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1. Introduction

1.1. Tuis paper gives stable splittings for homotopy orbit spaces of
certain mapping spaces (and spaces of sections) with Lie group actions.
For example we show (in 3.5 below).

THEOREM Let G be a compact Lie group, which acts on a closed
manifold M and on a based, connected space X. Suppose M is
G-parallelizable, TM =M X V for some G-representation V. Then there
are G-spaces D, (M; X) such that

Q*S*(EG Xgmap (M; SX)) = || Q*S*(EG s D,(M; X))

n=1

Here G acts on map (M; S¥X) via conjugation. In general, if M is not
parallelizable, or not closed, then the theorem remains true with the
mapping space being replaced by a certain section space or, a space of
based maps or sections, cf. 3.4. The spaces D,(M; X) are known as the
n-adic construction on M with labels in X. For example, D,(M; X) =
Mx X=M, A X. For n=2 and X a sphere, D,(M; X) is the Thom space
a vector bundle over space of unlabeled configurations of M, cf. 2.1.

1.2. ExampLE. For the natural rotation action of G = SO(2) on M =S,
V is the trival representation R. For a trivial G-space X the conjugation
action on map (S'; S"X) is the rotation action g-A=2Acg~! on the free
loop space ASX. In 4.1 we will construct an SO(2) homotopy equivalence
D,(8"; X) =S% Az, X™. Thus 1.1 specializes to the theorem of Carlsson
and Cohen, cf. [5],

QWSW(ESO(Z) XSO(Z) A SX) = HQmSw(EZn KZ,, X(n))

1.3. ExampLE. We can vary 1.3 by regarding M=S' as an O(2)-
manifold. Then V is the non-trivial representation R~ induced via the
determinant O(2)— Z,. The O(2)-conjugation on AS"X extends the
former SO(2)-conjugation. Let V, be the dihedral group of order 2n,
acting on X™ as a subgroup of the symmetric group X,,. Specifically, V,, is
generated by the n-cycle and by the permutation which maps i to
n—i+1. One proves (cf. 4.1) that D,(S'; X) is O(2)-homotopy equiv-
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alent to S' Xy X, and obtains

Q=S~(EO(2) X o2y ASVX) = [ | Q=S=(EV, Xy, X™).
n=1
This was found previously by J. Lodder [14]. These two examples have
connections to cyclic and dihedral homology [9], [12], [13], and to pseudo
isotopy theory [4], [6].

1.4. Our proof follows the lines of [2] and are based upon configuration
space models for mapping and section spaces, and their splittings, [1],
[15]. These models are recalled in Section 2 (as G-spaces). Section 3
contains our splitting theorem and Section 4 gives examples.

The authors are indebted to T. tom Dieck for pointing out an error in
an early draft.

2. The combinatorial models

2.1. This section recalls the combinatorial models for various spaces of
sections. The reader is referred to [1], [8], [15] for further details.

Let N be a smooth compact manifold, N, a compact submanifold, and
let X be a CW-complex, with basepoint x,. The configuration space of
particles in N modulo N, with labels in X is defined as

C(N, Ny; X) = ( LI C¥(V) x5, X")/z.
k=1

Here C*(N) is the space of k-tuples of distinct points in N, and the
relation ~ identifies (z;,..., 2z x), ..., %) with (z1,..., z_;
X1y - ooy Xp—q) If Z; € Ny OF X = X,.

We write elements of C(N, Ny; X) as formal sums &=7Y zx,. The
obvious basepoint 0 is represented by any such sum with z,€ N, or
X; =Xy, all i. The length of configurations induces a filtration

C.(N, No; X) = (kI:J CH(N) %5, Xk)/z

of C(N, Ny; X) with quotients  D,(N, Ny; X)=C,(N, No; X)/
Cn—l(N) NO, X)

2.2. Suppose that a compact Lie group G acts smoothly on N leaving N,
invariant, and that it acts on X leaving x, fixed. There is an induced
action on C(N, Ny; X),

g-E=g" (Z ZX;) = 2 (82:)(gx:).
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The filtration is preserved so C,(N, Ny; X), C,(N, No; X) —
C.-1(N, Ny; X) and D,(N, Np; X) are G-spaces; and C*(N)= C"(N)/Z,
are G-manifolds.

2.3. Next we recall the connection between configuration spaces and
spaces of sections, [1], [15], [16]. Let W be a smooth manifold without
boundary, containing N as a codimension zero submanifold (e.g. W =
NUOGN X [0, 1)). The fibrewise one point compactification TW of the
tangent bundle and the trivial bundle W X X— W both have preferred
sections, namely the point at infinity and the basepoint x,, in each fibre.
Their fibrewise smash product iy=TW Ay (W X X) has a preferred
section 0. We denote by I'(W — N,, W — N; X) the space of sections of
Tx which are defined outside of N, and agree with 0 outside of N. There
is a natural map of based spaces,

y: C(N, Np; X)—=>T(W — N,, W — N; X).

For £ € C(N, Ny; X) and z e W — N,, y(§)(z) is the image of £ under the
composition
C(N, Ny; X)— C(N, Ny U (N —int D(z2)); X) = C(D(z), D(z); X)

= C(D,W, 3D,W; X) & (D,W/3D,W) A X— TW Ay (W x X).
The first map is the natural quotient, the second map is excision and
the third is induced by the ‘exponential’ map from the unit disc D,W
in T,W onto the neighbourhood D(z) of z in W —N,. The map R
is a deformation retraction of the inclusion (D,W/3D,W)A X—

C(D,W, 3D,W; X). The last map is the fibre inclusion. See [15], [16] for
details, and for a proof of

PROPOSITION. Suppose (N, N,) or X is connected. Then y is a homotopy
equivalence.

24. If G acts on X and on W leaving N and N, invariant we have an
induced action on I'(W; X): for s € I'(W; X) define

g-s=(Tgrw(gxg))oscg™

The section 0 is fixed, and I'(W — N, W — N; X) inherits the action. It is
immediate from the definitions that y is equivariant. It is not, however an
equivariant homotopy equivalence. For example if N=S5', N,= and
G =SO(2) acting tr1v1a11y on X then C(S'; X)“ is just the basepoint, but
I'(S'; X)°=(ASX)° =X, cf. 1.2.

2.5. If W is parallelizable, TW =W X R™, then 7, = W X ($™ A X) and
(W —Np, W —N; X)=map (W —N,, W — N; §"X)



404 C.-F. BODIGHEIMER AND I. MADSEN

with the induced action of G. Even better, suppose that W is G-
parallelizable, TW =W XV for some G-representation V. Then the
G-action on map (W — N, W — N; SVX) is via conjugation, g -s = (g A
g)eseg~'. As a special case, let N be the disc DV in a G-representation
V, and N,=. Then y: C(DV;X)—Q"S"X is the well-known ap-
proximation map. It is G-equivariant, and for connected X a non-
equivariant homotopy equivalence. Also C(DV;X)=C(V;X) as G-
spaces. For G-equivariant approximation results we refer to [7], [11], [16]
and [17].

2.6. Finally, recall from [1] or [8] the power set maps
0i: C(N, No; X)— C(Ck(N); Dy (N, Ny; X)).
Given &= Y. zix; in C(N, Ny; X) consider all subsets a c I of cardinality
iel

k. Set z, = ¥ z;€ C(N) and let &, be the image of &, = ¥ zx; under

[ 2=Y+4

the quotient map Ci(N, Ny; X)— Dy (N, Np; X). Define 0,(§) = ¥ z,&,.

The G-action on C*(N) and on D,(N, Ny; X) induce a G-action on
C(C*(N); Di(N, No; X)), and by 2.2, o, is G-equivariant.

3. Homotopy orbit spaces

3.1. We shall consider ex-spaces over a fixed space B, that is maps
m: A— B together with a section ¢: B— A. For a based space S the
product B X S with the obvious section is an ex-space over B. For a
vector bundle n we regard its fibrewise one-point compactification 7 with
the section at infinity as an ex-space. We can form the fibrewise smash
product m; Agm, of ex-spaces and we can form the Thom space
Th (A) = A/1(B).

Note that (1, ® n,)" =, Agf), for vector bundles n,, n,, and that
Th ((B X §) AgA)=S8 A Th(A) for a based space S and an ex-space A.
In particular Th (B X S)=B, AS=BKXS.

3.2. Let G be a compact Lie group, C and D based G-spaces, V a
G-representation and p: SYC— SYD a based G-map. Consider a prin-
cipal G-bundle E— B such that the vector bundle E X;V — B has an
inverse 7, (E X5 V)® n=B X R" for some n. There is an induced map
of ex-spaces

(idXgp) Agid: (EXgS'C)AgN—(EXgSYD) Agh
Let g be the induced map of Thom spaces q: S"(EX;C)— S"(EXgD).

33. Let N, Ny and X be as in 2.2. Fix k, and set C = C(N, N,; X) and
Dy = D(N, Ny; X). Choose a G-representation V =V, which contains
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C*(N), and let p = p, be the adjoint of the composition
C =5 C(CH(N); DY) < C(Vy; D) 2> Q'%s" D),

with o, from 2.6 and y, from 2.5. Let EG— BG be the universal
principal G-bundle, and let B,G = BG be the usual finite CW-complexes
which filter BG. If E,G— B,G denotes the restriction of the universal
G-bundle, then the vector bundle E,G X V,— B,G has an inverse Nk.rs

" (ErG XG Vk) @ Ni,r = B,G X Rn(k,r)

for some n(k, r). Moreover, we may choose the N, compatible in the
sense that the restriction of 7, , to B,_,G is the direct sum of Nx.r—1 and
the trivial bundle of dimension n(k, r)—n(k, r —1). By 3.2 we have
maps

di.r: S"*(E,GXgC)— S" " (E,G K, Dy)
and commutative diagrams

@rtkg,

Q"(k”)S"(k'r)(E,G I s C) Q"(k")S"(k")(E,G B Dk)

| T

Qn(k.r—l)sn(k,rkl)(Er_lG X C) Qg : Qn(k,r—l)Sn(k.r—l)(Er_lG e Dk)
The vertical maps are induced by the inclusions E, ;G < E,G and by the
inclusion 7, ,_; = 7,,. Passing to the limit over r gives a map

gr: QS(EGXC)— Q*S*(EG X Dy).

3.4. The maps g, will serve as the components of a decomposition of
EGXsT'(W — Ny, W—N; X), where N, Ny, W and X are as in 2.2
and 2.3.

THEOREM. There is a homotopy equivalence
Q*S*(EGXgT(W — Ny, W —N; X)) = [ [ Q"S™(EG x4 D,(N, Ny; X)).
n=1

Proof. From the Proposition 2.3 and 2.4 we have the homotopy
equivalence

idXgy: EGXgC(N, Ny; X)—> EGXgT'(W — N,, W —N; X).

We can replace I'(W —N,, W —-N;X) by C=C(N, N,; X) for our
assertion. Write D, = D(N, Ny; X) and C, = C,(N, Np; X), and get

Il

q=1[] qe: Q°S*(EGxsC)— [[ Q°S*(EG % D,).
k=1 k=1
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The restrictions of g give commutative diagrams

n—1
Q*S“(EGXgC,_;) — [] Q"S“(EGxsDy)

1 o

QS(EGKsC,) —> [| @S(EGs D)

l k=1 J’
Q*S(EGXsC,/C,_)) — Q"S™(EGXgD,)

The lower horizontal map is obviously homotopic to the identity. Starting
with C, = D, it follows by induction on n that each restriction of ¢ and
hence q itself is a homotopy equivalence.

3.5. Proof of Theorem 1.2.

Suppose TM =M X V for some G-representation V. Let M, be an
invariant submanifold, X be a based, connected G-space. We put
W=MUGSM x[0,1) and apply Proposition 2.3 to N=M — M,, N,=
dM — M,. This gives a G-map and homotopy equivalence

C(M — My, M — My; X) > T(W — (OM — M), W — (M — Mp)).

(Actually, we must replace M, be an open tubular neighbourhood, in
order to have M — M, compact; but this leaves the G-homotopy type of
both sides unchanged.) By excision and parallelizability

[(W —(dM — M,), W — (M — M,)) = map (M, M,; SVX)

as G-spaces, where the action on the mapping space is via conjugation,
cf. 2.5. By Theorem 3.4

Q*S*(EG X map (M, My; SVX))

=[] Q*S™(EG % D,(M — My, 5M — M,; X)).
n=1
The case M, =, M = is Theorem 1.2; the spaces D, (M; X) are the
filtration quotients of C(M; X).

4. Examples
4.1. The space C"(S') = S! X - - - X §* has an O(2)-Z, bi-action with O(2)
acting (diagonally) from the left and X, acting from the right, permuting

factors. Let A”' denote the open (n—1)-simplex of points
(dy,...,d,)eR" withd;>0and d,+---+d,=2n On S'x A""! con-
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sider the Z,-action given by
(z;dy,...,d) - T=(€%4"-z;d,,...,d, dy),

where T is a generator of Z,,.
Define a right Z,,-homeomorphism

h: C"(SH)—> (' X A" MK, =,

as follows. For E=(z,...,z,) choose og€Z, such that the sequence
Za-1(1)s « - - 5 Zo-\(m) defines the standard orientation of S'; then set
h(€) =z, -11)} dl, ..., dy; 0], where d, is the distance between z,-1;;, and
Zg-1+1y (With 07 '(n + 1) = 67'(1)).

Obviously, & preserves the SO(2)-actions. Let ¢ € O(2) denote complex
conjugation, acting on (S'Xs A" ") X, =, by

c-[z;dy,...,d;0]l=[Z5d,qy, - . ., diny; T~ 1e0].

Here T is the generator of Z,, T(i)=i+ 1(modn) and ¢t €ZX, is the
permutation with ¢(j)=n—j+ 1. Since ¢Tv"*=T"!, + and T generate
the dihedral subgroup V, c =, of order 2n. The space (S'Xx A" )%, 5,
is retractible onto the subspace of equidistant configurations, which is
homeomorphic to S'. The retraction is given by

®,[z;d,y,...,d,; 0]=[ze" W g d.; 0]

with di=d; + (z——d)t and

olds, . A= ; 1(2”(” n_ < d,),

i=1 i=j+1

for 0<t=<1. ®, is O(2)-equivariant, and gives an equivalence C"(S?) =
S'%, 2,
Let X be a based, connected O(2)-space. Then

D"(Sl; X) = C‘-n(Sl)KZHX(n) =S1l><an(")
as O(2)-spaces. In particular, if X has trivial O(2) action,
EO(2)X 0@ Du(SY; X) = EO(2) X oz (8" Xz, X™) = EV,, g X ™.

From 3.4 we get

Q"S™(EO(2) X oy AS® X) = ﬁl Q"S*(EV, Xy, X™).
Similarly, restricting to G = SO(2) we get

Q*S*(ESO(2) X 502y ASX) = ﬁ] Q"S*(EZ, %z, X™).

This proves the special cases of the splitting theorem listed in 1.2 and 1.3.
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4.2. Let V =R~ be the non-trivial representation of Z/2. The space QSX
of based loops may be regarded as the space of all maps A: V—SYX
such that A(z)= * if z¢ M =[—1, 1]. It has an obvious involution, and
QSX = C(M; X). Note that C"(M)=M X A" ' XX, as Z,— 3, spaces,
so in 3.4

D,(M; X)=C"(M)Xg XP =3 xz X =Xx®"

as Z,-spaces. Here the involution ¢ on X is given by t(x; A+ -+ A X,) =
X, A *** A Xy, with X the involution on X.
This gives the equivariant version of the James-Milnor splitting

Q*S*(EZ,% 7, Q8VX) = [[ Q*S*(EZ, %z, X™).
n=1

It fits into the corresponding splitting of the space of free loops AS"X via
the evaluation fibration

QSYX—> ASYX5SYX,  e(A)=A(-1).

4.3. In general it is not easy to determine explicitly the spaces
D, (N, Ny; X), or their homotopy orbit spaces, when n=2. We list a few
examples for D,.

Let G = O(3) with its standard action on N = S and any action on X.
Then D,(5%; X) = §? Kz, X® with Z, acting antipodally on §, so

where K = 0(3) X Z,.
Let G be arbitrary compact Lie, acting on N =G by left translation.
Then C"(G) =G x C"" (G — {1}). For G = §°,

EG & gDy($%; X) = EZ, X5, X?.

Finally, let G=Z2,, N={1, ..., r} and let X have trivial action. Then
I'(N;X)=X" and D,(N;X)=\ X; with X;=X;, A---AX,; X;=X.
Here [ ranges over the subsets of N of cardinality n. There are
Z,-equivalences

D(N; X)=Xv---vX D,(N; X)= X",
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