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Abstract

In this article we consider Riemann surfaces F of genus g ≥ 0 with
n ≥ 1 incoming and m ≥ 1 outgoing boundary circles, where on each
incoming circle a point is marked. For the moduli space M•

g(m,n) of
all such F of genus g ≥ 0 a configuration space model Radh(m,n) is
described : it consists of configurations of h = 2g− 2 +m+ n pairs of
radial slits distributed over n annuli; certain combinatorial conditions
must be satisfied to guarantee the genus g and exactly m outgoing
circles. Our main result is a homeomorphism between Radh(m,n) and
M•

g(m,n).
The space Radh(m,n) is a non-compact manifold, and the complement
of a subcomplex in a finite cell complex. This can be used for homologi-
cal calculations. Furthermore, the family of spaces Radh(m,n) form an
operad, acting on various spaces connected to conformal field theories.
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1 Introduction

1.1 Surfaces and their Moduli

This article explains a uniformization method of Riemann surfaces with
boundary. The boundary must consist of a “incoming” and and “outgo-
ing” curve; so the surface is a bordism between two non-empty compact
1-manifolds. We describe the moduli spaces of those surfaces by a kind of
configuration space. A point in this space is a configuration of pairs of radial
slits lying on disjoint annuli.
The Riemann surfaces F we consider have arbitrary genus g ≥ 0, are con-
nected and have two kinds of boundary curves, namely n ≥ 1 incoming and
m ≥ 1 outgoing curves. The curves are numbered, and on each incoming
curve a point is marked. The moduli space of such surfaces is denoted by
M•

g(m,n).

To this data F we will associate a configuration L consisting of h = 2g −
2 +m+n pairs of radial slits in n fixed annuli in n disjoint complex planes.
A slit is a radial cut from the outer boundary to some interior point. Slits
which are paired must be of the same length, but may lie on different annuli.
The number m is encoded in a combinatorial condition on the distribution
and the interlocking of these slit pairs. The Figures [2 – 17] show plenty of
examples.
Vice versa, given such a configuration L we can associate to it a surface
F = F (L) by identifying the right bank of a slit with the left bank of the
slit paired with it. This surface is of the required topological type and has
a canonical conformal structure.
The topology on the set Radh(m,n) of all such configurations is such that
the slits can move in the annuli, and when a shorter slit collides with a
longer slit from the right (resp. left) bank, it can jump to the left (resp.
right) bank of that slit to which the longer one is paired.

1.2 Results

In this way the (conformal equivalence classes of non-degenerate) surfaces
F correspond precisely to the (equivalence classes of non-degenerate) con-
figurations L. And this correspondence is a homeomorphism.

Theorem 1.1. There is a homeomorphism

M•
g(m,n) −→ Radh(m,n),

where h = 2g − 2 +m+ n.
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The n-dimensional torus group T
n = S

1 × · · · × S
1 acts on Radh(m,n)

by rotating the n annuli, and on M•
g(m,n) by rotating the marked points

along the incoming curves. The quotient of M•
g(m,n) by this action is the

(unmarked) moduli space Mg(m,n).

1.3 Overview of the Sections

In Section 2 we recall the necessary background on moduli spaces, Teich-
müller spaces and mapping class groups of Riemann surfaces with boundary
and marked points.

In Section 3 we define and explain the notion of a radial slit domain, i.e., a
configuration of h pairs of slits on n annuli satisfying certain combinatorial
conditions. At this moment we will admit too many configurations, in other
words do not yet exclude configurations leading to degenerate surfaces.

In Section 4 we associate a surface F (L) to any configuration. As al-
ready indicated, this surface is possibly degenerate; we will thus need to
distinguish between degenerate and non-degenerate configurations. If F (L)
is non-degenerate, then it has a canonical conformal structure. Together
with the numbering of the incoming and outgoing circles, the fixed marked
points, its conformal class is a point in M•

g(m,n) for h = 2g − 2 +m+ n.

Section 5 is a continuation of Section 3, where we develop a reduced repre-
sentation of a configuration L : it takes into account that in the non-generic
case fewer than 2h slits may suffice. But this is conveniently described only
after having the surfaces F (L) seen built.

In Section 6 we present the opposite direction, namely how to associate a
configuration L(F ) to a surface F . This is called the Hilbert uniformization.

In Section 7 we define the space Radh(m,n) of all configurations, and
the open subspace Radh(m,n) of non-degenerate configurations. We show
that Radh(m,n) is a manifold of dimension 6g − 6 + 3m+ 4n. Associating
L 7→ F (L) and F 7→ L(F ) as in Section 4 resp. Section 6 defines maps
G : Radh(m,n) → M•

g(m,n) and H : M•
g(m,n) → Radh(m,n), where h =

2g−2+m+n. They are inverses of each other and they are homeomorphism.
This proves the main result.

In Section 8 we define a compactification Radh(m,n) as a cell complex. The
degenerate surfaces added have not only pinched curves, but also handles
degenerated to an interval. Thus this compactification is quite different
from the Deligne-Mumford compactification. It can be used to compute the
homology of M•

g(m,n). See [ABE].
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In Section 9 we describe how to glue two surfaces F and F ′ when F ′

has as many incoming curves as F has outgoing curves. (Here we need to
specify points not only on the incoming, but also on the outgoing curves;
we denote the corresponing moduli spaces by M••

g (m,n).) The gluing or
composition) is a map M••

g′ (m
′,m)×M••

g (m,n) → M••
g′+g(m

′, n). In fact the
family of spaces M••

g (m,n) for all g,m, n form an operad (or more precisely,
a properad).

For us one motivation to give this configuration-like description of moduli
spaces lies in this advantages: to define this gluing of two “bordism surfaces”
without refering to a parametrization of the boundary or to a collar of the
boundary. This gluing is an important point in conformal field theories, and
it is a notoriously difficult point.

The uniformization method we present here is named Hilbert uniformization,
since it was used in [H] to represent single surfaces by parallel slit domains
in the plane. In [B-1] we have described with this method a model for the
moduli space of surfaces with only one boundary curve, namely parallel
slit domains in the plane. It is similiar to the model presented here, but
with less complicated combinatorics. See [B-2], [B-3] and [B-4] for further
material. The model has been used in [E], [A] and [ABE] to compute the
homology of the moduli space for g = 2, n = 1 and m = 0. In [Z-1] a model
for non-orientable surfaces was developed, and the homology for g ≤ 2 was
computed; see also [Z-2].

In a forthcoming article we will describe the space in a more combinatorial
way.

Acknowledgements: The author would like to express his thanks to Jo-
hannes Ebert, Eva Mierendorff, Birgit Richter, Graeme Segal, and in partic-
ular to Ulrike Tillmann. He gratefully remembers the hospitality of Merton
College, Oxford, during the summer term of 2002, while this material was
worked out. Myint Zaw has been very helpful with the figures. We also
thank the referee for useful suggestions.

2 The Moduli Spaces M•
g(m, n)

We will briefly recall some fundamental notions and results concerning mo-
duli spaces of Riemann surfaces, Teichmüller spaces and mapping class
groups. As a general reference see [Ab], [B], [GL].
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2.1 Riemann Surfaces

The Riemann surfaces F we consider are connected, compact, with boundary
and of arbitrary genus g ≥ 0. The boundary ∂F is partitioned into two kinds
of boundary curves, namely n ≥ 1 incoming curves C−

1 , . . . , C
−
n and m ≥ 1

outgoing curves C+
1 , . . . , C

+
m. On each incoming curve we assume a point

Pr ∈ C−
r to be chosen; we write P = (P1, . . . , Pn), C− = C−

1 ∪ . . . ∪ C−
n ,

C+ = C+
1 ∪ . . . ∪C+

m. The partition into incoming and outgoing curves and
their numbering, and the marked points are part of the structure.

Note that we do not have a parametrization of the boundary curves. This
way we will avoid infinite-dimensional moduli spaces.

We can assume without loss of generality that for each boundary curve
there exists a collar, i.e., it has a neighbourhood in F , which is conformally
homeomorphic to a neighbourhood of S

1 in the domain D
− = {z| |z| ≥ 1}

for incoming curves resp. in the domain D
+ = {z| |z| ≤ 1} for outgoing

curves. Therefore all holomorphic or harmonic maps and functions have an
extension across the boundary.

Two such surfaces F and F ′ will be called conformally equivalent, if there
is a conformal homeomorphism h : F → F ′ mapping a curve C±

i to C ′±
i .

Thus h must preserve the type (in or out) and the number of the boundary
curve. We call such a conformal equivalence marked, if P is mapped to P ′.
The equivalence classes are denoted by [F ] resp. [F, P ].
Note that these surfaces have no marked conformal automorphisms; and
with the exception of annuli (g = 0, n = m = 1) they have also no unmarked
conformal automorphisms.

2.2 Moduli Spaces

Let Mg(m,n) resp. M•
g(m,n) denote the set of all conformal resp. marked

conformal equivalence classes of surfaces F as above.
The topology of these moduli spaces is given by the Teichmüller metric. To
prepare its definition we call a subset Q ⊂ F together with four specified
points q1, . . . , q4 on its boundary a quadrilateral in F if it is homeomophic
to a closed rectangle in C such that the four corners correspond in coun-
terclockwise orientation to q1, . . . , q4. By the Riemann mapping theorem Q
is even the conformal image of rectangle, i.e., there is a unique conformal
mapping ψ : Q → Ra,b = [0, a] × [0, b] such that ψ(q1) = (0, 0), ψ(q2) =
(a, 0), ψ(q3) = (a, b), ψ(q4) = (0, b). The ratio mod(Q) = b/a is called the
modulus of Q.
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Let f : F → F ′ be any homeomorphism between two surfaces. If Q is a
quadrilateral in F , then f(Q) is a quadrilateral in F ′. The homeomorphism
f is called quasi-conformal, if there is some real number K ≥ 1 such that

(2.1)
1

K
mod(Q) ≤ mod(f(Q)) ≤ K mod(Q)

for all quadrilaterals Q in F . The infimum of all such K is denoted by K[f ]
and is called the maximal dilatation of f . It suffices to consider quadrilat-
erals contained in a coordinate chart of the conformal atlas of F . Denote
by QC(F ;F ′) the set of all quasi-conformal maps preserving the orienta-
tion, the partition and numbering of the boundary curves and denote by
QC(F, P ;F ′, P ′) those preserving in addition the marked points.
The functional K : f 7→ K[f ] on QC(F, F ′) has the following properties :

K[f ] = 1 if and only if f is conformal.(2.2)

K[f ] = K[f−1](2.3)

K[f1 ◦ f2] ≤ K[f1] ·K[f2](2.4)

It follows that

(2.5) distM([F ], [F ′]) =
1

2
log inf{K[f ]|f ∈ QC(F ;F ′)}

is a metric for Mg(m,n). If we restrict f to be in QC(F, P ;F ′, P ′), then we
obtain a metric distM• for M•

g(m,n).

The forgetful map πM : M•
g(m,n) → Mg(m,n), [F, P ] 7→ [F ] is obviously

continuous; moreover, it is a T
n-bundle, arising from a free action. An

element (t1, . . . , tn) of the n-dimensional torus T
n = S

1 × . . . × S
1 acts on

M•
g(m,n) in the following way: if Pi ∈ C−

i corresponds under a conformal
collar map to pi ∈ S

1, it is replaced by P ′
i corresponding to ti pi. This is a

well-defined action by isometries.

2.3 Teichmüller Spaces

To put this into the context of Teichmüller spaces we pick a fixed surface
F̃ and consider all of its conformal deformations, i.e., quasi-conformal maps
φ ∈ QC(F̃ ;F ) for some F .
Two such deformations are called (conformally) equivalent, if there is some
conformal f : F → F ′, which is homotopic to φ−1 ◦ φ′, where the homotopy
is constant on the boundary. The set of marked deformation classes with
the metric

(2.6) distT([φ], [φ′]) =
1

2
log inf{K[f ]|f ∈ QC(F ;F ′), f ' φ−1 ◦ φ′}
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is the Teichmüller space Tg(m,n). The set of marked deformation classes,
with the corresponding metric distT• as above, is the marked Teichmüller
space T•

g(m,n). Its elements are denoted by [φ, P ].

There is an analogous forgetful map πT : T•
g(m,n) → Tg(m,n) between

Teichmüller spaces. It is a trivial fibre bundle, i.e., T•
g(m,n) ' Tg(m,n)×T

n.
The maps τ • : T•

g(m,n) → M•
g(m,n) given by [φ, P ] 7→ [F, P ] resp. [φ] 7→

[F ] are obviously both continuous and surjective.

2.4 Mapping Class Groups

The maps τ • and τ are invariant under the action of the mapping class
group Γg(m,n) = π0(Diff+(F, ∂F )) of isotopy classes of orientation-preser-
ving diffeomorphisms which fix the boundary pointwise. (There is no differ-
ence between Γ•

g(m,n), Γg(m,n) and Γg,m+n, the latter being the mapping
class group with m + n boundary curves, not partitioned into incoming
and outgoing ones.) The action of γ ∈ Γg(m,n) on T•

g(m,n) is given by
[φ, P ].[γ] = [φ◦γ, P ] and on Tg(m,n) by [φ].[γ] = [φ◦γ]. Note that diffeomor-
phisms are quasi-conformal. The action is by isometries with respect to the
Teichmüller metric, and thus properly-discontinuously. It is also free — ex-
cept in the case of an annulus (g = 0,m = n = 1) : its isotropy groups at the
point [φ] ∈ Tg(m,n) are the automorphisms of [F ], and they are all trivial.
Thus Mg(m,n) = Tg(m,n)/Γg(m,n), and Tg(m,n) is an unbranched cover-
ing space of Mg(m,n). Using the fact that the Teichmüller space Tg(m,n)
is homeomorphic to an open ball of dimension 6g − 6 + 3m+ 3n, it follows
that the moduli space Mg(m,n) is a (topological) manifold, and further-
more, that Mg(m,n) is a classifying space BΓg(m,n) for the mapping class
group Γg(m,n).

We have the following commutative square :

(2.7) Γg(m,n)

��

Γ•
g(m,n)

��

Γg,m+n

Tg(m,n)

τ

��

T•
g(m,n)

πToo

τ•

��

Tg(m,n) × T
n

∼=oo

Mg(m,n) M•
g(m,n)

πMoo

The mapping class group Γg(m,n) is a torsion-free central extension of the
mapping class group Γm,n

g of a closed surface of genus g with m+n marked
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points :

(2.8) 1 → Z
m+n → Γg(m,n) → Γm+n

g → 1

The kernel of this extension is generated by Dehn-twists around the bound-
ary circles. The group Γm+n

g in turn is an extension of the mapping class
group Γg of a closed surface

(2.9) 1 → π1(C̃
m+n(F )) → Γm+n

g → Γg → 1

where C̃m+n(F ) is the ordered configuration space of m+ n points in F .

3 Radial Slit Configurations

3.1 Slit Annuli

Let A = {z ∈ C | R1 ≤ |z| ≤ R0} denote a closed annulus in the complex
plane, with inner and outer radii 0 < R1 < R0. We fix n such annuli
A1, . . . ,An on n distinct complex planes; their outer radii are all equal to
R0, but their inner radii R1, . . . , Rn may be distinct. Their disjoint union is
denoted by B = A1 t · · · t An.

R
0

R
1

x

y

Figure 1: Annulus in complex plane.

Set

(3.1) h = 2g − 2 +m+ n

and consider 2h points ζ1, . . . , ζ2h in B, which we call (slit) endpoints. The
set I := 2h = {1, . . . , 2h} will be called index set. We consider the sequence
ζ = (ζ1, . . . , ζ2h) sometimes as a function ζ : I → B, ζ(k) = ζk. The
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distribution function ν : I → n = {1, . . . , n} is given by ζk ∈ Aν(k). We
assume that there is at least one endpoint on each annulus, thus

(3.2) Ir := ν−1(r) 6= ∅, for all r ∈ n,

which we call partial index set for the annulus Ar. Let θ : I → S
1 be the

argument function θ(k) = arg(ζk). The sets

Sk = {z ∈ Aν(k)| arg(z) = θ(k), |z| ≥ |ζk|}(3.3)

S′
k = {z ∈ Aν(k)| arg(z) = θ(k)}(3.4)

are called the slit resp. the radial segment starting at ζk. If the arguments
θ(i) and θ(j) for any two i, j in the same Ir are distinct, i.e., the S ′

k are
disjoint, we call this the generic case.

The numbering of the endpoints ζk will turn out to be arbitrary. But if two
endpoints ζi and ζj on the same annulus Ar have the same argument or if
they coincide, it is necessary to know a cyclic ordering of the endpoints on
each annulus. Therefore we need a cyclic successor permutation ω in the
symmetric group S2h = S(I) of I satisfying

I1, . . . , In are the cycles of ω.(3.5)

θ is weakly monotonic on each I1, . . . In.(3.6)

In the generic case ω is, of course, determined by the position of the end-
points. In the non–generic case however, ω contains essential information
about the topology of the surface to be associated to the configuration and
about the topology of the space of all configurations.

Let us write θ(k) = arg(ζk) as exp(2π
√
−1 t′k) for 0 ≤ t′k ≤ 1. If Ir =

〈k, ω(k), ω2(k), . . .〉, then 0 ≤ t′k ≤ t′
ω(k) ≤ . . . ≤ 1. We set tk = t′

ω(k) − t′k
and have

∑

i∈Ir
ti = 1. (Later we shall use these ti as barycentric coordinates

of our configuration.)
The function ν is ω-invariant; it will serve as a numbering of the the incoming
boundary curves.

There are two cases which need special consideration.
(a) Firstly, ω(k) = k, i.e., Iν(k) = 〈k〉 for some k ∈ I, means there is only
the endpoint ζk on Aν(k).
(b) Secondly, ω(k) = l, ω(l) = k and θ(k) = θ(l), i.e., Iν(k) = 〈k, l〉 for some
k, l ∈ I, means there are only the two endpoints ζk, ζl on Aν(k).
In these two cases there is an ambiguity : tk resp. tk or tl can be put 0 or 1.
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We see case (b) as a limit of a generic configuration, but we need to distin-
guish, whether say ζl approached S ′

k from the right or from the left. And in
case (b) this can not be extracted from ω alone. To dissolve this ambiguity
we put those exceptional indices into a subset Ξ ⊂ I with the property :

If k ∈ Ξ, then θ(ω(k)) = θ(k), i.e., tk = 0.(3.7)

If k 6= ω(k) and θ(ω(k)) = θ(k), then(3.8)

either k ∈ Ξ or ω(k) ∈ Ξ, i.e., either tk = 0 or tω(k) = 0.

Note that the case (b) Ir = 〈k, ω(k)〉 is the only case where k ∈ Ξ or k /∈ Ξ
are both possible, but need to be distinguished : k ∈ Ξ means the slit Sω(k)

touches the radial segment S ′
k from the left; and ω(k) ∈ Ξ means the slit

Sω(k) touches the radial segment S ′
k from the right. Obviously, Ξ = ∅ only

in the generic case.

The points ζk need to be paired by a fix-point-free involution λ ∈ S2h, i.e.,

(3.9) λ2(k) = k and λ(k) 6= k for all k ∈ I.

Paired endpoints must satisfy

(3.10) |ζk| = |ζλ(k)| for all k ∈ I.

They can lie on the same or on different annuli; but the pairs must connect
all n annuli in the following sense. Regard n as the vertex set of a graph
G, with an edge between two vertices r1 and r2 if and only if there is some
k ∈ I with ν(k) = r1 and ν(λ(k)) = r2 (i.e., one endpoint of the pair k, λ(k)
lies on Ar1

and the other on Ar2
). We demand that

(3.11) G is connected .

In other words, the subgroup of S2h generated by λ and ω acts transitively
on the set I. It follows that n− 1 ≤ h.
The exchange permutation defined by κ = λ ◦ ω ∈ S2h will determine the
number of outgoing boundary circles of the surface. The condition on κ is :

(3.12) κ has m cycles .

As a last piece of information we need a κ-invariant redistribution function
µ : I → m, i.e.,

(3.13) µ(κ(k)) = µ(k) for all k ∈ I.
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It corresponds to the ω-invariant function ν : I → n, and will serve as a
numbering of the outgoing boundary curves..

To summarize, the data necessary to describe a configuration is :
– the outer radius and the inner radii R = (R0, R1, . . . , Rn)
– the 2h endpoints ζ = (ζ1, . . . , ζ2h) in B

– the pairing λ ∈ S2h,
– the successor permutation ω ∈ S2h,
– the set Ξ ⊂ I of exceptional indices,
– the redistribution function µ : I → m
such that the conditions (3.1) to (3.13) are satisfied. The index set I is fixed.
The function ν, the function θ and the permutation κ are derived from this
data and do not involve any choices. We call

(3.14) L = (ζ;λ, ω, µ,Ξ;R) = (ζ1, . . . , ζ2h;λ, ω, µ,Ξ, ;R0, R1, . . . , Rn)

a radial slit configuration of h slit pairs on n annuli with outer radius R0

and inner radii R1, . . . , Rn.

So far we have not made any restrictions about the position of the endpoints;
they are allowed to have equal arguments, to even coincide and to lie an the
boundary of the annuli. We will see in section 4, where we associate a surface
with a configuration, that some, but not all of this may be allowed.

3.2 Examples of Configurations

We will show some figures with configurations and indicated the surface, –
obtained by identifying the right bank of the slit Sk with the left bank of
Sλ(k). To keep the notation easy, we enumerate the endpoints counterclock-
wise on each annulus. The annuli are numbered from left to right. Some
data (like radii) will not be specified.

The easiest configuration possible is the empty configuration on one annulus
as shown in Figure [2].
The configuration of Figure [3] with n = h = 1 is the easiest non-empty
configuration. The pairing λ is 〈1, 2〉, and ω is also 〈1, 2〉. Thus κ = 〈1〉〈2〉,
which implies m = 2, and thus g = 0. The numbering of the κ-cycles is not
specified, and similarily the radii R0 and R1. As in all generic cases Ξ is
empty.
In Figure [4] we have one pair of slits on two annuli with different (and
unspecified) inner radii R1, R2. The pairing λ is obvious, and there is only
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Figure 2: An empty annulus : n=1, h=0, m=1 and g=0.

ζ1
ζ2

Figure 3: n=1, h=1, m=2, g=0 : a pair-of-pants with one incoming and two
outgoing boundary circles.

one κ-cycle. With n = 2, h = 1 and m = 1 we find g = 0. Like Figure [3] it
is a pair-of-pants, but with the role of the incoming and outgoing boundary
circles exchanged; furthermore, the two incoming tubes have different length.

In Figure [5] we see two pairs of slits on two annuli of different inner radii,
three slits on the first annulus and one on the second. Since κ has the two
cycles 〈1, 4, 2〉 and 〈3〉, we have m = 2 and therefore g = 0. Thus it is
a planar surface with 4 boundary curves, where the numbering of the two
outgoing curves is not specified.
The easiest non-planar surface will be associated to a configuration as in
Figure [6]. We have n = 1, and h = 2; the pairing is λ = 〈1, 3〉〈2, 4〉, and
thus κ = 〈1, 4, 3, 2〉, and m = 1. The pair ζ1, ζ3 alone produces a pair-of-
pants. Then the second pair ζ2, ζ4 represents a slit on each leg and leads
therefore to a handle (with one incoming and one outgoing boundary circle.)

13



ζ1

Α
1

ζ2

Α2

Figure 4: n = 2, h = 1,m = 1, g = 0 : a pair-of-pants with two incoming
and one outgoing boundary circles.

ζ
1

ζ
2

ζ
3

Α1
Α2

ζ4

Figure 5: n = 2, h = 2,m = 2, g = 0 with the pairing λ = 〈1, 3〉〈2, 4〉

ζ2

ζ4

ζ1

ζ3

Figure 6: A generic configuration with n = 1, h = 2,m = 1, g = 1.

We repeat this configuration in Figure [7] (left picture), and contrast it

14



with the right picture : there on the right we also have n = 1 and h = 2,
but the pairing is λ = 〈1, 4〉〈2, 3〉, and thus with ω = 〈1, 2, 3, 4〉 we find
κ = 〈1, 3〉〈2〉〈4〉 and thus m = 3 and g = 0. The numbering µ is not
specified. First the pair ζ1, ζ4 produces a pair-of-pants. But since the pair
ζ2, ζ3 represent two slits on one and the same leg, we obtain altogether three
legs, i.e., a planar surface with one incoming and three outgoing boundary
curves.

A
1

A
2

ζ
2

ζ1
ζ3

ζ4

ζ2

ζ4

ζ 1

ζ3

Figure 7: Two configurations with n = 1, h = 2. In the left picture the pairs
are interlocking and therefore m = 1, g = 1. In the right example the pairs
are not interlocking and therefore m = 3, g = 0.

The easiest non–generic configuration is shown in Figure [8]. It represents
a degenerate surface, as we will see in detail in section 4. Here ζ1 = ζ2 and
Ξ = {1}. The pairing λ is obvious. And κ = 〈1〉〈2〉 has two cycles. Thus
h = 1, n = 1,m = 2 and g = 0. One leg of the expected pair-of-pants is
pinched along its entire length, i.e., has vanishing circumference.
The two different configurations of Figure [9] are non-generic, but represent
non-degenerate surfaces, which are moreover of the same topological type.
Indeed, their topological type is the same as the surface associated to Figure
[6]. In the left picture ζ2 was moved counterclockwise and touches the slit S3

from the right and in the right picture it was moved clockwise and touches
S1 from the left. We shall see that both configurations represent the same
i.e., conformally equivalent, surfaces. Going from the left configuration to
the right one will be called a jump. The movement indicated is a Dehn twist.

If in Figure [9], left picture, the modulus of ζ2 and ζ4 are made the same
as |ζ1| = |ζ3|, we obtain the configuration shown in Figure [10]. Its surface
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Figure 8: A degenerate configuration, leading to a pinched tube.

ζ2

ζ1

ζ3

ζ4

ζ2
ζ1

ζ3

ζ4

Figure 9: A jump : the slit S2 jumps from the right bank of S3 to the left
bank of S1.

is non-generic and non-degenerate, and again of the same topological, but
different conformal type as [9].
If in Figure [9], left picture, ζ4 is moved towards S3, such that ζ2 and ζ4
actually agree, but touch S3 from different sides, we obtain the configura-
tion in Figure [11]. It is not generic and not degenerate, and of the same
topological, but different conformal type as [6].
If in Figure [11] the modulus of ζ3 (and thus of ζ1 as well) is made equal
or greater than the modulus of ζ2 and ζ4, then we obtain in Figure [12] a
configuration, which represents a degenerate surface. What was a handle
before degenerated into an interval.
In Figures [13] and [14] we show two symmetric configurations. A symme-
try does not mean an automorphism of the associated surface as a marked
conformal class in M•

1(1, 1), since we need to fix the marked points. But
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ζ2

ζ1

ζ3

ζ4

Figure 10: A non-generic, but non-degenerate configuration with n = 1,
h = 2, m = 1 and g = 1.

ζ2

ζ1

ζ3ζ4

Figure 11: A non-generic, but non-degenerate configuration with n = 1,
h = 2, m = 1 and g = 1.

Figure 12: A degenerate configuration, leading to a pinched handle.

for the unmarked conformal class, i.e., in the moduli space M1(1, 1), they
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represent surfaces with automorphisms.

ζ3

ζ2

ζ1

ζ4

Figure 13: n = 1, h = 2,m = 1, g = 1 : A configuration with a Z/2-
symmetry.

ζ3 ζ2

ζ1
ζ4

Figure 14: 14 n = 1, h = 2,m = 1, g = 1 : A configuration with a Z/3-
symmetry.

The configuration in Figure [15] is a typical case of genus g = 2 with two
incoming and two outgoing boundary circles. Thus we need six pairs of slits
on two annuli, chosen with different inner radii. As an example, we give
here the full notation : R0 = 1.0, R1 = 0.2, R2 = 0.6 are the common outer
and the two inner radii for the annulus A1 on the left and A2 on the right,
I = {1, . . . , 12} is the index set, λ = 〈1, 6〉〈2, 9〉〈3, 7〉〈4, 11〉〈5, 12〉〈8, 10〉
is the pairing, the endpoints ζ = (ζ1, . . . , ζ12) are as shown in the figure,
ω = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉〈11, 12〉, and Ξ = {4, 8, 9} are the three ex-
ceptional indices. The distribution function ν is 1 for the indices 1, . . . 10
and 2 for the indices 11, 12. The exchange permutation κ has the cycles
〈1, 9, 8, 2, 7, 10, 6, 3, 11, 5〉 and 〈4, 12〉. The outer boundary parts are num-
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bered according to the slit at which they start; notice that for the three
exceptional indices 4, 8 and 9 those parts are only points.

ζ
11

ζ12

ζ
2

ζ
1

ζ
10

ζ
8

ζ
9

ζ
7

ζ6

ζ
5

ζ
4

ζ
3

Figure 15: A configuration with n = 2, h = 6,m = 2, g = 2. The
pairing λ is 〈1, 6〉〈2, 9〉〈3, 7〉〈4, 11〉〈5, 12〉〈8, 10〉. There are three excep-
tional indices 4, 8 and 9. The two outgoing circles consist of the pieces
〈1, 9, 8, 2, 7, 10, 6, 3, 11, 5〉 and 〈4, 12〉.

ζ4

ζ1ζ2

ζ3

Figure 16: A configuration concentrated on two radial segments.

We end this gallery with two extreme examples. In Figure [16] we show an
example of a configuration where all slits lie on only two radial segments
of one annulus, but with different moduli. There are subconfigurations of
two pairs like in Figure [11]. Obviously, the number g of such groups can
be arbitrary; in our example g = 3. The surface F (L) is non-degenerate of
genus g and n = m = 1.
In Figure [17] we show another extreme case : h = 2g of the 4g endpoints
coincide; they are paired to 2g disjoint slits. There are subconfigurations of
two pairs like in Figure [14]. The surface is of the same topological type as
in Figure [16], namely g = 3, and n = m = 1.
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ζ12
ζ7 ζ  = ... = ζ6 1

Figure 17: A configuration with all slits of the same length and half of the
endpoints coinciding.

Later we will refer to several of these figures when we construct the surface
associated to a configuration.

4 The Surface Associated to a Configuration

We need to associate a surface F (L) to a configuration L, given in non-
reduced notation. The basic idea is quite simple : for each slit Sk induced
by its endpoint ζk ∈ Ar we consider its complement Ar − Sk in Ar and add
ideal boundary points, forming a right and left bank of Sk. These banks
will be identified pairwise, namely the right bank of Sk with the left bank
of Sλ(k) and the left bank of Sk with the right bank of Sλ(k).
For a generic configuration this procedure will lead to a topological surface
with an obvious complex structure. But in the non-generic case we need to
apply some care.

4.1 Radial Sectors

We dissect B (or rather the various annuli) along the radial segments S ′
k,

add a left and right ideal boundary edge and obtoin 2h sectors Fk. Choose
k ∈ I and set l = ω(k); then ζk and ζl are on the same annulus Ar, where
r = ν(k). We distinguish four cases :

(Case I) k 6= l and θ(k) 6= θ(l) :
We define Fk = {z ∈ Ar | θ(k) ≤ arg(z) ≤ θ(l)}, i.e., it is the closed sector
of Ar between the radial segments S ′

k and S′
l. See the left picture in Figure

[18].

(Case II) k 6= l, but arg(ζk) = arg(ζl) and k ∈ Θ :
We define Fk to be the radial segment S ′

k. We call such a sector thin, and
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Fk

ζ
k

ζ
l

ζ
l

ζ
kFk

Figure 18: A proper sector (left picture) in Case I, and a thin sector (right
picture) in Case II.

all other sectors proper. See the right picture in Figure [18].

(Case III) k 6= l, but θ(k) = θ(l) and l ∈ Ξ :
We define Fk to be Ar cut open along S ′

k and two ideal boundary edges
added. Thus Fk is the annulus Ar, but with radial segment doubled. Note
that here ω(l) = k, i.e., Ir = 〈k, l〉 and Fl is a thin sector and falls under
Case II. See the left picture in Figure [19].

ζk ζl

ζk

Figure 19: The sectors in Case III (left picture) and Case IV (right picture)
cover an entire annulus.

(Case IV) k = l :
Like in Case III we define Fk to be an annulus cut open along S ′

k and with
two ideal boundary edges added. Note that now Ir = 〈k〉, i.e., ζk is the only
endpoint on Ar. See the right picture of Figure [19].

Looking outward each sector Fk has a right edge E−
k and a left edge E+

k ,
called ideal boundary edges; see Figure [20]. In case II we have Fk = E−

k =
E+

k ; see Figure [21]. But in all other cases the two edges are (or are to
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be regarded as) distinct. Since we regard all sectors as disjoint, we denote
a point of Fk simply by z if it is not in the ideal boundary; but a point
z = ξ exp(2π

√
−1 tk) in the boundary edge E−

k is denoted by (ξ, k,−) resp.
in E+

k by (ξ, k,+), where Rν(k) ≤ ξ ≤ R0. The endpoint ζk occurs as

(|ζk|, k,−) in Fk on the right ideal boundary E−
k , and as (|ζk|, ω−1(k),+) on

the left ideal boundary E+
ω−1(k)

of the preceding sector Fω−1(k). See Figures

[20] and [21].
We will regard a sector Fk as lying over Aν(k). The image of Fk intersects
the images of Fω(k) and of Fω−1(k). All Fk with k ∈ Ir cover the annulus Ar.
We can use ω to give the set of all sectors lying over Ar a cyclic ordering.

(ξ, k,-) 

(ξ, k,+) 

γ
k
+

γ
k
−

β
k

−

β
k

+ ζk

ζω(k)

α
k
+

α
k
−E k

+ E k
−

Figure 20: The ideal boundary edges of a proper sector.

β
k

+

ζ
ω(k)

α
k
+

γ
k
+

γ
k
−

α
k
−

ζ
k

β
k

−

(ξ, k,+)(ξ, k,-)= 

E k
+

E k
−

Figure 21: The ideal boundary edges of a thin sector.

Each sector Fk has an outer boundary curve denoted γ+
k and an inner bound-

ary curve γ−k ; for an exceptional k ∈ Ξ both curves are only points. It will
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be convenient to denote by α−
k the part of E−

k from the inner curve to ζk,
by β−k the part of E−

k from ζk to the outer curve, by α+
k the part of E+

k from
the inner curve to ζω(k), by β+

k the part of E+
k from ζω(k) to the outer curve.

See Figures [20] and [21].

4.2 Gluing

On the space F̄ (L) =
⊔2h

k=1 Fk we make the following boundary identifica-
tions. For k ∈ I and z in the ideal boundary of Fk declare

(ξ, k,+) ≈ (ξ, ω(k),−), if ξ ≤ |ζω(k)|(4.1)

(ξ, k,+) ≈ (ξ, κ(k),−), if ξ ≥ |ζκ(k)|(4.2)

(ξ, k,−) ≈ (ξ, ω−1(k),+), if ξ ≤ |ζk|(4.3)

(ξ, k,−) ≈ (ξ, κ−1(k),+), if ξ ≥ |ζk|(4.4)

We define

(4.5) F (L) := F̄ (L)/ ≈

and call it the associated surface, although the surface is possibly degenerate.

In other words, the equivalence relation identifies α−
l with α+

ω−1(l)
and β−

l

with β+
κ−1(l)

. The identifications of two α-curves are within the same annulus,

but the two identified β-curves are possibly on two different annuli. (Note
that the last two lines of the declaration are redundant and not needed
to generate the equivalence relation.) Let qL : F̄ (L) → F (L) denote the
quotient map. The image of all curves γ+

k resp. γ−k we call the outgoing
resp. incoming boundary ∂+(F (L)) resp. ∂−(F (L)).

There are four questions arising :

4.2(a) Is F (L) always a non-degenerate (topological) surface ?
4.2(b) Is there an obvious complex structure on F (L) ?
4.2(c) Is any Riemann surface F representable as F (L) for some L ?
4.2(d) Can F (L1), F (L2) be conformally equivalent for different L1, L2 ?

In this section we address questions 4.2(a) and 4.2(b); questions 4.2(c) and
4.2(d) will be answered in sections 6 and 7, respectively.
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ζ1
ζ2

Figure 22: The configuration L : n = 1, h = 1,m = 2, g = 0.

bb

c d

α

γ

F2

ζ  1 ζ   2
aa F1
ζ   

2γ

β

ζ 
1

Figure 23: The two sectors F1, F2.

4.3 Examples of Surfaces

We show this gluing procedure step-by-step in two examples.
The easiest configuration possible, the case n = 1, h = 1, m = 2, g = 0, ,
is shown in Figure [22]: L is generic and has only one pair of slits on one
annulus.
We perform cuts along the rays S ′

1 and S′
2 and attach the ideal boundary

edges to both sectors F1 and F2. See Figure [23].
The Figure [24] shows the finished surface in three-space.

A second example is shown in Figure [25]. The first picture shows a generic
configuration L with n = 1, h = 2, m = 1 and thus g = 1, a torus with
one incoming and one outgoing boundary circle. The middle picture shows
an intermediate stage of the cut-and-paste process in three-space. The last
picture is the finished surface F (L). The labels a, . . . , d occur always twice,
at the two edges to be identified.
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F1

2F

β  =  β2 2
+ −

β  =  β1 1
+ −

α  =  α1 1
− +

α  =  α2 1
− +

γ  1
+

γ  2
−γ  =  γ1 2

− −

Figure 24: The two sectors F1, F2 glued together.

4.4 Degenerate Configurations

The question 4.2(a) has a negative answer, as can be seen from the example
in Figure [26] : assume there is in a configuration L a pair l = λ(k) with
coinciding endpoints ζk = ζl following each other in the cyclic order on some
annulus, i.e., l = ω(k); then the gluing process attaches α−

k = α+
k to the

neighbouring sectors to the right and to the left, but β−
k = β+

k are identitied
only with each other. In other words we have an interval attached to the
surface at one end. Compare this to Figure [24]: there the proper sector
F1 formed a proper tube with non-trivial longitude and meridian. Here in
Figure [26] all meridians degenerated into points, making the circumference
(and the corresponding homotopy or homology class) vanish.

The configuration of Figure [27] is of a similiar nature : the two endpoints
ζk = ζl of a pair l = λ(k) coincide, and squeeze a shorter slit Si, i.e., ω(k) = i
and ω(i) = l. We have two thin sectors Fk and Fi, and the identifications
declared on their four edges result in an interval attached at both ends to
F (L). Compared to Figure [25] the handle there degenerated to an interval
here by making all meridians become points.

Note that this is very different from the configuration shown in Figure [11],
where a pair of slits conincide and squeeze a longer slit. This surface is
non-degenerate, and is built like in Figure [25], only that ζ4 lies on the line
labelled with a.

A limit case, namely a coinciding pair squeezing a slit of precisely the same
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a
b

c
d

ab

cd

ζ1ζ2

ζ3
ζ4

ζ2= ζ4
c

d

a
b

ζ1= ζ3

b

c

c

d

d

a

ζ1
= ζ3

ζ4

ζ2

Figure 25: n = 1, h = 2,m = 1, g = 1 : The first picture shows the configu-
ration, the second an intermediate state of the gluing process, and the third
picture shows a torus with two boundary curves.
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Figure 26: A surface with a “thin” tube.

ζ
k

ζ
l

ζ
i

ζ
j

ζ
l

ζ
k=

ζ
i

ζ
j=

Figure 27: A surface with a “thin” handle.

length is shown in Figure [28]. It produces a surface with a cone singularity.
It can be seen as a limit of degenerate surfaces as in Figure [27] where the
length of the attached interval has converged to zero; or as the limit of
non-degenerate surfaces as in Figure [11], where the lengths of the slits have
become equal.

ζ
j

ζ
k

ζ
l

ζ
i

= =

Figure 28: A surface pinched at two points.

The Figure [29] shows the case of a pair of endpoints lying on the outer circle
of the same or of different annuli. In Figure [30] we see the case of a pair
of endpoints lying on the inner circle of the same annulus, or of different
annuli with the same radius.
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In Figure [31] one slit endpoint of a pair lies on the inner circle of an annulus,
with radius Rp, but the other endpoint lies in the interior of a different
annulus of smaller radius Rq < Rp. Although the result is a non-degenerate
surface, we will nevertheless exclude these cases as degenerate, since the
harmonic function to be considered in section 6 will have singularities on
the boundary.

Note that the five cases shown in Figures [26 — 30] are in a way elementary;
in general, several such singulaities can accumulate at the same point, pro-
ducing multiple cone points and also a graph (whose edges are degenerate
tubes or handles).

ζ
jζ

i

ζ  =  ζ
i j

Figure 29: A pair of endpoints lying on the outer circles of annuli.

ζ  =  ζ
i j

ζ j

ζ
i

Figure 30: A pair of endpoints lying on the inner circles of annuli .

4.5 Criterion for Degeneracy

We will now investigate the question, for which configurations L the associ-
ated surface is F (L) degenerate.

If z = qL(z̄) for some point z̄ ∈ F̄ (L) in the interior of a proper sector
Fk, then z is obviously a smooth point of F (L), using the interior of Fk as
coordinate chart.
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ζ  =  ζ
i jζ

i

ζ j

Figure 31: One endpoint of a pair lies on an inner circle of an annulus, the
other endpoint lies in the interior of another annulus.

If z = qL(z̄) lies on the boundary ∂F (L) = ∂+F (L) ∪ ∂−F (L) z̄ lies on the
interior of some curve γ±k of a proper sector Fk, then z is also a smooth
point of F (L), using again the interior of Fk as a coordinate chart.

Let z = qL(z̄) be a point of F (L) with modulus ξ; for the moment we
assume that z̄ does not lie on ∂F (L). For this fixed ξ consider all 4h (not
necessarily distinct) points of the form (ξ, k,±), k ∈ I and choose a closed
neighbourhood Ū(ξ, k,±) in Fk as shown in Figures [32 — 35] : if k ∈ Ξ,
then Ū(ξ, k,±) is an interval of length 2d with center (ξ, k,±); otherwise
Ū(ξ, k,±) is a half-disc of diameter 2d and with (ξ, k,±) being the center
of its left resp. right radial diameter. Here d is chosen small enough such
that Ū(ξ, k,±) does not intersect the opposite edge of the sector Fk (if Fk is
proper) and such that Ū(ξ, k,±) contains either no slit endpoint or precisely
one (namely (ξ, k,±) itself if it happens to be an endpoint).

Consider all 8h symbols T (±, k,±), k ∈ I, and denote by T the subset for
which (ξ, k,±) is equivalent to z̄, i.e., (ξ, k,±) ∈ q−1

l (z). Clearly, T (ε, k,±)
stands for the point (ξ+εd, k,±) in Ū(ξ, k,±)∩E±

k . The images U(ξ, k,±) =
qL(Ū(ξ, k,±) for (ξ, k,±) ∈ q−1

L (z) unite to a neighbourhood U(z) of z in
F (L); it is a cone over the boundary ∂U(z) =

⋃

qL(∂Ū (ξ, k,±) with cone
point z.

On T we define a permutation ∆ : T → T , which reflects the identifications
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on the boundaries of all these neighbourhoods during the gluing.

∆(T (+, k,−)) = T (+, k,+), if k ∈ Ξ(4.6)

∆(T (−, k,+)) = T (−, k,−), if k ∈ Ξ

∆(T (+, k,−)) = T (−, k,−), if k /∈ Ξ

∆(T (−, k,+)) = T (+, k,+), if k /∈ Ξ

∆(T (+, k,+)) = T (+, ω(k),−), if ξ + d < |ζω(k)|
∆(T (−, ω(k),−)) = T (−, k,+), if ξ + d < |ζω(k)|

∆(T (+, k,+)) = T (+, κ−1(k),−), if ξ − d > |ζω(k)|
∆(T (−, κ−1(k),−)) = T (−, k,+), if ξ − d < |ζω(k)|

∆(T (+, k,+)) = T (+, κ−1(k),−), if ξ = |ζω(k)|
∆(T (−, κ−1(k),−)) = T (−, λ(k),+), if ξ = |ζω(k)|

∆(T (−, ω(k),−)) = T (−, k,+), if ξ = |ζω(k)|

It follows that U(z) is a disc if and only if ∂U(z) is a single curve; and this
is equivalent to the permutation ∆ having exactly one cycle. The interior
of U(z) is then a coordinate chart.

T(+,k,-) T(+,k,+)

T(-,k,+) T(-,k,-)

F k

ξ
T(-,k,+)

ξ ξ

T(+,k,-)

T(-,k,-)

T(+,k,+)

F k

Figure 32: ∆ for a thin sector and a proper sector.

The Figures [32 — 35] illustrate the permutation ∆ on the points T =
T (±, k,±) = (ξ ± d, k,±). Under the gluing T is identified with T ′ =
∆(T ) and the cycle(s) of points T,∆(T ),∆2(T ), . . . surrounds the point z in
counterclockwise orientation on the boundary(s) of U(z).

It will be convinient to give each endpoint ζk (or rather its image z = qL(ζk)
in F (L) an index, defined to be one less than a quarter of the number of T =
T (±, l,±) ∈ T such that l ∈ I, l /∈ Θ and qL(ξ, k,±) = z, where ξ = |ζk|.
For a smooth point ζk the number of half-discs forming the neighbourhood
U(z) is 2(ind(ζk) + 1).
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F k

T(-, ω(k) ,+) T(-,k,+)

T(+,k,+)T(+, ω(k) ,-)

ζω(k)

ξF ω(k)

Figure 33: ∆ for ξ smaller than |ζω(k)|.

T(+,k,+)

T(-,k,+)

ζ
ω(k)

T(-, κ   (k),-)-1

T(+, κ   (k),-)-1

ζκ   (k)-1

F
λ(k)

F
k

ξ ξ

Figure 34: ∆ for ξ larger than |ζω(k)|.

T(-,k,+)

F  k

ζ ω(k)

T(-, ω(k) ,+)

T(+,k,+)

ξ

T(-, λ (k) ,+)
T(-, κ   (k),-)-1

T(+, κ   (k),-)-1

F
    κ   (k)-1

Figure 35: ∆ for ξ equal to |ζω(k)|.

If z = qL(z̄) and z̄ lies in E±
k ∩ γ±k , a similiar criterion as above can be

derived.
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We call a configuration L degenerate, if F (L) is degenerate, meaning it is
not a topological surface or some endpoint is not in the interior of B. The
criterion we just formulated with the help of ∆ is certainly violated, if L
contains a subconfiguration of one of the five elementary types listed below.
We have seen these five types in the Figures [26 — 30].

There is some pair (i, j), i.e., j = λ(i), in I with :(4.7)

ζi = ζj and j = ω(i),

ζi = ζj and k = ω(i) and j = ω(k) and |ζk| > |ζi| = |ζj |,
ζi = ζj and k = ω(i) and j = ω(k) and |ζk| = |ζi| = |ζj |,
ζi and thus ζj is in ∂+(B),

ζi or ζj is in ∂−(B).

The first three types can be comprised into one condition :

There is some pair (i, j) in I, with ν(i) = ν(j) = r, i ∈ Ξ(4.8)

and ζi = ζj such that |ζk| ≥ |ζi| = |ζj |
for all k ∈ I between i and j in the cyclic ordering of Ir.

The following lemma follows from the ∆-criterion. We shall see that the ex-
istence of a degenerate subconfiguration is not only sufficient, but essentially
also necessary for L to be degenerate.

Lemma 4.1. If L contains a subconfiguration of one of the types in (4.7),
then L is degenerate.

2

4.6 Non-degenerate Configurations

Assume F (L) is not degenerate. The identifications ql : F̄ (L) → F (L) leave
the modulus |z̄| =

√

x̄2 + ȳ2 of points z̄ = x̄+
√
−1 ȳ unchanged, regardless

of z̄ being identified with points on the same or perhaps on other annuli.
The coordinate charts we found above define therefore a canonical complex
structure, because coordinate changes can be expressed by rotations in the
the complex plane. It follows that F (L) is orientable.

Lemma 4.2. F (L) has a canonical complex structure, if L is not degenerate.
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This answers question 4.2(b).

Lemma 4.3. F (L) is connected for all L.

Proof. The connectedness of F (L) is guaranteed by condition (3.11).

Lemma 4.4. F (L) has m+ n boundary circles, if L is not degenerate.

Proof. The boundary of F (L) consists of all points on the curves γ−
1 , . . . , γ

−
2h

and γ+
1 , . . . , γ

+
2h. The pieces γ−i are glued together in the ordering given by

ω, i.e., γ−i is followed by γ−
ω(i), which is part of the next sector over the

same annulus. Therefore all γ−k with k in some ω-cycle Ir form a boundary
curve, and we have exactly n such. The pieces γ+

i are glued together in the
ordering given by κ, i.e., γ+

i is followed by γ+
κ(i), which is perhaps part of a

sector over a different annulus. Therefore all γ+
i with i in some κ-cycle form

a boundary curve, and we have exactly m such.

If L is degenerate, some of these boundary circles may be points. Note
that the incoming and the outgoing boundary circles are numbered by the
functions ν and µ, respectively. For each of the incoming boundary circles
we take the real point Pr = Rr ∈ Ar, r = 1, . . . , n, as marked point of F (L).

Lemma 4.5. The Euler characteristic of F (L) is χ(F (L)) = −h, if L is
not degenerate.

Proof. Assume first, that L is generic. Then each of the 2h sectors Fk in
F̄ (L) is proper and contributes to F (L) the following : four corner points
(each to be idetified one other corner point), the two endpoints ζk and ζω(k)

(each to be identified with four other endpoints in F̄ (L)), the two curves
γ±k , the two curves α±

k and β±
k (each to be identified with one other such

curve), and one planar piece. If we set χk = 4 · 1
2 +2 · 1

4 − 2− 4 · 1
4 +1 = −1

2 ,
we find

χ(F (L)) =
∑

k∈I

χk = −1

2
· 2h = −h.

In a non-generic case F (L) is obtained from a generic case by replacing a
proper sector by a thin sector. This does dot change the Euler characteristic,
as long as F (L) remains non-degenerate.
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We finish this section with the remark that the function u = uL : F (L) → R,
u(z) = ln(|z|) = <(ln(z)) is always well-defined on the space F (L), because
of the modulus being invariant under the identifications. It has constant
boundary value ln(R0) on the outer curves and ln(Ri) on the inner curves.
If L is non-degenerate, then uL is harmonic with respect to the conformal
structure of F (L). (Note that uL is also defined and continuous for degener-
ate L.) The zeroes of the gradient field Φ of uL are precisely the endpoints
ζk, and the indices are ind(ζk) as defined above. For a generic L the function
uL is a Morse function.

5 The Reducible Presentation of a Configuration

Our next aim is to introduce a reducible notation for configurations. The
result will actually not be a reduction in the notation, only a reduction in
the number of slits, but at the expense of more data attached to each slit.
The advantage lies firstly in the deletion of the ambiguities caused by jumps,
as seen in Figure [9] above. And secondly will it make some proofs easier.
The idea is roughly to eliminate thin sectors by incoorperating the identi-
fications on their right edge E−

k into the identifications on the right bank
of Fω(k), and similarily with the left edge E+

k . We will have fewer slits,
but each bank of a slit may be subdivided into several intervals, each to be
identified with another on some different edge.

5.1 Reducible Representations

Recall that g, m and n are given and that h = 2g−2+m+n. As before we use
an index set I, but now of varying size n ≤ |I| ≤ 2h. There is a distribution
function ν : I → n with non-empty partial index sets Ir := ν−1(r) for all
r ∈ n. An argument function θ : I → S

1 is given, and we use the notation
Sk and S′

k for k ∈ I as before. The successor permutation ω ∈ S(I) is
now an element of the symmetric group of I. Its cycle 〈k, ω(k), ω2(k), . . .〉
is the partial index set Iν(k). Furthermore, the cyclic ordering induced by
ω on each Ir corresponds as before to the cyclic ordering of all endpoints
on Ar by their argument, i.e., the argument function θ is monotone on each
I1, . . . , In. As before we have a subset Ξ ⊂ I of exceptional indices satifying
(3.7) and (3.8). The notation Sk and S′

k will be used as before.
For the new presentation we need a second index set J with 4n ≤ |J | ≤ 8h
elements. More precisely, to each k ∈ I there are two non-empty, finite and
linearly ordered sets J+

k and J−
k associated; we set J :=

⊔

J+
k t ⊔

J−
k . We

obtain a function ι : J → I by ι−1(k) = J+
k t J−

k . And we obtain a function
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ε : J → {±1} by ε−1(+1) = J+ and ε−1(−1) = J−, respectively. Each J±
k

will have at least two elements.
To each j ∈ J there is a point ζj ∈ B associated, such that

ζj ∈ Aν(ι(j)) for all j ∈ J ,(5.1)

arg(ζj) = θ(ι(j)) for all j ∈ J ,(5.2)

|ζj | = Rν(ι(j)) if j = min(J+
k ) or j = min(J−

k ),(5.3)

j 7→ |ζj| is weakly monotonic on J+
k and J−

k for all k ∈ I.(5.4)

On the set J we are given a fix-point-free involution λ ∈ S(J) satifying

ε(λ(j)) = −ε(j)(5.5)

|ζλ(j)| = |ζj)|(5.6)

The connectivity is again expressed in terms of a graph G as follows : the
vertex set is n, and there is an (undirected) edge between r1 and r2 if and
only if there is some j ∈ J with ν(ι(j)) = r1 and ν(ι(λ(j))) = r2. We
demand that G is connected.
The boundary exchange κ ∈ S(I) is given by κ(i) := ι(λ(max(J+

ω(i)))) for
each i ∈ I. As before κ is supposed to have m cycles. And a numbering of
its cycles is given as a κ-invariant function µ : I → m.

A reducible presentation is written in double parantheses as

(5.7) L = ((I, J, ζ, ω, λ,Ξ, ι, ε, µ;R)).

Note that the functions ν and θ are determined by the function ζ. The
permutation κ is determind by ω, λ, ι and the linear order in each J±

k . The
following diagram shows all the data occuring in the presentation.

(5.8) {±1} J
εoo

ι

��

ζ //

λ

��
B

m

Ξ // I

µ

hhPPPPPPPPPPPPPPPP

ν

vvnnnnnnnnnnnnnnnn

θ //

ω

[[

κ

��
S

1

n
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A presentation with Ξ = ∅ is called reduced. The reduced presentation of a
configuration is unique.
After an example we describe the reduction procedure.

Example : As a first example we rewrite a configuration L presented in
the old, unreducicble notation as L = (ζ;λ, ω,Ξ;R). In both presentations
the index set I is 2h, and we have the same distribution function ν, argu-
ment function θ and successor permutation ω, as well as the exceptional
indicex set Ξ. The second index set is J = {(i, 0,±)|i ∈ I}∪{(i, 1,±)|i ∈ I}
with ι(i, 0,±) = ι(i, 1,±) = i and ε(i, 0,±) = ε(i, 1,±) = ±. Thus each
J±

k consists of the two elements (k, 0,±) and (k, 1,±). The pairing λ′ on
J is given by λ′(i, 0,±) = (i, 0,∓) and λ′(i, 1,±) = (λ(i), 1,∓). The func-
tion ζ ′ : J → B is ζ ′(i,±) = ζi. It follows that we have the same κ as
before; and we leave µ unchanged, as well the radii. Thus we arrive at
L = ((I, J, ζ ′, ω, λ′,Ξ, ι, ε, µ;R)). Essentially we only quadrupled the index
set I to get J . Obviously, this presentation is only reduced, if Ξ is empty.

5.2 Reduction

Let j1 < j2 < . . . < jp be the elements of J+
k in their linear order; we

denote by βj1 , βj2 , . . . , βp the intervals on the right edge E−
k of Fk between

the consecutive points ζj1 , ζj2 , . . . , ζjp
and R0 θ(k) on the outer boundary

curve of the annulus Aν(k). And analogously we do this for the set Jω(k),

whose associated points subdivide the left edge E+
k of Fk.

To describe a reduction, let k ∈ Ξ be an exceptional index, and set l = ω(k).
Left and right edge of this thin sector Fk agree and we write E = E+

k = E−
k .

This E is twice divided into intervals βj, one division is induced by J+
k ,

and one by J−
l . Consider the common subdivision they induce on E and

in particular some βj, say for example j ∈ J−
l . Each subinterval of βj has

now two labels associated, namely j and some j ′ ∈ J+
k . We transport the

subdivision of βj to βλ(j), together with the label j ′.
In the Figures [36 and 37] we labelled only some intervals by their indices
j1, . . . , j4, giving paired intervals the same label. In both Figures a reduction
is shown.
The index k is deleted from I. We keep J+

l , but replace J−
l by J−

k , further-
more, for each j as above we replace the single element λ(j) in Jι(λ(j)) by
the elements written as pairs (j, j ′) for all j ′ as above, linearly ordered by
their modulus. The pair (j ′, j) will occur in this way as a new element in
Jι(λ(j′)), and (j, j ′) and (j′, j) will be paired. Figure [37] shows the reduction
of [36].
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 2 (1,4)(1,4)

Figure 36: A reduction.

 2

3
4 4

3

 2 (1,4)(1,4)  (2,3)

3 4 4 3

 (2,3) (1,4)(1,4)

Figure 37: A further reduction.

There is another reduction step : If for two consecutive j1 < j2 in J±
l the

paired indices λ(j1) and λ(j2) are in the same J∓
l′ , then j2 and λ(j2) is can-

celled from J±
l and J∓

l′ , respectively. This corresponds to an amalgamation
of βj1 with βj2 and of βλ(j1) with βλ(j2) which are adjacent intervals on ideal
boundary edges.

6 The Configuration Associated to a Surface

We have seen in section 4 how to associate to a configuration L a (possibly
degenerate) surface F (L). In this section we show how to associate a configu-
ration L to a given Riemann surface F of genus g and m+n boundary curves
C−

1 , . . . C
−
n , C

−
1 , . . . C

+
m with marked points Pi ∈ C−

i , P = (P1, . . . , Pn). Let
C+ = C+

1 ∪ . . .∪C+
m, C− = C−

1 ∪ . . .∪C−
n and C = C+ ∪C−. As before set

h = 2g +m+ n.

6.1 Harmonic Potentials

Let

(6.1) uF = u : F → R
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be a harmonic function which has no singularities, all its critical points in
the interior, and which is constant on the boundary curves; we set it equal
to 0 on the incoming boundary C− and equal to some constant cj < 0 on
the outgoing boundary curve C+

j , j = 1, . . . ,m. Such a function, a solution
of the Dirichlet problem, always exists and is uniquely determind by the
complex structure and the boundary values; see e.g. [C], [F, p.164].
If we set (as we will do later in section 9) c1 = . . . = cm = c, then u exhibits
F as a harmonic, and therefore smooth bordism between C+ and C− over
the interval [c, 0].

Let Φ = grad(u) denote the gradient vector field. (For this we need to choose
a metric in the conformal class of F ; but we will only use properties of Φ
which are independent of the choice of the metric in this conformal class.)
The vector field Φ has no singularities and its zeroes Z1, . . . , Zs, i.e., the
critical points of u, lie in the interior of F . Since u is locally the real part of
a holomorphic function, the zeroes will be saddle points of some index and
−2h ≤ ind(Zk) ≤ −1. Note that u is in general not a Morse function, since
it might have degenerate critical points. The sum of these indices must be
the Euler characteristic χ(F ) = −h = 2− 2g −m− n, thus s is bounded by
0 ≤ s ≤ h. Unless n = m = 1 and g = 0 (i.e., unless F is an annulus), there
is at least one zero.

6.2 Critical Graphs

Consider a single zero Zi of index −p. It has p+ 1 stable flow lines entering
and p+1 unstable flow lines leaving. Each stable flow line either comes from
another zero Zj or from some boundary point Q− ∈ C−. And each unstable
flow line either goes to another zero Zk or to a boundary point Q+ ∈ C+.
We call these points Q± on C± the cut points of F .

The critical graph K of F consists of all cut points and all zeroes as vertices,
and its edges are the flow lines (stable or unstable) connecting two vertices.
All edges are oriented by the flow Φ. Since K is embedded in an oriented
surface, all edges entering (resp. leaving) vertices (i.e., zeroes) are cyclically
ordered; furthermore, entering and leaving edges alternate. The valency of
a vertex is 1 for a cut point Q, and −2 ind(Zi) + 2 for a zero Zi. Note
that there may be several edges connecting the same two zeroes. On each
boundary curve there is at least one cut point, unless F is an annulus.

Let F̌ = F \ K be the complement of the critical graph, and let F̌k denote
a component of F̌ , where k ranges over some index set I. A component
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F̌k intersects C− as well as C+. The gradient vector field Φ has no singu-
larities on F̌k and can therefore be used to retract F̌k backwords onto the
intersection F̌k ∩C−.
Thus F̌k is either homotopy equivalent to an open interval and thus con-
tractible (in case F̌k ∩ C− is a proper part of some boundary curve), or F̌k

is homotopy equivalent to S
1 (in case F̌k ∩C− is an entire boundary curve).

The second case can only occur, when there are no cut points at all; then K
is empty, i.e., F is an annulus and the only component.

Figure 38: The critical graph of a surface with g = 1, n = m = 1.

In the Figures [38] and [39] we show the critical graph K of a potential of a
generic surface with g = 1 and n = m = 1. One of the four components of
the complement of K is shaded and shown in Figure [39] separatedly.

Looking at a fixed incoming circle C−
r (r = 1, . . . , n), the set of those com-

ponents F̌k which intersect the boundary curve C−
r non-trivially inherits

from the counterclockwise orientation a cyclic ordering. Let this order-
ing be described by a permutation ω ∈ S(I), i.e., its cycles are the sets
Ir = {i ∈ I | F̌k ∩ C−

r 6= ∅} for r ∈ n.

On each F̌k the harmonic function uk := u|F̌k : F̌k → R is the real part of
a holomorphic function

(6.2) wk = uk +
√
−1 vk : F̌k −→ C

where vk is the harmonic conjugate of uk and is unique up to an additive con-
stant dk. Since vk is constant along the gradient flow lines of uk, which are
the boundary of F̌k in F , the image of wk is the open rectangle [0, 1]×]ak , bk[
for some ak < bk.
If we add to each level set Mk(x) := {z ∈ F |u(z) = x}, x ∈ [0, 1], two
endpoints ξ0

x, ξ
1
x, we obtain Fk as the ideal closure of F̌k. Setting uk(ξ

0
x) =
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Figure 39: A component of the complement of the critical graph.

uk(ξ
1
x) = x and vk(ξ

0
x) = ak, vk(ξ

1
x) = bk extends wk, and the image is the

closed reactangle [0, 1] × [ak, bk]. There is a map qF :
⊔

k∈I Fk → F , and
this map is an embedding on each F̌k. The preimage q−1(Zi) consists of
2 ind(Zi) + 2 ideal boundary points.

6.3 Uniformization

We arrange these constants dk in the following way. For r ∈ n pick k ∈ I
such that Pr ∈ qF (Fk), and write Ir = 〈k, ω(k), ω2(k), . . .〉. Then choose
dk, dω(k), dω2(k), . . . such that

(1) vk(Pr) = 0,
(2) bk = aω(k), bω(k) = aω2(k), and so on.

The images wk(Fk) for k ∈ Ir cover a rectangle [0, 1] × [a, b] with b − a =
∑

k∈Ir
bk − ak. A dilation with factor c = 2π

b−a
and a translation about c to

the left gives the rectangle [−c, 0] × [c a, c b] with the same modulus b − a.
We then define

(6.3) Wk(z) = exp(wk(z)) : Fk −→ C.

The image of Wk is a sector of an annulus Ar with inner radius Rr =
exp(−cr), and outer radius R0 = exp(0) = 1, and with angular width
exp(

√
−1(bk − ak)).

Obviously, we have arrived at a reduced description of a configuration L.
The index sets J±

k are the ideal boundary points of Fk lying over zeroes or
cut points on C−, i.e., J−

k = q−1
F (K′) ∩ v−1

k (ak) ⊂ Fk and J+
k = q−1

F (K′) ∩
v−1
k (bk) ⊂ Fk, where K′ are the vertices of K which are not cut points on
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C+. These sets are lineraly ordered by increasing values of u. The edges
of K induce a division of the two ideal boundary edges of Fk into intervals.
Since they are identified in pairs, a pairing on J =

⊔

k∈I J
±
k is established.

This answers question 4.2(c).

For the suface of Figure [38] the resulting configuration is as shown in Figure
[6].

7 The Configuration Spaces Radh(m, n)

The configurations L = (ζ;λ, ω,Θ;R) introduced in section 3.1 are regarded
as points in the space B

2h × S2h × S2h × {0, 1}2h×]0,∞[n+1 satisfying the
conditions (3.1) to (3.13); we denote this subspace by Confh(m,n). To
answer question 4.2(d) we will show that F (L) does not depend on the
numbering of the endpoints, is invariant under jumps and under dilations of
the annuli.

7.1 Renumbering

To be precise, let σ ∈ S2h be a renumbering of the index set I and set
ζσ := (ζσ(1), . . . , ζσ(2h)), λ

σ := σ ◦ λ ◦ σ−1, ωσ := σ ◦ ω ◦ σ−1, Θσ := σ(Θ) =
{σ(k) | k ∈ Θ}. Then we set Lσ := (ζσ;λσ , ωσ;R). Note that the former
distribution function ν : I → n is replaced by the new νσ := ν ◦ σ, and the
former boundary exchange κ by the new κσ := σ ◦ κ ◦ σ−1.

Lemma 7.1.
There is a homeomorphism F (L) → F (Lσ), which is a conformal equivalence
for non-degenerate L.

Proof. The homeomorphism is induced by the identity on each of the sectors
Fk(L) = Fσ(k)(L

σ).

7.2 Jumps

We have also seen that a shorter slit jumping over a longer pair does not
effect F (L). To describe this precisely, let k be in Θ, and set i = ω(k) and
j = λ(i). We say that k jumps over the pair (i, j) when we replace L by

L′ = (η′;λ, ω′,Θ‘;R) where ζ ′ = (ζ1, . . . , ζk
ζj

|ζj |
, . . . , ζ2h) leading to the new

distribution function ν ′ with ν ′(k) = ν(j) and ν ′(l) = ν(l) for l 6= k, where λ
is unchanged, ω′ := 〈k, ω(j)〉 ◦ ω ◦ 〈k, ω−1(i)〉, Θ′ := (Θ−{k})∩{j}, and R
is unchanged. Note that κ is replaced by κ′ := λ◦ 〈k, ω(j)〉 ◦ ω ◦ 〈k, ω−1(i)〉,
which has the same number of cycles as κ; thus m′ = m.
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Lemma 7.2.
There is a homeomorphism F (L) → F (L′), which is a conformal equivalence
for nondegenerate L.

Proof. The homeomorphism is induced by the identity on each of the proper
sectors. The thin sector Fk is identified with ideal boundary edges of proper
sectors, on which the map agrees.

These jumps make the space Confh(m,n) connected. In Figure [40] we see
five stages of a closed curve in the space Confh(m,n), the first and the last
picture agree. Only the slit S2 is moving counterclockwise, between picture
three and picture four it jumps over the pair 1 = λ(3). This curve represents
— as an element of the fundamental group of M•

1(1, 1) — a Dehn twist.

ζ2

ζ4

ζ1

ζ3

ζ2

ζ1

ζ3

ζ4

ζ2

ζ4

ζ1

ζ3

ζ2

ζ4

ζ1

ζ3

ζ
2

ζ1

ζ3

ζ4

ζ2

ζ4

ζ1

ζ3

Figure 40: n = 1, h = 2,m = 1, g = 1 : A motion picture in 5 stages shows
a path in the space Rad2(1, 1); all slits are fixed except S2, which moves
counterclockwise towards S3, jumps to S1, and moves back to its former
position.

7.3 Dilations

Finally, we can obviously dilate all annuli A1, . . . ,An simultaniously by
a positive real number a, replacing ζ by a.ζ = (a.ζ1, . . . , a.ζ2h) and R
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by a.R = (aR0, aR1, . . . , aRn). We denote this replacement by a.L =
(a.ζ;λ, ω,Θ; a.R). Because of the connectivity condition (3.11), we can not
dilate the annuli independently. Furthermore, since we have chosen the
marked points Pi to be the real points z = (Ri, 0), we can not rotate the
annuli.

Lemma 7.3.
There is a homeomorphism F (L) → F (a.L), which is a conformal equiva-
lence for non-degenerate L.

Proof. The homeomorphism is induced by sending z to az on each sector.

7.4 Radh(m, n)

To replace a configuration L by Lσ for σ ∈ S2h or by a.L for a > 0 or to per-
form a jump generates an equivalence relation ≈ on Confh(m,n); we denote
an equivalence class by L = [L] and define Radh(m,n) = Confh(m,n)/ ≈.
Renumbering configurations and rescaling configurations is obviously an ac-
tion by the group S2h ×R>0; furthermore, instead of dividing by the action
of R>0 we can normalize the outer radius to be R0 = 1.

As we have seen in section 4 some configurations L yield singular surfaces
F (L). We call a class L degenerate if it contains any degenerate configura-
tion.

Proposition 7.4.
F (L) is degenerate if and only if L is degenerate.

Proof. By Lemma 4.1 the condition is sufficient. Assume ∆ has for some
point z̄ = (ξ, k,±) more than one cycle in the set T . Then by performing
jumps of slits with index in those two cycles one can find a degenerate
configuration in the class L.

Let Confh(m,n) be the subspace of Confh(m,n) of all non-degenerate con-
figurations, and set Radh(m,n) = Confh(m,n)/ ≈.

Proposition 7.5. The space Radh(m,n) is a non-compact manifold of di-
mension 6h+ n.

Proof. We sketch the proof, using induction on h. For h = 2 (and n = 1 or
n = 2) the statement follows from the Examples above.
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Let Rad′h(m,n) denote the space of h+ 1 pairs of radial slits, exactly as in
Radh+1(m,n), but one pair is special in the sense that its slits can jump
over the other (ordinary) pairs (if shorter or of equal length), but a slit of
an ordinary pair is not allowed to jump over the special pair.
There is a well-defined map φ : Rad′h(m,n) → Radh(m,n) forgetting the
special pair. The map φ is surjective, but not open. Over the open set of
generic configurations in Radh(m,n) it is fibre bundle with fibre the configu-
ration space of two (unordered) points ζ ′, ζ ′′ in B\⋃

k∈I(S
′
k \Sk) of the same

modulus |ζ ′| = |ζ ′′|. If we introduce ideal boundary and use the induction
hypothesis for Radh(m,n), one can show that Rad′h(m,n) is a manifold with
boundary.
Consider the map ψ : Rad′h(m,n) → Radh+1(m,n), which ignores the na-
ture of the special pair and regards it as ordinary. Now ψ is surjective
(and a covering over the generic configurations) and identifies points on the
boundary pairwise. Since these identifications are affine, we conclude that
Radh+1(m,n) is a manifold.

7.5 Hilbert Uniformization

Summing up section 3 and 6 we have maps

G : Radh(m,n) → M•
g(m,n), [L] 7→ [F (L), P (L)](7.1)

H : M•
g(m,n) → Radh(m,n), [F, P ] 7→ [L(F )].(7.2)

We call H the Hilbert uniformization. Obviously we have

Proposition 7.6.
H ◦ G = id : Radh(m,n) → M•

g(m,n) → Radh(m,n) is the identity.

Proof. The harmonic potential of F = G([L]) is the function u(z) = ln(|z|)
mentioned at the end of Section 4. The zeroes of the gradient flow Φ are
the slit endpoints, and the critical graph if K =

⋃

S′
k. The components Fk

of the complement F \ K are the proper sectors of L. It is obvious that the
composition H ◦ G sends a configuration to its reduced representation.

Proposition 7.7.
G ◦ H = id : M•

g(m,n) → Radh(m,n) → M•
g(m,n) is the identity.

Proof. The conformal maps Wk send a component Fk to a sector Fk of
L = H([F ]). When composed with qL : F̄ (L) → F (L), they agree along K.
Thus they yield a conformal equivalence F → F (L).
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Proposition 7.8.
G : Radh(m,n) → M•

g(m,n) is continuous.

Proof. Let L = [L] ∈ Radh(m,n) be given. We need to find a quasi-
conformal map f : F (L) → F (L′) such that its maximal dilatation K[f ]
can be bounded from above by a given ε > 0, if L′ is closer to L than some
δ (depending on L and ε).
First consider the case, where the reduced representation of L and L′ differ
only in their functions ζ and ζ ′, or in their radii R and R′, respectively, but
not in their combinatorial data. Then they have the same number of proper
sectors, and we can find a correspondence between these sectors, provided L
and L′ are so close to rule out symmetries of the configuration. Correspond-
ing sectors can obviously be mapped onto each other by an homeomorphism
fk : Fk → F ′

k′ which is affine in polar coordinates. These homeomorphisms
can be made to coincide along the ideal boundary edges. Their maximal di-
latation K[fk] depends only on the difference of the angular width of Fk and
F ′

k′ and on the difference of the radii of the annuli involved. Both differences
can be controlled by an appropriate δ.
Secondly, if the L′ has in addition different combinatorial type than L, we
can assume, that L′ is the result of contracting a sector Fk of small angu-
lar width to a thin sector (and reducing). Consider the example in Figure
[41]. The homeomorphism f maps the left and right half of Fk as indicated,
winding it around all points ζj for j ∈ J±

ω(k) after the reduction. The neigh-
bouring sectors must also be adjusted. The maximal dilation of such a map
depends only on the angular width of Fk and the index of the ζj. Thus it
can be controlled by choosing an appropriate δ.
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Figure 41: The quasi-conformal map caused by a reduction.
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Proof of Theorem 1.1

Proof. The map G is continous and injective. Since the spaces Radh(m,n)
and M•

g(m,n) are manifolds, it follows from the invariance of domain that
G is an open map.

The torus group T
n acts on Radh(m,n) by rotating the n annuli indepen-

dently, and on M•
g(m, ) by rotating each marked point Pi independently

around its curve C−
i . With these actions G and H are both equivariant.

Thus a homeomorphic model of the (unmarked) moduli space Mg(m,n) is
obtained by dividing out the T

n-action on Radh(m,n).

7.6 Examples

Let us consider some examples.

Example 1. The space of all empty configurations Rad0(1, 1) consists of all
classes of configurations L = (−;−,−; (R0, R1)), thus normalizing R0 = 1 we
have a homeomorphism Rad0(1, 1) ∼= ]0, 1[ by sending L to R1/R0. This ratio
of outer and inner radius is the only modulus of an annulus and thus ]0, 1[ is
as expected the moduli space M•

0(1, 1) of annuli. Note that it is the only case
with a (continuous) group of conformal equivalences, which act transitively
on all possible choices of marked points. Therefore M•

0(1, 1) = M0(1, 1).

Example 2. The next space Rad1(2, 1) consists of the classes of configu-
rations of two endpoints ζ1, ζ2 in one annulus, i.e., the configuration space
of two unordered and distinct points on a circle (which is an open Möbius
band M = RP 2 − {point} ), and their modulus 0 < |ζ1| = |ζ2| < 1, and the
inner radius 0 < R1 < 1. Thus M•

0(2, 1)
∼= M×]0, 1[×]0, 1[.

Example 3. The space Rad1(1, 2) consists of configurations with two
endpoints on two different annuli. Thus Rad0(1, 2) is homeomorphic to
S

1 × S
1 × [0, 1] × [0, 1]2.

Note that in example 2 and 3 the surfaces are pair-of-pants. The difference
is caused by the number of marked points.

8 The Compactification Radh(m, n)

The moduli spaces of surfaces with or without additional data like bound-
aries or punctures can be described by methods of various parts of mathe-
matics, like complex analysis, real analysis, algebraic geometry, differential
geometry, hyperbolic geometry or topology. But each description leads to
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its own compactification by including some sorts of degenerate surfaces —
usually by letting (local) parameters go to zero or to infinity. As a result,
the compactifications do widely differ from each other.

8.1 Harmonic Compactification

The method of Hilbert uniformization used here to describe M•
g(m,n) by

its homeomorphic model Radh(m,n) with h = 2g − 2 + m + n leads to a
compactification with the following characteristics : the degenerate surfaces
F (L) still admit a function u : F (L) → R̄ = R∪∞ which is harmonic at all
smooth points of F (L).

The space Radh(m,n) was introduced in section 7 as a quotient of the space
Confh(m,n). Starting vice versa from the space Confh(m,n), whose quotient
is Radh(m,n), we drop the conditions (a) to (e) and allow the inner radii
R1, . . . , Rn to vary between 0 and R0; recall that we have fixed R0 = 1.

Confh(m,n)

��

// Confh(m,n)

��
Radh(m,n) // Radh(m,n)

Since Confh(m,n) is a closed subspace of B2h×S2h×S2h×{0, 1}2h× [0, 1]n,
it is compact; and consequently Radh(m,n) is compact as well. Its subspace
Radh(m,n) is open and dense.

The compactification adds degenerate surfaces to M•
g(m,n). The degenera-

tions occuring are of three types:
(a) a hande degenerates into an interval;
(b) a non-separating curve is pinched to a point;
(c) finitely many points are identified.
See the Figures [26 – 31] for examples. Such a degenerate surface is always
a union of a non-degenerate surface of lower genus or with fewer boundary
curves and a graph (whose edges are degenerate handles).

8.2 Cell Structure

To see the cell structure on Radh(m,n) we use the reduced description.
A cell of Radh(m,n) consists of all classes L = [L] of configurations such
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that their combinatorial data in the reduced presentation agrees and they
differ only in the function ζ and the radii. The coordinates of such a cell
are the θ(i) for i ∈ I, the moduli |ζj | for j ∈ J , and the radii R1, . . . , Rn.
Each ω-cycle determines a simplex with the numbers θ(i) as barycentric
coordinates. Then the numbers |ζj| = |ζλ(j)| determine a simplex, and the
radii R = (R0, R1, . . . , Rn) determine a cube. A cell is then a product of
these spaces.

9 The Operad Structure

9.1 Composition of two Surfaces

The uniformization method described here makes the process of gluing (or
composing) two surfaces along boundary curves particularily easy. Two arcs
of equal length on two circles of equal radius in a complex plane, can – after a
rotation and translation – be identified such that this extends to a conformal
gluing of regions (locally) bounded by those arcs. If we identfy two circles
in this way, such that two marked points are identified, there is preisely one
such identification.

We therefore need to specify not only on each incoming boundary curve C−
i

of the surface F a marked point P−
i = Pi, (i = 1, . . . , n), but also on each

outgoing curve C+
j a marked point P+

j , (j = 1, . . . ,m). We shall denote the
moduli space of theses surfaces by M••

g (m,n). The new space M••
g (m,n) is

a T
m-bundle over M•

g(, n), which in turn is a T
n-bundle over Mg(m,n); see

2.4.

To make things as easy as possible we shall furthermore insist on all inner
radii being equal, R1 = . . . = Rn. (Recall that the outer radius was set
equal to R0 = 1 in 7.4.) We denote this subspace NM••

g (m,n), and note
that it is a homotopy retract of M••

g (m,n).

The corresponding space of non-degenerate radial slit configurations is de-
noted by NRad•g(m,n). Note that a new marked point P+

j performs jumps
if it moves continously around the boundary curve. Recall that the marked
points P−

i on the incoming curves C−
i correspond in the slit configuration

to the point z = (Ri, 0), the intersection of the positive real axis with the
inner boundary of the annuli.
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The connected-sum-operation

] : NM••
g′ (m

′,m) ×NM••
g (m,n) → NM••

g′+g(m
′, n)(9.1)

(F ′, F ) 7→ F̃ = F ′ ] F(9.2)

will be described on the configuration spaces (h = 2g − 2 +m+ n)

] : NRad•h′(m′,m) ×NRad•h(m,n) → NRad•h′+h(m′, n)(9.3)

(L′,L) 7→ L̃ = L′ ]L(9.4)

and is defined in the following steps. Let the classes L resp. L′ be represented
by the configurations L resp. L′.

(1) First choose on n disjoint complex planes n annuli Ã1, . . . , Ãn of inner ra-
dius R1 = . . . = Rn (the inner radius of L) and outer radius R̃0 = R0R

′
0/R

′
1.

Into these annuli we will insert L as well as L′. At the very end we shall
rescale the configuration and make the outer radius equal to 1.
(2) Insert the configuration L to these new annuli by putting it to the inner
half (between radius R1 and R0) and prolonging its slits outward to the
radius R̃0.
(3) Rescale the m annuli A

′
1, . . . ,A

′
m of L′ to an inner radius of R0 and an

outer radius of R̃0.
(4) Pick one of the outgoing curves, say C+

i of L. This curve is in general
composed of several arcs, sitting on the outer circumference of L, running
from one slit to the next. On one of the arcs we have the point P +

i ; subdivide
this arc further by the radial line determind by P +

i . We denote these arcs
by ai,1, ai,2, . . ., starting with the arc which begins at P+

i , and numbered in
the cyclic ordering given by C+

i .
(5) Subdivide the annulus A

′
i of L′ into sectors F ′

i,1, F
′
i,2, . . . of anglular width

proportiol to the arcs ai,1, ai,2, . . .. It will not matter whether slits of L′ lying
on such radial cuts are put to the left or right side of the cut, as long as
their (local) linear order is not effected.
(6) Insert each sector F ′

i,k into the annulus Ãl, such that its inner arc be-
comes the arc denoted by ai,k.
(7) Rescale the annuli Ãl to the have outer radius equal to 1.

The gluing process is depicted in the following figures.
The surface F in Figure [42] has n = 2, m = 2 and genus g = 1. The points
P−

1 = A and P−
2 = B on the incoming boundary and points P+

1 = C and
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Figure 42: The surface F of genus g = 1 and n = 2, m = 2, onto which
another surface F ′ will be glued.

P+
2 = D on the outgoing boundary are shown. The neighbourhood of the

second outgoing curve C+
2 is shaded as an emphasis.

F’21

F’22

F’11

F’12
F’13

F’14

F’15

F’16

Figure 43: The surface F ′ with n′ = 2; there are no slits shown.

This surface F ′ in Figure [43] will be glued to F , thus n′ = m = 2. Note
that – in order to keep the figures easy – we do not show any slits, and
therefore the genus g′ of F ′ and he number m′ of outgoing bundary curves
is not determined. The dashed lines cut F ′ into sectors F ′

1,1, . . . , F
′
1,6 and

F ′
2,1, F

′
2,2 according to the arcs a1,1, . . . , a1,6 of the first outgoing curve C+

1

of F , and the arcs a2,1, a2,2 of the second outgoing curve C+
2 of F .

The last Figure [44] shows the composed surface; F is seen on the inner half
of the two annuli, and the six sectors F ′

1,1, . . . , F
′
1,6 from the first annulus

of F ′ resp. the two sectors F2,1 and F2,2 of the second annulus of F ′ are
inserted into the outer half of the two annuli.

The composition ] makes the disjoint union M•• =
⊔

g,m,n M••
g (m,n) of all

moduli spaces into an H-space. It is strictly associative. If we had allowed
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Figure 44: The composition F̃ = F ′ ] F of both surfaces F and F ′.

disconnected surfaces in our moduli spaces, then the disjoint union of n
resp.m cylinders would act as a left resp. right neutral element, but only
up to homotopy. In other words, the sub-H-space given by n = m = 1 has
a neutral element up to homotopy.

9.2 Properad and Operad Structure

With the compostion at hand we can now glue an arbitrary number of
(connected) surfaces F1, . . . , Fq with a total number of m = m1 + . . . +mq

incoming curves to a single surface F with this numberm of outgoing curves.
Let M = (M1, . . . ,Mq) an ordered decompositon of [m] = {1, . . . ,m} into
disjoint, non-empty subsets of cardinality m1, . . . resp. mq. Gluing the mi

incoming curves of Fi to those outgoing curves of F whose indices are in Mi

defines a composition

]M : NM••
gq

(m′
q,mq) × . . . ×NM••

g1
(m′

1,m1) ×NM••
g (m,n)(9.5)

−→ NM••
g′+g(m

′, n)

where m = m1 + . . .+mq, m
′ = m′

1 + . . .+m′
q, and g′ = gq + . . .+ g1.

Since these maps satisfy the desired associativity conditions, they turn the
family of spaes M••

g (m,n) into a properad. If we restrict to the subfamily
n = 1, m1 = . . . = mq = 1, we obtain an operad. This leads to a properad
resp. operad structure on the homology of moduli spaces. In particular, one
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can find an analogue of the Dyer-Lashof algebra acting on their mod 2-ho-
mology; see [B-2] for details in the case of parallel slit configurations.
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