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Preface

On a Riemann surface assume a point and a direction at this point is given,
and imagine an electrical dipol pointing in the given direction. The resul-
ting flow has several stagnation points connected by the critical stream
lines. If the surface is dissected along these critical stream lines, the
flow has a complex potential, which maps the complement of critical stream
lines conformally onto a domain in the complex plane, whose complement
consists of pairs of infinite, horizontal slits. Up to some normalization,
the configuration and pairing of the slits is a conformal invariant of the

directed surface.

This function, which associates to the conformal equivalence class of a
closed, directed Riemann surface of fixed genus the similarity class of a
configuration of slit pairs is proved to be a homotopy equivaience between
the moduli space of directed Riemann surfaces and this configuration space,
called the space of parallel slit domains. At the same time this moduli space
is homotopy equivalent to the classifying space of the mapping class group

of surfaces with one boundary curve.

This new description of the moduli space is based on old ideas of geometric
function theory. But it turns out to be useful for studying the homology of
the moduli space and of the mapping class group. These applications, sketched

below, will be given in subsequent parts.
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Introduction

We consider closed Riemann surfaces F of arbitrary genus g , together

with a basepoint P » and a direction x at P

The isotropy classes of orientation-preserving diffeomorphisms y : F —» F
keeping the direction X fixed is called the directed mapping class group
F(g) = ['(F,x) . It is an extension of the based mapping class group [ (g)=
[(F,P) , which itself is an extension of the (free) mapping class group

0 —> Z—+ T(g) —» ' (g) —» 1 ,

1 —» 1 F —» r'(g) > 1

1 » I'(g)

If C is a nullhomotopic curve through P , let r(g,1) = I'(F,C) be the
group of isotopy classes of diffeomorphisms keeping C pointwise fixed. As

a first result we mention
Theorem I. r(g,1) = F(g)

Two directed Riemann surfaces (Fl,xl) and (Fz,xz) are called conformally
equivalent if there is a conformal map Fl — F2 sending X, to X,
The set ﬁi(g) of conformal equivalence classes ([F,x] , with the Teich-
miller metric of maximal dilatation of quasiconformal maps, is the moduli
space of directed Riemann surfaces. There are forgetful maps onto the based
and (free) moduli space ﬁﬁ(g) — M'(g) — M(g) . Like the classical

: : . : . . — 6g-3
Situations there is a contractible Teichmiiller space T(g) = R » on

- — . .

which Tr(g) acts properly discontinuously, and M(g) is the orbit space.
But unlike the classical situation, the action of F(g) on Ef(g) is free,

simply because an automorphism of a Riemann surface holding a direction
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fixed must be the identity. Therefore fﬁ(g) has the homotopy type of the

classifying space of T[(g) ,
= —>
Theorem II. Br(g) = Mi(g)

Now for the uniformization, there is (up to normalization) a unique harmonic
function u : F —» R with a dipol at P in the direction Xx . Let I{O
be the critical graph of the gradient flow Qu of u , i.e. all integral
curves connecting stagnation points S.l . On its simply-connected complement
FO = F-—I{O there is a unique harmonic function v conjugate to u . As
already indicated, the Hilbert uniformization uses the geometry of @u and
combinatoric of I(o as modu;i for the conformal structure of F . The
continuous part of the moduli data consists of the positions of the stagnation
points, i.e. the values of u and the boundary values of v at all Si

The discrete part of the moduli is more intricate: as there are multiple
stagnation points with Morse index m > 1 for a non-generic surface, there
are fewer critical curves than there should be. By adding '"virtual" critical
curves we obtain the branching complex F U B with the properties

(1) FU B has b4g double-edges B, (being right and left branches of 2g
virtual critical curves), (2) there is a pairing of these Bi a3

and v extend to F U B (4) the Bi are linearly ordered by the

(constant) value of v . The complex potential w = u+iv maps the branching

curves Bi , onto 4g infinite slits in € , parallel to the x-axis.

This makes us introduce the space PSG(g) of parallel slit domains in €
of genus g . An element {_ is represented by a configuration L =

(Ll,n.,LAg;k) of horizontal, infinite slits Li , ordered by a permutation

A E ZAg . L is subject to a non-degeneracy condition. There is an equiva-

lence relation, solely responsible for the homological structure of psc(g) -

There is a metric, and PSC(g) 1is a connected cell complex of dimension 6g -



domains are introduced in chapter 4 . We restrict to give the basic

properties of the space PS€(g) . (IV) is noted under (4.9.8) . Finally,

chapter 5 brings together chapter 2 and the preparations of chapters 3 ang

4 to prove (II) as Theorem (5.5.1)

Further Aspects.

For many purposes of surface theory this uniformization might be awkward.

We find it therefore appropriate - and necessary to justify this work and

the

and

(1)

(2)

(3)

reader's patience - to hint at several applications, generalizations

speculations.

What PSC(g) as a model for Br(g,l) or ﬁi(g) has immediately to
offer is a cell decomposition and stratification. It is similar to
decompositions of other configuration spaces such as the classifying
spaces of symmetric groups and braid groups, and might be useful for

homological computations. We will describe this cell structure in Part IV.

There is an obvious "adding-a-new-handle" map o : PSC(g) —» PSC(g+l) .
Configuration space models have been used to show the homological
stability of similar maps, e.g. for symmetric and braid groups. So far
0 is known to induce an isomorphism in 1/8 of the homological range of

PSC(g) , cf. [Harer 1985], (Ivanov 1987].

There is an addition map y : PSG(gl)XPSE(gZ) — PSC(g1+g2) by putting
one configuration in the upper, the other in the lower half-plane. This
induces a multiplication in homology, see [Miller 1986]. More so, by varying
the patches into which the two (or several) configurations are implanted
in the plane, one gets parametrized families of such additioné; they

induce homology operations indexed by homology classes of braid groups.
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We will do this in Part II, and will use it in Part IIT to find new

classes in the homology of the mapping class group.

(4) By the geometry of the model PSC(g) one can define interesting maps
into PSC(g) . For example, letting some slit pairs vary along fixed
trails in € , this "position manifold" defines an immersed surface in

some PSG(g) , carrying the generator of H,r(g,1) , {Harer 1983:.

(5) We have applied this uniformization procedure to closed surfaces. It
works also for surfaces with boundary and punctures; each boundary circl

gives a finite slit, and each puncture a distinguished point.

(6) Teichmiller and moduli spaces possess several important compéctification:
Looking at the regularity conditions we see ways to compactify PSC(g)
by admitting some kinds of degenerated configurations. For example, admit
ting subconfigurations as in (4.4.10) and non-connected pairing function:s

(4.4.6) gives spaces as in [Bers 1974, 1975], [Abikoff 19771].

(7) As a final example, we point out a connection to ergodic theory. The
gradient flow of a dipol function has the Poincare (first return) functic
It is the map from the right to the left equipotential line of the suppor
see (4.4.5), (4.8.6) . This is called an intetvalrie;cﬁaﬁge map V+——>Vr

see (Keane 1975], (Veech 1978]. The connection to surface theory via

measured foliations is well-known, cf. [Strebel 1984} p.53]. First inves-
tigations of a "space of interval exchange transformations (g) in
" connection with moduli spaces are [Veech 1982], [Mazur 1982]. But there
one associates to a "weighted" interval exchange transformation a Rieman:
surface. The space PSC(g) offers a natural map in the other direc;ion
PSC€(g) —> (g) . This map is sﬁrjective and seems to have nearly

contractible fibres; furthermore, the dimension 4g-2 of W(g) Iis
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precisely the homological dimension of r(g,1) , see [Harer 1986]. It
should not be a mere curiosity that the equivalence classes for parallel]
slit domains amounts for the pairing function to Ranzy classes of permu-

tations, see ([Ranzy 1979].

The history of this uniformization method begins - after the heuristic period,
cf. (Klein 1982] - with a talk of Hilbert in the Mathematische Gesellschaft
in Gottingen in April 1909 during a visit of Poincare. This talk, published as
[Hilbert 1909], proves the existence of dipollfunctions using the resurrected
Dirichlit's principle from [Hilbert 1904]. During the summer term of 1909
Hilbert lectured on "Ausgewdhlte Kapitel der Funktionentheorie (Konforme
Abbildungen)'; of this lecture there exist unpublished notes by his student
R. Courant, [Hilbert 1909b]. In these notes one finds only the remark which we
have chosen as a motto, but in [Hilbert 1909] the parallel slit domains occur
explicitly with figures. Hilbert's proof became standard in all textbooks,
starting with [Weyl 1913], ([Hurwitz-Courant 1929], for the case g = 0 ; here
this uniformization method is well-known, especially after Koebe's work [1909,
1910], and Courant's [1912a, 1912b], see e.g. [Ahlfors 1953, p.259-261],
(Cohn 1967, p.196-200], (Nehari 1952, chap.VII]. In the case of a multiply-
connected schlicht surface the connection to configuration spaces of points
and slits in the plane is obvious, cf. [Bers 1960] and [Jenkins 1957], where
the Teichmiller metric on the moduli space and the euclidean metric on the

configuration space are compared.

But apart from (Courant 1919, 1941, 1950] and [Koebe 1919] the parallel slit

domains for higher genera occur in the field of minimal surfaces, e.g.
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(Shiffman 1939], or (Luckhaus 1978], and earn criticism [Jost 1985, introd.].

Our interest arose from reading [Giddings-Martinec-Witten 1986 and iGiddings-
Wolpert 1987]. As a morphism in l-dimensional conformal field theory Riemann
surfaces with incoming and outgoing boundary circles are discussed using

parallel slit domains.

We mention [Saito 1987] and _Arbarello-De Concini-Kac-Procesi 1988 ° where the

moduli space ﬁﬁ(g) also occurs.
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Chapter 1
Diffeomorphism Groups
and Mapping Class Groups
1.l Direction bundles.
1.2 Mapping class groups of a closed surface.
Ly 2} Mapping class groups of a surface with boundary.

In this first chapter we introduce various diffeomorphism groups and mapring
class groups. There are three kinds of diffeomorphisms: arbitrary ones,
these keeping a given point fixed, and those keeping a given tangential
vector fixed (up to a positive stretching factor). It is particularly irc-
portant, that the groups of these diffeomorphigms have contractible identity

components, if the genus of the surface is at least 2

From these diffeomorphism groups we get the usual, the pointed and the
directed mapping class group. The second and the third are extensions cof
the former. To connect our treatment to the literature, we will identify
the directed mapping qlass group with mapping class group of a surface

with one boundary circle.



1.1 Direction bundles.

Let F denote a connected, compact and oriented surface without boundary.
The genus of F will be g . Furthermore, F will be smooth, i.e. F

has an atlas of neighbourhoods Za and local coordinates or local para-
meters z, from Z\1 onto open subsets WQ of R2 such that all transition

functions are differentiable of class c”

Denote the tangent bundle of F by T(F) —» F . On the complement of

its zero-section we introduce an equivalence relation: Xy - X, if and
only if X, = ax, for some positive real number a . The equivalence class

X = ; of a non-zero tangent vector x 1is called a direction, and the
quotient space, called the direction bundle, is denoted by ;(F) . Any
immersion f : P, F, between surfaces induces a map Bf : %(Fl) - ;(Fz)
of direction bundles by Bf(;) = BE?:; s whe;e Df is the differential

of f . This Sl-bundle is diffeomorphic to the unit tangent bundle of F ,

and a closed 3-manifold. Furthermore, for g 2 1, it is an Eilenberg-MacLane

space K(G,1) for G = wlT(F) » which fits into the exact sequence

>
(1.1.1) l — Z —» an(F) —> an == i

This extension is central and classified by the cohomology class in
Hz(nl(F);Z) which corresponds to ‘the Euler class of the tangent bundle

under Hz(Bnl(F)) = HZ(F)

There will be a point P on F chosen, and in addition a direction
->
X € T,(F) at P . Let DcF be an open disc centered at P , with a
smooth parametrization by the unit disc h : D —» D such that h(0) = P ,
and the direction of dx corresponds to x wunder the differential of h ,
3> —p
i. e. Dh(dx ) = x . Later we shall need a surface with one boundary component;
)
we take F = F-D .

Throughout the next chapters we will always refer to this same surface F ;

the point P , and the direction XA



112 Mapping class groups of a closed surface.

Since all surfaces we will consider are oriented, all diffeomorphisms,
homeomorphisms, etc. between surfaces shall be orientation-preserving

(unless there is an explicit statement to the contrary).

Let Diff(F) denote the group of all smooth diffeomorphisms y : F —» F
With the Cm-topology (of uniform convergence on compact subsets of diffe-
rential of all orders)\this is an infinite-dimensional, topeclogical group,
modeled on inverse limits of smooth Hilbert manifolds; in particular, it

is a Frechet manifold, and therefore metrizable, absolute neighbourhcod re-
tracts; see {[Earle-Eells 156S], [Fischer-Tromba 1984a], {Omori 1970]. The
subgroup Diffo(F) of diffeomorphisms isotopic (equivalently, homotopic) to
the identity is a closed, normal subgroup; it is the path component cf the
identity. In our treatment this is now the convenient place to quote the

follewing fundamental result about Diffo(F)

(1.2.1) PROPOSITION. Diffo(F) is contractible for g 2 2 . a

But the proof belongs to the ﬁain parts of Teichmiiller-theory, which we will
sketch in chapter 2. In fact, the contractibility of Diffo(F) is equivalent
to the contractability of the Teichmiiller space, see (2.2), (2.4). The first
proof is in [Earle-Eells 1969; p. 34] and uses Teichmiiller's theorem; but
they mention (p. 35) an independent proof which relys on work of H. Lewy,

E. Heinz and J. H. Sampson, and incomplete proofs of K. Shibata; see [Jost
1984, p. 106] for a discussion. Meanwhile there are complete proofs purely

in the framework of differential geometry, see [Fischer-Tromba 1984 a,b,c,
1987]. For an interesting approach using only the "Teichmiller theory of
diffeomorphisms of the circle'", see [Earle-McMullen 1986], which is based

on (Donady-Earle 1986].



The mapping class group of F is defined as the group of homotopy classes

of diffeomorphisms,
(1.2.2) [(F) := " Diff(F) = Diff(F)/Diffo(F)

This group, introduced and studied by J. Nielsen and M. Dehn, see "Nielsen

[}

19277, [Dehn 1938], is isomorphic to Out(an) Aut(ﬂlF)/Inn(vlF) , see also

{Mangler 1939], or {Magnus-Karrass-Solitar 1966, p. 176].

n

For example, T(F) is trivial for F the sphere, and TI(F) SL,(Z) for
F the torus. For g 21, TI(F) is infinite, and finitely presentable,

(Dehn 1938], (Lickorish 1964], [Hatcher-Thurston 1980]1; see {Birman 19741,
For g 2 2 we conclude from (1.2.1) for the classifying spaces
(1:,2:3) Br(F) = BDiff(F) .

We are interested in two extensions of T©(F) . To define the first recall

the basepoint P € F . Denote by Diff(F,P) the group of all diffeomorphisms
Yy : F— F fixing P ; and denote by Diffo(F,P) the subgroup of those y
which are homotopic to the identity by a homotopy keeping P fixed throughout.
Note that Diffo(F,P) is the path component of the identity in Diff(F,P)

as well as in Diff(F,P) n Diffo(F) . Obviously, Diff(F,P) and Diffo(F,P)

are closed subgroups in Diff(F) , and Diffo(F,P) is normal in Diff(F,P).

The evalutation map € : Diff(F) —» F , e(y) = y(P) and its restriction

e, to Diffo(F) induce two fibrations in the commutative diagram

(1.2.4) QF —————» Diff(F,P) ————» Diff(F) —=—» F

[ I

> Diff(F,P)nDiffo(F) e Diffo(F) > F

L :

Q@ F —— Diff (F,P)
(o] o

o)
=

“



Since DiffO(F) is contractible for g 2 2 , we have Diffo(F,P) = QOF,

the component of null-homotopic loops on F , which proves the following

(1.2.5) PROPOSITION. Diffo(F,P) is contractible for g 2 2 . .

We define the pointed mapping class group as the group of pointed homotoepy

classes of pointed diffeomorphisms,

(1.2.6)  f(F,P) := 7 (Diff (F,P)) = Diff(F,P)/Diff_(F,P)

If g 2 2, the upper fibration of (1.2.4) and (1.2.1) yield the exact sequence
(1.2.7) 1 — mF — r(F,p) — I;(F) — 1

The two exceptional cases are: r(F,P) =T(F) =1 for g=0, and

r(F,P) = I(F) = SL,(Z) for g =1 . Another consequence of (1.2.5) is

(1.2.8) Br(F,P) = BDiff(F,P)

Note that T(F,P) 1is also the mapping class group of the punctured surface

F0 = F-P ; cf. [Birman 1974, p. 148].

For the second extension of T(F) recall the direction X . Let Diff(F,x)
be the group of diffeomorphisms y : F —» F fixing x , i.e. y(P) =P

and BY(X) = x . And Diffo(F,x) is the subgroup of all those Yy homotopic
to the identity by a homotopy keeping X fixed throughout. Diffo(F,x) is
the component of the identity in  Diff(F,x) and in Diff(F,x) n Diffo(F) 5

and is closed and normal in Diff(F,x) .

>
As above, consider the diagram of evaluation fibrations ¢ : Diff(F) — T(F),

Z(Y) = Dy(x) . ZO is the restriction to Diffo(F)



(1.2.9)  a1(F)

» Diff(F,X) ————+Diff(F) ——» T(F)
| +
| | T i
QT(F) > Diff(F,x) 0 Diff (F) —» Diff _(F) —> T(F)
i ]‘ £o
|

QOT(F) > lefO(F,x)
Using the contractibility of DiffO(F) for
g 2 1 , we conclude
(1.2.10) PROPOSITION.

Diffo(F,x) is contractible for

The directed mapping class group is defined as

(1.2.11) Tr(F,x) =: voDiff(F,x) = Diff(F,x)/Diffo(F,x)

Of course, Diff(F,x) is a subgroup of Diff(F,P) , and the diagram

[
(1.2.12) Diff(F,x) » Diff(F,P) —&

> ; F)
| | :
|

(
L
T
|

Diff(F,x)

> Diff(F) —S—» 1(
g
F
2

=5
P is the restriction of ¢ , exhibits T(F,x)

where for g 22 as
-> -
an extension of T[(F) by vlT(F) and of T(F,P) by anP(F)

it contains the exact sequences (1.1.1) and (1.2.7)



(1.;.13)

1 > » ['(F,X) » "(F,F) > 1
I l
v .
1 > wlT(F) » T(F,Xx) » °(F) > 1
| |
| :
m, (F) 1
1
Finally, note that
(1.2.14) Br(F,x) = BDiff(F,x) .

The importance of the equivalences (1.2.3), (1.2.8), and (1.2.14) lies in
the fact that the diffeomorphism groups act on various spaces (e.g. F),
whereas the existence of a corresponding action of the mapping class group

amounts to a Nielsen realization problem.

A mapping class in ﬂl(F) c r(F,P) 1is represented by the composition of
two Dehn twists along parallel, disjoint curves, but having opposite di-
rections; see figure in [Birman 1974; p. 159]. A mapping class in Z<T(F,x)
is represented by a multiple of a full "spiral twist'" of a disc around P;

see figure (adjusted) in [Birman 1974; p. 167], and (2.3.17)



1.3 Mapping class groups of a surface with boundary.

We will identify T(F,x) with the mapping class group of the surface

F® = F-D . Recall that F° has one boundary circle C = 3F° parametrized
by h]S1 . Let Diff(F,D) be the group of all diffeomorphisms y : F —» F
which fix D pointwise; and let DiffO(F.D) deﬁote the subgroup of all

v € Diff(F,D) homotopic to the identity by a homotopy keeping each point

of D fixed throughout. Diff(F,D) 1is a clesed subgroup of Diff(F) ;
Diffo(F,D) is closed and normal in Diff(F,D) and the component of the
identity in Diff(F,D) and in Diff(F,D) n DiffO(F) . Of course, Diff(F,D)
can be regarded as Diff(F°,aF°) , the group of diffeomorphisms of F

being the identity on the boundary aF°
There are the following inclusions

(C15237019) Diff(F,D) — > Diff(F,x)
Ui N

DiffO(F,D) e Diffo(F,x)

(1.3.2) PROPOSITION. The inclusion Diff(F,D) —» Diff(F,x) is a weak

homotopv equivalence.

For the proof we study the space EX(F) of all smooth embeddings

e )
f :D—> F such that f(0) = P and Df(dx)= x . Note that h € EX(F).
Composing Yy € Diff(F,X) with the basepoint h : D —» F of EX(F)

defines a continuous map

(1.3.3) ey ¢ Diff(F,x) —» Ex(F) v epgy) =y - h

whose fibre over h is Diff(F,D) . A based version of {Hirsch; Theorem

3.1, p. 185] shows, that EX(F) is path-connected, and at the same time



that €D is surjective. Furthermore, Diff(F) is locally contractible

being a Hilbert space manifold; it follows that € possesses local

sections; thus ED is a locally trivial fibre bundle with fibre Diff(F,D).

The proposition will follow from the

(1.3.4) LEMMA. E((F) is weaklv contractible.

Proof: Let E (F) denote the subspace of all f € EX(F) such that the
differential at 0 € D . Dof : To(D) — Tp(F) is - written‘in the bases
a=dx , b=dy and a' = Doh(a) , b' = Doh(b) - a positive multiple of
the identity matrix. Clearly, Eo(F) is a deformation retract of EX(F)'
Then we consider Fhe larger space Immo(D,F) cf all smooth immersions

f: D—> F such that £(0) = P and D f 1is a positive multiple of the

identityv matrix.

The function p(f) = max{r | f is injective on |Z|< r} is continuous on
ImmO(D,F) . It is positive, since f 1is injective in some neighbourhood
of 0 . The homotopy f +—» ft(z) = f((1-t)n(f)z) , "0 £t £ 1 , retracts
Immo(D,F) onto the subspace of injective immersions which extend to the
closure of D ; hence they are embeddings. The differential D : Immo(D,F)
— C:(D,P(F)) is a continuous map into the space of smocth maps

¢ : D — P(F) , where P(F) is the principal GLZ(R)-bundle associated
to T(F) — F , such that ¢(0) is a positive multiple of the identity
matrix. D is not surjective, yet a weak homotopy equivalence by Gromov's
theory, see [Gromov 1969, 1986], [Haefliger 1969], [Poenaru 1970]. And

C:(D,P(F)) is contractible, because of the normalization condition at 0. =
The proposition implies (see [Earle-Schatz 1970, p. 180])

(1.3.5) COROLLARY. DiffO(F,D) is contractible for g 2 2 . =

We define the relative mapping class group
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(1.3.6) r(rF°,3r°%) := m Diff(F,D) = Diff(F,D)/Diff _(F,D)
(1.3.7) COROLLARY. TI(F,x) = r(F,D) = (F°,sF°) . .

We summarize the various mapping class groups in a diagram

(1.3.8)

Diff (F) = Diff (F,P) <= Diff (F,x) — Diff_(F,D)

| |

Diffo(F°,aF°)

DifI(F) - Di[f(F,P) +> Diff(F,x) <= Diff(F,D) = Diff(F°,ar°)
I (F) — (F,P) <« TI(F,x) < r(F,D) = Tr(F°,ar°)

If the reference surface F 1is not specified, we write r(g) , r-(g),

F(g) instead of TI(F) , T1(F,P) , TI(F,x) .
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Teichmiller Spaces and Moduli Spaces
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Complex structures.

2.2 The analytic definition of Teichmiller and moduli spaces.

Quasiconformal maps.
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2.4 The geometric definition of Teichmiiller and moduli spéces.

The second chapter describes some aspects of Teichmiiller theory merely to study
the topology of moduli spaces: the fibre bundle description of Teichmiiller and
moduli spaces, the action of the modular group, and, in particular, the modul:

space of "directed Riemann surfaces" as the classifying space of the directed

mapping class group.



2.1 ' Complex structures.

Let V be a 2-dimensional, oriented, real vector space. A complex structure
an V is an endomorphism J : V —» V such that Jz(v) = -v and

det(Jv,v) > 0 for all v € V . The choice of a positively oriented basis of
V' allows to identify a complex structure with a point of the hOngéneous

space
. _ + _ + A
(2.1.1) C = GLI(C)\GLZ(R) = R+\SOZ(R)\GL2(R)

under the correspondence M +—» J = MJOM.l , M€ GL;(R) and J_ = (? -é) .
The larger space SOZ(R)\GL;(R) ' corresponds thereby to positive-definite,

symmetric, bilinear forms on V , i.e. to metrics. C is homeomorphic to the

unit disc D via the map

(2.1.2)  ¢c— D , [ﬁ 3] S
w
where H = l.F?T 5 T = e with w, = atib, w, =ct+tid . To p € D
1 -it w 1 2

corresponds the conformal class of the Riemannian‘metric
(2.1.3) ds = A|dz + udz| . A >0,
on V=0C, z=x+tiy , or in the classical notation
2 2 2
ds™ = Edx” + 2Fdxdy + Gdv
. 2 2
with E = [l+u|®, F = 2Im(n) , G = [1-u]® .

Let F be again as in chapter | a connected, closed, compact, oriented and
smooth surface. The tangent bundle T(F) 1is a smooth, oriented vector bundle
of rank 2 with structure group GL;(R) . Denote the associated smooth bundle

with fibre C by C(F) —» F , and let Sm(X) be its space of smooth sections
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with the C -topology. S (F) is the space of almost-complex structures on
F (compatible with the given orientation); for a surface every almost-
complex structure is integrable, thus S (F) is the space of complex (or

conformal) structures on F .

As an example, consider the case when F is a Riemann surface and denote the

local parameters bv z ¢ Zu — Wa € C defined on a chart Z_l c F . The

derivatives of the transition functions zsa z, are in GLI(G)', thus assig-
ning over each chart Zu the constant section {é ?) resp. the endomorphism
JO = (? -é) » yields a well-defined section of C(F) —» F . One can view this
section as a basepoint in S (F) ; under the identification (2.1.2) it corres-
ponds to the zero section. Vice versa, given any structure u € S (F) , write
uIZa as a function of the local parameter z;l ; thus we have a smooth functior
My G wa —>D . By the genefal theory of elliptic differential equations there

is a smooth map q, ¢ wa —r wa € € solving the Beltrami equation

aq[l = ua ’ aqﬂ.

The new parameters z =gq oz :Z_ — W_ form a new atlas for F . In the

a a “a “a a
complex notation as in (2.1.3) we see that a complex structure u € ST(F) is
a smooth differential form of type (-1,1) on F ; in other words, it is a

smooth section of the complex line bundle K-IOE. of norm smaller than 1 ,

where «x is the canonical bundle of the complex curve F .

Assume g 2 2 . Then the universal covering space F of F is diffeomorphic
to D, and the group of covering transformatioﬁs, i.e. the fundamental group
nI(F) » can be realized as a Fuchsian Group G £ SLZ(R) . Lifting the complex
structures from F to F , makes S (F) homeomorphic to the space Sw(D)G
of G-invariant complex structures of D . Using (2.1.2) 5 ST(F) = Sm(D)G

= s(D) , and Sm(D) = C7(D,D) is the unit ball in the Banach space of



smooth, complex functions on D . For a structure W to be G-invariant is

equivalent to

'
(2.1.4) = (uvg)—g% for all g € G ¢ SL,(R) ,

where g' denotes the (complex) derivative. This shows, that Sm(D)G is a

convex subset, and thus we have ([Earle-Eells 1969, p.25,261 ,

(2.1.5) Proposition. §w(F) is contractible for g 2 2 . a

Recall the group Diff(F) of smooth diffeomorphisms of F and its identity

component Diffo(F) - By pulling back sections Diff(F) acts on S (F) ,

(2.1-6) Y.}J'—’Y;"' °© oy 3
_ .
oy 1) + :\-
dy Looly 3y
5?“" (U Y )a?

for y € Diff(F) , u € S*(F) 3 here y* is the map induced by the differen-
tial Dy onthe bundle C(F) — F . The following proposition from [Earle-

Eells 1969, p.27,28] summarizes what we need to know about this action.

(2.1.7) Proposition.

(i)  The action Diff(F) x S (F) —» ST (F) is continuous, proper

and effective;

(ii) the subgroup Diffo(F) acts properly and freelv. .

The properness means here that the shear map (y,u) —» Cu,y-u) is a proper

map, i.e. the inverse image of compact sets are compact.
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2.2 The analvtic definition of Teichmiiller and moduli spaces.

The Teichmiller space of the smooth surface F has now the analvtic definitic

(2.2.1) @T(F) := S™(F) / Diff_(F)

It follows from (2.1.7) and the existence of local sections for the action cf
Diffo(F) (Earle-Eells 1969, p.33} that the orbit projection S (F) —» @(F)
is a universal, principal DiffO(F)—bundle. The central result about T@(F) is

Teichmiller's theorem.

Rog-g

(h%
~
-

for g

(2.2.2) Proposition. @(F) is homeomorphic to

The most important consequence for our purposes is the contractibility of
T(F) . By (2.1.5) , this is equivalent to the contractibility of Diffo(F)
A proof of Teichmiiller's theorem in the framework of this chapter is contained

in (Fischer-Tromba 1987] . cf. 2.4

Recall the groups Diff(F,x) ¢ Diffo(F,P) c Diffo(F) act also properly, freely
and with local sections on S (F) . We define the pointed and the directed

Teichmiller space

(2.2.3) @ (F,P) s“(F)/Diffo(F,p) )

(2.2.4) T (F,x) Sm(F)/'Diffo(F,x)

Altogether we have a diagram where all columns are universal, principal, fibre

bundles.
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(2.2.5) Diff (F) > Diff (F,P) o5 Diff (F,x)
o - (o] S o
ST(F) = ST(F) = S”(F)

l ! L

T(F) «+—— T(F,P) T(F,x)

{2.2.6) Proposition. Assume ERzhan

(i) The projection T(F,P) — ®(F) is a trivial fibre bundle

F , the universal cover of ES-

n

with fibre Diffo(F)/Diffo(F,P)

(ii) the projection ZT(F,x) — @(F,P) is a trivial fibre bundie

with fibre Diffo(F,P)/Diffo(F,x)

R , the universal cover of

) e
TP(F) = S ’

(iii) the projection T(F,x) — @(F) is a trivial fibre bundle

with fibre Diff (F)/Diff (F,x) = T(F)~ , the universal cover

of T(F)

Proof: It remains to identify the fibres.

(i) Define a map § : Diff (F) — F by S(y) = (v(B),[w 1) where. Lo ]

is the homotopy class relative endpoints of the track curve t —» WY(t)

= yt(P) (0 st=s1), for some homotopy Y, from Y, = id to Y; =Y . Note
that wy(O) =P for all y . The homotopy class [wY] is indePendent of the
choice of a homotopy Y, » since Diffo(F) is simply-connected. S is obvi-
ously continuous. It is also surjective, because Diffo(F) acts transitively
on F and because any curve is the track curve of some homotopy Yo Let ¢
be the constant path at P . The fibre over (P,{c]) 1is precisely Diffo(F,P).
To see that S is a locally trivial bundle, let U be an open disc centered

around P' = ¢(P) for some ¢ € Diffo(F) - There is a continuous family

n

g, € Diff(F,F-U) = Diff(U,aU) , u € U , with the property g (u) = P' . Let
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U be the neighbourhood of (P,[w¢]) in F which projects onto U wunder

the covering F — F . Then

(2.2.7) S (U) ——— ( « Diffo(F.P) :

| _ -1
Y, e ] 1 o
. ((Y(p).LwY],¢ gY(P)ox)
is a local trivialization.

The proofs for (ii) and (iii) are similar using obvious maps S' : Diffo(F,F)
B ] o~ > ~
— TP(F) and S" : Diffo(F) —> T(F) . They fit into a commutative diagram,

which should be compared to (1.2.4) and (1.2.9) .

ot
(2.2.8) Diff_(F,P) T Tp(F) = R
l [
gn o -
Diffo(F,x) > Diffo(F) > TP(F)
I il [
Diff_(F,P) > Diff _(F) S F

For another proof see ([Nag 1988,p.342] . .

On the three Teichmiiller spaces we still have the action of the full diffeo-
morphism group. They collapse to actions of the corresponding mapping class
groups [(F) , T(F,P) and TI(F,x) . The properness of the Diff(F)-action

on Sm(F) implies the proper-discontinuity of the actions by the mapping class

groups, see [Earle-Eells 1969, p.28]

(2.2.9) Proposition.

(i) T(F) acts properly discontinuously on @(F) ;

(ii) r(F,P) acts properly discontinuously on @&(F,P) ;

(iii) T(F,x) acts properly discontinuouslv on @(F,x) . "

The quotient spaces are the (Riemann) moduli spaces
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(2.2.10) m(F) T(F)/T(F) ,

(2.2.11) m(F,Pp) T(F,P)/T(F,P)

~

(202212 M(F,x) T(F,x)/T(F,x)
We investigate the actions of the mapping class groups more closely in section
2.4 . So far we know there is a commutative diagram.

(2.2.13) r(F) —— ©(F,P) <«—— I[(F,x)

L { l

T(F) ¢— T(F,P) +—— @(F,x)

! L !

m(F) +«— m(Fr,p) +—— m(F,x)
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<3 Quasiconformal mappings.

A quadrilateral R, consists of a simply-connected Jordan domain R in C

3’R-'4 € AR in

positive-oriented order. By the Riemarn mapping theorem there is a conformal

with analytic boundarv 3R and four distinct points Rl,Rj.R

map f from R onto a rectangle R' in C having one pair of sides paralle

to the x-axis and the others parallel tc the v-axis, such that f(Ri) = R;

(i =1,...,4) are the corners of R' . If we require Ri and R, to lie on

the x-axis, then f is unique up to a similarity, i.e. a translation and

dilatation.

(2.3.1)

l

The ratio of the width a and the height b of R' is therefore the only

conformal invariant of the quadrilateral Q = (R;Rl’R7’R3’R4) , and -called its

modulus ,
(2.3.2) mod(® ) = % > 0

_ -1
Note that mod(R,RZ,R3.R4.R1J-—mod(R,Rl,Rz,RB,Ra)

Let q : @ — Q' be a homeomorphism between two regions in C€ . If

R = (R;Rl'”"Ra) is a quadrilateral in 2 , then q(R) =

‘



-20-

= (q(R);q(Rl),.“,q(RA)) is a quadrilateral in Q' . (N.b. that qQ is assumed

to preserve the orientation.) If there is a number K > 0 such that
(2.3L3) mod(q((R )) < K-mod(R )

for all quadrilaterals ® in & » then q 1is called K-zuasiconformal. The

smallest such number K is called the (maximal) dilataticn and denoted bv

K{qi . If q 1is K-quasiconformal for some K , it is callzd quasiconformal.

It is obvious that a conformal map is quasiconformal, that the inverse of a
quasiconformal map and the composition of two quasiconformal maps is again

quasiconformal. The maximal dilatation has the following properties:

(2.3.4) K{q] 2 1 ;
(2.3.5) K[q] =1 if and only if q is conformal :

: o -1

(2.3.6) K{q "] = K(q] ;

(2.3.7) K[q1°q21 £ K(q;] - Kla,]

(2.3.8) Klqee)] = kla] = [e,oq]  if ¢, &, are conformal.

The assertion (2.3.5) is obvious. One uses (2.3.3) to derive (2.3.4) and (2.3.6)
(2.3.7) and (2.3.8) follow immediatedly from the definition. See ([Ahlfors

1953] , [Ahlfors 1966, p.221 , (Lehto-Virtanen 1965, p.171

Quasiconformality is egsentially a local notion (Lehto-Virtaneﬁ 1965, p.50]
And K[q] 1is a conformal invariant by (2.3.8) . This allows to extend the
notion to homeomorphisms q : F — F* between ﬁiem&hn surfaces. Let

z 2 =—Fr Wl resp, z* : Z* — W* be local parameters of F resp. F'

a a a B B B

q 1s called gquasiconformal, if the following conditions are satisfied:
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(2.3.9) (i) Dy = z; o q o z;l is a quasiconformal map from W_ =

Ba

-1, ] LI
= za(Zaf1q (ZB)) to wﬁu = zB(ZB!Tq(zu)) for all «,R ;

(ii) there is an upper bound for all K(qﬁa]

The least upper bound of a.l K[qﬁu} is called the maximal dilatation K'q:
of q . We repeat that this number is well-defined. The properties (2.3.4) -

(2.3.8) hold now for quasizonformal homeomorphisms between Riemann surfaces.

A gquasiconformal homeomorpﬁism need not be differentiable; but it is almost-
everywhere differentiable [Lehto-Virtanen 1965, P-172] . For a homeomorphism
q : Q@ —Q' of class C1 between two domains in € one can characterize
quasiconformality as follews, [Ahlfors 1953] , [Ahlfors 1966] , ([Lehto-Virta-
nen 1965, p.191] . If q(z) = q(x,y) = f(x,y) + ig(x,y) 1is considered as a

function of x and y with real part f and imaginary part g , on sets

3q _ = Lc8a _ .3q 8q _ 3, = Lle3g _ .23q,
3z fu 1Gx “iay) 0 a2 L 2Gx t in)
with
24 _ B, ;i 24 _ 3, L3y
9x 90X £ 4 ay oy ay
The quotient
2.3 j = 3q(z) | ~
(2.3.10) uq(z) 3q(2) Q D

is called the complex dilatation of q . We also introduce its norm

(2.3.11)  k(q] = [

Then q is quasiconformai if and only if k(q] < 1 ; its maximal dilatation is

(2o3.12)  Elg] = ——kia]

1 - k{q]



An equation 5@ - Mdq is called the Beltrami equation, and therefore U is

called the Beltrami coefficient. If q 1is a diffeomorphism F —» F!' between
two surfaces, then the cemplex dilatation uq is defined as above bv writing
q as a funétion in locai parameters; the Beltrami coefficient is tnen a (-1,1
differential on F . If q 1is a Ck-diffeomorphism with k 21 , hq will bpe

Ck-l

a -form and thus continuous. Therefore “uq(z)” assumes a maximum if F

is compact; it follows t=at any diffeomorphism between compact surfaces iy

quasiconformal.

Later we will need some of the following examples ‘and estimates for their

dilatation.
The easiest quasiconformal homeomorphism of € is

(2.3.13) a(z) = z + kZ , for 0

{17
=~

<1, with the constant dilatation

In general, any linear (or affine) map

_ (<) - [(ab) +
(2.3-14) q(z) = M ) M = \c a € GLZ(R)

= (atc)x + i(b+d) y

= 2 ; . z + 2_§_iﬁ Z , a=a+ ic , B =b+ id

+ iR 1 + i~
is quasiconformal with constant complex dilatation uq = Z n ;E =1 - iz
(t1,-T)z + (1,-1.,)%
B 2 1 1 2
T =4 - For example, the linear map q(z) = — maps the
T = T
1 1

parallelogram @ spanned by 0,1 and T, onto the parallelogram QZ spanned

i\

by 0,1 and < 3 its dilatation is K(q] = t where t is the hyperbolic

2

distance between 1 and 1 Thus the two parallelograms are K-quasiconfor-

il 2

mally equivalent if K ig the distance between 3 and the nearest point



equivalent to T, under the action of SL,(Z) on H . One can show that q

is extremal, i.e. ti has the smallest possible maximal dilatations among all
homeomorphisms mapping ﬁl to G, . See (Ahlfors 1966, p.Sé} . iLehto 1988,

p-216j . This K is the distance in  H/SL,{Z)

Particularly useful mappings will be of the following kind

(2.3.15) q(x,y) = (x,v + Cx(1l-y)) (C = C < 1)
’ 9) 7
= (2+iCiz + %27 +iCz - 570

for 0sx, ys1 q maps a square onto a quadrilateral:
i 1 i+l i i+l
9 >
i+C
0 1 b

It extends to a neighbourhood of the square and is smooth. For the derivatives
we find
3q(z) = c(i-Z) , 3q(z) = 2 + C(i+z)

. . : . _ _ C(i-Z) . .
So the complex dilatation is uq = Clitz) +2 - From the inequalities

-C s Re(3q(z)) £ O s 0 £ Im(3q(z)) € 2¢ ,
2 £ Re(3q(z)) s 2+C , 2C < Im(3q(z)) £ 1+C
we conclude
= 2 2 2
20 [3q(z)| c+4c” _ _5¢0
k[Q] = Sup 'aq(z)| < 2 - 2
z 4+ 4C 4(C+1)

for the norm square of the complex dilatation,This number is smaller than 1 ,

since C < 1 . Therefore q 1is quasiconformal.
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To displace the center of D to some other point in D one can use the map

(2.3.16) a(z) =z + (l-zz)a , a€D

a+ (l-az)z

(oo

q is a homeomorphism of D such that q(0) = a and q(z) =z for z € 3
q is the restriction of a homeomorphism of the entire piane. and except for
z =0 it is everywhere differentiabtle. To prove the conformality we use the
concept of circular dilatation, see [Lehto-Virtanen 1965, p.110:

At J € D define

max [q(g+e) - q(T)|

H \ = 4 E (=T
‘ q(C) I;TO 'mﬁn l[a(c+e) - q(Q) ’
E|=r

which is greater or equal to 1, but possibly = . If Hq(C) is finite for all
¢ , and Hq(C) s K for almost-all g , then q is quaéiconformal, [Lehto-

Virtanen 1965, p.187] . In case q is differentiable at ¢ , then

H () = 12aG3) +§q(5)[ ) 1+ !“q(C)I
q |BQ(C) - Sq(c)[ 1 - luq(C)l

D=

To make the computation easier we specialize to the case a € R, 0 < a <

Then we find

€ + a(lE + eC + %)

[

q(g+e) - q(g)

e + a(2Re(ge) + |€l2)

For [e| = r the maximum of the norm satisfies

r(l + 2a|g| + ax) |,

[}

max < r + a(2(¢|r + e

and for the minimum (for small r )

min 2 r - a(2(¢|r - rz) r(l - 2a{c| - ar)

Therefore



H (C) s limsup i
4 r~+0

'
[l 3]
SR Y

S

for all ¢ € D , which gives K = 7———§§ as an upper bound for the maxina.:

dilatation of q .

We remark that q is not the extremal map solving this mapping problem. The
extremal map is the composition of several conformal maps with a singie ar-ine
mapping of dilatation Ko » cf. [Teichmiller 1944;

As a last example we consider

.

(2.3.17} q(z) = zelu(l_zz) , a€R , az20

q 1is a diffeomorphism of the closed disc ﬁ-, with q(z) = z for z € 5D

and q(0) = 0 . The differential at 0 is a rotation about the angel «a ,

ia —

Bq(J;) = e dx

To compute the dilatation we find

= ia(l-272)

33 = ze (-2iaz) = fZiazzfelé(l‘zz) , and
5q = eia(l'zi) - zeiu(l-zi)(_Zqu)
= (1 - 2iazZ) - eiall-z2)
2
thus " = -2iaz” and

qQ 1 - 2iazz
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2 4 2 4
2 z 1zl
EEdlS= sup 4a” [z e 4a” |z >

z l1-2iu[z|2’2 z 4u2[z[4 + 1 4a” + 1

Thus we have a quasiconformal map. There is no extremal map for this mapping
problem; by substituting a smooth wo: [0,1] — {0,1} with w(0) = | ,
iaw(1l-2Z)

v(1) =0, '(0) = ¢'(1) = 0 such that q(z) = ze , one can achieve

arbitrarily small dilatations.

After these examples we will see that there are enough morphisms in the cate-

gory of quasiconformal maps between closed Riemann surfaces of genus g

(2.3.18) In any homotopv class of homeomorphisms F1 — F7 there are

quasiconformal maps.

See [Lehto 1988, p.181], {Teichmiiller 193¢, P.27]. But it follows already

from the fact that there are diffeomorphisms in each homotopy class. Moreover,

(2.3.19) in_each homotopy class there s a unique quasiconformal map with

minimal maximal dilatation;

see [Ahlfors 1953, p-16,17], (Lehto 1988, p.231,237], for example. This map is
called an extremal map or a Teichmiiller map and is, in general, not differen-

tiable if g 2 2

(2.3.20) If two quasiconformal maps are homotopic as homeomorphisms, thew

are homotopic as quasiconformal maps.

This follows from the fact, that any deformation class contains real-analytic

homeomorphisms, see [Lehto 1988, P-200], "Nag 1988, p.317], ([Abikoff 1976, p.31]



Let us define QC(F) to be the group of quasiconformal self-maps of F
QC(F,P) will denote the subgroups of <y € QC(F) satisfying .Y(P) =P , and
QC(F,x) the subgroup of such Yy which are differentiable at- P and satisfw
5y(x) = X . The subscript . will denote the respective subgroups of those
being homotopic (relative P , resp. X ) to the idehtity. Givenvtwo surfaces
F/ v F, , then QC(Fl;Fz) ; QC(FL’PI;FZ’PZ) v ... have the obvious meaning.

First note, that QC(F) is merely a group and has no topology (for reasons we

will explain later). We have
(2.3.21) Diff(F) < QC(F) < Homeo(F)
ul ul ul
Diff (F) < QCO(F) < Homeo (F)
and similarly for the groups QC(F,P) and QC(F,x) . For the obvious (evalu-
ation) actions of these groups we conclude from the examples (2.3.16) and

(2.3.17) the following, (see [Bers 1957/58, p-29], [Nag 1988; p.37] for direct

existence proofs.).

(2.3.22) QCO(F) acts transitively on F ; the subgroup of Yy € QCO(F)

being differentiable at P acts transitively on T(F) ; the sub-

group of «y € QCO(F,P) being differentiaﬁlé at P acts transitive

on Ty(F)
As quotients we get the mapping class groups.

(2.3.23) Proposition. (i) QC(F)/QCO(F) = [(F) ;
(ii) QC(F.P)/QCO(F,P) = r(F,P) :

(i) QC(F.x)/QCQ(F,x) = r(E.x)

Proof: (i) is a combination of (2.3.18) and (2.3.20). For (ii) and (iii),

note that any mapping class in T[(F,P) and T[(F,x) is,represented by an



element in Diff(F,P) resp. Diff(F,x) . Assume two quasiconformal maps in
QC(F,P) or QC(F,x) are freely homotopic as homeomorphisms. Then thev are
freely homotopic by quasiconformal maps. There is then a track curve of P |
resp. X . Now in the examples (2.3.16) and (2Z.3.17) the parameter a , resp.
a , gives a (continuous) family of quasiconformal maps. Locally, thev can be

used to re-displace P or x along their track curve. .

We note that a statement corresponding to (2.3.20) is true for based maps: in
any based homotopy class there is a unique based quasiconformal map with
minimal maximal dilatation, [Kra 1981]. The corresponding statement for maps

preserving a direction does not seem to hold; cf (2.3.17).
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2.4 The geometric definition of Teichmiiller and moduli spaces.

Let F have a conformal structure, i.e. F 1is a Riemann surface as in B3]

A deformation of (the.conformal structure) of F is a quasiconformal homeo-
morphism q : F —» Fl onto some other Riemann surface. A deformation cf the
pointed surface (F,P) consists of a surface Fl’ specified peint P, € Fl and
a quasiconformal homeomcrphism a : F—» Fl such that q(P) = P1 . A deforma-
tion of a directed surface (F,x) consists of a surface Fl » a direction X,
on FL at some point P1 € F1 » and a quasiconformal homeomorphism q : F —» F1
which is differentiable at P and satisfies q(P) = P, and Da(x) = X, . Two
deformations q; and qz- of F , resp. (F,P) , resp. (F,x) , are called
equivalent, if there is a conformal map c : Fl =—> FZ » TESP. € : (Fl,Pl) —>
— (FZ’PZ) , resp. c : (Fl'xl) — (Fz’xv) , such that q, = ce°q

-

(2.4.1)

In the pointed case this means c(Pl) = P2 , and Bc(xl) =X, in the directed
case. An equivalence class is denoted by (q) , resp. (qi,Pi) , Tesp. (qi’xi)
and the sets of equivalence classes by D(F) , D(F,P) and D(F,x) . There

are the following forgetful maps

D(F,x)

D(F,P) «

(2.4.2) D(F) «

That the maps are surjective (and the sets are non-empty), is guaranteed by
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(2.3.22). The identity q = id represents a basepoint on these sets.

The Teichmiller metric is defined byv

(2.5.3) d(kql)v(q—))) = % .‘LOgK[_q)oquj

Note first that d 1is well-defined on deformation classes because of (2.3.3).

By (2.3.4) d 2 0 ; and d((ql),(qv)) = 0 implies Kfq,cqilj =1, thus gq.

> The symmetr-

is é conformal map c , i.e. an equivalence from q, to q
follows from (2.3.6) , and the triangle inequality from (2.3.7). The formula
defines a metric on each of the sets D(F) , D(F,P) , D(F,x) , now called

deformation spaces. In these metrics the maps in (2.4.2) decrease distances.

The groups QC(F) 2 QC(F,P) 2 QC(F,x) of quasiconformal self-homeomorphisms

act on the corresponding deformation spaces by

(2.4.4) Y.(q) :=(qey) , y €Qc(F), Qc(F,P) , QC(F.x)

(q) € D(F) , D(F,P) , D(F,x)

These actions are well-defined and isometric. Let us consider an orbit under
the subgroup QCO(F) . QCO(F,P) , resp. QCO(F,x) . Two deformations 9, 9,
lie in thé same orbit if and only if there is a quasiconformal homeomorphism

Yy : F— F , homotopic to the identity (relative P , resp..x) such that (qz)
(qz) = y.(ql) = (qloy) ; the last statement is equivalent to c := q°Y e q;
being conformal. In other words, up to a conformal equivalence c : F1 —L F2
the two deformations q; » 4, are homotopic (relative P , resp. X) to each
other.

(2.4.5) q;
F, b, x ——— F , P, x

id = y C

F, P, X ———— F_, P
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Such an orbit is therefore determined by a homotopy class (relative P, resp.

of a deformation q . This constitutes a marked Riemann surface (modeled on F

where the marking is the homotopy class of q ; see “Nag 19887).

The Teichmiiller spaces of the Riemann surtace F could therefore be defined b

(2.4.6) T(F) = D(F)/QCO(F) ,
(2.4.7) T(F,P) = D(F,P)/QCO(F,P) :
(2.4.8) @(F,x) = D(F,x)/QCO(F,x)

It is customary to define the topology not as a quotient topology, but directl:
with the Teichmiiller metric (on the Teichmiiller spaces). For two orbits in
@(F) , denoted by [ql] R [qz] , one defines |
(2.4.9) d(<q1>,<q2>) = %1ogian[q],

q
where q runs over the homotopy class of q2°q11:F1 = F2 in QC(Fl;Fz)
Similarly  for <q;>,<q,> € T(F,P) the definition is by the same formula,
now q running over the homotopy class of qzoqil in QC(FI’Pl;FZ'PZ) . In
both cases it is immediate from (2.4.3) that d is a pseudo-metric. The exis-
tence and uniqueness of Teichmiiller maps implies that d is actually a metric:
in the free case this is (2.3.19), in the pointed case this is proved in {Kra
1981]. The situation is different in the directed case as we saw at the end of
example (2.3.17). Instead of developing a formula as above which takes deri-
vations into account we use an ad-hoc method to remedy the situation. For
<q1>,(<q2> € @T(F,x) the same formula (2.4.9) is used to define the distance,
but we let q run only over all quasiconformal homeomorphisms F1 — F2
which are homotopic to q2°qil and agree with qzoqi1 in a neighbourhood of

E € F1 (and are therefore differentiable at Pl and satisfy q(Pl) =P,



and ﬁ(xl) )

2

The forgetful maps in (2.4.2) induce forgetful maps

T(F,p) «—Lt @(F,x)

(2.4.10) T(F) <

Since every Teichziller class is representable bv a smooth deformation,

(nd

an

t’ are surfective.

The following is the classical Teichmiiller theorem, see (Ahlfors 19531, {Lehto
1988, p.241].
6g-6

(2.4.11) Proposition. @(F) is homeomorphic to R for g 22 . "

The basic steps in the proof are as follows.

(1) Any Teichmiiller class <@g : F—» FO> has a unique extremal representatit

(the Teichmiiller =nap ar )

(2) If qr is nct conformal, then there are two non-zero quadratic differen-

tials ¢ on F and ¢O on F0 » such that A has (except at the zeroes of

¢ ) the form of an affine map in parameters adopted to '¢ and ¢° ; the dila-

tation is everywhere constant; if ¢ 1is kept fixed, thgq. ¢° is unique up to

positive multiples. |

(3) The vector space of quadratic differentials on F has dimension 6g-6

by the Riemann-Roch theorem.

(4) This establishes a correspondence between Tei;hmﬁller classes and direc-

tions of non-zero quadratic differentials ¥ = q;(¢°) ‘together with a constant
1+k

k € [0,1] with K[qt = 1-g @ %hich gives a homecmorphism from @(F) onto

the open unit bal! in R6g_6,

We need to compare the two definitions of the Teichmiiller space, namely
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Sm(F)/Diffo(F) and I)(F)/QCO(F) A quasiconformal homeomorphism q : F —»
—> FO (even though it might be non-differentiable at a set of measure
zero) always has a complex dilatation pq associated; to define this one has
to use the generalized derivatives of q , see [Ahlfors 1966}, [Lehto 1988i.

u is an element in the space of almost-everywhere finite, measurable (-1,1)-

(F) . The function D(F) — L*, (F) ]

differentials on F , denoted by L -1.1

It
(q) —» uq is well-defined on deformation classes and continuous. Furthermcre,
it is a homeomorphism and equivariant with respect ot QCO(F) . The space

L_l l(F) contains S (F) = Sfl 1(F) as the subspace of smooth Beltrami-diffe-

rentials. Regarding Diffo(F) as a subgroup of QCO(F) , we have an equivariar

inclusion S (F) —» LTl l(F)'. Consider the induced map T between the orbit
spaces.
(2.4.12) Diffo(F) E— QCO(F)
S-l.l(F) — L 1’1_(15‘)
cran(F) T geom(F)

Of course, T is continuous by construction. <t 1is injective, since Diffo(F)
is a subgroup. T 1is also surjective, since every QCO(F)-orbit in LTI’I(F)
has even a real-analytic representative. Beéause both éidés are homeomorphic
to R68—6 » the Brouwer invariance-of-domain theorem imblies that t 1is a

homeomorphism.
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(2.4.13) The analytic and geometric Teichmiiller space coincide.

To make the picture symmetric, one can also define a smooth deformation space
C(F) . An element is an equivalence class of pairs (f,J) where f is a dif-
feomorphism F : F —» Fo onto some other smooth surface FO , and J 'is a

complex structure J € Sm(Fo) ; two pairs (fl'Jl) and (fZ'JZ) are equiva-
lent, if there is a diffeomorphism g : F —» F, such that f, =g-o 1’.l and

1 2 2

g“(J7) = .Il - The function (f,J) —» f“(J) induces a bijection €(F) —»

— S°(F) » which we declare to be a homeomorphism. With the Diffo(F)—action

Y.(£,J) = (yof,J) this homeomorphism is equivariant. The complete picture is

(2.1.14) Diff (F) = Diff (F) > QC_(F) = Qc_(F)
[ I l
| l |
CF) —— 7 () » LT ((F) «—— D)
[
l
! v
Can(F) = Can(F) T’ Q:geom(F) = Egeom(F)

The advantage of the right half is the complex analytic methods, such as the
dilatation. The left half has the advantage of the topological groups and the

resulting fibre bundles.

To study the other Teichmiiller spaces we could argue as above to identify them
with their analytically defined counterparts (2.2.6). But we can also stay in
the frame work of quasiconformal maps. Consider the projection t : @T(F,) —»
—> T(F) , and let q = (F,P) —» (FO,PO) represent a class in <(q> in

T(F.F) . Ilts class tdg> . in. @(F) eontains 3 unique extremal map ar - It

may be that qT(P) z Po i but since q is freely homotopic to ar > such a



_35_

homotopy gives us a curve w from P to q,I.,l(Po) on F . Its homotopy class
relative endpoints is well-defined by <q> , since the composition of qr wit
a conformal map ¢ :'FO —> F1 is the Teichmiller map (c=q)T for the class

{ceq> . Thus we have a map T(F,P) —» F . For the continuitv we appeal to
results of (Kra 1981]. For t° and t' = tet’ similar maps onto T(F) =R
and onto T(F)  can be constructed. They exhibit @(F,P) and T(F,x) as

products (g z 2)
(2.4.15) T(F,P) = T(F) xF = R ,
N : 1 6g-3
(2.4.16) T(F,x) = &(F,p) xs! = R
Compare this to [Bers 1970]. The group QC(F) acts on T(F) by
(2.4.17) Y.<q> = <qovy> Y € QC(F) , <q> € @T(F)
The same formula defines actions of QC(F,P) on @(F,P) , and of QC(F,x)
on @(F,x) . It is easy to see, that MY: <G> —/* Y.<q> 1is an isometry. An

isometry of @(F) induced in this way by a quasiconformal self-map of F

is usually called allowable, we call it a modular isometrv. They constitute

the modular group Mod(F) of (the Teichmiiller space of) F . In the extensions

(2:4.18) 1 » Qc°(F) » QC(F) » Mod(F) » 1
t t t
(2.4.19) 1 » C°(F,P) —— Qc(F,p) » Mod(F,P) > 1

f - f f

(2.4.20) 1 — Qc°(F,x)

» Mod(F,x) —— 1|

» QC(F,x)
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the kernels QC°(F) , Qc°(F,P) and Qc°(F,x) obviously contain QCO(F) .
QCO(F,P) resp. QCO(F,X) , since any Y homotopic to the identity acts
trivially on the Teichmiller space, i.e. MY = id . With the exceptions of a
few cases one always finds QCO(F) = QCO(F) , and therefore the moduiar groups

are the mapping class groups.

Among the closed surfaces there is only one exception, namely g = Z . Anv
Riemann surface F2 pf genus 2 is hyperelliptic {Farkas-Kra 1980, pp.94,101-
103) and allows a conformal involution with 6 fixed points, realizable as
the deck transformation of a double covering F2 == S2 branched over 6 points

In this case F(Z)/Z7 = Mod(2)

This explains why the notion of mapping class group and modular group are
treated synonymously in the literature. We will not persue the modular groups.
For completeness we mention that Mod(F) comprises in fact all isometries of

@(F) for g 2 3, [Royden 1971].

For the remaining action of the mapping class groups we quote from “Gardiner
1987, p.1491, that T[(F) acts properly discontinuously on @(F) . The other
two actions are compatible via the forgetful maps; for y € QC(F,x) we have

commutative diagrams

T(F) «——— @(F,P) +— T(F,x)

|
| M M

l Y A
T (F) ‘—t_Qf(F.P) *—t-—'Q’(F.X)
Furthermore, if [y] € [(F,P) is contained in the subgroup nl(F) , then M
restricts to the corresponding deck transformation on the fibre F of t

and if ([y] € r(F,x) 1is contained in the infinite cyclic subgroup of twists



around P , then MY restricts to a translation on the fibre R = TP(F)~
of t° . We have
(2.4.21) Propcsition. The actions of Tr(F) , T1(F,P) and [(F,x) on

the corresponding Teichmiller space @(F), @(F,F)

and T(F,x) are properlv discontinuous. .

Dividing the Teichmiiller spaces by the remaining action of the mapping class

groups - (equivalently of the modular groups) gives us the moduli spaces.

m(F) T(F)/r(F) ,

(2.4.2

[3S]
~

T (F,x)/T(F,x)

(2.4.24) m(F,x)

It is clear from our discussion in (2.4.13) that the analytic definition and

this geometric definition give homeomorphic moduli spaces.

Two points g7, <qy> € @(F) are in the same [(F)-orbit if and only if
there is a quasiconformal y : F —» F and a conformal map c : Fl =5 13

such that c2guiy = 4,

(2.4.25) F ——— F

But trivially, y := qilac-luq2 will do, if only ¢ exists. Thus, the mar-

kings have become irrelevant; {M(F) is the space of conformal equivalence
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classes [Fl] of surfaces F1 homeomorphic to F . The metric becomes

(2.4.26)

—

r([Fl].[sz) = 51nflogK[q] ,
q

where q runs over QC(Fl'Fv)

Correspondingly, MM(F,P) resp. {N(F,x) is the space of conformal equiva-

lence classes [FO,Po] resp. [Fo,xo} of Riemann surfaces FO with a speci-

fied point

Po € Fo resp. with a specified direction X, at some point

Po € F0 3 two such surfaces are conformally equivalent if there is a conformal

map c : Fl
distance is

resp. over

formal in a

—> F2 such that C(Pl) = P2 resp. ﬁc(xl) = X, ; the Teichmiille
given by the formula (2.4.26) where q runs over QC(Fl,Pl;F7,P7)

all quasiconformal homeomorphisms q : F1 —* F, which are con-

neighbourhood of Pl

Next we want to determine the fibres of the orbit projections from the Teich-

miller spaces to the moduli spaces.

(2.4.27)

Proposition.

(i) The isotropy subgroup of <q> = <q: F-—>fo> € T(F)

is Aut(Fo) » the group of conformal self-maps of Fo;

(ii) the isotropv subgroup of <@> = <q: (F,pP) — (Fo’Po)) € @(F,P)

is Aut(Fo,Po) » the group of pointed conformal self-maps

¢c: F — F_  such that c(P ) =P ;
o 0o /== o )

(iii) the isotropy subgroup of <q» = <q:(F,X)_*(FO.XO)-‘ € T(F,x)

is AUt(Fo.xo) , the group of directed conformal self-maps

c: F — F such that Bc(x )=X_ , which is trivial. =
o o —/]/M— o o

The proof is straightforward from the definition.
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Aut(Fo,PO) is at most cyclic and finite; Aut(Fo) is finite (with at most
84(g-1) elements). In cases (i) and (ii) the isotropy group varies with [FO]
resp. [FO,PO] - Thus @(F) — M(F) and «(F,P) — M(F,P) are not (un-

branched) coverings. In case (iii) we have

(2.4.28) Proposition. The action

T(F,x) x @T(F,x) » T(F,x)

is free, and the orbit map

is a universal, principal TI(F,x)-bundle.

Proof: The assertions follow from trigiality of the isotropy groups, the
universality from the contractibility of @(F,x) , (2.4.16). ]
(2.4.29) Corollary. M(F,x) = Br(F,x)

We summarize the situation in a diagram.

(2.4.30) r(fF) 4«—— T[(F,P) <—— T(F,x)

! ! I

T(F) ¢—— T(F,P) &—— T(F,x)

! ! !

m(F) <+—— T(F,P) +«—— m(F,x)

The first row are group extersions, the middle row are trivial fibre bundles;

the last column is a covering. '
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If f:F — F' is quasiconformal (and F(P) = P' , Df(x) = x') it induces

isometrics via f"[q] = (qof] ,

(2.4.31) m(F) <&—— m(F,P) <+—— m(F,x)
If;’: f:’: [f‘

M(F') +—— M(F',P') <+—— m(F,x")

If the reference surface F (represented by (F] in the moduli spaces) is

irrelevant, we write M(g) , M’'(g) and M(g)



