HOMOTOPY QUOTIENTS OF MAPPING SPACES AND THEIR STABLE SPLITTING

By C.-F. BÖDIGHEIMER and I. MADSEN

[Received 6 July 1987]

1. Introduction

1.1. This paper gives stable splittings for homotopy orbit spaces of certain mapping spaces (and spaces of sections) with Lie group actions. For example we show (in 3.5 below).

Theorem Let G be a compact Lie group, which acts on a closed manifold M and on a based, connected space X. Suppose M is G-parallelizable, $TM = M \times V$ for some G-representation V. Then there are G-spaces $D_n(M;X)$ such that

$$\Omega^{\infty} S^{\infty}(EG \ltimes_G \operatorname{map}(M; S^V X)) \simeq \prod_{n \ge 1} \Omega^{\infty} S^{\infty}(EG \ltimes_G D_n(M; X))$$

Here G acts on map $(M; S^VX)$ via conjugation. In general, if M is not parallelizable, or not closed, then the theorem remains true with the mapping space being replaced by a certain section space or, a space of based maps or sections, cf. 3.4. The spaces $D_n(M;X)$ are known as the n-adic construction on M with labels in X. For example, $D_1(M;X) = M \ltimes X = M_+ \wedge X$. For $n \ge 2$ and X a sphere, $D_n(M;X)$ is the Thom space a vector bundle over space of unlabeled configurations of M, cf. 2.1.

1.2. Example. For the natural rotation action of G = SO(2) on $M = S^1$, V is the trival representation \mathbb{R} . For a trivial G-space X the conjugation action on map $(S^1; S^V X)$ is the rotation action $g \cdot \lambda = \lambda \circ g^{-1}$ on the free loop space ΛSX . In 4.1 we will construct an SO(2) homotopy equivalence $D_n(S^1; X) \simeq S^1_+ \wedge_{\mathbb{Z}_n} X^{(n)}$. Thus 1.1 specializes to the theorem of Carlsson and Cohen, cf. [5],

$$\Omega^{\infty} S^{\infty}(ESO(2) \ltimes_{SO(2)} \wedge SX) \simeq \Pi \Omega^{\infty} S^{\infty}(E\mathbb{Z}_n \ltimes_{\mathbb{Z}_n} X^{(n)}).$$

1.3. Example. We can vary 1.3 by regarding $M = S^1$ as an O(2)-manifold. Then V is the non-trivial representation \mathbb{R}^- induced via the determinant $O(2) \to \mathbb{Z}_2$. The O(2)-conjugation on $\Lambda S^V X$ extends the former SO(2)-conjugation. Let ∇_n be the dihedral group of order 2n, acting on $X^{(n)}$ as a subgroup of the symmetric group Σ_n . Specifically, ∇_n is generated by the n-cycle and by the permutation which maps i to n-i+1. One proves (cf. 4.1) that $D_n(S^1;X)$ is O(2)-homotopy equiv-

alent to $S^1 \ltimes_{\nabla_n} X^{(n)}$, and obtains

$$\Omega^{\infty} S^{\infty}(EO(2) \ltimes_{O(2)} \Lambda S^{V} X) \simeq \prod_{n \geq 1} \Omega^{\infty} S^{\infty}(E \nabla_{n} \ltimes_{\nabla_{n}} X^{(n)}).$$

This was found previously by J. Lodder [14]. These two examples have connections to cyclic and dihedral homology [9], [12], [13], and to pseudo isotopy theory [4], [6].

1.4. Our proof follows the lines of [2] and are based upon configuration space models for mapping and section spaces, and their splittings, [1], [15]. These models are recalled in Section 2 (as *G*-spaces). Section 3 contains our splitting theorem and Section 4 gives examples.

The authors are indebted to T. tom Dieck for pointing out an error in an early draft.

2. The combinatorial models

2.1. This section recalls the combinatorial models for various spaces of sections. The reader is referred to [1], [8], [15] for further details.

Let N be a smooth compact manifold, N_0 a compact submanifold, and let X be a CW-complex, with basepoint x_0 . The configuration space of particles in N modulo N_0 with labels in X is defined as

$$C(N, N_0; X) = \left(\coprod_{k \ge 1}^{\infty} \tilde{C}^k(N) \times_{\Sigma_k} X^k \right) / \approx.$$

Here $\tilde{C}^k(N)$ is the space of k-tuples of distinct points in N, and the relation \approx identifies $(z_1, \ldots, z_k; x_1, \ldots, x_k)$ with $(z_1, \ldots, z_{k-1}; x_1, \ldots, x_{k-1})$ if $z_k \in N_0$ or $x_k = x_0$.

We write elements of $C(N, N_0; X)$ as formal sums $\xi = \sum z_i x_i$. The obvious basepoint 0 is represented by any such sum with $z_i \in N_0$ or $x_i = x_0$, all *i*. The length of configurations induces a filtration

$$C_n(N, N_0; X) = \left(\coprod_{k=1}^n \tilde{C}^k(N) \times_{\Sigma_k} X^k \right) / \approx$$

of $C(N, N_0; X)$ with quotients $D_n(N, N_0; X) = C_n(N, N_0; X) / C_{n-1}(N, N_0; X)$.

2.2. Suppose that a compact Lie group G acts smoothly on N leaving N_0 invariant, and that it acts on X leaving x_0 fixed. There is an induced action on $C(N, N_0; X)$,

$$g \cdot \xi = g \cdot (\sum z_i x_i) = \sum (g z_i)(g x_i).$$

The filtration is preserved so $C_n(N, N_0; X)$, $C_n(N, N_0; X) - C_{n-1}(N, N_0; X)$ and $D_n(N, N_0; X)$ are G-spaces; and $C^n(N) = \tilde{C}^n(N)/\Sigma_n$ are G-manifolds.

2.3. Next we recall the connection between configuration spaces and spaces of sections, [1], [15], [16]. Let W be a smooth manifold without boundary, containing N as a codimension zero submanifold (e.g. $W = N \cup \partial N \times [0, 1)$). The fibrewise one point compactification $\dot{T}W$ of the tangent bundle and the trivial bundle $W \times X \to W$ both have preferred sections, namely the point at infinity and the basepoint x_0 , in each fibre. Their fibrewise smash product $\dot{\tau}_X = \dot{T}W \wedge_W (W \times X)$ has a preferred section 0. We denote by $\Gamma(W - N_0, W - N; X)$ the space of sections of $\dot{\tau}_X$ which are defined outside of N_0 and agree with 0 outside of N. There is a natural map of based spaces,

$$\gamma$$
: $C(N, N_0; X) \rightarrow \Gamma(W - N_0, W - N; X)$.

For $\xi \in C(N, N_0; X)$ and $z \in W - N_0$, $\gamma(\xi)(z)$ is the image of ξ under the composition

$$C(N, N_0; X) \to C(N, N_0 \cup (N - \text{int } D(z)); X) \cong C(D(z), \partial D(z); X)$$

$$\cong C(D_z W, \partial D_z W; X) \xrightarrow{R} (D_z W / \partial D_z W) \wedge X \to \dot{T}W \wedge_W (W \times X).$$

The first map is the natural quotient, the second map is excision and the third is induced by the 'exponential' map from the unit disc D_zW in T_zW onto the neighbourhood D(z) of z in $W-N_0$. The map R is a deformation retraction of the inclusion $(D_zW/\partial D_zW) \wedge X \rightarrow C(D_zW, \partial D_zW; X)$. The last map is the fibre inclusion. See [15], [16] for details, and for a proof of

PROPOSITION. Suppose (N, N_0) or X is connected. Then γ is a homotopy equivalence.

2.4. If G acts on X and on W leaving N and N_0 invariant we have an induced action on $\Gamma(W; X)$: for $s \in \Gamma(W; X)$ define

$$g \cdot s = (\dot{T}g \wedge_W (g \times g)) \circ s \circ g^{-1}.$$

The section 0 is fixed, and $\Gamma(W - N_0, W - N; X)$ inherits the action. It is immediate from the definitions that γ is equivariant. It is not, however an equivariant homotopy equivalence. For example if $N = S^1$, $N_0 = \emptyset$ and G = SO(2) acting trivially on X then $C(S^1; X)^G$ is just the basepoint, but $\Gamma(S^1; X)^G = (\Lambda SX)^G = X$, c.f. 1.2.

2.5. If W is parallelizable, $TW \cong W \times \mathbb{R}^m$, then $\dot{\tau}_X = W \times (S^m \wedge X)$ and $\Gamma(W - N_0, W - N; X) = \max(W - N_0, W - N; S^m X)$

with the induced action of G. Even better, suppose that W is G-parallelizable, $TW \cong W \times V$ for some G-representation V. Then the G-action on map $(W - N_0, W - N; S^V X)$ is via conjugation, $g \cdot s = (\dot{g} \wedge g) \circ s \circ g^{-1}$. As a special case, let N be the disc DV in a G-representation V, and $N_0 = \emptyset$. Then $\gamma \colon C(DV; X) \to \Omega^V S^V X$ is the well-known approximation map. It is G-equivariant, and for connected X a non-equivariant homotopy equivalence. Also $C(DV; X) \cong C(V; X)$ as G-spaces. For G-equivariant approximation results we refer to [7], [11], [16] and [17].

2.6. Finally, recall from [1] or [8] the power set maps

$$\sigma_k: C(N, N_0; X) \to C(C^k(N); D_k(N, N_0; X)).$$

Given $\xi = \sum_{i \in I} z_i x_i$ in $C(N, N_0; X)$ consider all subsets $\alpha \subset I$ of cardinality k. Set $z_{\alpha} = \sum_{i \in \alpha} z_i \in C^k(N)$ and let $\bar{\xi}_{\alpha}$ be the image of $\xi_{\alpha} = \sum_{i \in \alpha} z_i x_i$ under the quotient map $C_k(N, N_0; X) \to D_k(N, N_0; X)$. Define $\sigma_k(\xi) = \sum_{\alpha} z_{\alpha} \bar{\xi}_{\alpha}$. The G-action on $C^k(N)$ and on $D_k(N, N_0; X)$ induce a G-action on $C(C^k(N); D_k(N, N_0; X))$, and by 2.2, σ_k is G-equivariant.

3. Homotopy orbit spaces

3.1. We shall consider ex-spaces over a fixed space B, that is maps $\pi: A \to B$ together with a section $\iota: B \to A$. For a based space S the product $B \times S$ with the obvious section is an ex-space over B. For a vector bundle η we regard its fibrewise one-point compactification $\dot{\eta}$ with the section at infinity as an ex-space. We can form the fibrewise smash product $\pi_1 \wedge_B \pi_2$ of ex-spaces and we can form the Thom space Th $(A) = A/\iota(B)$.

Note that $(\eta_1 \oplus \eta_2) = \dot{\eta}_1 \wedge_B \dot{\eta}_2$ for vector bundles η_1 , η_2 , and that Th $((B \times S) \wedge_B A) = S \wedge$ Th (A) for a based space S and an ex-space A. In particular Th $(B \times S) = B_+ \wedge S = B \times S$.

3.2. Let G be a compact Lie group, C and D based G-spaces, V a G-representation and $p: S^VC \to S^VD$ a based G-map. Consider a principal G-bundle $E \to B$ such that the vector bundle $E \times_G V \to B$ has an inverse η , $(E \times_G V) \oplus \eta \cong B \times \mathbb{R}^n$ for some n. There is an induced map of ex-spaces

$$(id \times_G p) \wedge_B id : (E \times_G S^v C) \wedge_B \dot{\eta} \rightarrow (E \times_G S^v D) \wedge_B \dot{\eta}$$

Let q be the induced map of Thom spaces q: $S^n(E \ltimes_G C) \to S^n(E \ltimes_G D)$.

3.3. Let N, N_0 and X be as in 2.2. Fix k, and set $C = C(N, N_0; X)$ and $D_k = D_k(N, N_0; X)$. Choose a G-representation $V = V_k$ which contains

 $C^{k}(N)$, and let $p = p_{k}$ be the adjoint of the composition

$$C \xrightarrow{\sigma_k} C(C^k(N); D_k) \subseteq C(V_k; D_k) \xrightarrow{\gamma_k} \Omega^{V_k} S^{V_k} D_k$$

with σ_k from 2.6 and γ_k from 2.5. Let $EG \to BG$ be the universal principal G-bundle, and let $B_rG \subset BG$ be the usual finite CW-complexes which filter BG. If $E_rG \to B_rG$ denotes the restriction of the universal G-bundle, then the vector bundle $E_rG \times_G V_k \to B_rG$ has an inverse $\eta_{k,r}$, say $(E_rG \times_G V_k) \oplus \eta_{k,r} \cong B_rG \times \mathbb{R}^{n(k,r)}$

for some n(k, r). Moreover, we may choose the $\eta_{k,r}$ compatible in the sense that the restriction of $\eta_{k,r}$ to $B_{r-1}G$ is the direct sum of $\eta_{k,r-1}$ and the trivial bundle of dimension n(k, r) - n(k, r-1). By 3.2 we have maps

$$q_{k,r}: S^{n(k,r)}(E_rG \ltimes_G C) \to S^{n(k,r)}(E_rG \ltimes_G D_k)$$

and commutative diagrams

$$\Omega^{n(k,r)}S^{n(k,r)}(E_rG \ltimes_G C) \xrightarrow{\Omega^{n(k,r)}q_{k,r}} \Omega^{n(k,r)}S^{n(k,r)}(E_rG \ltimes_G D_k)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\Omega^{n(k,r-1)}S^{n(k,r-1)}(E_{r-1}G \ltimes_G C) \xrightarrow{\Omega^{n(k,r-1)}q_{k,r-1}} \Omega^{n(k,r-1)}S^{n(k,r-1)}(E_{r-1}G \ltimes_G D_k)$$

The vertical maps are induced by the inclusions $E_{r-1}G \subset E_rG$ and by the inclusion $\eta_{k,r-1} \subset \eta_{k,r}$. Passing to the limit over r gives a map

$$q_k: \Omega^{\infty} S^{\infty}(EG \ltimes_G C) \to \Omega^{\infty} S^{\infty}(EG \ltimes_G D_k).$$

3.4. The maps q_k will serve as the components of a decomposition of $EG \ltimes_G \Gamma(W - N_0, W - N; X)$, where N, N_0, W and X are as in 2.2 and 2.3.

THEOREM. There is a homotopy equivalence

$$\Omega^{\infty} S^{\infty}(EG \ltimes_{G} \Gamma(W - N_{0}, W - N; X)) \simeq \prod_{n=1}^{\infty} \Omega^{\infty} S^{\infty}(EG \ltimes_{G} D_{n}(N, N_{0}; X)).$$

Proof. From the Proposition 2.3 and 2.4 we have the homotopy equivalence

$$\operatorname{id} \ltimes_G \gamma \colon EG \ltimes_G C(N, N_0; X) \to EG \ltimes_G \Gamma(W - N_0, W - N; X).$$

We can replace $\Gamma(W - N_0, W - N; X)$ by $C = C(N, N_0; X)$ for our assertion. Write $D_k = D(N, N_0; X)$ and $C_n = C_n(N, N_0; X)$, and get

$$q = \prod_{k=1}^{\infty} q_k \colon \ \Omega^{\infty} S^{\infty}(EG \ltimes_G C) \to \prod_{k=1}^{\infty} \ \Omega^{\infty} S^{\infty}(EG \ltimes_G D_k).$$

The restrictions of q give commutative diagrams

$$\Omega^{\infty}S^{\infty}(EG \ltimes_{G} C_{n-1}) \longrightarrow \prod_{k=1}^{n-1} \Omega^{\infty}S^{\infty}(EG \ltimes_{G} D_{k}) \\
\downarrow \qquad \qquad \downarrow \\
\Omega^{\infty}S^{\infty}(EG \ltimes_{G} C_{n}) \longrightarrow \prod_{k=1}^{n} \Omega^{\infty}S^{\infty}(EG \ltimes_{G} D_{k}) \\
\downarrow \qquad \qquad \downarrow \\
\Omega^{\infty}S^{\infty}(EG \ltimes_{G} C_{n}/C_{n-1}) \longrightarrow \Omega^{\infty}S^{\infty}(EG \ltimes_{G} D_{n})$$

The lower horizontal map is obviously homotopic to the identity. Starting with $C_1 = D_1$, it follows by induction on n that each restriction of q and hence q itself is a homotopy equivalence.

3.5. Proof of Theorem 1.2.

Suppose $TM \cong M \times V$ for some G-representation V. Let M_0 be an invariant submanifold, X be a based, connected G-space. We put $W = M \cup \partial M \times [0, 1)$ and apply Proposition 2.3 to $N = M - M_0$, $N_0 = \partial M - M_0$. This gives a G-map and homotopy equivalence

$$C(M-M_0, \partial M-M_0; X) \xrightarrow{\sim} \Gamma(W-(\partial M-M_0), W-(M-M_0)).$$

(Actually, we must replace M_0 be an open tubular neighbourhood, in order to have $M-M_0$ compact; but this leaves the G-homotopy type of both sides unchanged.) By excision and parallelizability

$$\Gamma(W-(\partial M-M_0), W-(M-M_0)) \approx \text{map}(M, M_0; S^V X)$$

as G-spaces, where the action on the mapping space is via conjugation, cf. 2.5. By Theorem 3.4

$$\Omega^{\infty}S^{\infty}(EG \ltimes_G \operatorname{map}(M, M_0; S^VX))$$

$$\simeq \prod_{n=1}^{\infty} \Omega^{\infty} S^{\infty} (EG \ltimes_{G} D_{n} (M - M_{0}, \partial M - M_{0}; X)).$$

The case $M_0 = \emptyset$, $\partial M = \emptyset$ is Theorem 1.2; the spaces $D_n(M; X)$ are the filtration quotients of C(M; X).

4. Examples

4.1. The space $\tilde{C}^n(S^1) \subset S^1 \times \cdots \times S^1$ has an O(2)- Σ_n bi-action with O(2) acting (diagonally) from the left and Σ_n acting from the right, permuting factors. Let Δ^{n-1} denote the open (n-1)-simplex of points $(d_1, \ldots, d_n) \in \mathbb{R}^n$ with $d_i > 0$ and $d_1 + \cdots + d_n = 2\pi$. On $S^1 \times \Delta^{n-1}$ con-

sider the \mathbb{Z}_n -action given by

$$(z; d_1, \ldots, d_n) \cdot T = (e^{id_1} \cdot z; d_2, \ldots, d_n, d_1),$$

where T is a generator of \mathbb{Z}_n .

Define a right Σ_n -homeomorphism

$$h: \tilde{C}^n(S^1) \to (S^1 \times \Delta^{n-1}) \ltimes_{\mathbb{Z}_n} \Sigma_n$$

as follows. For $\tilde{\xi} = (z_1, \ldots, z_n)$ choose $\sigma \in \Sigma_n$ such that the sequence $z_{\sigma^{-1}(1)}, \ldots, z_{\sigma^{-1}(n)}$ defines the standard orientation of S^1 ; then set $h(\tilde{\xi}) = [z_{\sigma^{-1}(1)}; d_1, \ldots, d_n; \sigma]$, where d_i is the distance between $z_{\sigma^{-1}(i)}$ and $z_{\sigma^{-1}(i+1)}$ (with $\sigma^{-1}(n+1) = \sigma^{-1}(1)$).

Obviously, h preserves the SO(2)-actions. Let $c \in O(2)$ denote complex conjugation, acting on $(S^1 \ltimes_G \Delta^{n-1}) \ltimes_{\mathbb{Z}_n} \Sigma_n$ by

$$c \cdot [z; d_1, \ldots, d_n; \sigma] = [\bar{z}; d_{\iota(1)}, \ldots, d_{\iota(n)}; T^{-1}\iota\sigma].$$

Here T is the generator of \mathbb{Z}_n , $T(i) = i + 1 \pmod{n}$ and $\iota \in \Sigma_n$ is the permutation with $\iota(j) = n - j + 1$. Since $\iota T \iota^{-1} = T^{-1}$, ι and T generate the dihedral subgroup $\nabla_n \subset \Sigma_n$ of order 2n. The space $(S^1 \ltimes \Delta^{n-1}) \ltimes_{\mathbb{Z}_n} \Sigma_n$ is retractible onto the subspace of equidistant configurations, which is homeomorphic to S^1 . The retraction is given by

$$\Phi_t[z;d_1,\ldots,d_n;\sigma] = [ze^{\varphi_t(d_1,\ldots,d_n)};d_1^t,\ldots,d_n^t;\sigma]$$

with $d_i^t = d_i + \left(\frac{2\pi}{n} - d_i\right)t$ and

$$\varphi_t(d_1,\ldots,d_n) = \frac{t}{n} \sum_{j=1}^{n-1} \left(\frac{2\pi(n-j)}{n} - \sum_{i=j+1}^n d_i \right),$$

for $0 \le t \le 1$. Φ_t is O(2)-equivariant, and gives an equivalence $\tilde{C}^n(S^1) \simeq S^1 \ltimes_{\mathbb{Z}_n} \Sigma_n$.

Let X be a based, connected O(2)-space. Then

$$D_n(S^1; X) = \tilde{C}^n(S^1) \ltimes_{\Sigma_n} X^{(n)} \simeq S^1 \ltimes_{\mathbb{Z}_n} X^{(n)}$$

as O(2)-spaces. In particular, if X has trivial O(2) action,

$$EO(2) \ltimes_{O(2)} D_n(S^1; X) \simeq EO(2) \ltimes_{O(2)} (S^1 \ltimes_{\mathbb{Z}_n} X^{(n)}) = E \nabla_n \ltimes_{\nabla_n} X^{(n)}.$$

From 3.4 we get

$$\Omega^{\infty} S^{\infty}(EO(2) \ltimes_{O(2)} \Lambda S^{\mathbb{R}^{-}} X) \simeq \prod_{n=1}^{\infty} \Omega^{\infty} S^{\infty}(E \nabla_{n} \ltimes_{\nabla_{n}} X^{(n)}).$$

Similarly, restricting to G = SO(2) we get

$$\Omega^{\infty} S^{\infty}(ESO(2) \ltimes_{SO(2)} \Lambda SX) \simeq \prod_{n=1}^{\infty} \Omega^{\infty} S^{\infty}(EZ_n \ltimes_{\mathbb{Z}_n} X^{(n)}).$$

This proves the special cases of the splitting theorem listed in 1.2 and 1.3.

4.2. Let $V = \mathbb{R}^-$ be the non-trivial representation of $\mathbb{Z}/2$. The space ΩSX of based loops may be regarded as the space of all maps $\lambda \colon V \to S^V X$ such that $\lambda(z) = *$ if $z \notin M = [-1, 1]$. It has an obvious involution, and $\Omega SX \simeq C(M; X)$. Note that $\tilde{C}^n(M) = M \times \Delta^{n-1} \times \Sigma_n$ as $\mathbb{Z}_2 - \Sigma_n$ spaces, so in 3.4

$$D_n(M;X) = \tilde{C}^n(M) \ltimes_{\Sigma_n} X^{(n)} \simeq \Sigma_n \ltimes_{\Sigma_n} X^{(n)} = X^{(n)}$$

as \mathbb{Z}_2 -spaces. Here the involution ι on $X^{(n)}$ is given by $\iota(x_1 \wedge \cdots \wedge x_n) = \bar{x}_n \wedge \cdots \wedge \bar{x}_1$, with \bar{x} the involution on X.

This gives the equivariant version of the James-Milnor splitting

$$\Omega^{\infty} S^{\infty}(E\mathbb{Z}_2 \ltimes_{\mathbb{Z}_2} \Omega S^{V} X) \simeq \prod_{n=1}^{\infty} \Omega^{\infty} S^{\infty}(E\mathbb{Z}_2 \ltimes_{\mathbb{Z}_2} X^{(n)}).$$

It fits into the corresponding splitting of the space of free loops $\Lambda S^{\nu}X$ via the evaluation fibration

$$\Omega S^{V}X \to \Lambda S^{V}X \stackrel{\varepsilon}{\to} S^{V}X, \qquad \varepsilon(\lambda) = \lambda(-1).$$

4.3. In general it is not easy to determine explicitly the spaces $D_n(N, N_0; X)$, or their homotopy orbit spaces, when $n \ge 2$. We list a few examples for D_2 .

Let G = O(3) with its standard action on $N = S^2$ and any action on X. Then $D_2(S^2; X) \simeq S^2 \ltimes_{\Sigma_2} X^{(2)}$ with Σ_2 acting antipodally on S^2 , so

$$EO(3) \ltimes_{O(3)} D_2(S^2; X) \simeq EK \ltimes_K (S^2 \ltimes X^{(2)})$$

where $K = O(3) \times \Sigma_2$.

Let G be arbitrary compact Lie, acting on N = G by left translation. Then $\tilde{C}^n(G) = G \times \tilde{C}^{n-1}(G - \{1\})$. For $G = S^3$,

$$EG \ltimes_G D_2(S^3; X) = E\Sigma_2 \ltimes_{\Sigma_2} X^{(2)}.$$

Finally, let $G = \Sigma_r$, $N = \{1, \ldots, r\}$ and let X have trivial action. Then $\Gamma(N; X) = X^r$ and $D_n(N; X) = \bigvee X_I$ with $X_I = X_{i_1} \wedge \cdots \wedge X_{i_n}$; $X_j = X$. Here I ranges over the subsets of N of cardinality n. There are Σ_r -equivalences

$$D_1(N; X) = X \vee \cdots \vee X, \qquad D_r(N; X) = X^{(r)}.$$

REFERENCES

- 1. C.-F. Bödigheimer, 'Stable splittings of mapping spaces', in Algebraic Topology, Proc. Seattle 1985, Springer LNM 1286 (1987), 174–187.
- 2. C.-F. Bödigheimer and I. Madsen; 'Decomposition of free loop spaces', Mathematica Gottingensis 61 (1986).
- **3.** D. Burghelea, 'Cyclic homology and algebraic *K*-theory of spaces *I*', *Contemp. Math.* 55 (1) (1986), 89–115.

- **4.** D. Burghelea and Z. Fiedorowicz, 'Cyclic homology and algebraic *K*-theory of spaces II', *Topology* 25 (1986), 303–317.
- 5. G. Carlsson and R. Cohen, 'The cyclic groups and the free loop space', Comment. Math. Helv. 62 (1987), 423-449.
- **6.** G. Carlsson, R. Cohen, Th. Goodwillie, and W.-C. Hsiang, 'The free loop space and the algebraic K-theory of spaces', K-Theory 1 (1987), 53–82.
- 7. J. Caruso and S. Waner, 'An approximation theory for equivariant loop spaces in the compact Lie case', *Pac. J. Math.* 117 (1985), 27–49.
- **8.** F. Cohen, 'The unstable decomposition of $\Omega^2 S^2 X$ and its applications', *Math. Z.* 182 (1983), 553–568.
- **9.** Th. Goodwillie, 'Cyclic homology derivations, and the free loop space', *Topology* 24 (1985), 187–215.
- **10.** Th. Goodwillie, 'Algebraic K-theory and cyclic homology', Ann. Math. 124 (1986), 344–399.
- **11.** H. Hauschild, Äquivariante Konfigurationsräume und Abbildungsräume. Proc. Topology Symp., Siegen 1979; Springer LNM 788 (1980), 281–315.
- **12.** J. Jones, 'Cyclic homology and equivariant homology', *Invent. Math.* 87 (1987), 403–423.
- 13. J.-L. Loday, 'Homologies diédrale et quaternionique', Adv. Math. 66 (1987), 119-148.
- 14. J. Lodder, 'Dihedral homology and the free loop space', Ph.D. thesis, Stanford (1988).
- **15.** D. McDuff, 'Configuration spaces of positive and negative particles', *Topology* 14 (1975), 91–107.
- **16.** D. McDuff, *Configuration spaces*. Proc. (*K*-Theory and Operator Algebras), Athens (Georgia) 1975; Springer LNM 575, 88–95.
- 17. G. Segal, 'Some results in equivariant homotopy theory', Preprint (1978).

Mathematisches Institut Universität Göttingen Bunsenstrasse 3–5 D-3400 Göttingen West Germany

Matematisk Institut Aarhus Universitet Ny Munkegade DK-8000 Aarhus Danmark