbb{R}, \mathbb{Z})$ which is a countable product of the reals.

REFERENCES

- 1. L. G. Brown, R. G. Douglas and P. A. Fillmore, 'Extensions of C*-Algebras and K-Homology', Ann. Math. 105, 265–324 (1977).
- 2. H. Hiller and S. Shelah, 'Singular cohomology in L', Israel J. Math. 26, 313-319 (1977).
- **3.** H. Hiller, M. Huber and S. Shelah, 'The Structure of Ext (A, \mathbb{Z}) and V = L', Math. Z. 162, 39-50 (1978).
- 4. M. Huber and W. Meier, Cohomology Theories and Infinite CW Complexes, preprint (1976).
- 5. D. M. Kahn and G. W. Whitehead, 'On the realizability of singular cohomology groups', *Proc. AMS* 12, 24–25 (1961).
- 6. H. Kneser and M. Kneser, 'Reell-analytische Strukturen der Alexandroff-Geraden', Arch. Math. 11, 104-106 (1960).
- 7. W. Koch and D. Puppe, 'Differenzierbare Strukturen auf Mannigfaltigkeiten ohne abzählbare Basis', Arch. Math. 19, 95-102 (1968).
- 8. R. Nunke and J. Rotman, 'Singular cohomology groups', J. London Math. Soc. 37, 301-306 (1962).

Mathematisches Institut Im Neuenheimer Feld 288 D-6900 Heidelberg West Germany