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INTERVAL EXCHANGE SPACES AND MODULI SPACES

C.-F. BODIGHEIMER

ABSTRACT. Spaces of interval exchanges are introduced. In particular, a
map from the moduli space of directed Riemann surfaces of genus g to the
space of interval exchanges of rank at most 4g is studied.

0. Introduction.

To cut the real line at finitely many points and to reglue the pieces in an-
other order is called an interval exchange. This type of non-continuous self-maps
arises in various contexts, for example, as first-return-maps of flows on surfaces,
or when playing billiard in a polygon. They are measure-preserving with in-
teresting properties, and are therefore well-studied in ergodic theory. For a
general introduction see the books [Sinai], [Cornfeld-Fomin-Sinai], [Mane], and
the articles [Arnoux-Ornstein-Weiss 1985], [Keane 1975, 1977], [Keane-Rauzy
1980], [Rauzy 1976/77, 1979], [Veech 1978, 1984]; for the connection to flows on
surfaces see [Katok 1980], [Arnoux 1981, 1988], [Arnoux-Levitt 1986], [Arnoux-
Yoccoz 1981], [Levitt 1980, 1982, 1983], [Kerckhoff 1985] and [Rees 1981].

Usually the dynamical behaviour of a single exchange under iteration is stud-
ied. In this article we want to emphasize that these exchanges form interesting
spaces €r(n), where n — 1 is the number of intervals exchanged. Our interest
comes from studying the moduli space Dﬁ(g) of directed Riemann surfaces, i.e.
a closed Riemann surface together with a tangent direction at some basepoint
given. Such a surface comes with a harmonic flow and a canonical curve, on
which to induce a first-return map. To associate in this manner to a Riemann
surface an exchange, defines a continuous map ® : 9M(g) — €r(4g). The idea
of such a close connection between the moduli of Riemann surfaces and interval
exchanges occurs at several places, e.g. [Masur 1982], [Veech 1982] and [Strebel
1984]; in [Bodigheimer 1990 II] interval exchanges were used as a technical mean
to construct certain operations. Here we will treat ® as a globally defined,
continuous map.

Moduli spaces and interval exchange spaces have several structures in com-
mon, all preserved by ®. This is somewhat surprising, since the moduli spaces
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34 C.-F. BODIGHEIMER

are based on two-dimensional geometry and analysis, whereas interval exchanges
are a one-dimensional, almost completely combinatorial phenomenon.

After determining their homotopy type, it becomes obvious that the spaces
¢x(n) need to be refined in order to make them more useful for the investigation
of moduli spaces. Nevertheless, it seems worthwhile to introduce them as a first
step.

It is a pleasure to acknowledge the encouraging interest I received from
M. Denker, A. Katok and J. Morava.

1. Interval exchange spaces.

As explained above an interval exchange (on the real line) is a reglueing
of subintervals in a permuted order. Thus it is determined by an increasing
sequence yo < y; < --+ < yn—1 of (cut) points in R together with a permutation
m in the (n —1)th symmetric group &,—; (acting on the indices 0,1,... ,n—2 as
we see later). We always have n > 2, and our notation is y = (¥o, .- , Yn—1|T).

Note we are not assuming the points y; to be distinct; but we do exclude the
totally degenerate case g9 = y1 = - = Yyn—1 by assuming that yo < y,—1. The
length of the subinterval Y; = [y;, yi+1] is denoted by ¢;, and t = (to,... ,tn—2)
is called the length vector, and ||t|| = £t; > 0 is called the length of y. We say
y is of rank less or equal to n — 1. If yo = 0 (resp. yo = 0 and yp—1 = 1) we call
y half-normalized (resp. normalized).

So far we have emphasized the combinatorial point of view; for the dynamical
point of view we regard the cutting, permuting and reglueing as a discontinuous
self-map of R, with compact support and finitely many points of discontinuity,
which is isometric and orientation-preserving on the subintervals of continuity.
To make this precise, set §o = yo and Fi+1 = Ji + tx) for i =0,... ,n—1; thus
Yo =To < Jn < ++* < Yn—1 = Yn—1. The subinterval Y; = (94, Ji+1] has the same
length as Yy (;), and altogether they cover the same interval [0, Yn—1], which we
call the support of y. The self-map f, : R — R is now almost determined by
saying that f, maps the interior of Y; onto the interior of Yr(:) isometrically

and orientation-preserving, and that f, is the identity outside of [yo,Yn—1]; OF
in formulas

(1.1) Fy() =yny + (€ —Ti) for §i <& <Fitr1.

We extend the definition to the cut points go,... ,¥n—1, by requiring f, to be
continuous from the right. We are actually only interested in the L?-class [f,] of
fy, i.e. we identify two such self-maps if they agree up to finitely many points.

This suggests that we introduce the corresponding equivalence relation for
Y = (Yo,- -+ , Yn+1|m) by ignoring the subintervals of length zero. The easiest way
to express this is by rewriting y = (4o, Y1, - - - »Yn—1|7) a8y = (Yoito, ... ,tn2|T).
Then the equivalence relation is generated by the following.

(1.2) (yosto,--- »tistit1y--- rtn—2|m™) ~ (Yo;to,--- stit1,tiy. - tn—2|(i i+1)om)
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ift; =0, and
(13) (yo;t07"' atiati+l" .. ,tn_zl’ll') (Bt (yO;tOV' . at'iati+1,"~ 7tn—2|7r°<j J+1>)

if t; = 0 and m(j) = 4. Here (k k+1) € G,_; is the transposition of k and £+ 1,
for 0 <k < n—2. (1.2) allows subintervals of length zero to be moved among
the Y;, and-(1.3) among the ¥;. But this equivalence relation does not remove
unnecessary cut points §; (where f, is continuous). The equivalence class of y
is denoted by y = [y] = [yo,y1,- - |7] = [yo; to, . .. |7].

Let &r(n) (resp. €r'(n), resp. €’(n)) denote the set of equivalence classes
of normalized (resp. half-normalized, resp. all) interval exchanges. To put a
topology on €g(n) it is natural to regard the ¢; as barycentric coordinates in an
(n — 2)-simplex A™~2 indexed by the permutation m — at least as long as all
t; are positive; and the equivalence relation tells us how to identify a face of a
simplex with other faces of the same and other simplices. Thus €r(n) is a finite
cell complex,

(1.4) €r(n) = (A" 2 X Bp1)/ ~

For &(n) resp. &r’(n) the topology is the obvious one, using the relation
€'(n) 2 Ry x €(n), resp. &' (n) 2 Ry x R x €x(n), where the parameter in
the positive reals R, is the length ||t||, and the parameter in R is yo.

As we will find this topology on is rather crude, but makes it easy to find the
homotopy type of €x(n).

2. Some properties of the spaces €r(n).

The spaces €x(n) have various interesting structural properties almost all of
which correspond to properties of moduli spaces, as we shall see in the next
section.

The normalizations we made come from the action of the group Sim(R) of
similarities of the real line, generated by translations and dilations. Sim(R) is the
semi-direct product R xR, of the normal subgroup R of translations { — £+,
b € R, and the quotient group R of dilations £ — a&, a > 0. The action on an
interval exchange y is y+b = [yo+b,. .. , yn—1+b|7] and y.a = [ayo, ... ,aYn-1|7].
The action is free and comes with a section y — (yo, [|||) € Sim(R).

There are various ways to map €r(n) to €r(n+1). The first, called inclusion,
is given by

(21) ¢:€(n) > €x(n+1), t[yo,- - Yn—-1|7] = [Y0,- -+ s Yn—1,Yn—1|m @ id] ,

where 7@ id denotes the permutation in &, acting as m on the first n — 1 indices

and fixing the last one. The formula is also valid for spaces €r'(n) and €t (n).

If we take I, =[0,1,...,1] id] to be the basepoint in €x(n), then ¢(I,) = Ln+1.
A second map is called stabilization and is defined by

Stab : €x(n) — &Er(n+1),

(22) .
Stab ([yo, -+ s ¥n-1lr]) = [2,..., 2, Uw @ id] .
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It is homotopic to ¢.

Next we will find two ways to combine two exchanges to obtain a new one,
i.e. maps €x(n) x €x(m) — €r(n + m). The Whitney sum emphasizes the
combinatorial aspect; it is defined by putting the two exchanges side by side:

Wh([yo"" ,yn-1|7f]»[yf),~- . 7y;n,—1‘7r,]) =

(23) / !
[y—0 ,yn_1,1+yo,...,1+ym-1|7r697r'].
2 2 2

The basepoints I,, behave like homotopy-units, because Wh(y, I,) = Stab™(y).
Wh is obviously homotopy-associative. We shall see later that it is even homo-
topy-commutative. Thus € =[], €x(n) is an H-space.

Using the fact that an exchange 1 is almost the same thing as the map [fy],
we define the composition (product) for unnormalized exchanges

(2.4) Comp([yo, - - - » Yn—1|7], [¥0s- - - » Yom—1|T™]D) = U0+ » Un4m—1l7"]

where the new cut points and the new permutation are obtained as follows. Let
%o < -+ < Jn_1 be the points of discontinuity of y. The cut points y5 < --- <
yh._1 of 3 fall into groups according to which of the intervals [§;, 7;+1[ contains

them (j =0,...,n — 2). We rename them as

(2.5) Yir S Ui < -0 < Yo, € [§, G541l
n—2

with a; > 0, and Z a; = m. The function f = f, will map the interval [§;, #;+1(
J=0

to [yi, Yi+1[ if 2 = 7(j). Setting

Yio ‘= Yi (i=0,...,n—1)
(2.6)

Yir = FWi)s e sUia, = F(W,) (i=0,...,n—2)
gives the new sequence of n +m — 1 cut points yj:
(2.7) yoo <yo1 < - < Yoby S Y10 <o Yn—20=< " S Yn—2b,_5 < Yn—10

where b; = Qp—1(;)- The new permutation will be a shuffle of 7’ into , de-

fined as follows. The cutpoints y; subdivided the interval [f;, #;+1[ into a; +1

subintervals. Vice versa, the points §; subdivide the intervals [y}, yj [ into, say
m—2

¢k + 1 subintervals, with ¢ > 0, n = Z cx. Pulling this subdivision back with
k=0

f' = fy gives a subdivision of [Jp, Jp, [, if k£ = 7'(£). Set d¢ = cri(g). Now let

0 <r <n+m—2 be given, and write

(2.8) r=do+ - +de1+(s—-1)+r, , 0<7s<ds+1.
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Applying f’ to the r-th interval of the pulled back subdivision gives us the r’-th
interval of the (middle) subdivision, and

(29) 7"=d1r’(0)+"'+d7r’(s—l) +(S—1)+7'3.
Write 7' as
(2.10) r=ay+ ta1+(t-1)+r , 0<ri<a;+1,

and the number of the image interval under f = f, will be
(2.11) w(k) :=ar(o) + -+ + re—r) + (E— 1) +1¢ .

The product Comp is strictly-associative, and for the units we find Comp(y, I,,)
= ™(y) = Comp(L,,n). Also later we will see that Comp is homotopy-com-
mutative; indeed, we will show that Wh and Comp are homotopic, despite their
apparent difference as to the dynamical behaviour; Wh always creates a decom-
posable system. Wh can be expressed as Wh(n,y') = Comp(3, 1—2":), i.,e. Wh
is a special case of Comp, when the supports are disjoint. For the functions we
have [fyu] = [fy] o [fiy].

Even more interesting are certain operations modelled after the Dyer-Lashof-
operations in homotopy-theory. The “multiplications” Wh and Comp depend
on several choices of parameters, and it is a non-trivial fact that there is an
S-family of such multiplications, in which they are just two. This family is a
map

(2.12) f:S' x €(n) x €(m) — Ex(n +m)
which is Zs-equivariant in the sense that it descends to a map
(2.13) 6 : S' xz/07 €x(n)® — €x(2n)

where Z; acts on S* antipodally and on €g(n)? by switching factors. To define
6 we need eight consecutive homotopies, all of the form Comp(p(a),n’(a)) for
0 < a < 8, where n(a) and y/(a) are two paths in € (n) resp. €r”(m) starting
and ending at p(0) = 3, resp. n/(0) = 2. To make formulas easier, given
v~ < v, let M(y,v™,v") € € (n) be that translation and dilation of y which
has support [v™,v7].

We now give the first four homotopies. The first and the fourth are actually
stationary; this is to make 6 compatible with the corresponding structure on the
moduli space, see (3.12).

a) = M(n0,3) =3
(2.14)
pia) = M(y,i1) =22 0<a<l;
pl@) = M(n(1),0,%)
(2.15)
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pe) = M(y2),%521)
(2.16)
y(@ = M(®Y(2),0,%2) 2=a<3;
y(e) = M®y@3),1,1)=21
(2.17) ,
l’)’(a) = M(U,(3)’O’%)=L;l 3<a<4;

The homotopies five to eight are defined inexactly the same way as the first four,
but the réles of y and y’ interchanged. The actual formula for 6 is for now

6(c,9,9') = Comp(y'(8a),y(8a)) for 0<a<j,

(2.18)

—

= Comp(y(8a),y'(8a)) for 1<a<

We have 6(0,9,v') = Wh(n, ), 8(3,9,9) = Comp(v',n), 6(5,9,9) = Wh(y', 1),
9(%, 9,9’) = Comp (1,y’). This shows that Wh and Comp are homotopic, and
— at the same time — that both are homotopy-commutative.

There are two interesting involutions on €g(n). One, called the reverse, is in
the notation of section 1 given by

(2.19) Rev : €x(n) — €x(n), Rev[yo, ... ,Yn-1|7] = [Jos- - »Fn—1|7"'] .
The conjugation is obtained by reflecting the real line at %,
(2.20)  Conj: €x(n) — €x(n), Conj(h) = [yo;tn—2,... ,tolwomow™

when v = [yo;to,... ,tn—2|7] and w € &, _; is the reflection w(k) =n -1 —k.
3. Parallel slit domains.

We recall here a particular description of the moduli space of directed Riemann
surfaces; for more details and proofs we refer the reader to [Bédigheimer 1990 I].

Let F' be a compact Riemann surface of genus g > 0 without boundary. In
addition to the conformal structure a point p € F' and a tangential direction ¢
at this point are given. Here a tangential direction ¢ = (z) is a non-zero tangent
vector z, up to a positive multiple. We denote the moduli space of such triples
[F,p,x] by MM(g); here a conformal equivalence is a conformal homeomorphism
f: F — F' such that f(p) =p' and df(x) =7

This moduli space projects onto the classical moduli space of closed sur-
faces. It is an orientable, non-compact manifold of dimension by 6g — 3. It
is homotopy-equivalent to the classifying space of the mapping class group
f(g) = o Diff"(F, p,r) of isotopy classes of orientation-preserving diffeomor-
phisms of F' fixing p and r. This mapping class group is isomorphic to the
mapping class group of a genus g surface with one boundary curve (to be fixed
pointwise); it is an extension of the classical mapping class group of a closed
surface by the fundamental group of its unit tangent bundle.

Using the methods of geometric function theory M (g) can be described as the
configuration space of parallel slit domains. Let Lo, L1,. .. , Lsg—1 be a sequence
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of horizontal slits in C, each of which is unbounded to the left. Such a L; is
given by its right endpoint z; = (z;,y;). These slits are paired to each other by
an involution A € Gyy. We call L = (Lo, Ly, ... , Lsg—1|)) a configuration if the
following conditions are satisfied :

(3.1) A(@) #1 ) for i=0,...,49—1,
(3.2) A2(i) =i for i1=0,...,49g—1,
(3.3) Yo<y1 < S Yag-1,

(3.4) Ti = Tx(i) for i=0,...,49—1.

Note that these conditions so far do not exclude slits to be equal or overlapping;
indeed all of them could still be equal.

The basic idea is that a configuration L represents a surface F'(L) obtained
as follows: for each pair of slits Ly and Ly) glue the upper bank of Ly to the
lower bank of L), and vice versa; take p to be the point at infinity of C, and
take r to be the direction of dz under the local chart ¢ — % The complement
of the slits in C determines the conformal structure.

The crucial points are, of course, to exclude those configurations which will
lead to singular surfaces, and to find those configurations which lead to confor-
mally equivalent surfaces. For the first point we introduce two more conditions
on a configuration:

(3.5) The permutation o € G44—1 defined by
o(k) := Ak +1) mod 4g (k=0,1,... ,4g — 1) has only one cycle.

(3.6) L does not contain a subconfiguration ...Lk, Lg+1, Lk+2... such that
A(k) = k+2, Yk = Yk+1 = Yk+2, and Ty1 < Tk = T2,

The condition (3.5) guarantees that p = oo is not a singular point. To see
this, consider the smallest closed rectangle S C C with sides parallel to the z—
or y—axis and containing all points zx; we call it the support of L. Suppose left
vertical side Y of S lies on the vertical £ = u, then it is cut into intervals Y;
by the points (u,y;), just as defined in section 1. By glueing the banks of slits
as described above the new sequence of the vertical intervals Yo, Y1,...,Ysy-1,
will be such that Y is followed by Y, (x); it is clear that the boundary of S is
connected in F (L) if and only if o has but one cycle. And since the complement
of S is a neighbourhood of p = oo in F(L), the connectivity of its boundary
curve means that p is a smooth point.

Likewise, the condition (3.6) guarantees that in F(L) the point (zx,yx) =
(Tk+2,Yk+2) is smooth; a violation of (3.6) means that the closed curve in F/(L)
from zx = (xk,yx) to p = co and back to zx4+2 = (Tk+2,Yk+2) — Which is non-
trivial in the generic case of all slits being disjoint — has become null-homotopic.

The second crucial point requires consideration of the equivalence relation
generated by the following type of jump.
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(3.7) Assume Lig_1 C Ly (i.e. Tx—1 < z} and yx—1 = yx) and k < A(k); then L
is equivalent to L' = (Lg, ... , L), ,|\') where:

Li=L; fori=0,... k-2,

Li=Liyy fori=k—1,...,Ak)—1,
L; has endpoint (zx—1,yax)) for i = A(k)
Li=L; for i=Ak)+1,...,49—1,

and N =(Ak)A(k)—1...kk—1)oo(k—1k...A(k)—1A(k)).

In other words, Ly_; “jumps” over the longer pair Ly, Ly(x), taking a new
position, whereas all other slits change at most their index (by a partial rotation
(A(k)...k k — 1) of the indices from k — 1 to A(k)). Clearly, F(L) does only
depend on the equivalence class of L.

An equivalence class will be denoted by £ = [L] = [Lo,... ,Lsg—1|]. Al
the conditions (3.1-6) are invariant under jumps except for 3.6; we therefore say
£ is non-degenerate if all its representatives satisfy (3.1) to (3.6), and call it a
parallel slit domain. The set of parallel slit domains is denoted by PSC(g); it is a
quotient space of the space of non-degenerate configurations, which is naturally
a subspace of C*9 x Gg,.

In a parallel slit domain £ slits can still overlap to some extent, but it is
no longer possible that they all coincide; indeed, they can not lie on the same
y-level, and therefore we have always yo < yag—1.

As to normalizations, we find the 3-dimensional contractible group Sim(C)
= R? % Ry of similarities of C still acting freely on PSC(g) by translations and
dilations. The translations in z- resp. y-direction correspond to the undeter-
mined integration constants of two harmonic functions, as we will see in section
4; and the dilations correspond to the undetermined length of the tangent vec-
tor z representing the direction ¢ = (z). This action, too, has a section, namely
£ — (min(z;), yo, Yag-1 = Yo) € Sim(C).

We call £ normalized (resp. half-normalized) if yo = 0, ysg—1 = 1 and
min(z;) = 0 (resp. if yo = 0 and min(z;) = 0). P(g) resp. P'(g) denotes
the subspace of normalized resp. half-normalized parallel slit domains.

The main result in [Bédigheimer 1990 I] now asserts that the space P(g) of
normalized parallel slit domains is homeomorphic to the moduli space 95"((9) of
directed Riemann surfaces; see [ibid., p. 149].

We recall now some structural properties of directed moduli spaces as de-
scribed in [Bodigheimer 1990 II).

There is a stabilization Stab : P(g) — P(g + 1), which glues a new handle,
i.e. a torus with one boundary curve, into a surface F(L) near its basepoint p.
Since the definition in [Bédigheimer 1990 II] is slightly different from what we
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have in mind here, we state it explicitly:

Stab [(zo, o), - . 1 (Tag—1, yag—1)|A] =
(3.8)

[(.'Bo, %0'), siewiy (1'49—1, y4§—1 )7 (17 %)’ (07 1)’ (L 1)7 (0» 1)|’\ ® /\1] '
We wrote end points instead of slits. A\; € &4 is the permutation (0 2)(1 3),
acting in on the last four indices 4g,4g + 1,49 + 2 and 4g+ 3. We remark that\;
is the only permutation in &, satisfying all three conditions (3.1, 2, 5).

The Whitney sum Wh: P(g) x PB(g') — PB(g + ¢') is essentially the same as
what was called sum operation in [Bédigheimer 1990 II, p. 2]. Its normalized
definition is

(3.9)
Wh([(xOs yO)a vee ,(1’49_1, y4g—1)|)‘]7 [(1‘67 y(l))’ ey (zilg’—h yflg’—l)l/\l])

Yo Yag— 1+ y§ 14+ yh g
=[($o,-§),...,(:c4g_1, ; L), (zh, 2 0 ,(x;g,_l,Tg)u@A'].
The composition
(3.10) Comp : P(g) x P(g') — Plg +g')

was not given separately in [Bodigheimer 1990 II]. Its formula is cumbersome;
for the y-coordinates it is the same formula as in (2.4); the z-coordinates z;
of the first configuration stay the same, but the z-coordinates =’ of the second
configuration must be translated to the right by the amount b = max(z;), the
maximal real part of any slit endpoint of the first configuration.

Wh is homotopy-associative, and Comp is strictly-associative. If we set [; =
[(1,0),(0,1),(1,1),(0,1)|{0 2)(1 3)] € P(1) as the standard elliptic curve and
basepoint, then I, = Comp(I,—1,I;) € B(g) will be our basepoint. They behave
like homotopy-units for Wh, and like units for Comp. The stabilization becomes
Stab(£) = Wh(£,I;). Now we can define another an inclusion by

(3.11) i Plg) = Plg +1), (€)= Comp(L,11).
To construct the Dyer-Lashof-operation
(3.12) 6: 5% x P(g) x B(g') = Plg + ')

we can use the composition product. Let £ have a support of length b > 0.
Then, similiarly to section 2, given u and v~ < v™, let M(£,u,v~,v") denote
that translation and dilation of £ which has support [u,u + b] x [v=,vF]. We
need paths £(a) and £'(a) in PSC(g) resp. PSC(g’), where 0 < a < 8, which
we define as follows.

£(a) = M(L, ab,0,3)
(3.13)
L@ = M(£,0,3,1) 0<a<l;
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£(a) = M(£,b,0,%

(3.14)
£(a) = M(£,0,%52,1) l1<a<2;
£a) .= M(g,b,%52,1)

(3.15)
£'(a) = M(E’,0,0,ég—") 2<a<3;
a) = M(E, (a—3)b, %a 1)

(3.16)
L@ = M(£,0,0,3) 3<a<d;

For 4 < a < 8, the paths go through the same four phases, but the roles of £
and £’ are interchanged. The definition of 6 is then

( 8(c, £,£) = Comp(L(8a),£(8)) for 0<a<i,
3.17)
= Comp(£(8a), £'(8a)) for $<a<l1

In the case g = ¢, § is equivariant with respect to the antipodal action on an
S and the switching on (g)?; this defines the map

(3.18) 0: 5" xz, B(g9)* — PB(29) -

As was developed in [Bédigheimer 1990 II], the map 6 is just one of a family
CT x P(gy) x --- x PB(gr) — P(g1 + -+ + gr) with parameter spaces C" the
ordered conﬁguration spaces of the plane. This family defines what is called a
Cy-operad structure on P = [T 5, B(g).

Putting « = 0,%,1 and 2 in 0(a, £, ") we obtain Wh(£, &), Comp(£/, £),
Wh(£', £) and Comp(E £); thus Wh and Comp are homotopic, and both
homotopy-commutative.

The two involutions Rev, Conj: B(g) — P(g) have their names from reversion
of the flow, resp. conjugating the complex structure. On the actual moduli space
931( ) this would be Rev[F,p,z] = [F,p,—1], and Conj[F,p,x] = [F,p,1], where
F denotes the conjugate complex structure on the surface F. The first reverses
the flow and it is somewhat complicated to write down the new slits. This
involution is actually part of an S'-action on 9M(g) — and thus on P(g) —
rotating the tangent direction y. The conjugation corresponds to taking the
complex-conjugate of £; in normalized coordinates this is

el

Conj[(xo,yo), ey (1"49—1’ y4g—1)|/\] =
(3.19)

[(1}49_1’ 1= y4g—1)7 siials ,(fL'O, = yO)"U °oAo w—l] 9

with w € G44_1 as in (2.20).
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4. First-return maps.

It is now almost evident how to define the map
(4.1) & : M(g) = Plg) — Ex(4g)

by using the parametrization of the moduli space as the space of normalized
parallel slit domains. We set

(4.2) ®[Lo, - , Lag—1|A] = 40y -  Yag-1l]

when (z, yx) is the endpoint of the slit L, and 7 € S44—1 is defined by 7(0) :=
A(0), and 7(k) := A(m(k—1)+1) for k = 1,...4g—2. Condition (3.5) implies that
7 is bijective on the indices 0, 1,...4g —2, since w(k) = o(n(k—1)) = o*+1(-1).
(One can extend the definition of = by 7(4g—1) = m(—1) = —1, to be understood
mod 4g.)

® is well-defined, since a jump as in (3.7) will only move a trivial interval
around as in (1.2) and (1.3). Thus ® is continuous. The normalizations corre-
spond, so the ® takes P'(g) to &'(4g), and P"(g) = PSC(g) to &"(g).

Next we want to give a geometric description of ®[L], namely as a first-
return-map of some flow on F(L). The additional feature of a directed Riemann
surface [F,p,r] is the existence of a dipole flow on F. This is the gradient flow
of a harmonic function U : F — R U oo determined by the conformal structure
of F' and the properties:

(4.3) (1) p is the only singularity of U,
(2) for a local parameter z around p such that z(p) = 0 and dz(r) = (dz)
the local expression of U is U(z) = Re(2)+ regular terms,

Up to an additive real integration constant b; and a multiplicative real constant
a > 0 such a function U is unique. One can find such a U by minimizing the
Dirichlet integral of U(z) — Re(). Another way is to take the unique abelian
differential with a double pole at p in the direction r which has pure-imaginary
periods; its real part can be integrated to obtain a harmonic function.

The unstable submanifolds of the gradient flow ¢ = grad(U) form the critical
graph in F', whose complement F, is simply—connected; therefore U is the real
part of some injective holomorphic function W = U +iV : Fy — C; W is unique
up to another additive integration constant b, for the harmonic conjugate V.
The complement of W(Fp) in C are the slits LoU Ly U---U Lygg_; of the parallel
slit domain £ representing [F, p,z]. On W (Fp) the flow ¢ becomes the horizontal
flow ¢ = —dz, since U becomes the function z.

Apart from the dipole p there are no other sinks or sources for this flow, and
(counted with multiplicities) there are 2g zeroes. Let @ be a quadrilateral around
p such that one pair of sides are integral curves, the other pair are equipotential
curves, and no zero is in its interior. The W-image of its complement is a
rectangle in C with sides parallel to r, y-axes that contains all slit endpoints; the
interior of the largest such @ is the complement of the support of £. Assuming
everything to be normalized W(Q) is the complement of the (open) unit square.
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The flow ¢ induces a function f from the right vertical z = 1 to the left
vertical £ = 0, defined for all 0 < y < 1, which are not the levels yo, ... ,y4g—1 of
zeroes of ¢. For example, the interval Yy = [yo, y1] between the first two levels
Yo and yi, is moved by the flow ¢ horizontally across the support to the left
vertical z = 0. But here—after reglueing—the number of this interval becomes
771(0). Thus we see that the induced function f is the inverse of the exchange
map f, for n = &(L).

The map @ is not surjective, because the conditions (3.1, 2, 5) on A impose
conditions on 7. From the definition of 7 we have 1 = Aopomop™l,ifp € Gy is
the cyclic permutation. In other words, A = Topon~10p~! is the commutator
of m with this particular element p, and has to be of order 2 according to (3.2).
For example, for g = 1 there are 6 2-cells, 2 1-cells and 1 0O-cell in &x(4); but
only one of the 2-cells and one of the 1-cells make up the image of ®.

The various structures on 9)1(g) and €xr(4g) are preserved by ®, what we
summarize in

(4.4) Proposition. The map ® : M — €r(4g) has the following properties:
(i) ®o Stab =130 Stab o ®,
(i) ®o Wh = Wh o(® x ®),
(iii) ®o Comp = Comp o (® x ),
(iv) ol =00(id x® x ®), and Do =00 (id xP),
(v) ®o Rev = Rev o ®,
(vi) ®o Conj = Conj o ®.

The notation is set up so that the proofs are straight-forward.

Although ® is not surjective, it is “stably surjective” in the following sense:
for any y € €r(n) there is an £ € P(g) for some g < n, such that ®(L) =y in
€r(n'), n' > n, 4g, where we suppressed the inclusions in the notation.

To construct such an £ let m—1 < n—1 be the number of non-trivial intervals
of y, i.e. we can assume that y € €(m) and all t; > 0,47 =0,1,... ,m—2. First,
put m slits at the origin,

L; at (0,0) for =0,1,..., m—2.

Next, for each interval Yy, Y1,...,Y;,—2 put a slit at (1,yx), at (0,y%) and at
(1vyk+1)7 i.e.

Ly at (1,yx) for i=m—-1+3k+1,
Ly at (0,yx) for i=m-1+3k+2,
Ly at (1,yx+1) for i=m—-1+3k+3,
when k = 0,1,... ,m — 2. The pairing is set as
Ak)=m—1+3m(k)+2, for k=0,1,...,m—2,

A(m —=143k+1)=Am—-1+3k+3), for k=0,1,... ,m—2.
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This £ will lie in PB(g) for g = m — 1, since all t; > 0.
5. Homotopy type of €(n).

As a result of the rather crude topology we have chosen for €x(n) it is now
easy to determine its homotopy-type.

(5.1) Proposition. €t(n) is homotopy-equivalent to a bouquet of e, spheres of

n—2
dimension n — 2, where e,, = Z(—l)"‘“(k +1)!.
k=1

Here we set e; = 1. Recursively we have e,,; = n! — e, for n > 3. Thus, for
example, e3 = 2, e4 = 4, e5 = 20, eg = 100, e; = 620 and eg = 4420.

To prove the above we use the skeletal filtration of the space €x(n+1) and the
inclusion ¢ : €x(n) — €x(n+1). Using (1.2) and (1.3) one can move all intervals
Y; with ¢; = 0 to the right, and also move all intervals X; with t,(;; = 0 to
the right, thus bringing v into a normal form. This shows that the image of ¢ is
precisely the (n — 2)-skeleton of &x(n + 1). Furthermore, ¢ is homotopic to the
constant map by the homotopy

(5:2) tslyo, Y15+ s Yn—1lm] = [(1 = 8)yo, (1 — 8)y1, ... , (1 — 8)Yn—1, 1|7 & id]

with 0 < s < 1. ¢ = 19 adds a trivial interval at the right end, which is increased
throughout the homotopy at the expense of all others; under ¢; those end up as
trivial intervals at the left end; but ¢[y] is the basepoint in €r(n + 1) because
of (1.2) and (1.3).

Since €r(2) is just a point, it follows by induction that €r(n) is a bouquet of
spheres, all of the same dimension n — 2. To determine their number e, we only

need to compare the Euler characteristic of €r(n) and of V gn-2,
Counting the normal forms of k-cells in €r(n) we have

n—2

(5.3) x(€x(n)) =Y (-1 (k+1)!.
k=0

On the other hand we obtain

(5.4) X(\7 5" 2) =14 (-1)", .

The formula for e,, follows. B
6. Groups of exchanges.
The inclusions ¢ : €¢(n) — €(n + 1) lead to an infinite-dimensional complex

(6.1) €x(c0) = lim €x(n) = | €x(n) .
L n>2
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A “stable” exchange y € €r(oco) disregards all non-trivial intervals. The space
€r(00) is contractible by (5.1), and also inherits the strictly-associative multipli-
cation Comp (apart from the H-space structure via Wh), with unit the stable
class of I;. But it is not a group, because we still keep track of superfluous

cutpoints. To remedy this we introduce a further equivalence relation on unnor-
malized exchanges.

(6.2) [yo,--- yYi—1,Yi, Yit1y .- - ,yn—1|7f] = [yo,... yYi—1,Yi+1y- - ,yn—ﬂff]

if i = 7n(j) and i +1 = w(j + 1), and where * € S,_2 is the permutation
#(k) = n(k) for k=0,1,...j,and #(k) =n(k+1)—1fork=35+2,...,n—3.
Denote equivalence classes by [[y]].

The points of the quotient space £(n) = €r’(n)/~ now correspond to the
L2-classes of functions f : R — R, which have at most n points of discon-
tinuity, and are isometric and orientation-preserving on all intervals between
those points. Note that on £(n) the support (i.e. left and right endpoint) is no
longer a continuous function of the exchange. The inclusions ¢ induce inclusions
t:€(n) - E(n+1), and thus we have a “stable” complex

(6.3) £(c0) =limé&(n) = | £(n) .
3 n>2

The composition product makes £(co) into a group. We claim that £(oco) is
contractible. For this we use a section of the projection €r(n) — £(n), which
sends [f] € £(n) to the following exchange n. If jo < 71 < --+ < Ym—1 are
the m < n points of discontinuity, then the intervals ]y;,7;+1[ are mapped
to some open intervals with intermediate points yo < y1 < -+ < Ym—1. If
£Q35,9i+10) =1yi, yira[, then set 7(j) = ¢, and v = [yo,... ,Ym—1|n]. This is
a well-defined (and thus continuous) section; it induces a section to €t(c0) =
U,>2 €”(n) — E(c0). The contractible space €r’(c0) = R x Ry x &r(co)
contains £(00) as a retract, thus it is itself contractible.

The group £(co) contains the infinite symmetric group G = li_r’n S, as a

discrete subgroup, by sending 7 € &,_; to [[0,1,2,... ,n — 1|7]] in £(n). The
homogeneous space £(00)/S is then a curious model for the classifying space
BG oo

An action of the finite symmetric group &,_; on €”(n), which can be defined
by [yo,...|7].a = [yo,...|7 o a], is not free. Its isotropy subgroup on a cell of
codimension k consists of all elements conjugate to some element in & < &,_;.

It seems obvious that there is a braid version of the spaces €g(n), in which
the braid group B,,_; replaces the symmetric group &,_;. Some braids are a 3-
dimensional phenomenon, those spaces should be connected to directed Riemann
surfaces embedded in R®. One could then speculate whether there is some
connection to the work of [Greenberg-Sergiescu 1991] which relates groups of
piece-wise linear homeomorphisms of [0, 1] to the classifying space of the infinite
braid group.
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There is an interesting function D : €r”(co) — R, which descends to the group
w(i)—1 i—1

&(oco). For an exchange y = [yo, ... , Yn—1|7] We set w; = Z te — Zt,,(k), and
k=0 k=0

then define

n—2
(6.4) D(y) = Z trgiy * lwil -
=0

w; is the displacement of the interval ¥; under fy; so D measures the work
involved in moving the intervals ¥; around. Since w; is linear in the barycentric
coordinates, D is a quadratic form, just depending on 7. (Note: Y truyw; =0,
a kind of energy preservation.) D is well-defined, since trivial intervals do not
contribute to the sum; and superfluous cut points only decompose one summand
into two, without changing the sum. D is related to the Sah-Arnoux-Fahti
invariant, which takes values in the second exterior power /\é(]R) of R over the
rationals; see [Arnoux 1981}, [Sah 1979], [Veech 1984].

D has the following properties, where we used o to denote the composition
product Comp :

(1) D(y+b) = D(n),
(2) D(y.a) =a’D(y),
(3) D(y) >0, and D(y) = 0 if and only if f, = id,

(4) D(yoy') < D(y)+ D(v') .

If €t(n) were a manifold, D might be a candidate for an interesting Morse
function.

7. Remarks.

We have seen that the spaces €r(n) of exchanges are rather simple from the
homological point view, since all their homology is concentrated in one dimen-
sion. This implies, of course, that the structural maps described in section 4 are
all null-homotopic.

Responsible for this unfortunate situation are two flaws: (1) we included far
too many cells; (2) the topology we defined on €g(n) is far too coarse.

To address (1), recall that ® is not surjective; in fact, its image intersects a
rather small number of top dimensional cells, because very few permutations =
arise from some A in the way of (4.2). For example, if g = 1 resp. 2 resp. 3, then
1 out of 6, resp. 21 out of 7! = 5040, resp. 1485 out of 11! = 39916800 open cells
of maximal dimension 4g—2 lie in im(®). Moreover, €r(n) is a compact complex
including all lower dimensional faces of cells, whereas B(g) is an open manifold
excluding many faces of cells which would contain only degenerate surfaces. We
have no good description of the image of ®.
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For (2), the topology we chose seems to be the natural one, unless one restricts
the type of permutations # — which brings us back to (1).

It seems that the right thing to do is to restrict attention to only those m
arising from pairings A € &4, which satisfy (3.1, 2, 5). We keep A in the notation
and call y = (yo,... ,y4g-1|A) an interval recombination; it cuts the real line R
at pairs of points y; and y,(;), gluing the left resp. right side of y; to the right
resp. left side of yy(;), just as we did with slits when creating the surface F'(L)
in section 3. The equivalence relation is now suggested by the jumps of slits in
(3.7), disregarding the condition zx_; < z.

This space, denoted by PRec(g), is a finite complex with a forgetful map to
€r(4g). It has all the structure of B(g), and comes with a structure preserving
map ® : P(g) — Rec(g), defined as D[(zo, yo), - - - |A] = [¥o,---|A]

We will return to this space, since it turns out to Pe homology-equivalent to
an interesting compactification of the moduli space 91(g).
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