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Chapter 5

The Uniformization Map

5.L The map H : M(g) —» PSC(g) .
5.2 The inverse map-
5.3 Equivariance .

5.4 The continuity of H and G

5ie> The uniformization theorem.

In the last chapter we come to define the uniformization map: it associates to
the conformal class of directed Riemann surface the similarity class of a

parallel slit domain tx : fﬁ(g) — P3C(g)

We start with the definition of a map H from an auxilliary moduli space to
PSC(g) and show that it and its inverse are bijective, equivariant and conti-

nuous. Then the main result follows: kt is a homeomorphism.



5.1 The map H : M(g) —» PSg(e) .

In order to define the uniformization map h : ﬁi(g) — P3BC(g) we first
introduce a new moduli space g(g) . The elements of ﬁ(g) are equivalence

classes of tupels (F,x,a,b) : F is a Riemann surface of genus g as before;

X is a direction at some point P € F 3 a=(z:a) is a projective class
of a local parameter 2z and some real number a > 0, 2z is adopted to x
(i.e. z(P) =0, Dz(x) = dx) ; b= bl+ib2 is any complex number. Two such

tuples are conformally equivalent if there is a conformal map ¢ : F —» F!'
such that ¢(P) = P' , De(x) = x' and a*(z'sc) =a'*z, and b =0b' . There

are two projections

(5.1.1) M(g) +—  M(g) —» R, x €
%o
(F.X] = [F,X,a,b] —> (a2 ,b)
%
On the left side — Means the proportionality of two directed local parame-
ters near P , where z is some fixed local parameter. The projection ﬁ(g)

— R+ is thus well-defined, but depends on the choice of z, - Both projec-

tions exhibit M(g) as a product
(5.1.2) H(g) = TM(g) x R, x ¢

ﬁ(g) can be regarded as the moduli space of pairs (F,(z:w) , where (z:u)

is a projective class consisting of a directed local parameter and a holomor-
phic function w with a dipol of the form w(z) = % + regular terms as only
singularity. This determines P . And x 1is the argument and a is the modu-

lus of the residuum of w measured in a fixed directed parameter 2,



=123 <

The definition of the map
(5.1.3) H : M(g) —> PSC(g)

needs some preparation. Let a conformal equivalence class ([F,x] , a pProjective

parameter a = (z:a) and a complex number b = b1 + ib2 kept fixed till

(5.1.25)

By Proposition (3.1.3) there is a unique harmonic function u on Z with a

dipol singularity at P for a and bl

Let & = grad . be the gradient flow of wu , and I(o be the critical graph
of & . Let v denote the harmonic conjugate of u , defined on F-I(o = F0
and normalized by b2 . So far everything was uniquely determined by (F,x,a,b]

€ M(g)
Now we choose a branching graph 4- over the critical graph I(o ; this amounts,

by the algorithm (3.5.12) to choosing

(5.1.4) (1)  a degeneracy function
gg ¢ €(S) — K(S) , & : &(5) —» K(S)

for each vertex S in E(o » S =2 P, and

(2) a shuffle function
Ot 9, ¢ T (s) D) éél(K) — eé}(K) = &(s)

for each edge K = (S,S') from S to S' in K . S'=zP .

The algorithm Proposition (3.5.12) completes the data by producing
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(3)  the degeneracy functions

s+ &(s) — K (s)
for each vertex S in I(o , S = P. , and
(4)  the branching functions
+ - \ -
Bg » B : &(S) —» E(S)
S S
for each vertex S in I(o » S # P . The properties (3.5.10)

(3.5.10) now hold.

These choices determine the branching complex F U B = F . The extension of
the mapping function w = u + iv from Fo to F is uniquely possible, given

F and u, v on FO - Recall that the 4g edges of F come with an ordinary

(5) B B

l’BZ""’ i

and with a pairing function of their indices
(6) X : (1,2,...,48}) — {1,2,...,4g)

satisfying (3.6.13)
A is determined by the B; and Bé » and the ordering in part also by v .

The images Li = w(Bi) of these edges under the (extended) mapping function
w are semi-infinite slits in the complex plane € , their endpoints are deno-
ted by Si - A 1is considered as a pairing function of the indices of the

Li . The ordering of the Bi was arranged, so that
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(7) v(B,) 2 V(Bi+ ) i=1,..,4g-1

1

(N.B. v is constant on each Bi); thus
) >
(8) Im(Si ) 2 Im(Si+l)

Since only edges over the same vertex S in I(O are paired by i , see

(3.6.12) , we have
(9) Re(s,) = Re(sk(i)) i i=1,..,4g

Therefore L = (Li"",Lag;A) is a configuration of slit pairs. We set

(5.1.5) H((F,x],a,b) := [LI"N.LAg;A]

and need the following two lemmata to justify our definition.

(5125 Lemma. The equivalence class £ = (L] = [Llp",L4g;A] is

well-defined.

Proof: We begin with two considerations. First, let over the vertex S of

E(o the degeneracy function
(5.1.7) e=e 1 € = &(s) — K = R(s)
— —
be given. The sets &€ and XK are cyclic, and we name their elements

(5.1.8) C, <C,< ... <C(C < C

K1 < KZ < ... < Km+1 < K1

where m = m(S) 1is the Morse index of § . Without loss of generality assume
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=1 =1
€ (Kl) = {C{»esC} 5 and e (Kz) = {Cr+1"'"cs} , 1 £r<ss2m . Suppose

v

also s r+2 (which need not be true). Consider the following change: rede-

fine € by setting

(5.1.9) E'(Ci) = e(ci) = K 3 T
e'(Cy) = K
e'(ci) = e(C) = K, i=r+2,...,s
s'(Ci) = E(Ci) i = s+l,...,2m

The only difference is that Cr+ now lies over K1 » where formerly it lay

1
over KZ . For obvious reasons we call this move crossing Cr+1 over from
ecl(Kz) to e-l(Kl) - One can perform such a crossing-over whenever e-l(Kﬁ)

has at least two elements (otherwise we would violate (3.5.10) (i) with the

new €' ).

We analyse the effect on the algorithm (3.5.12).

(5.1.10)

S
—_—
e hK)) / X
; j :
r s
Cr+2
Cr+l
e-l(KZ)
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(5.1.11)

Applying the algorithm to ¢ gives

(5.1.12)

+_ + - - \ , ) )
and Cr =B (Cr) » Cr+l =8 (r+l) over the same edge K' leaving S in I(O



- 128 -

Applying the algorithm to €' instead gives

(5.1.13) & over K"

o m

L Cr+1 over K
g +

=1 Cr Cr+2

el (kl)

r+l /
&4 C
r+2
Cr+l _
Cr+2

In the branching graphsand complexes for € resp. €' the pairing of the

+ -
double edges B' = {Cr’cr+2} and the correspending values v', v, ¥'"  of

v would be as follows:

(5.1.14)
for e : B' paired to B" ,
vt gm
for ¢': B" paired to B™ ,
v' o= yn

(To be correct: the values of v on the double edges depend also on the

shuffle functions of all edges higher than S in E(o ; for our "local" con-

sideration we should assume that S is a highest vertex in I(o Y

For the slits in the complex plane this means nothing but a crossing
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(5115 for L : for: g’

B'H

- V=" B™ ”
A Al
B‘ B"
— V' oyl
B i

(The figure shows the case v' < v" and therefore a crossing-under of the
slit B" ; for v' < v'" it would be a crossing-over.) Note how the pairing

function changes.

(5.1.16)
- +
€tz Cri2 Cot? ct
=) r+2
c+ = = = Cr+2
s Cr+l Cr+l Cr+2
ot _ +
Cr c Cr+2
— N C r+l —
c_ g i >
r c -
r C
r

The last figure is an "enlargement'" of (5.1.15).
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& , which is minimal (resp. maximal) in some

This shows: crossing some C €
- 1 i =
e "(K) , over to the cyclicly preceding (resp. succeeding) ¢ 1(k') (i.e. K'<K
—
resp. K<K' in ¥ ) leads to equivalent configurations. Furthermore, anv

two given degeneracy functions € and €' can be transformed into each other

by a sequence of such crossings.

Now secondly, let over the edge K = (S,S') in I(o with S' = P , a shuffle

function

(5.1.17) o =g, : 6;([() — eé.l(K)V

K
n| n|
&(s) & (s
be given. If the linear sets Gél(K) and eé}(K) have r resp. s elements,

then choosing such a o amounts to partitioning either 6;1(K) into s
successive intervals or dually eé}(K) into r . Clearly, any two partitions
can be transformed into each other by a sequence of moves: crossing a minimal

(resp. maximal) element of one part to the preceding (resp. succeeding) part.

And by the same considerations as above for two different & 5 £

, one sees
that changing a shuffle function for the branching complex results in a crossing

of slits in the associated configuration.
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(5.1.18) for

Q
=
o
n
Q

(5.1.19)

; B" “““?ﬁﬁ? B"

The combination of the two considerations, by downward induction in XK

starting with highest vertices, proves the lemma. .
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(5.1.20) Lemma. L= (L '"”LAg;A) is non-degenerate.

Proof: Recall from (4.2) the construction of the surface F(L) associated
with L as a quotient of F' = le » k=0,...,4g . We alter this construction
slightly. For each slit Lk » we take twc copies L: ; Li of the extended
slit (from S, to = including), regarced as right (upper) and left (lower)

branch of Lk i points on these copies we denoted by (z,k,t) if =z € Lk .

oS

(5.1.21)  F" = i % 4 l;lg w1 h
-1 LF 1 L Ly

k= k=1

o

we perform the gluing (4.2.3) only to the extend of (4.2.3) (1) , and two

other gluing-rules:

(5.1.22) (1) (z,k) ~ (z,k+1)
if Im(z) = Im(Sk) and Re(z) 2 Re(Sk) 5

and (2)  (z,k+) ~ (z,k,-) ~ (z,k) ~ (z,k+l)

and (3) (m’o,i) -~ (m’l’t) T ee. T (oo’k,_t)

The quotient F(L) = F"/(1)...(3) is honeomorphic to the branching complex

F of the surface F (associated with the same branching graph which gave rise
to the configuration L = (Ll,""Lag;A)). The homeomorphism is induced by the
extended mapping function w = u + iv : F —» € as follows. A point =z € F

is mapped to (w(z),k) € F(L) if Im(Sk) 2 v(z) 2 Im(S, ), k=0,..,4g . A

k+1

point t on a double edge BC = B+(C) UB (C) 1is mapped to (t+iv(BC),k)

where t 1is the parameter of the point in BC = (-=,u(S)] , C € EE(S) s V(BC)

is the constant value of the extended v on the double edge BC from (3.6.5),
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5.2 The inverse map.

To prove that H is bijective we will construct an inverse

(5.2.1) G : pPst(g) —» M(g)

Let L£ = [LI’"“L A] be a non-degenerate configﬁration class. We set

Ag;
Gc(L£) = [F,x,a,b] with the following ingredients. F is the surféce F(L)

associated to £ in 4.2 , with the conformal structure of 4.6. . The

basepoint is P =« , and z = . is a local parameter for, defined for

T C
¢ ¢ supp(L£) , with z(P) = 0 . The direction X corresponds to -dx under

z . For o we take a = (z:1) . And for b = b,+ib, we choose the upper

1

right corner of supp(L) , b, = a+(1:) 5 b2 = b+(j:) ,
(5.2.2) Proposition. H and G are inverse to each other.

Proof: To see that HeG = id , recall the harmonic function hc(z) = Re(z):F =
F(£) —> R from 4.7 . Then u. = h+b, is the unique dipol function for
o and b1 . Now we use the particular representative L = (Llp.qLag;A) of

£~ in the following diagram.

(5.2.3) L, cF L,F cF' F" o L

Here F' |is LFk from 4.2 ; F" s from‘(S.l.Zl) and the projections are
the various portions of the gluing- rules (4.2.3) anﬂ'(S.l.ZZ) . The images
of the slits Lk in F are the critical (pieceﬁise) inteéral curves for
the gradient flow of u . Thus
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and k is the future number of B

c from (3.6.11) .

There are obvious further identifications on F" which correspond to (4.2.3)

(2) and (3) ,

(4)  (z,k-1) ~ (2',Ar(k))

if z€L , z'€ Ly(k) and Re(z) = Re(z') ,

(5)  (z,k) ~ (2',A(k)-1)
if zeL , z'€ Ly(k) 2and Re(z) =Re(z')

(6)  (z,k-1) ~ (z,k,+)
if z'G L. >

(7)  (z,k) ~ (z,k,-)
if z €L

Clearty 77/ (352 @ pef (A25) o the Left hand aide, che

rules (4),...,(7) correspond via F"/(1),...,(3) = F(L) to identifying in the
branching complex two points whenever they lie over the same point in F .

Since this results in F , we see that F(L) = F”//(gﬁ'z'{é) is a surface of

genus g ; thus L 1is a non-degenerate configuration. L]

Thus we have a well-defined function

(5.1.23)  H : M(g) » PSC(g)

by (5.1.5) . This function is called (Hilbert) uniformization map.

1
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(5.2.4) Lbi ; (5.1.22)

is a possible choice for a branching graph & over the critical graph
I(o € F , where the precise details follow.

Over a stagnation point S in F » S # P, use all endpoints Sklpu,skr
which are glued together to become § symbolically as entering edges Ef(s)
Note that {kl”"’kr} must Be invariant under X . As leaving edges E?(s)

over S use symbolically the pairs (L;i’ Lii) . The degeﬁeracy functions

Eé : &(s) —» F(S) and SS : B5(S) —» #(S) are induced by the projections
in (5.2.3) . The cyclic ofdering of these sets is induced from the orientation
of the local parameters in 4.6 . The branching functions B; s Bé are
£505k) = iy L)) amd B305k,) = Wl ulig) - B K = (5.8 be an
edge in I(o from S to S' # » . That means the endpoints Skl""’skr over
S and Skip."skél lie on different verticals x = L xé in € with

X, = xé . Since the sets of indices {kl”"’kr} and {k'”n,k'r} are disjoint,
but subsets of the ordered set {1,2,...,48} , one determines a partition of

the other. This is the shuffle function OK .

If we descend from F" to F in (5.2.3) we obtain the branching complex FU B
for this choice of branching data. The assertion follows now from the

definition of H .

Vice versa, to see GoH = id , is a repetition of the proof of Lemma 5.1 ,
remembering that the mapping function is not merely a homeomorphism, but a

holomorphic map. L]
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5.3 Eguivarianée.

Consider the projection ﬁ(g) — a(g) of " (5.1.1) given by forgetting the
projective parameter class and the integration constants. On the other side,
take the orbit projection PSC(g) —> #B(g) induced by the action of Sim(C)

on PSC(g) .

(1531 Lemma. H and G are equivariant.

Proof: Assume H([F',x'J],a',b') =: £' and H([F",x"],a‘",b") =: L£" are
in the same Sim(C)-orbit. The element M = (g tl:) € Sim(C) with. M- L' = £
induces by (4.9.6) a conformal map M : F(L£') —» F(£") . This map takes
© € F(L£') to = € F(L£") , and the direction dx' on F(L£') to dx" on
F(L£") . Thus (F(L£'),dx') and (F(L£"),dx") are conformally equivalent,

i.e. [F(L£'),dx'] = [F(£"),dx"] in the moduli space T(g)

Let F' U B' resp. F" U B" denote the branching complexes of F' resp.
F" . The conformal maps w' : F' UB' — ¢, w':F'U B" — ¢ 1lift to
F'(L') resp. F'(L'f) ; and then they induce conformal maps w' : F' —» F(L£')
and w" : F" — F(L") . Both preserve the directions x' , X" . From the

diagram

(5.3.2) oY, F(L')
|
i

Fll _‘;"_’ F(‘:")

we conclude.that (F',x') and (F",x") are conformally equivalent.

Vice versa, assume G(L£') and G(L") are equivalent when projected down

ﬁ(g) — I_ﬁ(g) ; that means (F(L£'),dx') and (F(L£"),(dx") are conformally
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equivalent. Let c : F(L£') —¢ F(L") be a conformal map, preserving
and dx = dx' = dx" . Outside of the supports % = (¢ 1is a parameter for

both (F(L£') and F(L£") ; so c must be induced by a similarity M, o=

Mc = (8 ;) in a neighbourhood of « , and hence evervwhere. Thus L'

and 4-" are in the same Sim(C)-orbit . .
It follows, that H induces a bijection

(5.3.3)  h: M(g) —— PSC(g)
and G induces an inverse

g : P3e(g) — T(g)
In the commutative diagram
> ——H »
(5.314) M(g) «—— Psc(g)
1 G 1
— h
m(g) J:::§§::::’ P3C(g)

the two projections are homotopy equivalences.
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5.4 The continuity of H and G .

We start with the continuity of H : ﬁ(g) —» PSC(g) . Varying the components
a and b of a point (F,X,a,b] in ﬁ(g) = ﬁ(g)xR+xC has the effect of
a dilatation and translation of the corresponding configuration H[F,x,a,b] =

L = [LIP.HL A] . Therefore we concentrate on the component [F,x] in

Ag;
—> .. —
M(g) . We need small neighbourhoods in M(g) . Because of the covering

(2.4.28)

> T(g)

(5.4.1) f(g) — T(g)

it suffices to do this in if(g) - These neighbourhoods are obtained by
interior Schiffer variation on a fixed Riemann surface F ; we proceed to

describe this as in [Schiffer-Spencer 1954]

Let Q € F be an arbitrary pcint, and z : Z —» € a local parameter,

z(Q) = 0, where W = 2(Z) c € is assumed to contain a neighbourhood of the
colose disc D c € . Set D = z-l(D) » and consider the boundary curve c
of D , parametrized by z(Z) € Sl c 3D for C € Sl € 3D . For € € C con-

sider the function <t with the presentation
(5.4.2) wW(z) = z + §

in terms of the local parameter 2z ; it is defined and holomorphic in an

annular neighbourhood of ¢ . The image of ¢ wunder Tt 1is the ellipse

t +et for t = z(¢) , C € &D .
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If € 1is small enough, W = imz contains the image of T(D) = Da ; set
D = z—l(Dﬂ) . We consider now the new surface F® obtained by cutting on

L the disc D, and gluing in the ellipse D

€

(5.4.4) F* = ((F-int(D)) 1 D) / ~

St

where the boundary identification is given by ¢ ~ CR if z(g) + Z%E) =
z(C*) , for ¢ € 3D , C* € BD* - The new conformal structure is given by
taking the old local parameters on F-intD , and Tt on D* . Clearly, F
and F° are homeomorphic, and F® is also conformally equivalent to F

but for € # 0 the conformal type changes in general. Note that the con-

struction depends on the parameter z .

Let Ql""’Qn be different points on F , lying in disjoint charts leu,Zn
of local parameters zl,...,zn . With n complex numbers elp.qen one can
perform independently Schiffer variations in len,Zn . Call the resulting

new Riemann surface F° , £ = (e p",sn) € ¢" . If one performs the variation

1

at enough points Qi » and if the Qi avoid certain WeierstraB points of
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higher type, then the € actually provide coordinates for a neighbourhood

of <F> 1in the Teichmiiller space T(g)

(5.4.5) Proposition. Let F be any closed Riemann surface of genus g .
Then there are points Ql‘""Q3g-3 (arbitrarilv
. [ 1
close to any given Ql'""Q3g-3) on F , such
that the function = —b» <F%» maps some neighbour-
3g-3

hood of 0 in C

homeomorphically onto a

neighbourhood on <F> in @(g) . .

For a proof we refer to (Gardiner 1975; 19777, [Nag 1985; 1988, p-276-278,
310]. It is immediate, that a corresponding statement also holds for pointed
and directed Teichmiiller spaces; one places one additional point Q0 near
our basepoint P to displace P , and one further variation is centered at

P itself with a parameter sé € S1 to rotate the direction x .

Next we will use that the effect of a Schiffer variation on the Green's or
Neumann function - and therefore on the dipol function is controllable. With
the notation of ([Schiffer-Spencer 1954] 1let QAB be the integral of the
third kind with simple poles of residues +1,-1 at teh points A,B € F ,

resp., normalized by the condition that all periods are purely imaginary.

For the closed surface F , one defines the Neumann function (idid., p.99]

by

(5.4.6) N(C.a,q,) = V(Z,q,q) v(C,p 3d,q,)

Re(Qqqo(C) - ﬂqqo(po))

where Py°d = a, are fixed points on F . A dipol function at q is given by
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8N(C,q,q_)

(5.4.7) =~ u(g) = %

for the local parameter 2z = x + iy at q .

We perform a single Schiffer variation at a point Q (away from the poles

€ € [
YV s N

denote the corresponding functions on F° . Then, by [ibid., p.311, 3123

Py q=qo) with cut circle c¢ and parameter € € C . Let

(5.4.8) VE(C.Po;q,qo) - VE(g,po;q,qo) =

1 €
ke [m f fqq,(t) g, (¢ )}
C

at

n
~
m

|

[

13 3 ., . 2
[ & v e 2 Wertgia.a,)ae] + o(ed)

where t, Sserves a normalization purpose. It follows from (5.4.7), that the
dipol function u® and it; harmonic conjugate v® also varies continuously
with the parameter ¢ 3y since u® is harmonic, the same is true for the
gradient flow &% under a Schiffer variation. If the conformal structure is
varied simultaneously at several points Qi with variational parameters €
as in (5.4.5) , the effects ad up for u® e = (Elp",e6g_3) .

(5.4.9) u® - u = Re[-;zi- zsici(c)] + O(EZ)

where Ci(C) stands for —é% of the integrand in (5.4.8) and € = Le,

Similarly for the gradient flow ¢° » and the harmonic conjugate vE

After these preparations we can now prove the continuity of H .
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(5.4.10) Lemma. H 1is continuous.
Proof: Fix a point <F,x> in @(g) , and consider a (multiple) Schiffer

variation € —» <FE,XE> such that € = (g, ,...,e yE ,€') are coordinates
1 3g-3’"0" 0o

for a neighbourhood of <F,x> . Denote H(F,x] = [L] = [Llp",LAg;k] . Let

t —> e(t) (0st) be any curve of variational parameters with €(0) = 0 ,

and denote Fg(t) by Ft , and H[Ft,xt] by [Lt] . It is enough to see

that [Lt] converges to ([L] = [Lo] for t — 0 .

While I(g varies with t —» 0 , the following changes can occur with the

critical graph.

(I) Two stagnation points S1 and 52 approach each other along a

critical integral curve K = (Sl,Sz) 5

(5.4.11) \LAl AZ‘\

%
Y
0n
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(The dotted lines indicate more integral curves entering or leaving S S

The edge K disappears, S1 and S2 become S12 9

(II) A stagnation point S

3 approaches a critical integral curve K

between to other stagnation points Sl' and S, .

Y

Here K is split into two integral curves. (The figure shows S3 approaching

K from the right.)
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(OI) Two stagnation points S

1 and S2 approach each other, but not

along an integral curve.

v

v

=<
b 4
~

A 4

The total picture is a superposition of these elementary changes: simultanu-

ously, at several stagnation points and stream lines. It is enough to con-

sider only small values of t0 2t 20, such that the following is garanted:
(5.4.13) (1) each stagnation points either stays separate from all others

for all t 2 0 , or stays separate for all t > 0 and meets

one (or several) other(s) for t =0 (Case I, II1);
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(2) each critical stream line K either stays separate from all
others for all t 2 0 , or disappears only for t = 0 (case
I) , or is met by a‘stagnation point for t = 0 and bre;ks
into two critical lines (case II), or meets another critical

line only for t = 0 (case III).

We have to shew that for each stagnation point st there is a choice of

Est : &Y — K(s®) and for each edge k* in I<§ there is a choice

of a shuffling aKt which converge for t —» 0 . Secondly, it must be mono-

tone with respect to the value distribution of v© . Thirdly, the choices

must commute with each other in order to allow the superposition. Because of

(5.4.15) we need only to define the limit choice for ¢t = 0 . For (I) we set
1

(5.4.18) o = (67K, '] (t20)

(as a linear ordering of SEI(K) I Eél(K)) , and

e ) = efa) L d @) = e, Sl o),
875 (A) = (875K, 621, 67! (B.) = 6.(B.) (£=0)
12 2 1 9 2 ’ 12 2 D) SR

Here we write € for eg , and mention only what is necessary.
i

(5.4.15) 1

Vo o
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In case (II) we set for t = Q

-1 -1 -1
(5.4.16) €.(K) = (8,7C)y eg7(M)]
-1 -1 -1
512(1(2) = (&, (K), e; (B)]
oK1 = [oK, cA] ; and
%, = K og]
S (f; N r—l

And in case (III) we set for t =0

1

- -1
(5.4.17) €12 M) = (ey (”1)’ €, (MZ)] >

_ el -1

Q
|

= [om , oy ] and

oy = [ch, UNZ]

2
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From the resulting branching graphs that the branching complexes converge.
Since the monotonicity (right and left sides of stream lines) are preserved,
the extension of the harmonic conjugate and thus the mapping function wt

converges. It follows that [Lt] converges to [Lc] for t — 0 . .

The continuity of G : PSC(g) —» ﬁ(g) is easier.

(5.4.18) Lemma. G 1is continuous.

Proof: Let 4 be an eguivalence class in PSC(g) , represented by the
configuration L = (Ll’"“I%g;A) . Assume, some rea; number § > 0 is. given.
We may also assume that 2§ < y = min{lISi-SJ. nfi=j, sizsj} ; here Il stands
for the maximal-coordinate-norm in € . Because the sets {Re(Si)|i=1,u.,4g}
and {Im(Si)[i=1p",4g} are the same for any representative of £ , y
depends only on 4 . But it does not vary continuously with 4 ; neverthe-

less, it suffices to concentrate on a é-neighbourhood of £ for § < %-

Recall the standard rectangulation Rij (0 sisd4g, 0<3j<2g)of 4.12 .
We consider a class L' = (L'] with d(L£,L£') <6 and compare its rec-
tangulation Rij with Rij . By the choice of & each slit Li of L'
differs from Lk at most by a sequence of crossings and a displaéement of
S,—> S! of a distance smaller than & . Assume for simplicity first, only

k k

on Sk moves.

(5.4.19)
Sk'
T
° (] o
777777 7R - (] ®
Q74

Sk /
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We define a quasiconformal map q : F(L) — F(L') as follows. All rectangles

Rij in F(L) which do not intersect the horizontal Hk correspond to rec-

tangles Rél of equal sides; they are mapped identically. All rectangles R. .
1)

which intersect H,  and do not contain = correspond to rectangles of diffe-

k
rent sides; they are mapped by an appropriate stretching map of the collection
(2.3.13) - (2.3.15) . To map the remaining biangles and triangles, which con-
tain « and intersect H , one uses maps as (2.3.15) near their finite corner

or side and extends to the rest identically. This ensures that q 1is the iden-

tity near = ,

Clearly, any' L' not further away from L than & , can be reached by a
finite sequence of such simple moves. There are at most 4g such simple moves
necessary. The composition of the corresponding maps gives a quasiconformal

map q : F(L) — F(L') , conformal near « and breserving the direction.

It remains to estimate the maximal dilatation. From (2.3.13) - (2.3.15) it
follows that K[q] on each rectangle is bounded above by some constant times
§ , the constant depending on the type of map. Since there are at most
(2g+1)(4g+l) rectangles to be mapped non-conformally in a simple move, and
since at most 4g simple moves are composed, K[q] 1is of the order of )
Thus the Teichmiiller distance of (F(L),x] and (F(L'),x] is bounded by a

constant times d(L,L') . This proves G to be continuous. .
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5D The uniformization theorem

We come to the main result.

(5.5.1) Theorem. The Hilbert uniformization function

: fﬁ(g)

» PSC(g)

is a homeomorphism.

Proof: The function H 1is bijective by Proposition 5.2 , continuous by

Proposition 5.4 ;, and has the continuous inverse H 1 = G by Proposition 5.4

From the commutativity of the diagram (5.3.4)

(5.5.2) Mg} ————» ESElg)
l |
m(g) = PBC(g)

it follows that It is bijective and continuous, with continuous inverse

h—l = . [ ]
(5.5.3) Theorem. There is a homotopy equivalence
m(g) » PSC(g)
Proof: An equivalence is given by composing It with the normalization

section N : PBC(g) — PSC(g), Sim(C)L — m(L£) -+ £, where m is the

function PSC(g) —> Sim(C) defined in the proof of Proposition 4.9.3 . =
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(5.5.4) Theorem. There is a homotopy equivalence

pPSC(g) = B (g)
Proof: The assertion combines (5.5.3) and (2.4.29) . m

So PSC(g) is a convenient model for the moduli space fﬁ(g) of directed
Riemann surfaces, and for the classifying space of the directed mapping class
group, which is isomorphic to the relative mapping class group for surfaces

with a single boundary curve.
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