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1. INTRODUCTION

1.1 By THE k-th configuration space of a manifold M we understand the space C*(M) of
subsets of M with cardinality k. If C*(M) denotes the space of k-tuples of distinct points in
M, ie. CK(M) = {(zy, . . . , z) e M¥|z # z; for i #j}, then C¥(M) is the orbit space of
C*(M) under the permutation action of the symmetric group X,,

C*(M) - C*(M)/Z, = C*(M).

Configuration spaces appear in various contexts such as algebraic geometry, knot theory,
differential topology or homotopy theory. Although intensively studied their homology is
unknown except for special cases, see for example [1, 2, 7, 8, 9, 12, 13, 14, 18, 26] where
different terminology and notation is used.

In this article we study the Betti numbers of C*(M) for homology with coefficients in a
field F. For F = F, the rank of H,(C*(M); [F,) is determined by the F,-Betti numbers of M,
the dimension of M, and k. Similar results were obtained by Loffler—Milgram [17] for
closed manifolds. For F = [F, or a field of characteristic zero the corresponding result holds
in the case of odd-dimensional manifolds; it is no longer true for even-dimensional
manifolds, not even for surfaces, see [5], [6], or 5.5 here. Our methods do not suffice to
determine either the product structure or the Steenrod operations.

1.2 The plan is to describe H, C¥(M) as part of the homology of a much larger space

CM,M,; X) = < [] C*(M) x X“)/ ~

k>1 P
where M, is a submanifold, X a space with basepoint x,, and ~ is generated by (z,, . . . , z;;
Xisoo s X)) R (Zys e ooy Zpm13Xys o ooy X—q) if z€ M, Or X, = Xx,. Such spaces of labeled

configurations occur in [4, 22] as models for mapping spaces. We will need the case X = S".

1.3 To formulate our results we introduce some notation. All manifolds M are smooth,
compact, and have a fixed dimension m. The submanifolds M, are compact and of arbitrary
dimension, and possibly empty. X is a CW complex with basepoint x,. Let F be either the
field F, with p elements, or a field of characteristic zero. H, () will always mean homology
with coefficients in F, and g, = dimyH, (M, M; F) is the g-th Betti number. H, can also
stand for any graded F-module such that f, = dimyH,, is finite and H, = 0 for ¢ > m. Let
n > 1 be an integer; unless [F is [,, we require m + n to be odd throughout this article.

tPartially supported by Sonderforschungsbereich 170, “Geometrie und Analysis”, Gottingen.
tPartially supported by NSF grants.

111



112 C.-F. Bodigheimer, F. Cohen and L. Taylor

1.4 The first result describes the homology of C(M, M,; S") in terms of H, (M, M,). For
any graded F-module H, define

m Bq(H,)

¢Hyn=@ @ HQasm*"
q=0

Later we will give a more intrinsic definition in terms of Dyer—Lashof operations.

THEOREM A. There is an isomorphism of graded vector spaces
0: H,C(M, My; S") = % (H,(M, Mo); n) #

In the light of 2.5 below this should be compared with [15]. The isomorphism 6 depends on
the choice of a handle decomposition; it is natural for embeddings preserving the handle
decompositions.

1.5 Each term H, Q™ 4S™*" of ¢ = € (H,; n) is an algebra with weights associated to
its generators. This yields a product filtration F, % (H,; n) of € (H,; n). On the other hand,
the space C(n) = C(M, M,; S”) has a filtration F, C given by the length of configurations.
The filtration is known to split stably, see [4, 10, 25], and therefore H «C(n) =

6"3171* (F,C(n)/F,_,C(n)). The length filtration of H,C(n) and the weight filtration

of €(H,; n) agree via the isomorphism 0.

THEOREM B. There are isomorphisms of graded vector spaces

0,: H F,C(M, M,;S") = F,¢(H,(M, M,); n) ]

1.6 Thus Z,(H,;n) = F, € (H,;n)/F,_,% (H,; n)is the homology of the quotient space
F,C(n)/F,_,C(n), known as the k-adic construction D,(M, M,;S"). There is a vector
bundle

nt: C*(M) x R* —» C*M),
Zi
and D,(M; S") is the Thom space of its n-fold sum. By the Thom isomorphism we finally
obtain the homology of C¥(M) in terms of the homology of M, the dimension of M, and the
number k. ¢ ' denotes the t-th desuspension as defined in 4.3 here.

THEOREM C. For n even there are isomorphisms of graded vector spaces
0,: H,CX(M) = ¢ " Z,(H,(M); n) |

Write F(— 1) for the X,-module F with Z,-action given by n(1) = (— 1)**"® for 7 in Z,.
Then H,(C*(M); F(— 1)) means the homology of the chain complex (S, C*(M)) ®5, F(—1)
where S, (.) denotes the singular chain complex. The proofs of the isomorphisms above
apply to give an isomorphism between H,(C*(M); F(— 1)) and ¢ ~*" ,(H . (M); n) when n
is odd and m is even.

1.7 The article is organized as follows. In Section 2 we recall the basic properties of
C(M, M,; S"). Section 3 contains a proof of Theorem A for n > 2. The proof of the
remaining case n = 1 is given in Section 4, together with the proof of Theorem B. Section 5
contains some explicit examples.
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2. THE CONFIGURATION SPACES

In this section X can be an arbitrary CW complex with basepoint x,. We list some
properties of the bifunctor C.

2.1 Invariance. The homotopy type of C(M, M,; X) is an invariant of the homotopy
type of (X, x,) and of the (relative) isotopy type of (M, M,). For example, if we extend the
definition to open manifolds, the inclusion C(M —0M; X)— C(M; X) is a homotopy
equivalence.

2.2 Filtration. C = C(M, M,; X) is filtered by closed subspaces
k - )
F,CM,My; X)=C, (M, My; X) = <H Ci(M) x X’)/z,
=1 %

FoC is the basepoint, and F,C = (M/M,) A X. The inclusions F,_,C — F,C are co-
fibrations, see [20; Th. 7.1]. Their cofibres are denoted by D, = D,(M, M,; X) and called
the k-adic construction.

2.3 Stable splittings and Hopf maps. The filtration has a stable splitting, i.e. there is a
natural equivalence for connected X

O(C(M, Mq; X))~ [] QDM M3 X)),

where Q = Q*S*. For M = R™ and M, = ¢ this is the Snaith splitting of [25], com-
pare 2.5. The general case is proved in [4, 10]. Composing with the stabilization map
C — Q(C) on the left side, and with projection onto the first factor Q(D,) = Q(M/M, A X)
on the right side yields the first Hopf map

h = h(M, My): C(M, My; X) - Q(M/Mq A X).

2.4 Quasifibrations. If N = M is a submanifold of codimension zero, and if N/(N n M)
or X is connected, then

C(N, N My; X) - C(M, My; X) > C(M, N U My; X)

is a quasifibration. For X = S this is proved in [22; Prop. 3.1]. For general X one proceeds
in the same way; only for the sake of completeness we sketch the various steps.

(1) Filter the base B = C(M, N u M,; X) by B, = C,(M, M U M,; X), and filter the total
space E = C(M, My; X) by E, = q~'(B,); denote the fibre by F = C(N, N n M,; X).
(2) Observe, that for each k there is a homeomorphism

t: Ey — E_y = (B, — B,_) x F over (B, — B,_,).

(3) Let U be a closed tubular neighborhood of the pair (N, N M), and r: M - M an
isotopy leaving M, N and U invariant and retracting exactly U into N U M,; then
define

Uc=1{b=1[z1,...,25 %1, ...,%]€B,|at least one z lies in U}

for each k. This is a neighborhood of B, _, in B,; r induces a retraction 7,: ¢~ }(U,) —»
g~ '(Bi-,) = E,_, and a retraction r,: U, » B,_,, and q°7, = r,°q.

TOP 28:1-H
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(4) Over every be U, separately the restriction to fibres
0u: F—q71(b)—> g~ ((b) = F

is homotopic to the identity. To see this we write

b= Pzl iE Eag T Ao, s, aely L g such that:z,, 2, . Wl s e M = U
and z{,2;, .. € U—NUM,. Let f=[z27,...,:%,--.»]€F. We have
() =215 < s 5215 e s B s o s 5 e e 5 XA e 5 R st
and
L) =[rE )5 - 280r @l L a2 e 25Xas -y Xih Shixds L,
and

tait(f)=[r(z)), .. .or@0),c o c5x1,0 x5 T = @u(f).

Note that the z; and x; depend on b only; hence moving r(z;) in N to N n M, or moving
their labels x; in X to x, defines a homotopy of ¢,, which ends with 7, | F. Since r, is
homotopic to the identity, so is ¢,. It follows from [16; 2.10, 2.15, 5.2] that g is a
quasifibration.

2.5 Section spaces. Assume W is a m-manifold without boundary and containing M.
For example, W = M if M is closed, or W = WU dM x [0, 1[ if M has boundary. Let TW
be the fibrewise compactification of the tangent bundle of W. I'(W — M,, W— M; X)
denotes the space of cross sections of TW(W x X) which are defined an W — M, and are
inifinity on W — M. There is a (weak) equivalence C(M, My; X) > T'(W —M,, W—M; X)
if M/M,, or X is connected, see [22: Th. 1.4] or [4; Prop. 2]. For a handle of index g, i.e. for
M =[0,1]™and M, = [0, 1]™ "% x ([0, 1]9), this means C(M, M,; X) ~ Q™ 9S™X if X is
connected, which is a special case of Theorem A. The case ¢ = 0 is the approximation
theorem of [3, 20, 24].

2.6 Vector bundles over configuration spaces. For every k there is a vector bundle
n* = n*(M): C*(M) x R* - C¥(M).
pe

It has finite order n,; lower and upper bounds follow from the results in [11], where n, was
computed for M = R™. Let 5k be the restriction of n* to C¥(M | M) = C*(M | M,)/Z, where
CHM|My) = {(zy, . . ., z)e C¥(M)|z;€ M, for at least one i}. The relative Thom space of
n times the pair (n*, n§) is homeomorphic to D (M, M,; S"), see [23; Th. 1.3.2]. Thus, if
M, = ¢, we have D, (M;S™) = S¥™C*(M),. More generally, there is a periodicity
D,(M; S"*™) = Sk™ D, (M; S") for any n > 1.

3. AN EMBEDDING IN HOMOLOGY

3.1 The purpose of this section is to prove the Lemma. Assume n > 2.

(a) There is an isomorphism of graded vector spaces

m  fq
0:H,C(M,My; S~ ® & H,Qr-asm*"

q=0 j=1
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(b) The first Hopf map induces a monomorphism
hy:H,C(M,My;S") > H,Q(M/M, A S"). |

This lemma implies Theorem A for n > 2. We remark that it is also correct for n = 1, but for
technical reasons we postpone this case until 4.5. As the proof will show, 6 depends on the
choice of a handle decomposition. It is natural for embeddings which respect the handle
decompositions. § will preserve the grading which is important in Lemma 4.2.

3.2 Proof of Lemma 3.1 First we will prove the absolute case M, = ¢ by induction on a
handle decomposition of M. If M is a disjoint union M,LIM,, then C(M;X)x~
C(M,; X) x C(M,; X). Thus we can restrict to connected manifolds and start with M an m-
disc D™. By 2.5. C(D™; ") ~ Q™S™*", and (a) is obvious. The assertion (b) is proved in [12;
p- 226]; here we need the hypotheses that m + n is odd if F # F,.

Assume (a) and (b) hold for M. If M = M U D with D = [0, 1]™ a handle of index qin M,
ie. DM =[0,1]" % x d[0, 1]% we can assume q > 1, because M is connected. There is a
. cofibration

M —> M — (M, M) ~ (59, %)
and the alternative:

L H,(M)— H,(S% is epic, i.e. f,(M) = B,(M)+1;
IL H,(M)— H,(S%) is zero, i.e. B, (M) = f,_,(M)— 1.

3.3 Case I. The diagram

cM; sty M, o, A s7)

i . l
cor;sry M, o1, A s7)
! . !
Qroasmin ~ C(M, M; $") M 0 (81/M A $7)~ 0(54+7)

is commutative by 2.3, the left column is a quasifibration by 2.4, the right column is a
fibration. Since H,M — H,S*is epic in this case, so is H,Q(M, A S")» H,Q(S*"). Thus
the Serre spectral sequence on the right side collapses. h(M ) is monic by the inductive
assumption, which forces the Serre spectral sequence on the left side to collapse also. Hence
H,C(M;S") = H,C(M;S")® H,Q" %S™*" which proves assertion (a) for M. On the E>2-
level of the spectral sequence h(M), corresponds to h(M), ® h(M, M),.. Since both h(M),
and h(M, M), are monic, this gives (b) for M.

3.4 Case Il. In the diagram

Qh(M, M)

QoIS ~ QC(M, M; S™) M) QQ(M/M A S™) ~ Q(s7 1)
! 1
cm;smy ML oM, A s
l ) !
h(M)

C(M;s") OM, A SY
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H,Q(S9'*") > H,Q(M, A S") is monic, because H,S? ' - H,M is in this case. Note
that this is the only case where we need n > 2 to ensure the triviality of the local coefficient
system. Thus the Serre spectral sequence on the right side collapses. Qh(M, M) may be
replaced by Q™ 9*1E where E is the stabilization map S™*"— Q(S™*"). Therefore
Qh(M, M), is monic, the Serre spectral sequence on the left side collapses and H,,C(M; S")
~ H,C(M;S")® H, Q" 4*'S™*". Comparing the Euler-Poincaré series proves (a) for M.
To see that h(M), is monic, observe that (1) both fibrations are principal, (2) H, C(M; S")
= H,C(M;S")@F, R=H,Q "5 and (3) H,Q( A S")=H,Q(M. AS")
@[F, R = H,Q(S* '*"). Then the result follows from naturality.

3.5 To treat the relative case we can assume that M, is part of an open collar,
My = (0M n M) x [0, 1[. To see this, we first replace M, by a closed tubular neigh-
borhood M. Next we remove its interior and obtain Mg = Mg — int Mg, which lies in the
boundary of M” =M —intM;. Then we attach an open collar to form
M" =M"U(@M" x [0, 1[), and set My’ = Mg x [0, 1[. During this procedure the homo-
topy type of C was not changed by 2.1 and 2.5, and the last pair (M"’, M;’) has the desired
form.

Lemma 3.1 (a) and (b) will be proved by induction on a handle decomposition of
M, n 0M. The start of the induction was the absolute case M, = ¢.

Assume that (a) and (b) hold for (M, M,). Let M, be M, U D with D = [0, 1]™ of the
form (D N dM) x [0, 1] such that D n éM = [0, 1]™~ ! x is a handle of dimension m — 1 and
index g0 <g<m—1)in MyndMie. D ndM M, =[0,1]"" 79 x d[0, 1]7 x 0. There
is a cofibration

S*~ (D, D M,)— (M, My) - (M, M,)

and again an alternative:

1L H,(S%) — H,(M, M) is monic, ie. f,(M, M,) = B, (M, Mo)—1;
IV. H,(S%) — H,(M, M) is zero, ie. B4 1 (M, M) = By (M, My) + 1.

3.6 CaseIll. In the diagram

h(D, D~ M,

Qn-1Sm A C(D, D~ My; 8") LM 0(DJ(D A M) A §7) ~ Q(S7*™)
! l
H(M, M,)
C(M,M,; S") Q(M/M, A S")
! ~ it
h(M, M,)

C(M, Mg; S") Q(M/M, A S™)

H,Q(S*™)—> H,Q(M/M, A S") is monic, since H,S* - H,(M, M) is monic in this case.
Also h(D, D n M) is monic. The arguments to show (a) and (b) for (M, M ) are now similar
to case II.

3.7 Case IV. Remove D' =10, 1[™ 97! x 10, 1[*x [0, 1[ = D from M, N =M —D’,
and consider the diagram
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h(N, N ~ M)
—_—

C(N, N A M,; ") Q(N/(N N M) A S")

l_ h(M, M,) _l
CM,My;8") ————  QM/My A S")
! !

h(M, My U N)
R

C(M, My U N; ") Q(M/M, U N) A S™).

The pair (N, NN M,) is isotopic to (M, M,), hence h(N, N n M,), is monic by in-
ductive assumption. H,Q(N/(N n M) A S") > H,Q(M/M,) A S") is monic in this case.
Therefore the Serre spectral sequence on both sides collapses. Since (M, Myu N)
is isotopic to the handle ([0, 17™ [0,1]™ 9 ! x d([0,1]9 x [0,1])) of index q+ 1,
C(M,MyUN;S")~Qm 4-18m*" The assertions (a) and (b) follow as in case L.

4. AN ALGEBRAIC FILTRATION OF H,C(M, M,; S")

Throughout this section the pair (M, M,) will be kept fixed, and we write C(n) for
C(M, M;S"), and H, for H, (M, M,). The proofs will be given for the field F = F, as the
other cases are quite similar.

4.1 The graded algebra ¥ (H,; n) was defined in 1.4 as
m g
GHyn =& @ H, @ sm*"),
q=0

and thus depends only on the numbers m, n and f,, . . ., f,,- The intrinsic definition is as
follows. First, we introduce for each a € H, a generator u,, and set as degree and weight

(1) [uy] = | +n,

2 o) =1.

Secondly, for each u, and index I = (i, i,, . . . i,) there is an additional generator Q,u, if the
condition

B3 0<i;<i,<...<i,<m—]|qa

holds. Q, stands for Q; Q,,. .. Q; , and the Q; are the Dyer-Lashof operations. We have
(4) 1Qu,l =iy +2iy +4iz+ ... +277 1+ 2°(la| +n),
(5) w(Quu,) = 21" =2".

Note that there are no additional generators Q,u, if xe H,, or xe H,, _,.

These generators are subject to the following relations
(6) Uyyp = uy+ug,
(7) Qrugrp = Qru, + Quy,
®) uz=0 if|a| =m.

Then € (H,; n) is the associative and commutative F-algebra generated by all u, and Q,u,,
modulo the relations (6)—(8). The degree and weight are extended by |v, *v,| = |v, |+ |v,],
and w(v, *v,) = o(v,)+ w(v,). Using the weight function we filter ¥ (H; n) by defining
F.%(H,;n) = %,(H,;n) to be the submodule spanned by the monomials of weight at
most k.

If H, = [, is concentrated in degree * = g, then ¢ (H,; n) = H, Q™ 9S™*" see [12]. For
example, if (M, M) is a handle of index g, then C(M, M,; S") ~ Q™ 4§™*" Note that in
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this case the generators Q,u, and their weight were first defined using configuration spaces
and their length filtration.

42 A handle decomposition of (M, M,) provides a vector space basis of H, =
H,(M, M,), and thus following 4.1 an algebra basis of ¢ (H,; n). Moreover, Lemma 3.1
yields an isomorphism of graded vector spaces,

0:%(H,;n) - H,C(n).

In order to prove Theorem B we will show that in fact any graded isomorphism must
preserve the respective filtrations %, (H,; n) and H, C,(n) through a range increasing with n.
The stable splitting of 2.3 and the periodicity of 2.6 will then complete the proof.

LEMMA. Let r be an integer such that n > rm > 2. Then the following hold for all k < r:
(@) 0 maps €,(H,;n) to H,C,(n);

(b) both €,(H,;n) and H,C,(n) vanish in degrees > n(k + 1);
(c) the restriction 0,: €, (H ; n) - H,C,(n) is an isomorphism.

Proof. The dimension of Q¥(v) = Q; . . . Q;(v) (k times) is |Q%(v)| = (2¥ — 1)i + 2¥|v|. The
elements in €,«(H ,; n) of maximal degree are spanned by elements of the form QF _; (4, ;)
for i maximal with 1 <m—1 and f; # 0, as one can see by inspection. In general, if

k=Y 2 is the 2-adic expansion of k, then the elements of maximal degree in
kek

%.(H,; n) are spanned by elements of the form v = [] Qk_;—;(u,+;) for i maximal again.
kekK
Thus

lol]= Y (@Q*—1Dm—i—1)+2"(n+1i)

kekK

=Y @mMm+n—1)+i+1—m)
xkekK
=km+n—1)+card(K)(i+1—m) < k(n+1i)
gives a bound for this maximal degree. Since i <m, k <r and km < n, this gives
|v] < n(k+1). But H C(n) = (—Bl ﬁ*DJ-(n) by the stable splitting 2.3, and D;(n) is (jn — 1)-
Jj=

connected. Therefore 6(v) must lie in H,C;(n) for some j < k + 1, which proves (a).
To prove (b) recall from 2.6 that D;(n) is the Thom space of a nj-dimensional. vector
bundle over the mj-dimensional base C/(M). Hence H,D;(n) = 0 for * > (m+ n)j. This

implies H,C,(n) = G—)k H,D;(n) =0 for * > (m+ n)k. Furthermore, %,(n) vanishes in
J=

dimensions * > (m + n)k by construction. As n(k + 1) > (m + n)k, both assertions of (b)
follow.
Consider the diagram obtained by restriction

% (H,;n) S H,C(n)
U ) U
€(H,;n) —— H, C*(n).

0,
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For part (c) we have to show the surjectivity of 6,, i.e. v = 0~ *(w) is in €, (H,; n) for any
weH,C(n) with |w| =% <n(k+1). But this is the case, for v represents zero in
% (H,; n)/€,(H,; n) which vanishes in degrees * < n(k + 1) by construction. |

4.3 Let 6*A4 denote the graded module A with the degrees of the new elements ¢*(a)
being raised by k. Denote by Z,(H,; n) the graded vector space 6, (H; n)/%6,—,(H; n).

LemMma. If F = [, there is an isomorphism of vector spaces
t:6*9(H,;n)—> G (Hy;n+1).

For general F there is an isomorphism ¢**2,(H;n) =~ 2,(H,; n+2).

Proof. Abasis of Z,(H,;n) is given by the monomials v = Q; (u;,)*. . - (Qy,)(u;,) with
k=21 4 211l Note that the degree of 62" (Q,(1;)) and Q,(c(u;)) agree, where
o(u;) = u;, {. Therefore t(c*(v)) = Q;, (4, +1)* ... Q; (U; +1) defines an isomorphism.
The case F # [, is analogous. |

4.4 Proof of Theorem B. If n and k are such that n > km > 2, then the isomorphism 6,:
% (H,;n) > H,C,(n) of Lemma 4.2 induces an isomorphism 0,: Z,(H,; n) > ﬁ*Dk(n). For
arbitrary n, k > 1 choose n’ such that
(1) n+n" > km, and
(2) n+ n'is a multiple of the order of the bundle n*. We exclude the trivial case m = k = 1
and assume in addition that km > 2. By (2) and 2.6 there is an isomorphism

d: " H,D,(n) > H,D,(n+n’),
Then an isomorphism 0, is defined by the following diagram,

0 ~
D (H ;) - H,D,(n)

a"""l = = j o7+ (d)

c ™ (Hn+n') -, o ™ H,D(n+n')

(]

where the lower 8, exists by (1). This implies Theorem B. [ |

4.5 Proof of Theorem A for n = 1. The isomorphism 6 is defined via the stable splitting
2.3, using the isomorphisms 8, of Theorem B. Here ¥ means the elements of € in positive
degrees.

~ [’] ~

(g(H*; 1) H*C(l)
F(H,; ) ———— @ H,Dy(1) m
k>1 @0 kx>1

k=1

Together with Lemma 3.1 this case completes the proof of Theorem A.
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5. EXAMPLES

5.1 Let M, denote a closed, orientable surface of genus g. Take F = F, and n = 2. Since
B,(M,)=1,2g,1for qg=0, 1,2 and zero otherwise, we have by Theorem A

H,C(M,; 5*) = H [8*"*) @ H, Q8" %)®% @ H (5" %)
~F[u]l/* @ Fy[xili=1,...2g1® F,[y;lj = 0]
with
|ul =n+2, o) =1,
|x;| =n+1, olx)=1,
il =@ =D)+2n,  w(y)=2
By Theorem B, a basis of H «Di(M; S™) consists of all monomials
T = e sy A
for some r > 0, e =0, 1 and a;, b; > 0, such that
o(fy=e+a;+ ... +ay;+bo+2b;+ ... +2'b, =k

For example, HqDZ(M 42 8") is determined by the following table.

basis rank
q=2n y2 1
2n+1 X1Yos + + - X29Y05 V1 29 +1
2n+2 UY g X Tt - ks X5 2 x3, 29> +g+1
2n+3 UXyy o n s ux,, 2g

By Theorem C, the rank of H,C*(M,)is 1,29 + 1, 29> + g+ 1 and 2g for =0, 1, 2, 3. The
next table gives H,D;(M,; S") and H,_,,C3(M,).

basis rank
q=73n v 1
3n+1 YoVi. X y& (1 <i<2g) 2g + 1
3n+2 uyd, x;y1, xix;¥0 (1<i<j<2g) 29> +3g + 1
3n+3 uyy, UX;yo, X;X; X, (1 <i<j<k<2g) $9°+29° +5g+1
3n+4 ux;x; (1<i<j<2g) 29 +g

The last table shows the rank of H,C*(S?) for k < 10.

oo
el
—
[=]

k=1 2 3 4 5 6 17

1 1
0 1
1 1

OO AU AWN—=O
_—

BN — =

— = N N =

—_ N W N = —

—_ N W N — —

—_ W W W R
—_— 0 W W W W N =
—_ N W R B W W= —
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52 Let M be the complement of a knot in R3. Take F =F, and n=2. Now
B,M)=1,1,1 for ¢ =0, 1,2 and we have
H,C(M;S") = H (QS"*3) ® H,(Q*S"*?) ® H, (Q*S"*?)
= Fo[x] @ Fy[yili = 0] ® Fylzili,j = 0]
with
x| =n+2 w(x)=1
il =@ =) +2n+1), wo(y)=2
|zl =2 +2) =2 -1,  o(z;) =2/

Proceeding as above gives the following table for H,C*(M), and ranks of H,C*(M) for
k=234

rank
k= 3 4
q=0 1 1 1
1 2 2 2
2 3 4 5
3 2 5 8
4 1 4 9
5 2 8
6 1 6
7 3
8 1

For example, a basis for H, C*(M) is: z, in dimension g = 0; y,zo0, Z;0 in dimension g = 1;
XZoo» V&, Zo; in dimension q = 2; xy,, y; dimension g = 3; and x? in dimension g = 4.

5.3 In this example we show that the results in Theorem A—C can be deduced by other
means in case M is a compact connected Lie group G. In this case C(G; S") is homotopy
equivalent to map(G; S"*9), the space of all maps from G to $"*9, g = dim G, by 2.3. Let
map,(;) denote the space of based maps, and consider the diagram of evaluation fibrations

mapg (G; S"*?) —— map,(G; QS"*7)

It !
map(G; S"*9) —— map(G; QS"*9)
! !

Sn+g T an+g

where E is the stabilization. Evidently, the right-hand fibration is principal and has a
section; thus the total space splits as QS"*¢ x mapy(G; QS"*?). The homology of
map,(G; S"*?) and map,(G, QS"*9) is given in [15] as long as n is sufficiently large, and
n+g is odd if F # [F,. In particular, the upper map in the diagram above is monic in
homology. Thus, under these hypothesis, one has

g ﬁg(G)
HCG;$")=Q® @ H,(Qr15"19)
q=0 j=1

as given in Theorem A. Theorems B and C follow analogously.
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5.4 The rational homology of C(M x R; X) was determined in [13]. When X is S” and
n+m+ 1 is odd, the homology is given by the vector space isomorphism

H,C(M x R; ") ~ Sym[H (M) ® H,(5")]

where Sym [ ] denotes the symmetric algebra. This last result is a special case of Theorem A
when n+m + 1 is even. Generally, one has the vector space isomorphism

H,C(M x R; X) = Sym[H,(M)® ¢ "L[¢"H,(X)]]

for path-connected X, where o is the suspension; L[] is the free Lie algebra. There is a
spectral sequence E? = Tor®(Q, Q) and R = Sym[H, (M) ® ¢ "L[¢™H,(X)]] converg-
ing to HC(M; SX). Note that C(M x R; X) ~ QC(M; SX) by 2.5. There are non-trivial
differentials when X = §" and n + m is even.

5.5 In this section we recall some information from [5 or 6] concerning the rational
homology of configurations in a punctured Riemann surface of genus g, ]\7Ig. There we
determine the rational homology of C(M,; S*"). The relevant Serre spectral sequence (in
cohomology) has an E,-term given by H*(QS?"*2)% @ H*Q2S?"*2 There is a non-trivial

g
(integral) differential which hits twice the form ) x,;_, x,; where the x; run over a choice of
1

generators for H>"*(QS2"*2)2, The proof of this last fact arises from an inspection of the
pointed mapping space map,(M,, S*"*?) which is of the homotopy type of C(M,; S") [4].
This differential is the only non-trivial one in characteristic zero.
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