Rational Cohomology of Configuration Spaces of Surfaces C.-F. Bödigheimer and F.R. Cohen

- 1. Introduction. The k-th configuration space $C^k(M)$ of a manifold M is the space of all unordered k-tuples of distinct points in M. In previous work [BCT] we have determined the rank of $H_*(C^k(M); \mathbb{F})$ for various fields \mathbb{F} . However, for even dimensional M the method worked for $\mathbb{F} = \mathbb{F}_2$ only. The following is a report on calculations of $H^*(C^k(M); \mathbb{Q})$ for M a deleted, orientable surface. This case is of considerable interest because of its applications to mapping class groups, see [BCP]. Similar results for (m-1)-connected, deleted 2m-manifolds will appear in [BCM].
- 2. Statement of results. The symmetric group Σ_k acts freely on the space $\widetilde{C}^k(M)$ of all ordered k-tuples (z_1,\ldots,z_k) , $z_i\in M$, such that $z_i\neq z$; for $i\neq j$. The orbit space is $C^k(M)$. As in [BCT] we will determine the rational vector space $H^*(C^k(M);\mathbb{Q})$ as part of the cohomology of a much larger space. Namely, if X is any space with basepoint x_0 , we consider the space

(1)
$$C(M;X) = \left(\frac{1}{k \ge 1} \widetilde{C}^k(M) \xrightarrow{X}_k X^k\right) / \approx$$

where $(z_1,\ldots,z_{ki};x_1,\ldots,x_k)\approx (z_1,\ldots,z_{n-1};x_1,\ldots,x_{k-1})$ if $x_k=x_0$. The space C is filtered by subspaces

(2)
$$F_{k}^{C}(M;X) = \left(\frac{1}{j=1}^{k_{1}} \tilde{C}^{j}(M) \times X^{j}\right) / \approx$$

and the quotients $F_k^{C/F}_{k-1}^{C}$ are denoted by $D_k^{(M;X)}$.

Let \overline{M}_g denote a closed, orientable surface of genus g, and M_g is \overline{M}_g minus a point. We study $C(M_g;S^{2n})$ for $n\geq 1$. H^* will always stand for

rational cohomology, and P[] resp. E[] for polynomial resp. exterior algebras over \mathbb{Q} .

Theorem A. There is an isomorphism of vector spaces

(3)
$$H^*C(M_q; S^{2n}) \cong P[v, u_1, \dots, u_{2q}] \bowtie H_*(E[w, z_1, \dots, z_{2q}], d)$$

Giving the generators weights, wght $(v) = wght(z_i) = 1$ and $wght(u_i) = wght(w) = 2$, makes H^*C into a filtered vector space. We denote this weight filtration by F_kH^*C . The length filtration F_kC of C defines a second filtration H^*F_kC of H^*C .

Theorem B. As vector spaces

(4)
$$H^*F_kC(M_g;S^{2n}) = F_kH^*C(M_g;S^{2n})$$
.

It follows that $\operatorname{H}^*D_k(\operatorname{M}_q; \operatorname{S}^{2n})$ is isomorphic to the vector subspace of $\operatorname{H}^*(g,n) = \operatorname{P}[\operatorname{v},\operatorname{u}_{\underline{i}}] \otimes \operatorname{H}_*(\operatorname{E}[\operatorname{w},z_{\underline{i}}],\operatorname{d})$ spanned by all monomials of weight exactly k. To obtain the cohomology of $\operatorname{C}^k(\operatorname{M}_g)$ itself, we consider the vector bundle

(5)
$$\eta^{k} \colon \widetilde{C}^{k}(M_{g}) \underset{\Sigma_{k}}{\times} \mathbb{R}^{k} + C^{k}(M_{g})_{+}$$

which has the following properties. First, the Thom space of m times η^k is homomorphic to $\mathsf{D}_k(\mathsf{M}_g;\mathsf{S}^m)$. Secondly, it has finite even order, see [CCKN]. Hence

(6)
$$D_k(M_g; S^{2nk}) = \Sigma^{2n_k k} C^k(M_g)_+$$

for $2n_k = ord(\eta^k)$. Thus we have

Theorem C. As a vector space, $H^*C^k(M_g)$ is isomorphic to the vector subspace generated by all monomials of weight k in $H^*(g,n_k)$, desuspended $2n_kk$ times.

Regarding the homology of $E = E[w,z_1,...,z_{iq}]$ we have

Theorem D. The homology $H_*(E,d)$ is as follows:

- (9) $\operatorname{rank} H_{j} = 0 \text{ in all other degrees } j.$

Note the apparent duality rank $H_{j} = \operatorname{rank} H_{N-j}$ for N = 2g(2n+1) + 4n + 1.

We will give the proof of Theorem A in the next section. The proof of Theorem B is the same as for [BCT, Thm.B]. By what we said above Theorem C follows from Theorem B. And Theorem D will be derived in the last section.

3. Mapping spaces and fibrations. Let D denote an embedded disc in ${\rm M}_{\rm g}$. There is a commutative diagram

$$(10) \qquad C(D;s^{2n}) \qquad \longrightarrow \Omega^{2}s^{2n+2}$$

$$C(M_{g};s^{2n}) \qquad \longrightarrow \text{map}_{O}(\overline{M}_{g};s^{2n+2})$$

$$C(M_{g},D;s^{2n}) \qquad \longrightarrow (\Omega s^{2n+2})^{2g}$$

where map $_{0}$ stands for based maps. The right column is induced by restricting to the 1-section, and is a fibration. The left column is a quasifibration. Since S^{2n} is connected, all three horizontal maps

are equivalences, see [M], [B] for details.

The $\rm E_2$ -term of the Serre spectral sequence of these (quasi)fibrations is as follows. From the base we have 2g-fold tensor product of

(11)
$$H^*\Omega S^{2n+2} = H^*(S^{2n+1}x\Omega S^{4n+3}) = E[z_i] \otimes P[u_i] \quad (i = 1, ... 2g),$$

where $|z_i| = 2n+1$ and $|u_i| = 4n+2$. From the fibre we have

(12)
$$H^*\Omega^2 S^{2n+2} = H^*(\Omega S^{2n+1} \times \Omega^2 S^{4n+3}) = H^*(\Omega S^{2n+1} \times S^{4n+1})$$
$$= P[v] \boxtimes E[w],$$

where $|\mathbf{v}|=2n$ and $|\mathbf{w}|=4n+1$. The following determines all differentials in this spectral sequence.

Lemma. The differentials are as follows:

(13)
$$d_{2n+1}(v) = 0$$

(14)
$$d_{4n+2}(w) = 2z_1z_2 + 2z_2z_3 + \dots + 2z_{2g-1}z_{2g}$$

Proof: Assertion (13) follows from the stable splitting of $C(M_g;S^{2n})$, on [B]. (14) results from symmetries of M_g and of the fibrations (10) which leave d invariant.

The lemma implies $E_{4n+3} = E_{\infty} = H^*C(M_g; S^{2n})$. Furthermore, E_{4n+3} is a tensor product of the polynomial algebra $P[v, u_1, \dots u_{2g}]$ and the homology module $H_*(E,d)$ of the exterior algebra $E = E[w, z_1, \dots, z_{2g}]$ with differential d. This proves Theorem A.

4. Homology of E. Let us write $x_i = z_{2i-1}$ and $y_i = z_{2i}$ for $i = 1, \ldots g$. The form $d(w) = 2z_1z_2 + 2z_2z_3 + \ldots + 2z_{2g}, z_{2g}$ is equivalent to the standard symplectic form $x_1y_1 + x_2y_2 + \ldots + x_gy_g$. The vector space

$$\begin{split} & \mathbb{E}[g] = \mathbb{L}[g] \oplus w\mathbb{L}[g] \text{ with } \mathbb{L}[g] = \mathbb{E}[x_1 y_1, \dots, x_{gi} y_g]. \text{ The differential is } \\ & \text{zero on the first summand, and sends the second to the first. Hence} \\ & \text{we regard d as an endomorphism of } \mathbb{L}[g], \text{ given by multiplication with} \\ & \mathbb{d}(w) = x_1 y_1 + \dots + x_g y_g. \end{split}$$

Let $L_{k}[g]$ denote the vector subspace spanned by all k-fold products

(15)
$$z_{i_1} z_{i_2} \dots z_{i_n}$$
 with $1 \le i_1 < i_2 < \dots < i_k \le 2_g$.

Since d(w) is homogeneous of weight 2, we have

(16)
$$d = d[g] = \bigoplus_{k=0}^{2g} d_k[g], \quad d_k[g]: L_k[g] \longrightarrow L_{k+2}[g].$$

The (co)kernelsof $d_k[g]$ is determined by the (co)kernel of $d_1[g-1]$ and $d_1[g-1]^2$ for l=k,k-1,k-2. The (co)kernel of $d_1[g-1]^2$ in turn is determined by the (co)kernels of $d_m[g-2]^2$ and $d_m[g-2]^3$ for m=1,l-1,l-2. Therefore we will study all powers $d_k[g]^r$ and prove the following (Lefschetz) lemma by simultaneous induction on g, k and r.

<u>Lemma.</u> For $0 \le k \le g$ the differential

$$\mathbf{d_k[g]}^{\mathbf{r}}:\mathbf{L_k[g]} \longrightarrow \mathbf{L_{k+2r}[g]} \ \underline{\mathbf{is}}$$

- (17) $\underline{a} \underline{monomorphism} \underline{for} 0 \le k < g-r$,
- (18) <u>an isomorphism for k = g-r</u>
- (19) an epimorphism for $g-r < k \le 2g$

Proof: For $\lambda_g = \sum_{i=1}^g x_i y_i$ we have $\lambda_g = \lambda_{g-1} + x_g y_g$ and $\lambda_g^r = \lambda_{g-1}^r + r \lambda_{g-1}^{r-1} x_g y_g$, in particular $\lambda_g^g = g! \omega_g$ where $\omega_g = x_1 y_1 x_2 y_2 \dots x_g y_g$ is the volume element. To facilitate the induction, we decompose $L_k[g]$ further by partitioning the canonical basis elements (15) into four types.

(20)
$$i_k \le 2g-2$$

(21)
$$i_{k-1} \le 2g-2 \text{ and } i_k = 2g-1,$$

(22)
$$i_{k-1} \le 2g-2 \text{ and } i_k = 2g$$
,

(23)
$$i_{k-1} = 2g-1 \text{ and } i_k = 2g.$$

Hence $L_k[g] = L_k[g-1] \oplus L_{k-1}[g-1]x_g \oplus L_{k-1}[g-1]y_g \oplus L_{k-2}[g-1]x_gy_g$. With respect to this decomposition $d_t[g]^r$ has the following matrix form

$$d_{k}[g]^{r} = \begin{bmatrix} d_{k}[g-1]^{r} & 0 & 0 & rd_{k}[g-1]^{r-1} \\ 0 & d_{k-1}[g-1]^{r} & 0 & 0 \\ 0 & 0 & d_{k-1}[g-1]^{r} & 0 \\ 0 & 0 & 0 & d_{k-2}[g-1]^{r} \end{bmatrix} = \begin{bmatrix} A & 0 & 0 & A' \\ 0 & B & 0 & 0 \\ 0 & 0 & 0 & C \end{bmatrix}$$

To start the induction consider the case g=1. The only non-zero differential $d_O[1]:L_O[1]\to L_2[1]$ is an isomorphism. For $g\geq 2$ and k=0, $d_O[g]^r$ sends the generator of $L_O[g]$ to λ_g^r , and thus is monic. Assume the lemma holds for g-1. We distinguish three cases.

<u>Case k < g-r</u>: Then A, A', B as well as C in (24) are all monomorphisms by hypothesis. Hence, from $0 = d_k[g]^r(a,b_1,b_2,c) = (A(a), B(b_1), B(b_2), A'(a) + C(c))$ we conclude $a = b_1 = b_2 = 0$, and so c = 0 as well. Thus $d_k[g]^r$ is a monomorphism.

Case k=g-r: Here A is an epimorphism, A' and B are isomorphisms, and C is a monomorphism. Assume $0=d_k[g]^r(a,b_1,b_2,c)=(A(a),B(b_1),A'(a)+C(c))$. First, $b_1=b_2=0$. We now have $A(a)=d_k[g-1]^ra=0$ and $d_{k-2}[g-1]^rc=-rd_k[g-1]^{r-1}a$; writing this as $d_k[g-1]^r(-ra)=A(-ra)=0$. Thus, since $d_{k-2}[g-1]^{r+1}$ is an isomorphism, c=0. Therefore, $-rd_{g-r}[g-1]^{r-1}a=0$, and a=0 since $d_{g-r}[g-1]^{r-1}$ is an isomorphism. We see that $d_k[g]^r$ is a monomorphism between vector spaces of equal dimensions, hence an isomorphism.

Case k > g-r: This time A, A', B, C are epimorphisms. Given $(\bar{a}, \bar{b}_1, \bar{b}_2, \bar{c})$ $\in L_{k+2r}[g]$ we can first find a, b_1 , b_2 satisfying $A(a) = \bar{a}$, $B(b_1) = \bar{b}_1$ and $B(b_2) = \bar{b}_2$. Then we choose c such that $C(c) = \bar{c} - A'(a)$. Hence $d_k[g]^r$ is epimorphic.

The lemma completely determines $H_*(E,d)$ as a vector space over Q. Theorem D now follows.

References

- [B] C.-F. Bödigheimer: Stable splittings of mapping spaces.

 Proc. Seattle (1985), Springer LNM 1286, p. 174-187.
- [BCM] C.-F. Bödigheimer, F.R. Cohen, R.J. Milgram: On deleted symmetric products. In preparation.
- [BCP] C.-F. Bödigheimer, F.R. Cohen, M. Peim: Mapping spaces and the hyperelliptic mapping class group. In preparation.
- [BCT] C.-F. Bödigheimer, F.R. Cohen, L. Taylor: <u>Homology of configuration spaces</u>. To appear in Topology.
- [CCKN] F.R. Cohen, R. Cohen, N. Kuhn, J. Neisendorfer: Bundles

 over configuration spaces. Pac. J. Math. 104 (1983), p. 47-54.
- [M] D. McDuff: Configuration spaces of positive and negative particles. Topology 14 (1975), p. 91-107.

C.-F. Bödigheimer

F.R. Cohen

Mathematisches Institut

Department of Mathematics

Bunsenstraße 3-5

University of Kentucky

D-3400 Göttingen

Lexington, KY 40506

West Germany

USA