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MAPPING CLASS GROUPS AND FUNCTION SPACES

C.-F. BODIGHEIMER, F. R. COHEN~*, AND M. D. PEIM

1. INTRODUCTION

The purpose of this paper is to explore a relationship between mapping class
groups and certain function spaces. One application is a determination of the odd
primary cohomology of the “hyperelliptic mapping class group” to be defined below
together with the cohomology of the mapping class group for a punctured 2-sphere.

Let M, denote a Riemann surface of genus g with & boundary components and
n punctures. The mapping class group Iy, is m,diff*(]\[;.k) where dif f7(-) is
the group of orientation preserving diffeomorphisms. possibly permuting punctures,
fixing the boundary circles pointwise.

The surface M, = M can be regarded as a 2-sheeted branched cover 7 : M, —
S? with 2g + 2 branch points as follows. There is an involution j : M, — M, with
2g + 2 fixed points and S? is the orbit space M,/ where 7 is the group Z/2Z
acting through j. Define the hyperelliptic mapping class group Ay < Ff,;_(, to be the
subgroup of I', which is the centralizer of the isotopy class group of j. For example,
A, =T, but A, is a proper subgroup of I', if g > 3. In addition there is a non-split
central extension

l— Z2Z - A, — T7% > 1
where I'" = I'{j ;. References for these facts are [3]. [4]. [5].

Thus the map A, — TI'*9*2 gives a cohomology isomorphism with coefficients
in a ring R containing 1/2. The methods here apply to the groups I'" rather than
the groups A, directly. If g is even, the 2-primary cohomology of the groups Ay
is analyzed in [14] using more geometric techniques. The main results here are a
determination of the mod-p cohomology of all of the I'" for p an odd prime with
either trivial coefficients, or coefficients in the sign representation.

To describe the relation between I'" and function spaces. consider the space
A*X of all continuous maps from the k-sphere. S*. to X. The group O(k +1) acts
naturally on S* by reflections and thus on the space A*X. If G is a subgroup of
O(k +1). consider the homotopy orbit space ( Borel construction ). ESO(k+1) x¢;
A*X. Tt follows from what is done below that if X is a (k+ 1)-fold suspension, then
fibrewise analogues of configuration spaces with labels in X provide combinatorial
models for ESO(k + 1) x¢; A¥X. When k = 2. and G = SO(3). the “building
blocks™ for this model are Eilenberg-Mac Lane spaces A (I, 1) much in the same
way that the configuration spaces F(R* n)/L, are building blocks for double loop
spaces of double suspensions.
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The cohomology for some of these function spaces can be analyzed by inspection
of the Serre spectral sequence for the fibrations

1. A2X — ESO(3) xs0(3) A°X — BSO(3), and

2. 22X —» A°X — X.

The cohomology of the groups I'" follows directly from the cohomology of these
function spaces. The approach above may be regarded as using ”continuous in-
formation” to obtain information about the cohomology of discrete groups. This
point of view shares some features in common with the cyclic homology for certain
algebras. This connection is described in [15]. More detailed descriptions as well as
further applications are given in [17].

Some information about I'™ at the prime p is given in [2] where the mod-2, 3,
and 5 cohomology of I'® was first given. Related interesting results for Sp(4,Z) are
given in [10], [28]. The 2-torsion in the mapping class group for genus 2 as well as
that for the hyperelliptic mapping class group A, was given in [14]. For example,
there are copies of Z/8Z in every positive dimension which is congruent to zero
modulo 4; the remaining 2-torsion is all of order 2.

The current article gives a calculation of the mod-p cohomology of I'* for all n.
For example, Theorem 2.4 lists the mod-2 cohomology of each group I'". Theo-
rem 2.5 gives the mod-p cohomology with trivial coefficients, and with coefficients
in the sign representation. This article appeared in mildly different form in the
Mathematica Géttingensis preprint series, Heft 5 (1989), [7].

Subsequently, Kawazumi gave related, and interesting information about the
mod-p cohomology of these groups using different methods in the special cases for
which p < 2g + 2 [27]. For example, he shows that if p = g + 1, then the mod-p
cohomology ring of I'?972 and A, is a free module over a polynomial ring on one
indeterminate of degree 4 with the generator given by the second Morita-Mumford
class, and with Euler-Poincaré series (1 + t* + 29 +¢29%1)(1 — t*)~"'. These special
cases, and the results given here agree.

The point of this article is a complete determination of the mod-p cohomology
of I'" for all p and for all n in a global and simple form. This same structure is
used elsewhere to give analogous results for genus one surfaces with punctures (in
preparation).

The models given here were. of course, motivated by constructions originally
given by Dyer and Lashof [19], and by many others [1, 6, 24. 25, 26, 29, 30, 31, 32].
Although this article was written some time ago (7], the authors had decided to wait
to publish the results. The article was submitted now because the mathematics fits
some of the topics in which Peter is interested.

We wish him all the best on this happy occasion of his 60-th birthday.

2. REsuLTS

Let 7 : E — B denote the projection map for a fibre bundle with fibre Y.
Configuration spaces were defined by Fadell and Neuwirth [20] and bundle analogues
were studied in [18] as follows:

(1): F(Y,k) is the subspace of Y* given by {(y1,....yx) | yi #y; if i # j} and
(2): E(r,k) = {(ei,...,ex) € E¥ | e; # e; and m(e;) = m(e;) if i # j}.
Thus there are bundles

F(Y.k) » E(mk) 2 B
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and
F(Y,k)/Ek == E(w,k)/Zk —L) B
where n is first coordinate projection and the symmetric group X, acts by permuting
coordinates.
Consider the inclusion of SO(2) in SO(3) and the induced map 1 : BSO(2) —
BSO(3) to get a bundle S? — BSO(2) - BSO(3). Several proofs of the follow-

ing proposition appear in [14, 2] although this result was known for some time. A
third proof is included for the convenience of the reader.

Proposition 2.1. If k > 3, then E(n,k) is an Eilenberg-Mac Lane space K(m,1)
and E(n,k)/Zy is the Eilenberg-Mac Lane space K(I'*,1). Thus there are isomor-
phisms
(i): H*(T*; S) = H*(E(n,k)/Sk; S) for any trivial T*-module S and
(ii): H*(Ay; R) = H*(E(n,29 + 2)/ag4+2; R) where R is any ring which is a
trivial Ay-module containing 1/2.

The groups I'* are related to function spaces via a combinatorial construction.
Let X denote a connected CW-complex with base-point *. Write

E(m; X) = [] E(, k) xz, X*/(=)

k>0
where =~ is the equivalence relation determined by
(ei,...,ek)(atl,...,xk) = (61,...,éi,...,ek)(l‘l,....J:‘i,...,l‘k)

provided z; = . Thus E(m: X) is the equivalence classes of pairs [S, f] where S'is
a finite subset of E with m(S) = {one point} and f : S — X where [S — {q}, f|{S —
{q}}] is equivalent to [S, f] provided f(q) = *. In case B is a point, the notation
C(Y; X) for E(m; X) is that of [18, 12, 16].

As a special case, let 7 : BSO(n) — BSO(n + 1) be given by the standard
inclusion of SO(n) in SO(n + 1). Thus the fibre of 7 is S”. Recall that SO(n + 1)
acts on S" as usual and so SO(n + 1) acts naturally on A"X, the space of all
continuous maps from S" to X.

Proposition 2.2. If X is a connected CW-complex. there is a homotopy equiva-
lence

E(mEX) — ESO(n+1) Xs0(n41) AT X.

The spaces E(m: X) are filtered by the cardinality of S in an element [S, f]
as follows. Write Ey(m; X) for the k-th filtration and D (7: X) for the filtration
quotient Ej(m: X)/E._(m:X). The next proposition is not stated explicitly in
[12. 18], and elsewhere but nevertheless, it follows immediately via the proof in the
appendix of [12].

Proposition 2.3. If X is a connected CW-complex. then E(m: X) is stably equiv-
alent to \/L‘Zl Dy(m: X). Thus there is an isomorphism
H.E(m X) = @ H.Dy(m; X) .
k>l

Write B,, for Artin’s braid group on n strings. That the cohomology of I'” is a
module over the cohomology of BSO(3) will be used next.
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Theorem 2.4. 1. Ifn > 2, there is an isomorphism of H*(BSO(3); Fy)-modules
H*(T*™;Fy) = H*(BSO(3); F2) ® H*(F(S?,2n)/Za,; F2)

and H*(F(S?,2n)/%9n;F2) is isomorphic to H*(Bay;Fo) © H*2(Bay_o; Fa)
as a vector space.
2. Ifn > 2, there is an isomorphism of H*(BSO(2);F2)-modules

H*(T?"~1.Fy) = H*(BSO(2);F2) @ H*(Baon_2;F2) .

The isomorphisms in Theorem 2.4 frequently do not preserve the algebra struc-
ture. For example, if z is the non-zero element of H'(I'**;F,), then the cup-square
z? is non-trivial. In the mod-2 cohomology of the braid groups, the cup-square of
the one dimensional class is zero as seen in [11, 22, 33] where the cohomology of the
braid groups is given.

The methods also give information about the cohomology of I'™ with other coef-
ficients. For example, let V be a graded vector space over a field F and write V=7
for the I'"-module V ®z ---®r V where I'" acts via ¥,, permuting coordinates with

—n—

the usual sign conventions. Assume that V' is concentrated in degrees at least one.
Let Sy denote a bouquet of spheres with H,(Sy;F) isomorphic to V. Then there
is an isomorphism in section 3 given by

H, (" : V®") = H,(D,(n;Sv); F)

for n > 3 and 7 is given in Proposition 2.1. In particular, if V is F concentrated in
an odd degree, then V“™ is the sign representation which will be written F(—1).

To state the next theorem, write Dy (R?;S™) and Dy(S?%;S™) for the filtration
quotients of 225" +2 and A2S"*+? respectively. The homology of Dy (R?; S") is given
in [11] while that of A2S™ is given in section 8 here. Homology groups in the next
theorem are taken with F,-coefficients.

Theorem 2.5. 1. If p is an odd prime, there are isomorphisms of vector spaces
H.E(n;S* Y~ H,BS® ® H,A25%"t]
and
H,(T* F,(~1)) = ,H,BS* ® H,_i_p2n-1)Dr(5% > ') .
2. If p>3, H,(T*;F,) will be given in section 10 here.

The answers in Theorem 2.5(2) above require more explicit information. and are
given in Theorems 10.1, and 10.3.

Some previous results that were given in [2] are as follows. It was shown that the
integral cohomology of '™ is all p-torsion for p < n. One curious example is A (T, 1)
which stably splits as a wedge AV B where (1) A is K(X4,1) VvV Z(M(2)) localized
at 2 and XM (2) is the homotopy direct limit of the second Steinberg idemipotent
ey : X RP>* AN RP>* — Y RP> A RP> with

1 0 1 0 1 1 0 1
62_<0 1)+<1 1>+<0 1>+(1 o)
and (2) B = K(Z/3Z,1). The mod-2,3, and 5 cohomology of I'" was also given.

These special cases agree with Theorems 2.4 and 2.5. The map BI'" — BSO(3)

of Lemma 2.1 does not arise as the classifying map of a group homomorphism if
n > 6.
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The function space methods here apply to give the cohomology of a few other
discrete groups related to ['y. For example, the rational cohomology groups of F’f
with either trivial rational coefficients or coefficients in the sign representation have
a succinct description in terms of classical modular forms.

These results lead to the following (somewhat imprecise) question. Can one study
the cohomology of certain discrete groups such as I'y.1 or the automorphism group
of the free group by variations on these function space methods ?

3. I'",SO(3) AND PROPOSITION 2.1

Throughout this section, the bundle projection BSO(2) — BSO(3) with fibre
S? given by the standard inclusion of SO(2) in SO(3) will be denoted by 7.

Proposition 3.1. Ifk > 3,then E(n,k)/Sy is an Eilenberg-Mac Lane space K (T*, 1).

To prove 3.1, first check that mE(n, k) =0if i > 1 and k > 3. Here consider the
diagram of fibrations where p denotes first coordinate projection, and i denotes the
natural inclusion [18].

F(R?,k — 1) F(S% k) —2— s2

! ! |

F(R*k-1) —— E(n,k) —2— BSO(2)

! l l

¥} —— BSOW —— BSO@3)

Since F(R?, k—1)is a K(,1), it follows that E(n, k) is also provided the bound-
ary homomorphism

0 : mBSO(2) = mCP> — m F(R% k — 1)

is a monomorphism. Since i induces a monomorphism on 7, and F(R?* k — 1) is a
finite dimensional K (,1), it suffices to check that the boundary homomorphism

0: 7T252 = ‘/TlF(RE,]{— 1)

is non-zero. If k = 3, this follows directly from the fact that F (52, 3) is homotopy
equivalent to RP*. If k > 3, a similar result follows by comparison of the fibrations
where ¢ denotes s projection on the first 3 coordinates.

F(R%,k-1) —— F(S%,k) —2— 8?2
| 1| !
F(R%,2) —— F(S2,3) —2 g2
These observations are recorded next.

Lemma 3.2. Ifk > 3, E(n,k) is a K(m.1).
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To finish the proof of 3.1, it suffices to identify the fundamental group of E(n, k)/%,..
Consider the following map of fibrations to get a long exact sequence in homotopy
given by

0= mBS0(3) - mF(S% k)/%; — mE(n,k)/Ex — mBSO(3) — 0

from the following morphisms of fibrations:

F(S%.k)) ——  E@n,k) —— BSO(3)

! l 5

FiS? ke, — E(n, k)/Zy —— BSO(3)

l l l

sz _ BZA — {*}

Since the center of mF(S%k)/Z, is Z/2Z and the quotient by the center is
isomorphic to T* [21]. it follows that T E(n, k)/Ey is isomorphic to T,

The above procedure applies to certain other fibre bundles with fibre given by
a surface [15]. Applications have been given to the cohomology of some of these
groups. and their relation to modular forms.

4. MaprpPING SPACES AND GROUP COHOMOLOGY

In this section. the cohomology of certain groups with possibly twisted coefficients
is considered with the view that the cohomology of certain mapping spaces informs
on the cohomology of these groups with the given coefficients. The methods are
some of those in [11] and this section Is an exposition of those methods.

Let V' denote a graded vector Space over a field F and assume that V is con-
centrated in degrees at least one. Thus there is a bouquet of spheres S~ and an
isomorphism of vector spaces

V = Ho (S ).
The symmetric group Y. acts on
V* =2V 8e... @V
by permuting coordinates with the usual sign conventions.
For example, if V is a copy of I concentrated in even degrees, then V7F is the
trivial FY;-module. If V is a copy of ¥ concentrated in odd degrees, then VK ig 5
copy of the sign representation. As [* maps to ¥, V=% is also a I'*-module and

H.(T*:v %) is Tor::rk (F; VoK)

Proposition 4.1. If 2 BSO(2) — BSO(3) is the bundle projection induced by
the natural inclusion of SO(2) in SO(3). then there is a vector space isomorphism
Jor'k >3 given by

H.(TY: V) = H,(Dy(n: Sv): F) .
Furthermore, there are vector space isomorphisms

H,(T%:F) 2 H, o0 ( Dy (m; S2): F)
(I“(l{

H,(T*:F(+1)) = Hyy g 2g 10k ( Dy (n; SH1): F)
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where F(+1) denotes the sign representation of T*.

Since E(n; Sy) is stably equivalent to Vi1 Dr(n; Sy), the identification of the

homology of E(n; Sy ) as a filtered vector immediately gives H,(I'*; V=), Explicit
classes are given in later sections of this article.

The proof of 4.1 is standard, and some details are given for the convenience of
the reader. Let M be a G-space. Thus there is a principal G-bundle
A EG xg M — BG
with fibre M. Then consider

E(\ X) = EG xg C(M; X)

where X is a pointed space and C(M;X) = E(x; X) as given in section 2. Also,
consider the spaces

E(\ k) = EG xg F(M, k)
and
E(\K)/Zy = EG x¢ (F(M,k)/%)
where G acts on the configuration space and EG diagonally. By Proposition 2.3,

E(A. X) is stably equivalent to Vi>1Dk(A; X) for connected CW-complexes X.

Let S.(X) denote the singular chains complex of X over F. Thus there is a
homology isomorphism

JH(X;F) = S.(X)

where H,(X:F) has the trivial differential and consequently there is a homology
isomorphism

S E(n.k) @5, (H.X)?* - S.(E(n,k) xx, X*).

If X\ denotes the fat wedge in X* and X is a path-connected space with non-
degenerate base-point. there is a cofibration

E(n,k) xs, Xx — E(n,k) xv, X* = Di(.X) .
Thus there is a homology isomorphism
S.E(n,k) 2x, (H.X)** = S.(E(n.k) xg, X*/E(n,k)xx;)

where X% is the k-fold smash product and 4.1 follows.

5. STIEFEL MANIFOLDS AND THE PROOF OF 2.2

Write V,, ;. for the space of orthonormal k-frames in R" and recall the natu-
ral O(n)-action on V,, ;. together with the homeomorphisms SO(n)/SO(n — k) —

On)/O(n—k) = V, 1. The spaces are used next to obtain new bundles where the
main case below is given by 1.

For ¢ > 1, and X a space with base-point. form the configuration space bundle
E(n:q) and E(n; X). There are homeomorphisms

E(rIQ) = ESO(”‘) XS0(n) F(‘/H./\"q)‘
and

E(1:X) — ESO(n) X so(m) C(Vy 4. X).
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The homotopy type of some of these spaces are determined next in terms of
function spaces. In what follows restrict to the case for which M is closed.

Choose a Riemannian metric on M, and consider the associated exponential map
exp : D(M) — M, defined on the maximal open disc bundle D(M) C T(M) in
the tangent bundle T'(M), such that the restriction exp, : D,(M) — M of exp
to a fibre over y € M is a diffeomorphism onto a neighborhood of . Then define
T(M) by identifying two vectors in T(M) if they lie in the same fibre and outside
D(M). Thus T(M) — M is a D™/8D™-bundle with section. Its’ isomorphism
type is independent of the metric chosen.

Using the base-point in X there is the naturally defined section for M x X — M.
Form the fibrewise smooth product T(M) A,,(M x X) = T(M; X), which is a
Y™ X-bundle over M, where m is the dimension of M. Let I'(M;X) denote the
space of sections for this bundle. If ¢ € C(M; X) and y € M is given, restrict § to
the neighborhood exp(D, (M)) by considering the image of £ under the natural map
C(M;X) — C(M,M —exp(D,(M)); X). Notice that there are homeomorphisms

C(M,M—exp(D,(M)); X)— C(exp(Dy(M)),dexp(Dy(M)); X)— C(D™,0D™; X).
The last space is retractible onto its subspace
X = (D"/oD™)A X Cc C(D™,0D™; X) .

Setting v(€)(y) = &, gives a section () of the bundle T(M;X). The follow-
ing proposition concerning these constructions and their relationship to spaces of
sections is given in [6].

Proposition 5.1. For a compact, closed, smooth manifold M and a connected
CW-complex X the map

v:C(M:X)— T(M;X)
is a homotopy equivalence.

If M is parallelizable, this gives a homotopy equivalence C(M:.X) ~map (M:
Y X). the free maps from M to X. The next result will use instead that M x R¥
is parallelizable. In this case, there are bundle isomorphisms T(M) & € >~

M x R™** for the trivial k-plane bundle €. Hence, if X' is a k-fold suspension
X' =%*X, then

T(M; X"y =T(M) Ay (M x £¥X), and
T(M)Apex Apg (M x X) =M xE™THX .
Thus T'(M: £* X) is homotopy equivalent to map(M; S FX).
Corollary 5.2. For a connected CW -complex X, there is a homotopy equivalence
C(Sm;Z){) — map (S”';E"H—IX) o~ AIYIZ!II+1‘\’ )

A diffeomorphism ¢ : M — M acts on C(M; X) and on I'(M: X) in the natural
way. If ¢ is an isometry with respect to the metric chosen above. then v commutes

with the induced map ¢* on C(M; X) and I'(M:X). Thus the following diagram
commutes:
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C(M;X) —— T(M; X)
o'l o‘l
C(M; X) —— T(M; X)
This is straightforward from the definition of v, and gives the next proposition.

Proposition 5.3. The map induced by ~ gives a homotopy equivalence for con-
nected CW -complexes X :

ESO(n) o )C(Vn_kX) — ESO(n) & )r(vn.,\.;X).

Next. consider the standard metric on ™ C R"*!, and notice that TS" SR is triv-
ializable SO(n + 1)-equivariantly. The induced map v : C(S";£X) — [(S"; LX)

is SO(n + 1)-equivariant as well as a homotopy equivalence. For more examples.
see [9].

Corollary 5.4. For any connected CW -complex X, there is a homotopy equiva-
lence

E(m;TX)— ESO(n) x A'Sr*lX
SO(n)

where 0 is obtained from the sphere bundle

S" — BSO(n) -- BSO(n+1) .

6. HOMOLOGICAL CALCULATIONS AT THE PRIME 2

In this section. assume that all (co)-homology groups are taken with F.-coefficients.

Consider the next fibration obtained from the bundle S” — BSO(n) - BSO(n+
1) to obtain the fibration

A'S"T" — E(n;S9) — BSO(n+1).

Recall the suspension E : $"*! — QS§"~9*! together with the map of fibrations

Q”S"+‘I Qe er+15n+q+1

l !

A”S”+q _~\” E ,\”QS’H””'l

l l

Sn+a L QSn+q+l.

Since A"QS" 9! is homotopy equivalent to QS+l x Qrrign+atl and Q1 E
induces a monomorphism in homology, the next lemma follows.

Lemma 6.1. There is an isomorphism

[{*A\IIAS'I)+1[ o fI*S,H—[I R H*Qn SrH‘-q .
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Next, notice that there is a factorization C(R™*; X) — E(n; X) — C(R*: X)
where the composite is homotopic to the stabilization map. Thus the composite
Qrs"te — A"S"T1 — E(n; S7) — Q>S5 induces a monomorphism in mod-2
homology.

Recall the homology of Q7S"*4. If ¢ > 0, there is an isomorphism of Hopf
algebras

H*Q"S"“L" — F2[Q1(zq)]

where z, is of degree ¢ and Q; = Q;, - -+ Q;,, satisfles 0 <1y <o < -+ ip <n—1
with degree (Q;z) = i + 2 (degree (x)). Write Qz; for the dual basis element

in H*Q"S™"9 which is dual in the standard monomial basis. Thus there is an
isomorphism of algebras

HQrg i g Sl @ B,
where B, , is the algebra kernel of
H*Qr8™ e — H*S9

and B, 4 is an exterior algebra.

Now consider the Serre spectral sequence in cohomology for the fibration A"S"*7 —
E(n;S7) — BSO(n+1) to get

E, 2 H*BSO(n+1)® H*A"S""1
and thus
E; 2 H*BSO(n+1)®@ H*S"""® H*S?® By 4
as an algebra (for ¢ > 1).

Write z,,4, for the fundamental class in H"*95""9. The following lemma de-
scribes all of the differentials in this spectral sequence.

Lemma 6.2. 1.
2. B, 4 consists of infinite cycles
3. dni1(Tnyq) =Ty Wy where wyqq is the (n + 1)-st Stiefel- Whitney class in
H*BSO(n+1), and
4. T, Tpig is an infinite cycle.

Before proving the lemma, consider the cohomology of E(n;S9) implied by these
results. Notice that Fy as a module over H*BSO(n + 1) splits as a sum A = Ay &
As & Ay where

Ay =H*"BSO(n+1)® B, 4,

Ay = H*'BSO(n+1) ® z,B,,. q ,

A3 =H*BSO(n+1)® zy4nBn 4, and

Ay =H*"BSO(n+1)®zq Tg4nBngq -

Furthermore, A & A, consists of infinite cycles. The boundary d,, restricts to a
monomorphism d,, : A3 — A, with cokernel A,/d, Ay. But A;/d, A; is isomorphic
to H*BSO(n) ® z,B, ,. Since all other elements in £, ;| are infinite cycles, the
next theorem follows.

Theorem 6.3. There is an isomorphism of H*BSO(n + 1)-modules

H*E(n;87) = [H*BSO(n+ 1) ® (B, 4 B Tq&Zy+nBn.g)] & [H BSO(n) 9 x,B, 4] -
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The next step is to compare the answers given in 6.3 to the filtrations of the
homology of E(n; S9). First, notice that the k-th filtration of E(n; S?), £} is home-

omorphic to ESO(n + 1) Xgo(n+1) Fi where Fj, is the k-th filtration of C(S"; S).
The next statement follows.

Lemma 6.4. There is a map of fibrations where i is the natural inclusion:

Fk—l = Fk. — C(S":Sq)

l l !

Ek—l e Ek —_— E('l], Sq)
BSO(n+1) BSO(n+1) BSO(n+1)

Recall that the cofibre of the natural inclusion i : Fy_; — Fj is Dy(n; S9).
Furthermore. there is a stable map from Fj. to Fj_; stably splitting i. The next

two theorems follow from naturality of the Serre spectral sequence together with
Proposition 2.2, and Lemma 6.4.

Theorem 6.5. L. If k = 0(2), there is an isomorphism of H*BSO(n + 1)-
modules

H*(Ey,Ey_\) 2@ H*'BSO(n+1) 2 H* (Fy.. F._1) .
2. If k = 1(2). there is an isomorphism of H*BSO(n + 1)-modules
H*(Fy,F._,) 2 H*BSO(n) ® H*(F,C(R";S7), F,._,C(R"; S1)) .

Theorem 6.6. 1. If k = 0(2), there is an algebra extension
1 — H*(BSO(n+1);F2) - H*(E(m;k)/Zi;Fy) — HY(F(S".k)/E;Fs) — 1.
2. If k = 1(2). there is an algebra extension
1 — H*(BSO(n):Fy) — H*(E(n;k)/Z);Fy) — H(F(R".k)/Si:Fy) — 1.
Proof. Combine 2.1 and 5.5.
To finish this section. a proof of Lemma 6.2 is given. Consider the fibration " —
BSO(n) - BSO(n + 1) together with the trivial fibration S — S7 — * to get a
fibration S" x S — BSO(n) x S7 — BSO(n+1). As §" x S = F(5".1) xx, S4

and E(n, 1) xx, S = BSO(n) x S9. there is a map of fibrations given by the natural
maps as follows:

S™ x 851 — (C(5":5Y)

l 1

BSO(n) x S1 ———  E(: S")

l |

BSO(n + 1) BSO(n + 1)
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Furthermore, there is the map v : C(S™; S?%) — TI'(S™;S89). If yo € S™ is any
point, evaluate a section at yo, and obtain a map I'(S™; S?) — D, (S™)/0D,,(S™)A
572 5™ A S9 On the other hand, consider the natural map

S x 87 = F(S™,1) xg, 87— C(S"; 8%) .
Furthermore, the composition of these maps
S x 89 -1, C(S™; 89) L, (57 8%) L S A 87,
gives the natural collapse map. Hence dp41(2n4q) = &4 - wn41 for the cohomology

Serre spectral sequence of the left-hand side for the above morphism of fibrations.
Thus dy, 4 ¢(Zn+q) = Tqwn+1 in the right-hand side. This finishes the proofof 6.2. O

To finish the proof of Theorem 2.4, the cohomology of F(S™, k)/%y is required.
That is the subject of the next section.

7. ON THE COHOMOLOGY OF F(S™ k)/Xj, AND THEOREM 2.4

In this section all (co)homology groups are taken with Fp-coefficients. It was
shown in [8] that there are isomorphisms of vector spaces given by

H,(F(S™,k)/Z) = HF(R™, k) /S & Hy—n, FR™ k= 1)/Z4_, .
Recall that the homology groups of F(R", k)/Zy are listed in [11] and that if £ =
1(2), the natural inclusion F(R", k—1)/X;_1 — F(R", k)/Z gives an isomorphism
in mod-2 homology.
Thus there are isomorphisms of vector spaces
H F(S*k)/Sk & H,F(R%, k) /Sh @ Hy— n F(R? b — 1)/Sk—1 .

Since F(R?,k)/Zy is a K (7, 1) where 7 is Artin’s k-stranded braid group By. The-
orem 2.4 follows from these remarks together with Theorem 6.6 as there are iso-
morphisms

H,(F(S* k)/%x) — H,By ® Hy—2Bj—1.
Some further consequences are listed next. From Fadell and Neuwirth [20], there

is a bundle F(R™, k — 1) — F(S" k) & S" where p; denotes first coordinate
projection. Thus there is a bundle

F(R", k—1)/Zk_1 — F(S™k)/Zk—1 — S™
Furthermore, the natural inclusion of S™ in R"*! gives a commutative diagram

where f classifies the cover F(R™, k —1) - F(R",k—1)/Zx_;.

F(BP b — /8y —— F(8% 1)/ D

/| |
BYy_; = F(R®,k)/Skey —— = BS_y

Since f. is a monomorphism in mod-2 homology [11], the next lemma follows at

. once.

Lemma 7.1. There is a short exact sequence of algebras

1 — H*S™ - H*F(S™k)/Sk-y — H'F(R".k—1)/Sk_ — 1.
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Remark 7.2. This extension of algebras is sometimes trivial, and sometimes not.
Next, consider the natural quotient map

q: F(S™,k)/Sk_r — F(S™k)/Zk.

Lemma 7.3. If k = 1(2), then q* is an isomorphism in mod-2 cohomology.
Proof. If k = 1(2), then ¢* must be a monomorphism as the transfer guarantees
because £;_; is of odd index in ¥j.

That ¢” is an epimorphism is a restatement of the splitting for the mod-2 ho-

mology of F(S™, k)/X given at the beginning of this section by the natural size
comparison. ad

Corollary 7.4. If k = 1(2), there is a short eract sequence of algebras
11— H*S"™ — H*F(S™,k)/Sx — H*FR"k—1)/Z4_; — 1

The next remark which is well-known [20], but is recalled for the convenience of
the reader. Let Q3 = {oo U £1} denote a fixed subset of S? having cardinality 3

Lemma 7.5. There is an equivalence of bundles given as follows where k > 3 and
0 is SO(3)-equivariant:

F(Sz—Q;;.k—3) —I'F(Sz—Q\;.k—‘:})

! J

SO[B) x F182 = Oy, do—i3) ———s F(S2, k)

l l

SO(3) _ SO(3)
Furthermore, the homotopy orbit space ESO(3) x so F(S?=Q3) is contractible.
Proof. Recall that Q3 = {oo U £1}. The equivalence 6 is defined by

0(g, (x1,...,25-3) = (g(c0),g(1),9(—1),g(z1),... vg(Tr_z3)) .
Notice that § satisfies the following properties:

1. The map 0 is SO(3)-equivariant with the natural action on the target. and ac-
tion specified on the source by the diagonal action where SO(3) acts naturally
on itself via left multiplication, and trivially on F(S? — Q3,k — 3).

2. The map g: SO(3) — F(S%,3) is a homotopy equivalence.

3. The map 6 induces a map of fibrations which is a homotopy equivalence on
the base, and the identity on the fibre, and is thus an equivalence.

4. In case k = 3, ESO(3) xs0(3) F(S? — Q3) as ESO(3) x50(3) SO(3) is con-
tractible.

The lemma follows.

More is true, and is well-known. The natural action of PGL(2.C) on CP!

extended to a diagonal action on F(CP', k) gives rise to a homeomorphism

PGL(2,C) x F(S§% - Q3,k —3) —» F(S%k).

]
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8. ODD PRIMARY CALCULATIONS FOR A%S"

Throughout this section, all (co)-homology groups are taken with F,-coefficients

for p an odd prime. The cohomology groups H*(I'";F,) will be obtained from the
computations in this section.

Unfortunately, the answers are not clean. The first step is to find the cohomology
of C'(S?;5%) which is homotopy equivalent to A2S9+2.

Since an odd dimensional sphere localized at p is an H-space, it follows that
A"S?97! is homotopy equivalent (at p) to S29+1 x QnG2a+1,

Lemma 8.1. Ifn < 2q+ 1, and S?**! is locaiized at an odd prime, then there is a
homotopy equivalence

2q+1 n Q2q+1 AT Q2q+1
S xQrs — A"S

The bulk of the work is concerned with A2529t2. Notice that after localization
at p, there is a fibration

) ’ : 2 02g+2 2
QST 5 Q2GS A2GRT2 , §RaR

An inspection of the Serre spectral sequence in mod-p cohomology, gives that the
elements of H*Q25%9"! are infinite cycles.

Consider the map of fibrations where E is the stabilization map:

A2§2a+2 AE A2Q > o G20+2

l !

52q+2 £ QXE\:SZ(FHZ

Since the right-hand fibration is trivial, the statement concerning H*(.S=7*!
follows at once.

To continue, the cohomology algebra H*Q?5%7! is required as a Hopf algebra
over the Steenrod algebra [11]. There is an isomorphism of Hopf algebras

H*(2252q+l — A[y[), Ui g e ] S F,,[.’l‘l 1 17, l

where

(i): 1, and y;. are primitive elements of degree 2p*q —2 for & > 1, and 2p~q — 1

for ¢ > 0 respectively,
(ii); Bye = zy and Plzyy = —x% for k > 1, and
e )’ .

(iii): PY xx =0 for j > 0.

Thus a basis for the module of primitives which are annihilated by every Steenrod
operation (in homology) is given by

J .
{vo,z{ | j = 0}.
Using the above basis of monomials, let Aj,j = 0, denote the dual basis element in
H* 25243 which is dual to ;‘r;’l"l. Write ¢ for the dual of y,.v; for the j-th generator
in the divided power algebra H*QS5%7*! and i for a generator of H?¢*28521%2 The

elements ¢ and \;, j > 0, give generators for H*Q?S%9%% as an algebra over the
Steenrod algebra.
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Lemma 8.2. In the mod-p cohomology Serre spectral sequence for the fibration
0252(1-{—2 — A252q+2 - S2q+27
A;j 1s an infinite cycle, v; is an infinite cycle, and dogr1(€) =1 .

The proof of this lemma uses some features of the model C(S?; §29) and the
proof is held in abeyance. In any case, consider the following cochain complex V5,
which is isomorphic as an algebra to

H*52q+2 ® H*QS2q+1 ® H*Sélq—f—l

where the differential is specified by d(e) = i - v, d(i) = d(v;) =0, and d is a
derivation. As the cohomology of Q2529*! is a divided power algebra, the next
observation is immediate:

(iv): €-i-+; is a cycle, and

(V) dle-v) =iy =G+ 1)i-v41.
Thus

(vi): €-v; is a cycle if and only if j + 1 = 0(p).

The cohomology of the cochain complex Vaq, H* Vs, together with some of the
product structure is recorded next. A basis is given by

(1): €d-v;, 320

(2): € 5,5 = —1(p)

(3): v;,7 >0, and

(4): i -5, j = 0(p).

It follows at once that algebra generators are given by

(8): 1pr, k>0,

(6): -1,

(7): € vp—1, and

(8): t *Vpjs .] > 0.

The cochain complex Va; will be used to describe the Serre spectral sequence in
8.2. Let BW,, denote the Hopf algebra kernel of (E?)* where E? is the double
suspension S%9t! — Q2§29+3 Ag 5 side remark. BW, ., is the cohomology of a

space by work of B. Gray [23] although this fact is not used here. Thus E, of the
Serre spectral sequence for

Q252q+2 _y A‘.Zs'.l(ﬁ—'! —, SZ‘H‘B
is given by
ng ® BWZq-H .

By Lemma 8.2, £y = Eyg41 and Ey, 5 is isomorphic to H*V,, 0 BW,, .| where
H*V,, denotes the cohomology of the complex V5, with the prescribed differential.
But Ey,10 = E as the base of this fibration is S29+2.

Corollary 8.3. There is an epimorphism of algebras
H*AQSZ(]‘FJ =2 BLV‘J(H—I

with algebra kernel isomorphic to H* Vog as a vector space.
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Proof of Lemma 8.2. Having given the differentials for V5, it suffices to show that
BW,,41 consists of infinite cycles. Since the classes A;,j > 0, are generators for
BW4+1 as an algebra over the Steenrod algebra, it suffices to show that the A; are
infinite cycles. But notice that for fixed k and ¢ sufficiently large, the A; are forced
to be infinite cycles by a degree check which is omitted. This suffices. O

9. ODD PRIMARY COHOMOLOGY OF I'™ WITH COEFFICIENTS
IN THE SIGN REPRESENTATION

In this section, the cohomology groups H*(I';F,(+1)) are determined where
F,(=£1) denotes the field of p elements with p an odd prime, and I'" acts on Fj,(£1)
by o(1) = (—1)S18%(?) where sign(o) is the sign of the permutation of o in the

symmetric group ¥,. By Proposition 4.1. there are isomorphisms for n > 3 given
by

Hl* Faltl) = HJ'*‘(QQfl)nDn(n;SQq_H)

where 7 is given in section 3, and is induced by the natural inclusion of SO(2) in
S0O(3).

Recall that the mod-p cohomology of BSO(3) is that of BS®. In addition. the
homology of A252"*! n > 1, is filtered as is that of E(n;S™). Write D, for the
cofibre of the inclusion of F,_;A2S?" ! in FRA282t! (= F.C(S?; 8% 1)),

Theorem 9.1. There is an isomorphism of H* BS*-modules given by
H*E{n;$*""Y)) —» H*BS*® H*'A*S*"*1.
The dual isomorphism in homology preserves filtration to give an isomorphism
F.H,E(n;$**"") > H.BS® FH.A*S*""!

Let P""!'(p) denote the cofibre of the degree p map on S”. These spaces are
used to identify certain special cases of Theorem 9.1 in the next corollary.

Corollary 9.2. 1. There is an isomorphism of vector spaces

H.Dy(n;S* 'Y - H.BS*® H.D .

[\

. If k >3, there is an isomorphism
H, (TX; F (1)) » Z;H;BS* 9 Hy_1_k2n-1)Dx -

3. Ifp—12>k >3, then HJ(F’“;IFp(il))zo. .
4. There are isomorphisms H,(TP;F,(+1)) - H.BS*® H*(P’)Al(p))-
5. There are isomorphisms H, (TPt F,(£1)) — H.BS*®H.(P"~'(p)vPP™!(p)).

Proof of Theorem 9.1. Consider R> = lim R" with the direct limit toplogy. Recall
that C'(R>; X) is homotopy equivalent to Q*X>X for connected C'lW-complexes
X. Embed CP> in R to get a sequence of natural embeddings

(1): R?2 ¢ §? ¢ CP>* c R* and

(2): C(R%X)C C(S%X) C E(m; X) C C(R>®; X).

Notice that the embedding in (1) of R? in R> can be chosen to be isotopic to the

standard inclusion of R? in R>. Thus there is a homotopy commutative diagram
where the vertical arrows are equivalences:
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C(R% X) —— C(R*™; X)

5ty —LE, guyeoy
Similarly, there are natural embeddings

C(S% X) C E(n; X) C C(CP>; X) c C(R>; CP* % X)

together a homotopy commutative diagram where AxB denotes the half-smash

product (A x B)/A x {x} and the bottom arrow ¢ is given by the inclusion of
S?AX in CP>* A X [8):

C(s%X) —2— CO(R>;CP*%X)

SAX —2 - C(R=;CP= A X)
Thus ¢ gives a monomorphism in homology by inspection.
By Corollary 5.2 C'(S%; S™) is homotopy equivalent to S™+2 x Q25" +2 when n is
odd and all spaces are localized at an odd prime p, it will follow that the inclusion
C (5% S™) C E(n; S™) is onto in cohomology. To see this. consider the map

A O(5%85™) — C(R>;S™) x C(R>*;CP>* A S")
given by the diagonal composed with o x a3 where these are the natural maps given
in the previous commutative diagram.
By 8.1, and the fact that H.Q?S**! — H,0>~8§>*21~! s a monomorphism,
the map A induces a surjection in cohomology for n odd.
Thus the Serre spectral sequence for the fibration

C(S‘Z;SQH~1) . E(.,]: 52"_1) — BSO(g)

collapses. To finish, notice that the assertion about the filtration of the homology
of E(n; 5?"~1) follows by naturality of the Serre spectral sequence. O

10. THE MOD-p COHOMOLOGY OF I

Throughout this section, assume that n is at least 3 and that p is an odd prime.
All (co)-homology groups are taken with [F,-coefficients as a trivial I'"-module.

In the work here, the prime 3 will have a special role. Namely, I'? is isomorphic
to the symmetric group on 3 letters ¥,. Thus

L. If p>3. H(T*F,) is (i) F, for i = 0, and (ii) 0 for i > 0.

2. If p = 3. then there is an isomorphism H*(I'*;F3) — Alu] © F4[v] where u is

an exterior generator degree 3 and v is a polynomial generator of degree 4.

This fact forces a differential in a spectral sequence below to be non-zero if p>3
while the analogous differential is zero at p = 3. The main work here is to show
that the previously mentioned differential is the only possible non-zero differential
in this spectral sequence for any odd prime p. The methods for showing this result
are to detect various cohomology classes by using stable Hopf invariants (explained
below). Part of the complication in the answers here stems from the fact that there
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is a "twisted” pattern of differentials, and the relevant spectral sequence collapses
at E5. One point which arises here and which is in contrast to the computations in

section 9 is that the homology with coefficients in the sign representation F,(%1)
behaves better.

Recall that the mod-p cohomology of BSO(3) is that of BS®.
Theorem 10.1. Ifp =3 (;nd q > 0, there are isomorphisms of H* BS®-modules
E(n; $*) =~ H,BS® @ H.A*S%172.
The dual isomorphism in homology preserves filtration to give an isomorphism
FyH.E(n; $*) = H,BS® @ F,.H.A?S%72
Recall from sections 8, and 9 that Dy (S™) denotes cofibre of the inclusion of the
(k — 1)-st filtration of C(S?;S™) in the k-th filtration. The homology of the spaces
Dy (S™) were used in section 9 when n is odd. The case which is used in this section
is n.= 2q.
Corollary 10.2. Ifp =3 and k > 3, there are isomorphisms of vector spaces
H,.Dy(n; S*) = H,BS® 2 H.Dy(5%) .
Thus there is an isomorphism
H;(T*) = %,50H;BS® ® H;_;_23sDi(5%9) .

This corollary is one indication of why the mod-3 cohomology with trivial co-
efficients for the groups I'" is reasonably clean. The mod p homology of D (S™)
is given in section 8. Thus, for example. the Euler-Poincaré series for the mod-3
homology of I'". 3 < n < 6, is given in the following chart.

n|x (r”.u,)

3 \ (1+t3/(1 -

411/(1=1¢)

5 (1+t1‘)/(1—r‘)

6| (L+t2+t'+7)/(1 -t

In the case of I'%, the summand of the Poincaré series corresponding to (1 +
t%)/(1—t') gives the mod-3 homology of K (X, 1) which is a stable 3-local summand
of K(I'%,1) [2]. In the case of K(I'!,1). this last space is stably equivalent to
K(Z/37.1) after localization at p = 3, and that this answer for H.(I'";F3) agrees
with that of [2] for n = 3,4,5,6 .

The answers for the cohomology of I for p > 3 and p large with respect to n
are more complicated, and require more information to state. The answers depend
on the cohomology of the cochain complex V5, given in section 8. To describe these
answers, first define 2 vector spaces Ao, and Us, as follows where U, is defined as
a subspace of the cohomology of Vs,:

1. Ay, has a single copy of F,, in degree 2¢(k+3) with basis v4 3 where (k,3) # 0

mod p and (a, b) is the binomial coefficient (a + b)!/a!b! for a,b > 0.

2. The vector space Us, is the subspace of H* V5, with basis given by

(1): €0~ where (k,3) =0 mod p.
(2): Yx+3 where (k.3) =0 mod p,
(3): € 7pp—y for k> 1, and
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(4): i~y for k >0,
where all elements are defined in section 8. Further. recall that BWosg4, is
the Hopf algebra kernel of (E2)* : H*Q2§%3 — H*§49+1 where E? is the
double suspension.

Theorem 10.3. If p > 5, there is an isomorphism of vector spaces given by
H*E(n; %) — [Ag, & (Fplus] ® Uzq)] ® BWogy1.
As an example, there is a homomorphism f : Z/pZ — IP*! which gives a mod-p

homology isomorphism [13]. This isomorphism can be interpreted as an explanation

for the presence of "all” Dyer-Lashof operations in the homology of certain other
mapping class groups.

In addition. the mod-p homology of I'" for all n follows from Theorem 10.3.
Explicit bases also follow directly from the proof below.

The main step is to work out differentials that give the above computation. This
will follow from a sequence of lemmas.

Lemma 10.4. The differentials in the Serre spectral sequence for the fibration
E(n; X) — BSO(3)
preserve filtration.

Proof. There is a morphism of fibrations

F.0(8%X) —— C(S% X)

! |

FrEn; X) —— E(n: X)

l I

BSO(3) —— BSO(3).

The result follows by naturality of the Serre spectral sequence in homology.

|
Lemma 10.5. [f p is any odd prime, the classes ~j.i-7p. and e - NV gy K 200,
are infinite cycles in the Serre spectral sequence for E(n,S5%7) — BSO(3).
Proof. This lemma is a restatement of results in Section 8. O

The remaining generators for the cohomology of C'(S%:52%) as an algebra over
the Steenrod algebra are given by Aji J = 1. The elements \; pullback to classes

which are the dual to the homology classes .L'l;, in the homology of Q2S527+2 a5

described in Section 8. The technology of stable Hopf invariants will be used to

J Dt s . 9 .
show that )" has non-trivial image in the homology of E(n; S=7). This suffices.
The main result here is as follows.

Lemma 10.6. If p is any odd prime and J = 0. then X is an infinite cycle in the
homology Serre spectral sequence for E(n: §24) — BSO(3).
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Proof. By the above remarks, it suffices to study the map
C(R?* 5%) C E(n; §*)
obtained from inclusions
R*C §? c CP™.
Recall Proposition 2.3 which states that E(n; X) stably splits as \/,~, Dx(n; X) for
connected CW-complexes X. -
The next step is to consider stable Hopf invariants

hi : E(n; X) — QZ> Dy (n; X)
such that the adjoint of the total Hopf invariant
H:E(m;X) —» Q°2>(\/ Di(n; X))
k>1
is an equivalence. Standard computations give that the \; are in the image of the
restriction map of the total Hopf invariant, and have non-trivial image in the mod-p

cohomology of C'(R?, §%9). The details of this computation are omitted. The lemma
follows at once. O

The differentials on the class - in H%9+3C(S?; 5%7) must be decided. By Lemma
10.6, this is the element of least degree in H*C(S?%; S%?) which can support a non-
trivial differential. As differentials are filtration preserving by Lemma 10.5, the only
possible non-trivial differential on ¢ - i is given by

da(e - i) = a3 - ua)
where H*BSO(3) = [, [us]. Notice that o # 0 mod-p if and only if p > 3 in order
to get the correct answer for H*(I'*;F,) & H*(Z;;F,). Thus this differential is non-

zero if and only if p > 3 as is forced by the isomorphism H*(I*;F,) = H*(Z3;F,).
This result is stated next.

Lemma 10.7.

dle ) 0 if p=3 and
/ 7] =
' a(vs-uy)  ifp>3 withaZ0 modp .

Lemma 10.8. The map
te : H,Dy,(R?%; 5%%) — H,Dyy(n; S%9)
s a monomorphism in dimension 4qp + 2p — 2.
Proof. First consider the mod-p homology of the space Do, (7); S524). Recall that a
basis for H* Dy, (S?%; $%7) is given in Section 8 by
(1): Y2ps
(2): Y2p-3 (if)v
(3): My, and
(4): B(Mo).
By Lemmas 10.6, and 10.7, the elements above are infinite cycles if p = 3. Further-
more, if p > 3, dy(yop—3 - (€ - 1)) = ay2p—3(¥3 - wa) = 0. As this is the last possible
differential, Ay and 3(\) are in the image of
i* : H* Dy (n; S*7) — H* Dyy(R*; 5%9)

and this map is onto in degree 4gp+2p—2 by a degree count. The lemma follows. [J
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Proof of Theorems 10.1 and 10.3. Notice that if p = 3, Lemmas 10.6 through 10.8
immediately give that the Serre spectral sequence for E(n; $27) — BS O(3) col-
lapses in mod-3 cohomology. Thus 10.1 follows.

Next, recall that the mod-p cohomology of 252¢+! is isomorphic to

H*S*~!' @ BW,
as an algebra and the mod-p cohomology of C(S?;529) is isomorphic to
H*V3y @ BWog41 .
Thus the Ep-term of the Serre spectral sequence for E(n; $24) — BSO(3) is iso-
morphic to
Fplus) ® H* Vo @ BWoy .
There is a d;-differential given by

dy(e ) = uq - 73
with appropriate choice of u, as required by Lemma 10.8.

Furthermore, a vector space basis for H* Vaq is given as follows:

L (e+1) 9 k>0

2. Ykp—-1, k > 17

3. Y&, K>0, and

4. 4 Yk 271,

The next two formulas (where (i,5) = (i + j)!/i!j!) follow at once since dy is a
derivation.

Loday((€-4) - ya) = wy - 3 - vk, and

2. dy((e-2) - ) = (k,3)us - Y34k

Thus (€i) -y is a cycle in B} if and only if (k, 3) is zero mod p.

To compute FE5, split H* Vi, into a direct sum as follows: Define U, in H*Vs, to
be the vector space spanned by (e - i) -y and ;4 where (k, 3) # 0 mod p. Recall
that Uy, is the vector spanned by

(i): €iyy. and 4445 where (k,3) = 0 mod p,

(ii): eiyip—i, k > 1, and

(iii): dyep, k> 1.

Thus. by the previous paragraph E; is isomorphic to

IF,,[u;] ® [(Ul 2] U‘.Zq) ® Bu'/‘_’q+1]
as a differential F,[u;]-module and thus there is an isomorphism of H*BS*-modules
ES = (A‘Zq ® Blif'lq-f—l) 52 (]Fp[ul] & U’.’q B BLV‘_’(H—I) *
But E5 consists of infinite cycles by Lemmas 10.6 through 10.8. Hence E; = E.
O
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